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SUMMARY

For two graphs G and H , G has H as a minor if a graph isomorphic to H can be

obtained from a subgraph of G by repeatedly contracting edges. The Four Color Theorem

(4CT) says that every planar graph is 4-colorable. Due to the Kuratowski-Wagner theorem,

the 4CT can be restated that every graph with no K5 minor and K3,3 minor is 4-colorable.

The famous Hadwiger Conjecture is a generalization of the 4CT, which says that every

graph with no Kt+1 minor for integers t ≥ 1 is t-colorable. The Hadwiger’s Conjecture is

true for all t ≤ 5 and remains widely open for t ≥ 6.

To make progress on Hadwiger’s Conjecture for t ≥ 6, one major line of work has

focused on giving an upper bound on the number of edges for graphs without a Kt minor.

The maximum number of edges of an n-vertex graph with no Kt minor is known as the

extremal function for Kt minors. This dissertation focuses on the extremal function for

K10 minors.

Our main theorem says that every graph on n ≥ 8 vertices and at least 8n − 35 edges

either has a K10 minor or falls into a few families of exceptional graphs. In Chapter 1,

we discuss more into the motivation and related results on the K10 minor work. In Chap-

ter 2, we present necessary graph theoretical background and a series of observations of the

exceptional graphs in the main theorem. We study structural properties of possible mini-

mal counter-examples to the main theorem in Chapter 3 and later dive into proving a main

technical lemma in Chapter 4. Finally, we conclude our main theorem in Chapter 5.

We note that the proof for the main technical lemma (Lemma 4.1.1) in our proof for

the main theorem is computer-assisted. We do not yet have a computer-free proof for

Lemma 4.1.1.
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CHAPTER 1

INTRODUCTION

We discuss motivation, related results, and further impact of my work in this chapter.

1.1 Motivation

My work is motivated by Hadwiger’s conjecture, which is a longstanding open problem

that generalizes the Four Color Theorem. The Four Color Theorem (4CT) states that every

planar graph is 4-colorable. By the Kuratowski-Wagner theorem [20, 39], a graph is planar

if and only if it has no K5 or K3,3 minor, which allows us to restate the 4CT that every

graph with no K5 minor and no K3,3 minor is 4-colorable. As K3,3 can in fact be colored

by four colors, one might wonder if every graph with no K5 minor is 4-colorable. This

leads us to Hadwiger’s famous conjecture [7].

Conjecture 1.1.1 (Hagwidger’s Conjecture). For every integer t ≥ 0, every graph with no

Kt+1 minor is t-colorable.

For t ≤ 3, Hadwiger’s conjecture is reasonably easy, as shown by Hadwiger [7] and Dirac

[5]. Wagner [39] proved the case t = 4 is equivalent to the 4CT in 1937, so the case t = 4

was eventually proved in 1976 when Appel and Haken [2, 3] proved the 4CT. In 1993,

Robertson, Seymour, and Thomas [23] showed the case t = 5 is also equivalent to the 4CT.

Hadwiger’s conjecture remains open for t ≥ 6.

One major line of work on Hadwiger’s conjecture has focused on giving an upper bound

on the number of edges for graphs that lack a Kt minor. For positive integers t and n, the

maximum number of edges that an n-vertex graph with no Kt minor can have is known

as the extremal function for Kt minors. My work in this dissertation focuses on the case

t = 10. Mader [21] proved the following theorem in 1968.
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Theorem 1.1.2. For every integer t = 1, 2, ..., 7, a graph on n ≥ t vertices and at least

(t− 2)n−
(
t−1
2

)
+ 1 edges has a Kt minor.

Mader also pointed outK2,2,2,2,2 is a counter-example for the case t = 8. One can construct

further counter-examples by repeatedly identifying cliques of size 5.

In general, for graphs H1 and H2 and an integer k, we define an (H1, H2, k)-cockade

recursively as follows: Every graph isomorphic to H1 or H2 is an (H1, H2, k)-cockade; If

G1, G2 are both (H1, H2, k)-cockades, then the graph obtained from the disjoint union of

G1 andG2 by identifying a clique of size k inG1 with a clique of the same size inG2 is also

an (H1, H2, k)-cockade; Every (H1, H2, k)-cockade can be constructed this way. If H1 =

H2 = H , then an (H1, H2, k)-cockade is also called an (H, k)-cockade. A graph G is a

trivial (H, k)-cockade ifG ∼= H , and otherwise a non-trivial (H, k)-cockade. For a (H, k)-

cockade G, the multiplicity of G is defined recursively as follows: G has multiplicity 1 if it

is a trivial (H, k)-cockade; G has multiplicity m = m1 +m2 for some m1,m2 ≥ 1 if there

exist induced subgraphs G1, G2 of G such that G = G1 ∪G2, G1 ∩G2
∼= Kk, and Gi is an

(H, k)-cockade of multiplicity mi for i = 1, 2.

Jørgensen [10] and Song and Thomas [32] generalized Theorem 1.1.2 for K8 minors

and K9 minors, respectively, as follows.

Theorem 1.1.3. Every graph on n ≥ 8 vertices and at least 6n− 20 edges either has a K8

minor or is a (K2,2,2,2,2, 5)-cockade.

Theorem 1.1.4. Every graph on n ≥ 9 vertices and at least 7n− 27 edges either has a K9

minor or is a (K1,2,2,2,2,2, 6)-cockade, or is isomorphic to K2,2,2,3,3.

It is then natural to ask if every graph on n ≥ 10 vertices and 8n − 35 edges with no

K10 minor falls into a few families of graphs. We prove Theorem 1.1.5 for K10 minors,

which is the main theorem of this dissertation.

For graphs H and G, let H +G denote the graph obtained from the disjoint union of H

and G by adding edges xy for all x ∈ V (H) and y ∈ V (G).
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Theorem 1.1.5. Every graph on n ≥ 8 vertices and at least 8n − 35 edges either has a

K10 minor or is isomorphic to one of the following graphs:

(1) a (K1,1,2,2,2,2,2, 7)-cockade;

(2) K1,2,2,2,3,3;

(3) K2,2,2,2 + C5;

(4) K2,2,3,3,4;

(5) K3,3,3 + C5;

(6) K2,2,2,2,2,3;

(7) G1 = K2,2,2,2,2,3 − e where e ∈ E(K2,2,2,2,2,3) and both ends of e have degree 11;

(8) G2 = K2,2,2,2,2,3− e where e ∈ E(K2,2,2,2,2,3) and the ends of e have degree 10 and 11;

(9) K2,3,3,3,3

(10) G3 = K2,3,3,3,3 − e where e ∈ E(K2,3,3,3,3) and both ends of e have degree 11;

(11) G4 = K2,3,3,3,3 − e where e ∈ E(K2,3,3,3,3) and the ends of e have degree 11 and 12;

(12) a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2.

We note that in the proof for Theorem 1.1.5 that we will present later in this dissertation,

the proof for the main technical lemma (Lemma 4.1.1) is computer-assisted, and we do not

yet have a computer-free proof for it.

1.2 Related Work and Impact of the Main Theorem

We now discuss related work to our problem and impact of Theorem 1.1.5 to give a more

general context.

1.2.1 The extremal function for Kt minors

We first point out that the linear edge bound given by Mader in Theorem 1.1.2 actually is

incorrect for large t. Kostochka [17, 18] and de la Vega [38] proved that for large t, a graph

on n vertices must have at least Ω(t
√

log tn) edges to guarantee aKt minor by showing that

a random graph with no Kt minor may have average degree of order t
√

log t. Kostochaka
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[17, 18] and Thomason [35] proved the order of t
√

log tn is also an upper bound, and later

Thomason [36] was able to determine the constant of proportionality exactly. Although it

may now seem unnecessary to study the extremal function for specific small values of t, the

random graph examples only provide finitely many counter-examples. Of course, for any

given value of t, more counter-examples can be made by taking disjoint unions or gluing

counter-examples along small cut sets, but we know of no construction of highly connected

infinite families of counter-examples. More specifically, Seymour and Thomas conjecture

the following.

Conjecture 1.2.1. For every integer t ≥ 1, there exists a constant N = N(t) such that

every (t− 2)-connected graph on n ≥ N vertices and at least (t− 2)n−
(
t−1
2

)
+ 1 edges

has a Kt minor.

Note that Theorems 1.1.2, 1.1.3, and 1.1.4 imply that Conjecture 1.2.1 is true for t ≤ 9.

Since every K10-minor-free graph in Theorem 1.1.5 is not 8-connected, Theorem 1.1.5

implies that Conjecture 1.2.1 is also true for t = 10. In particular, we have the following

corollary of Theorem 1.1.5.

Corollary 1.2.2 (Corollary of Theorem 1.1.5). Every 8-connected graph on n ≥ 8 vertices

and at least 8n− 35 edges has a K10 minor.

1.2.2 Relating to Hadwiger’s Conjecture

The proof of the case t = 5 of Hadwiger’s conjecture [23] uses the case t = 6 of Theorem

1.1.2 to get an upper bound on the number of edges for K6 minor-free graphs. As the case

t = 6 of Hadwiger’s conjecture remains open, Kawarabayashi and Toft [15] proved that

every graph with no K7 minor is either 6-colorable or has a K4,4 minor. It is not known yet

if every K7 minor-free graph is 7-colorable. Albar and Gonçalves [1] and Rolek and Song

[28] proved that for t = 7, 8, 9, a graph with noKt minor is (2t−6)-colorable. Their proofs

use the extremal function results for t ≤ 9 to find a vertex of degree of at most 2t − 5 in

4



every graph with no Kt minor. Now, Corollary 1.2.2 and Theorem 5.2 in [28] immediately

imply the following corollary that every graph with no K10 minor is 14-colorable.

Corollary 1.2.3 (Corollary of Theorem 1.1.5). Every graph with no K10 minor is 14-

colorable.

Another weaker version of Hadwiger’s conjecture is the doubly-critical conjecture by

Kawarabayashi, Pedersen, and Toft [13]. A connected t-chromatic graph G is called

doubly-critical if G− {u, v} is (t− 2)-colorable for every edge uv ∈ E(G). The doubly-

critical conjecture states that every doubly-critical t-chromatic graph contains a Kt minor.

Rolek and Song showed in [27] that the doubly-critical conjecture is true for all t ≤ 9,

and their proof again uses the extremal function for t ≤ 9. According to Song (private

communication), by following the ideas in [27] and the ideas proving Theorem 1.1.5 in this

dissertation, one can prove, with effort, that every double-critical 10-chromatic graph has a

K10 minor, which then resolves the the doubly-critical conjecture for t = 10.

Another way of weakening Hadwiger’s conjecture is to only consider t-chromatic graphs

with a unique t-coloring. A recent work by Kriesell [19] shows that for t ≤ 10, every graph

of chromatic number t with a unique t-coloring has a K10 minor. Following the ideas in

[19] and the ideas proving Theorem 1.1.5 in this dissertation, we can then extend to obtain

the following corollary.

Corollary 1.2.4 (Corollary of Theorem 1.1.5). Every 11-chromatic graph with a unique

11-coloring has a K11 minor.

The last line of work related to Hadwiger’s conjecture we want to mention here is the

Erdös-Lovász Tihany Conjecture.

Conjecture 1.2.5 (Erdös-Lovász Tihany Conjecture). For any pair of integers s, t ≥ 2 and

any graph G with ω(w) < χ(G) = s + t− 1, there are two disjoint subgraphs G1 and G2

of G such that χ(G1) ≥ s and χ(G2) ≥ t.

5



For integers s, t ≥ 2 with s ≤ t, say a graph an (s, t)-graph if it is a connected (s+ t− 1)-

chromatic graph and does not contain two disjoint subgraphs with chromatic numbers s

and t, respectively. Then following the ideas in [16] by Kawarabayashi, Pedersen, and Toft

and the ideas of proving Theorem 1.1.5 in this dissertation, we can conclude the following

corollary, settling Conjecture 1.4 in the same paper [16] for s = 2 and 2 ≤ t ≤ 9.

Corollary 1.2.6 (Corollary of Theorem 1.1.5). For t = 2, 3, ..., 9, every (2, t)-graph with

clique number at most t has a K2 ∪Kt minor.

1.2.3 Variants of the extremal function for Kt minors

Thomas and Yoo [34] studied the extremal function for Kt minors for triangle-free graphs.

They proved a theorem that for t = 2, 3, ..., 9, a triangle-free graph on n ≥ 2t− 5 vertices

and at least (t − 2)n − (t − 2)2 + 1 edges has a Kt minor. Now by Theorem 1.1.5 in this

dissertation and Theorem 3.2 in [34], we can extend the triangle-free theorem to the case

t = 10 and conclude the following corollary immediately.

Corollary 1.2.7 (Corollary of Theorem 1.1.5). Every triangle-free graph on n ≥ 15 ver-

tices and at least 8n− 63 edges has a K10 minor.

The extremal functions for K−t minors have also been studied, where K−t denotes the

graph obtained from Kt by deleting one edge. Jakobsen [8, 9] proved that for t ≤ 7, every

graph on n ≥ t vertices and at least (t− 5
2
)n− 1

2
(t−3)(t−1) edges has a K−t minor, or is a

(Kt−1, t− 3)-cockade, or G is a (K2,2,2,2, K6, 4)-cockade in the case t = 7. Song [31] later

showed that every graph on n ≥ 8 vertices and at least 11n−35
2

edges either has a K−8 minor

or is a (K1,2,2,2,2, K7, 5)-cockade. Moreover, Song pointed out (private communication) it

is promising that the way of using the 3-linkage theorem by Thomas and Wollan [33] in our

proof for Theorem 1.1.5 in this dissertation can be applied to prove an analogous theorem

for K−9 minor-free graphs.
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CHAPTER 2

PRELIMINARIES

2.1 Graph Basics

All graphs are simple in this dissertation. For a graph G, V (G) and E(G) denote the set of

vertices and the set of edges of G, respectively. If two vertices x, y are adjacent in G, we

say they are neighbors in G and write xy or yx to denote the edge between them. x and y

are called the end vertices, or simply ends, of the edge xy. We use |G| = |V (G)| to denote

the number of vertices in G.

If a graph G′ satisfies that V (G′) ⊆ V (G) and E(G′) ⊆ E(G), then G′ is a subgraph

of G, denoted by G′ ⊆ G. For a subset A ⊆ V (G) of vertices, G[A] denotes the subgraph

of G that has set of vertices equal to A and set of edges containing every edge of G with

both end vertices in A. Say G[A] is induced by the subset A. An induced subgrpah of G is

a subgraph of G equal to G[A] for some A ⊆ V (G).

For a vertex x ∈ V (G), N(x) is the set of neighbors of x inG, andN [x] = N(x)∪{x}.

We also use N(x) and N [x] denote the induced subgraphs of G on the subsets of vertices

N(x) and N [x], respectively. The degree of x is the size of N(x), denoted by d(x). The

minimum degree over all vertices in G is denoted by δ(G). A subset A ⊆ V (G) of vertices

is a clique if every pair of vertices in A is an edge in G. The clique number of G is

maximum size of a clique in G, denoted by ω(G). For a subset A ⊆ V (G) of vertices and

a subset F ⊆ E(G) of edges, G − A denotes the graph obtained from G by deleting all

vertices in A, and G− F denotes the graph obtained from G by deleting all edges in F . In

the case A = {v}, G− v = G−A. Let e ∈ E(G). G− e is the graph obtained from G by

deleting e.

We now define edge contraction and a more general notion of graph containment called
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minor. Let e = xy ∈ E(G). The graph obtained from G by contracting e, denoted as

G\e, is the graph obtained from G by deleting both x and y and adding a new vertex whose

neighborhood in the new graph is equal to NG(x) ∪ NG(y) − {x, y}. For some graph H ,

say G contains H as a minor, or simply G has an H minor, if a graph isomorphic to H

can be obtained from a subgraph of G by repeatedly contracting edges, denoted as G > H .

Equivalently, G has an H minor if there exist pairwise disjoint subsets S1, ..., S|H| ⊆ V (G)

of vertices such that and a bijective function φ : V (H) → {S1, ..., S|H|} such that G[Si] is

a connected subgraph of G for all i = 1, ..., |H|, and that for every xy ∈ E(H), there is an

edge in G with one end in φ(x) and one end in φ(y). H is called a proper minor of G if

G > H and G 6∼= H .

A graph P is a path if we can label the vertices of P as v1, ..., vk such that E(P ) =

{v1v2, ..., vk−1vk}. We denote P = v1v2...vk. The length of a path is the number of edges

on it. v0 and vk are the end vertices or simply ends of P . Say P links v0 and vk or joins

v0 and vk, and say P is a v0-vk path. Say P is an A-B path if A,B ⊆ V (G) such that

v0 ∈ A and vk ∈ B. The vertices in V (P ) − {v0, vk} are the internal vertices of P .

We also consider the graph on a single vertex as a path. A path is trivial if it has length

zero, and otherwise non-trivial. A subgraph P ′ of P is a subpath if it is also a path. For

vi, vj ∈ V (P ), viPvj denotes the subpath of P linking vi and vj . A graph C is a cycle if

we can label the vertices of C as v1, ..., vk such that E(C) = {v1v2, ..., vk−1vk, vkv1}. We

write C = v1v2...vkv1. The length of a cycle is the number of edges on it. A cycle of length

k is called a k-cycle, denoted Ck.

In a graph G, two paths P,Q ⊆ G are disjoint if V (P ) ∩ V (Q) = ∅, and they are

internally disjoint if the sets of internal vertices of P,Q are disjoint. For A,B ⊆ V (G),

say a set of paths P1, ..., Pt ⊆ G links or joins A,B, if every Pi for all i = 1, ..., t has one

end in A, one end in B, and is otherwise disjoint from A ∪B.

A graph G is connected if for every x, y ∈ V (G), there exists some path in G linking

x and y; it is disconnected otherwise. A connected component or simply a component of
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G is a maximal connected subgraph of G. G is k-connected for some integer k if for every

X ⊆ V (G) such that |X| < k, G −X is connected. A subset X ⊆ V (G) is a separating

set of G if G−X is disconnected. For vertices a, b ∈ V (G)−X , say X separates a from

b if there is no path linking a, b in G − X . For a ∈ V (G) − X and B ⊆ V (G), say X

separates a from B, or X separates B from a, if there is no path linking a and some vertex

in B in G−X .

A separation of G is a pair (A,B) of subsets of vertices of G such that A∪B = V (G)

and ab 6∈ E(G) for all a ∈ A − B and b ∈ B − A. For X ⊆ V (G), the pair (A,B) is

a separation of (G,X) if (A,B) is a separation of G such that X ⊆ A. For a separation

(A,B) ofG, or (G,X) for someX ⊆ V (G), the order of the separation is the size ofA∩B.

It is called a k-separation (or≤ k-separation), if |A∩B| = k (or |A∩B| ≤ k, respectively).

A separation (A,B) is trivial if A ⊆ B or B ⊆ A; it is non-trivial otherwise. It is an easy

exercise that a graph is k-connected if and only if it has no non-trivial separation of order

at most k − 1.

2.2 Rooted K3 and Rooted K4 Minors

Rooted minor is a special type of minor. Let G,H be graphs, and let X ⊆ V (G) such that

|X| = |H|. Say G has an H minor rooted at X if there is a function φ mapping vertices in

H to disjoint connected subgraphs of G such that |V (φ(u)) ∩ X| = 1 for all u ∈ V (H),

and that if uv ∈ E(H) then there exists an edge in G joining a vertex in φ(u) to a vertex in

φ(v).

In this section, we will present our own result on rooted K3 minors, which is relatively

straight-forward, followed by a result on rootedK4 minors due to Robertson, Seymour, and

Thomas.
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2.2.1 Rooted K3 minors

Lemma 2.2.1. Let G be a connected graph, and let X = {x1, x2, x3} be a subset of three

distinct vertices in G. Then, G has a K3 minor rooted at X if and only if there does not

exist a cut vertex w of G such that every component of G−{w} contains at most one vertex

from X .

Proof. Since G connected, we assume without loss of generality that there is a path P in

G linking x1, x2 such that x3 6∈ V (P ).

First assume thatG has aK3 minor rooted atX . Without loss of generality, we can then

assume that there exist two paths Q1, Q2 such that Q1, Q2 each link x3 and some vertex on

P and are otherwise disjoint from P , and that V (Q1)∩V (Q2) = {x3}. It follows that there

is no cut vertex separating x3 from P in G, and therefore there is no cut vertex w of G such

that every component of G− {w} contains at most one vertex in X .

Now, assume that G does not have a K3 minor rooted at X . We will prove that there

exists a cut vertexw ofG such that every component ofG−{w} contains at most one vertex

in X . Since G is connected, there exists a path Q linking x3 and some vertex w ∈ V (P )

that is otherwise disjoint from P . Since G does not have a K3 minor rooted at X , there

do not exist two paths Q1, Q2 each joining x3 and some vertex on P such that Q1, Q2 are

disjoint except for x3. Therefore, w is a cut vertex of G, and there is a component J3 of

G− {w} such that x3 ∈ V (J3) and V (P ) ∩ V (J3) = ∅.

If w ∈ {x1, x2}, without loss of generality, assume that w = x2. Then, the component

of G − {w} that contains x1, say J1, satisfies that V (J1) ∩ X = {x1}. It follows that

w satisfies that every component of G − {w} contains at most one vertex in X . If w 6∈

{x1, x2}, we consider the block decomposition of G−V (J3). Notice that P ⊆ G−V (J3).

Choose blocks B1, ..., Bk of G − V (J3) and vertices v1, v2, ..., vk+1 ∈ V (P ) such that

v1 = x1, vk+1 = x2, and vi, vi+1 ∈ V (Bi) for all i = 1, .., k. Assume for a moment that

w ∈ V (Bi)−{vi, vi+1} for some i ∈ {1, ..., k}. Since Bi is 2-connected, it follows that Bi
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hasK3 minor rooted at {w, vi, vi+1}. It follows thatBi∪P∪Q = Bi∪v1Pvi∪vi+1Pvk+1∪Q

has a K3 minor rooted at X , a contradiction. Hence, w = vi for some i ∈ {2, ..., k}. Let

J1, J2 be the components of G − {w} ∪ V (J3) such that V (v1Pvi) − {vi} ⊆ V (J1) and

V (viPvk+1)−{vi} ⊆ V (J2). It follows that J1, J2, J3 are distinct components of G−{w}

such that xi ∈ V (Ji) for i = 1, 2, 3.

2.2.2 Rooted K4 minors

The following theorem on rooted K4-minors was proven by Robertson, Seymour, and

Thomas in their proof of Hadwiger’s Conjecture for graphs with no K6-minor [23], in

which a K4-minor rooted at x1, x2, x3, x4 is called a cluster traversing {x1, x2, x3, x4}. A

trisection of a graph G is a triple (A,B,C) of subsets of V (G) such that A∩B = A∩C =

B ∩C and G[A]∪G[B]∪G[C] = G; the order of the trisection (A,B,C) is |A∩B ∩C|.

Theorem 2.2.2 (Rooted K4-minor Theorem). Let G be a graph and let Z ⊆ V (G) with

|Z| = 4. Then

(i) G has a K4 minor rooted at X , or

(ii) there is a trisection (A1, A2, B) of order 2 such that |Z ∩ (Ai−B)| = 1 for i ∈ {1, 2},

or

(iii) there is a (≤ 3)-separation (A,B) with Z ⊆ A and |B − A| ≥ 2 and |Z ∩B| ≤ 2, or

(iv)G can be drawn in the plane so that every vertex in Z is incident with the infinite region.

We note that Fabila-Monroy and Wood [6] proved a stronger theorem than Theorem 2.2.2

by giving a complete characterization of graphs that have a K4 minor rooted at four nomi-

nated vertices.

2.3 Disjoint Paths

Let G be a graph. For a path P in G and vertices s, t ∈ V (G), say P links s, t if s, t are the

end vertices of P . For an integer k and distinct vertices s1, ..., sk, t1, ..., tk ∈ V (G), the k
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disjoint paths problem asks whether there exist k disjoint paths P1, ..., Pk in G such that

Pi link si and ti for all i = 1, ..., k. Robertson and Seymour [26] showed that there is a

polynomial time algorithm for deciding whether such disjoint paths exist. We now discuss

results on the k disjoint paths problem for k = 2, 3.

2.3.1 Two Disjoint Paths

In fact, the two disjoint path problem is a special case for another. Let C be a cycle in a

graph G. A C-cross is a pair of disjoint paths P1, P2 with ends x1, y1 and x2, y2, respec-

tively, such that x1, x2, y1, y2 occur on C in the order listed, and the paths are otherwise

disjoint from C. The feasibility problem for a C-cross generalizes the feasibility problem

for the two disjoint paths problem: Notice that for distinct vertices s1, s2, t1, t2 ∈ V (G) in a

graph G, there exist two disjoint paths P1, P2 in G such that Pi for i = 1, 2 links si and ti if

and only if the graph G′ = G∪{s1s2, s2t1, t1t2, t2s1} has a C-cross, where C = s1s2t1t2s1

is the cycle that goes through the four vertices s1, s2, t1, t2 in order. It follows that, to study

the feasibility of the two disjoint path problem, it suffices to study the characterization of

C-crosses in a graph.

Theorem 2.3.1 gives a characterization of graphs containing C-crosses. This exact

version of the theorem is Theorem 1.3 in [14], obtained in varous forms by Jung [11],

Robertson and Seymour [24], Seymour [29], Shiloach [30], and Thomassen [37]. Let G be

a graph, and let X ⊆ V (G). Let (A,B) be a ≤ 3-separation of (G,X) such that there exist

|A ∩ B| paths from some vertex v ∈ B − A to X that are disjoint except for v. Let H be

the graph obtained from G[A] by adding an edge joining every pair of distinct vertices in

A ∩B. We say that H is an elementary X-reduction of G (determined by (A,B)). We say

that a graph J is anX-reduction ofG if it can be obtained fromG by a series of elementary

X-reductions. If C is a subgraph of G, then by an (elementary) C-reduction we mean an

(elementary) V (C)-reduction.

Theorem 2.3.1 (Jung; Robertson and Seymour; Seymour; Shiloach; Thomassen). LetG be

12



a graph, and let C be a cycle in G. Then, G has no C-cross if and only if some C-reduction

of G can be drawn in the plane with C bounding a face.

2.3.2 Three Disjoint Paths

We introduce a result on 3-linkage in Theorem 2.3.2 due to Thomas and Wollan [33].

Theorem 2.3.2 is used later in this dissertation to find three disjoint paths. LetG be a graph.

For X ⊆ V (G) and an integer t, the pair (G,X) is t-linked if for all k ≤ t and distinct

vertices s1, ..., sk, t1, ..., tk ∈ X , there exist k disjoint paths P1, ..., Pk in G such that Pi

links si, ti for all i = 1, ..., k. The pair (G,X) is linked if it is b|X|/2c-linked. A separation

(A,B) of G is t-linked if (G[B], A ∩ B) is t-linked. Use ρG(X) to denote the number of

edges of G that have at least one end in V (G)−X , i.e. ρG(X) = |E(G)| − |E(G[X])|.

Theorem 2.3.2 (Wollan and Thomas). Let G be a graph. Let X ⊆ V (G) be a subset of

vertices such that |X| = 6. Then, (G,X) is linked if ρ(V (G) − X) ≥ 5|V (G) − X| + 4

and ρ(B − A) ≤ 5|B − A| for every ≤ 5-separation (A,B) of (G,X).

2.3.3 Menger’s Theorem and Perfect’s Theorem

A classic theorem of Menger states that if a graph G is k-connected, then for any two

disjoint subsets A,B ⊆ V (G) such that |A| = |B| = k, there exist k disjoint paths

P1, ..., Pk such that each Pi links one vertex in A and one vertex in B.

Theorem 2.3.3 is a stronger version of Menger’s theorem due to Perfect [22], which is

also stated in Section 3.3 in Diestel’s text [4].

Theorem 2.3.3 (Perfect). Let G be a graph with A,B ⊆ V (G). Let k be the minimum

number of vertices separating A from B in G. If P is any set of fewer than k disjoint A−B

paths in G, then G contains a set Q of disjoint A− B paths such that |Q| = |P| + 1, and

that the set of vertices in A that lie on a path in P is a proper subset of the vertices in A

that lie on a path in Q, and likewise for B.
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Corollary 2.3.4 (Corollary of Theorem 2.3.3). Let G be a graph with a ∈ V (G) and

B ⊆ V (G)− {a}. Let k be the minimum number of vertices separating a from B in G. If

P is any set of fewer than k paths from a toB that are disjoint except for a, thenG contains

a setQ of paths from a to B that are disjoint except for a such that |Q| = |P|+ 1, and that

the set of vertices in B that lie on a path in P is a proper subset of the vertices in B that lie

on a path in Q.

Let Sk denote the permutation group on k elements.

Corollary 2.3.5 (Corollary of Theorem 2.3.3). Let G be a graph. Let A,B ⊆ V (G) with

a vertex a1 ∈ A − B. Let k = |A|. Suppose there exist k disjoint paths P1, ..., Pk such

that ai ∈ A and bi ∈ B are the ends of Pi for i = 1, ..., k. If there does not exist a ≤ k-

separation (X, Y ) of G such that A ⊆ X , B ⊆ Y , and X − Y 6= ∅, then there exists

some bk+1 ∈ B − {b1, ..., bk}, a permutation θ ∈ Sk+1, and k + 1 internally disjoint paths

Q1, ..., Qk+1 linking A and B such that Qi links ai and bθ(i) for all i = 1, ..., k, and that

Qk+1 links a1 and bθ(k+1).

Proof. LetG′ be the graph obtained fromG by adding a new vertex a′1 and an edge between

a′1 and every neighbor of a1 in G. Let A′ = A ∪ {a′1}. Note that P1, ..., Pk are k disjoint

paths linking A′ and B in G′.

Assume for a moment that there exists a k-separation (X ′, Y ′) such that A′ ⊆ X ′ and

B ⊆ Y ′. Since there is no ≤ k-separation (X, Y ) of G such that A ⊆ X , B ⊆ Y , and

X − Y 6= ∅, it follows that (X ′ − Y ′) ∩ V (G) = ∅, and therefore X ′ − Y ′ = {a′1} and

X ′ ∩ Y ′ = {a1, ..., ak}. Since a1 6∈ B, P1 contains at least 2 vertices. Let u be the unique

vertex in P1 that is adjacent to a1, and note that u ∈ Y ′−X ′. However, since a1u ∈ E(G),

we know a′1u ∈ E(G′), which is a contradiction to that (X ′, Y ′) is a separation of G′ and

there is no edge between X ′ − Y ′ and Y ′ −X ′.

Hence, there is no k-cut separating A′ and B in G′. By Theorem 2.3.3, there exist some

bk+1 ∈ B − {b1, ..., bk}, a permutation θ ∈ Sk+1, and k + 1 disjoint paths Q′1, ..., Q
′
k+1
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linking A′ and B in G′ such that Q′i links ai and bθ(i) for i = 1, ..., k and Q′k+1 links a′1

and bθ(k+1). Back in the graph G, let Qi = Q′i for all i = 1, ..., k, and let Qk+1 be the path

obtained fromQ′k+1 by replacing a′1 with a1. It follows that the vertex bk+1, the permutation

θ ∈ Sk+1, and the paths Q1, ..., Qk+1 are as desired.

2.4 Bridges and Tripods

2.4.1 Bridges

Let G be a graph, and let S be a subgraph of G. An S-bridge in G is a connected subgraph

B of G such that E(B) ∩ E(S) = ∅ and either E(B) consists of a unique edge with both

ends in S, or for some component C of G\V (S) the set E(B) consists of all edges of G

with at least one end in V (C). The vertices in V (B) ∩ V (S) are called the attachments

of B on S. We say an S-bridge B attaches to a subgraph H of S if V (H) ∩ V (B) 6= ∅,

and in the case H = {v} for some v ∈ V (S), we say B attaches to v. An S-bridge B is

called trivial if it consists of a unique edge with both ends in S, and it is called non-trivial

otherwise.

Let S be a subgraph of G, and let W ⊆ V (S). A W -segment of S is a subpath P of S

of length at least one such that both end vertices of P are contained in W , and that every

internal vertex v of P is not in W and has degree two in S. Say W is a segmenting set of

S if S is equal to the union of all W -segments of S. It is an easy exercise to check that a

segmenting set of S includes all vertices of degree not equal to two in S. Note that if W is

a segmenting set of S, every edge of S is contained in a unique W -segment of S. Say an

S-bridge B is W -unstable if all attachments of B on S belong to some W -segment of S,

and otherwise B is W -stable.

The next lemma, Lemma 2.4.1, says that it is possible to make every S-bridgeW -stable

by making the following “local” changes. For a segmenting set W ⊆ V (S) of S, let P be a

W -segment of S of length at least two, and letQ be a path inG linking x, y that is otherwise

disjoint from S. Let S ′ be obtained from S by replacing the path xPy by Q. Then we say
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that S ′ is obtained from S by rerouting P along Q, or simply that S ′ is obtained from S by

rerouting. Please note that P is required to have length at least two, and hence this relation

is not symmetric. Also note that W is a segmenting set of S ′, as S ′ is equal to the union of

all W -segments of S ′. We say the rerouting is proper with respect to W if all attachments

of the S-bridge that contains Q belong to P . Lemma 2.4.1 is a generalization of Lemma

2.1 in [12] and is essentially due to Tutte.

Lemma 2.4.1 (Rerouting Lemma). Let G be a graph. Let S be a subgraph of G, and

W ⊆ V (S) be a segmenting set of S. Then, there exists a subgraph S ′ of G obtained from

S by a sequence of proper reroutings with respect to W such that if all attachments of an

S ′-bridge B belong to some W -segment P of S ′, then there exist vertices x, y ∈ V (P ) such

that some component of G\{x, y} includes a vertex of B and is disjoint from S ′\V (P ).

Proof. Choose a subgraph S ′ ⊆ G that can be obtained from S by a sequence of proper

reroutings with respect to W such that the number of vertices in G − V (S ′) belonging to

W -stable S ′-bridges is maximum, and subject to this, |V (S ′)| is minimum. We will prove

that S ′ is as desired. Let B be a W -unstable S ′-bridge, and say all attachments of B on S ′

belong to a W -segment P of S ′.

Let v0, v1, ..., vk be distinct vertices of P , listed in order of occurrence on P such that

v0 and vk are the ends of P and {v1, ..., vk−1} is the set of all internal vertices of P that are

attachments of W -stable S ′-bridges.

Assume for a moment that for some i ∈ {1, ..., k − 1}, there exist two attachments

u, v of B such that vi is an internal vertex of uPv. Let S ′′ be a subgraph of G obtained

from G by replacing uPv by an induced subpath of B linking u, v that is otherwise disjoint

from S ′. It follows that every vertex in V (G) − V (S ′) belonging to a W -stable S ′-bridge

is in V (G) − V (S ′′) and belongs to a W -stable S ′′-bridge, and that vi ∈ V (S ′) is in

V (G) − V (S ′′) and belongs to a W -stable S ′′-bridge, a contradiction to the choice of S ′.

Therefore, all attachments of B are on viPvi+1 for some i ∈ {0, 1, ..., k − 1}.

Since B is arbitrary, it follows that for every W -unstable S ′-bridge B′ that attaches to
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some vertex in the interior of viPvi+1, all attachments of B′ are on viPvi+1. Hence, there

is a component K of G\{vi, vi+1} such that V (B) − {vi, vi+1} ⊆ V (K) and V (K) ∩

(V (S ′)\V (P )) = ∅. This means that if V (B) − {vi, vi+1} 6= ∅, then vi and vi+1 give the

desired x and y. Therefore, we may assume that B is simply an edge joining vi and vi+1.

Note this implies that viPvi+1 has length at least two. Let S ′′ be the subgraph ofG obtained

from G by replacing viPvi+1 by the edge vivi+1. It follows that |V (S ′′)| < |V (S ′)| and

every vertex in V (G)− V (S ′) belonging to a W -stable S ′-bridge is in V (G)− V (S ′′) and

belongs to a W -stable S ′′-bridge, a contradiction to the choice of S ′.

2.4.2 Tripods

We now introduce the tripod structure, which is originally due to Robertson and Seymour

[25].

Definition 2.4.2. In a graph G with a subset of three distinct vertices X = {x1, x2, x3} ⊆

V (G), a subgraph T of G is called an X-tripod if T can be written as a union of internally

disjoint subpaths P1, P2, P3,Q1, Q2, Q3, L1, L2, L3 ofG satisfying the following: For some

distinct vertices z1, z2, z3 ∈ V (G), Li links zi and xi for i = 1, 2, 3; and for distinct vertices

p, q ∈ V (G) −
⋃3
i=1 V (Li), Pi links p, zi and Qi links q, zi for i = 1, 2, 3. Each path Li

for i = 1, 2, 3 is called a leg of T . A leg is trivial if it is a single vertex; it is non-trivial

otherwise.

Lemma 2.4.3. Let G be a graph and X = {x1, x2, x3} ⊆ V (G) be a subset of three

distinct vertices such that G cannot be drawn in the plane with x1, x2, x3 incident to the

infinite face. If there is no non-trivial ≤ 2-separation of (G,X), then G has an X-tripod.

Proof. We will prove the lemma by inducting on |V (G)|.

First consider the case that |V (G)| ≤ 5. Notice that the lemma is true if G ∼= K5, as the

complete graph K5 is non-planar, has no non-trivial ≤ 2-separation, and contains an X ′-

tripod as a subgraph for every subset X ′ of three distinct vertices in it. Also notice that the
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Lemma is trivially true if |V (G)| ≤ 4, since the complete graph K4 is planar, meaning that,

if |V (G)| ≤ 4, G can always be drawn in the plane with x1, x2, x3 incident to the infinite

face . We may then assume |V (G)| = 5. If every vertex in X and every vertex in G − X

are adjacent, then G has an X-tripod. So assume that there is some non-edge between a

vertex in X and a vertex in V (G) − X . This then implies that G ∪ {x1x2, x1x3, x2x3}

is isomorphic to some proper subgraph of K5 and therefore is planar. It follows that G ∪

{x1x2, x1x3, x2x3} can be drawn in the plane with x1x2x3x1 bounding the infinite face, and

therefore G can be drawn in the plane with x1, x2, x3 incident to the infinite face.

From now on, we can assume |V (G)| ≥ 6 and the assertion holds for all graphs on

fewer than |V (G)| vertices.

Observe that x2 does not separate x1 from x3 in G: For the sake of a contradiction,

assume that x2 is a cut vertex ofG, and there exist distinct componentsK1, K3 ofG−{x2}

such that xi ∈ V (Ki) for i = 1, 3. Note that if K3 − {x3} is non-empty, then {x2, x3}

separates the non-trivial subgraphsK1 andK3−{x3}, a contradiction to the fact that (G,X)

does not have a non-trivial ≤ 2-separation. By symmetry, it follows that V (Ki) = {xi}

for i = 1, 3, meaning that x2 is the only neighbor for x1 and x3 in G. Since |V (G)| ≥ 6,

we know that |V (G)−X| > 0. It follows that x2 separates {x1, x3} from G−X , again a

contradiction to the fact that (G,X) does not have a non-trivial ≤ 2-separation.

Next, observe that we may assumeE(G[X]) = {x1x2, x2x3}: LetG′ = (G∪{x1x2, x2x3})−

{x1x3}. Note that since G cannot be drawn in the plane with x1, x2, x3 incident to the in-

finite plane, neither can G′; and since (G,X) does not have a non-trivial ≤ 2-separation,

neither does (G′, X). Also note that G has an X-tripod if and only if G′ has one. Hence, it

suffices to consider G′ instead of G, so we may assume that E(G[X]) = {x1x2, x2x3}.

Let PX be the path x1x2x3 in G. We next prove that there exists some cycle C such that

PX ⊆ C and every C-bridge attaches to x2.

Claim 1. There exists a cycle C such that PX ⊆ C and every C-bridge attaches to x2.

Proof of Claim 1. First observe thatX is a segmenting set for every cycle inG that includes
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all three vertices in X . Since x2 does not separate x1 from x3 in G, there exists some cycle

in G that includes all three vertices in X . By Lemma 2.4.1, since (G,X) does not have a

non-trivial ≤ 2-separation, there exists a cycle C ′ ⊆ G such that X ⊆ V (C ′) and every

C ′-bridge in G is X-stable. For i = 1, 2, let Pi be the subpath of C ′ linking xi and xi+1

such that V (Pi) ∩X = {xi, xi+1}.

Let C be the cycle obtained from C ′ by replacing P1 with the edge x1x2 and replacing

P2 with the edge x2x3. Let B ⊆ G be any C-bridge. Since V (C) ⊆ V (C ′), B is contained

in a C ′-bridge B′. Since every C ′-bridge is X-stable, we know that B′ is an X-stable C ′-

bridge and therefore attaches to some vertex on P1 ∪ P2 − {x1, x3}. By the construction

of C, it follows that B attaches to x2. Since B is arbitrary, it follows that the cycle C is as

desired. a

By Claim 1, let C ⊆ G be a cycle such that PX ⊆ C and every C-bridge attaches to x2.

We next show that we may assume G has a C-cross.

Claim 2. If G has no C-cross, then it has an X-tripod.

Proof of Claim 2. Assume that G has no C-cross. Recall that G cannot be drawn in the

plane with x1, x2, x3 incident to the infinite face. Since x1, x2, x3 are all contained in C, it

follows that G cannot be drawn in the plane with C bounding a face. By Theorem 2.3.1,

some non-trivial C-reduction of G can be drawn in the plane with C bounding a face.

This means that there exists a non-trivial ≤ 3-separation (A,B) of (G, V (C)) such that

G1 = G[A]∪{uv : u, v ∈ A∩B} can be drawn in the plane with C bounding a face. Since

there is no non-trivial ≤ 2-separation of (G,X), every non-trivial separation of (G, V (C))

has order at least three. It follows that |A ∩ B| = 3, and there exist three disjoint paths

L1, L2, L3 linking X and A ∩ B in G[A]. It also follows that there is no non-trivial ≤ 2-

separation of (G[B], A ∩ B). Due to the disjoint paths L1, L2, L3, since G does not have

an X-tripod, we know that G[B] does not have an (A ∩ B)-tripod. Since |B| < |V (G)|,

by induction, G[B] can be drawn in the plane with every vertex in A ∩ B incident to the

infinite face. This means that the graph G2 = G[B] ∪ {uv : u, v ∈ A ∩ B} can be drawn
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in the plane with the cycle on A ∩ B bounding the infinite face. Now, the drawings of G1

and G2 can be combined to form a planar drawing of G1 ∪G2 = G ∪ {uv : u, v ∈ A ∩B}

with C bounding a face, a contradiction. a

By Claim 2, we may assume that G has a C-cross. This means that there exist four

distinct vertices s1, s2, t1, t2 in order on C and two disjoint paths R1, R2 in G such that Ri

links si, ti for i = 1, 2 and is otherwise disjoint from C. Let P = C − {x2}.

First observe that we may assume x2 ∈ {s1, t1, s2, t2}. To see this is true, assume that

x2 6∈ {s1, t1, s2, t2}, which means that {s1, s2, t1, t2} ⊆ V (P ). Without loss of generality,

assume that P goes through x1, s1, s2, t1, t2, x3 in order, where {x1, x3} may or may not be

disjoint from {s1, t2}. Since every C-bridge attaches to x2, it follows that there is a path

R0 linking x2 and some r ∈ V (R1 ∪ R2) − V (P ) such that R0 is otherwise disjoint from

C ∪ R1 ∪ R2. Without loss of generality, assume that r is an internal vertex of R2. By

replacing R2 with the path R0 ∪ rR2s2, we would then have x2 as an end of R2, as desired.

Now, without loss of generality, say s1, t1 are distinct vertices on P such that V (x1Ps1)∩

V (x3Pt1) = ∅, s2 is an internal vertex of s1Pt1, and that x2 = t2. Since every C-bridge at-

taches to x2, the pathR1 has length at least two and is contained in someC-bridge attaching

to x2. It follows that there exists a path W linking an internal vertex of R1 and some vertex

onR2−{s2} such thatW is otherwise disjoint fromC∪R1∪R2. Let T = P∪R1∪R2∪W .

It follows that T is an X-tripod as desired.

Here we introduce more notations and definitions related to tripods.

Let G be a graph and X = {x1, x2, x3} ⊆ V (G) be a subset of three distinct vertices

in G. Let T ⊆ G be an X-tripod. Let vertices z1, z2, z3, p, q ∈ V (T ) and paths L1, L2, L3,

P1, P2, P3, Q1, Q2, Q3 be labeled as in Definition 2.4.2 for the X-tripod T .

Let L(T ) = V (L1 ∪ L2 ∪ L3), Z(T ) = {z1, z2, z3}, and R(T ) = V (P1 ∪ P2 ∪ P3 ∪

Q1 ∪ Q2 ∪ Q3). For two subsets of vertices A,B ⊆ V (G), say the ordered pair (A,B)

splits T if (A,B) is a 3-separation of G such that L(T ) ⊆ A,R(T ) ⊆ B, Z(T ) = A ∩ B.
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Equivalently, we also say T is split by (A,B) or simply that T is split in G if some ordered

pair (A,B) splits T in G. Let W(T ) = Z(T ) ∪ X ∪ {p, q}. Observe that W(T ) is a

segmenting set of T . For convenience, we say a T -bridge is stable if it isW(T )-stable and

otherwise unstable, and we say a subpath of T is a segment of T if it is aW(T )-segment

of T . Also, we call a (proper) rerouting with respect toW(T ) simply a (proper) rerouting.

We next define three types of “local” changes, called tripod-transformations, that could

be made on some X-tripods.

Let R be a path in G linking some r1 ∈ L(T ) − Z(T ) and r2 ∈ R(T ) − Z(T ).

Without loss of generality (up to relabeling the vertices and segments in T ), assume that

r1 ∈ V (L1) − {z1} and either r2 ∈ V (P1) − {z1} or r2 ∈ V (P2) − {z2}. If r2 ∈

V (P1) − {z1}, let T ′ be obtained from T by including R and deleting internal vertices of

z1P1r2. If r2 ∈ V (P2) − {z2}, let T ′ be obtained from T by including R and deleting

internal vertices of P1. Then, T ′ is an X-tripod in both cases. We say T ′ is obtained

from T by a tripod-transformation of Type I, or simply that T ′ is obtained from T by a

tripod-transformation.

For some distinct indices i, j ∈ {1, 2, 3}, let S1, S2 ⊆ G be two disjoint paths such that

S1 links xi and a vertex on Lj−{xj}, S2 links xj and a vertex on Li−{xi}, and that S1, S2

each are internally disjoint from T . Without loss of generality, say i = 1 and j = 2. Let T ′

be obtained from T by including S1 ∪ S2 and deleting the internal vertices of P2 and Q1.

Then, T ′ is an X-tripod. We say T ′ is obtained from T by a tripod-transformation of Type

II, or simply that T ′ is obtained from T by a tripod-transformation.

Let r ∈ V (G) − V (T ) and R1, R2, R3 be three paths in G such that Ri for i = 1, 2, 3

links r and some ui ∈ V (Li) and is otherwise disjoint from T , ui 6= zi for some i ∈

{1, 2, 3}, and that R1, R2, R3 are pairwise disjoint except for r. Let T ′ be obtained from T

by including R1 ∪ R2 ∪ R3 and deleting V (P1 ∪ P2 ∪ P3)\Z(T ), and let T ′′ be obtained

from T by including R1 ∪ R2 ∪ R3 and deleting V (Q1 ∪ Q2 ∪ Q3)\Z(T ). Then, we say

T ′ and T ′′ are obtained from T by a tripod-transformation of Type III, or simply that T ′ is
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obtained from T by a tripod-transformation.

In the next lemma, we observe a series of properties of tripod-transformations and

reroutings on tripods.

Lemma 2.4.4. LetG be a graph andX = {x1, x2, x3} ⊆ V (G) be a subset of three distinct

vertices in G. Let T ⊆ G be an X-tripod. Then, the following statements are true.

(1) There is a 3-separation of G splitting T if and only if there is no X-tripod in G that

can be obtained from T by a tripod-transformation of Type I.

(2) If at least two legs of T are trivial, then there is no X-tripod in G that can be

obtained from T by a tripod-transformation of Type II.

(3) If T ′ is an X-tripod in G obtained from T by a tripod-transformation of Type II,

then T ′ has at least two trivial legs.

(4) There exists an X-tripod T ′ ⊆ G that can be obtained from T by a sequence of

tripod-transformations of Type I such that some 3-separation of G splits T ′.

(5) If there is no non-trivial ≤ 2-separation of (G,X), then there exists an X-tripod

T ′ ⊆ G obtained from T by a sequence of proper reroutings such that every T ′-bridge is

stable. Furthermore, if some 3-separation (A,B) of G splits T , then (A,B) also splits T ′.

Proof. (1)-(3) are simply true due to the definitions of tripod-transformations of Type I and

Type II.

To prove (4), we may assume that T is not split by any 3-separation of G, since other-

wise we could just let T ′ = T . Let T0 = T . By (1), we can recursively find a sequence

of X-tripods T1, T2, ... such that for every i >= 0, if Ti is not split by a 3-separation of

G, then Ti+1 is an X-tripod obtained by a tripod-transformation of Type I. Notice that

3 ≤ |L(Ti+1)| < |L(Ti)| for all i by the definition of tripod-transformations of Type I. It

follows that the sequence of X-tripods T0, T1, T2, ... must have finite length. Let T ′ be the

last X-tripod in this sequence. By (1), it follows that T ′ is split by some 3-separation of G.

It remains to prove (5). Let W = W(T ), and recall that W is a segmenting set of

T . By Lemma 2.4.1, there exists an X-tripod T ′ ⊆ G obtained from T by a sequence of
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proper reroutings such that if all attachments of an unstable T ′-bridge B0 belong to some

segment P of T ′, then there exist vertices x, y ∈ V (P ) such that some component K of

G\{x, y} includes a vertex of B0 and is disjoint from T ′\P . Note that if such an unstable

T -bridge B0 exists, let the segment P of T ′, vertices x, y ∈ V (P ), and the component K

of G\{x, y} be labeled as in the description above. Then, V (K) ∩ V (T ) is a subset of the

set of internal vertices of P , and therefore {x, y} separates K from X in G, a contradiction

to the fact that there is no non-trivial ≤ 2-separation of (G,X). Therefore, every T ′-bridge

is stable. Now, assume that (A,B) is a 3-separation of G that splits T . Then, since T ′ is

obtained from T by a sequence of proper reroutings, which contains A ∩ B as a subset,

every proper rerouting in the sequence is completely includes in either A or B. It follows

that (A,B) also splits T ′ as well.

Lemma 2.4.5. Let G be a graph and X = {x1, x2, x3} ⊆ V (G) be a subset of three

distinct vertices such that there exists some X-tripod in G−N [x]. If there is no non-trivial

≤ 2-separation of (G,X), there exist an X-tripod T satisfying the following properties:

(i) Some 3-separation of G splits T .

(ii) Every T -bridge in G is stable.

(iii) There is no X-tripod in G that can be obtained from T by a tripod-transformation.

Proof. By (4) and (5) of Lemma 2.4.4, there exists an X-tripod T1 in G such that every T1-

bridge in G is stable and some 3-separation of G splits T1. By (1) of Lemma 2.4.4, there

is no X-tripod in G that can be obtained from T1 by a tripod-transformation of Type I. If

there is no X-tripod in G that can be obtained from T1 by a tripod-transformation of Type

II, then T1 would be as desired. So we may assume that there exists an X-tripod T2 in G

that can be obtained from T1 by a tripod-transformation of Type II. By (3) of Lemma 2.4.4,

at least two legs of T2 are trivial.

By (4) and (5) of Lemma 2.4.4 again, we can obtain an X-tripod T3 from T2 by a

sequence of tripod-transformations of Type I, followed by a sequence of proper reroutings,

such that every T3-bridge is stable and some 3-separation of G splits T3. Note that T2
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has at least two trivial legs, and so does T3, due to the construction of T3. By (1) and

(2) of Lemma 2.4.4, there is no X-tripod in G that can be obtained from T by a tripod-

transformation. Hence, T3 is an X-tripod in G satisfying the desired properties.

2.5 Exceptional graphs

Say a graph is an exceptional graph if it is isomorphic to one of the K10 minor-free graphs

stated in Theorem 1.1.5. In a graph G, a subset U ⊆ V (G) of vertices is called an island of

G if it is a minimal subset of vertices such that G = G[U ] + G[U ′] where U ′ = V (G)\U .

An island of size k is called a k-island. A partition P = (V1, ..., Vt) of V (G) is called an

island partition of G if every Vi is an island of G.

Lemma 2.5.1. Every graph G has a unique island partition.

Proof. If there exist two non-empty graphs K and L such that G ∼= K + L, then G has an

island partition of size at least 2; otherwise V (G) itself is an island in G. This shows the

existence of an island partition of G.

For the sake of a contradiction, suppose P = (V1, ..., Vt) and Q = (U1, ..., Ur) are

two distinct island partitions of G. Without loss of generality, assume V1 ∩ U1 6= ∅ and

V1 −U1 6= ∅. Since V1 −U1 is not included in U1 in the partitionQ, for every a ∈ V1 −U1

and every b ∈ V1 ∩ U1, ab ∈ E(G). This shows G[V1] = G[V1 − U1] + G[V1 ∩ U1] where

both V1−U1 and V1∩U1 are non-empty, a contradiction to the fact that V1 is an island.

LetG be a graph. For any edge xy ∈ E(G), the vertexw ∈ V (G/xy) obtained from the

contraction of xy inG is called the new vertex ofG/xy. For a subset U ⊆ V (G) of vertices,

denote qG(U) = |U |−ω(G[U ]), i.e. the minimum number of vertices to delete from U such

that the remaining vertices induce a complete subgraph. For a partition P = (V1, ..., Vt) of

V (G), denote qG(P) =
∑

Vi∈P qG(Vi) and lG(P) = dqG(P)/2e.

24



Lemma 2.5.2. Let G be a graph on n vertices. Let P = (V1, ..., Vt) be a partition of V (G)

such that G = G[V1] + ...+G[Vt]. If max{qG(Vi) : 1 ≤ i ≤ t} ≤ 1
2
qG(P), then G > Kn−l

where l = lG(P).

Proof. For convenience, let qi = qG(Vi) for all i. If qi = 0 for some i, then every vertex in

Vi is adjacent to all other vertices in G. We can then just delete Vi from G since G > Kn−l

if and only if G − Vi > Kn−|Vi|−l. This means we may assume qi ≥ 1 for all i. Since

qi ≤ |Vi| − 1 for every i, it follows that |Vi| ≥ 2 for all i. Also, since max{qG(Vi) : 1 ≤

i ≤ t} ≤ 1
2
qG(P) and qi ≥ 1 for all i, it follows that t ≥ 2. By relabeling the subsets in P ,

we may assume Vi are sorted in the decreasing order of qi, meaning that q1 ≤ 1
2

∑t
i=1 qi.

We are going to prove the lemma by inducting on
∑t

i=1 qi. The base case is
∑t

i=1 qi =

2, which happens precisely when t = 2 and q1 = q2 = 1. In this case, l = d(1 + 1)/2e = 1.

Let ui ∈ Vi for each i ∈ {1, 2} such that G[Vi−{ui}] is complete. By contracting the edge

u1u2 we can get a Kn−1 minor.

So assume
∑t

i=1 qi ≥ 3. Choose ui ∈ Vi for each i ∈ {1, 2} such that ω(G[Vi−{ui}]) =

ω(G[Vi]). Let w be the new vertex of G/u1u2. Let H = G/u1u2−{w}. Note |H| = n−2.

To show G > Kn−l, we will show H > Kn−l−1 = K|H|−l′ where l′ = l− 1 by proving that

a complete minor can be obtained within l′ = l − 1 contractions from H .

Let Wi = Vi − {ui} for i ∈ {1, 2} and let Wi = Vi for all 3 ≤ i ≤ t. For each i, since

|Vi| ≥ 2, |Wi| ≥ 1, and therefore P ′ = (W1, ...,Wt) is a partition of V (H) where each Wi

is non-empty. Let q′i = qH(Wi). Note q′i = qi for i ≥ 3 and q′i = qi − 1 for i = 1, 2. This

implies

l′ = l−1 = d(
t∑
i=1

qi)/2e−1 = d1
2

(
(q1−1)+(q2−1)

)
+

1

2
(

t∑
i=3

qi)e = d(
t∑
i=1

q′i)/2e = lH(P ′).

By induction, it suffices to prove max{q′i : 1 ≤ i ≤ t} ≤ 1
2

∑t
i=1 q

′
i. Since qi are in the

decreasing order, either max{q′i : 1 ≤ i ≤ t} = q′1 or max{q′i : 1 ≤ i ≤ t} = q′3 in the case
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t ≥ 3. If max{q′i : 1 ≤ i ≤ t} = q′1, then

q′1 = q1 − 1 ≤
t∑
i=2

qi − 1 =
t∑
i=2

q′i,

meaning that q′1 ≤ 1
2

∑t
i=1 q

′
i. We may then assume t ≥ 3 and q′3 > q′1 ≥ q′2. Since

q1 ≥ q2 ≥ q3, it follows that q1 = q2 = q3, and we let this value be q for convenience. If

q ≥ 2, then

q′3 = q ≤ 2q − 2 = (q − 1) + (q − 1) = q′1 + q′2 ≤
t∑
i=1

q′i − q′3,

meaning q′3 ≤ 1
2

∑t
i=1 q

′
i. We may then assume q = 1, meaning qi = 1 for all i. If there

exists q4 ≥ 1, then we get q′3 ≤ 1
2

∑t
i=1 q

′
i again. If t = 3, then l′ = d(0 + 0 + 1)/2e = 1.

Recall |W1| ≥ 1. Let u′1 ∈ W1 be arbitrary and let u3 ∈ W3 such that H[W3 − {u3}] is

complete. By contracting the edge u′1u3 in H , we can get a complete minor.

Lemma 2.5.3. Let G be an exceptional graph that is not isomorphic to a non-trivial

(K1,1,2,2,2,2,2, 7)-cockade or a non-trivial (K2,2,2,2,2,3, 6)-cockade. Let P be the island par-

tition of G. Then, qG(P) = 2(|G| − 10) + 1 and qG(C) ≤ |G| − 10 for every C ∈ P .

Proof. Suppose G 6∼= Gi for any i. Let C be an island of G. Note that C is either an

independent set or induces some 5-cycle. If C is an independent set, then qG(C) = |C|−1;

and if G[C] ∼= C5, then qG(C) = 3. One can then check the proposition holds by simply

counting.

Suppose G = Gi for some i ∈ {1, 2, 3, 4} and e 6∈ E(G) such that G + e ∼= K2,2,2,2,2,3

or K2,3,3,3,3. Let C be an island of G. Note if C is an independent set, then again qG(C) =

|C| − 1 = qG+e(C). Otherwise, we can write C = C1 ∪ C2 where C1, C2 are two distinct

islands of G + e, and e has one end in C1 and the other one in C2. Observe that, in any

case, we always have qG(C) = qG(C1) + qG(C2) = qG+e(C1) + qG+e(C1). It follows that

qG(P) = qG+e(P ′) where P ′ is the island partition for G + e. If G + e ∼= K2,2,2,2,2,3,
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|G| = 13 and max{qG(C) : C ∈ P} = 3; and if G + e ∼= K2,3,3,3,3, |G| = 14 and

max{qG(C) : C ∈ P} = 4. Therefore, the proposition holds for G ∼= Gi where i ∈

{1, 2, 3, 4}, too.

Lemma 2.5.4. Let G be an exceptional graph. If G 6∼= K2,2,2,2,2,3 or K2,3,3,3,3, then e(G) =

8|G| − 35. If G ∼= K2,2,2,2,2,3 or K2,3,3,3,3, then e(G) = 8|G| − 34.

Proof. If G is not a non-trivial (K1,1,2,2,2,2,2, 7)-cockade or a (K2,2,2,2,2,3, 6, 2)-cockade of

multiplicity 2, it suffices to check the following:

e(K1,1,2,2,2,2,2) = 61 = 8 · 12− 35,

e(K1,2,2,2,3,3) = 69 = 8 · 13− 35,

e(K2,2,2,2 + C5) = 69 = 8 · 13− 35,

e(K2,2,3,3,4) = 77 = 8 · 14− 35,

e(K3,3,3 + C5) = 77 = 8 · 14− 35,

e(K2,2,2,2,2,3) = 70 = (8 · 13− 35) + 1, and

e(K2,3,3,3,3) = 78 = (8 · 14− 35) + 1.

If G is a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2, then e(G) = 2e(K2,2,2,2,2,3)−
(
6
2

)
=

8 · 20− 35.

If G is a non-trivial (K1,1,2,2,2,2,2, 7)-cockade, we prove e(G) = 8|G| − 35 by inducting

on |G|. The base case is |G| = 12 and was just shown above. Write G = G1∪G2 such that

G1, G2 are both (K1,1,2,2,2,2,2, 7)-cockades, G1 ∩ G2
∼= K7, and there is no edge between

G1 −G2 and G2 −G1. By induction, e(Gi) = 8|Gi| − 35 for i ∈ {1, 2}. It follows that

e(G) = e(G1)+e(G2)−e(K7) = 8(|G1|+ |G2|)−70−21 = 8(|G|+7)−91 = 8|G|−35.

Lemma 2.5.5. LetH be a t-connected graph for integer t > 0. LetG be an (H, t)-cockade.

Then, G is t-connected.
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Proof. We prove this lemma by inducting on |G|. The base caseG ∼= H is trivially true, and

we may assume thatG = G1∪G2 such thatG1, G2 are both (H, t)-cockades,G1∩G2
∼= Kt,

and there is no edge between G1 − G2 and G2 − G1. By induction, both G1, G2 are t-

connected. Let A ⊆ V (G) such that |A| = t − 1. Let Ai = A ∩ V (Gi) for i = 1, 2.

Note that |Ai| ≤ t − 1 for i = 1, 2 and V (G1 ∩ G2) − A 6= ∅. For i = 1, 2, since

Gi is t-connected, Gi − Ai is connected. Since V (G1 ∩ G2) − A 6= ∅, we know that

G− A = (G1 − A1) ∪ (G2 − A2)is connected. It follows that G is t-connected, as A was

chosen arbitrarily.

Lemma 2.5.6. Let H be a graph, and let ω(H) = t. Let G be an (H, t)-cockade.Then, G

does not contain a subgraph isomorphic to Kt+1.

Proof. We prove this lemma by inducting on |G|. The base case G ∼= H is trivially true,

as ω(H) = t. We may then assume that G = G1 ∪ G2 such that G1, G2 are both (H, t)-

cockades, G1 ∩ G2
∼= Kt, and there is no edge between G1 − G2 and G2 − G1. By

induction, neither G1 nor G2 contains a subgraph isomorphic to Kt+1. Since there is no

edge between V (G1 −G2) and V (G2 −G1), every subset A ⊆ V (G) of vertices such that

G[A] is a clique is completely contained in either G1 or G2. It follows that G does not have

a subgraph isomorphic to Kt+1.

2.5.1 Deletion Lemma

We will next prove that adding an edge to an exceptional graph would make it have a K10

minor, unless the new graph is isomorphic to another exceptional graph. We call this lemma

the deletion lemma, which will later be used to show that a minimum counter-example

graph to our main theorem on n vertices has exactly 8n− 35 edges.

Lemma 2.5.7 (Deletion Lemma). Let G be an exceptional graph. Let x and y be two

non-adjacent vertices in G. Then, either G+xy is an exceptional graph, or G+xy > K10.
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Proof. We will consider the two cases whether or not G is a non-trivial (H, t)-cockade,

where (H, t) = (K2,2,2,2,2,3, 2) or (K1,1,2,2,2,2,2, 7), separately.

Case 1: G is NOT a non-trivial (H, t)-cockade, where (H, t) = (K2,2,2,2,2,3, 2) or

(K1,1,2,2,2,2,2, 7).

Let P be the island partition of G. By Proposition 2.5.3, qG(P) = 2(|G| − 10) + 1.

Note that x, y are in the same island C ∈ P as x, y are non-adjacent. We will first show

qG+xy(P) = 2(|G| − 10).

If G 6∼= Gi for some i ∈ {1, 2, 3, 4}, then every island of G is either an independent

set or induces a 5-cycle. It follows that qG+xy(C) = qG(C)− 1 and therefore qG+xy(P) =

qG(P)− 1 = 2(|G| − 10).

If G ∼= Gi for some i ∈ {1, 2, 3, 4}, let e 6∈ E(G) such that G + e ∼= K2,2,2,2,2,3 or

K2,3,3,3,3. Notice that since e 6∈ E(G), C includes either zero or two ends of e. IfC does not

include any end of e, then C is just an independent set and we have qG+xy(C) = qG(C)−1

again. It follows that qG+xy(P) = 2(|G| − 10). We may then assume C includes both

ends of e. This means that C is the disjoint union of islands C1, C2 of G + e, where

(G+ e)[Ci] ∼= K2 or K3 for both i = 1, 2. Note that if e = xy, then G+ xy ∼= Gi for some

i ∈ {1, 2, 3, 4}, and we would then be done with the proof. So we may assume that e 6= xy,

meaning that x, y are both contained in Ci for some i ∈ {1, 2}. One can then check that

we have qG+xy(C) = qG(C) − 1 in all cases. It follows that qG+xy(P) = qG(P) − 1 =

2(|G| − 10).

Now in both cases, we have qG+xy(P) = 2(|G| − 10). By Lemma 2.5.3, qG(C ′) ≤

|G| − 10 = 1
2
qG+xy(P) for every island C ′ of G. It follows that qG+xy(C

′) ≤ qG(C ′) ≤
1
2
qG+xy(P). By Lemma 2.5.2, we conclude that G+ xy > K10.

Case 2: G is a non-trivial (H, t)-cockade, where (H, t) = (K2,2,2,2,2,3, 2) or (K1,1,2,2,2,2,2, 7).

Note that in the case (H, t) = (K2,2,2,2,2,3, 2), G is exactly a (K2,2,2,2,2,3, 2)-cockade of

multiplicity 2. Write G = G1 ∪G2 such that G1, G2 are both (H, t)-cockades, G1 ∩G2
∼=

Kt, and there is no edge between G1 −G2 and G2 −G1. Due to Case 1 and Lemma 2.5.4,
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we may assume that for both i = 1, 2, Gi + zw > K10 for every pair of non-adjacent

vertices z, w ∈ V (Gi). This means that we may assume that x, y not both contained in one

of G1 and G2.

Without loss of generality, say x ∈ V (G1) − V (G2) and y ∈ V (G2) − V (G1). Since

G1, G2 are both (H, t)-cockades, where (H, t) = (K2,2,2,2,2,3, 2) or (K1,1,2,2,2,2,2, 7), we

know that there exists some x′ ∈ V (G1 ∩ G2) such that xx′ 6∈ E(G), and that G[V (G2 −

G1) ∪ {x′}] is connected due to Lemma 2.5.5. It follows that there exists a path Q ⊆

G[V (G2 − G1) ∪ {x′}] linking x′ and y. Notice that G1 + xx′ > K10, as xx′ 6∈ E(G1). It

follows that by contracting edges onQ to one single vertex inG+xy, we would then obtain

resulting graph that contains a subgraph isomorphic to G1 + xx′, meaning that G + xy >

K10.

2.5.2 Contraction Lemmas

The goal of this subsection is to prove that if a graph G has δ(G) ≥ 8 and two adjacent

vertices x, y such that G/xy is isomorphic to an exceptional graph, and that x, y share

exactly 8|G| − e(G/xy) − 36, then either G > K10 or G is isomorphic to some other

exceptional graphs. We call lemmas in this form contraction lemmas. We will prove 5 con-

traction lemmas in this subsection, namely Lemma 2.5.10, Lemma 2.5.11, Lemma 2.5.12,

Lemma 2.5.13, and Lemma 2.5.14. These contraction lemmas will be later used to show

that in a minimum counter-example graph to our main theorem, every edge is contained in

at least eight triangles.

Lemma 2.5.8. Let G be a graph, and let x, y ∈ V (G) be two distinct vertices. Let N =

NG(x) ∪ NG(y) − {x, y}. Let N ′ ⊆ N and α, β ∈ Z+ be such that x, y each have

at least α neighbors in N ′, and that they have at least β common neighbors in N ′. Let

P = (C1, ..., Ct) be the island partition of G[N ′], and let d be the number of 1-islands of

G[N ′].

Suppose the triple (G[N ′], α, β) satisfies the following properties: (i) t ≥ 2, (ii) α ≥ β+ 1,
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(iii) β ≥
∑t

i=1 ω(G[Ci]), and (iv) β ≥ maxi{|Ci|} + d + 1. Then, there exist two distinct

islands Ci, Cj of G[N ′] such that Ci contains non-adjacent vertices w1, w2 ∈ N(x), and

Cj contains non-adjacent vertices w3, w4 ∈ N(y).

Proof. Let Z = N(x)∩N(y)∩N ′, and let Zi = Z∩Ci for all i = 1, ..., t. For convenience,

let ωi = ω(G[Ci]) for all i = 1, ..., t. By (iii),
∑t

i=1 ωi ≤ β =
∑t

i=1 |Zi|. Note that wi ≥ 1

for all i.

Note that |Z| = β ≥ α+ 1 ≥ 2. We now observe that we may assume G[Z] is a clique.

To see this is true, assume that there exist non-adjacent vertices w1, w2 ∈ Zi ⊆ Ci ∈ P for

some island Ci. By (iv), there exists some Cj in P − {Ci} such that |Cj| ≥ 2 and Zj 6= ∅.

Let w3 ∈ Zj and w4 ∈ Cj − {w3}. Note that w4 is adjacent to at least one of x and y. It

follows that Ci, Cj and w1, w2, w3, w4 are as desired.

Therefore, we now assume thatG[Zi] is a clique for all i = 1, ..., t, and hence ωi ≥ |Zi|.

Since
∑t

i=1 ωi ≤
∑t

i=1 |Zi|, we know that |Zi| = ωi and that G[Zi] is a maximum clique in

G[Ci] for all i = 1, ..., t. By (ii), there exists an island Ci ∈ P such that x has at least ωi+1

neighbors in Ci, meaning that there exists some vertex of Ci that is adjacent to x but not to

y. For the sake of a contradiction, we may assume that for every island Cj ∈ P − {Ci},

every vertex in Cj − Zj is adjacent to x but not to y.

Assume for a moment that Cj − Zj = ∅ for all j 6= i. Since G[Zj] is a clique and

Cj = Zj is an island of G[N ′], it follows that |Zj| = |Cj| = 1 for all j 6= i. Since |Ci| ≥ 2,

we have d = t− 1 and thus β = |Zi|+ t− 1 = |Zi|+ d < |Ci|+ d, a contradiction to (iv).

It follows that there exists some island Cj ∈ P − {Ci} such that Cj −Zj 6= ∅. Since every

vertex in Cj −Zj is adjacent to x but not to y, we may then assume every vertex in Ci−Zi

is adjacent to x but not to y. It follows that every vertex in N ′ − Z is adjacent to x but not

to y, meaning that y has exactly |Z| = β neighbors in N ′, a contradiction to (ii).

Lemma 2.5.9. Let G be a graph with δ(G) ≥ 8. Suppose there is an edge xy ∈ E(G)

such that x and y share at least 6 common neighbors in G. Suppose G/xy is isomorphic to

an exceptional graph that is neither a non-trivial (K1,1,2,2,2,2,2, 7)-cockade nor non-trivial
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(K2,2,2,2,2,3, 6)-cockade. If G/xy ∼= Gi for some i ∈ {1, 2, 3, 4}, let e 6∈ E(G/xy) be

the unique non-edge of G/xy such that G/xy + e ∼= K2,2,2,2,2,3 or K2,3,3,3,3, and let H =

G/xy + e; otherwise, let H = G/xy. Let w be the new vertex of G/xy. Let Cw be the

island of H that contains w. Then, there are two distinct islands C1, C2 of H − Cw such

that

(1) C1 contains two non-adjacent vertices w1, w2 ∈ NG(x),

(2) C2 contains two non-adjacent vertices w3, w4 ∈ NG(y),

(3) for every u ∈ V (G/xy) − NG/xy[w], u is adjacent to wi for every i ∈ {1, 2, 3, 4} in

G/xy,

(4) ifG/xy ∼= K2,2,2,2+C5 andG/xy[Cw] ∼= K2, thenG/xy[Ci] is isomorphic to a 5-cycle

for some i ∈ {1, 2}.

Proof. Let N = NG/xy(w) = NG(x) ∪NG(y)− {x, y} ⊆ V (G). Note that H = G/xy if

and only if H 6∼ Gi for any i ∈ {1, 2, 3, 4}. We will prove this lemma by considering the

following two cases: Cw is an island of G/xy, or G/xy ∼= Gi for some i ∈ {1, 2, 3, 4}, and

Cw is not an island of G/xy.

Case 1: Cw is an island of H as well as G/xy.

Note now it is not the case that G/xy ∼= Gi for some i ∈ {1, 2, 3, 4} and an end of e is

contained in Cw. Since Cw is an island of G/xy, every vertex u ∈ V (G/xy) − NG/xy[w]

must be in Cw and thus is adjacent to every vertex in V (G/xy) − Cw in the graph G/xy.

This means that it suffices to find two distinct islands satisfying (1), (2), and (4).

First assume that Cw is an independent set of H first, namely H ∼= K2,2,3,3,4, K2,2,2,2,2,3,

K2,3,3,3,3, K1,2,2,2,3,3, K1,1,2,2,2,2,2, or H ∼= K3,3,3 + C5 or K2,2,2,2 + C5 with H[Cw] not

isomorphic to a 5-cycle. In this case, it suffices to find desired islands satisfying (1) and

(2), and we will use Lemma 2.5.8 to find them. Note thatH[N ] = H−Cw, and every island

of H[N ] is equal to a unique island of H − Cw. Also note that x and y have at least β = 6

common neighbors in N , and since δ(G) ≥ 8 they each have at least α = 7 neighbors

in N . Let P = (C ′1, ..., C
′
t) be the island partition of G[N ], and let d be the number of
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1-islands in it. Notice that for every C ′i ∈ P , ω(C ′i) = 1 if H[C ′i] is an independent set,

and ω(C ′i) = 2 if H[C ′i] is isomorphic to a 5-cycle. Since H[N ] contains at most one

island isomorphic to a 5-cycle,
∑t

i=1 ω(H[C ′i]) = t + 1 if H[N ] contains a 5-cycle, and∑t
i=1 ω(H[C ′i]) = t otherwise. One can then check that the triple (H[N ], α, β) satisfies all

(i)-(iv) in Lemma 2.5.8, and it follows that the desired islands satisfying (1) and (2) can be

found.

We may then assume that H ∼= K3,3,3 + C5 or K2,2,2,2 + C5, and H[Cw] is isomorphic

to a 5-cycle. We will again use Lemma 2.5.8 to find islands C1, C2 that satisfy (1) and (2)

first. Let N ′ = V (H) − Cw ⊆ N , so every island of H[N ′] is equal to a unique island

of H − Cw. Since in either case w has exactly two neighbors in Cw in G/xy, we know

|N − N ′| = 2. It follows that x and y each have at least α′ = 7 − 2 = 5 neighbors in N ′,

and they have at least β′ = 6 − 2 = 4 common neighbors in N ′. One can then check the

triple (H[N ′], α′, β′) satisfies all (i)-(iv) in Lemma 2.5.8, and therefore there exist distinct

islands C1, C2 satisfying (1) and (2).

It remains to show (4) in the case H = G/xy ∼= K2,2,2,2 + C5 and G/xy[Cw] ∼= K2.

Note that we may assume the two islands C1, C2 of H − Cw that we just found using

Lemma 2.5.8 are both 2-islands. Let C denote the 5-island of H . Since every vertex in C is

adjacent to w inG/xy, it must be adjacent to at least one of x and y inG. SinceG/xy[C] is

a 5-cycle, there exist two non-adjacent vertices w′1, w
′
2 ∈ C such that they are both adjacent

to x or both adjacent to y in the graph G. Without loss of generality, assume w′1 and w′2 are

both adjacent to x. We can then use C to replace C1, use w′1 and w′2 to replace w1 and w2,

and keep C2 = {w3, w4} the same. The modified islands C1 and C2 are as desired.

Case 2: Cw is not an island of H as well as G/xy.

In this case, G/xy ∼= Gi for some i ∈ {1, 2, 3, 4}, and Cw is not an island of G/xy. It

suffices to find distinct islands C1, C2 that satisfy (1)-(3) now. Recall that e is the unique

edge in E(H) − E(G/xy), and note in this case Cw must contain an end of e. Let N ′ =

{v ∈ N : v is adjacent to u for every u ∈ V (G/xy) − NG/xy[w]} ⊆ N . Note that since
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every island of H is an independent set, every island C ′ of H[N ′] is a subset of a unique

island of H −Cw, say h(C ′). Assume that there exist distinct islands C ′i, C
′
j of H[N ′] such

that C ′i contains two non-adjacent vertices both adjacent to x inG, and that C ′j contains two

non-adjacent vertices both adjacent to y in G. Then by the definition of N ′, C1 = h(C ′i)

and C2 = h(C ′j) are distinct islands of H − Cw satisfying (1), (2), and (3). Note that

x and y each have at least α′ = 7 − |N − N ′| neighbors in N ′, and they have at least

β′ = 6 − |N − N ′| common neighbors in N ′. It follows that to find the desired islands, it

suffices to show (H[N ′], α′, β′) satisfies (i)-(iv) in Lemma 2.5.8. Again letP = (C ′1, ..., C
′
t)

be the island partition of H[N ′], and let d be the number of 1-islands in it. We consider all

cases in the following table.

Table 2.1

G/xy |Cw| if w is an end of e G[N ] H[N ′] = G[N ′] |N −N ′| (α′, β′, t, d)
G1 2 yes K1,2,2,2,3 K2,2,2,3 1 (6, 5, 4, 0)

2 no K2,2,2,2,3 K1,2,2,2,3 1 (6, 5, 5, 1)
G2 2 yes K2,2,2,2,2 K2,2,2,2 2 (5, 4, 4, 0)

3 yes K1,2,2,2,2 K2,2,2,2 1 (6, 5, 4, 0)
2 no K2,2,2,2,3 K2,2,2,2,2 1 (6, 5, 5, 0)
3 no K2,2,2,2,2 K1,2,2,2,2 1 (6, 5, 5, 1)

G3 3 yes K2,2,3,3 K2,3,3 2 (5, 4, 3, 0)
3 no K2,3,3,3 K2,2,3,3 1 (6, 5, 4, 0)

G4 2 yes K2,3,3,3 K3,3,3 2 (5, 4, 3, 0)
3 yes K1,3,3,3 K3,3,3 1 (6, 5, 3, 0)
2 no K3,3,3,3 K2,3,3,3 1 (6, 5, 4, 0)
3 no K2,3,3,3 K1,3,3,3 1 (6, 5, 4, 1)

For each case in this table, one can check that the triple (H[N ′], α′, β′) satisfies (i)-(iv)

in Lemma 2.5.8. Therefore, the desired islands can be found.

Lemma 2.5.10 (Contraction Lemma 1). Let G be a graph with δ(G) ≥ 8. Suppose there

is an edge xy ∈ E(G) such that x and y share at least 6 common neighbors in G. Suppose

G/xy is isomorphic to an exceptional graph that is neither a non-trivial (K1,1,2,2,2,2,2, 7)-

cockade nor a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2. If the new vertex of G/xy is not

adjacent to all other vertices, then G > K10.

34



Proof. We continue using the same definitions and notations used in Lemma 2.5.9: If

G/xy ∼= Gi for some i ∈ {1, 2, 3, 4}, let e 6∈ E(G/xy) be the unique non-edge of

E(G/xy) such that G/xy + e ∼= K2,2,2,2,2,3 or K2,3,3,3,3, and let H = G/xy + e; oth-

erwise, let H = G/xy. Let w be the new vertex of G/xy and Cw be the island of H

containing w.

By Lemma 2.5.9, we can choose distinct islands C1, C2 of H − Cw and vertices

w1, w2, w3, w4 such that (1) w1w2 6∈ E(G) and {w1, w2} ⊆ C1 ∩NG(x), (2) w3w4 6∈ E(G)

and {w3, w4} ⊆ C2 ∩ NG(y), (3) for every u ∈ V (G/xy) − NG/xy[w], u is adjacent to wi

for every i ∈ {1, 2, 3, 4} in G/xy, and (4) if G/xy ∼= K2,2,2,2 + C5 and G/xy[Cw] ∼= K2,

then G/xy[Ci] is isomorphic to a 5-cycle for some i ∈ {1, 2}.

Define H ′ = (H − {w}) + w1w2 + w3w4. We first prove the following claim that

H ′ > K10.

Claim 1. H ′ > K10.

Proof of Claim 1. Let P be the island partition of H . Note P contains Cw, C1, and C2. Let

P1 = {Cw, C1, C2} and P2 = P−P1. Let P ′ be the partition of V (H ′) obtained from P by

replacing Cw with Cw − {w}. Let P ′1 = {Cw − {w}, C1, C2} and P ′2 = P ′ − P ′1. Observe

that for every C ∈ P2, H[C] = H ′[C] and thus qH′(C) = qH(C). Also observe that every

island in P either is an independent set of size at least 2 or induces a 5-cycle. This implies

that for i ∈ {1, 2}, qH′(C1) = qH+w1w2(C1) = qH(C1)− 1 and qH′(C2) = qH+w3w4(C2) =

qH(C2)− 1, and furthermore that qH′(Cw − {w}) = qH(Cw)− 1. Hence, we can write

qH′(P ′) =
∑
C′∈P ′1

qH′(C
′) +

∑
C′∈P ′2

qH′(C
′)

= (qH(Cw)− 1) +
∑
i=1,2

(qH(Ci)− 1) +
∑
C∈P2

qH(C)

=
∑
C∈P1

qH(C)− 3 +
∑
C∈P2

qH(C)
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= qH(P)− 3.

Since H is an exceptional graph which is neither a non-trivial (K1,1,2,2,2,2,2, 7)-cockade nor

a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2, by Lemma 2.5.3, qH(P) = 2(|H| − 10) + 1.

Since |H ′| = |H| − 1, it follows that

lH′(P ′) = d1
2
qH′(P ′)e = d1

2
· (2(|H| − 10) + 1− 3)e = d|H| − 11e = |H ′| − 10.

By Lemma 2.5.2, to show H ′ > K10 it now suffices to prove qH′(C ′) ≤ 1
2
qH′(P ′) for

every island C ′ ∈ P ′. Note that 1
2
qH′(P ′) = |H| − 11 as shown above. Let C ′ ∈ P ′

be arbitrary. If C ′ = Cw − {w}, let C = Cw; otherwise let C = C ′. Recall that if

C ∈ P1, then qH′(C ′) = qH(C) − 1; and if C ∈ P2, then qH′(C ′) = qH(C). Note H is

isomorphic to one of the following graphs: K1,1,2,2,2,2,2, K1,2,2,2,3,3, K2,2,2,2 +C5, K2,2,3,3,4,

K3,3,3 + C5, K2,2,2,2,2,3, and K2,3,3,3,3. By checking through every one of these exceptional

graphs, we observe that qH(C) ≤ |H| − 11 unless H ∼= K2,2,2,2 + C5 and H[C] ∼= C5. If

qH(C) ≤ |H| − 11, then we have qH′(C ′) ≤ qH(C) ≤ |H| − 11. If H ∼= K2,2,2,2 +C5 and

H[C] ∼= C5, qH(C) = 3 = |K2,2,2,2+C5|−11+1. We may then assume qH′(C ′) = qH(C),

meaning that C ∈ P2 and thus |Cw| = |C1| = |C2| = 2, a contradiction property (4) of our

choice of C1 and C2.

Let L be the graph obtained from G by contracting the edges xw1 and yw3. To prove

G > K10, we just need to show L > K10. Note if G/xy = H , then H ′ = (H − {w}) +

w1w2+w3w4 ⊆ L by properties (1)-(3). By Claim 1, it follows that L > K10 ifG/xy = H .

We can then assumeG/xy 6= H , meaning thatG/xy ∼= Gi for some i ∈ {1, 2, 3, 4}. Recall

that in this case H ∼= K2,2,2,2,2,3 or K2,3,3,3,3, and e is the unique edge in H − G/xy. Let

a, b be the ends of e, and note a and b are in two distinct islands of H . Let Ca and Cb be the

islands of H containing a and b, respectively. Observe that if w is an end of e or e = w1w3,

then L ⊇ H ′ > K10. This means we may assume w is not an end of e and e 6= w1w3. More

generally, we can assume e is not an edge between {w1, w2} and {w3, w4}, since otherwise
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we can relabel the vertices w1, w2, w3, w4 and use the previous argument to show L > K10.

Let G′ = (G/xy − {w}) + w1w2 + w3w4. Observe that G′ ⊆ L, so it suffices to prove

G′ > K10. The rest of the proof now falls into two cases: {Ca, Cb} ⊆ {Cw, C1, C2} or

{Ca, Cb} 6⊆ {Cw, C1, C2}.

Case 1: {Ca, Cb} ⊆ {Cw, C1, C2}.

Note {Ca, Cb} ⊆ {Cw, C1, C2} means that e = ab crosses two distinct islands of H

among Cw, C1, and C2. Let Q be the island partition of G/xy. Let Dw be the island in Q

that contains w. Let Q′ be the partition of V (G′) obtained from Q by replacing Dw with

D′w = Dw − {w}. We make the following claim.

Claim 1. (i) qG′(Q′) = qG/xy(Q)− 3, and (ii) qG′(C ′) ≤ |G′| − 10 for every C ′ ∈ Q′.

Before proving Claim 1, we first show it impliesG′ > K10. Assume Claim 1 is true. By

Lemma 2.5.3, sinceG/xy is an exceptional graph that neither a non-trivial (K1,1,2,2,2,2,2, 7)-

cockade nor a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2, qG/xy(Q) = 2(|G/xy| − 10) + 1.

Since |G′| = |G/xy| − 1, by (i) in Claim 1,

qG′(Q′) = qG/xy(Q)− 3 = 2(|G/xy| − 10) + 1− 3 = 2(|G′| − 10),

meaning that lG′(Q′) = d1
2
qG′(Q′)e = |G′| − 10. By (ii) and Lemma 2.5.2, it follows that

G′ > K10.

Proof of Claim 1. Note that De = Ca ∪ Cb is one single island in Q. De and Dw may

or may not be distinct islands, but it does not matter. Let Q1 be the minimal subset of

Q that covers vertices in C1, C2, and Cw, and let Q′1 be the minimal subset of Q′ that

covers vertices in C1, C2, and Cw − {w}. Observe that Dw ∈ Q1 and D′w ∈ Q′1. Let

Q2 = Q − Q1 and Q′2 = Q′ − Q′1. Since {Ca, Cb} ⊆ {Cw, C1, C2}, we know Q2 = Q′2

and EG/xy(C) = EG′(C) for every C ∈ Q2 = Q′2. It follows that qG/xy(C) = qG′(C) for

every C ∈ Q2 = Q′2.

We now prove (i) first. If {Ca, Cb} = {C1, C2}, then De = Ca ∪ Cb = C1 ∪ C2 ∈ Q
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and De 6= Dw. It follows that Q1 = {De, Dw} and Q′1 = {De, D
′
w}. Since e = ab is

not between {w1, w2} and {w3, w4}, one of C1 and C2 contains at least 3 vertices. Without

loss of generality, assume |C1| = 3, C1 = {w1, w2, a}, and b ∈ C2. Note E(G′[De]) −

E(G/xy[De]) = {w1w2, w3w4}. One can check that if |C2| = 2, qG/xy(De) = 3 and

qG′(De) = 1; and if |C2| = 3, qG/xy(De) = 4 and qG′(De) = 2. Therefore, in any case, we

have qG′(De) = qG/xy(De)− 2 and qG′(De) ≤ 2. Since Dw is an independent set in G/xy

and |D′w| = |Dw| − 1, it follows that qG′(D′w) = qG/xy(Dw)− 1. Therefore,

qG′(Q′) =
∑

C′∈Q′1

qG′(C
′) +

∑
C′∈Q′2

qG′(C
′)

= qG′(De) + qG′(D
′
w) +

∑
C′∈Q′2

qG′(C
′)

= (qG/xy(De)− 2) + (qG/xy(Dw)− 1) +
∑
C∈Q2

qG/xy(C)

= qG/xy(Q)− 3.

This proves (i) for the case {Ca, Cb} = {C1, C2}. To finish proving (i), we may assume

{Ca, Cb} = {Cw, Ci} for some i ∈ {1, 2}. Without loss of generality, assume i = 1,

Cw = Ca, and C1 = Cb. It follows that De = Cw ∪ C1 = Dw, Q1 = {Dw, C2},

and Q′1 = {D′w, C2}. It is easy to see that qG′(C2) = qG/xy(C2) − 1 since G/xy[C2] −

G′[C2] = {w3w4}. Since w is not an end of e, w ∈ Ca − {a} and is not adjacent to a

in G/xy. By property (3), both w1 and w2 are adjacent to every vertex that is not adja-

cent to w in G/xy. It follows that {w1, w2} ⊆ NG/xy(a), and thus b 6= w1 or w2 and

C1 = {b, w1, w2} is a 3-island. One can then check that if |Cw| = 2, qG/xy(Dw) = 3 and

qG′(D
′
w) = 1; and if |Cw| = 3, qG/xy(Dw) = 4 and qG′(D′w) = 2. In either case, we have

qG′(Dw) = qG/xy(D
′
w) − 2 and qG′(D′w) ≤ 2. Using the same argument as above, we can

show qG′(Q′) = qG/xy(Q)− 3 again. This finishes proving (i) in Claim 1.

To prove (ii), note when we were proving (i) we also showed that qG′(De) ≤ 2 if
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{Ca, Cb} = {C1, C2}, and that qG′(D′w) = qG′(De − {w}) ≤ 2 if {Ca, Cb} = {Cw, Ci}

for some i ∈ {1, 2}. For every island C ′ ∈ Q′ that is not De or De − {w}, |C ′| ≤ 3 and

therefore qG′(C ′) ≤ 2. It follows that for every C ′ ∈ Q′, qG′(C ′) ≤ 2. Since G/xy ∼=

K2,2,2,2,2,3 or K2,3,3,3,3, |G′| − 10 = |G/xy| − 1 − 10 ≥ 13 − 11 = 2. It follows that

qG′(C
′) ≤ 2 ≤ |G′| − 10 for every C ′ ∈ Q′, which proves (ii).

Case 2: {Ca, Cb} 6⊆ {Cw, C1, C2}.

Without loss of generality, assumeCa 6∈ {Cw, C1, C2}. In the case {Ca, Cb}∩{Cw, C1, C2} =

∅, we choose Ca to be a 3-island if possible. For the rest of the proof, the goal is to find a

vertex a′ ∈ NG′(a) such that G′/aa′ > K10. Note this then implies G′ > K10.

Case 2.1: H ∼= K2,2,2,2,2,3

Note H ∼= K2,2,2,2,2,3 now has exactly 6 islands, and recall that H ′ = (H − {w}) +

w1w2 + w3w4. Let H ′′ = H ′ − C1 ∪ C2 ∪ Cw, and note H ′′ contains exactly 3 islands of

H and that Ca is one of them. Also note this implies there exists an island Ca′ of H ′′ such

that Ca′ 6∈ {Ca, Cb}. Let a′ ∈ Ca′ . Since a′ and b are adjacent in G′, it follows that the new

vertex ofG′/aa′ is adjacent to b inG′/aa′, and thereforeG′/aa′ = H ′/aa′. This means that

to prove G′ > K10, we just need to choose an island Ca′ of H ′′ such that Ca′ 6∈ {Ca, Cb}

and H ′/aa′ > K10 for some a′ ∈ Ca′ . In the following table, we list all possible cases; and

for each case, we show our choice of Ca′ by giving the size of it as well as the graph H/aa′

where a′ is any vertex in the chosen Ca′ .

Table 2.2

|Cw| C1 and C2 H ′′ = H ′ − C1 ∪ C2 ∪ Cw |Ca| |Ca′ | H ′/aa′

2 |C1| = |C2| = 2 K2,2,3 3 2 K7 +K2,2

2 |C1| = |C2| = 2 K2,2,3 2 3 K7 +K2,2

2 |C1| 6= |C2| K2,2,2 2 2 K6 + P3 + P2

3 |C1| = |C2| = 2 K2,2,2 2 2 K7 +K2,2

We note that in the case |Cw| = |C1| = |C2| = 2 and |Ca| = 2 (second row in the

table), Cb must not be the 3-island of H ′′ by the choice of Ca, which allows us to choose

the 3-island of H ′′ to be Ca′ . In other cases, it is easy to see that it is possible to choose the
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island Ca′ of H ′′ of the size listed in the table such that Ca′ 6∈ {Ca, Cb}. Since each case in

the table has H ′/aa′ ∼= K7 + K2,2 or K6 + P3 + P2, and both of these two graphs have a

K10 minor, it follows that H ′/aa′ > K10. It follows that G′/aa′ = H ′/aa′ > K10.

Case 2.2: H ∼= K2,3,3,3,3 In this case, there are fewer islands in H , and we will have

to choose the vertex a′ more carefully. Observe that at least one of C1 and C2 is not equal

to Cb, so without loss of generality we can assume C1 6= Cb. In the table below, we list

all possible cases with the range to choose a′ from and the corresponding resulting graph

H ′/aa′ in each case.

Table 2.3

|Cw| C1 and C2 |Ca| choose a′ in H ′/aa′

2 |C1| = |C2| = 3 3 C1 − {w1, w2} K4 +K2,3 + P3

3 |C1| = |C2| = 3 2 C1 − {w1, w2} K4 +K2,3 + P3

3 |C1| = |C2| = 3 3 C1 − {w1, w2} K3 +K2,2,2 + P3

3 |C1| = 3, |C2| = 2 3 C1 − {w1, w2} K5 +K2,2,3

3 |C1| = 2, |C2| = 3, C2 6= Cb 3 C2 − {w3, w4} K5 +K2,2,3

3 |C1| = 2, |C2| = 3, C2 = Cb 3 H − Cw ∪ C1 ∪ C2 ∪ Ca K3 +K2,2,2 + P3

Observe that for every case in this table, the graph H ′/aa′ always has a K10 minor.

Since a′ is always chosen from an island of H that is not Ca or Cb, a′ is adjacent to b

in G′, and therefore the new vertex of G′/aa′ is adjacent to b in G′/aa′. It follows that

G′/aa′ = H ′/aa′ > K10.

Lemma 2.5.11 (Contraction Lemma 2). Let G be a graph with δ(G) ≥ 8. Suppose there

is an edge xy ∈ E(G) such that x and y share exactly 7 common neighbors in G. If

G/xy ∼= K1,2,2,2,3,3, then either G > K10 or G is isomorphic to K2,2,3,3,4, G3, or G4.

In particular, (1) if G ∼= K2,2,3,3,4, then one of x and y has degree 10 and the other one

has degree 11, and (2) if G ∼= G3 or G4, let e be the unique non-edge such that G + e ∼=

K2,3,3,3,3: if G ∼= G3, one of x and y is an end of e, and the other one is not an end of e in a

3-island of G+ e; if G ∼= G4, one of x and y is an end of e in a 3-island, and the other one

is not an end of e in a 3-island of G+ e.
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Proof. Letw be the new vertex ofG/xy. By Lemma 2.5.10, we may assumew is the vertex

in G/xy that is adjacent to all other vertices. Let N = NG/xy(w) = NG(x) ∪ NG(y) −

{x, y}. Note G[N ] ∼= K2,2,2,3,3. It follows that

(dG(x)− 1) + (dG(y)− 1)− 7 = dG/xy(w) = 12,

meaning that dG(x) + dG(y) = 21. Without loss of generality, assume dG(x) ≤ dG(y). In

the rest of the proof, we consider the following two cases: dG(x) ≤ 9 and dG(y) ≥ 12, or

dG(x) = 10 and dG(y) = 11.

Case 1: dG(x) ≤ 9 and dG(y) ≥ 12. Note that dG(y) ≥ 12 means that there is at most

one vertex in N that is not adjacent to y. Choose y′ ∈ N such that y is adjacent to every

vertex inN−{y′}. LetCy′ be the island ofG[N ] that contains y′. Since dG(x) ≥ 8, x has at

least 6 neighbors inN−{y′}. SinceG[N ] ∼= K2,2,2,3,3, there exist two non-adjacent vertices

w1, w2 ∈ N − {y′} that are both adjacent to x. Let Cx be the island of G[N ] that contains

w1 and w2. Note Cx and Cy′ may or may not be the same island, but it does not matter. Let

C ′ be an island of G[N ]−Cx ∪Cy′ , and let w3 ∈ C ′. By contracting y′w3 and xw1, we can

obtain a resulting graph that has a subgraph isomorphic toG′ = (G[N∪{y}]/y′w3)+w1w2.

Let H = G[N ∪ {y}]/y′w3, and note it is now enough to prove G′ = H + w1w2 has a K10

minor. Since y is adjacent to every vertex in N − {y′}, it is adjacent to w3 in G and thus

adjacent to the new vertex of H . It follows that H ∼= (G[N ∪ {y}] + yy′)/y′w3. Since

G[N ∪{y}] +yy′ ∼= K1,2,2,2,3,3 and y′, w3 are in two distinct islands of G[N ∪{y}] +yy′ of

size at least 2, it follows that H ∼= (G[N ∪ {y}] + yy′)/y′w3 is isomorphic to K4 +K2,3,3,

K3 + K2,2,2,3, or K1,1,2,2,2,2,2. Note that in the graph H = (G[N ∪ {y}]/y′w3), w1 and w2

are not adjacent. This means that to prove G′ = H + w1w2 has a K10 minor, it suffices to

show for every f 6∈ E(H), H + f > K10. Let f 6∈ E(H) be arbitrary. If H ∼= K4 +K2,3,3,

thenH+f ∼= K6+K3,3 orK4+K2,3+P3; ifH ∼= K3+K2,2,2,3, thenH+f ∼= K5+K2,2,3

or K3 + K2,2,2 + P3; and if H ∼= K1,1,2,2,2,2,2, then H + f ∼= K4 + K2,2,2,2. In any case,
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H + f is isomorphic to a graph that has a K10 minor, and it follows that H + f > K10.

Case 2: dG(x) = 10 and dG(y) = 11. In this case, x has exactly 3 non-neighbors and

y and exactly 2 non-neighbors in N . Let x1, x2, x3 and y1, y2 be the non-neighbors of x

and y, respectively. Note that {x1, x2, x3} ∩ {y1, y1} = ∅, and {x1, x2, x3} ⊆ NG(y) and

{y1, y2} ⊆ NG(x). Let N ′ = {x1, x2, x3, y1, y2} ⊆ N .

Assume y1 and y2 are in two distinct islands of G[N ]. Let these two islands be C1
y

and C2
y . Note there are exactly three islands of G[N ] − C1

y ∪ C2
y . If some island C ′ of

G[N ] − C1
y ∪ C2

y is such that every vertex in C ′ is adjacent to x, let the two islands in

G[N ]−C1
y ∪C2

y ∪C ′ be C1
x and C2

x. Let w1 ∈ C1
x, w2 ∈ C2

x, and w3 ∈ C ′. Contract y1w1,

y2w2, and xw3 in G, and we can get a resulting graph isomorphic to K7 + K2,2 > K10.

We may then assume that the three islands in G[N ] − C1
y ∪ C2

y are C1
x, C2

x, and C3
x, and

that xi ∈ Ci
x for each i ∈ {1, 2, 3}. Now, each one of the five islands of G[N ] contains

exactly one vertex in N . Observe that we can choose a vertex w0 ∈ N −N ′ that is in some

3-island of G[N ] − C3
x. Contract edges x1y1, x2y2, and x3w0, and we can then obtain a

graph isomorphic to K−11 > K10.

Now we may assume y1 and y2 are in the same island Cy of G[N ], meaning that N ′ can

cover up to 4 islands of G[N ]. This means there exists some island C0 of G[N ] such that

N ′ ∩ C0 = ∅. Choose C0 to be a 3-island if possible, and let w0 be a vertex in C0.

If N ′ covers exactly four islands of G[N ], then x1, x2, x3 are in three distinct islands

that are distinct from Cy. By contracting x1y1, x2y2, and x3w0, we can obtain a resulting

graph isomorphic to K7 +K2,2 if |Cy| = 2 and K−11 if |Cy| = 3. In either case, the resulting

graph has a K10 minor and hence G > K10.

Assume N ′ covers exactly three islands of G[N ], say Cy, C1, and C2. Without loss of

generality, assume xi ∈ Ci for i = 1, 2. If x3 ∈ Cy, then Cy = {y1, y2, x3}. By contracting

x1y1, x2y2, and xw0, we can obtain a resulting graph isomorphic to K7 +K2,2 > K10 since

we chose C0 to be a 3-island if possible. Without loss of generality, we may then assume

x3 ∈ C1. If |Cy| = |C1| = 2, then G ∼= G4 if |C2| = 2 and G ∼= G3 if |C2| = 3. In

42



particular, let e be the unique non-edge of G such that G + e ∼= K2,3,3,3,3, then if |C2| = 2

and G ∼= G4, x is an end of e in a 3-island of G + e and y is not an end of e in a 3-island

G+e; if |C2| = 3 andG ∼= G3, x is an end of e and y is not an end of e in a 3-island ofG+e.

We may then assume at least one of Cy and C1 contains 3 vertices. By contracting x1y1,

x2y2, and x3w0, we can get a resulting graph isomorphic to K−11 > K10 if |Cy| = |C1| = 3

or K7 +K2,2 > K10 if exactly one of Cy and C1 is a 3-island.

Finally, consider thatN ′ covers exactly two islands ofG[N ]. If |Cy| = 2, then x1, x2, x3

form a 3-island of G[N ], meaning that G ∼= K2,3,3,3,4 with d(x) = 10 and d(y) = 11. If

|Cy| = 3, first assume C1 = {x1, x2, x3}. By contracting x1y1, x2y2, and x3w0, we can

obtain a resulting graph isomorphic to K7 + K2,2 > K10. We can then assume, without

loss of generality, that Cy = {y1, y2, x3} and {x1, x2} ⊆ C1. If |C1| = 3, contract x1y1,

x2y2, and xw0, and we can obtain a graph isomorphic to K7 + K2,2 > K10. If |C1| = 2,

then by the choice of C0 we have |C0| = 3. Let w1, w2 be two vertices from distinct islands

in G[N ] − Cy ∪ C1 ∪ C0. By contracting y1w1, y2w2, and xw0, we will obtain a graph

isomorphic to K7 +K2,2 > K10.

Lemma 2.5.12 (Contraction Lemma 3). Let G be a graph with δ(G) ≥ 8. Suppose there

is an edge xy ∈ E(G) such that x and y share exactly 7 common neighbors in G. If

G/xy ∼= K1,1,2,2,2,2,2, then either G > K10 or G is isomorphic to K1,2,2,2,3,3, G1, or G2.

In particular, (1) if G ∼= K1,2,2,2,3,3, then dG(x) = dG(y) = 10, and (2) if G ∼= G1 or G2,

let e be the unique non-edge of G such that G+ e ∼= K2,2,2,2,2,3: if G ∼= G1, one of x and y

is in the 3-island in G+ e and the other one is an end of e; if G ∼= G2, one of x and y is the

end of e in the 3-island of G+ e, and that the other one is not an end of e and in a 2-island

of G.

Proof. Let w be the vertex in G/xy obtained by the contraction of xy in G. Let Cw be the

island ofG/xy that containsw. By Lemma 2.5.10, we may assumew is adjacent to all other

vertices in G/xy, meaning that |Cw| = 1. Let N = NG/xy(w) = NG(x)∪NG(y)−{x, y}.
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Note G[N ] ∼= K1,2,2,2,2,2. It follows that

(dG(x)− 1) + (dG(y)− 1)− 7 = dG/xy(w) = 11,

meaning that dG(x) + dG(y) = 20. Without loss of generality, assume dG(x) ≤ dG(y).

Note that δ(G) ≥ 8. We will proceed the rest of the proof following these three cases:

dG(x) = 8 and dG(y) = 12, dG(x) = 9 and dG(y) = 11, and dG(x) = dG(y) = 10.

Case 1: dG(x) = 8 and dG(y) = 12. Since dG(y) = 12, y is adjacent to every vertex in

N and x has 7 neighbors in N . Since G[N ] ∼= K1,2,2,2,2,2 has exactly 6 islands, there exists

a 2-island {w1, w2} of it such that both w1 and w2 are adjacent to x. By contracting xw1,

we get a resulting graph isomorphic to K4 +K2,2,2,2 > K10, and therefore G > K10.

Case 2: dG(x) = 9 and dG(y) = 11. In this case, x has exactly 8 neighbors in N ,

and that there is a unique y′ ∈ N that is not adjacent to y. Let Cy′ be the island of

G[N ] that contains y′. If |Cy′ | = 2, then x has at least 6 neighbors in N − Cy′ . Since

G[N ] − Cy′ ∼= K1,2,2,2,2, there exists a 2-island C1 = {w1, w2} of it such that both w1 and

w2 are adjacent to x. Let C2 = {w3, w4} be any 2-island of G[N ] − Cy′ ∪ C1. Note that

both w3 and w4 are adjacent to y and y′. Contracting xw1 and y′w3 in G, and we get a

resulting graph isomorphic to K7 + K2,2 > K10, implying that G > K10. We may then

assume |Cy′ | = 1. Note x has exactly three non-neighbors in N . Call them x1, x2, and

x3. If x1, x2, x3 are in three distinct islands in G[N − y′] ∼= K2,2,2,2,2, then there remain

two 2-islands C1 = {w1, w2} and C2 = {w3, w4} that do not contain any non-neighbor of

x. By contracting x1w1, x2w3, and x3y′, we obtain a resulting graph isomorphic to K10.

Without loss of generality, we may then assume {x1, x2} is a 2-island of G[N ]. It follows

that G ∼= G2. In particular, let e 6∈ E(G) be the unique non-edge G + e ∼= K2,2,2,2,2,3. It

follows that x is the end of e in the 3-island of G + e and y is not an end of e in a 2-island

of G.

Case 3: dG(x) = dG(y) = 10. In this case, x and y each have exactly two non-
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neighbors in N . Let the non-neighbors for x be x1 and x2 and the non-neighbors for y

be y1 and y2. Note that x1, x2, y1, y2 are four distinct vertices. Assume {x1, x2} is a 2-

island of G[N ] first. If {y1, y2} is another 2-island of G[N ], then G ∼= K1,2,2,2,3,3 with

dG(x) = dG(y) = 10. If one of y1 and y2 is in the unique 1-island of G[N ], then G ∼= G1.

In particular, let e 6∈ E(G) be the unique non-edge such that G + e ∼= K2,2,2,2,2,3, and then

x is in the 3-island of G + e and y is an end of e. If y1 and y2 are in two distinct 2-islands

in G[N ] − {x1, x2}, by contracting x1y1 and x2y2 we get a resulting graph isomorphic

to K7 + K2,2 > K10. We may then assume x1, x2 are in distinct islands of G[N ], and

by symmetry y1 and y2 are in distinct islands of G[N ] too. At most one vertex among

x1, x2, y1, y2 is in the 1-island, so without loss of generality assume that x1 and x2 are in

two distinct 2-islands. Note that there exists a 2-island C0 of G[N ] such that both vertices

in C0 are common neighbors for x and y. Let w0 ∈ C0. This implies that the new vertex of

G/yw0 is adjacent to both y1 and y2. It follows that G/yw0
∼= K3 + K2,2 + P5. It is easy

to observe that K3 +K2,2 + P5 > K10, implying that G > K10.

Lemma 2.5.13 (Contraction Lemma 4). Let G be a graph with δ(G) ≥ 8. Suppose there

is an edge xy ∈ E(G) such that x and y share exactly 7 common neighbors in G. If G/xy

is a (K1,1,2,2,2,2,2, 7)-cockade, then either G > K10 or G is isomorphic to K1,2,2,2,3,3, G1, or

G2.

In particular, (1) if G ∼= K1,2,2,2,3,3, then dG(x) = dG(y) = 10, and (2) if G ∼= G1 or G2,

let e be the unique non-edge of G such that G+ e ∼= K2,2,2,2,2,3: if G ∼= G1, one of x and y

is in the 3-island in G+ e and the other one is an end of e; if G ∼= G2, one of x and y is the

end of e in the 3-island of G+ e, and that the other one is not an end of e and in a 2-island

of G.

Proof. We will prove the lemma by inducting on |G/xy|. The base case is G/xy ∼=

K1,1,2,2,2,2,2, which is proved in Lemma 2.5.12. Assume thatG/xy is a non-trivial (K1,1,2,2,2,2,2, 7)-

cockade. Choose subgraphs H1, H2 of G/xy such that H1, H2 are both (K1,1,2,2,2,2,2, 7)-
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cockades, H1 ∪H2
∼= G/xy, and H1 ∩H2

∼= K7. Let w be the new vertex of G/xy. For

each i ∈ {1, 2}, let H∗i = G[(V (Hi) − {w}) ∪ {x, y}]. Observe that since each Hi is a

(K1,1,2,2,2,2,2, 7)-cockade, δ(Hi) ≥ 10. It follows that for every vertex v ∈ V (H∗i )−{x, y},

dH∗i (v) ≥ dHi
(v) ≥ 10. Suppose w ∈ V (H1)− V (H2). Then x, y have exactly 7 common

neighbors in H∗1 , implying that dH∗1 (x) ≥ 8 and dH∗1 (y) ≥ 8. It follows that δ(H∗1 ) ≥ 8,

and by induction we may assume H∗1 is isomorphic to K1,2,2,2,3,3, G1, or G2. This is then

a contradiction, since H∗1 contains a subgraph isomorphic to K7 but any one of these three

exceptional graphs does not.

By symmetry, we may assume w ∈ V (H1∩H2). Let S = V (H1∩H2)−{w}, and note

that G[S] ∼= K6. Let Z ⊆ V (G) be the set of the 7 common neighbors of x and y. Assume

Z ⊆ V (H∗1 ) for a moment. This again implies that both x and y have at least 8 neighbors in

H∗1 and therefore δ(H∗1 ) ≥ 8. By induction, H∗1 is isomorphic to K1,2,2,2,3,3, G1, or G2. If

H∗1
∼= G1 or G2, let f 6∈ E(H∗1 ) be the unique non-edge such that H∗1 + f ∼= K2,2,2,2,2,3 and

let L = H∗1 + f ; if H∗1 ∼= K1,2,2,2,3,3, let L = H∗1 . Note that in either case, L has exactly 6

islands. Since H∗1 [S] ∼= K6, every vertex in S is in a distinct island in L. Since x and y are

adjacent in L, they must be in different islands. It follows that there exist unique vertices

x′, y′ ∈ S such that x′ and x are in the same island, and that y′ and y are in the same island

of L. LetK be a component ofH∗2−H∗1 . Note thatNG(K) ⊆ S∪{x, y}. By Lemma 2.5.5,

since K1,1,2,2,2,2,2 is 7-connected and H2 is a (K1,1,2,2,2,2,2, 7)-cockade, we know that H2 is

7-connected. It follows that |NH2(K)| ≥ 7 and therefore |NG(K)| = |NH∗2
(K)| ≥ 7. Since

|S ∪ {x, y}| = 8, without loss of generality we can assume both x and x′ are contained in

NG(K). By contracting all vertices in K to x, we can get a resulting graph on V (H∗1 ) that

contains H∗1 + xx′ as a subgraph. Since x and x′ are in the same island of L, xx′ 6= f in

the case H∗1 ∼= G1 or G2. By Lemma 2.5.7, H∗1 + xx′ ≥ K10 and therefore G > K10.

Now, we may assume Z 6⊆ V (H∗1 ), and by symmetry we may also assume Z 6⊆ V (H∗2 ).
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For each i ∈ {1, 2}, let Zi = Z ∩ V (H∗i −H∗3−i), and note that |Zi| ≥ 1. It follows that

|S − Z| = 6− |Z ∩ S| = 6− (7− |Z1| − |Z2|) = |Z1|+ |Z2| − 1 ≥ |Zi|

for every i ∈ {1, 2}. Again by Lemma 2.5.5, H1, H2 are both 7-connected. This implies

that Hi−{w}−S ∩Z is (6−|Z ∩S|)-connected, and equivalently |S−Z|-connected, for

each i ∈ {1, 2}. Since |Zi| ≤ |S − Z|, there exist |Zi| disjoint paths from Zi to S − Z in

Hi−{w}−S∩Z for each i ∈ {1, 2}. For each i ∈ {1, 2}, choose disjoint paths P i
1, ..., P

i
|Zi|

between Zi and S−Z in Hi−{w}−S ∩Z, and let Z ′i ⊆ S−Z be the set of endpoints of

these paths in S−Z. Contract P i
1, ..., P

i
|Zi|, and letH ′i be the induced subgraph on V (H∗i ) of

the resulting graph. Note now in H ′i, x and y have exactly 7 common neighbors, implying

that δ(H ′1) ≥ 8. By induction, for each i ∈ {1, 2}, H ′i is isomorphic to K1,2,2,2,3,3, G1, or

G2, with detailed positions of x and y in H ′i described in the statement of the lemma.

For each i ∈ {1, 2}, if H ′i ∼= G1 or G2, let ei 6∈ E(H ′i) be the unique non-edge such that

H ′i + ei ∼= K2,2,2,2,2,3 and let Li = H ′i + ei; and if H ′i ∼= K1,2,2,2,3,3, let Li = H ′i. In either

case, Li contains exactly 6 islands, implying that every vertex in S is in a distinct island

of Li. By induction, for each i ∈ {1, 2}, if H ′i ∼= K1,2,2,2,3,3, then dH′i(x) = dH′i(y) = 10,

if H ′i ∼= G1, one of x and y is in the 3-island in Li and the other one is an end of ei; if

H ′i
∼= G2, one of x and y is the end of ei in the 3-island of Li, and that the other one is

not an end of ei and in a 2-island of H ′i. Observe that in any of the three cases, there exist

exactly three islands, say C1
i , C

2
i , and C3

i , that are all 2-islands of Li such that both vertices

in Cj
i are common neighbors for x and y for j = 1, 2, 3. For every i ∈ {1, 2} and every

j ∈ {1, 2, 3}, since exactly one vertex in Cj
i is contained in S, the other one must be in

V (H∗i −H∗3−i). Note the vertex that is in Cj
i ∩ V (H∗i −H∗3−i) must be adjacent to both x

and y in the graph H∗i , meaning that this vertex is contained in Zi. It follows that |Zi| ≥ 3

for both i = 1, 2. Since |Z1| + |Z2| ≤ |Z| = 7, without loss of generality we can assume

|Z2| = 3, and that the three vertices in Z2 are precisely one from each C1
2 , C

2
2 , and C3

2 . For
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each v ∈ Z2, note that NH∗2
(v) = NH′2

(v). It follows that in the graph H∗2 , each v ∈ Z2 has

exactly one non-neighbor in S. Recall P1, P2, P3 are three disjoint paths linking S−Z and

Z2 in H2−{w}− S ∩Z. Therefore, we may choose each path Pj to have length exactly 1

for j = 1, 2, 3.

Now, since x and y are adjacent, they are in distinct islands of L1. Since each vertex in

S is in a distinct island of L1, there exist unique vertices x′, y′ ∈ S such that x′ and x are

in the same island of L1, and that y′ and y are in the same island of L1. Note if H ′1 ∼= G1

or G2, xx′ 6= e1 and yy′ 6= e1. By Lemma 2.5.7, H ′1 + xx′ > K10 and H ′1 + yy′ > K10.

Therefore, it suffices to show that there exists a path Q in H∗2 that is internally contained in

H∗2 −H∗1 − Z2 and links x and x′ or links y and y′.

Now, since H ′2 ∼= K1,2,2,2,3,3, G1, or G2, we know that |H∗2 | = |H ′2| = 13 and therefore

|V (H∗2−H∗1 )−Z2| = 2, meaning that there are exactly two vertices, say u1, u2, inH∗2−H∗1

that are not common neighbors of x and y in G. Observe that NG(ui) = NH∗2
(ui) =

NH′2
(ui) for i = 1, 2. Also observe that regardless of which graph H ′2 is isomorphic to, any

vertex in it that is not x or y has degree at least 10. It follows that u1, u2 each has at most

two non-neighbors in H∗2 . We may then assume, in the graph H ′2, u1, u2 each has exactly

two non-neighbors among {x, x′, y, y′} and that u1, u2 are adjacent to each other.

Note that in any case, at least one of x and y is contained in a 3-island of L2. Without

loss of generality, assume that y is contained in a 3-island of L2. Call this island Cy, and

note that exactly one of u1, u2 is contained in Cy. Without loss of generality, say u1 ∈ Cy.

Then, observe that in any case we have u1 adjacent to y in H ′2. This means we may assume

NH′2
(u1) ∩ {x, x′, y, y′} = {x, y′}. Since u1, u2 are adjacent to each other, we may further

assume that NH′2
(u2) ∩ {x, x′, y, y′} = {x, y′} too. It follows that H ′2[{x′, y, u1, u2}] has a

supergraph isomorphic to K2,2, which is a contradiction, since none of K1,2,2,2,3,3, G1, and

G2 contains a subgraph isomorphic to K2,2.

Lemma 2.5.14 (Contraction Lemma 5). Let G be a graph with δ(G) ≥ 8. Suppose there

is an edge xy ∈ E(G) such that x and y share exactly 7 common neighbors in G. Suppose
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G/xy is isomorphic to a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2. Then, G > K10.

Proof. Let H = G/xy. Let H1, H2 be induced subgraphs of H such that H = H1 ∪ H2,

H1 ∩ H2
∼= K6, and Hi

∼= K2,2,2,2,2,3 for i = 1, 2. Let w be the new vertex of H =

G/xy. If w ∈ V (Hi − H3−i) for some i ∈ {1, 2}, then we can apply Lemma 2.5.10

to G[V (Hi − {w}) ∪ {x, y}] and show that G > K10. Therefore, we may assume that

w ∈ V (H1 ∩H2). For i = 1, 2, let H∗i = G[V (Hi − {w}) ∪ {x, y}].

Observe that for i = 1, 2, since Hi
∼= K2,2,2,2,2,3, dG(v) ≥ dHi

(v) ≥ 10 for every

v ∈ V (G) − {x, y}. Let Z ⊆ V (G) − {x, y} be the subset of 7 vertices that are common

neighbors of x and y in G. For i = 1, 2, let Zi = Z ∩ V (H∗i − H∗3−i). If |Z1| = 0, then

x and y have exactly 7 common neighbors in H∗2 , which implies that dH∗2 (x), dH∗2 (y) ≥ 8.

It follows that δ(H∗2 ) ≥ 8. Since H∗2/xy = H2
∼= K2,2,2,2,2,3, by Lemma 2.5.10 it follows

that H∗2 > K10 and therefore G > K10. By symmetry, we may then assume |Zi| ≥ 1 for

i = 1, 2. Let S = V (H1 ∩H2)− {w}, and it follows that |Zi| + |S ∩ Z| ≤ 6 for i = 1, 2.

Since |S| = 5, we have |Zi|+ 5− |S − Z| ≤ 6 and thus |S − Z| ≥ |Zi| − 1 for i = 1, 2.

Assume for a moment that |S − Z| = |Z1| − 1 = |Z2| − 1. Then,

7 = |Z| = |Z1|+ |Z2|+ |S ∩ Z| = 2|S − Z|+ 2 + |S ∩ Z| = 7 + |S − Z|,

and therefore |S − Z| = 0. It follows that S ⊆ Z and |Z1| = |Z2| = 1. Let zi be the

unique vertex in Zi for i = 1, 2. Note now x and y have exactly 6 common neighbors in

H∗1 , meaning that dH∗1 (x), dH∗1 (y) ≥ 7. Note that if N(x) ∩ V (H∗1 −H∗2 ) − {z1} 6= ∅ and

N(x) ∩ V (H∗1 −H∗2 ) − {z1} 6= ∅, then we would have dH∗1 (x), dH∗1 (y) ≥ 8 and therefore

δ(H∗1 ) ≥ 8. By Lemma 2.5.10, it follows that H∗1 > K10 and thus G > K10. Without loss

of generality, we may assume that in the graphG, every vertex inNG/xy(w)∩V (H1)−{z1}

is adjacent to x only but not adjacent to y. Note this means that H∗1 − {y} ∼= K2,2,2,2,2,3.

Now, note that there exists a unique vertex s1 ∈ S that is not adjacent to z1 in H∗1 . Since

S ⊆ Z, s1 is adjacent to y. It follows that (H∗1 − {y}) ∪ {z1s1} ⊆ H∗1/ys1. Since
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H∗1 − {y} ∼= K2,2,2,2,2,3, by Lemma 2.5.7 we know that (H∗1 − {y}) ∪ {z1s1} > K10. It

follows that H∗1 > K10 and thus G > K10.

Hence, we may assume there exists some i ∈ {1, 2} such that |S − Z| ≥ |Zi|. Without

loss of generality, assume that |S−Z| ≥ |Z1|. Observe that if there exist |Z1| disjoint paths

linking Z1 and S − Z in H∗1 − {x, y} ∪ (S ∩ Z), then by contracting each of these paths

to its end in S − Z, we would obtain a resulting graph H ′2 on V (H∗2 ) such that δ(H ′2) ≥ 8

and x, y have 7 common neighbors in H ′2. By Lemma 2.5.10, it follows that H ′2 > K10 and

thus G > K10. Therefore, it suffices to prove such disjoint paths exist.

Note that H1
∼= K2,2,2,2,2,3 and G[S] ∼= K5. If |Z1| ≥ 3, then there exists a complete

matching from Z1 to S − Z, and therefore the desired disjoint paths exist. If |Z1| = 2,

we may assume |Z1| = |S − Z| = 2 and the two vertices u1, u2 ∈ Z1 and one vertex

v1 ∈ S − Z form a 3-island in H1. Let v2 be the vertex in S − Z that is not equal to u3.

Let w1 ∈ V (H∗1 −H∗2 ) − Z1 be the unique vertex that is not adjacent to v2, and let w2 be

any vertex in V (H∗1 −H∗2 ) − Z1 ∪ {w1}. We can then observe that wi is adjacent to both

ui and vi for i = 1, 2, and therefore paths going through ui, wi, vi in order for both i = 1, 2

are as desired. If |Z1| = 1, then we may assume |S−Z| = 1 as well and the vertex u ∈ Z1

is not adjacent to the vertex v ∈ S − Z. Again since H1
∼= K2,2,2,2,2,3, there exists some

w ∈ V (H∗1 −H∗2 ) − {u} that is a common neighbor for u and v. The path going through

u,w, v in order is then as desired.
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CHAPTER 3

STRUCTURE OF POSSIBLE MINIMAL COUNTER-EXAMPLES

In this chapter, we study the structure of possible minimal counter-examples to Theo-

rem 1.1.5. We will prove a series of lemmas on the number of edges, minimum degree,

connectivity, and separations of possible minimal counter-examples to Theorem 1.1.5.

In particular, we say a graph G on n ≥ 8 vertices is a minimal counter-example to

Theorem 1.1.5 if the following statements hold:

(1) e(G) ≥ 8n− 35,

(2) G 6> K10,

(3) G is not isomorphic to any exceptional graph,

(4) For every graph G′ such that 8 ≤ |G′| ≤ n − 1 and e(G′) ≥ 8|G′| − 35, either

G′ > K10 or G′ is isomorphic to an exceptional graph, and

(5) Subject to (1)-(4), e(G) is minimum.

To prove Theorem 1.1.5, for the sake of a contradiction, we assume that a minimal

counter-example to Theorem 1.1.5 exists. For convenience, we will use G to denote a

fixed minimal counter-example to Theorem 1.1.5 in the rest of Chapter 3, Chapter 4, and

Chapter 5.

3.1 Basic Properties

Lemma 3.1.1. G has the following properties:

(1) |V (G)| = n ≥ 11, e(G) = 8n− 35.

(2) δ(G) ≥ 10, and δ(N(x)) ≥ 8 for every x ∈ V (G).

(3) IfG′ is a proper minor ofG such that |G′| ≥ 8, then e(G′) ≤ 8|G′|−34 and the equality

holds if and only if G′ ∼= K2,2,2,2,2,3 or K2,3,3,3,3.
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Proof. To see (1) is true, first observe that there is no graph on at least 8n − 35 edges for

n = 8 or 9, and that the only graph on n = 10 vertices with at least 8n− 35 edges is K10.

It follows that n ≥ 11. If e(G) > 8n − 35, then by the definition of a minimal counter-

example to Theorem 1.1.5, G\e must be an exceptional graph for every e ∈ E(G), which

is a contradiction to Lemma 2.5.7. Hence, e(G) = 8n− 35.

To show (2), we first prove δ(G) ≥ 8 and δ(N(x)) ≥ 6 for every x ∈ V (G). Suppose

there exists an edge xy ∈ E(G) such that x and y share at most 5 common neighbors. This

means that e(G/xy) ≥ 8n − 35 − 6 = 8(n − 1) − 35 + 2. By Lemma 2.5.4, G/xy is not

an exceptional graph, a contradiction to the fact that G is a minimal counter-example to

Theorem 1.1.5. It follows that every pair of adjacent vertices in G share at least 6 common

neighbors, meaning that δ(G) ≥ 7 and δ(N(x)) ≥ 6 for every x ∈ V (G). Suppose

there exists some x ∈ V (G) such that d(x) = 7. This implies that N(x) ∼= K7, which is a

subgraph ofG\x. Note e(G\x) = 8(n−1)−35+1. SinceG is a minimal counter-example

to Theorem 1.1.5, G\x must be an exceptional graph. By Lemma 2.5.4, G\x ∼= K2,2,2,2,2,3

or K2,3,3,3,3, which is a contradiction since neither one of these two exceptional graphs

contains a subgraph isomorphic to K7. We conclude that δ(G) ≥ 8 and δ(N(x)) ≥ 6 for

every x ∈ V (G).

To continue proving (2), for the sake of a contradiction, assume that there exists some

xy ∈ E(G) such that x and y have k common neighbors where k = 6 or 7. It follows that

e(G/xy) = 8n− 35− (k+ 1) = 8(n− 1)− 35 + (7− k) ≥ 8|G/xy| − 35. Again since G

is a minimal counter-example to Theorem 1.1.5, G/xy must be isomorphic an exceptional

graph. If k = 6, then e(G/xy) = 8|G/xy| − 34, meaning that G/xy ∼= K2,2,2,2,2,3 or

K2,3,3,3,3 by Lemma 2.5.4. Since δ(G) ≥ 8, Lemma 2.5.10 implies that G > K10, a

contradiction. We may then assume k = 7 and e(G/xy) = 8|G/xy| − 35, so again G/xy

is isomorphic to an exceptional graph. Since δ(G) ≥ 8, by Lemma 2.5.10-Lemma 2.5.14,

it follows that either G > K10 or G is isomorphic to some exceptional graph, again a

contradiction to the fact that G is a minimal counter-example to Theorem 1.1.5. Therefore,
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we have so far proved that δ(N(x)) ≥ 8 for every x ∈ V (G), which then implies δ(G) ≥ 9.

Notice that if d(x) = 9 for some x ∈ V (G), then we would immediately have N [x] > K10

as δ(N(x)) ≥ 8, a contradiction to the fact that G 6> K10. This completes the proof for (2).

To show (3), assume that G′ is a proper minor of G with |G′| ≥ 8 and e(G′) ≥ 8|G′| −

34. It suffices to prove that G′ ∼= K2,2,2,2,2,3 or K2,3,3,3,3 and e(G′) = 8|G′| − 34. Since G

is a minimal counter-example to Theorem 1.1.5, we know that G′ is isomorphic to some

exceptional graph. By Lemma 2.5.4, it follows that G′ ∼= K2,2,2,2,2,3 or K2,3,3,3,3, and

e(G′) = 8|G′| − 34.

3.2 Separations and Connectivity

The major goal of this section is to prove Lemma 3.2.9 that G is 7-connected. To prove it,

we will first need to prove s series of lemmas on separations of G. Some of these lemmas

before Lemma 3.2.9 will be used later in this thesis as well.

Lemma 3.2.1. Let (A1, A2) be a non-trivial separation of G. For i = 1, 2, let Gi = G[Ai],

and let Gi be a non-empty subset of minors of G on V (Gi), i.e. every graph in Gi has its set

of vertices equal to V (Gi) and can be obtained from G by deleting or contracting edges

that have at least one end in V (G3−i−Gi). For i = 1, 2, define d(Gi) and r(Gi) as follows:

d(Gi) = maxHi∈Gi{e(Hi) − e(Gi)}; r(Gi) = 1 if there exists a graph in Gi isomorphic to

K2,2,2,2,2,3 or K2,3,3,3,3, and r(Gi) = 0 otherwise. Let S = A1 ∩ A2. Then,

8|S| ≥ 35 + d(G1) + d(G2) + e(G[S])− r(G1)− r(G2) ≥ 33 + d(G1) + d(G2) + e(G[S]).

Proof. For convenience, let di = d(Gi) and ri = r(Gi) for i = 1, 2. Choose Hi ∈ Gi with

e(Hi) − e(Gi) = di such that Hi
∼= K2,2,2,2,2,3 or K2,3,3,3,3 if possible, for both i = 1, 2. It

follows that e(G1)+e(G2) = e(H1)+e(H2)−d1−d2. By (2) of Lemma 3.1.1, δ(G) ≥ 10.

Since (A1, A2) is a non-trivial separation of G, |Hi| = |Gi| ≥ 11 for both i = 1, 2. Since

H1, H2 are both proper minors of G with |Hi| ≥ 11 for i = 1, 2, by (3) of Lemma 3.1.1
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it follows that e(Hi) ≤ 8|Hi| − 35 + ri for i = 1, 2. Since e(G) = 8n − 35 by (1) of

Lemma 3.1.1, it follows that

8n− 35 = e(G1) + e(G2)− e(G[S])

= e(H1) + e(H2)− d1 − d2 − e(G[S])

≤ 8(|H1|+ |H2|)− 70 + r1 + r2 − d1 − d2 − e(G[S])

= 8n+ 8|S| − 70 + r1 + r2 − d1 − d2 − e(G[S]).

Therefore,

8|S| ≥ 35 + d1 + d2 + e(G[S])− r1 − r2.

Since ri = r(Gi) ≤ 1 for both i = 1, 2, it follows that

8|S| ≥ 35 + d1 + d2 + e(G[S])− r1 − r2 ≥ 33 + d1 + d2 + e(G[S]).

Lemma 3.2.2. G is 6-connected.

Proof. Let (A1, A2) be a non-trivial separation of G of minimum order. Let S = A1 ∩ A2.

For i = 1, 2, let Gi = G[Ai] and let di be the maximum number of edges that can be

added to S by contracting edges that have at least one end in G3−i −Gi. By Lemma 3.2.1,

8|S| ≥ 33 + d1 + d2 + e(G[S]), which implies |S| ≥ 5. For the sake of a contradiction,

assume |S| = 5. It follows that d1 + d2 + e(G[S]) ≤ 7. Let δ = δ(G[S]) for convenience.

Since S is a minimum separating set ofG, every vertex in S has some neighbor inGi−G3−i

for both i = 1, 2. It follows that di ≥ |S| − 1− δ = 4− δ for i = 1, 2, as we can contract

all of G3−i − Gi to some vertex v ∈ S with dG[S](v) = δ to make v adjacent to all other

vertices in S. Since e(G[S]) ≥ 1
2
|S|δ = 5

2
δ, it follows that

7 ≥ d1 + d2 + e(G[S]) ≥ 2(4− δ) +
5

2
δ = 8 +

1

2
δ,
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which means that δ ≤ −2, a contradiction.

Lemma 3.2.3. Let U ⊆ V (G) such that U 6= ∅ and |N(U)| ≤ δ(G) − 1. If there is no

non-trivial separation of (G[U ∪N(U)], N(U)) of order at most |N(U)|−1, then for every

Z ⊆ N(U) such that |Z| = 4, the following statements are true:

(1) If |N(U)| ≤ δ(G)− 2, then G[U ∪ Z] has a K4 minor rooted at Z.

(2) If |N(U)| = δ(G)− 1, then one of the following two statements is true: (2a) For every

two vertices y1, y2 ∈ Z,G[U∪Z] has a minor L such that V (L) = Z and L∪{y1y2} ∼= K4.

(2b) If δ(G) = 11, then for every Z ′ ⊆ N(U)− Z such that |Z ′| = 4, G[U ∪ Z ′] has a K4

minor rooted at Z ′.

Proof. Let H = G[U ∪ Z]. Note we may assume that H does not have a K4 minor rooted

at Z. We will show either a contradiction, or that one of (2a) and (2b) holds true and

|N(U)| = δ(G)− 1.

Since there is no non-trivial separation of (G[U ∪ N(U)], N(U)) of order at most

|N(U)| − 1, there is no non-trivial ≤ 3-separation of (H,Z). Choose (X, Y ) to be a

4-separation of (H,Z) such that Y − X 6= ∅, and subject to that |Y | is minimum. Note

that such a separation exists due to the trivial 4-separation (Z,Z ∪ U) of (H,Z). Let

Z∗ = X ∩ Y . Then note that the minimality of |Y | implies that there is no non-trivial

≤ 4-separation (G[Y ], Z∗). Since there is no non-trivial ≤ 3-separation of (H,Z), there

exist four disjoint paths linking Z and Z∗ in G[X]. Since H does not have a K4 minor

rooted at Z, it follows that G[Y ] does not have a K4 minor rooted at Z∗.

By Theorem 2.2.2, one of (ii)-(iv) is true for H and Z. Since there is no non-trivial

≤ 3-separation of (H,Z), we know (iii) is not true. Therefore, one of (ii) and (iv) is true.

Case 1: (ii) is true, i.e. there is a trisection (A1, A2, B) of G[Y ] of order 2 such that

|Z∗ ∩ (Ai −B)| = 1 for i = 1, 2.

Let zi be the unique vertex in Z∗ that is in Ai − B for i = 1, 2, and let a, b be the two

vertices in A1 ∩ A2 ∩ B. Notice that if A1 − B − {z1} 6= ∅, then (A2 ∪ B ∪ {z1}, A1)

would be a non-trivial 3-separation of (G[Y ], Z∗), a contradiction to the fact that there is
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no non-trivial ≤ 4-separation (G[Y ], Z∗). By symmetry, it follows that Ai − B = {zi} for

i = 1, 2. IfB−A1∪A2∪Z∗ 6= ∅, then similarly we would have a non-trivial≤ 4-separation

(A1∪A2∪Z∗, B) of (G[Y ], Z∗), again a contradiction. It follows thatB−A1∪A2∪Z∗ = ∅,

and therefore Y −Z∗ ⊆ {a, b}. Notice that vertices in Y −Z∗ = Y −X have no neighbor

in X − Y , meaning that NG(Y − Z∗) ⊆ Z∗ ∪ (NG(U)− Z). It follows that

|NG(Y − Z∗)| ≤ |Z∗ ∪ (NG(U)− Z)| = |Z∗|+ |NG(U)− Z| = |NG(U)|.

If |NG(U)| ≤ δ(G)− 2, then |NG(Y −Z∗)| ≤ δ(G)− 2. This means that every vertex

in Y − Z∗ has at least two neighbors in Y − Z∗ and thus |Y − Z∗| ≥ 3, a contradiction to

the fact that Y − Z∗ ⊆ {a, b}.

If |NG(U)| = δ(G)−1, then |NG(Y −Z∗)| ≤ δ(G)−1. We will prove that (2a) is true.

Note that |NG(Y − Z∗)| ≤ δ(G) − 1 means that every vertex in Y − Z∗ has at least one

neighbor in Y − Z∗. Since Y − Z∗ ⊆ {a, b}, it follows that Y − Z∗ = {a, b}, ab ∈ E(G),

and that a, b each are adjacent to all vertices in NG(Y − Z∗) = Z∗ ∪ (NG(U) − Z). This

means that for every pair of vertices y′1, y
′
2 ∈ Z∗, G[Y ] = G[Z∗ ∪ {a, b}] has a minor L′ on

Z∗ such that L′ ∪ {y′1y′2} ∼= K4, as we can simply contract the edges ay′3 and by′4, where

Z∗ − {y′1, y′2} = {y′3, y′4}. Recall that there exist four disjoint paths linking Z and Z∗ in

H[X]. It follows that for every pair of vertices y1, y2 ∈ Z, H has a minor L such that

V (L) = Z and L ∪ {y1y2} ∼= K4. Therefore, (2a) is true.

Case 2: (iv) is true, i.e. G[Y ] can be drawn in the plane so that every vertex in Z∗

is incident with the infinite region.

Since G[Y ] can be drawn in the plane so that every vertex in Z∗ is incident with the

infinite region, there exists a planar graph J that can be obtained from G[Y ] by making

J [Z∗] isomorphic to K−4 . Note that

e(J) = e(J [Z∗]) + e(Z∗, Y −Z∗) + e(G[Y −Z∗]) = 5 + e(Z∗, Y −Z∗) + e(G[Y −Z∗]).
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Since J is planar, e(J) ≤ 3|J | − 6. It follows that

5+e(Z∗, Y −Z∗)+e(G[Y −Z∗]) = e(J) ≤ 3|J |−6 = 3(|Y −Z∗|+4)−6 = 3|Y −Z∗|+6.

Therefore,

e(Z∗, Y − Z∗) + e(G[Y − Z∗]) ≤ 3|Y − Z∗|+ 1.

If |N(U)| ≤ δ(G)− 2, then δ(G)− |N(U)| ≥ 2. It follows that

e(Z∗, Y − Z∗) + e(G[Y − Z∗]) =
1

2
e(Z∗, Y − Z∗) +

1

2

∑
v∈Y−Z∗

dJ(v)

≥ 1

2
e(Z∗, Y − Z∗) +

1

2
(δ(G)− |N(U)− Z|) · |Y − Z∗|

=
1

2
e(Z∗, Y − Z∗) +

1

2
(δ(G)− |N(U)|+ 4) · |Y − Z∗|

≥ 1

2
e(Z∗, Y − Z∗) +

1

2
(2 + 4)|Y − Z∗|

=
1

2
e(Z∗, Y − Z∗) + 3|Y − Z∗|.

Since e(Z∗, Y − Z∗) + e(G[Y − Z∗]) ≤ 3|Y − Z∗|+ 1, it follows that

1

2
e(Z∗, Y − Z∗) + 3|Y − Z∗| ≤ e(Z∗, Y − Z∗) + e(G[Y − Z∗]) ≤ 3|Y − Z∗|+ 1,

meaning that e(Z∗, Y − Z∗) ≤ 2. By the minimality of |Y | when choosing (X, Y ), ev-

ery vertex in Z∗ has at least one neighbor in Y − Z∗, meaning e(Z∗, Y − Z∗) ≥ 4, a

contradiction.

It remains to consider |N(U)| = δ(G)−1, and we will prove that (2b) is true. To prove

(2b), assume that δ(G) = 11. Since J is planar, G[Y − Z∗] which is a subgraph of J is

also planar, and therefore e(G[Y − Z∗]) ≤ 3|Y − Z∗| − 6. Recall that e(Z∗, Y − Z∗) +

e(G[Y − Z∗]) ≤ 3|Y − Z∗|+ 1. It follows that

e(Z∗, Y − Z∗) + 2e(G[Y − Z∗]) ≤ 6|Y − Z∗| − 5.
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Since δ(G) = 11, we now have

e(N(Y − Z∗), Y − Z∗) + 2e(G[Y − Z∗]) =
∑

v∈Y−Z∗
dG(v) ≥ 11|Y − Z∗|.

Notice that

e(N(U)− Z, Y − Z∗) =
(
e(N(Y − Z∗), Y − Z∗) + 2e(G[Y − Z∗])

)
−(

e(Z∗, Y − Z∗) + 2e(G[Y − Z∗])
)

≥11|Y − Z∗| − (6|Y − Z∗| − 5)

=5|Y − Z∗|+ 5.

Since N(U) = δ(G) − 1 = 10, we have |N(U) − Z| = |N(U)| − 4 = 6. It follows that

there exist five distinct vertices v1, v2, v3, v4, v5 ∈ Y −Z∗ such that each of them is adjacent

all 6 vertices in N(U) − Z. Let Z ′ ⊆ N(U) − Z such that |Z ′| = 4 be arbitrary, and let

Z ′ = {z′1, z′2, z′3, z′4}. By contracting edges z′ivi for i = 1, 2, 3, we would then obtain a K4

minor of G[(Y − Z∗) ∪ Z ′] rooted at Z ′. Since G[(Y − Z∗) ∪ Z ′] ⊆ G[U ∪ Z ′], it follows

that G[U ∪ Z ′] has a K4 minor rooted at Z ′.

Lemma 3.2.4. Let S be a separating set of G. The following statements are true:

(1) There is no w ∈ S such that G[S − {w}] is complete.

(2) If |S| ≤ δ(G)− 2 and is minimum over all separating sets of G, then there is no Z ⊆ S

with |Z| = 4 such that the graph obtained from G[S] by making Z a clique is complete.

(3) G[S] contains an independent set of size 3 or two disjoint non-edges.

Proof. Let (A1, A2) be a non-trivial separation of G. Let S = A1 ∩A2 and Gi = G[Ai] for

i = 1, 2.

We first prove that (1) implies (3). Assume (1) is true. Since G[S − {w}] is not a

complete graph for all w ∈ S, for every non-adjacent vertices x, y ∈ S, neither G[S−{x}]

nor G[S − {y}] is a complete graph. It follows that there exists some z ∈ S − {x, y} such
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that xz, yz 6∈ E(G), or that there exist some z1, z2 ∈ S − {x, y} such that z1z2 6∈ E(G).

The former case implies that G[S] contains an independent set of size 3 on {x, y, z}, and

the latter case implies that G[S] has two disjoint non-edges, namely xy and z1z2.

It now suffices to prove (1) and (2) in the rest of this proof. Let w ∈ S and Z ⊆ S such

that |Z| = 4. For i = 1, 2, let Hw
i be the graph obtained from Gi by making w adjacent

to all other vertices in S, and let HZ
i be the graph obtained from Gi by making Z a clique.

If S is a minimum separating set of G and |S| ≤ δ(G) − 2, let (H1, H2) be equal to one

of (Hw
1 , H

w
2 ) and (HZ

1 , H
Z
2 ). Otherwise, let (H1, H2) = (Hw

1 , H
w
2 ). Let H = H1 ∪H2. It

suffices to prove that H[S] is not a complete graph. For the sake of a contradiction, assume

that it is not.

Observe that we can choose S such that it is a minimal separating set of G. This is

because, if S is not minimal, we would have (H1, H2) = (Hw
1 , H

w
2 ), and we can then

replace S with a minimal subset S ′ ⊆ S such that S ′ separates G, and that there exists

some w′ ∈ S ′ where G[S ′ − {w′}] is complete. It follows that G > Hi for i = 1, 2 in both

cases: If (H1, H2) = (Hw
1 , H

w
2 ), since S is a minimal separating set, we can contract all of

V (G3−i−Gi) to w for i = 1, 2; and if (H1, H2) = (HZ
1 , H

Z
2 ), we know |S| ≤ δ(G)−2 and

S is a minimum separating set of G, which then allows us to apply Lemma 3.2.3 to obtain

that G > Hi for i = 1, 2. Finally, notice that |S| ≤ 8, since otherwise we could contract

all of V (H1)− S to one single vertex and obtain a K10 minor of H1, meaning G > K10, a

contradiction. By Lemma 3.2.2, it follows that 6 ≤ |S| ≤ 8.

Claim 1. Hi 6∼= K2,2,2,2,2,3 or K2,3,3,3,3 for i = 1, 2.

Proof of Claim 1. For the sake of a contradiction, assume H1
∼= K2,2,2,2,2,3 or K2,3,3,3,3.

Note that K2,3,3,3,3 contains no clique of size greater than 5, and K2,2,2,2,2,3 contains no

clique of size greater than 6. Since |S| ≥ 6, it follows that H1
∼= K2,2,2,2,2,3, |S| = 6, and

H[S] ∼= K6. Let d = e(H[S]) − e(G[S]). Note e(Gi) = e(Hi) − d for i = 1, 2, and that
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e(G[S]) + d = e(H[S]) = e(K6) = 15. Since e(G) = 8n− 35, we have

8n−35 = e(G1)+e(G2)−e(G[S]) = e(H1)−d+e(G2)−e(G[S]) = e(H1)+e(G2)−15.

Since H1
∼= K2,2,2,2,2,3, e(H1) = 70 and |G2| = n− (|K2,2,2,2,2,3|− |S|) = n−7. It follows

that

e(G2) = 8n− 35− 70 + 15 = 8(n− 7)− 34 = 8|G2| − 34.

Note that |S| ≤ 8, so |G2| > 8. Notice that G2, H2 are both proper minors of G such

that e(H2) ≥ e(G2). By (3) of Lemma 3.1.1, it follows that G2 = H2
∼= K2,2,2,2,2,3 or

K2,3,3,3,3. SinceH2[S] is a clique on |S| ≥ 6 vertices, it follows thatG2 = H2
∼= K2,2,2,2,2,3.

This means that G is isomorphic to a (K2,2,2,2,2,3, 6)-cockade of multiplicity 2, which is an

exceptional graph, a contradiction. a

Now, let di be the maximum number of edges that can be added to S by contracting

edges that have at least one end in G3−i − Gi for i = 1, 2. Since H[S] is complete,

d1 = d2 = e(H[S]) − e(G[S]). Since Hi 6∼= K2,2,2,2,2,3 or K2,3,3,3,3 for i = 1, 2, by

Lemma 3.2.1 it follows that

8|S| ≥ 35 + d1 + d2 + e(G[S]).

Claim 2. G[S] ∼= K7, K8, or K−8

Proof of Claim 2. We consider the case (H1, H2) = (Hw
1 , H

w
2 ) and the case (H1, H2) =

(HZ
1 , H

Z
2 ) separately.

Case 1: (H1, H2) = (Hw
1 , H

w
2 ). Let δ = dG[S](w). Then di = |S| − 1− δ for i = 1, 2

and e(G[S]) =
(|S|−1

2

)
+δ. It follows that 8|S| ≥ 35+2(|S|−1−δ)+

(|S|−1
2

)
+δ, meaning

that δ ≥ 33 +
(|S|−1

2

)
− 6|S|. Since δ ≤ |S| − 1 and 6 ≤ |S| ≤ 8, it follows that δ ≥ 6 and

|S| = 7 or 8. Therefore, G[S] ∼= K7, K8, or K−8 .
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Case 2: (H1, H2) = (HZ
1 , H

Z
2 ). Let z = e(G[Z]). Then di = 6 − z for i = 1, 2 and

e(G[S]) =
(|S|

2

)
− (6− z). It follows that 8|S| ≥ 35 + 2(6− z) +

(|S|
2

)
− (6− z), meaning

that z ≥ 41 +
(|S|

2

)
− 8|S|. Since z ≤ 6 and 6 ≤ |S| ≤ 8,we have either |S| = 7 and z = 6,

or that |S| = 8 and z ≥ 5. Again, it follows that G[S] ∼= K7, K8, or K−8 . a

Consider the case G[S] ∼= K7 first, which implies that Hi = Gi for i = 1, 2. By

Claim 1, Gi 6∼= K2,2,2,2,2,3 or K2,3,3,3,3 for i = 1, 2. By Lemma 3.1.1, |Gi| ≥ 11 and

therefore e(Gi) ≤ 8|Gi| − 35 for both i = 1, 2. Therefore, e(G1) + e(G2) ≤ 8(|G|+ 7)−

70 = 8n−14. On the other hand, e(G1) + e(G2) = e(G) +
(
7
2

)
= 8n−35 + 21 = 8n−14.

It follows that for both i = 1, 2, e(Gi) = 8|Gi| − 35 and hence Gi is isomorphic to some

exceptional graph, due Lemma 3.1.1 as Gi is a proper minor of G on at least 11 vertices.

Note thatGi contains a clique of size 7 for both i = 1, 2. It follows that eachGi for i = 1, 2

is isomorphic to a (K1,1,2,2,2,2,2, 7)-cockade and therefore G = G1 ∪G2 is also isomorphic

to a (K1,1,2,2,2,2,2, 7)-cockade, a contradiction.

We may now assume G[S] ∼= K8 or K−8 . Note that Hi for i = 1, 2 is a proper minor

of G on at least 11 vertices that contains a clique of size 8. Also note that no exceptional

graph contains a clique of size 8. It follows that e(Hi) ≤ 8|Hi| − 36 for both i = 1, 2. Let

t = e(Hi)− e(Gi) =
(
8
2

)
− e(G[S]) = 28− e(G[S]), and note that t = 0 or 1. Then,

e(G) =e(G1) + e(G2)− e(G[S])

≤(8|H1| − 36− t) + (8|H2| − 36− t)− (28− t)

=8(|H1|+ |H2|)− 100− t

=8(n+ 8)− 100− t

=8n− 36− t.

Since t = 0 or 1, e(G) ≤ 8n− 36, a contradiction to the fact that e(G) = 8n− 35.
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Lemma 3.2.5. Let (A1, A2) be a non-trivial separation ofG such that |A1∩A2| ≤ δ(G)−2

and |A1 ∩ A2| is minimum over all non-trivial separations of G. Let w ∈ A1 ∩ A2, and let

Hi for i = 1, 2 be the graph obtained fromG[Ai] by making w adjacent to all other vertices

in A1 ∩ A2. Then, Hi 6∼= K2,2,2,2,2,3 or K2,3,3,3,3 for i = 1, 2.

Proof. Let S = A1 ∩ A2 and Gi = G[Ai] for i = 1, 2. By Lemma 3.2.2 and Lemma 3.2.4,

|S| ≥ 6 and H1[S] is not a clique.

For the sake of a contradiction, assumeH1
∼= K2,2,2,2,2,3 orK2,3,3,3,3. IfH1

∼= K2,2,2,2,2,3,

let {xi, yi} for i = 1, 2, 3, 4, 5 be the five 2-islands and {r1, r2, r3} be the 3-island of H1;

if H1
∼= K2,3,3,3,3, let {xi, yi, zi} for i = 1, 2, 3, 4 be the four 3-islands and {r1, r2} be the

2-island of H1. Observe that up to isomorphism, we may assume either w = x1 or w = r1

in both cases. Let Cw be the island of H1 that contains w. Since w is adjacent to every

vertex in S in H1, it follows that Cw − {w} ⊆ A1 − S.

Claim 1. There do not exist four distinct vertices a1, b1, a2, b2 ∈ S − {w} such that aibi 6∈

E(H1) for i = 1, 2.

Proof of Claim 1. For the sake of a contradiction, assume that a1, b1, a2, b2 ∈ S − {w} are

distinct vertices such that aibi 6∈ E(H1) for i = 1, 2. Let Z1 = {a1, b1, a2, b2}, and let R1

be the graph obtained from G1 by making Z1 a clique. By Lemma 3.2.3, we know that

G > R1. We then consider all cases, up to isomorphism, in the following table. Notice that

R1−{w} > K10 in every case in the table. It follows that G > R1 > K10, a contradiction.

Table 3.1

H1 w Z1 R1 − {w}
K2,2,2,2,2,3 x1 {x2, y2, x3, y3} K5 +K2,2,3

K2,2,2,2,2,3 x1 {x2, y2, r1, r2} K3 +K2,2,2 + P3

K2,2,2,2,2,3 r1 {x1, y1, x2, y2} K4 +K2,2,2,2

K2,3,3,3,3 x1 {x2, y2, x3, y3} K2,2,3 + P3 + P3

K2,3,3,3,3 x1 {x2, y2, r1, r2} K1,1,2,3,3 + P3

K2,3,3,3,3 r1 {x2, y2, x3, y3} K1,3,3 + P3 + P3

a
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Note that H1[S] is not a clique, and w is adjacent to all other vertices in S − {w}. It

follows that there exists some non-edge in H1[S − {w}]. By Claim 1, there is a unique

island C0 of H1 such that |C0 ∩ S| ≥ 2. Choose distinct vertices p1, p2 ∈ C0 ∩ S. Notice

that |S−C0∪{w}| ≥ 6−3−1 = 2, meaning that at least two islands ifH1 have exactly one

vertex in S−{w}. LetC2 be the island ofH1 that contains x2. Without loss of generality, in

both cases we can then assume that C2 ∩ S = {x2}. Observe that that Z2 = {w, x2, p1, p2}

is a set of four distinct vertices by construction. Let R2 be the graph obtained from G1 by

making Z2 a clique. Again by Lemma 3.2.3, we have G > R2.

Now, note that y2 ∈ C2−{x2} and thus y2 ∈ V (H1)−S, which then implies that w, y2

are adjacent in G and therefore in R2. Furthermore, observe that the new vertex in R2/wy2

is adjacent to all other vertices in it. In the following table, we consider all cases up to

isomorphism and show that R2/wy2 > K10 in every case. It follows that G > R2 > K10,

a contradiction.

Table 3.2

H1 w {p1, p2} R2/wy2
K2,2,2,2,2,3 x1 {x3, y3} K5 +K2,2,3

K2,2,2,2,2,3 x1 {r1, r2} K3 +K2,2,2 + P3

K2,2,2,2,2,3 r1 {x3, y3} K4 +K2,2,2,2

K2,3,3,3,3 x1 {x3, y3} K1,2,2,2,3 + P3

K2,3,3,3,3 x1 {r1, r2} K3 +K2,2,3,3

K2,3,3,3,3 r1 {x3, y3} K1,1,2,3,3 + P3

Lemma 3.2.6. Let (A1, A2) be a non-trivial separation ofG such that |A1∩A2| ≤ δ(G)−2

and |A1 ∩ A2| is minimum over all non-trivial separations of G. Let Z ⊆ S such that

|Z| = 4, and let Hi = G[Ai] ∪ {z1z2 : z1, z2 ∈ Z} for i = 1, 2. Then, Hi 6∼= K2,2,2,2,2,3 or

K2,3,3,3,3 for i = 1, 2.

Proof. Let S = A1 ∩ A2 and Gi = G[Ai] for i = 1, 2. By Lemma 3.2.2 and Lemma 3.2.4,

|S| ≥ 6 and H1[S] is not a clique. For the sake of a contradiction, assume H1
∼= K2,2,2,2,2,3
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or K2,3,3,3,3. Label the vertices in H as in the proof for Lemma 3.2.5. Note that H1[Z] ∼=

K4. Without loss of generality, assume that eitherZ = {x1, x2, x3, x4} orZ = {x1, x2, x3, r1}

in both cases.

Claim 1. For every z ∈ Z and z′ ∈ S − Z, zz′ ∈ E(G).

Proof of Claim 1. For the sake of a contradiction, assume that there are vertices z ∈ Z

and z′ ∈ S − Z such that zz′ 6∈ E(G), and note that this means that zz′ 6∈ E(H1) either.

Without loss of generality, assume that either z = x1 and z′ = y1, or that z = r1 and

z′ = r2. Let Z1 = {z, z′, x2, x3} and R1 be the graph obtained from G1 by making Z1 a

clique. By Lemma 3.2.3, G > R1. Note that |Z ∩Z1| = 3 in all cases. Let z0 be the unique

vertex in Z − Z1.

Let z′0 ∈ V (H1) − Z such that z′0 is adjacent to every vertex in Z in H1. Then, by the

construction of H1, observe that z′0 is also adjacent to every vertex in Z in G and therefore

in R1 as well. It follows that the new vertex in R1/z0z
′
0 is adjacent to all vertices in Z ∩Z1.

In the following table, we consider all cases up to isomorphism, and in each case we show

that there exists some z′0 ∈ V (H1) − Z such that z′0 is adjacent to every vertex in Z in H1

and R1/z0z
′
0 > K10. It follows that G > R1 > K10, a contradiction.

Table 3.3

H1 Z (z, z′) (z0, z
′
0) R1/z0z

′
0

K2,2,2,2,2,3 {x1, x2, x3, x4} or {x1, x2, x3, r1} (x1, y1) (x4, r1) or (r1, x4) K4 +K2,2,2,2

K2,2,2,2,2,3 {x1, x2, x3, r1} (r1, r2) (x1, x4) K3 +K2,2,2 + P3

K2,3,3,3,3 {x1, x2, x3, x4} or {x1, x2, x3, r1} (x1, y1) (x4, r1) or (r1, x4) K1,1,2,3,3 + P3

K2,3,3,3,3 {x1, x2, x3, r1} (r1, r2) (x1, x4) K3 +K2,2,3,3

a

Recall that H1[S] is not a clique and H1[Z] ∼= K4. By Claim 1, there exist vertices

p1, p2 ∈ S − Z such that p1p2 6∈ E(H1). Let Z2 = {x1, x2, p1, p2}, and let R2 be the graph

obtained from G1 by making Z2 a clique. Again we have G > R2 by Lemma 3.2.3, and

therefore it suffices to prove R2 > K10. We will consider the case H1
∼= K2,2,2,2,2,3 and the

case H1
∼= K2,3,3,3,3 separately in the remaining proof.
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First assume that H1
∼= K2,2,2,2,2,3. In this case, Z ∩ Z2 = {x1, x2}. Let u1, u2 be the

two distinct vertices in Z −Z2, and note that NG1(v) = NH1(v) for every v ∈ V (G1)−Z.

Therefore, if there exist vertices u′1, u
′
2 ∈ V (H1) − Z ∪ Z2 both contained in some island

of H1 that is disjoint from Z ∪ Z2, then by contracting edges u1u′1 and u2u′2 in R2, we

can then have the two new vertices w1, w2 in the resulting graph satisfying that w1, w2 are

adjacent to each other and wi for i = 1, 2 is adjacent to both x1 and x2. It follows that

(R2/u1u
′
1)/u2u

′
2 =

(
(H1/u1u

′
1)/u2u

′
2

)
∪ {vv′ : v, v′ ∈ Z2}. In the table below, we show

that in each case we can always find some u′1, u
′
2 ∈ V (H1) − Z ∪ Z2 contained in some

island of H1 disjoint from Z ∪ Z2 such that the corresponding graph (R2/u1u
′
1)/u2u

′
2 =(

(H1/u1u
′
1)/u2u

′
2

)
∪ {vv′ : v, v′ ∈ Z2} has a K10 minor. It follows that G > R2 > K10, a

contradiction.

Table 3.4

H1 Z {p1, p2} {u1, u2} {u′1, u′2} (R2/u1u
′
1)/u2u

′
2

K2,2,2,2,2,3 {x1, x2, x3, x4} {x5, y5} {x3, x4} {r1, r2} K7 +K2,2

K2,2,2,2,2,3 {x1, x2, x3, x4} {r1, r2} {x3, y4} {x5, y5} K7 +K2,2

K2,2,2,2,2,3 {x1, x2, x3, r1} {x4, y4} {x3, r1} {x5, y5} K7 +K2,2

Now, assume that H2
∼= K2,3,3,3,3. If Z = {x1, x2, x3, x4}, then {p1, p2} = {r1, r2}.

Observe that x3, x4 each are adjacent to all of y1, y2, z1, z2 inG1. It follows that (R2/x3y1)/x4y2

contains H1[V (G1) − {x3, x4}] ∪ {y1z1, y2z2, r1r2} ∼= K1,1,2,2 + P3 + P3 as a subgraph.

Since K1,1,2,2 + P3 + P3 > K10, it follows that G > R2 > K10, a contradiction. If

Z = {x1, x2, x3, r1}, then without loss of generality assume that {p1, p2} = {x4, y4}.

Now, x3, r1 each are adjacent to all of y1, y2, z1, z2 in G1. It follows that (R1/x3y1)/r1y2

contains H1[V (G1)−{x3, r1}]∪ {y1z1, y2z2, x4y4} ∼= K1,2 +P3 +P3 +P3 as a subgraph.

Since K1,2 + P3 + P3 + P3K10, it follows that G > R2 > K10, again a contradiction.

We can now combine Lemma 3.2.5 and Lemma 3.2.6 to form the next lemma.

Lemma 3.2.7. Let (A1, A2) be a non-trivial separation of G. Let S = A1 ∩ A2. If |S| ≤

δ(G) − 2 and |S| is minimum over all non-trivial separations of G, then the following

65



statements are true for both i = 1, 2.

(1) For every w ∈ S, G[Ai] ∪ {wr : r ∈ A1 ∩ A2 − {w}} 6∼= K2,2,2,2,2,3 or K2,3,3,3,3.

(2) For every Z ⊆ S of size 4, G[Ai] ∪ {z1z2 : z1, z2 ∈ Z} 6∼= K2,2,2,2,2,3 or K2,3,3,3,3.

The next lemma is an immediate consequence of Lemma 3.2.1 and Lemma 3.2.7.

Lemma 3.2.8. Let (A1, A2) be a non-trivial separation of G and S = A1 ∩ A2 such that

|S| ≤ δ(G)−2 and |S| is minimum over all non-trivial separations of G. Let S = A1∩A2.

Let d′ = maxZ:Z⊆S,|Z|=4{6 − e(G[Z])} and d = max{d′, |S| − 1 − δ(G[S])}. Then,

8|S| ≥ 35 + 2d+ e(G[S]).

Proof. For i = 1, 2, let G ′i be the set of graphs obtained from Gi by making some w ∈ S

adjacent to all other vertices in S, and let G ′′i be the set of graphs obtained from Gi by

making some subset Z ⊆ S of size 4 a clique. Let Gi = G ′i ∪ G ′′i for i = 1, 2. By

Lemma 3.2.3, every graph in Gi for i = 1, 2 is a minor of G with vertex set V (Gi).

Note that |S| − 1 − δ(G[S]) = maxH∈G′i{e(H) − e(Gi)} and d′ = maxH∈G′′i {e(H) −

e(Gi)} for i = 1, 2. It follows that for both i = 1, 2,

d = max{d′, |S| − 1− δ(G[S])} = max
H∈Gi
{e(H)− e(Gi)}.

By Lemma 3.2.7, no graph in Gi is isomorphic to K2,2,2,2,2,3 or K2,3,3,3,3 for i = 1, 2.

Therefore, by Lemma 3.2.1, we have that 8|S| ≥ 35 + 2d+ e(G[S]).

Lemma 3.2.9. G is 7-connected.

Proof. Let (A1, A2) be a non-trivial separation of G of minimum order. Let S = A1 ∩ A2

and Gi = G[Ai] for i = 1, 2. By Lemma 3.2.2, |S| ≥ 6, so we may assume |S| = 6 for the

sake of a contradiction. Note that δ(G) ≥ 10, so |S| < δ(G)− 2, which allows us to apply

Lemma 3.2.8. Let δ = δ(G[S]). Let d = max{5 − δ,maxZ:Z⊆S,|Z|=4{6 − e(G[Z])}}. By

Lemma 3.2.8, 8|S| ≥ 35 + 2d+ e(G[S]). With |S| = 6, it follows that

2d ≤ 13− e(G[S]).
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Since d ≥ 5 − δ, we have e(G[S]) ≤ 13 − 2d ≤ 3 + 2δ. Since e(G[S]) ≥ 1
2
δ|S| = 3δ, it

follows that 3δ ≤ e(G[S]) ≤ 3 + 2δ and hence δ ≤ 3.

Claim 1. Either e(G[S]) ≤ 1 or E(G[S]) is precisely a perfect matching of size 3.

Proof of Claim 1. By the definition of d, e(G[Z]) ≥ 6 − d for every Z ⊆ S with |Z| = 4.

Note that each pair of vertices is contained in exactly
(
4
2

)
subsets of size 4 of S. It follows

that

e(G[S]) =

∑
Z:Z⊆S,|Z|=4 e(G[Z])(

4
2

) ≥
(
6
4

)
(6− d)(

4
2

) = 15− 5

2
d.

Since 2d ≤ 13 − e(G[S]), we know 15 − 5
2
d ≤ e(G[S]) ≤ 13 − 2d and therefore d ≥ 4.

Note that e(G[S]) ≥ 1
2
|S|δ = 3δ. It follows that 3δ ≤ e(G[S]) ≤ 13 − 2d ≤ 13 − 8 = 5,

which shows δ ≤ 5
3

and therefore δ ≤ 1.

If d = 4, observe that 5 = 15 − 5
2
· 4 ≤ e(G[S]) ≤ 13 − 2 · 4 = 5. It follows that (i)

e(G[S]) = 5 and (ii) e(G[Z]) = 2 for every Z ⊆ S with |Z| = 4. Note that (i) implies

∆(G) ≥ 2 and (ii) implies ∆(G) ≤ 2, so we can choose v ∈ S such that dG[S](v) = 2.

Let NG[S](v) = {u1, u2} and S − NG[S][v] = {w1, w2, w3}. Let Z1 = {v, u1, u2, w1}.

Since e(G[Z1]) = 2, w1 is adjacent to neither u1 nor u2. By symmetry, it follows that wi is

adjacent to neither u1 nor u2 for i = 1, 2, 3. Let Z2 = {u1, u2, w1, w2}. We then see that

e(G[Z2]) ≤ 1, a contradiction.

Hence, d ≥ 5 and e(G[S]) ≤ 13 − 2d ≤ 3, meaning that δ ≤ 1. For the sake of

a contradiction, assume that e(G[S]) = 2 or 3 and E(G[S]) is not a perfect matching of

size 3. It follows that G[S] is isomorphic to one of the following graphs: the union of two

disjoint edges, a path of length 2 or 3, a 3-star, and the disjoint union of a path of length

2 and an isolated edge. In every one of these 5 graphs, observe that there always exists an

independent set Z of size 4 in S. It follows that d = maxZ:Z⊆S,|Z|=4{6 − e(G[Z])} = 6

and therefore e(G[S]) ≤ 13− 2d = 1, a contradiction. a

Claim 2. For i = 1, 2, G has a minor Li on V (Gi) obtained by contracting edges that have

at least one end in G3−i −Gi such that
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(1) e(Li)− e(Gi) ≥ 7 if e(G[S]) ≤ 1, and e(Li)− e(Gi) ≥ 6 if e(G[S]) = 3, and

(2) there exists a vertex in Li[S] adjacent to all other vertices in S in Li.

Proof of Claim 2. We will prove (1) and (2) hold for i = 1, and the case of i = 2 will

follow by symmetry. Let S = {s1, s2, s3, s4, s5, s6}. Without loss of generality, assume

that E(G[S]) = {s1s2} if e(G[S]) = 1 in all cases, and E(G[S]) = {s1s2, s3s4, s5s6} if

e(G[S]) = 3. Since δ(G) ≥ 10, |G2 − G1| ≥ 5. Choose two distinct vertices x, y ∈

V (G2 −G1). Since G is 6-connected, there exist 6 paths P1, ..., P6 in G2 between {x} and

S that are disjoint except for x. Without loss of generality, assume that Pj links x and sj

for j = 1, ..., 6.

Assume that every Pj has length exactly 1 for a moment. Since G − x is 5-connected,

there exist five paths Q1, ..., Q5 in G2 − x between {y} to S that are disjoint except for y.

If e(G[S]) ≤ 1, without loss of generality, assume s4 is an end of Q1. By contracting the

edge xs3, contracting all vertices on Q1 to s4, and contracting other Qj paths properly, we

could obtain a minor L1 of G on V (G1), which is isomorphic to some graph obtained from

G1 by making s3 adjacent to all other vertices in S and making s4 adjacent to at least four

other vertices in S. It follows that e(L1)−e(G1) ≥ 8, and s3 is adjacent to all other vertices

in S in the graph L1. If e(G[S]) = 3, without loss of generality, assume s3 is an end of Q1.

By contracting the edge xs1, contracting all vertices on Q1 to s3, and contracting other Qj

paths properly, we could obtain a minor L1 of G on V (G1), which is isomorphic to some

graph obtained from G1 by making s1 adjacent to all other vertices in S and s3 adjacent to

at least two vertices other than s1 and s4 in S. It follows that e(L1)− e(G1) ≥ 6.

We can now assume Pj has length at least 2 for some j ∈ {1, ..., 6}. Since now, for

every path P , we will use I(P ) to denote the set of internal vertices of P .

Consider e(G[S]) ≤ 1 first. Without loss of generality, we can assume one of P1, P2, P3

has length at least 2. Let X1 = I(P1) ∪ I(P2) ∪ I(P3) and Y1 = V (P4 ∪ P5 ∪ P6 − x),

and note that X1 6= ∅ and Y1 6= ∅. Since G is 6-connected, C1 = {x, s1, s2, s3} is not a

cut of G. It follows that there exists a path Q1 in G2 − C1 that links some x1 ∈ X1 and
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y1 ∈ Y1 such that no internal vertex ofQ1 is inX1 or Y1. Without loss of generality, assume

y1 ∈ V (P4− x). Let X2 = X1 ∪ V (P4 ∪Q1)−{x, s4} and Y2 = V (P5 ∪P6)−{x}. Note

that X2 6= ∅ and Y2 6= ∅, and that C2 = {x, s1, s2, s3, s4} is not a cut of G. It follows that

there exists a path Q2 in G2 − C2 linking some x2 ∈ X2 and y2 ∈ Y2 such that no internal

vertex of Q2 is in X2 or Y2. Without loss of generality, assume y2 ∈ V (P5 − x). Observe

that Q1 and Q2 are internally disjoint, and that Qj is internally disjoint from Pi for every

j ∈ {1, 2}, i ∈ {1, 2, 3, 4, 5, 6}. For j = 1, 2, contract edges on Qj such that Qj eventually

becomes a path of length 1 linking xj and yj . Then, contract edges on P1, ..., P6 such that

vertices in V (Pi)− {x} are identified as one vertex at si for i = 1, ..., 5, and all vertices of

P6 are identified as one vertex at s6. It follows that in the resulting graph, there is an edge

between s6 and every other vertex in S, an edge between s4 and {s1, s2, s3}, and an edge

between s5 and {s1, s2, s3, s4}. Let L1 be the resulting graph induced on V (G1). We see

that e(L1)− e(Gi) ≥ 5 + 2 = 7, and s6 is adjacent to every other vertex in S in L1.

Now, consider e(G[S]) = 3 and E(G[S]) = {s1s2, s3s4, s5s6}. Without loss of gener-

ality, assume I(P1) 6= ∅. Let X1 = I(P1) ∪ I(P2) and Y1 = V (
⋃6
i=3 Pi − x). Similarly to

the previous case, since C1 = {x, s1, s2} is not a cut ofG, there exists a path Q1 in G2−C1

linking some x1 ∈ X1 and y1 ∈ Y1 such that no internal vertex ofQ1 is inX1 or Y1. Without

loss of generality, assume y1 ∈ V (P3− x). Let X2 = X1 ∪ V (P3 ∪P4 ∪Q1)−{x, s3, s4},

Y2 = V (P5 ∪ P6) − {x}, and C2 = {x, s1, s2, s3, s4}. Since C2 is not a cut of G, there

exists a path Q2 linking some x2 ∈ X2 and y2 ∈ Y2 such that no internal vertex of Q2 is

in X2 or Y2. Without loss of generality, assume y2 ∈ V (P5 − x). By contracting edges

on Qj such that Qj becomes a path of length 1 for j = 1, 2 and contracting edges on

P1, ..., P6 such that every internal vertex of Pi gets identified to si for i = 1, ..., 6, and x

gets identified to s6, we can obtain a resulting graph in which there is an edge between s6

and every other vertex in S, an edge between s3 and {s1, s2}, and an edge between s5 and

{s1, s2, s3, s4}. Let L1 be the induced subgraph of the resulting graph on V (G1). It follows

that e(L1)−e(G1) ≥ 4+2 = 6, and that s6 is adjacent to every other vertex in S in L1. a
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For i = 1, 2, define di to be the maximum number of edges that can be added to G[S]

by contracting edges that have at least one end in G3−i − Gi, and let Ji be a graph on

V (Gi) obtained from contracting edges that have at least one end in G3−i − Gi such that

e(Ji) = e(Gi) + di. For i = 1, 2, define ri and d′i as follows: ri = 1 if Ji ∼= K2,2,2,2,2,3 or

K2,3,3,3,3, and ri = 0 otherwise; d′i = 7 if e(G[S]) ≤ 1, and d′i = 6 if e(G[S]) = 3. By

Claim 2, di ≥ d′i for both i = 1, 2. By Lemma 3.2.1, it follows that

d1 + d2 + e(G[S]) ≤ 8|S| − 35 + r1 + r2 = 13 + r1 + r2 ≤ 15.

Claim 3. If ri = 1 for some i ∈ {1, 2}, then e(G[S]) = 3, d1 = d2 = 6, Ji ∼= K2,3,3,3,3, and

Ji[S] ∼= K3,3.

Proof of Claim 3. Without loss of generality assume r1 = 1 and J1 ∼= K2,2,2,2,2,3 or

K2,3,3,3,3. Observe that every induced subgraph of K2,2,2,2,2,3 on 6 vertices has at least

11 edges, and every induced subgraph of K2,3,3,3,3 on 6 vertices has at least 9 edges. It

follows that e(G[S]) + d1 = e(J1[S]) ≥ 9 and therefore d2 ≤ 6. Recall that e(G[S]) ≤ 3

and di ≥ d′i ≥ 6 for i = 1, 2 by Claim 1 and Claim 2. It follows that e(G[S]) = 3 and

d1 = d2 = 6, which then implies that J1 ∼= K2,3,3,3,3 and J1[S] ∼= K3,3. a

Now, if e(G[S]) ≤ 1, by Claim 3 we know that r1 = r2 = 0 and therefore d1 + d2 +

e(G[S]) ≤ 13, a contradiction to the fact that di ≥ d′i = 7 for i = 1, 2. We may then assume

e(G[S]) = 3. By Claim 2, di ≥ d′i = 6 for i = 1, 2. Since d1 +d2 +e(G[S]) ≤ 13+r1 +r2,

it follows that di = d′i = 6 and ri = 1 for both i = 1, 2. By Claim 2, for both i = 1, 2 there

exists a minor Li of G on V (Gi) obtained by contracting edges of G that have at least one

end in G3−i −Gi such that e(Li) ≥ e(Gi) + 6, and that there exists a vertex in S adjacent

to all other vertices in S in Li. Since di = d′i = 6, we may choose Ji to be equal to Li for

both i = 1, 2. This is then a contradiction to Claim 3 that J1[S] ∼= J2[S] ∼= K3,3, since no

vertex in K3,3 is adjacent to all other vertices in S.
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3.3 Bounding Minimum Degree

We proved earlier in Lemma 3.1.1 that δ(G) ≥ 10. In this section, we will show δ(G) ≥ 11.

Lemma 3.3.1. δ(G) ≥ 11.

Proof. For the sake of a contradiction, assume that there exists a vertex x ∈ V (G) such that

d(x) ≤ 10. By Lemma 3.1.1, d(x) ≥ 10 and δ(N(x)) ≥ 8. It follows that d(x) = δ(G) =

10, and that N(x) contains a subgraph isomorphic to K2,2,2,2,2. Let N(x) =
⋃t
i=1{si, ti},

and assume that N [si] ∩ N(x) ⊇ N(x) − {ti} and N [ti] ∩ N(x) ⊇ N(x) − {si} for all

i = 1, 2, 3, 4, 5.

Note that if there exist at most two non-edges inN(x), thenN [x] would have a subgraph

isomorphic to K7 + K2,2, which has a K10 minor, a contradiction. It follows there exist at

least three non-edges in N(x), meaning that e(N [x]) ≤
(
11
2

)
− 3 = 52 < 53 = 8 · 11− 35.

Since e(G) = 8n − 35, it follows that |G − N [x]| > 0. Let (A1, A2) be a non-trivial

separation of (G,N [x]) of minimum order. Let S = A1 ∩ A2. Since (N [x], V (G) − {x})

is a non-trivial 10-separation of (G,N [x]), we know that |S| ≤ 10. By Lemma 3.2.9, it

follows that 7 ≤ |S| ≤ 10.

For i = 1, 2, let Gi = G[Ai], and let Ji be a minor of G on V (Gi) that can be obtained

from G by contracting edges that have at least one end in G3−i−Gi such that di = e(Ji)−

e(Gi) is maximum. Let r be the number of graphs among J1 and J2 that are isomorphic to

K2,2,2,2,2,3 or K2,3,3,3,3. By Lemma 3.2.1, we know that

d1 + d2 + e(G[S]) ≤ 8|S| − 35 + r.

Since δ(G) = 10, by the minimality of |S| and Lemma 3.2.3, if |S| ≤ 8 then for every

Z ⊆ S with |Z| = 4 we know G[(A2 − A1) ∪ Z] has a K4 minor rooted at Z. By

Lemma 3.2.4, G[S] contains an independent set of size 3 or two disjoint non-edges. It

follows that d1 ≥ 2 if |S| ≤ 8.
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Observe that by the minimality of |S|, x 6∈ S and that there exist |S| disjoint paths

P1, ..., P|S| in G1 − {x} linking N(x) and S. Let U ⊆ N(x) be the subset of vertices that

are ends of P1, ..., P|S| in N(x). We now prove the following claim that |S| ≥ 8, and that if

|S| = 8, then G[U ] ∼= K2,2,2,2.

Claim 1. |S| ≥ 8; and if |S| = 8, then G[U ] ∼= K2,2,2,2.

Proof of Claim 1. First assume that |S| = 7, for the sake of a contradiction. Recall that this

implies d1 ≥ 2. With |S| = 7, we have d1 + d2 + e(G[S]) ≤ 21 + r. Since |U | = |S| = 7,

it follows that G[U ] has a subgraph isomorphic to K1,2,2,2. Furthermore, note that if there

exist si, ti ∈ U that are not adjacent for some i ∈ {1, 2, 3, 4, 5}, then si, ti each are adjacent

to all four vertices in N [x]−U . Therefore, by contracting edges between U and N [x]−U

properly and then contracting each path among P1, ..., P7 to a single vertex, we would

obtain a clique on S. It follows that J2[S] ∼= K7 and d2 + e(G[S]) =
(
7
2

)
= 21. Since

neither K2,2,2,2,2,3 nor K2,3,3,3,3 contains a clique of size 7, J2 6∼= K2,2,2,2,2,3 or K2,3,3,3,3, and

therefore r ≤ 1. It follows that d1 ≤ 21 + r − (d2 + e(G[S])) = 21 + r − 21 = r ≤ 1, a

contradiction to the fact that d1 ≥ 2.

We may now assume that |S| = 8, and it suffices to prove G[U ] ∼= K2,2,2,2. With

|S| = 8, we have d1 + d2 + e(G[S]) ≤ 29 + r. Since |U | = |S| = 8, G[U ] contains a

subgraph isomorphic to K2,2,2,2. For the sake of a contradiction, assume G[U ] 6∼= K2,2,2,2.

We next prove that J1 ∼= K2,2,2,2,2,3. Note that G[U ] 6∼= K2,2,2,2 implies that G[U ]

contains a subgraph isomorphic toK1,1,2,2,2. Also note that every two non-adjacent vertices

in U are adjacent to all vertices in N [x] − U , where |N [x] − U | = 3 as |U | = |S| = 8.

Therefore, by contracting edges between U and N [x] − U properly and then contracting

each path among P1, ..., P8 to a single vertex, we would obtain a clique on S. It follows that

J2[S] ∼= K8, d2 + e(G[S]) =
(
8
2

)
= 28, and r ≤ 1. Hence, d1 ≤ 29 + r− (d2 + e(G[S])) =

r + 1 ≤ 2. Since d1 ≥ 2, it follows that d1 = 2, r = 1, and therefore J1 ∼= K2,2,2,2,2,3

or K2,3,3,3,3. Note that J1 ⊇ G1 which has N [x] as a subgraph. Since NG[x] contains a

subgraph isomorphic to K1,2,2,2,2,2 and K2,3,3,3,3 does not contain a subgraph isomorphic to
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K1,2,2,2,2,2, it follows that J1 ∼= K2,2,2,2,2,3.

Now, since J1 ∼= K2,2,2,2,2,3 does not have a clique of size 7, we know that NJ1 [x] =

NG[x] ∼= K1,2,2,2,2,2. Let the two vertices in V (G1) − N [x] be u and w. Since u,w are

not contained in N(x) and x 6∈ S, x is adjacent to neither u nor w in J1. It follows that

{x, u, w} is exactly the 3-island of J1 ∼= K2,2,2,2,2,3, meaning that these three vertices are

pairwise non-adjacent in bothG1 and J1. SinceNJ1 [x] = NG1 [x] and e(J1) = e(G1)+d1 =

e(G1) + 2, we know that the two edges in E(J1 −G1) each has exactly one end in {u,w},

and therefore {u,w} ∩ S 6= ∅.

Let S ′ = S−{u,w}. Assume {u,w} ⊆ S for a moment. Note that at most two vertices

in S are not adjacent to both u,w, meaning that |(S ′−NG(u))∪(S ′−NG(w))| ≤ 2. Choose

distinct vertices y1, y2 ∈ S ′ such that (S ′ −NG(u)) ∪ (S ′ −NG(w)) ⊆ {y1, y2}. Note that

e(G[{u,w, y1, y2}]) ≤ 3. On the other hand, since |S| = 8 and d1 = 2, by Lemma 3.2.3,

e(G[Z]) ≥ 6 − 2 = 4 for every Z ⊆ S with |Z| = 4, a contradiction. We may then

assume that S ∩ {u,w} = {u}, without loss of generality. Note this then implies that w

is adjacent to every vertex in N(x). Since |S ′| = 7, without loss of generality we assume

that {s1, t1, s2, t2} ⊆ S ′. By Lemma 3.2.3, the graph G′1 obtained from G1 by adding the

edges s1t1 and s2t2 is a minor of G. Then, in the graph G′1−{u}, by contracting the edges

ws3 and s4s5 we could obtain a K10 minor. This means that G > G′1 − {u} > K10, a

contradiction. a

By Claim 1, without loss of generality, we can assume that {s1, t1, ..., s4, t4} ⊆ U .

For each i = 1, 2, 3, 4, 5, if si (or ti) is in U , we let the vertex in S corresponding to it

via the paths P1, ..., P|S| be s′i (or t′i, respectively). Let I = {1, 2, 3, 4} if |S| ≤ 9 and

I = {1, 2, 3, 4, 5} if |S| = 10.

Observe that if there exist three disjoint pathsQ1, Q2, Q3 internally contained inA2−A1

such that, for some distinct indices i, j, k ∈ I , Q1 links s′i, t
′
i, Q2 links s′j, t

′
j , and Q3

links s′k, t
′
k, then by contracting the paths Q1, Q2, Q3, P1, ..., P|S| properly, we can obtain a

resulting graph on N [x] that contains a subgraph isomorphic to K7 +K2,2 > K10, which is
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a contradiction. Therefore, it is enough to prove the existence of such three disjoint paths

Q1, Q2, Q3, meaning that it suffices to show that (G[(A2 − A1) ∪ X], X) is 3-linked for

some X = {s′i, t′i, s′j, t′j, s′k, t′k} where i, j, k are distinct indices in I .

Let X = {X ⊆ S : X = {s′i, t′i, s′j, t′j, s′k, t′k} where i, j, k ∈ I are distinct}. For the

sake of a contradiction, we may assume that for every X ∈ X , (G[(A2 − A1) ∪X], X) is

not 3-linked. Let S ′ =
⋃
i∈I{s′i, t′i} ⊆ S and t = |S − S ′|. Note that t = 0 if |S| = 8 or 10,

and t = 1 if |S| = 9. We now prove a few inequalities in the next claim.

Claim 2. The following statements are true:

(1)
(|I|−1

2

)
e(S ′, A2 − A1) +

(|I|
3

)
e(G[A2 − A1]) ≤

(|I|
3

)
· (5|A2 − A1|+ 3),

(2) (10− t)|A2 − A1| ≤ e(S ′, A2 − A1) + 2e(G[A2 − A1]),

(3) (8− t)|A2 − A1|+ 1 ≤ e(S ′, A2 − A1) + e(G[A2 − A1]).

Proof of Claim 2. Let X ∈ X . By the minimality of |S|, (G[(A2 − A1) ∪ X], X) does

not have separation of order at most 5. Since (G[(A2 − A1) ∪ X], X) is not 3-linked, by

Theorem 2.3.2 we know that ρG[(A2−A1)∪X](A2−A1) ≤ 5|A2−A1|+ 3. Since X ∈ X was

arbitrary and |X | =
(|I|
3

)
, we have

∑
X∈X

ρG[(A2−A1)∪X](A2 − A1) ≤
(
|I|
3

)
· (5|A2 − A1|+ 3).

Since every pair {si, ti} ⊆ S ′ is contained in exactly
(|I|−1

2

)
sets in X , it follows that

(
|I| − 1

2

)
e(S ′, A2 − A1) +

(
|I|
3

)
e(G[A2 − A1]) =

∑
X∈X

ρG[(A2−A1)∪X](A2 − A1)

≤
(
|I|
3

)
· (5|A2 − A1|+ 3),

and this proves (1).

Note t = |S − S ′|. Since δ(G) = 10, every vertex in A2 − A1 has at least 10 − t
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neighbors in G[(A2 − A1) ∪ S ′]. It follows that

(10− t)|A2 − A1| ≤
∑

v∈A2−A1

dG[(A2−A1)∪S′](v) = e(S ′, A2 − A1) + 2e(G[A2 − A1]),

and this proves (2).

To see (3), first observe that e(S,A2 − A1) + e(G[A2 − A1]) = e(G) − e(G1). Since

G > G1, we know e(G1) ≤ 8|G1| − 34. Assume e(G1) ≥ 8|G1| − 35, and note this

means that G1 is isomorphic to some exceptional graph. By Lemma 3.2.4, there exist two

distinct pairs of non-adjacent vertices {a1, b1} and {a2, b2} inG[S], i.e. {a1, b1} 6= {a2, b2}

and ai, bi are not adjacent in G for i = 1, 2. By the minimality of |S|, we know that

G > G1 + {aibi} for both i = 1, 2. On the other hand, by Lemma 2.5.7, there exists at

most one pair of non-adjacent vertices in G1 such that after adding an edge between them,

the resulting graph does not have a K10 minor. By the minimality of S, it follows that

G > G1 + {aibi} > K10 for some i ∈ {1, 2}, a contradiction. Hence, we conclude that

e(G1) ≤ 8|G1| − 36, and therefore

e(S,A2−A1)+e(G[A2−A1]) = e(G)−e(G1) ≥ (8n−35)−(8|G1|−36) = 8|A2−A1|+1.

Since e(S ′, A2−A1)+e(G[A2−A1]) = e(S,A2−A1)+e(G[A2−A1])−e(S−S ′, A2−A1),

and e(S − S ′, A2 − A1) ≤ |S − S ′| · |A2 − A1| = t|A2 − A1|, it follows that

e(S ′, A2 − A1) + e(G[A2 − A1]) ≥ (8− t)|A2 − A1|+ 1,

which completes the proof of (3). a

Claim 3. |S| = 10 and |A2 − A1| ≤ 4.

Proof of Claim 3. We first assume |S| ≤ 9, which means that |I| = 4. By (1) of Claim 2,

3e(S ′, A2 − A1) + 4e(G[A2 − A1]) ≤ 4(5|A2 − A1|+ 3) = 20|A2 − A1|+ 12.
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Observe that

3e(S ′, A2 − A1) + 4e(G[A2 − A1]) =
(
e(S ′, A2 − A1) + 2e(G[A2 − A1])

)
+ 2
(
(e(S ′, A2 − A1) + e(G[A2 − A1])

)
.

By (2) and (3) of Claim 2, we have

(10− t)|A2 − A1|+ 2
(
(8− t)|A2 − A1|+ 1

)
≤ 20|A2 − A1|+ 12,

which can be simplified to (6 − 3t)|A2 − A1| ≤ 10. If |S| = 8, then t = 0 and thus

|A2 − A1| ≤ 1, a contradiction to the fact that δ(G) = 10.

If |S| = 9, then t = 1 and thus |A2 − A1| ≤ 3. Since δ(G) = 10, |A2 − A1| = 2

or 3. If |A2 − A1| = 2, then every vertex in A2 − A1 is adjacent to all vertices in S and

the other vertex in A2 − A1. Without loss of generality, assume that s5 ∈ U and t5 6∈ U .

By contracting each path Pi to a single vertex for i = 1, ..., 9 and contracting the edges

xs1, s2s3, and s4t5, we would obtain a K10 minor, a contradiction. If |A2 − A1| = 3,

let v1, v2, v3 be the three vertices in A2 − A1. Since δ(G) = 10, vi is adjacent to at least

7 vertices in S ′ for i = 1, 2, 3. This means that for each i = 1, 2, 3, there exists three

distinct indices i1, i2, i3 ∈ I such that vi is adjacent to s′ij and t′ij for all j = 1, 2, 3. By

relabeling vertices in S ′, we may assume that vi is adjacent to both s′i and t′i for i = 1, 2, 3.

By contracting each path Pi to a single vertex for i = 1, ..., 9 and contracting each edge

vjs
′
j for j = 1, 2, 3, we would obtain a resulting graph on N [x] that contains a subgraph

isomorphic to K7 +K2,2 > K10, a contradiction.

We now assume |S| = 10, meaning |I| = 5, t = 0, and S = S ′. By (1) of Claim 2,

6e(S,A2 − A1) + 10e(G[A2 − A1]) ≤ 10(5|A2 − A1|+ 3) = 50|A2 − A1|+ 30.
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Note that

6e(S,A2 − A1) + 10e(G[A2 − A1]) =4
(
e(S,A2 − A1) + 2e(G[A2 − A1])

)
+ 2
(
e(S,A2 − A1) + e(G[A2 − A1])

)
.

By (2) and (3) of Claim 2, it follows that

4
(
10|A2 − A1|

)
+ 2
(
8|A2 − A1|+ 1

)
≤ 50|A2 − A1|+ 30.

This means that 6|A2 − A1| ≤ 28, and therefore |A2 − A1| ≤ 4. a

Claim 3 shows that |S| = 10 and |A2 − A1| ≤ 4. Note that we may just choose

A1 = N [x], A2 = V (G) − {x}, and S = N(x). It follows that |G − N [x]| ≤ 4. Let

l = |G−N [x]|, and let v1, ..., vl be the vertices in G−N [x].

If l = 1, then the only vertex v1 in G −N [x] is adjacent to every vertex in N(x) since

δ(G) = 10. Observe that e(N(x)) = e(G)− d(x)− d(v1) = 8 · 12− 35− 10− 10 = 41,

meaning N(x) ∼= K1,1,2,2,2,2. It follows that G ∼= K1,1,2,2,2,2,2, which is an exceptional

graph, a contradiction.

If l = 2, since δ(G) = 10, we know vi is adjacent to at least 9 vertices in N(x) for

i = 1, 2. Without loss of generality, we can assume that v1, v2 each are adjacent to si and

ti for i = 1, 2, 3. Note that if siti ∈ E(G) for some i ∈ {1, 2, 3, 4, 5}, then by contracting

v1sj and v2sk for some distinct j, k ∈ {1, 2, 3} we would obtain a new graph on N [x] that

has a subgraph isomorphic to K7 + K2,2 > K10, a contradiction. Hence, siti 6∈ E(G)

for all i = 1, ..., 5. It follows that N [x] ∼= K1,2,2,2,2,2, and therefore e(N(x), G − N [x]) +

e(G[{v1, v2}]) = e(G)−e(K1,2,2,2,2,2) = 8 ·13−35−50 = 19. Since δ(G) = 10, it follows

that v1, v2 are adjacent and they each are adjacent to exactly 9 vertices in N(x). Without

loss of generality, assume s5 is the unique vertex in N(x) not adjacent to v1, and that either

s4 or t5 is the one that is not adjacent to v2. If s4, v2 are not adjacent, then by contracting
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xs1, s2s3, and s4s5 we could obtain a K10 minor, a contradiction. If t5, v2 are not adjacent,

the G ∼= K2,2,2,2,2 + C5, which is an exceptional graph, again a contradiction.

We may then assume l = 3 or 4. Say sj and tj form a pair for j = 1, 2, 3, 4, 5. Since

d(vi) ≥ 10 for each i, each vi has at least 10 − (l − 1) = 11 − l neighbors in N(x).

Note that 11 − l ≥ 7 since l ≤ 4, and this means that each vi is a common neighbor for

at least two pairs in N(x). Also note that if some vi is a common neighbor for 3 pairs

in N(x), then, by relabeling the vertices in N(x) and G − N [x], we may assume that vi

is a common neighbor for si and ti for i = 1, 2, 3. By contracting visi for i = 1, 2, 3,

we would then obtain a new graph having a subgraph isomorphic to K7 + K2,2 > K10, a

contradiction. Therefore, we may assume that every vi is a common neighbor for exactly

two pairs in N(x), meaning that l = 4 and every vi has exactly 7 neighbors in N(x). Since

d(vi) ≥ 10 for every i = 1, 2, 3, 4, it follows that G − N [x] ∼= K4. Therefore, e(N [x]) =

e(G)− (e(N(x), G−N [x])+e(G−N [x])) = (8 ·15−35)− (4 ·7+
(
4
2

)
) = 85−32 = 53,

meaning that N [x] ∼= K7 +K2,2 > K10, a contradiction.
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CHAPTER 4

MAIN TECHNICAL LEMMA

The goal of the entire Chapter 4 is to prove Lemma 4.1.1, the main technical lemma in our

proof for Theorem 1.1.5.

4.1 Statements and Proof Outline

We state the main technical lemma and give an outline of its proof in this section.

Lemma 4.1.1. Let x ∈ V (G) such that 11 ≤ d(x) ≤ 15. Let M be the subset of vertices

of N(x) that are not adjacent to all other vertices of N(x), i.e. M = {v ∈ N(x) : vu 6∈

E(G) for some u ∈ N(x)− {v}}. Then, for every component K of G−N [x], there exists

some component K ′ of G−N [x] such that N(K ′) ∩M 6⊆ N(K).

To prove Lemma 4.1.1, for the sake of a contradiction, assume that there exists some

x ∈ V (G) with 11 ≤ d(x) ≤ 15 and a component K of G − N [x] such that for every

component K ′ of G − N [x], N(K ′) ∩ M ⊆ N(K) where M = {v ∈ N(x) : vu 6∈

E(G) for some u ∈ N(x)−{v}}. We choose such a pair (x,K) such that d(x) is minimum

over all choices.

The rest of our proof for Lemma 4.1.1 can be outlined as follows.

In Section 4.2, we first prove M ⊆ N(K) and N(x) 6> K8 ∪K1 in Lemma 4.2.1 and

Lemma 4.2.2. Notice that 11 ≤ d(x) ≤ 15 and δ(N(x)) ≥ 8 by Lemma 3.1.1. It follows

that N(x) is isomorphic to some graph H such that (i) 11 ≤ |H| ≤ 15, (ii) δ(H) ≥ 8, and

(iii) H 6> K8 ∪ K1. Note that there are only finitely many graphs satisfying (i)-(iii). In

Lemma 4.2.3, we present all edge-minimal graphs satisfying (i)-(iii), which are generated

by a computer program. There are precisely 101 such graphs, up to isomorphism, and we

call them problem graphs. It remains to show that if N(x) has a subgraph isomorphic to
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some problem graph, then we can contract edges that have at least one end in G − N [x]

such that the resulting graph on N [x] has a K10 minor. It turns out that if N(x) has a

subgraph isomorphic to the three problem graphs K2,3,3,3, K3,3 + C5, or K4,4,4, we would

need to spend some more effort to find the desired K10 minor; and if N(x) does not have a

subgraph isomorphic to those three graphs, a K10 minor is relatively easier to be found.

In Section 4.3, we consider the case that N(x) has a subgraph N ′ ∼= K2,3,3,3, K3,3 +C5,

or K4,4,4. We first prove that N(x) = N ′, so N(x) itself is isomorphic to one of the three

problem graphs in Lemma 4.3.1. We then prove |G − N [x]| ≥ 3 in Lemma 4.3.2 and a

quite technical result on 2-separations of each component of G − N [x] in Lemma 4.3.4.

Then, we show that a K10 minor can be found if G−N [x] is 2-connected in Lemma 4.3.5

and Lemma 4.3.6, and that a K10 minor can be found if G − N [x] is NOT 2-connected in

Lemma 4.3.7.

In Section 4.4, we consider the case thatN(x) does NOT have a subgraph isomorphic to

K2,3,3,3,K3,3+C5, orK4,4,4. We use computer programs to verify that every problem graph

that is NOT isomorphic to K2,3,3,3, K3,3 + C5, or K4,4,4 satisfies one of the properties (A1)

and (A2) in Lemma 4.4.1 and one of the properties (B1)-(B6) in Lemma 4.4.3. Finally,

we use properties (A1) and (A2) to show that a K10 minor can be found if G − N [x] is

2-connected and has at least two vertices in Lemma 4.4.2, and we use properties (B1)-(B6)

to show that a K10 minor can be found otherwise in Lemma 4.4.4.

4.2 Problem Graphs

We will prove M ⊆ N(K) in Lemma 4.2.1 and N(x) 6> K8 ∪K1 in Lemma 4.2.2.

Lemma 4.2.1. M ⊆ N(K).

Proof. For the sake of a contradiction, assume that M −N(K) 6= ∅.

We first observe that for every v ∈ M − N(K), v does not have any neighbor in

G − N [x], since otherwise there would exist some component K ′ of G − N [x] such that

y ∈ N(K ′) ∩M but y 6∈ N(K), which is a contradiction to the choice of x and K.
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Choose y ∈ M − N(K) such that d(y) is minimum. Let My = {v ∈ N(y) : vu 6∈

E(G) for some u ∈ N(y) − {v}}. By the previous observation, it follows that y has no

neighbor in G−N [x] and therefore N [y] ⊆ N [x]. Since y ∈M , y is not adjacent to every

vertex in N(x), and it follows that d(y) < d(x). Let J be the component of G−N [x] that

contains K. We will complete the proof by considering the following two cases: N(x) −

N [y] ⊆ V (J), or N(x)−N [y] 6⊆ V (J).

Case 1: N(x)−N [y] ⊆ V (J).

Since d(y) < d(x), by the choice of x and K we know that J is not the only component

of G − N [y]. Let J ′ be any component of G − N [y] such that J ′ 6= J . Since J ′ is chosen

arbitrarily, it suffices to show a contradiction by proving that N(J ′) ∩M ⊆ N(J).

Observe that since N [y] ⊆ N [x], G−N [x] is an induced subgraph of G−N [y]. Since

N(x) − N [y] ⊆ V (J), every vertex in G − N [y] but not in G − N [x] is contained in the

component J of G − N [y]. It follows that J ′ itself is also a component of G − N [x]. By

the choice of x and K, it follows that N(J ′) ∩M ⊆ N(K). Since N [y] ⊆ N [x], we know

that x 6∈My and therefore My ⊆M . It follows that

N(J ′) ∩My ⊆ N(J ′) ∩M ⊆ N(K).

Now, observe that since V (K) ⊆ V (J), every neighbor of K is either in J or in N(J), and

therefore

N(J ′) ∩My ⊆ N(K) =
(
N(K) ∩ V (J)

)
∪
(
N(K) ∩N(J)

)
.

Notice that N(J ′) ∩My ⊆ N(y) and N(K) ∩ V (J) ⊆ V (J) which is disjoint from N(y).

It follows that

N(J ′) ∩My ⊆ N(K) ∩N(J) ⊆ N(J).

Case 2: N(x)−N [y] 6⊆ V (J).
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Let H be a component of N(x) − N [y] ∪ V (J). Note that H ⊆ G − N [y] ∪ V (J),

meaning that H is contained in some component of G−N [y] disjoint from J .

We will first show that H itself is a component of G − N [y]. For every z ∈ V (H),

note that z ∈ N(x) − N [y], meaning that z ∈ M and therefore z ∈ M − N(K). By the

observation at the beginning of this proof, it follows that z has no neighbor in G−N [x]. It

follows that N(H) ⊆ N [x]. Let J ′ be the component of G − N [y] that contains H . Note

that if V (J ′ −H) 6= ∅, since N [y] ⊆ N [x] then every vertex in J ′ −H must be contained

in some component K ′ of G − N [x] such that K ′ 6= K, a contradiction to the fact that

N(H) ⊆ N [x]. Hence, we conclude that H itself is a component of G−N [y].

Now, since V (K) ⊆ V (J) and J,H are disjoint components of G − N [y], it follows

that for every z ∈ V (H) we have z 6∈ N(K) and therefore z ∈ M − N(K). By the

choice of y, d(z) ≥ d(y) for every z ∈ V (H). Let t = |H|. Assume t = 1 for a moment,

and let z∗ be the unique vertex in H . It follows that N(H) = N(z∗) = N(y). Since

d(y) < d(x), this means that (y,H) contradicts the choice of (x,K). Therefore, t ≥ 2.

On the other hand, since H ⊆ N(x) − N [y] = N(x) − (N [y] − {x}), we know that

t ≤ d(x)− d(y) ≤ 15− 11 = 4. Hence, we have 2 ≤ t ≤ 4.

Now, let L = G[N [y] ∪ V (H)]. Note |L| = d(y) + t+ 1, and that

e(L) = d(y) + e(N(y)) + e(N(y), V (H)) + e(H).

Note that x ∈ N(y) is adjacent to all other vertices in N(y). Since δ(N(y)) ≥ 8, we know

δ(N(y)− {x}) ≥ 7. It follows that

e(N(y)) = e({x}, N(y)−{x})+e(N(y)−{x}) ≥ d(y)−1+
1

2
·7(d(y)−1) =

9

2
d(y)− 9

2
.
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For every z ∈ V (H), since N(z) ⊆ V (H) ∪N(y) and d(z) ≥ d(y), we have

e(N(y), V (H)) + 2e(H) =
∑

z∈V (H)

d(z) ≥
∑

z∈V (H)

d(y) = td(y),

and therefore e(N(y), V (H)) + e(H) ≥ td(y)− e(H) ≥ td(y)−
(
t
2

)
. Hence, we have

e(L) ≥ d(y) +
9

2
d(y)− 9

2
+ td(y)−

(
t

2

)

= (
11

2
+ t)d(y)− 1

2
t2 +

1

2
t− 9

2

= 8(d(y) + t+ 1) + (t− 5

2
)d(y)− 1

2
t2 − 15

2
t− 25

2

= 8|L|+ (t− 5

2
)d(y)− 1

2
t2 − 15

2
t− 25

2
.

LetG1 = G[V (J)∪N(J)], S = N(J), andG2 = G−V (J). Observe thatG1∪G2 = G,

G1 ∩G2 = G[S], and L ⊆ G2. Let d2 be the maximum number of edges that can be added

to G[S] by contracting edges that have at least one edge in V (G1 −G2). Let L′ be a graph

with V (L′) = V (L) that can be obtained from G by deleting vertices in V (G2 − L) and

contracting edges that have at least one end in J such that e(L′) = e(L)+d2. We then have

e(L′) = e(L) + d2 ≥ 8|L′|+ (t− 5

2
)d(y)− 1

2
t2 − 15

2
t− 25

2
+ d2.

If t = 3 or 4, then t− 5
2
> 0. Since d(y) ≥ 11,

e(L′) ≥ 8|L′|+11(t−5

2
)−1

2
t2−15

2
t−25

2
+d2 = 8|L′|−1

2
(t−7

2
)2−271

8
+d2 = 8|L′|−34+d2.

If t = 2, note N(y) ⊆ N [x] − {y} − H , meaning that d(y) ≤ d(x) − t ≤ 15 − 2 = 13.

Then,

e(L′) ≥ 8|L′| − 1

2
13− 1

2
22 − 15

2
2− 25

2
+ d2 = 8|L′| − 36 + d2.
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Note that |L′| = d(y) + t + 1 ≥ 11 + 2 + 1 = 14 > 8. If e(L′) ≥ 8|L′| − 35, then by

induction we know that L′ is isomorphic to some exceptional graph. If e(L′) ≥ 8|L′| − 35,

then by induction we know that L′ is isomorphic to some exceptional graph. This is not

possible, because x is adjacent to all other vertices in L′, and there is no exceptional graph

on at least 14 vertices in which there is a vertex adjacent to all other vertices. It follows

that e(L′) ≤ 8|L′| − 36, which could happen when t = 2 and d2 = 0. However, by (3)

of Lemma 3.2.4, the connectivity of G1 − G2 = J implies that by contracting all of J to

a vertex in S that has the minimum degree inside G[S] we would obtain at least one extra

edge on G[S]. It follows that d2 ≥ 1, a contradiction.

Lemma 4.2.2. N(x) 6> K8 ∪K1.

Proof. For the sake of a contradiction, assume N(x) > K8 ∪K1. Choose y ∈ N(x) such

that N(x) − {y} > K8. We may assume that y is not adjacent to some vertex in N(x),

since otherwise N(x) > K9 which then implies G > K10, a contradiction. It follows that

y ∈ M ⊆ N(K). By contracting all vertices in K to y, in the resulting graph on N(x),

y would be adjacent to all other vertices in M , meaning that y would be adjacent to all

other vertices in N(x). It follows that the new graph on N(x) has a K9 minor and therefore

G > K10, a contradiction.

Lemma 4.2.3 (computer-assisted). N(x) has a subgraph that is isomorphic to one of the

101 graphs listed in Appendix.

We call each one of these 101 graphs a problem graph.

4.3 K2,3,3,3, K3,3 + C5, and K4,4,4

Now, assume that N(x) contains a subgraph N ′ isomorphic to K2,3,3,3, K3,3 +C5, or K4,4,4

such that |N(x)| = |N ′|.

We first define three types of minors of G. For a minor H of G− x rooted at N(x), say

H is a minor of G of type I if there exist distinct vertices s1, s2, s3, t1, t2, t3 ∈ N(x) such
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that for some distinct islands C1, C2, C3 of N ′, si, ti ∈ Ci and siti ∈ E(H) − E(N ′) for

i = 1, 2, 3; say H is a minor of G of type II if there are distinct vertices x1, x2, x3, y1, y2

such that x1, x2, x3 ∈ C1 and y1, y2 ∈ C2 for some distinct islands C1, C2 of N ′ and

x1x2, x1x3, x2x3, y1y2 ∈ E(H)−E(N ′); sayH is a minor ofG of type III ifN ′ ∼= K3,3+C5

and there are distinct vertices x1, x2, y1, y2, y3, y4 ∈ N(x) such that x1, x2 are contained in a

3-island ofN ′, yi for i = 1, 2, 3, 4 are in the 5-island ofN ′, and that x1x2, y1y2, y2y3, y3y4 ∈

E(H)− E(N ′).

Observe that since N ′ ∼= K2,3,3,3, K3,3 +C5, or K4,4,4, if G has a minor H of one of the

three types defined above, then G > K10, a contradiction. Hence, G does not have a minor

of type I, type II, or type III.

Lemma 4.3.1. N(x) ∼= N ′.

Proof. For the sake of a contradiction, assume that N(x) 6= N ′.

We first prove that G − N [x] 6= ∅. Let E ′ = E(N(x)) − E(N ′). Note that the end

vertices of edges in E ′ are in at most two islands of N ′, since otherwise G would have a

minor of type I, a contradiction. If G − N [x] = ∅, then |E ′| = e(G) − (d(x) + e(N ′)) =

8 · |G| − 35 − (d(x) + e(N ′)). This means that if N ′ ∼= K2,3,3,3, then |E ′| = (8 · 12 −

35)− (11 + 45) = 5; if N ′ ∼= K3,3 + C5, then |E ′| = (8 · 12− 35)− (11 + 44) = 6; and

if N ′ ∼= K4,4,4, then |E ′| = (8 · 13 − 35) − (12 + 48) = 9. One can then check that in all

cases, G would have a minor of type II or type III, a contradiction. Hence, G−N [x] 6= ∅.

Now, let s1, t1 ∈ N(x) be such that s1t1 ∈ E(N ′) − E(G), and let C1 be the island

of N ′ containing s1, t1. Recall that K is a component of G − N [x] such that M ⊆ N(K)

where M = {v ∈ N(x) : vu 6∈ E(G) for some u ∈ N(x)− {v}}.

We next show that N ′ − C1 = N(x) − C1. For the sake of a contradiction, assume

that there exist s2, t2 ∈ N(x) and an island C2 of N ′ − C1 such that s2, t2 ∈ C2 and

s2t2 ∈ E(N(x)) − E(N ′). Then, we see that N ′ − C1 ∪ C2
∼= N(x) − C1 ∪ C2, since

otherwise G would have a minor of type I, a contradiction. Since N ′ has at least three
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islands in all cases, there exist two vertices s3, t3 ∈ N(x) − C1 ∪ C2 that are not adjacent

to each other in both N ′ and N(x). It follows that s3, t3 ∈ M ⊆ N(K). By contracting

all of K to one of s3 and t3, we would then obtain a resulting graph on N(x) that has

edges s1t1, s2t2, s3t3, meaning that G has a minor of type I, a contradiction. Therefore,

N ′−C1 = N(x)−C1. Observe that in all cases, every vertex inN ′ has some non-neighbor

in it. It follows that N(x)− C1 ⊆M ⊆ N(K).

In the rest of the proof, we consider the case |K| ≥ 2 and the case that |K| = 1.

Case 1: |K| ≥ 2.

Observe that since N ′ ∼= K2,3,3,3, K3,3 + C5, or K4,4,4, in all cases there exists a subset

of vertices X = {x1, x2, x3} ⊆ N(x)− C1 such that N ′[X] = G[X] ∼= K3. Let C2 be the

island of N ′ containing X , and note that X ⊆ C2 ⊆ N(K). Note that G[V (K) ∪ X] is

connected, and it does not have a K3 minor rooted at X , since otherwise G would have a

minor of type II due to the edge s1t1, a contradiction. By Lemma 2.2.1, G[V (K) ∪X] has

a cut vertex w, and that there are components J1, J2, J3 of G[V (K) ∪X]− {w} such that

xi ∈ V (Ji) for i = 1, 2, 3. Notice that w ∈ V (K), as K itself is a connected subgraph of

G.

Since |K| ≥ 2, K − {w} 6= ∅. Without loss of generality, assume that either J1 −

{x1x} 6= ∅ or K ′ = G[V (K) ∪X] − V (J1 ∪ J2 ∪ J3) ∪ {w} 6= ∅. Let L be a non-trivial

component of J1 − {x1} if J1 − {x1x} 6= ∅, and let L be a component of K ′ if K ′ 6= ∅. In

both cases, notice that L is a non-trivial subgraph of K − V (J2 ∪ J3) ∪ {w, x1} such that

N(L) ∩ (V (G) − N [x]) ⊆ {w}, meaning that L has at most one neighbor in G − N [x].

Since G is 7-connected, L has at least six neighbors in N(x). Observe that L does not have

non-adjacent neighbors in some island C3 ofN(x)−C1∪C2, since otherwise we could just

contract all of V (J2∪J3−{x3})∪{w} to x2 and contract all of L to one of its non-adjacent

neighbors in C3 to obtain a minor of G of type I, a contradiction. It follows that

|N(L) ∩ C1| ≥ 6− |N(L) ∩ C2| − ω(N ′ − C1 ∪ C2).
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If N ′ ∼= K2,3,3,3 or K3,3 + C5, then C2 = X and N(L) ∩ C2 = N(L) ∩ X ⊆ {x1},

meaning that |N(L)∩C2| ≤ 1. If C1 is an independent set, then one can observe that in all

cases we have ω(N ′−C1∪C2) = 2 and thus |N(L)∩C1| ≥ 6−1−2 = 3. It follows thatC1

is an independent set of size 3 and C1 ⊆ N(L). Then, by contracting all of L to the unique

vertex in C1−{s1, t1} and contracting all of V (J2∪J3−{x3})∪{w} to x2, we then obtain

a minor of G of type II, a contradiction. It follows that C1 is not an independent set, and

this means thatN ′ = K3,3+C5 andN ′[C1] is the 5-cycle. Note nowN ′−C1∪C2 is simply

an independent set of size 3, so ω(N ′−C1∪C2) = 1. Therefore, |N(L)∩C1| ≥ 4. Without

loss of generality, we can assume that s1, s3, t3 ∈ C1 are all neighbors of L where s3, t3

are in the positions such that s1s3, s3t3 6∈ E(N ′). Then, by contracting all of L to s3 we

can then obtain a resulting graph that includes edges s1t1, s1s3, s3t3. By further contracting

all of V (J2 ∪ J3 − {x3}) ∪ {w} to x2, we would then obtain a minor of G of type III, a

contradiction.

We may then assume thatN ′ ∼= K4,4,4. In this case, every island ofN ′ is an independent

set of size 4, and thus |N(L)∩C2| ≤ |{x1} ∪ (C2−X)| = 2 and ω(N ′−C1 ∪C2) = 1. It

follows that |N(L) ∩ C1| ≥ 6− 2− 1 = 3. Note that if L has all four vertices in C1 as its

neighbors, then by contracting all of L to one vertex in C1−{s1, t1}, we would then obtain

a clique of size 3 in C1, and this implies that G has a minor of type II due to J2, J3, and

w. It follows that L has exactly three neighbors in C1, two neighbors in C2, one neighbor

in N(x) − C1 ∪ C2, and one neighbor in G − N [x], and this means that |N(L)| = 7. By

Lemma 3.2.3, it follows that G[V (L)∪ (N(L)∩C1)] has a K3 minor rooted at N(L)∩C1.

Therefore, G has a minor of type II due to J2, J3, and w, a contradiction.

Case 2: |K| = 1.

Case 2.1: G−N [x] is disconnected.

Let K ′ be a component of G − N [x] such that K 6= K ′. Assume for a moment that

there exists an island C2 of N(x) − C1 such that K ′ has some non-adjacent neighbors

s2, t2 ∈ C2. Since N ′ has at least three islands in all cases, there exists an island C3
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of N ′ − C1 ∪ C2. Let s3, t3 ∈ C3 be two non-adjacent vertices, and note this means

that {s3, t3} ⊆ M ⊆ N(K). Then, by contracting all of K ′ to s2 and contracting all

of K to s3, we would then obtain a minor of G of type I, a contradiction. Therefore,

N(K ′) ∩ (N(x) − C1) is a clique. One can then check that unless N ′ ∼= K3,3 + C5 and

C1 is the 5-cycle in it, |N(K ′)| ≤ |C1| + ω(N(x) − C1) ≤ 6, which is a contradiction to

the 7-connectivity of G. It follows that N ′ ∼= K3,3 + C5 and N ′[C1] is a 5-cycle. Due to

the 7-connectivity of G, K ′ has exactly one neighbor in each 3-island of N ′ and has all five

vertices in C1 as its neighbors. Let s2, t2 ∈ C1 − {s1, t1} be such that s1s2, s2t2 6∈ E(N ′).

Then, by contracting all of K ′ to s2 and contracting all of K to any vertex in N(x) − C1,

we would then obtain a minor of type III, a contradiction.

Case 2.2: G−N [x] is connected.

Since |K| = 1, let y be the unique vertex in K, and let t = e(G[C1])− e(N ′[C1])). We

then have 8n− 35 = e(G) = d(x) + d(y) + e(N ′) + t, and therefore

t = (8n− 35)− (d(x) + d(y) + e(N ′)).

If N ′ ∼= K2,3,3,3 or K3,3 + C5, then n = 13 and d(x) = d(y) = 11 since δ(G) ≥ 11.

It follows that t = 8 · 13 − 35 − (11 + e(N ′)) − 11 = 47 − e(N ′). If N ′ ∼= K2,3,3,3,

then e(N ′) = 45 and therefore t = 2. This implies that C1 is an 3-island of N ′, and that

G[C1] is a path of length 2. It follows that G ∼= K1,2,2,2,3,3, which is an exceptional graph, a

contradiction. If N ′ ∼= K3,3 +C5, then e(N ′) = 44 and therefore t = 3. If C1 is a 3-island,

then G ∼= K3 + K2,3 + C5 > K10, a contradiction. If N ′[C1] ∼= C5, note G[C1] is either

a path of length 3 or a disjoint union of an edge and a path of length 2. It follows that

G ∼= K1,1,2,3,3 + P3 or K1,2,2,2,3,3. This is a contradiction, since K1,1,2,3,3 + P3 > K10 and

K1,2,2,2,3,3 is an exceptional graph.

If N ′ ∼= K4,4,4, then n = 14, d(x) = 12, d(y) ≤ 12, and e(N ′) = 48. It follows that

t ≥ (8 · 14 − 35) − 12 − 48 − 12 = 5. Since every island of N ′ is a 4-island, G[C1]
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has at least five edges on 4 vertices, meaning that there is a clique of size 3 on C1 in G.

Note that V (K) = {y} has all vertices in N(x) − C1 as its neighbors. By contracting an

edge between y and any vertex in N(x) − C1, we would then obtain a minor of type II, a

contradiction.

Lemma 4.3.2. |G−N [x]| ≥ 3.

Proof. For the sake of a contradiction, assume |G−N [x]| ≤ 2. By Lemma 4.3.1, we know

that N(x) = N ′ ∼= K2,3,3,3, K3,3 + C5, or K4,4,4. Notice that if N(x) ∼= K4,4,4, then every

two adjacent vertices in N(x) have exactly five common neighbors in G − N [x], so they

must have at least three common neighbors in G−N [x], a contradiction to the assumption

that |G−N [x]| ≤ 2. Hence, either N(x) ∼= K2,3,3,3 or N(x) ∼= K3,3 + C5.

IfN(x) ∼= K2,3,3,3, then observe that every two adjacent vertices each contained in some

3-island of N(x) have exactly 6 common neighbors in G−N [x] and therefore have at least

two common neighbors in G−N [x]. It follows that |G−N [x]| = 2, and that every vertex

in a 3-island of N(x) is adjacent to both vertices in G−N [x]. Let V (G)−N [x] = {a, b}.

Note now |G| = 14, and

d(a) + d(b)− e(G[{a, b}]) = (8 · 14− 35)− e(K1,2,3,3,3) = 21.

Since δ(G) ≥ 11, ab ∈ E(G) and a, b each have exactly 10 neighbors in N(x). Recall that

every vertex in a 3-island of N(x) is adjacent to both a and b. Since δ(G) ≥ 11 and every

vertex in a 3-island of N(x) has exactly 10 neighbors in N [x], it follows that the set of

edges between {a, b} and the 2-island of N(x) is precisely a perfect matching. It follows

that G ∼= K3,3,3 + C5, which is an exceptional graph, a contradiction.

IfN(x) ∼= K3,3+C5, then observe that every two vertices from distinct islands ofN(x)

have exactly six common neighbors in N [x] and thus have at least two common neighbors

in G − N [x]. It follows that |G − N [x]| = 2, |G| = 14, and every vertex in G − N [x]

is adjacent to all vertices in N(x). Since e(G) = 8 · 14 − 35, one can then check that
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there is no edge between the two vertices in G − N [x] and thus G ∼= K3,3,3 + C5, again a

contradiction since K3,3,3 + C5 is an exceptional graph.

If N(x) ∼= K2,3,3,3 or K3,3 +C5, let T1, T2 be two distinct 3-islands of N(x); if N(x) ∼=

K4,4,4, let T1, T2 be two disjoint independent sets of size 3 each in a 4-island of N(x). In

all cases, let T1 = {x1, x2, x3} and T2 = {y1, y2, y3}.

Lemma 4.3.3. In all cases, the following statements are true:

(1) There is no clique of size 5 in N(x).

(2) For all i, j ∈ {1, 2, 3}, xi, yj have at least two common neighbors in G−N [x].

Proof. (1) is simply true, as there is no clique of size 5 in K2,3,3,3, K3,3 + C5, or K4,4,4.

To see (2) is true, note that for any i, j ∈ {1, 2, 3}, xiyj ∈ E(G) and they have at least

eight common neighbors in G by Lemma 3.1.1. One can observe that xi, yj have at most

five common neighbors in N(x) in all cases, due to the construction of T1, T2. It follows

that xi, yj have at most six common neighbors in N(x) and therefore at least two common

neighbors in G−N [x].

Let H ⊆ G be a subgraph, and let S ⊆ V (H) be a subset of vertices. Say a vertex

v ∈ V (G) is associated with S with respect to H if there is a path P linking v and some

vertex u ∈ S such that P is otherwise disjoint from H .

4.3.1 Proof of Lemma 4.3.4

Lemma 4.3.4. Let (A,B) be a 2-separation of a component ofG−N [x] such thatA∩B =

{a, b}, B − A 6= ∅, and there is a path linking a, b in G[B]. If no vertex in G − N [x] is a

common neighbor for two non-adjacent vertices inN(x), then there exist two disjoint paths

in G[B] such that one links a, b and the other one links a neighbor of y1 and a neighbor of

y2 for some non-adjacent vertices y1, y2 ∈ N(x) ∩N(B − A).
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Proof. Say a 2-separation (A′, B′) of G[A ∪ B] satisfies property P if there exist two

disjoint paths in G[B′] such that one links a′ and b′ and the other one links a neighbor of y′1

and a neighbor of y′2 for some y′1, y
′
2 ∈ N(x) ∩ N(B′ − A′) such that y′1y

′
2 6∈ E(G). For

the sake of a contradiction, assume that (A,B) fails property P such that |B| is minimum

among all 2-separations of G[A,B] that fail property P . With these assumptions, we make

the following claim.

Claim 1. The following statements are true:

(1) N(x) does not contain a clique of size more than 4.

(2) For every v ∈ B − A, |N(v) ∩N(x)| ≤ 4 and dG[B](v) ≥ 7.

(3) For any a− b path P in G[B], there is no≤ 2-separation (B1, B2) of G[B] such that

V (P ) ⊆ B1 and B2 −B1 6= ∅.

(4) There is no cut vertex of G[B] that separates a and b.

Proof of Claim 1. (1) is simply true because N(x) ∼= K2,3,3,3, K3,3 + C5, or K4,4,4 by

Lemma 4.3.1, and none of these three graphs has a clique of size more than 4. Then, (2)

and (3) follow immediately from (1), due to the facts that δ(G) ≥ 11,G is 7-connected, and

that no vertex in G−N [x] is a common neighbor for two non-adjacent vertices in N(x).

To see (4) is true, for the sake of a contradiction, assume that there is a cut vertex

w ∈ B−A of G[B] that separates a, b. Let B1, B2 be the components of G[B]−{w} such

that a ∈ V (B1) and b ∈ V (B2). Since there is a path linking a, b inG[B], there exists a path

Pa lining a, w inG[B1∪{w}] and a path Pb linking b, w inG[B2∪{w}]. By the minimality

of |B| when choosing (A,B), we know that B = V (B1∪B2)∪{w}. By (2), w has at least

7 neighbors in B and thus one of B1 − {a} and B2 − {b} is non-empty. Without loss of

generality, say B1 − {a} 6= ∅. Let A′ = A ∪B − (B1 − {a}) and B′ = B1 ∪ {w}. Notice

that (A′, B′) is a 2-separation of G[A∪B] such that B′−A′ 6= ∅ and there is a path linking

the two vertices a, w in A′ ∪ B′. Then by the minimality of |B| when choosing (A,B),

it follows that (A′, B′) satisfies property P , meaning that there exist two disjoint paths in

G[B′] such that one links a, w and the other one links a neighbor of y′1 and a neighbor of y′2
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for some non-adjacent vertices y′1, y
′
2 ∈ N(x)∩N(B′−A′). Then, by extending the a−w

path along Pb to make it an a − b path, we would then have a path linking a, b and a path

linking y′1, y
′
2 that are disjoint from each other. This means that (A,B) satisfies property

P , a contradiction. It follows that B1 = {a} and therefor B2 = {b} by symmetry, meaning

that B − A = {w}. Since δ(G) ≥ 11, w has at least 9 neighbors in N(x), a contradiction

to (2). a

Since G is 7-connected, B −A has at least 5 neighbors in N ′. By (1) of Claim 1, there

exist two non-adjacent vertices v1, v2 ∈ N(x) ∩ N(B − A). Let u1, u2 be neighbors of

v1, v2 in B − A, respectively. Note that u1 6= u2, as no vertex in G − N [x] is a common

neighbor for two non-adjacent vertices in N(x).

Claim 2. There exist two internally disjoint a−b paths L1, L2 inG[B] such that u1 ∈ V (L1)

and u2 ∈ V (L2).

Proof of Claim 2. By (4) of Claim 1, there exist two disjoint internally disjoint a−b paths in

G[B]. Let them be Q1 and Q2. Observe that if u1, u2 are both included in Q1, then u1Q1u2

would be a u1−u2 path that is disjoint from the a− b path Q2, which implies property P , a

contradiction. By symmetry, it follows that |V (Qi ∩ {u1, u2}| ≤ 1 for i = 1, 2, so we may

assume that one of u1, u2 is not included in V (Q1 ∪Q2).

Next, we show that we may assume that one of Q1, Q2 goes through u1. To see it,

assume that u1 6∈ V (Q1 ∪Q2). By (3) of Claim 1, there exist three paths S1, S2, S3 linking

u1 and V (Q1∪Q2) inG[B] that are pairwise disjoint except for u1. Let si be the end of Si in

V (Q1∪Q2) for i = 1, 2, 3. Notice that, without loss of generality, we can assume that s1, s2

are both on Q1, and that Q1 goes through a, s1, s2, b in order. (It is possible that si = a or

b for i = 1, 2, but it does not matter.) Replace Q1 with the path aQ1s1 ∪ S1 ∪ S2 ∪ s2Q1b,

and it follows that Q1 now goes through u1.

Now, since u1 ∈ V (Q1) and one of u1, u2 is not included in V (Q1∪Q2), it follows that

u2 6∈ V (Q1 ∪ Q2). Again by (4) of Claim 1, there exist three paths R1, R2, R3 linking u2
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and V (Q1 ∪Q2) in G[B] that are pairwise disjoint except for u2. Let ri be the end of Ri in

V (Q1 ∪ Q2) for i = 1, 2, 3. If ri ∈ V (Q1) − {a, b} for some i ∈ {1, 2, 3}, then we would

have the u1−u2 path Ri∪ riQ1u1 being disjoint from the a− b path Q2, implying property

P , a contradiction. It follows that ri ∈ V (Q2) for i = 1, 2, 3. Without loss of generality,

say Q2 goes through a, r1, r2, b in order (possible that r1 = a or r2 = b). Then, the a − b

paths L1 = Q1 and L2 = aQ2r1 ∪R1 ∪R2 ∪ r2Q2b are as desired. a

Claim 3. There exists a non-trivial 3-separation (D,E) of G[B] such that

(1) a, b ∈ D and N(vi) ∩B ⊆ D for i = 1, 2,

(2) G[E] and G[E −D] are both connected, and

(3) there is no non-trivial ≤ 3-separation of (G[E], D ∩ E).

Proof of Claim 3. We first prove that G[B] is not a planar graph. By (2) of Claim 1,

dG[B](v) ≥ 11− 4 = 7 for all v ∈ B − A, and it follows that

e(G[B]) ≥ 7

2
|B − A|+ 1

2

(
dG[B](a) + dG[B](b)

)
.

If G[B] is planar, then

7

2
|B − A|+ 1

2

(
dG[B](a) + dG[B](b)

)
≤ e(G[B]) ≤ 3|B| − 6 = 3|B − A|,

which means that 1
2
|B − A|+ 1

2

(
dG[B](a) + dG[B](b)

)
≤ 0, a contradiction.

Let H be the multigraph obtained from G[B ∪ {v1, v2}] by adding the four edges an1,

n1b, bn2, n2a and eliminating the edge v1v2 if v1v2 ∈ E(G). Since G[B] is a subgraph of

H , H is not planar either. Observe that any v1 − v2 path P in H such that a, b 6∈ V (P )

has a subgraph P ′ that links a neighbor of v1 and a neighbor of v2. Since (A,B) does not

satisfy property P , it follows that there do not exist two disjoint paths in H such that one

links v1 and v2 and the other one links a and b. Let C be the cycle in H that goes through

a, v1, b, v2 in order. By Theorem 2.3.1, there exists a non-trivial C-reduction of H that
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can be drawn on the plane such that C bounds the infinite region. This means that there

exists a non-trivial ≤ 3-separation (D′, E ′) of (H, V (C)). Choose (D′, E ′) such that |E ′|

is minimum over all such ≤ 3-separations.

Let D = D′ ∩ B and E = E ′. It follows that (D,E) is a ≤ 3-separation of G[B] such

that a, b ∈ D and E − D 6= ∅. (2) and (3) can then be simply implied by the minimality

of |E ′| when choosing (D′, E ′). Observe that if N(vi) ∩ B ⊆ D for i = 1, 2, then we

know D − E 6= ∅ since a, b, u1, u2 are four distinct vertices, and therefore (D,E) is a

non-trivial separation of G[B]. Hence, in the remaining of the proof, it suffices to show

that |D ∩ E| = 3 and N(vi) ∩B ⊆ D for i = 1, 2.

To see |D∩E| = 3, assume |D∩E| ≤ 2 for the sake of a contradiction. Since a, b ∈ D,

it follows that at least one of the a − b paths L1 and L2 is included in D completely, a

contradiction to (3) of Claim 1. Since D ∩ E = (D′ ∩ E ′)\{v1, v2} and |D′ ∩ E ′| ≤ 3,

it follows that |D′ ∩ E ′| = 3 and v1, v2 ∈ D′ − E ′. Therefore, no neighbor of v1 or v2

is included in E ′ − D′. Since E − D = E ′ − D′, it follows that N(vi) ∩ B ⊆ D for

i = 1, 2. a

The next goal is to prove that V (Li) ∩ (E −D) 6= ∅ for i = 1, 2 in Claim 5. To prove

it, we need to introduce a few definitions first and make some observations first in Claim 4.

Let Y = {y ∈ N(x) : v1y, v2y ∈ E(G)} ⊆ N(x). We will need to consider explicit

positions of v1, v2 in N ′, and observe that it suffices for us to consider the following five

cases, up to isomorphism:

Case 1: N(x) ∼= K2,3,3,3 and v1, v2 are both contained in a 3-island.

Case 2: N(x) ∼= K2,3,3,3 and v1, v2 are both contained in the 2-island.

Case 3: N(x) ∼= K3,3 + C5 and v1, v2 are both contained in a 3-island.

Case 4: N(x) ∼= K3,3 + C5 and v1, v2 are both contained in the 5-island.

Case 5: N(x) ∼= K4,4,4 and v1, v2 are both contained in a 4-island.

Claim 4. The following statements are true.

(1) G[Y ] does not contain a clique of size 4.
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(2) Let v3, v4 ∈ Y be non-adjacent and Y ′ = {y ∈ Y : v3y, v4y ∈ E(G)} ⊆ Y . Then,

G[Y ′] does not have a clique of size 3.

(3) In Case 2 and Case 5, N(x)− {v1, v2} does not have a clique of size 4.

(4) In Cases 1, 3, and 4, if Z ⊆ N(x)− {v1, v2} such that G[Z] ∼= K4, then there exist

vertices v′1, v
′
2 ∈ Z such that viv′i 6∈ E(G) for i = 1, 2, where v′1 and v′2 are not necessarily

distinct.

Proof of Claim 4. In Cases 1-5, G[Y ] is isomorphic to K2,3,3, K3,3,3, K3 + C5, K1,3,3, and

K4,4 respectively. Since none of these five graphs have a clique of size 4, it follows that (1)

is true. Observe that N(x)−{v1, v2} ∼= K3,3,3 in Case 2, and that N(x)−{v1, v2} ∼= K2,4,4

in Case 5. Since neither K3,3,3 nor K2,4,4 has a clique of size 4, it follows that (3) is true.

To see (2), observe that v3, v4 are in the same island of G[Y ], as they are non-adjacent.

In Case 3, G[Y ] ∼= K3 +C5 and therefore G[Y ′] ∼= C5 or K1,3. Neither of these two graphs

has a clique of size 3, meaning that (2) is true in Case 3. In other cases, observe that G[Y ]

has at most three islands and each island is an independent set. This means that no vertex

in Z is in the same island with v3 and v4 in G[Y ]. By (1), G[Y ′] does not contain a clique

of size 3.

To see (4), let C0 be the island of N(x) that contains v1 and v2. Observe that C0 is an

independent set of size 3 in Case 1 and Case 3. Also observe that N(x) − C0
∼= K2,3,3

in Case 1 and N(x) − C0
∼= K3 + C5 in Case 3, and both of these two graphs have their

maximum clique of size 3. It follows that if Z ⊆ N(x) − {v1, v2} such that G[Z] ∼= K4,

then Z must contain the unique vertex inC0−{v1, v2}which is adjacent to neither of v1, v2.

In Case 4, if Z ⊆ N(x)− {v1, v2} such that G[Z] ∼= K4, then Z must contain exactly one

vertex in each one of the two 3-islands and two vertices in the 5-island C0. Since the two

vertices in Z ∩ C0 are adjacent to each other, it follows that one of them is not adjacent to

v1 and the other one is not adjacent to v2. a

Claim 5. V (Li) ∩ (E −D) 6= ∅ for i = 1, 2.
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Proof of Claim 5. For the sake of a contradiction, assume that V (L1) ⊆ D. By Claim 3,

we know that v1, v2 6∈ N(E − D) ∩ N(x). Since G[E − D] is connected by Claim 3,

N(E−D)∩N(x)] must be a clique, because otherwise there would be a path in G[E−D]

linking neighbors of two non-adjacent vertices in N(x) which is disjoint from the a − b

path L1, meaning that property P holds, a contradiction. By (1) of Claim 1 and the 7-

connectivity of G, it follows that N(E −D) ∩N(x) ∼= K4. By (3) of Claim 4, Case 2 and

Case 5 are not possible, so it remains to consider Cases 1, 3, and 4. By (4) of Claim 4, we

can choose v′i ∈ N(E − D) ∩ N(x) for i = 1, 2 such that viv′i 6∈ E(G), where v′1, v
′
2 are

not necessarily distinct.

Assume V (L2) ∩ (E − D) 6= ∅ for a moment. Since G[E − D] is connected, there

exists a path R ⊆ G[E −D] linking some u′2 ∈ N(v′2) ∩ (E −D) and a vertex on L2 such

that R is otherwise disjoint from L2. We can then extend R to obtain a v2 − v′2 path which

is disjoint from the a− b path L1. This implies property P is true, a contradiction.

We may then assume that V (L1 ∪ L2) ⊆ D. Let r ∈ E − D. By (3) of Claim 1,

there is no 2-cut of G[B] separating r from V (L1 ∪ L2). It follows that there exist three

paths linking r and V (L1 ∪ L2) that are pairwise disjoint except for r and are disjoint

from V (L1 ∪ L2) otherwise. Note that at least one of these three paths has an end in

V (L1 ∪ L2) − {a, b}. Without loss of generality, assume that one of these three paths has

an end in V (L1)− {a, b}. It follows that there is a path R1 linking r and u1 that is disjoint

from L2. Since G[E − D] is connected and contains some vertex u′1 ∈ N(v′1), it follows

that there exists a path R2 linking u1 and u′1 that is disjoint from the a − b path, meaning

that property P holds true, a contradiction. a

By Claim 5, since the end vertices a, b of Li are both contained inD, we know |V (Li)∩

(D∩E)| ≥ 2. Since |D∩E| = 3, without loss of generality, we can assume that a ∈ D∩E,

b ∈ D − E, and |V (Li) ∩ (D ∩ E) − {a}| = 1 for i = 1, 2. Let D ∩ E = {w1, w2, w3}

where a = w3 and wi is the unique vertex in V (Li) ∩ (D ∩ E)− {a} for i = 1, 2.

Claim 6. There exists a (D ∩ E)-tripod in G[E] such that every leg of the tripod is trivial.

96



Proof of Claim 6. We first prove that G[E] is a non-planar graph. By (2) of Claim 1, every

vertex in E −D has at least 7 neighbors in G[E]. It follows that

e(G[E]) =
1

2

∑
v∈E

dG[E](v) ≥ 1

2

∑
v∈D∩E

dG[E](v)+
7

2
|E−D| = 1

2

∑
v∈D∩E

dG[E](v)+
7

2
|E|−21

2
.

If G[E] is planar, then

1

2

∑
v∈D∩E

dG[E](v) +
7

2
|E| − 21

2
≤ e(G[E]) ≤ 3|E| − 6,

meaning that
∑

v∈D∩E dG[E](v)+ |E| ≤ 9. Since E−D 6= ∅ and every vertex in E−D has

at least 7 neighbors in G[E], we know that |E| ≥ 8. It follows that
∑

v∈D∩E dG[E](v) ≤ 1,

meaning that some vertex in D ∩E has no neighbor in E −D, a contradiction to Claim 5.

Now, recall that there is no non-trivial ≤ 3-separation of (G[E], D ∩ E) by (3) of

Claim 3. By Lemma 2.4.3 and (4) of Lemma 2.4.4, there exists some (D ∩ E)-tripod

T ⊆ G[E] that is split by some 3-separation (E1, E2) of G[E]. This means that D ∩ E ⊆

L(T ) ⊆ E1 andE2−E1 6= ∅. Since there is no non-trivial≤ 3-separation of (G[E], D∩E),

it follows that D ∩ E = L(T ) = E1 and therefore every leg of T is trivial. Hence, the

(D ∩ E)-tripod T is as desired. a

Claim 7. N(E −D) ∩ N(x) ⊆ Y where Y = {y ∈ N(x) : v1y, v2y ∈ E(G)} as defined

before Claim 4.

Proof of Claim 7. For the sake of a contradiction, assume that v′1 ∈ N(E −D) ∩N(x) is

not adjacent to v1.

By Claim 6, let T ⊆ G[E] be a (D ∩ E)-tripod such that every leg of T is trivial. Let

p, q ∈ V (T ) − D ∩ E and paths Pi, Qi for i = 1, 2, 3 be such that T is the union of the

internally disjoint paths P1, P2, P3, Q1, Q2, Q3 such that Pi links p, wi and Qi links q, wi

for i = 1, 2, 3.

Note that v′1 ∈ N(E −D) ∩N(x) has some neighbor r1 ∈ E −D. By (2) of Claim 1,
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r1 has at least 7 neighbors in the connected subgraph G[E]. Therefore, without loss of

generality, we can assume that there is a path R linking r1 and some r′1 ∈ V (P1 ∪ P2 ∪

P3) − D ∩ E that is disjoint from T otherwise. Recall that u1 is a neighbor of v1 in

B − A included in the path L1. By Claim 3, u1 ∈ V (L1) ∩ D − {b}. It follows that

R∪P1∪P2∪P3−{a, w2} has a subpathR′ linking r1 and w1 that is disjoint fromQ2∪Q3.

Then, R′ ∪ u1L1w1 would be a path linking r1, u1 which is disjoint from the a − b path

Q3 ∪Q2 ∪ w2L2b, meaning that property P holds, a contradiction. a

Claim 8. Let T ⊆ G[E] be a (D ∩ E)-tripod such that every leg of T is trivial. Let

p, q ∈ V (T ) − D ∩ E and paths Pi, Qi for i = 1, 2, 3 be such that T is the union of the

internally disjoint paths P1, P2, P3, Q1, Q2, Q3 such that Pi links p, wi and Qi links q, wi

for i = 1, 2, 3. If there exist non-adjacent vertices y1, y2 ∈ N(E −D) ∩N(x), then every

neighbor of y1 or y2 in E −D is not associated with V (P1 ∪ P2 ∪Q1 ∪Q2)− {p, q} with

respect to T .

Proof of Claim 8. Let ti ∈ E − D be a neighbor of yi for i = 1, 2. For the sake of a

contradiction, assume that t1 is associated with V (P1 ∪ P2 ∪ Q1 ∪ Q2) − {p, q}. Without

loss of generality, say t1 is associated with P1 − {p}.

For convenience, let P ′ = P1∪P2∪P3−D∩E andQ′ = Q1∪Q2∪Q3−D∩E. By (2)

of Claim 1, t1 has at least 7 neighbors in the connected subgraph G[E], so t2 is associated

with V (P ′) or V (Q′) with respect to T . If t2 is associated with V (P ′) with respect to

T , then there exists a path linking t1 and t2 that is disjoint from Q1 ∪ Q2 ∪ Q3. If t2 is

associated with V (Q′) with respect to T , then there is a path linking t1, t2 that goes through

w1 (possibly q as well) and is disjoint from P2 ∪ P3. In both cases, we can find a t1 − t2

path that is disjoint from some a− b path, which implies property P , a contradiction. a

Now, let T ⊆ G[E] be a fixed (D ∩ E)-tripod. Let vertices p, q and paths Pi, Qi be

labeled as in Claim 8. Since G is 7-connected and G[E − D] is connected, we know that

|N(E − D) ∩ N(x)| ≥ 4. By Claim 7 and (1) of Claim 4, N(E − D) ∩ N(x) is not a
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clique. Hence, we choose non-adjacent vertices v3, v4 ∈ N(E − D) ∩ N(x) and vertices

u3, u4 ∈ E −D such that uivi ∈ E(G) for i = 3, 4.

Claim 9. There exists a≤ 2-separation (E1, E2) ofG[E] such that V (P1∪P2∪Q1∪Q2) ⊆

E1 and a ∈ E2 − E1.

Proof of Claim 9. For the sake of a contradiction, assume that there exist three paths

R1, R2, R3 inG[E] linking a and V (P1∪P2∪Q1∪Q2) that are pairwise disjoint except for

a. Let ri be the end of Ri on P1 ∪ P2 ∪Q1 ∪Q2 for i = 1, 2, 3. Due to Corollary 2.3.4 and

the existence of the paths P3, Q3, we may choose R1, R2, R3 such that p = r2 and q = r3.

Then, without loss of generality, assume that r1 ∈ V (P1)− {p}.

Observe that T ′ = P1 ∪P2 ∪Q1 ∪Q2 ∪R2 ∪R3 ⊆ G[E] is also a (D ∩E)-tripod such

that every leg of T ′ is trivial. By Claim 8 and the construction of u3, u4, it follows that both

u3, u4 are associated with V (R2∪R3)−{a} with respect to T ′. It follows that, for i = 3, 4,

there exists some path Si ⊆ G[E] linking ui and some vertex V (R2 ∪ R3) − {a} that is

otherwise disjoint from T ′. Observe that V (Si) ∩ V (R1) = ∅ for i = 3, 4, since otherwise

ui would be associated with V (P1) − {p} with respect to T ′, a contradiction to Claim 8.

Therefore, we can find a subpath of S3 ∪ S4 ∪ P2 ∪ R2 ∪ Q2 ∪ R3 − {a} linking u3 and

u4 that is disjoint from the a − b path R1 ∪ r1P1w1 ∪ w1L1b. This implies property P , a

contradiction. a

By Claim 9, we choose (E1, E2) to be a ≤ 2-separation of G[E] such that V (P1 ∪

P2 ∪ Q1 ∪ Q2) ⊆ E1 and a ∈ E2 − E1 such that |E2| is maximum over all choices.

Observe that |E1 ∩ E2| = 2 due to the paths P3 and Q3. Furthermore, we can write

E1∩E2 = {p0, q0} such that p0 ∈ V (P3)−{a}, q0 ∈ V (Q3)−{a}, V (pP3p0∪qQ3q0) ⊆ E1,

and V (p0P3a ∪ q0Q3a) ⊆ E2.

Claim 10. Every vertex in N(E1−{p0, q0, w1, w2})∩N(x) is adjacent to all other vertices

in N(E −D) ∩N(x).

Proof of Claim 10. Assume that there exist two vertices y1, y2 ∈ N(E −D) ∩N(x) such
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that y1y2 6∈ E(G). It suffices to prove that neither y1 nor y2 has a neighbor in E1 −

{p0, q0, w1, w2}. Observe that if p = p0 and q = q0, then V (P3 ∪Q3) ⊆ E2, and it follows

that y1, y2 have no neighbor in E1 − E2 by Claim 8. Therefore, without loss of generality,

we may assume that p 6= p0.

Let W = V (P1 ∪ P2 ∪ Q1 ∪ Q2), just for convenience. By the maximality of |E2|

when choosing (E1, E2), there is no non-trivial ≤ 2-separation (F1, F2) of G[E1] such

that W ⊆ F1 and {p0, q0} ⊆ F2. By Corollary 2.3.5, it follows that there exist internally

disjoint paths S1, S2, S3 in G[E1] satisfying the following properties: (1) Si for i = 1, 2

each link p0 and some vertex in W , (2) S3 links q0 and some vertex in W , and (3) the end

vertices of S1, S2, S3 in W are distinct and include both p, q. Observe that in all cases,

there exist distinct vertices p′, q′ ∈ W − {w1, w2, p0} and seven internally disjoint paths

P ′1, P
′
2, Q

′
1, Q

′
2, P ′′3 , Q

′′
3, R in G[E1] such that (i) P ′i for i = 1, 2 links p′, wi, (ii) Q′i for

i = 1, 2 links q′, wi, (iii) P ′′3 links p′, p0, (iv) Q′′3 links q′, q0, and (v) R links p0 and some

r ∈ V (P ′1 ∪ P ′2 ∪ Q′1 ∪ Q′2) − {p′, q′}. Let P ′3 = P ′′3 ∪ p0P3p and Q′3 = Q′′3 ∪ q0Q3q. It

follows that T ′ =
⋃
i=1,2,3(P

′
i ∪ Q′i) is a (D ∩ E)-tripod in G[E] such that every leg of T ′

is trivial, and that R is a path linking p0, r that is disjoint from T ′ otherwise.

Let t1, t2 ∈ E − D be neighbors of y1, y2, respectively. Note that it suffices to prove

t1, t2 6∈ E1 − E2. For the sake of a contradiction, assume that t1 ∈ E1 − E2. Note that

for both i = 1, 2, ti ∈ E − D, meaning that ti has at least 11 − 4 − 3 = 4 neighbors in

the connected subgraph G[E −D] by Claim 1, and therefore there exists some non-empty

Si ⊆ V (T ′) − E ∩D such that ti is associated with Si with respect to T ′. By Claim 8, ti

for i = 1, 2 is not associated with V (P ′1∪P ′2∪Q′1∪Q′2)−{p′, q′} with respect to T ′. Since

t1 ∈ E1−E2, without loss of generality, assume that t1 is associated with V (p′P ′3p0)−{p0}

with respect to T ′. Note that t2 is not associated with V (P ′3)−{a} with respect to T ′, since

otherwise there would exist a path linking t1, t2 that is disjoint from an a− b path obtained

by extending Q′2 ∪ Q′3, which implies property P , a contradiction. It follows that t2 is

associated with V (Q′3)− {a} with respect to T ′.
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Recall that R is a path linking p0 and r ∈ V (P ′1 ∪ P ′2 ∪ Q′1 ∪ Q′2) − {p′, q′} that is

otherwise disjoint from T ′. Without loss of generality, assume that either r ∈ V (P1)−{p′}

or r ∈ V (Q′1)−{q′}. Note that R is disjoint from T1 and T2, since otherwise t1 or t2 would

be associated with V (P ′1 ∪ P ′2 ∪ Q′1 ∪ Q′2) − {p′, q′} with respect to T ′, a contradiction to

Claim 8.

Let b1, b2 be the end vertices of paths T1, T2, respectively, on p′P ′3p0−{p0} andQ′3−{a},

respectively. Let O1 = T1 ∪ b1P ′3p′ ∪ P ′2 ∪ Q′2 ∪ q′Q′3b2 ∪ T2. Then, observe that in both

the case r ∈ V (P1) − {p′} and the r ∈ V (Q′1) − {q′}, O1 is a t1 − t2 path disjoint

from the subgraph O′2 = (P ′1 ∪Q′1 − {p′, q′}) ∪R ∪ aP ′3p0. If r ∈ V (P ′1)− {p′}, let O2 =

aP ′3p0∪R∪rP ′1w1∪w1L1b; and if r ∈ V (Q′1)−{q′}, letO2 = aP ′3p0∪R∪rQ′1w1∪w1L1b.

In both cases, we see that O2 is a subpath of O′2 linking a and b, and therefore O1, O2 are

disjoint paths. This implies property P again, a contradiction. a

To finish the proof, we first show that E1 = {w1, w2, p, q}. Note that it suffices to

prove that E1 = {w1, w2, p0, q0}. For the sake of a contradiction, assume that E1 −

{w1, w2, p0, q0} 6= ∅. Let K1 be a component of G[E1] − {w1, w2, p0, q0}. Since G is

7-connected, |N(K1) ∩ N(x)| ≥ 3. Recall that Y = {y ∈ N(x) : v1y, v2y ∈ E(G)}.

Since V (K1) ⊆ E − D, we have N(K1) ∩ N(x) ⊆ N(E − D) ∩ N(x) ⊆ Y by

Claim 7. By Claim 10, N(K1) ∩ N(x) is a clique such that every vertex in it is adjacent

all other vertices in N(E −D) ∩ N(x). Recall that v3, v4 ∈ N(E −D) ∩ N(x) are non-

adjacent by construction. It follows that N(K1) ∩N(x) is a clique contained in the subset

Y ′ = {y ∈ Y : v3y, v4y ∈ E(G)}. By (2) of Claim 4, it follows that |N(K1) ∩N(x)| ≤ 2,

a contradiction.

Now, p ∈ E − D has at least 3 neighbors in E1, and that p has at least 4 neighbors in

N(x). Since δ(G) ≥ 11, p has at least 4 neighbors inE2−E1, meaning thatE2−E1∪{a} 6=

∅. Let F1 = E1 ∪ {a} and F2 = E2. It follows that (F1, F2) is a non-trivial 3-separation of

(G[E], D ∩ E), a contradiction to (3) of Claim 3.
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4.3.2 Proof of Lemma 4.3.5

Lemma 4.3.5. IfG−N [x] is 2-connected and no vertex inG−N [x] is a common neighbor

for two non-adjacent vertices in N(x), then G− x has a minor J rooted at N(x) such that

J > K9.

Proof. For the sake of a contradiction, assume that such a minor J does not exist. Recall

the definitions of T1 = {x1, x2, x3} and T2 = {y1, y2, y3} right before Section 4.3.1. By

Lemma 4.3.3, for all i, j ∈ {1, 2, 3}, xi, yj have at least two common neighbors inG−N [x].

Since no vertex in G−N [x] is a common neighbor for two non-adjacent vertices in N(x),

there exist a subset of three vertices X = {v1, v2, v3} ⊆ V (G)−N [x] and a subset of nine

verticesA ⊆ V (G)−N [x]∪X such that vi for i = 1, 2, 3 is a common neighbor for xi, yi,

and that every vertex in A is a common neighbor for xi, yj for some unique ordered pair

(i, j) where i, j ∈ {1, 2, 3}.

Our proof for Lemma 4.3.5 is a bit lengthy. An outline of the proof is as follows. In

Claim 1 and Claim 2, we will make a series of observations on the structure of G −N [x],

given that it is 2-connected and no vertex in it is adjacent to two non-adjacent vertices in

N(x). In Claim 3, we find an X-tripod T satisfying a few desired extremal properties.

Then in Claim 4 and Claim 5, we prove that T has at least one non-trivial leg. Without loss

of generality, assume that the leg L1 of T on v1 is non-trivial. In Claim 6-Claim 10, we

prove that there is a non-trivial T -bridge B1 that attaches to v1 and exactly one of v2, v3

as its only attachment on T outside L1. Without loss of generality, say B1 attaches to v2.

Let A3 ⊆ A be the subset of vertices in A that are adjacent to x3 or y3. We will then use

the T -bridge B1 to show that every vertex in A3 is not associated with T − {v2} ∪ V (L3)

in Claim 11-Claim 14. Finally, we use these vertices in A3 and the T -bridge B1 to show a

minor of type II exists, a contradiction.

We start the proof with observing a few properties of G−N [x].

Claim 1. The following statements are true:
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(1) For every two vertices a1, a2 ∈ A, there exist distinct vertices v1, v2 ∈ Tj for some

j ∈ {1, 2} such that aivi ∈ E(G) for i = 1, 2.

(2) There do not exist two disjoint connected subgraphs G1, G2 of G − N [x] and a

subset X ′ ⊆ V (G1) of three vertices such that for some j ∈ {1, 2}, each vertex in X ′ has

a unique neighbor in Tj , G1 has a K3-minor rooted at X ′, and G2 has two non-adjacent

neighbors in N(x)− Tj .

(3) There do not exist two disjoint connected subgraphs G1, G2 of G −N [x] such that

X ⊆ V (G1), G1 has a K3-minor rooted at X , and G2 has two non-adjacent neighbors in

N(x).

(4) If G1 ⊆ G−N [x] such that X ⊆ V (G1) and G1 has a K3-minor rooted at X , then

|V (K) ∩ A| ≤ 1 for every component K of G−N [x] ∪ V (G1).

Proof of Claim 1. One can observe that (1) is simply true by the definition of A, and that

(3) and (4) immediately follow (1) and (2). So it suffices to prove (2). For the sake of a

contradiction, assume that such subgraphs G1, G2 and X ′ ⊆ V (G1) exist. Without loss of

generality, say each vertex in X ′ has a unique neighbor in T1, and w1, w2 ∈ N(x) − T1

are non-adjacent and both neighbors of G2. It follows that G[V (G1) ∪ T1] has a K3 minor

rooted at T1. By contracting edges in G[V (G1) ∪ T1] properly and contracting all vertices

in G2 to one of w1, w2, we could then obtain a minor of G of type II, a contradiction.

Therefore, (2) is true. a

In the next claim, we make observations on some properties of X-tripods in G−N [x].

Claim 2. If G − N [x] has an X-tripod T as a subgraph, then the following statements are

true.

(1) T has a K3-minor rooted at X .

(2) For every component K of G− (N [x] ∪ V (T )), N(K) ∩N(x) is a clique.

(3) Every non-trivial T -bridge in G−N [x] has at least three attachments on T .

(4) Let vertices p, q and zi for i = 1, 2, 3 and paths Li, Pi, Qi for i = 1, 2, 3 be labeled

for T as in Definition 2.4.2. Then for each i ∈ {1, 2, 3}, there exists at most one vertex in
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A associated with V (Pi)−{zi, p} with respect to T and at most one vertex inA associated

with V (Qi)− {zi, q} with respect to T .

Proof of Claim 2. One can easily check that (1) is true, and that (2) can be implied by (1)

and Claim 1.

To prove (3), recall that N(x) has no clique og size greater than 4 by Lemma 4.3.3. By

(2), it follows that every non-trivial T -bridge B haw at most four neighbors in N(x). Since

G is 7-connected, it follows that B has at least three attachments on T .

To see (4) is true, let G1 = T − (V (Pi)\{zi, p}). Observe that G1 has a K3 minor

rooted at X . Let K be the component of G− (N [x]∪ V (G1)) such that Pi − {zi, p} ⊆ K.

It follows that |V (K) ∩ A| ≤ 1, meaning that at most one vertex in A is associated with

V (Pi)− {zi, p} with respect to T . By symmetry, it follows that at most one vertex in A is

associated with V (Pi)− {zi, p} with respect to T . a

Claim 3. There exists an X-tripod T in G−N [x] split by some 3-separation of G−N [x]

such that every T -bridge in G −N [x] is stable, and that there is no X-tripod in G −N [x]

that can be obtained from T by a tripod-transformation.

Proof of Claim 3. Let (A1, A2) be a 2-separation of (G − N [x], X) such that |A1| is min-

imum. Note that we know there exists some 2-separation, as we know |G − N [x]| ≥ 3

by Lemma 4.3.2 and we do not require the 2-separation to be non-trivial. By the choice of

(A1, A2), there is no non-trivial ≤ 2-separation of (G[A1], X).

We next prove that G[A1] is non-planar. By Lemma 4.3.3, there is no clique of size 5 in

N(x). Since no vertex in G−N [x] is a common neighbor for two non-adjacent vertices in

N(x), it follows that every vertex in V (G)−N [x] has at most 4 neighbors in N(x). Since

δ(G) ≥ 11 by Lemma 3.1.1, we have dG−N [x](v) ≥ 7 for every v ∈ V (G)−N [x], meaning

that all but at most 2 vertices in G[A1] has degree at least 7 inside G[A1]. Therefore,

e(G[A1]) ≥ 7
2
(|A1| − 2) = 7

2
|A1| − 7. If G[A1] is planar, then

7

2
|A1| − 7 ≤ e(G[A1]) ≤ 3|A1| − 6,
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meaning that |A1| ≤ 2. This is a contradiction, since X ⊆ A1 and therefore has cardinality

at least 3.

Now, since G[A1] is non-planar and (G[A1], X) has no non-trivial ≤ 2-separation,

by Lemma 2.4.3 and Lemma 2.4.5, there exists an X-tripod T in G[A1] such that some

3-separation of G[A1] splits T , every T -bridge in G[A1] is stable, and that there is no X-

tripod in G[A1] that can be obtained from T by a tripod-transformation. It now suffices to

prove that A2 − A1 = ∅.

For the sake of a contradiction, assume that A2 − A1 6= ∅. Let a, b be the two vertices

in A1 ∩ A2. Then, since G − N [x] is 2-connected, there exists some a-b path in G[A2].

By Lemma 4.3.4, there exists two disjoint paths P,Q in G[A2] such that P links a, b and Q

links a neighbor of w1 and a neighbor of w2 for some non-adjacent vertices w1, w2 ∈ N(x).

Then, the pathQ excludes a and b and is therefore disjoint from theX-tripod T inG−N [x],

a contradiction to (2) of Claim 2. a

Now, fix T ⊆ G − N [x] to be an X-tripod and fix (A,B) to be a 3-separation of

G − N [x] such that (A,B) splits T , every T -bridge in G − N [x] is stable, and that there

is no X-tripod in G − N [x] that can be obtained from T by a tripod-transformation. Let

vertices z1, z2, z3, p, q ∈ V (T ) and paths L1, L2, L3, P1, P2, P3, Q1, Q2, Q3 are labeled as

in Definition 2.4.2 for T .

Claim 4. If every leg of T is trivial, then there is a trisection (A1, A2, A3) of order 2 of

G−N [x] such that {p, q} = A1 ∩ A2 ∩ A3 and V (Pi ∪Qi) ⊆ Ai for i = 1, 2, 3.

Proof of Claim 4. For the sake of a contradiction, assume that there exists a path R linking

some r1 ∈ V (P1 ∪ Q1) − {p, q} and r2 ∈ V (P2 ∪ Q2) − {p, q} that is otherwise disjoint

from T . Note that up to symmetry, we can assume that r1 ∈ V (P1) − {p} and either r2 ∈

V (P2)−{p} or V (Q2)−{q}. One can observe that both T ∪R−{p} and T ∪R−{q} have

a K3 minor rooted at X in all cases. It follows that at most one vertex in A is associated

with s for s ∈ {p, q} with respect to T .

Note that |A| = 9, and it follows that at least 7 vertices in A are associated with
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V (T ) − {p, q}, with respect to T . By (4) of Claim 2, there exists some vertex a0 ∈ A

that is not associated with V (T ) −X with respect to T . Since X ∩ A = ∅, it follows that

a0 is contained in some non-trivial T -bridge B0 ⊆ G − N [x] whose set of attachments is

a subset of X . By Claim 2, the set of attachments of B0 on T is precisely X . Note that

P1 ∪ P2 ∪ P3 ∪ B1 now has a K3-minor rooted at X , and therefore there is at most one

vertex in A associated with V (Q1 ∪Q2 ∪Q3)−X with respect to T . By symmetry, there

is at most one vertex in A associated with V (P1 ∪ P2 ∪ P3)−X with respect to T , too.

By Claim 2, it follows that there exist 7 vertices a1, ..., a7 ∈ A such that for i = 1, ..., 7,

each ai is contained in a unique non-trivial T -bridge Bi ⊆ G−N [x] whose attachments on

T are precisely v1, v2, v3. Without loss of generality, assume that ai is a common neighbor

for x3 and yi for i = 1, 2, 3. It follows that P1 ∪ P2 ∪ B1 − {v3} has a K3 minor rooted on

v1, v2, a1 and B2 ∪ B3 − {v1, v2} contains a path linking a2, a3. By contracting edges that

have at least one end in P1∪P2∪B1−{v3} properly and contracting all ofB2∪B3−{v1, v2}

to y2, we can then obtain a clique on T1 and the edge y2y3 in T2, meaning G has a minor of

type II, a contradiction. a

Claim 5. Some leg of T is non-trivial.

Proof of Claim 5. For the sake of a contradiction, assume every leg of T is trivial for some

X-tripod T ⊆ G − N [x]. Let vertices p, q ∈ V (T ) and paths P1, P2, P3, Q1, Q2, Q3 be

labeled as in Definition 2.4.2 for T . By Claim 4, there is a trisection (A1, A2, A3) of order

2 of G−N [x] such that {p, q} = A1 ∩A2 ∩A3 and V (Pi ∪Qi) ⊆ Ai for i = 1, 2, 3. Since

|A| = 9, |A ∩ (Ai − {p, q})| ≥ 3 for some i ∈ {1, 2, 3}. Without loss of generality, say

there are distinct vertices a1, a2, a3 ∈ A that are all contained A1 − {p, q}.

Assume for a moment that there exist pairwise disjoint subsets S1, S2, S3 ⊆ A1 −

{v1, p, q} such that for i = 1, 2, 3, ai ∈ Si, G[Si] is connected, and {v1, p, q} ⊆ N(Si).

If a1 is adjacent to x1, then note that the subgraph G1 = G[S1 ∪ V (P2 ∪ Q2 ∪ Q3)] has

a K3 minor rooted at {a1, v2, v3}. By contracting edges inside this subgraph properly and

contracting edges between T1 and {a1, v2, v3}, we can then obtain a clique on T1. Note that
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the subgraphG[S2∪S3∪{v1}] is disjoint fromG2. It follows thatN(ai)∩T2 = {y1} for both

i = 2, 3, since otherwise we would be able to obtain a minor ofG of type II, a contradiction.

Without loss of generality, we then assume that a2 is adjacent to x2 and y1. Now since a2 is

adjacent to y1, by the same argument as above, a1, a3 are both adjacent to x1. It follows that

a3 is adjacent to both x1 and y1. Using the same argument again, we then have ai is adjacent

to both x1, y1 for all i = 1, 2, 3, a contradiction to the construction of A. Hence, a1 is not

adjacent to x1, and it follows that ai is not adjacent to x1 or y1 for all i = 1, 2, 3. Without

loss of generality, we can then assume that a1x2, a1y2, a2x2, a2y3 ∈ E(G). It follows that

the subgraph of G induced on S1 ∪ S2 ∪ {v1, p} has a K3 minor rooted at {v1, a1, a2}. By

contracting edges in G[T2 ∪ S1 ∪ S2 ∪ {v1, p}] properly we can then obtain a clique on T2,

and by contracting edges in G[{x2, x3} ∪ V (Q2 ∪ Q3)] properly we can obtain the edge

x2x3. This again shows that G has a minor of type II, a contradiction.

Therefore, it now suffices to prove that there exist pairwise disjoint subsets S1, S2, S3 ⊆

A1−{v1, p, q} such that for i = 1, 2, 3, ai ∈ Si,G[Si] is connected, and {v1, p, q} ⊆ N(Si).

LetA′ ⊆ {a1, a2, a3} be the subset of vertices that are not associated with V (T )−{v1, p, q}.

Note that |A′| ≤ 3. Also note that ai ∈ A1 − {p, q, v1} for all i = 1, 2, 3, which means

that every vertex in A′ is contained in a unique non-trivial T -bridge inside G[A1] whose

set of attachments on T is a subset of {v1, p, q}. By (3) of Claim 2, the attachments of this

bridge are precisely v1, p, q. It follows that if |A′| = 3, then we have found the desired

three pairwise disjoint subsets already. So we may assume that |A′| ≤ 2. Notice that every

vertex in A′ is associated with V (P1) − {v1, p} or V (Q1) − {v1, q} with respect to T . By

(4) of Claim 2, |A′| ≥ 1 and thus |A′| = 1 or 2. We will discuss the case |A′| = 1 and the

case |A′| = 2 separately in the rest of this proof.

Case 1: |A′| = 2.

Without loss of generality, assume that A′ = {a1, a2}, and that a3 is associated with

V (P1 ∪ Q1) − {v1, p, q}. Let Bi ⊆ G[A1] for i = 1, 2 be the non-trivial T -bridge such

that ai ∈ V (Bi). Note that the attachments of Bi for i = 1, 2 on T are precisely v1, p, q.
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Also note that a3 6∈ V (B1 ∪ B2), since otherwise one of a1, a2 would be associated with

V (P1 ∪ Q1) − {v1, p, q} with respect to T as well, a contradiction to the fact that A′ =

{a1, a2}.

LetH = (T−V (P1∪Q1))∪B1∪B2, and letR1 be a path linking v1, p andR2 be a path

linking v1, q such thatR1, R2 are internally disjoint and V (Ri) ⊆ V (Bi) for i = 1, 2. Let T ′

be the graph obtained from T by substituting P1, Q1 withR1,R2, respectively. Observe that

T ′ ⊆ H is an X-tripod such that a1, a2 are associated with R1 − {v1, p} and R2 − {v1, q},

respectively, with respect to T ′. Note that a3 6∈ V (H) and therefore a3 6∈ V (T ′). By

Claim 2, a3 is contained in a non-trivial H-bridge B3 ⊆ G[A1] whose attachments on H

are all included in V (B1∪B2). Notice thatB3 has no attachment in V (Bi)−{v1, p, q}, since

otherwise a3 would be associated with V (R1)−{v1, p} or V (R2)−{v1, q} with respect to

T ′, a contradiction to (4) of Claim 2. By (3) of Claim 2, it follows that the attachments of

B3 on H are precisely v1, p, q. Let Si = V (Bi) − {v1, p, q} for i = 1, 2, 3, and it follows

that S1, S2, S3 are as desired.

Case 2: |A′| = 1.

Without loss of generality, assume that A′ = {a1}, a2 is associated with V (P1) −

{v1, p}, and a3 is associated with V (Q1) − {v1, q}. Let B1 ⊆ G[A1] be the non-trivial

T -bridge whose attachments are precisely v1, p, q. Let T ′ be the X-tripod obtained from

T by replacing P1 with a v1 − p path P ′1 that in internally contained in B1. Let H =

(T−V (P1))∪B1. Note that T ′ ⊆ H and a2 6∈ V (H) is not associated with V (P ′1)−{v1, p}

or V (Q1)−{v1, q}with respect to T ′. It follows that a2 is contained in non-trivialH-bridge

B2 such that the attachments ofB2 onH are precisely v1, p, q. LetH ′ = (T ′−V (Q1))∪B2,

and let T ′′ be the X-tripod obtained from T ′ by replacing Q1 with a v1 − q path Q′1 that

is internally contained in B2. It follows that T ′′ ⊆ H ′ and a3 6∈ V (H ′) is contained in

a non-trivial H ′-bridge B3 such that the attachments of B3 on H are precisely v1, p, q. It

follows that Si = V (Bi)− {v1, p, q} for i = 1, 2, 3 are as desired. a

Now, let Ri = V (Li ∪ Pi ∪Qi)− {p, q, vi} for i = 1, 2, 3.
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Claim 6. At least two vertices in A are associated with Ri with respect to T for some

i ∈ {1, 2, 3} such that zi 6= vi.

Proof of Claim 6. We first prove that there exist at most two vertices in A that are not

associated with V (T ) −X with respect to T . For the sake of a contradiction, assume that

there are distinct a1, a2, a3 ∈ A that are not associated with V (T ) − X with respect to

T . Note that X ∩ A = ∅. By Claim 2, ai for each i = 1, 2, 3 is contained in a unique

non-trivial T -bridge Bi such that set of attachments of Bi on T is equal to X . Without loss

of generality, assume that a1 is adjacent to x3. Note that L1 ∪ L2 ∪ P1 ∪ P2 ∪ B1 − {v3}

has a K3 minor rooted at {v1, v2, x3}, and therefore by contracting this subgraph properly

and contracting edges between T1 and {v1, v2, x3} we can obtain a clique on T1. Since v3 is

adjacent to y3, it follows that a2, a3 are both adjacent to y3. Since a2, a3 are both adjacent

to y3, by the same argument that we applied to a1, it follows that a1, a2, a3 are all adjacent

to x3. This means that a2, a3 are both common neighbors for x3, y3, a contradiction to the

construction of A.

Since |A| = 9, it follows that at least 7 vertices in A are associated with V (T ) − X .

Note V (T )−X = R1∪R2∪R3∪{p, q}, and therefore at least 5 vertices inA are associated

with R1 ∪ R2 ∪ R3. Note that if zi 6= vi for some i ∈ {1, 2, 3}, we may assume that at

most one vertex in A is associated with Ri. If zi = vi for some i ∈ {1, 2, 3}, then by (4)

of Claim 2, at most one vertex in A is associated with V (Pi) − {vi, p} and at most one

vertex in A is associated with V (Qi)− {vi, q}, and therefore at most two vertices in A are

associated with Ri. By Claim 5, without loss of generality, we can assume that v1 6= z1,

vi = zi for i = 2, 3, and for any subset of vertices V ′ ∈ {R1, V (P2) − {v2, p}, V (Q2) −

{v2, q}, V (P3)−{v3, p}, V (Q3)−{v3, q}}, there exists exactly one vertex inA associated

with V ′. In particular, note that there exist two vertices a1, a2 ∈ A that are both associated

with V (Q2 ∪Q3)− {v2, v3}.

Note that {z1, v2, v3} now separates V (L1) from V (P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3)

in G − N [x]. Since G − N [x] is 2-connected, there exist two paths S1, S2 linking v1 and
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{z1, v2, v3} such that S1, S2 are disjoint except for v1 and they are both internally disjoint

from T − V (L1). It follows that G1 = P1 ∪ P2 ∪ P3 ∪ S1 ∪ S2 has a K3 minor rooted at

X . Note that a,a1 ∈ A are both associated with V (Q2 ∪Q3)− {v2, v3} with respect to T ,

and that G1 is disjoint from V (Q2 ∪ Q3) − {v2, v3}. This is then a contradiction to (4) of

Claim 1. a

By Claim 5 and Claim 6, without loss of generality, assume that v1 6= z1 and there exist

two vertices b1, b2 ∈ A such that b1, b2 are both associated with R1. For i = 1, 2, let Wi be

a path in G − N [x] linking bi and some vertex in R1 that is otherwise disjoint from T . It

follows that G[R1] ∪W1 ∪W2 contains a path linking b1, b2 in G−N [x].

From Claim 7 to Claim 10, we will show that there exists some non-trivial T -bridge

attaching to v1, and that every such T -bridge attaches to exactly one of v2 and v3 as its only

attachment on T outside L1.

Claim 7. The following statements are true.

(1) There does not exist a non-trivial T -bridge with attachments ui ∈ V (Li) for i =

1, 2, 3 such that ui 6= zi for some i ∈ {1, 2, 3}.

(2) There do not exist two disjoint paths S1, S2 in G−N [x] such that for some distinct

indices j, k ∈ {1, 2, 3}, S1 links vj and some vertex on Lk − {vk}, S2 links vk and some

vertex on Lj − {vj}, and that S1, S2 are both internally disjoint from T .

(3) If a non-trivial T -bridge D attaches to v1 and at least two vertices on L2 ∪ L3, then

bi ∈ V (D)− V (T ) for some i ∈ {1, 2}.

(4) If a non-trivial T -bridge D attaches to v1 and a vertex on Lj − {vj} for some

j ∈ {2, 3} and there is a path S linking vj and some vertex on L5−j such that S is otherwise

disjoint from T , then bi ∈ V (D)− V (T ) for some i ∈ {1, 2}.

Proof of Claim 7. (1) and (2) are simply true since there is noX-tripod that can be obtained

from T by any tripod-transformation.

To see (3), assume some non-trivial T -bridge D attaches to v1 and at least two vertices

onL2∪L3. Then notice thatG1 = (D\(L1−{v1}))∪L2∪L3∪P2∪P3 has aK3 minor rooted
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atX and is disjoint fromR1. If b1, b2 neither are inD−V (T ), thenG2 = G[R1]∪W1∪W2

would be disjoint from G1 and contain a path linking b1 and b2, a contradiction to (4) of

Claim 1. It follows that bi ∈ V (D)− V (T ) for some i ∈ {1, 2}.

To see (4), without loss of generality, assume that a non-trivial T -bridge D attaches to

v1 and a vertex on L2−{v2}, and that a path S links v2 and some vertex on L3 such that S is

otherwise disjoint from T . By (1), D has no attachment on L3 and therefore S is internally

disjoint from T ∪D. Then, observe that G′1 = (D\(L1 − {v1})) ∪ L2 ∪ L3 ∪ S ∪ P2 ∪ P3

has a K3 minor rooted at X and is disjoint from R1. By a similar argument as above, it

follows that bi ∈ V (D)− V (T ) for some i ∈ {1, 2}. a

Claim 8. The following statements are true.

(1) If vi 6= zi for i ∈ {1, 2, 3}, then vi has at least 6 neighbors in A− V (Li).

(2) There exists a non-trivial T -bridge attaching to v1.

Proof of Claim 8. We first prove (1). Since (A,B) splits T and vi 6= zi, we know that

vi ∈ A − B. Since no vertex in G − N [x] is a common neighbor for two non-adjacent

vertices in N(x), by Lemma 4.3.3, vi has at most four neighbors in N(x). Since every

T -bridge is stable, vi has exactly one neighbor on Li. As δ(G) ≥ 11 by Lemma 3.1.1 and

vi ∈ A−B, it follows that vi has at least 6 neighbors in A− V (Li).

We now prove (2). Since v1 6= z1, by (1) it follows that v1 has at least 6 neighbors in

A− V (L1). If there is no non-trivial T -bridge attaching to v1, then v1 must have at least 6

neighbors onL2∪L3. It follows that the subgraphG[{v1}∪V (L2∪L3∪P2∪P3)] ⊆ G−N [x]

has K3 minor rooted at X and is disjoint from G[R1] ∪W1 ∪W2 which contains a path

linking b1, b2, a contradiction to (3) of Claim 1. Hence, there exists some non-trivial T -

bridge attaching to v1. a

Claim 9. If a non-trivial T -bridge B1 attaches to v1 and some u2 ∈ V (Lj)−{vj} for some

j ∈ {2, 3}, then the following statements are true.

(1) There exists a path S linking vj and v1 or some vertex on L5−j . If v1 is an end of S,
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then B1 attaches to vj and S is internally contained in B1 − V (T ).

(2) bi ∈ V (B1)− V (T ) for some i ∈ {1, 2}.

(3) Neither one of b1, b2 is a common neighbor for x1 and y1.

(4) b1, b2 are the only vertices in A that are associated with (L1 − {v1}) ∪ (R(T ) −

{z2, z3}).

Proof of Claim 9. Without loss of generality, assume that u2 ∈ V (L2)− {v2}.

We first prove (1) and (2). Note that there is a v1-u2 path internally contained in B1 −

V (T ). By (2) of Claim 7, there is no path linking v2 and some vertex on L1 − {v1} that is

otherwise disjoint from T ∪ B1. Note that the fact that B1 attaches to u2 ∈ V (L2) − {v2}

implies that v2 6= z2. By (1) of Claim 8, v2 has at least 6 neighbors in A − (V (L1 ∪

L2)\{v1}). It follows that there exists a path S linking v2 and either v1 or some vertex on

L3 such that S is otherwise disjoint from T ∪ B1. Moreover, if v1 is an end of S, then B1

attaches to v2 and S is internally contained in B1−V (T ). Then, due to the existence of the

path S, by (3) -(4) in Claim 7, it follows that bi ∈ V (B1)− V (T ) for some i ∈ {1, 2}. We

are now done with proving (1) and (2).

Now assume that b1 ∈ V (B1)− V (T ) without loss of generality. Since b1 is associated

with R1 = V (L1 ∪ P1 ∪Q1)− {v1, p, q} and (A,B) splits T , we know that B1 attaches to

some u1 ∈ V (L1) − {v1}. Recall that Wi for i = 1, 2 is a path linking bi and some vertex

in R1 in G−N [x] that is otherwise disjoint from T .

To prove (3), note that (T − {v1}) ∪W2 has a K3 minor rooted at {b2, v2, v3} and is

disjoint from some path linking v1 and b1 inside B1. If b2 is a common neighbor for x1

and y1, then b1 is not adjacent to both x1 and y1 by the definition of A and thus v1 and b1

have distinct neighbors in at least one of T1 and T2. This is then a contradiction to (2) of

Claim 1. Therefore, b2 is not a common neighbor for x1, y1. Note that either S is contained

in the T -bridge B1, or that S links v2 and some vertex on L3 and is otherwise disjoint from

T ∪B1. In both cases, G1 = (B1−V (L1))∪S ∪L2 ∪L3 ∪P2 ∪P3 has a K3 minor rooted

at {b1, v2, v3} and is disjoint from G2 = G[R1 ∪ {v1}] ∪W2 which contains a path linking

112



v1 and b2, again a contradiction to (2) of Claim 1. To conclude, b1 is neither a common

neighbor for x1 and y1.

To prove (4), let G′1 = (B1 −R1) ∪ S ∪ L2 ∪ L3 ∪ P2 ∪ P3. Observe that G′1 has a K3

minor rooted at X and is disjoint from b2 and G[R1] ∪Q2 ∪Q3 − {z2, z3}, which includes

all vertices in R1. Since b2 6∈ V (G′1) and b2 is associated with R1, by (4) of Claim 1, b2

is the only vertex in A − {b1} that is associated with R1 ∪ V (Q2 ∪ Q3) − {z2, z3}. Let

G′′1 = (B1−R1)∪S∪L2∪L3∪Q2∪Q3. Then notice thatG′1 has aK3 minor rooted atX too

and is disjoint from b2 andG[R1]∪P2∪P3−{z2, z3}. Therefore, b2 is also the only vertex in

A−{b1} that is associated withR1∪V (P2∪P3)−{z2, z3}. Combining the two observations,

we conclude that b1, b2 are the only vertices in A associated with R1 ∪ R(T ) − {z2, z3},

the union of (R1 ∪ V (P2 ∪ P3)− {z2, z3}) and (R1 ∪ V (Q2 ∪Q3)− {z2, z3}). a

Claim 10. Every non-trivial T -bridge attaching to v1 attaches to exactly one of v2, v3 as its

only attachment on T outside L1.

Proof of Claim 10. Let B1 be any T -bridge attaching to v1. Since every T -bridge is stable,

B1 has some attachment on L2 ∪ L3. By (1) of Claim 7, attachments of B1 outside L1 are

all included in one of L2 and L3. Without loss of generality, say attachments of B1 outside

L1 are all on L2. It then suffices to prove thatB1 does not attach to any vertex on L2−{v2}.

For the sake of a contradiction, assume that B1 attaches to some u2 ∈ V (L2) − {v2}, and

it follows that (1)-(4) in Claim 9 are true. Let S be a path linking v2 and v1 or a vertex on

L3 as described in (1) of Claim 9.

Let a1 ∈ A be the vertex adjacent to both x1 and y1. By Claim 9, a1 6= b1 or b2, and a1 is

not associated with (L1−{v1})∪ (R(T )−{z2, z3}). Assume for a moment that there exist

distinct m1,m2 ∈ V (L2∪L3) and two paths M1,M2 in G−N [x] such that Mi for i = 1, 2

links a1 andmi and is otherwise disjoint from T . It follows that L2∪L3∪M1∪M2∪P2∪P3

has a K3 rooted minor at {a1, v2, v3} and is disjoint from the subgraph B1 − V (L2) which

contains a path linking v1 and b1. Since a1 is adjacent to both x1, y1, we know v1 and

b1 have distinct neighbors in T1 or T2. This is then a contradiction to (2) of Claim 1.
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Hence, a1 is associated with at most one vertex on L2 ∪ L3. Note that a1 6∈ X and every

non-trivial T -bridge has at least three attachments on T . Since a1 is not associated with

(L1−{v1})∪ (R(T )−{z2, z3}), it follows that a1 is simply a vertex on Li−{vi} for some

i ∈ {2, 3}. In the remaining proof, we will discuss the case a1 ∈ V (L2) − {v2} and the

case a1 ∈ V (L3)− {v3} separately.

Case 1: a1 ∈ V (L2)− {v2}.

In this case, first observe that if the path S links v2 and some vertex on L3, then L2 ∪

L3 ∪ S ∪ P2 ∪ P3 would have a K3 minor rooted at {a1, v2, v3} and be disjoint from some

v1-b1 path contained in B1 − V (L2), a contradiction to (2) of Claim 1. By (1) of Claim 9,

S links v1, v2 and B1 attaches to v2. Now, note that (B1 − V (L1)) ∪ L2 has a K3 minor

rooted at {a1, v2, b1} and is disjoint from the v1-v3 path L1 ∪ L3 ∪ P1 ∪ P3. It follows that

b1 is not adjacent to x3 or y3. Note that b1 is not a common neighbor for x1 and y1 by (3)

of Claim 9. It follows that b1 is adjacent to one of x2 and y2. Then, one can observe that

subgraph (B1−V (L2))∪L3 ∪P1 ∪P3 has a K3 minor rooted at {v1, b1, v3} and is disjoint

from the path v2L2a1 linking a1 and v2, a contradiction to (2) of Claim 1.

Case 2: a1 ∈ V (L3)− {v3}.

In this case, first observe that B1 ∪ L1 ∪ L2 ∪ P1 ∪ Q1 ∪ P2 has a K3 minor rooted at

{v1, v2, b1} and is disjoint from the path v3L3a1. By (2) of Claim 1, b1 is not adjacent to

x3 or y3. By (3) of Claim 9, b1 is not a common neighbor for x1, y1. So without loss of

generality, we can assume that b1 is adjacent to x2.

We next prove that there is no path linking v3 and some vertex in L1 ∪L2−{v1} that is

otherwise disjoint from T . If a path S ′ links v3 and a vertex on L1 − {v1} and is otherwise

disjoint from T , then the subgraph S ′∪(L1−{v1})∪L2∪L3∪R(T ) would have aK3 minor

rooted at {a1, v2, v3} and is disjoint from some v1-b1 path contained in B1, a contradiction

to (2) of Claim 1. If a path S ′′ links v3 and some vertex on L2 and is otherwise disjoint

from T , then L2 ∪ L3 ∪ S ′ ∪ P2 ∪ P3 would have a K3 minor rooted at {a1, v2, v3} and is

disjoint from some v1-b1 path in B1, again a contradiction to (2) of Claim 1.
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Now, since a1 ∈ V (L3)− {v3}, we know v3 6= z3. By (1) of Claim 8, v3 has at least 6

neighbors in A− V (L3). As there is no path linking v3 and some vertex in L1 ∪L2−{v1}

that is otherwise disjoint from T , there is a non-trivial T -bridge B2 6= B1 attaching to v1

and v3. Since (A,B) splits T and every T -bridge has at least three attachments on T , B2

also attaches to some vertex on L3−{v3}. It follows that B2 ∪L2 ∪L3 ∪P2 ∪P3 has a K3

minor rooted at X and is disjoint from G[R1] ∪W1 ∪W2 which contains a path linking b1

and b2, a contradiction to (4) of Claim 1. a

Recall that every non-trivial T -bridge has at least three attachments on T . By Claim 10,

since the X-tripod T is split, every T -bridge attaches to some vertex on L1 − {v1}. By (2)

Claim 8, we now fix a vertex v′1 ∈ V (L1)−{v1} and a non-trivial T -bridge B1 attaching to

v1 such that there is no non-trivial T -bridge B′1 attaching to a vertex on v′1L1z1 − {v′1}. By

Claim 10, assume that v2 is the only attachment of B1 on T outside L1. Let L′1 = v1L1v
′
1

for notation. LetA3 ⊆ A be the subset of five vertices inA that are adjacent to x3 or y3. In

Claim 11-Claim 14, we will show that every vertex in A3 is not associated with anywhere

on T outside V (L3) ∪ {v2} due to the existence of the T -bridge B1.

Claim 11. (V (B1)− V (T )) ∩ A3 = ∅.

Proof of Claim 11. For the sake of a contradiction, assume there exists some c ∈ (V (B1)−

V (T )) ∩ A3. Without loss of generality, say c is adjacent to x3. For i = 1, 2, let ai ∈ A be

the vertex adjacent to both x2 and yi. By Claim 2, ai 6∈ V (B1)− V (T ) for i = 1, 2.

If ai for some i ∈ {1, 2} is associated with (V (L1)−{v1})∪(V (P1∪P2∪P3)−{z2, z3}),

then G1 = L1 ∪ (B1 − {v2}) ∪ P1 ∪ P2 ∪ P3 − {z2, z3} would have a K3 minor rooted at

{v1, ai, c}. Note that G2 = L2 ∪ L3 ∪Q2 ∪Q3 is a path linking v2, v3 that is disjoint from

G1. By contracting edges in G1, G2 and edges between Ti and Gi for i = 1, 2 properly, we

can then obtain a clique on T1 and the edge y2y3 in T2, a contradiction. Therefore, a1, a2

are not associated with (V (L1)−{v1})∪ (V (P1∪P2∪P3)−{z2, z3}). By symmetry, they

are not associated wtih (V (L1)− {v1}) ∪ (V (Q1 ∪Q2 ∪Q3)− {z2, z3}) either. It follows
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that a1, a2 are not associated with (V (L1)− {v1}) ∪ (R(T )− {z2, z3}).

Now note that L1 ∪ L2 ∪ B1 ∪ P1 ∪ P2 has a K3 minor rooted at {v1, v2, c}. Since

v3 is adjacent to y3, it follow that neither a1 nor a2 is associated with V (L3). Therefore,

a1, a2 are not associated with V (T ) − V (L2) ∪ {v1}. Notice that {a1, a2} ∩ {v1, v2} = ∅.

By Claim 2, a1, a2 are both associated with V (L2) − {v2}. It follows that for i = 1, 2,

there exists some path Si linking ai and some vertex on L2−{v2} such that Si is otherwise

disjoint from T ∪B1. Let G′1 = L1B1 ∪ ∪P1 ∪ P3 ∪ L3 and G′2 = (L2 − {v2}) ∪ S1 ∪ S2.

It follows that G′1, G
′
2 are disjoint connected subgraphs of G − N [x] such that G′1 has a

K3 minor rooted at X , and that G′2 contains a path linking a1, a2, a contradiction to (4) of

Claim 1. a

Claim 12. There is no vertex in A3 associated with V (L′1)− {v1}.

Proof of Claim 12. For the sake of a contradiction, assume that there exists some c ∈ A3

associated with V (L′1) − {v1}. Without loss of generality, say c is adjacent to x3. By

Claim 11, c 6∈ V (B1) − V (T ). Let Sc be a path linkling c and some vertex in V (L′1) −

{v1} such that Sc is otherwise disjoint from T ∪ B1. Let G1 = B1 ∪ L′1 ∪ Sc, and note

that G1 has a K3 minor rooted at {v1, v2, c} and is disjoint from the connected subgraph

T − (V (L′1) ∪ {v2}) of G − N [x]. By contracting edges in G1 and edges between T1 and

G1, we can obtain a clique on T1. Since v3 ∈ V (T ) − (V (L′1) ∪ {v2}), by (2) of Claim 1,

no vertex adjacent to y1 or y2 is associated with V (T )− (V (L′1) ∪ {v2}).

Let A′ ⊆ A be the subset of vertices that are adjacent to y1 or y2 and are not contained

in B1 − V (T ). Notice that |A′| ≥ 5, and that every vertex in A′ is either a vertex on L′1

or contained in a non-trivial T -bridge whose attachments are contained in V (L′1) ∪ {v2}.

Notice that B1 ∪ T − (V (L′1)\{v1, v′1}) has a K3 minor rooted at X and is disjoint from

the interior of L′1. By (4) of Claim 1, at most one vertex inA is associated with the interior

of L′1. Also, at most one vertex in A′ is equal to v′1. Since every non-trivial T -bridge

is stable and has at least three attachments on T , it follows that there exist three distinct

vertices ai ∈ A′ for i = 1, 2, 3 each contained in a unique non-trivial T -bridge Di whose
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attachments on T are precisely v1, v2, and v′1.

Assume for a moment that a1 is adjacent to x3. Recall thatA′∩(V (B1)−V (T )) = ∅ by

definition. LetG1 = B1∪D1−(V (L′1)\{v1}). Then observe thatG1 has aK3 minor rooted

at {v1, v2, a1} and therefore a clique on T1 can be obtained by contracting edges in G1 and

edges between G1 and T1 properly. Let G2 = (D2 − {v1, v2}) ∪ v′1L1z1 ∪ L3 ∪ P1 ∪ P3,

and note that G2 contains a path linking a2, v3 and is disjoint from G1. Since a2 is adjacent

to y1 or y2, by the definition of A′, it follows that by contracting edges in G2 and edges

between T2 and G2 properly, we can then obtain the edge y2y3, which then implies a minor

of type II, a contradiction. By symmetry, it follows that none of a1, a2, a3 is adjacent to x3.

Now, each ai for i = 1, 2, 3 is a common neighbor for one of x1, x2 and one of y1, y2.

Without loss of generality, assume that a1 is a common neighbor for xj and yj for some

j ∈ {1, 2}. If j = 1, let G1 = (D1 − {v1}) ∪ v′1L1z1 ∪ L2 ∪ L3 ∪ P1 ∪ P2 ∪ P3,

G2 = D2 − {v′1, v2}, and X ′ = {a1, v2, v3}. Then, G1, G2 are disjoint subgraphs of

G − N [x] such that G1 has a K3 minor rooted at X ′ and G2 contains a path linking v1

and a2. Since a1 is adjacent to both x1 and y1, a2 is adjacent to x2 or y2. This is then a

contradiction to (2) of Claim 1. If j = 2, let G1 = (D1 − {v2}) ∪ L1 ∪ L3 ∪ P1 ∪ P3,

G2 = D2 − {v1, v′1}, and X ′ = {v1, a1, v3}. Then, G1 has a K3 minor rooted at X ′ and G2

contains a path linking v2 and a2. Since a1 is adjacent to x2 and y2, a2 is adjacent to x1 or

y1. Again, a contradiction to (2) of Claim 1. a

Claim 13. There is no vertex in A3 associated with V (v′1L1z1) ∪R(T )− {z2, z3}.

Proof of Claim 13. For the sake of a contradiction, assume that c ∈ A3 is associated with

V (v′1L1z1) ∪ R(T ) − {z2, z3}. Without loss of generality, assume that c is adjacent to x3

and is associated with V (v′1L1z1 ∪P1 ∪P2 ∪P3)−{z2, z3}. Let s ∈ V (v′1L1z1 ∪P1 ∪P2 ∪

P3)−{z2, z3} such that there exists a path S1 linking c and s that is otherwise disjoint from

T , and let S2 be the subpath of v′1L1z1 ∪ P1 ∪ P2 ∪ P3 − {z2, z3} linking v′1 and s. Note

that we may choose c, s and the paths S1, S2 such that no vertex in A3 is associated with

V (S2)− {s}, and subject to this, |S1| is minimum.
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Now, let G1 = B1 ∪L′1 ∪S1 ∪S2. Observe that G1 has a K3 minor rooted at {v1, v2, c}

and v3 6∈ V (G1). By (2) of Claim 1, no vertex adjacent to y1 or y2 inG−N [x] is associated

with V (T ) − V (G1). By the definition of A3, there exists some c′ ∈ A3 − {c} that is

adjacent to y1 or y2. Observe that V (G1) ∩ V (T ) = {v2} ∪ V (L′1) ∪ V (S2), so either

c′ ∈ {v2} ∪ V (L′1) ∪ V (S2) or c′ is contained in a non-trivial T -bridge whose attachments

on T are all included in {v2} ∪ V (L′1) ∪ V (S2). By Claim 13 and the choice of c, s and

S1, S2, no vertex in A3 is associated with V (L′1) ∪ V (S2) − {v1, s} and c′ 6= s. Since

{v1, v2} ∩ A = ∅ and every non-trivial T -bridge has at least three attachments on T , it

follows that c′ is contained in a non-trivial T -bridge, say B′, whose attachments on T are

precisely v1, v2, and s.

Since (A,B) splits T and v1 ∈ A−B, it follows that B′ is contained in A and therefore

s ∈ V (v′1L1z1). By Claim 12, c is not associated with v′1, so s ∈ V (v′1L1z1) − {v′1}. It

follows that B′ is a non-trivial T -bridge whose attachments on T are precisely v1, v2, and

s where s ∈ V (v′1L1z1)− {v′1}, a contradiction to the choice of B1 and v′1. a

Claim 14. There is no vertex in A3 associated with v1 or V (L2)− {v2}.

Proof of Claim 14. Note that if some vertex inA3 is associated with v1, then it is contained

in V (D)−V (T ) for some non-trivial T -bridgeD, since v1 6∈ A. By Claim 10, since (A,B)

splits T and every non-trivial T -bridge has at least three attachments on T , D attaches to

some vertex on L1−{v1} and therefore some vertex inA3 is associated with V (L1)−{v1},

a contradiction to Claim 12. Therefore, no vertex in A3 associated with v1.

It remains to prove that no vertex is associated with V (L2) − {v2}. Notice that B1 ∪

L1∪L3∪P1∪P3 has aK3 minor rooted atX and is disjoint from L2−{v2}. If two vertices

c1, c2 ∈ A3 are both associated with V (L2) − {v2}, note that neither of them is contained

in B1, as B1 has no attachment on L2 − {v2}. It follows that we can extend some subpath

of L2−{v2} to a c1− c2 path that is disjoint from B1 ∪L1 ∪L3 ∪ P1 ∪ P3, a contradiction

to (4) of Claim 1. Therefore, at most one vertex in A3 is associated with V (L2)− {v2}.

For the sake of a contradiction, assume c ∈ A3 is associated with V (L2) − {v2}, and
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let S be a path linking c and some vertex on L2 − {v2} such that S is otherwise disjoint

from T . Without loss of generality, say c is adjacent to x3. By the definition of A3, there

exists some c′ ∈ A3 such that c′ 6= c and c′ is adjacent to x3 and one of y1, y2. Notice

that c′ is not associated with V (T ) − (V (L3) ∪ {v2}) by Claim 11-Claim 13 and the fact

that c is the only vertex in A3 associated with V (L2) − {v2}. Since v2 6∈ A3 and every

T -bridge is stable, it follows that c′ is associated with V (L3), meaning that there exists a

path S ′ linking c′ and some vertex on L3 such that S ′ is otherwise disjoint from T . Let

G1 = B1 ∪ L1 ∪ L2 ∪ S ∪ P1 ∪ P2 and G2 = L3 ∪ S ′. Then, G1 has a K3 minor rooted at

X and G2 contains a path linking c′ and v3, a contradiction to (3) of Claim 1. a

By Claim 11-Claim 14, every vertex inA3 is either a vertex on L3−{v3} or contained in

D−V (T ) for some non-trivial T -bridgeD attaching to v2 and at least two vertices on L3, as

every non-trivial T -bridge is stable and has at least three attachments on T . It follows that

every vertex inA3 is associated with V (L3)−{v3}. Choose c ∈ A3 and u3 ∈ V (L3)−{v3}

such that some c-u3 path S is disjoint from T except for u3 and no vertex inA3 is associated

with V (u3L3z3) − {u3}, and subject to these, |S| is minimum. Without loss of generality,

say c is adjacent to x3. Notice that G1 = B1 ∪ L1 ∪ S ∪ u3L3z3 ∪ P1 ∪ P3 has a K3 minor

rooted at {v1, v2, c} and is disjoint from v1L3u3 − {u3}, so a clique on T1 can be obtained

by contracting edges in G1 and edges between T1 and G1 properly. By the definition of

A3, choose c′ ∈ A3 such that c′ 6= c and c′ is adjacent to x3 and one of y1, y2. It follows

that c′ is not associated with V (v1L3u3) − {u3}, since otherwise there would exist a path

linking v3 and c′ disjoint from G1, a contradiction to (2) of Claim 1. Since c′ is associated

with some vertex on L3 − {v3} and no vertex in A3 is associated with V (u3L3z3) − {u3}

by the choice of u3, it follows that c′ associated with exactly u3 on L3. Moreover, c′ = u3,

as every non-trivial T -bridge is stable and thus has at least two attachments on L3. By the

minimality of |S| when choosing c′ and u3, this means that we should have chosen c′ and

u3 instead of c and u3, a contradiction.
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4.3.3 Proof of Lemma 4.3.6

Lemma 4.3.6. Suppose G−N [x] is 2-connected. If there exists a vertex u ∈ V (G)−N [x]

that is common neighbor for two non-adjacent vertices in N(x), then G− x has a minor J

rooted at N(x) such that J > K9.

Proof. For i = 1, 2, let Ci be the island of N(x) such that Ti ⊆ Ci.

Claim 1. There do not exist vertices distinct a, b ∈ V (G)−N [x] such that a is adjacent to

at least two vertices in each one of T1, T2, and that b has at least five neighbors in T1 ∪ T2.

Proof of Claim 1. For the sake of a contradiction, assume that such a, b ∈ V (G) − N [x]

exist, where b is adjacent to all vertices in T1 and at least two vertices in T2 without loss

of generality. Since |G − N [x]| ≥ 3 by Lemma 4.3.2, there exists some component L of

G − N [x] ∪ {a, b}. Since G − N [x] is 2-connected and G is 7-connected, a, b are both

neighbors of L and |N(L) ∩ N(x)| ≥ 5. By Lemma 4.3.3, there is no clique of size 5 in

N(x). Therefore, there exist z1, z2 ∈ N(L) ∩N(x) that are not adjacent to each other.

Note that if {z1, z2} ∩ (C1 ∪ C2) = ∅, then by contracting an edge between T1 and a,

an edge between T2 and b, and contracting all of L to z1, we would then obtain a minor of

G of type I, a contradiction. It follows that {z1, z2} ⊆ Ci for some i = 1, 2.

Assume for a moment that z1, z2 are both contained in C1. Note that |C1 − T1| ≤ 1, so

at least one of z1, z2 is contained in T1. Since |T1| = 3, without loss of generality, assume

that z1 = x1 and z2 6= x2. This means that z1, z2, x2 are three distinct vertices in C1. Note

that b is adjacent to x1, x2, x3 and b ∈ N(L), so by contracting all of L to z2 and contracting

the edge bx2, we would then obtain a clique on {z1, z2, x2}. Then, by contracting an edge

between a and a neighbor of it in T2, we then obtain a minor ofG of type II, a contradiction.

We may then assume {z1, z2} ⊆ C2. Note that a has at least two neighbors in T1, so

without loss of generality, we say a is adjacent to x1 and x2. Then, by contracting ax1 and

bx3 and contracting all of L to z1, we would then obtain a clique on T1 and the edge z1z2

in C2. This means that we obtained a minor of G of type II again, a contradiction. a
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Claim 2. There exist distinct vertices v1, v2, v3 ∈ V (G) − N [x] ∪ {u} such that vi is a

common neighbor of xi and yσ(i) for i = 1, 2, 3, for some permutation σ ∈ S3.

Proof of Claim 2. Note that by Lemma 4.3.3, every vertex in T1 and every vertex in T2 have

at least two common neighbors in G−N [x].

By Claim 1, there do not exist two vertices G − N [x] that are both adjacent to all six

vertices in T1 ∪ T2. This means that |(V (G) − N [x]) ∩
(⋃

i=1,2,3N(xi) ∩ N(yσi)
)
| ≥ 3

for every permutation σ ∈ S3. Therefore, there are three distinct vertices v1, v2, v3 ∈

V (G) − N [x] such that vi is a common neighbor for xi and yi for i = 1, 2, 3. Similarly,

there are distinct vertices u1, u2, u3 ∈ V (G) − N [x] such that u1 ∈ N(x1) ∩ N(y2), u2 ∈

N(x2) ∩ N(y3), and u3 ∈ N(x3) ∩ N(y1). Hence, we may assume that u ∈ {v1, v2, v3}

and u ∈ {u1, u2, u3}.

Without loss of generality, assume that u = v1. Note that if there exists some v4 ∈

V (G)−{v1, v2, v3} such that v4 is adjacent to both x1 and y1, then v2, v3, v4 are as desired.

Therefore, we may assume that all common neighbors of x1, y1 in G − N [x] are included

in {v1, v2, v3}. Since x1, y1 have at least two common neighbors in G−N [x], without loss

of generality, we assume that v2 is adjacent to both x1 and y1. By the same argument as

above, it follows that all common neighbors of x2, y2 are contained in {v1, v2, v3} and that

one of v1 and v3 is a common neighbor for x2, y2.

Assume for a moment that v3 is a common neighbor for x2 and y2. Then, by the previous

argument, one of v1 and v2 is a common neighbor for x3 and y3. Observe that v2 is not

adjacent to x3 or y3, since otherwise this would be a contradiction to Claim 1 due to the

fact that v3 has at least two neighbors in Ti for both i = 1, 2. It follows that v1 is adjacent

to both x3 and y3. Since G − N [x] is 2-connected, there exists a path P linking v2 and v3

in G − N [x] that does not include v1. Note that v1 is adjacent to both x1, x3 in T1, v2 is

adjacent to y1, y2 ∈ T2, and that v3 is adjacent to y2, y3 ∈ T2. By contracting the edges

v1x1, v2y1, v3y3 and contracting the path P to a single edge, we would then obtain a minor

of type II of G, a contradiction.
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Hence, v1 is a common neighbor for x2 and y2. Notice now both v1 and v2 are adjacent

to all four vertices x1, y1, x2, y2, meaning that they each have at least two neighbors in Ti

for i = 1, 2. By Claim 1, we can then make the following observation.

Observation. The following statements are true.

(1) v3 has at most four neighbors in T1 ∪ T2.

(2) vi is not adjacent to x3 or y3 for i = 1, 2.

Recall that u1, u2, u3 ∈ V (G)−N [x] are distinct vertices such that u1 ∈ N(x1)∩N(y2),

u2 ∈ N(x2)∩N(y3), and u3 ∈ N(x3)∩N(y1). Also recall that u ∈ {u1, u2, u3}. By (2) of

Observation, u = v1 is not adjacent to x3 or y3. This means that u 6= u2 or u3, and therefore

u1 = u = v1. If there exists some u4 ∈ V (G) − {u1, u2, u3} such that u4 is a common

neighbor for x1 and y2, then we would have u2, u3, u4 as desired. Since x1, y2 have at least

two common neighbors in G−N [x], we may assume that one of their common neighbors

in G−N [x] is u2 or u3.

If u2 is a common neighbor for x1, y2, then u2 is adjacent to both x2 and y2. Since all

common neighbors of x2, y2 in G − N [x] are contained {v1, v2, v3}, we know that u2 ∈

{v1, v2, v3}. Note that u2 6= v1 since v1 = u = u1 and u1 6= u2. Since v2 is not adjacent

to y3 by (2) of Observation but u2, y3 are adjacent, it follows that u2 6= v2 and therefore

u2 = v3. This means that u2 = v3 is adjacent to all of x1, x2, y2, x3, y3, a contradiction

to (1) of Observation due to the fact that u1 is adjacent to all four of x1, y1, y2. If u3 is

a common neighbor for x1, y2, then u3 is adjacent to both x1 and y1. Since all common

neighbors of x1, y1 inG−N [x] are contained {v1, v2, v3} and v1 = u = u1 6= u3, it follows

that u3 = v2 or v3. Then, we can again find contradictions to (2) and (1) of Observation in

cases u3 = v2 and u3 = v1, respectively. a

By Claim 2, without loss of generality (by relabeling the vertices in T1, T2), we can

assume that vi is a common neighbor for xi and yi for i = 1, 2, 3. Let w1, w2 ∈ N(x) be

the two non-adjacent vertices that have u as a common neighbor. Without loss of generality,

assume that w1, w2 6∈ C1.
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Note that this means G[(V (G)−N [x]∪{u})∪ T1] does not have a K3 minor rooted at

T1, since otherwise we would obtain a minor of G of type II due to the common neighbor u

for w1, w2 6∈ T1. SinceG−N [x] is 2-connected, we knowG−N [x]∪{u} is connected. By

Lemma 2.2.1, since T1 is an independent set, it follows that G[(V (G)−N [x] ∪ {u}) ∪ T1]

has a cut vertex w ∈ V (G)−N [x] ∪ {u}, and that there are distinct components J1, J2, J3

of G[(V (G)−N [x] ∪ {u}) ∪ T1]− {w} such that xi ∈ V (Ji) for i = 1, 2, 3. Without loss

of generality, assume that w 6= v1 or v2, and it is possible that w = v3. Since vi is adjacent

to xi for i = 1, 2, 3, it follows that v1 ∈ V (J1), v2 ∈ V (J2), and v3 ∈ V (J3) ∪ {w}.

For i = 1, 2, let Li be the component of Ji − {xi} such that vi ∈ Li. If w = v3, then let

L3 = {v3} = {w}; otherwise, letL3 be the component of J3−{x3} such that v3 ∈ L3. Note

that since G−N [x] is 2-connected,{u,w} ⊆ N(Li) for i = 1, 2, and that {u,w} ⊆ N(L3)

if w 6= v3.

Claim 3. The following statements are true.

(1) x2, x3 6∈ N(L1), x1, x3 6∈ N(L2), and if w 6= v3 then x1, x2 6∈ V (L3).

(2) V (G)−N [x] ∪ {u} = V (L1 ∪ L2 ∪ L3) ∪ {w}.

Proof of Claim 3. Since w ∈ V (G) − N [x] ∪ {u} is a cut vertex of G[(V (G) − N [x] ∪

{u}) ∪ T1] and J1, J2, J3 are distinct components of G[(V (G)−N [x] ∪ {u}) ∪ T1]− {w}

such that xi ∈ V (Ji) for i = 1, 2, 3, we know that N(Ji − {xi}) ∩ T1 = {xi} for i = 1, 2,

and that if w 6= v3 then N(J3 − {x3}) ∩ T1 = {x3}. By the definition of Li for i = 1, 2, 3,

it follows that (1) is true.

To prove (2), for the sake of a contradiction, assume that there is some component L′ of

G−N [x]∪{u,w} such that V (L′)∩{v1, v2, v3} = ∅. Note that u,w are the only neighbors

of L′ in G − N [x]. Since G is 7-connected and N(x) does not have a clique of size 5, it

follows that L′ has at least 5 neighbors in N(x) and therefore it has two non-adjacent

neighbors r1, r2 ∈ N(x). Note that we can fix j ∈ {1, 2} such that r1, r2 6∈ Cj . Then,

observe that we can contract edges in G[V (L1 ∪ L2 ∪ L3) ∪ {u,w}] property to become a

cycle that goes through v1, v2, v3, and this means that G[[V (L1 ∪ L2 ∪ L3) ∪ {u,w} ∪ Tj]
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has a K3 minor rooted at Tj . Since L′ has non-adjacent neighbors r1, r2 ∈ N(x) − Tj , it

follows that G has a minor of type II, a contradiction. a

In the rest of the proof, we consider the case w = v3 and the case w 6= v3 separately.

Case 1: w = v3.

By Claim 3, there is no neighbor of x3 in L1 or L2 and therefore N(x3) ∩ (V (G) −

N [x]) ⊆ {u,w}. Note that x3 and yi for i = 1, 2, 3 have at least two common neighbors in

G−N − [x]. It follows that u and w are precisely the common neighbors for x3 and yi in

G − N [x] for i = 1, 2, 3. Hence, both u and w are adjacent to x3 and all three vertices in

T2.

Assume for a moment that y3 ∈ N(L1). Then, by contracting all of L1 to y1 and

contracting the edge y2u, we would then obtain a clique on T2. By contracting all of

L2 ∪ {w} to x2, we can obtain the edge x2x3. It follows that G has a minor of type II,

a contradiction. This means that y3 6∈ N(L1), and furthermore by symmetry we know

y3 6∈ N(L2) either.

By (2) of Claim 3, we have N(y3) ∩ (V (G) − N [x]) ⊆ {u,w}. For i = 1, 2, 3, since

there are at least two common neighbors for xi and y3 in G−N [x], it follows that they are

precisely u and w. This means that u and w each are adjacent to all six vertices in T1 ∪ T2,

a contradiction to Claim 1.

Case 2: w 6= v3.

By (1) of Claim 3, we know that x2, x3 6∈ N(L1), x2, x3 6∈ N(L2), and x1, x2 6∈ V (L3).

Assume for a moment that y2, y3 6∈ N(L1), y1, y3 6∈ N(L2), and y1, y2 6∈ N(L3). This

would then imply that u andw are precisely the common neighbors for xi and yj inG−N [x]

for i, j ∈ {1, 2, 3} such that i 6= j. This means that u and w each are adjacent to all six

vertices in T1 ∪ T2, a contradiction to Claim 1. It follows that yi ∈ N(Lj) for some

i, j ∈ {1, 2, 3} such that i 6= j. Without loss of generality, we assume that y2 ∈ N(L1).

Recall that w1, w2 ∈ N(x) are two non-adjacent neighbors of u, and we previously

assumed that they are not in C1 without loss of generality. Now observe that if w1, w2
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are contained in an island of N(x) outside C1 ∪ C2, then by contracting all of L1 to y1,

contracting all of L2∪L3∪{w} to x2, and contracting the edge uw2, we would then obtain

a minor of G of type I, a contradiction. It follows that w1, w2 ∈ C2. In the rest of the proof,

we will consider the cases |{w1, w2} ∩ {y1, y2}| = 0, 1, or 2, separately.

Assume |{w1, w2} ∩ {y1, y2}| = 0, and note that this is only possible when N(x) ∼=

K4,4,4 and {w1, w2} = C2 − {y1, y2}.Without loss of generality, say w1 = y3 and y4 is the

unique vertex in C2 − T2. By contracting all of Li to yi for i = 1, 2 and contracting all of

L3 ∪{w} to y3, we first obtain a clique on T1 = {y1, y2, y3}. Then, by contracting the edge

uy4, we see that y4 would then be adjacent to all three vertices y1, y2, y3 due to the fact that

u ∈ N(Li) for i = 1, 2, 3. This means that the resulting graph now on N [x] is isomorphic

to K5 +K4,4, which has a K10 minor. It follows that G > K10, a contradiction.

Assume |{w1, w2} ∩ {y1, y2}| = 1. Then, without loss of generality, assume that y1 =

w1 and y2 6= w2. Notice that y1 = w1, y2, and w2 are now three distinct vertices in C2.

By contracting contracting the edge uw2, contracting all of L1 to y2, and contracting all of

L2 ∪ L3 ∪ {w}, we would then obtain a clique on {y1, y2, w2} in C2 and the edge x2x3 in

C1. This means that G has a minor of type II, a contradiction.

Finally, assume |{w1, w2} ∩ {y1, y2}| = 2. Then, without loss of generality, assume

that w1 = y1 and w2 = y2. Note that if y3 ∈ N(L1), then by contracting all of L1

to y3, contracting the edge uy2, and contracting all of L2 ∪ L3 ∪ {w} to x2, we would

then obtain a clique on T2 and the edge x2x3 in T1. This means that G has a minor of

type II, a contradiction. Therefore, y3 6∈ N(L1). Since y3 6∈ N(L1 ∪ L2) by Claim 3,

N(y3) ∩ (V (G) − N [x]) ⊆ {u,w}. Since x1 and y3 have at least two common neighbors

in G − N [x], it follows that their common neighbors in G − N [x] are exactly u and w,

and this means that u is in fact adjacent to all three vertices in T2. Then, by contracting all

of L1 to y1, contracting the edge uy3, and contracting all of L2 ∪ L3 ∪ {w} to x2, we can

obtain a clique on T2 and the edge x2x3 in T1. This means that G has a minor of type II, a

contradiction.
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4.3.4 Proof of Lemma 4.3.7

Lemma 4.3.7. If G −N [x] is not 2-connected, then G − x has a minor J rooted at N(x)

such that J > K9.

Proof. Recall that by Lemma 4.2.1, M ⊆ N(K) where K is a component of G − N [x]

and M = {v ∈ N(x) : vu 6∈ E(G) for some u ∈ N(x) − {v}}. Since N(x) ∼= K2,3,3,3,

K3,3 +C5, orK4,4,4 by Lemma 4.3.1, we see thatN(x) = M and thereforeN(K) = N(x).

If G − N [x] is disconnected, let L1, L2 be two distinct components of G − N [x] such

that N(L1) = N(x) and, subject to that, |L2| is maximum. If G−N [x] has a cut vertex w,

let L1, L2 be two distinct components ofG−N [x]∪{w} such that |L1|+|L2| are maximum

among all choices. In both cases, let Ai = V (Li) ∩ N(x) and Hi = G[Ai ∪ V (Li)] for

i = 1, 2. We first make some simple observations in Claim 1 and Claim 2.

Claim 1. The following statements are true:

(1) L1, L2 are disjoint connected induced subgraphs of G, and V (H1 ∩H2) = A1 ∩ A2 ⊆

N(x).

(2) |Ai| ≥ 6 for i = 1, 2.

(3) Ai ⊆ NG(Li) and |NG(Li)− Ai| ≤ 1 for i = 1, 2.

(4) |Li| ≥ 2 for some i ∈ {1, 2}.

Proof of Claim 1. (1) is simply true by the construction of Li, Ai, and Hi for i = 1, 2.

Observe that in all cases, Li has at most one neighbor in G − N [x] for i = 1, 2, and it

follows that (2) and (3) are true since G is 7-connected.

To prove (4), for the sake of a contradiction, assume that |Li| = 1 for i = 1, 2. By

the choice of L1 and L2, it follows that either G − N [x] is a star or V (G) − N [x] is just

an independent set in G. Recall that |G − N [x]| ≥ 3 by Lemma 4.3.2. Therefore, in both

cases, there exist three distinct vertices v1, v2, v3 ∈ V (G) − N [x] such that v1, v2 each

have at most one neighbor in G − N [x], and v3 has at most two neighbors in G − N [x].

Since δ(G) ≥ 11, v1, v2 each have at least 10 neighbors in N(x) and v3 has at least 9
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neighbors in N(x). Since N(x) ∼= K2,3,3,3, K3,3 + C5, or K4,4,4, we observe that v1, v2

each have non-adjacent neighbors in three distinct islands of N(x), and that v3 has non-

adjacent neighbors in at least two distinct islands of N(x). Hence, there exist distinct

vertices s1, t1, s2, t2, s3, t3 ∈ N(x) such that si, ti for i = 1, 2, 3 are non-adjacent, contained

in a distinct island of N(x), and both adjacent vi. By contracting edges visi for i = 1, 2, 3,

we would then obtain a minor of G of type I, a contradiction. a

Now, let G1 = L1. Let G2 = L2 if G−N [x] is disconnected, and let G2 = G−N [x]∪

V (L1) if G−N [x] has a cut vertex.

Claim 2. The following statements are true:

(1) G1, G2 are disjoint connected induced subgraphs of G−N [x].

(2) A1 = N(G1) ∩N(x), A2 ⊆ N(G2) ∩N(x).

(3) N(x) = (N(G1) ∩N(x)) ∪ (N(G2) ∩N(x)) = A1 ∪ (N(G2) ∩N(x)).

Proof of Claim 2. (1) and (2) are simply due to the construction of L1, L2 and G1, G2. If

G−N [x] is disconnected, recall that we chose L1 such that N(L1) = N(x), and therefore

(3) is true. If G−N [x] has a cut vertex, then G1 ∪G2 = G−N [x]. Since V (G−N [x]) =

N(x), it follows that (3) is true. a

Claim 3. If G[Ai] for some i ∈ {1, 2} does not have an independent set of size 3, then the

following statements are true.

(1) For S ⊆ Ai such that |S| ≥ 6, there exists a subset Z = {z1, z2, z3, z4} ⊆ S of size

4 such that z1z2, z3z4 6∈ E(G).

(2) |Ai| ≤ 9, where the equality holds only ifN(x) ∼= K3,3+C5 andG[Ai] ∼= K2,2+C5.

Proof of Claim 3. Let S ⊆ Ai be such that |S| ≥ 6 be arbitrary. Since there is no dependent

set of size 3 in G[Ai], Ai includes at most two vertices in each island of N(x) that is an

independent set, and so does S.

Since |S| ≥ 6, we see that if N(x) ∼= K2,3,3,3, then G[Ai] and G[S] each are isomorphic

to one of K2,2,2, K1,2,2,2, or K2,2,2,2; and if N(x) ∼= K4,4,4, then G[Ai] = G[S] ∼= K2,2,2.
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This shows thatN(x) ∼= K2,3,3,3 orK3,3+C5, then the desired subset Z exists and |Ai| ≤ 8.

If N(x) ∼= K3,3 + C5, let C1, C2 be the two 3-islands and let C3 be the 5-island. Since

Ai does not contain an independent set of size 3, |Ai ∩ Cj| ≤ 2 for j = 1, 2. Furthermore,

we may assume |Ai ∩ Cj| ≤ 1 for some j in{1, 2}, since otherwise we can find a subset

Z ⊆ Ai∩(C1∪C2) of size 4 that is as desired. Without loss of generality, say |Ai∩C1| ≤ 2

and |Ai ∩ C2| ≤ 1. Since |Ai| ≥ 6, it follows that |Ai ∩ C3| ≥ 3 and thus there are non-

adjacent vertices s3, t3 ∈ Ai ∩ C3. Now, if |Ai ∩ C1| = 2, then Z = (Ai ∩ C1) ∪ {s3, t3}

is as desired. If |Ai ∩ C1| ≤ 1, then |Ai ∩ C3| ≥ 4. It follows that any subset Z ⊆ Ai ∩ C3

such that |Z| = 4 satisfies that G[Z] is a path of length 3 and therefore is as desired.

Finally, if |Ai| ≥ 9, one can simply observe that this is only possible if |Ai| = 9 and

G[Ai] ∼= K2,2 + C5. a

Claim 4. The following statements are true about Ai for both i = 1, 2.

(1) If |Ai| ≤ δ(G) − 3, there exists a subset S ⊆ Ai such that |S| ≥ 6 and for every

Z ⊆ S such that |Z| = 4, G[V (Li) ∪ Z] has a K4 minor rooted at Z.

(2) If G[Ai] does not contain an independent set of size 3, then there exists Z =

{z1, z2, z3, z4} ⊆ Ai such that z1z2, z3z4 6∈ E(G) and G[V (Li) ∪ Z] has a K4 minor

rooted at Z.

Proof of Claim 4. Recall that we defined Hi = G[Ai ∪ V (Li)] for i = 1, 2. Let (A,B) be a

separation of (Hi), Ai) such that (i) B−A 6= ∅, (ii) |A∩B| is minimum subject to (i), and

(iii) |B| is minimum subject to (i) and (ii). Since (A′, B′) = (Ai, V (Li)) is a separation of

(Hi, Ai) where B′−A′ 6= ∅, it follows that |A∩B| ≤ |Ai|. Note that B−A ⊆ V (Li). By

Claim 1, we know |NG(B−A)| ≤ |A∩B|+ 1. Since G is 7-connected, |NG(B−A)| ≥ 7

and therefore |A ∩B| ≥ 6.

By the minimality of |A∩B|, there exist disjoint paths P1, ..., P|A∩B| linkingAi andA∩

B in G[A]. Let S ⊆ Ai be the collection of end vertices of the disjoint paths P1, ..., P|A∩B|

in Ai. It follows that |S| = |A ∩ B| ≥ 6. By the minimality of |A ∩ B| and |B| when

choosing (A,B), there is no non-trivial separation of (G[B], A∩B) of order at most |A∩B|.
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Since A ∩ B ⊆ NG(B − A), there is no non-trivial separation of (G[(B − A) ∪ NG(B −

A)], NG(B − A)) of order at most |A ∩B|. Since |NG(B − A)| ≤ |A ∩B|+ 1, it follows

that there is no non-trivial separation of (G[(B −A)∪NG(B −A)], NG(B −A)) of order

at most |NG(B − A)| − 1.

To prove (1), assume that δ(G)−3, and we will show that S is as desired. Let Z ⊆ S be

any subset such that |Z| = 4. Without loss of generality, say P1, P2, P3, P4 are the disjoint

paths whose end vertices in S are Z. Let Z ′1 ⊆ A ∩ B be the collection of end vertices of

P1, P2, P3, P4 inA∩B. Note that by Claim 1, |Ai| ≤ δ(G)−3 implies that |NG(B−A)| ≤

δ(G)−2. Since there is no non-trivial separation of (G[(B−A)∪NG(B−A)], NG(B−A))

of order at most |NG(B − A)| − 1, by Lemma 3.2.3 it follows that G[(B − A) ∪ Z1] has a

K4 minor rooted at Z1. Due to the disjoint paths P1, P2, P3, P4 linking Z and Z1 in G[A],

G[V (Li) ∪ Z] has a K4 minor rooted at Z. This completes the proof of (1).

To prove (2), assume that G[Ai] does not contain an independent set of size 3. By

Claim 3, |Ai| ≤ 9 and there exists Z = {z1, z2, z3, z4} ⊆ S such that z1z2, z3z4 6∈ E(G).

Again without loss of generality, assume that for j = 1, 2, 3, 4, Pi links zj ∈ Z ⊆ Ai and

z′j ∈ A∩B. Let Z1 = {z′1, z′2, z′3, z′4} ⊆ A∩B. Observe that if |NG(B −A)| ≤ δ(G)− 2,

then by the same argument above we can show that G[(B−A)∪Z1] has a K4 minor rooted

at Z1, and therefore G[V (Li) ∪ Z] has a K4 minor rooted at Z due to the disjoint paths

P1, P2, P3, P4. Thus, we may assume that |NG(B − A)| ≥ δ(G) − 1 ≥ 10 as δ(G) ≥ 11.

Note that by Claim 1, |NG(B−A)| ≤ |Ai|+1 ≤ 10. If follows that |NG(B−A)| = 10 and

|Ai| = 9. By Claim 3, this is only possible if N(x) ∼= K3,3 + C5 and G[Ai] ∼= K2,2 + C5.

Now, let Y ′1 ⊆ Ai be the union of the two 2-islands of G[Ai], and let Y ′2 be four vertices

in the 5-islands of G[Ai]. Without loss of generality, assume that Z = Y ′1 and the disjoint

paths P1, P2, P3, P4 each have an end vertex in Y ′1 . Let Y1 ⊆ A∩B be the collection of end

vertices of these paths in A ∩ B. Also assume that P5, P6, P7, P8 each have an end vertex

in Y ′2 , and let Y2 ⊆ A ∩ B be the collection of end vertices of these paths in A ∩ B. Note

that G[Y ′1 ] and G[Y ′2 ] each contain two disjoint pairs of non-adjacent vertices, so it suffices
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to prove that one of Y ′1 and Y ′2 is as desired.

By Lemma 3.2.3, one of (2a) and (2b) is true with respect to G[(B−A)∪NG(B−A)]

and Y1. First assume that (2a) is true with respect to G[(B − A) ∪ NG(B − A)] and Y1.

Note that G[Y ′1 ] ∼= K2,2, so there exist y1, y2 ∈ Y ′1 such that y1y2 ∈ E(G). Without loss

of generality, say Pj for j = 1, 2 links yj ∈ Y ′1 and y′j ∈ Yj . By (2a), G[(B − A) ∪ Y1]

has an H-minor rooted at Y ′1 such that H ∪ {y′1y′2} ∼= K4. Due to the edge y1y2 ∈ E(G)

and the disjoint paths P1, P2, P3, P4 linking Y ′1 and Y1, it follows that G[V (Li) ∪ Y ′1 ] has

a K4 minor rooted at Y ′1 . This completes the proof of (2) as G[Y ′1 ] ∼= K2,2 contains two

disjoint pairs of non-adjacent vertices. We may then assume (2b) is true with respect to

G[(B−A)∪NG(B−A)] and Y1. Since Y1∩Y2 = ∅, by (2b) it follows thatG[(B−A)∪Y2]

has a K4 minor rooted at Y2, implying that G[V (Li)∪ Y ′2 ] has a K4 minor rooted at Y ′2 due

to the disjoint paths P5, P6, P7, P8. This again completes the proof of (2) as G[Y ′2 ] ∼= K−4

contains two disjoint pairs of non-adjacent vertices. a

Claim 5. Let C1, C2 be two islands of N(x) that are not necessarily distinct. Suppose that

for some i ∈ {1, 2}, there is a subsetZ = {s1, t1, s2, t2} ⊆ Ai of size 4 such that sj, tj ∈ Cj

for j = 1, 2 and G[V (Li)∪Z] has a K4 minor rooted at Z. Then, the following statements

are true.

(1) A3−i − C1 ∪ C2 is a clique.

(2) If C1 6= C2 and Cj is an independent set for some j ∈ {1, 2}, then |A3−i ∩ Cj| ≤

max{2, |Cj| − 1}.

(3) If C1 6= C2 and C1, C2 are both independent sets, then there exists a subset Z ′ =

{s′1, t′1, s′2, t′2} ⊆ A3−i of size 4 such that s′j, t
′
j ∈ Cj for j = 1, 2 and G[(V (L3−i)∪Z ′] has

a K4 minor rooted at Z ′.

Proof of Claim 5. To see (1) is true, assume for the sake of a contradiction that there exist

s3, t3 ∈ A3−i − C1 ∪ C2 such that s3t3 6∈ E(G). Note that if C1 6= C2, then by contracting

edges in G[V (Li) ∪ Z] properly to obtain a clique on Z = {s1, t1, s2, t2} and contracting

all of L3−i to s3, we would then obtain a resulting graph on N [x] that contains edges siti
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for i = 1, 2, 3. This means that G has a minor of type I, a contradiction. It follows that

C1 = C2, and this means that either N(x) ∼= K3,3 + C5 and C1 = C2 is the 5-island in it,

or that N(x) ∼= K4,4,4 and C1 = C2 is a 4-island in it. In the former case, by contracting

edges in G[V (Li) ∪ Z] properly to obtain a clique on Z = {s1, t1, s2, t2} and contracting

all of L3−i to s3, we would then obtain a minor of G of type III, a contradiction. In the

latter case, we see that the graph obtained from N(x) ∼= K4,4,4 by making one of its islands

a clique is isomorphic to K4 + K4,4, which has a K9 minor. It follows that by contracting

edges in G[V (Li)∪Z] properly to obtain a clique on Z, the resulting graph on N [x] would

have a K10 minor, a contradiction.

To see (2) is true, without loss of generality, assume that C1 is an independent set. Note

that if |A3−i ∩ C1| > max{2, |C1| − 1}, then |C1| ≥ |A3−i ∩ C1| ≥ 3. Let r1 ∈ A3−i ∩ C1

such that r1 6= s1 or t1. Then, by contracting edges in G[V (Li) ∪ Z] properly to obtain

a clique on Z = {s1, t1, s2, t2} and contracting all of L3−i to r1, we would then obtain a

clique on {s1, t1, r1} in C1 and the edge s2t2, meaning that G has a minor of type II, a

contradiction.

It remains to prove (3). IfN(x) ∼= K2,3,3,3, let C3, C4 be the two islands ofN(x)−C1∪

C2. We would then have |A3−i∩Cj| ≤ 1 for j = 3, 4 by (1) and |A3−i∩Cj| ≤ 2 for j = 1, 2

by (1). Since |A3−i| ≥ 6, it follows that |A3−i ∩ Cj| = 2 for j = 1, 2, |A3−i ∩ Cj| = 1

for j = 3, 4, and |A3−i| = 6. By (1) of Claim 4, Z ′ = A3−i ∩ (C1 ∪ C2) is as desired.

If N(x) ∼= K2,3,3,3, then C1, C2 are precisely the two 3-islands of N(x). Let C3 be the

5-island of N(x). Note that the maximum independent set in a 5-cycle has size 2. By (1)

and (2), it follows that |A3−i ∩ Cj| ≤ 2 for j = 1, 2, 3. Since |A3−i| ≥ 6, it follows that

|A3−i| = 6 and |A3−i∩Cj| = 2 for j = 1, 2, 3. By (1) of Claim 4, Z ′ = A3−i∩ (C1∪C2) is

as desired. Finally, if N(x) ∼= K4,4,4, let C3 be the 4-island of N(x)−C1 ∪C2. By (1) and

(2), it follows that |A3−i ∩ Cj| ≤ 3 for j = 1, 2 and |A3−i ∩ C3| ≤ 1. Note that this shows

that |A3−i| ≤ 7 and |S ∩ Cj| ≥ 2 for every S ⊆ A3−i. By Claim 1, |A3−i| ≤ 7 implies that

|NG(L3−i)| ≤ |A3−i| + 1 ≤ 8 ≤ δ(G) − 3 as δ(G) ≥ 11. Therefore, by (1) of Claim 4,
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there exists some Z ′ = {s′1, t′1, s′2, t′2} ⊆ A3−i such that s′j, t
′
j ∈ Cj for j = 1, 2. a

Claim 6. For i = 1, 2, for every subset Z ⊆ Ai of size 4 that is the union of two disjoint

pairs of non-adjacent vertices, G[V (Li) ∪ Z] does not have a K4 minor rooted at Z.

Proof of Claim 6. For the sake of a contradiction, assume that for some i ∈ {1, 2},

G[V (Li) ∪ Z] has a K4 minor rooted at Z where Z ⊆ Ai such that Z has size 4 and is

the union of two disjoint pairs of non-adjacent vertices. Let Z = {s1, t1, s2, t2} where

sjtj 6∈ E(G) for j = 1, 2. Let Cj be the island of N(x) containing sj and tj for j = 1, 2.

Note it is possible that C1 = C2, and we will consider the case C1 = C1 and the C1 6= C2

separately in the rest of the proof.

Case 1: C1 = C2.

Note that C1 = C2 means that either N(x) ∼= K3,3 +C5 and C1 = C2 is the the 5-island

of N(x), or that N(x) ∼= K4,4,4 and C1 = C2 = Z is the 4-island of N(x). Observe that

in the latter case, we can just contract edges in G[V (Li) ∪ Z] to obtain a K4 minor rooted

at Z, and the resulting graph on N [x] would be isomorphic to K5 + K4,4 which has a K10

minor, a contradiction.

We may then assume that N(x) ∼= K3,3 + C5 and C1 = C2 is the the 5-island of N(x).

By (1) Claim 5, A3−i − C1 ∪ C2 is a clique, meaning that A3−i has at most one vertex in

each of the 3-island of N(x). Since |A3−i| ≥ 6, we have |A3−i ∩ C1| ≥ 4. Furthermore,

this means that for every S ⊆ A3−i such that |S| ≥ 6, S contains two disjoint pairs of

non-adjacent vertices. By Claim 4, there exists a subset Z ′ ⊆ A3−i ∩ C1 of size 4 such

that G[(V (L3−i) ∪ Z ′] has a K4 minor rooted at Z ′. We can then apply the same argument

back to Ai to show that Ai has at most one vertex in each 3-island of N(x). It follows

that A1 and A2 each have at most one vertex in each 3-island of N(x). By Claim 2 ,

N(x) ⊆ A1 ∪ N(G2), and it follows that N(G2) contains at least two vertices in each 3-

island of N(x). Therefore, by contracting edges that have at least one end in L1 properly to

obtain a clique of size 4 in the 5-island of N(x) and contracting all of G2 to a neighbor of it
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in a 3-island of N(x), we would eventually obtain a minor of G of type III, a contradiction.

Case 2: C1 6= C2.

We will consider the case that one of C1, C2 is not an independent set and the case that

both C1, C2 are independent sets separately.

Case 2.1: One of C1, C2 is not an independent set

Observe that one of C1, C2 is not an independent set only if N(x) ∼= K3,3 +C5 and one

of C1, C2 is the 5-island. Without loss of generality, assume that C1 is a 3-island and C2 is a

5-island. Let C3 be the 3-island inN(x)−C1∪C2. By (1) and (2) of Claim 5, we know that

|A3−i∩C3| ≤ 1 and |A3−i∩C1| ≤ 2. Since |A3−i| ≥ 6, it follows that 3 ≤ |A3−i∩C2| ≤ 5.

Furthermore, observe that for every S ⊆ A3−i such that |S| ≥ 6, S has some subset of size

4 that is the union of two disjoint pairs of non-adjacent vertices. By (1) of Claim 4, there

exists a subset Z ′ ⊆ A3−i such that Z ′ is the union of two disjoint pairs of non-adjacent

vertices and that G[(V (L3−i) ∪ Z ′] has a K4 minor rooted at Z ′. Since |A3−i ∩ C3| ≤ 1,

|Z ′ ∩ C3| ≤ 1. By applying (1) in Claim 5 back to Ai, we see that |Ai ∩ C3| ≤ 3. Now by

Claim 2 , N(x) ⊆ A1 ∪ N(G2), and therefore N(G2) contains at least two vertices in C3.

Then, by contracting edges that have at least one end in L1 to obtain a K4 minor rooted at

Z or Z ′ and contracting all of G2 to one of its vertex in C3, we would then obtain a minor

of G of type I or type III, a contradiction.

Case 2.2: C1, C2 are both independent sets.

By (3) of Claim 5, there exists a subset Z ′ = {s′1, t′1, s′2, t′2} ⊆ A3−i of size 4 such that

s′j, t
′
j ∈ Cj for j = 1, 2 and G[(V (L3−i) ∪ Z ′] has a K4 minor rooted at Z ′. Observe that

regardless of which graphN(x) is isomorphic to, there exists an islandC3 ofN(x)−C1∪C2

such that |C3| ≥ 3. By (1) of Claim 5, it follows that for both j = 1, 2, |Aj ∩ C3| ≤ 1 if

C3 is an independent set, and that |Aj ∩ C3| ≤ 2 if G[C3] ∼= C5. By Claim 2 , we know

that C3 ⊆ A1 ∪ N(G2), and therefore |N(G2) ∩ C3| ≥ 2 if C3 is an independent set, and

|N(G2) ∩ C3| ≥ 3 if G[C3] ∼= C5. In both cases, observe that G2 has two non-adjacent

neighbors s3, t3 ∈ C3. By contracting edges that have at least one end in L1 properly to
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obtain a K4 minor rooted at one of Z and Z ′ and contracting all of G2 to s3, we would then

obtain a type I, a contradiction. a

By Claim 6 and (2) of Claim 4, we can now conclude that Ai contains an independent

set of size 3 for both i = 1, 2.

Claim 7. If |Li| ≥ 2 for some i ∈ {1, 2} and X ⊆ Ai such that G[X] ∼= K3, then

G[V (Li) ∪X] has a K3 minor rooted at X .

Proof of Claim 7. Let x1, x2, x3 be the three vertices in X . For the sake of a contradiction,

assume that G[V (Li) ∪X] does not have a K3 minor rooted at X . By Lemma 2.2.1, there

exists a cut vertex u ∈ V (Li) ofG[V (Li)∪X], and there are distinct components J1, J2, J3

of G[V (Li) ∪X]− {u} such that xj ∈ V (Jj) for j = 1, 2, 3.

Since |Li| ≥ 2, there exists some component R of Li − {u}. Observe that due to the

components J1, J2, J3 of G[V (Li) ∪ X] − {u} where xj ∈ V (Jj) for j = 1, 2, 3, we can

assume that R ∩ J2 = R ∩ J3 = ∅ without loss of generality. Therefore, |N(R) ∩X| ≤ 1.

We also have |N(R) ∩ (V (G) − N [x])| ≤ 2 since |N(Li) ∩ (V (G) − N [x])| ≤ 1. Since

G is 7-connected, it follows that |N(R) ∩ (N(x) − X)| ≥ 4. Let CX be the island of

N(x) that contains X , and note that X = CX if N(x) ∼= K2,3,3,3 or K3,3 + C5, and

that CX is a 4-island if N(x) ∼= K4,4,4. It follows that |N(R) ∩ (N(x) − CX)| ≥ 4 if

N(x) ∼= K2,3,3,3 or K3,3 +C5, and |N(R)∩ (N(x)−CX)| ≥ 3 if N(x) ∼= K4,4,4. Observe

that N(x)−CX ∼= K2,3,3 or K3 +C5 if N(x) ∼= K2,3,3,3 or K3,3 +C5, and N(x) ∼= K4,4 if

N(x) ∼= K4,4,4. Hence, in all cases, R has two non-adjacent neighbors r1, r2 ∈ N(x)−CX .

By contracting all of G[V (J2 ∪ J3) ∪ {w} − {x3}] to x2 and contracting all of R to r1, we

would then obtain a clique of size four on {x2, x3, r1, r2} where x2x3, r1r2 6∈ E(G), a

contradiction to Claim 6. a

Claim 8. Suppose |Li| ≥ 2 for some i ∈ {1, 2}. Then, |A3−i| = 6. Furthermore, for

any X ⊆ Ai such that G[X] ∼= K3, let CX is the island of N(x) that contains X , then

CX ⊆ A3−i and A3−i − CX is a maximum clique in N(x)− CX .
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Proof of Claim 8. Note that we showed that there exists some independent set of size 3 in

Ai. Let X ⊆ Ai that G[X] ∼= K3 be arbitrary. We will prove that |A3−i| = 6, CX ⊆ A3−i,

and A3−i − CX is a maximum clique in N(x) − CX . By Claim 7, G[V (Li) ∪ X] has a

K3 minor rooted at X . This implies that A3−i − CX is a clique, since otherwise we would

have a minor of G of type II, which is a contradiction. It follows that |A3−i − CX | ≤ 3 if

N(x) ∼= K2,3,3,3 or K3,3 + C5, and |A3−i − CX | ≤ 2 if N(x) ∼= K4,4,4. Since |A3−i| ≥ 6

by Claim 1, it follows that A3−i is precisely the union of CX and a maximum clique of

A3−i − CX . Therefore, |A3−i| = 6, CX ⊆ A3−i, and A3−i − CX is a maximum clique in

N(x)− CX . a

To finish the proof, we first show that |Li| ≥ 2 for i = 1, 2. For the sake of a contradic-

tion, assume that |Li| = 1 for some i ∈ {1, 2}. Since δ(G) ≥ 11 and Li has at most one

neighbor in G−N [x], we have |Ai| = |N(Li)∩N(x)| ≥ 10. By Claim 1, |Li| = 1 implies

that |L3−i| ≥ 2. It follows that |Ai| = 6 by Claim 8, a contradiction.

Now, let X ⊆ A1 such that G[X] ∼= K3, and let C1 be the island of N(x) that contains

X . By Claim 8, since |L1| ≥ 2, it follows that X ⊆ C1 ⊆ A2. Since |L2| ≥ 2 and

X ⊆ A2, by Claim 8 again, A1 − C1 is a maximum clique in N(x) − C1. Note that in

all cases, there exists some island C2 of N(x) − C1 that is an independent set of size at

least 3. Since A1 − C1 is a maximum clique in N(x) − C1, we have |A1 ∩ C2| = 1. By

Claim 1, N(x) = A1 ∪ (N(G2) ∩ N(x)). It follows that there exist non-adjacent vertices

y1, y2 ∈ N(G2) ∩N(x) that are both contained in C2. By Claim 7, we can contract edges

that have at least one end in L1 to obtain a clique on X in C1. Then, by contracting all of

G2 to one of y1, y2, we would then obtain the edge y1y2 in C2. This shows that G has a

minor of type II, a contradiction.

4.4 Other Problem Graphs

Lemma 4.4.1 (computer-assisted). Let H be a problem graph such that H 6∼= K2,3,3,3,

K3,3 +C5, or K4,4,4. Then, there exists a subset Z = {a1, a2, b1, b2} ⊆ V (H) of size 4 such
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that a1b1, a2b2 ∈ E(H), ai, bi for i = 1, 2 share at most 4 + i common neighbors in H , and

one of the following statements is true:

(A1) a2, b2 share at most 5 common neighbors in H , and that there exists some z ∈ Z and

v ∈ V (H)−Z such that v has at most 9 neighbors inH andH∪{a1a2, a1b2, b1a2, b1b2, zv} >

K9.

(A2) b2 has at most 8 neighbors inH , there exists some v ∈ V (H)−Z such that a2 and v are

adjacent and share at most 6 common neighbors inH , and thatH∪{a1a2, a1b2, a1v, b1b2} >

K9.

Lemma 4.4.2. If G − N [x] is 2-connected or has at most two vertices, then N(x) 6∼= H

where H is a problem graph and H 6∼= K2,3,3,3, K3,3 + C5, or K4,4,4.

Proof. For the sake of a contradiction, assume that N(x) ∼= H for some problem graph

H such that H 6∼= K2,3,3,3, K3,3 + C5, or K4,4,4. By Lemma 4.4.1, there exists a subset

Z = {a1, a2, b1, b2} ⊆ V (H) of size 4 such that a1b1, a2b2 ∈ E(G), ai, bi for i = 1, 2

share at most 4 + i common neighbors in N(x), and one of the properties (A1) and (A2) in

Lemma 4.4.1 is true.

Since ai, bi share at most 4 + i common neighbors in N(x) for i = 1, 2, they share at

most 5 + i common neighbors in N [x] and thus share at least 3 − i common neighbors in

G−N [x]. This means that there exist distinct vertices u1, u2 ∈ V (G)−N [x] that are both

common neighbors for a1 and b1. In the rest of the proof, we will consider the case (A1) is

true and the case (A2) is true separately.

Case 1: (A1) in Lemma 4.4.1 is true.

In this case, a2, b2 share at most 5 common neighbors in N(x), and that there exists

some z ∈ Z and v ∈ N(x) − Z such that v has at most 9 neighbors in N(x) and N(x) ∪

{a1a2, a2b2, b1a2, b1b2, zv} > K9. To show a contradiction, it suffices to prove that we can

contract some edges that have at least one end in G − N [x] in a way to obtain the edges

a1a2, a2b2, b1a2, b1b2, zv in N(x), since this would then imply G − {x} > K9 and thus

G > K10.
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Observe that the fact that a2, b2 share at most 5 common neighbors in N(x) means that

they share at least two common neighbors in G − N [x], so there exist distinct vertices

w1, w2 ∈ N(G) that are both common neighbors for a2 and b2. Note that ai, bi now share

at least two common neighbors in G−N [x] for both i = 1, 2, so without loss of generality,

we can assume z to be equal to any vertex in Z, say z = a2. Since |G − N [x]| ≤ 2

or G − N [x] is 2-connected, there exist two disjoint paths Q1, Q2 between {u1, u2} and

{w1, w2} in G−N [x]. Without loss of generality, assume that Qi joins ui, wi for i = 1, 2.

Since v has at most 9 neighbors in N(x), it has some neighbor in G − N [x]. So without

loss of generality, we can assume that there exists a path R linking v and some vertex on

Q1 such that R is contained in G−N [x] except for v and R is disjoint from Q2. Then, by

contracting all of V (Q1 ∪ R) − {v} to a2 = z, we would obtain the edges a1a2, b1a2, and

a2v = zv, and by contracting all of V (Q2) to b2, we would then obtain a1b2 and b1b2.

Case 2: (A2) in Lemma 4.4.1 is true.

In this case, b2 has at most 8 neighbors in N(x), there exists some v ∈ N(x) − Z

such that a2 and v are adjacent and share at most 6 common neighbors in N(x), and that

N(x) ∪ {a1a2, a1b2, a1v, b1b2} > K9. To show a contradiction, it suffices to prove that we

can contract some edges that have at least one end in G−N [x] in a way to obtain the edges

a1a2, a1b2, a1v, b1b2.

Since a2 and v are adjacent and share at most 6 common neighbors in N(x), they share

at most 7 common neighbors in N [x] and thus at least one common neighbor in G−N [x].

Letw1 ∈ V (G)−N [x] be a common neighbor for a2 and v. Since b2 has at most 8 neighbors

inN(x), it has at most 9 neighbors inN [x] and therefore at least two neighbors inG−N [x]

due to the fact that δ(G) ≥ 11. Therefore, there exists some w2 ∈ V (G)−N [x] such that

w1 6= w2 and b2w2 ∈ E(G). Recall that ai, bi share at least 3 − i common neighbors

in G − N [x] for i = 1, 2, meaning that there exists some common neighbor of a2, b2 in

G − N [x]. Therefore, if w1 is not a common neighbor for a2, b2, we choose w2 to be

a common neighbor for them. This means that one of w1, w2 is a common neighbor for
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a2, b2.

Again since |G − N [x]| ≤ 2 or G − N [x] is 2-connected, there exist two disjoint

paths Q1, Q2 between {u1, u2} and {w1, w2} in G − N [x], and without loss of generality

we assume that Qi joins ui, wi for i = 1, 2. If w1 is a common neighbor for a2, b2, then

w1 ∈ V (Q1) is adjacent to all three of a2, b2, v. This means that by contracting all of Q1 to

a1, we can obtain edges a1a2, a1b2, and a1v. Then, by contracting all of Q2 to b1, we can

obtain the edge b1b2. We may now assume that w2 is a common neighbor for a2, b2. Then,

by contracting all of Q1 to a1 we can obtain edges a1a2 and a1v, and by contracting all of

Q2 to b2 we can obtain edges a1b2 and a2b2.

Lemma 4.4.3 (computer-assisted). Let H be a problem graph such that H 6∼= K2,3,3,3,

K3,3 +C5, or K4,4,4. Let M be the subset of vertices in H that are not adjacent to all other

vertices in H , i.e. M = {v ∈ V (H) : ∃u ∈ V (H)−{v} such that vu 6∈ E(H)}. Then, for

every B1, B2 ⊆ V (H) such that |Bi| ≥ 6 for i = 1, 2, M ⊆ B1 ∪ B2, and neither H[B1]

nor H[B2] is a clique, one of the following statements is true:

(B1) There exist b1 ∈ B1 −B2 and b2 ∈ B2 −B1 such that b1, b2 are adjacent and share at

most 6 common neighbors in H .

(B2) There exist b1 ∈ B1 and b2 ∈ B2 such that H ′ > K9, where H ′ is the graph obtained

from H by making b1 adjacent to all other vertices in B1 and making b2 adjacent to all

other vertices in B2.

(B3) For some i ∈ {1, 2}, |Bi| ≤ 8 and for every B′i ⊆ Bi such that |B′i| ≥ 6, there exist

some Z ⊆ B′i with |Z| = 4 and b ∈ B3−i such that H ′ > K9, where H ′ is the graph

obtained from H by making Z a clique and making b adjacent to all other vertices in B3−i.

(B4) One of B1, B2 is contained in the other such that |B1∩B2| = 6, and there exists some

Z ⊆ B1 ∩B2 such that |Z| = 4 and e(H[B1 ∩B2])− e(H[Z])− δ(H[B1 ∩B2]) ≥ 6.

(B5) One ofB1, B2 is contained in the other such that |B1∩B2| = 6 andG[B1∩B2] ∼= K−6 .

(B6) (B1, B2) is a non-trivial separation of H of order k ≤ 7 such that e(H[B1 ∩ B2]) =

4k − 20 +
(
k−5
2

)
, and that edges with at least one end in Bi − B3−i for i = 1, 2 can be
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contracted in a way such that the new graph on B1 ∩B2 has at most 3 non-edges.

Lemma 4.4.4. If G−N [x] is not 2-connected and |G−N [x]| ≥ 3, then N(x) 6∼= H where

H is a problem graph and H 6∼= K2,3,3,3, K3,3 + C5, or K4,4,4.

Proof of Lemma 4.4.4. For the sake of a contradiction, assume that N(x) ∼= H for some

problem graph H that is not isomorphic to K2,3,3,3, K3,3 + C5, or K4,4,4. Let M = {v ∈

N(x) : ∃u ∈ N(x) − {v} such that vu 6∈ E(G)} ⊆ N(x). Recall that by the choice of

x and Lemma 4.2.1, there exists a component K of G − N [x] such that M ⊆ N(K) and

N(K ′) ∩M ⊆ N(K) for every component K ′ of G−N [x].

If G − N [x] is disconnected, choose G1 to be one component of G − N [x] and let

G2 = G−N [x]∪V (G1). If G−N [x] is connected and has a cut vertex w, choose G1 to be

one component ofG−N [x]∪{w} and letG2 = G−N [x]∪V (G1). LetBi = N(Gi)∩N(x)

for i = 1, 2 in both cases. We now make the following observation.

Observation. The following statements are true.

(1) V (G1) ∩ V (G2) = ∅ and V (G1) ∪ V (G2) = V (G)−N [x].

(2) |N(Gi) ∩N(x)| = |Bi| ≥ 6 for i = 1, 2.

(3) If |Bi| = 6 for some i ∈ {1, 2}, then G−N [x] is connected and has a cut vertex.

(4) M ⊆ B1 ∪B2.

(5) M ⊆ Bi for some i ∈ {1, 2} if G−N [x] is disconnected.

(6) For i = 1, 2, there exists a connected induced subgraph Li of Gi such that |NG(Li) ∩

(V (G)−N [x])| ≤ 1 and |NG(Li) ∩N(x)| ≥ 6.

(7) Neither G[B1] nor G[B2] is a clique.

Proof of Observation. (1)-(3) are simply true due to the construction of G1, G2 and the

7-connectivity of G. (4) and (5) true because there exists some component K of G−N [x]

such that M ⊆ N(K) by Lemma 4.2.1.

To see (6) is true, let L1 = G1 in both cases. If G − N [x] is disconnected, let L2 be

one single component of G2; and if G−N [x] has a cut vertex w, let L2 be a component of
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G2 − {w}. Since G is 7-connected, L1, L2 are as desired and therefore (6) is true in both

cases.

To see (7) is true, letLi ⊆ Gi for i = 1, 2 be as in (6), and letAi = NG(Li)∩N(x) ⊆ Bi

for i = 1, 2. Then, notice that Ai for both i = 1, 2 is a separator of G if G is disconnected,

and that Ai ∪ {w} is a separator of G if w is a cut vertex of G−N [x] that defines G1 and

G2. By Lemma 3.2.4, G[Ai] is a clique for neither i = 1, 2. Since Ai ⊆ Bi for i = 1, 2, it

follows that neither G[B1] nor G[B2] is a clique.

Hence, by (2), (4), and (7) in Observation and Lemma 4.4.3, one of the properties in

Lemma 4.4.3 is true about B1 and B2. We will consider each one of them separately in the

rest of this proof.

Case 1: (B1) in Lemma 4.4.3 is true

In this case, there exist b1 ∈ B1−B2 and b2 ∈ B2−B1 such that b1, b2 are adjacent and

share at most 6 common neighbors in N(x), meaning that they share at most 7 common

neighbors in N [x] and thus at least one common neighbor u ∈ V (G) − N [x]. Since

b1 ∈ B1 − B2 and b2 ∈ B2 − B1, we know b1 6∈ N(G2) and b2 6∈ N(G1). It follows that

u 6∈ V (G1) ∪ V (G2), a contradiction to (1) in Observation.

Case 2: (B2) in Lemma 4.4.3 is true

In this case, there exist b1 ∈ B and b2 ∈ B2 such that J > K9, where J is the graph

obtained from N(x) by making b1 adjacent to all other vertices in B1 and making b2 adja-

cent to all other vertices in B2. This means that by contracting all of G1 to b1 ∈ B1 and

contracting all of G2 to b2 ∈ B2, we can then obtain a resulting graph on N(x) that has a

K9 minor, and therefore G > K10, a contradiction.

Case 3: (B3) in Lemma 4.4.3 is true

In this case, |Bi| ≤ 8 for some fixed i ∈ {1, 2}, and for every B′i ⊆ Bi such that

|B′i| ≥ 6, there exist some Z ⊆ B′i with |Z| = 4 and b ∈ B3−i such that J > K9, where J

is the graph obtained from N(x) by making Z a clique and making b adjacent to all other
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vertices in B3−i.

By (6) in Observation, choose a connected induced subgraphLi ofGi such that |NG(Li)∩

(V (G) − N [x])| ≤ 1 and |NG(Li) ∩ N(x)| ≥ 6. Then, in the graph G[V (Li) ∪ NG(Li)],

choose a separation (X, Y ) of (G[V (Li) ∪ NG(Li)], NG(Li)) such that Y − X 6= ∅ and

|X ∩ Y | is minimum over all choices of (X, Y ). Notice that the minimality of |X ∩ Y |

implies that there exist disjoint paths P1, ..., P|X∩Y | linking NG(Li) and X ∩ Y in G[X].

Note that Y −X 6= ∅ and NG(Y −X) = X ∩ Y . Since G is 7-connected, it follows that

|X ∩ Y | = |NG(Y −X)| ≥ 7.

Since |NG(Li) ∩ (V (G) − N [x])| ≤ 1, without loss of generality, we can assume that

the end vertices of P1, ..., P|X∩Y |−1 in NG(Li) are all contained in NG(Li) ∩ N(x). Let

U ⊆ NG(Li) ∩ N(x) and U ′ ⊆ X ∩ Y be the sets of end vertices of P1, ..., P|X∩Y |−1 in

NG(Li) ∩N(x) and X ∩ Y , respectively. Note that |U | = |U ′| = |X ∩ Y | − 1 ≥ 6. Since

U ⊆ NG(Li) ∩ N(x) ⊆ NG(Gi) ∩ N(x) = Bi, it follows that U is a subset of Bi of size

at least 6. By (B3) in Lemma 4.4.3, there exist Z ⊆ U with |Z| = 4 and b ∈ B3−i such

that J > K9, where J is the graph obtained from N(x) by making Z a clique and making

b adjacent to all other vertices in B3−i. Without loss of generality, say vertices in Z are

precisely the end vertices of P1, P2, P3, P4 in U , and say Z ′ is the set of end vertices of

P1, P2, P3, P4 in U ′ ⊆ X ∩ Y .

Note now we have |NG(Li)∩(V (G)−N [x])| ≤ 1, NG(Li)∩N(x) ⊆ Bi, and |Bi| ≥ 8.

It then follows that

|NG(Li)| ≤ |NG(Li) ∩N(x)|+ 1 ≤ |Bi|+ 1 ≤ 9 ≤ δ(G)− 2.

By the choice of (X, Y ), since the trivial separation (X ′, Y ′) = (NG(Li), V (Li)∪NG(Li))

satisfies that Y ′ − X ′ 6= ∅, we know that |X ∩ Y | ≤ |X ′ ∩ Y ′| = |NG(Li)| due to the

minimality of |X ∩ Y |. It follows that |X ∩ Y | ≤ δ(G) − 2. Observe that the choice of

(X, Y ) also implies that there is no non-trivial separation of (G[Y ], X ∩ Y ) of order at
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most |X ∩ Y | − 1. Hence, by Lemma 3.2.3, G[(Y −X)∪Z ′] has a K4 minor rooted at Z ′.

Now, by contracting all of G3−i to b ∈ B3−i and by contracting edges in G[Y ] properly and

contracting each path Pi for i = 1, 2, 3, 4 to a single vertex, we can then eventually obtain

a resulting graph on N(x) that contains J as a subgraph. Since J > K9, it follows that

G− {x} > K9 and therefore G > K10, a contradiction.

Case 4: (B4) in Lemma 4.4.3 is true

In this case, Bi ⊆ B3−i for some fixed i ∈ {1, 2} such that |Bi| = 6 and there exists

some Z ⊆ B1 ∩B2 such that |Z| = 4 and e(G[B1 ∩B2])− e(G[Z])− δ(G[B1 ∩B2]) ≥ 6.

By (3) and (6) of Observation and by the 7-connectivity of G, G − N [x] is connected and

has a cut vertex w, and that N(Gi) = Bi ∪ {w} is a minimum separator of G.

Let H1 = G[V (Gi) ∪ Bi ∪ {w}] and H2 = G − V (Gi). Notice that H1, H2 defines a

non-trivial 7-separation ofG, where V (H1∩H2) = Bi∪{w} is a separator of order 7 ofG.

By Lemma 3.2.3, G[V (Gi)∪Z] has a rooted-K4 minor at Z and therefore we can contract

edges that have at least one end in Gi to Z properly to obtain 6− e(G[Z]) extra edges. Let

this new graph on V (H2) be H ′2. By Lemma 3.2.4, H ′2 6∼= K2,2,2,2,2,3 or K2,3,3,3,3. On the

other hand, note that x ∈ V (H2 − H1) and G3−i − {w} ⊆ H2 − H1. Since Bi ∪ {w} is

a minimum separator of G, by contracting all vertices in one component of G3−i − {w}

to w, we can have w adjacent to all six vertices in Bi in the new graph. Furthermore, let

u ∈ Bi such that dG[Bi](u) = δ(G[Bi]). Since Bi ⊆ N(x), by contracting the edge xu we

can then have u adjacent to all other vertices in Bi. Let δ = δ(G[Bi]). Then, by contracting

all vertices in one component of G3−i−{w} to w and contracting the edge xu, we are able

to obtain 6 + e(G[Bi]) + (5− δ) = 11 + e(G[Bi])− δ edges on Bi ∪{w} in the new graph.

By Lemma 3.2.1, it follows that

8 · 7 ≥ 35 + (6− e(G[Z])) + (11 + e(G[Bi])− δ)− 1 = 51 + e(G[Bi])− e(G[Z])− δ,

meaning that e(G[Bi]) − e(G[Z]) − δ ≤ 5, a contradiction to the inequality e(G[Bi]) −
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e(G[Z])− δ ≥ 6 in property (B4).

Case 5: (B5) in Lemma 4.4.3 is true

In this case, Bi ⊆ B3−i for some i ∈ {1, 2} such that |Bi| = 6 and e(G[Bi]) ∼= K−6 .

By (3) and (6) in Observation and by the 7-connectivity of G, it follows that G − N [x]

is connected and has a cut vertex w such that N(Gi) = Bi ∪ {w}. Notice that N(Gi) =

Bi ∪{w} is a minimum separator of G. Since G[Bi] ∼= K−6 , there is a unique missing edge

in G[Bi]. Let t = dN(Gi)(w). It follows that e(N(Gi)) = 14 + t. Since N(Gi) = Bi ∪ {w}

is a minimum separator of G, we know that by contracting all vertices in any component of

G − N(Gi) to w, we can obtain 6 − t extra edges on N(Gi). By Lemma 3.2.8, it follows

that

8 · 7 ≥ 35 + 2(6− t) + 14 + t = 61− t.

This means that t ≥ 5 and therefore w has at most one non-neighbor in Bi. By (1) in

Lemma 3.2.4, w has exactly one non-neighbor in Bi. Since G[Bi] ∼= K−6 , there exists some

Z ⊆ Bi ∪ {w} such that |Z| = 4 and that the graph obtained from N(Gi) by making Z a

clique is isomorphic to K7, a contradiction to (2) in Lemma 3.2.4.

Case 6: (B6) in Lemma 4.4.3 is true

In this case, (B1, B2) is a non-trivial separation of N(x) of order k ≤ 7 such that

e(G[B1 ∩ B2]) = 4k − 20 +
(
k−5
2

)
, and that edges with at least one end in Bi − B3−i for

i = 1, 2 can be contracted in a way such that the new graph on B1 ∩ B2 has at most 3

non-edges.

Notice that if G−N [x] is disconnected, then (B1∩B2)∪{x} separates V (G1)∪ (B1−

B2) from V (G2)∪ (B2−B1); and if G−N [x] has a cut vertex w, then (B1∩B2)∪{x,w}

separates V (G1)∪(B1−B2) from (V (G2)−{w})∪(B2−B1). LetH1 = G[V (G1)∪B1∪

{x}] in the former case, and let H1 = G[V (G1) ∪ B1 ∪ {x,w}] in the latter case. In both

cases, let H2 = G − V (G1) ∪ (B1 − B2). It follows that (V (H1), V (H2)) is a separation

of G in both cases. Let S = V (H1 ∩ H2). Notice that if G − N [x] is disconnected,
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then S = (B1 ∩ B2) ∪ {x} and |S| = k + 1; and if G − N [x] has a cut vertex w, then

S = (B1∩B2)∪{x,w} and |S| = k+2. We will again apply the inequality in Lemma 3.2.1

to this separation to show contractions.

We first prove an upper bound to e(G[S]) in both cases. Since B1 ∩ B2 ⊆ N(x),

we know that x is adjacent to all vertices in S. Therefore, if G − N [x] is disconnected,

then e(G[S]) = e(G[B1 ∩ B2]) + k; and if G − N [x] has a cut vertex w, then e(G[S]) =

e(G[B1∩B2])+k+dG[S](w) ≤ e(G[B1∩B2])+2k, where the last inequality is due to the

facts thatw 6∈ N(x) and dG[S](w) ≤ |B1∩B2| = k. Since e(G[B1∩B2]) = 4k−20+
(
k−5
2

)
,

it follows that

e(G[S]) ≤ (4 + |S| − k)k − 20 +

(
k − 5

2

)
in both cases.

We now prove a lower bound to the number of edges in H ′i for i = 1, 2, a supgraph

on V (Hi) that can be obtained from G by contracting edges that have at least one end in

H3−i −Hi. In the case G−N [x] has a cut vertex w, note that w ∈ S = V (H1 ∩H2) and

for both i = 1, 2, Gi − {w} ⊆ Hi − H3−i and w is a neighbor for every component of

Gi − {w}. This means that for i = 1, 2, by contracting all of Gi − {w} to w, we would

have w to be adjacent to all vertices in B1∩B2 ⊆ Bi in the new graph on S. Recall that for

i = 1, 2, edges with at least one end in Bi − B3−i can be contracted in a way such that the

new graph on B1 ∩B2 has at most 3 non-edges. Therefore, for i = 1, 2, there is a supgraph

H ′i on V (Hi) obtained by contracting edges that have at least one end in H3−i − Hi such

that if G−N [x] is disconnected, then

e(H ′i[S]) = e(H ′i[B1 ∩B2]) + dH′i[S](x) ≥
(
k

2

)
− 3 + k;

and that if G−N [x] has a cut vertex, then

e(H ′i[S]) = e(H ′i[B1 ∩B2]) + dH′i[S](x) + dH′i[S](w) ≥
(
k

2

)
− 3 + 2k.
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To summarize, in both cases we have

e(H ′i[S]) ≥
(
k

2

)
− 3 + (|S| − k)k.

By Lemma 3.2.1, we know that 8|S| ≥ 33+e(H ′1[S])+e(H ′2[S])−e(G[S]). Due to the

upper bound for e(G[S]) and the lower bounds for e(H ′1[S]) and e(H ′2[S]) above, it follows

that

8|S| ≥ 33+2(

(
k

2

)
−3+(|S|−k)k)−((4+|S|−k)k−20+

(
k − 5

2

)
) = 47+(|S|−5)k−

(
k − 5

2

)
.

If G−N [x] is disconnected, then |S| = k + 1 and thus

8(k + 1) ≥ 47 + (k − 4)k −
(
k − 5

2

)
= 47 + k2 − 4k −

(
k − 5

2

)
,

meaning that k2 − 12k −
(
k−5
2

)
+ 39 ≤ 0, a contradiction to the fact that k ≤ 7.

If G−N [x] has a cut vertex, then |S| = k + 2 and thus

8(k + 2) ≥ 47 + (k − 3)k −
(
k − 5

2

)
= 47 + k2 − 3k −

(
k − 5

2

)
,

again a contradiction to the fact that k ≤ 7.
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CHAPTER 5

CONCLUSION

Finally, in this chapter we apply Lemma 4.1.1, the main technical lemma, to complete the

proof for Theorem 1.1.5.

Proof of Theorem 1.1.5. By Lemma 3.1.1 and Lemma 3.3.1, there exists a vertex x ∈

V (G) with 11 ≤ d(x) ≤ 15. We choose such a vertex x with a component K of G−N [x]

such that |K| is minimum over all choices of x and K. In the next Claim, we prove that

every vertex in K has degree at least 16 in G.

Claim 1. For every y ∈ V (K), dG(y) ≥ 16.

Proof of Claim 1. Choose y ∈ V (K) such that dG(y) is minimum among all vertices in K.

For the sake of a contradiction, assume that dG(y) ≤ 15. Note that x ∈ V (G) − N [y], as

x, y are not adjacent to each other. Let L be the component of G − N [y] that contains x,

and let My ⊆ N(y) be the subset of vertices that are not adjacent to all other vertices in

N(y).

Since dG(y) ≤ 15, by Lemma 4.1.1 there exists some vertex z ∈ My − N(L). Note

this implies that z 6∈ N(x) and therefore z ∈ V (K) − {y}. By the choice of y, we know

dG(z) ≥ dG(y). Since z ∈ My is not adjacent to some vertex in N(y), z must be adjacent

to some z′ ∈ V (G) − N [y] ∪ V (L). Let L′ be the component of G − N [y] that contains

z′, and note that L 6= L′ since z 6∈ N(L). It follows that z′ 6∈ N(x). Since z′ is a neighbor

of z and z ∈ V (K), it follows that z′ ∈ V (K) as well. Furthermore, since x ∈ V (L) and

L,L′ are two distinct components of G−N [y], it follows that V (L′) ∩N(x) = ∅ and thus

some component of G−N [x] includes all vertices in L′. Since z′ ∈ V (L′) is contained in

K, it follows that V (L′) ⊆ V (K). Notice that y ∈ V (K) and y 6∈ V (L′), and it follows

that |L′| < |K|. Since dG(y) ≤ 15, the fact that |L′| < |K| is a contradiction to the choice
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of x and K. a

Now, let G1 = G − V (K) and G2 = G[N(K) ∪ V (K)]. Let d2 be the maximum

number of edges that can be added to G2 by contracting edges that have at least one end in

G1 −G2, and let J2 be a minor of G on V (G2) such that e(J2) = e(G2) + d2. By Claim 1,

dG(y) ≥ 16 for every y ∈ V (K). Since |K| > 0, we know ∆(J2) ≥ ∆(G2) ≥ 16, and

therefore J2 6∼= K2,2,2,2,2,3 or K2,3,3,3,3. Since J2 is a proper minor of G, it follows that

e(J2) ≤ 8|G2| − 35. Let δ = δ(N(K)) and choose z ∈ N(K) such that dN(K)(z) = δ.

Note that N(K) ⊆ N(x), and therefore by contracting the edge xz we could have the new

vertex adjacent to all other vertices in N(K). This shows that d2 ≥ |N(K)| − 1 − δ, and

therefore

e(G2) = e(J2)− d2 ≤ (8|G2| − 35)− (|N(K)| − 1− δ) = 8|K|+ 7|N(K)|+ δ − 34.

By Claim 1, dG(y) ≥ 16 for every y ∈ V (K), and this implies that 16|K| ≤
∑

y∈V (K) dG(y) =

2e(K) + e(K,N(K)). Note that e(N(K)) ≥ 1
2
δ|N(K)|. For simplicity, let k = |K| and

N = |N(K)|. It follows that

e(K) =
(
2e(K) + e(K,N(K))

)
+ e(N(K))− e(G2)

≥ 16k +
1

2
δN −

(
8k + 7N + δ − 34

)
= 8k +

1

2
δ(N − 2)− 7N + 34.

Since δ(N(x)) ≥ 8, δ = δ(N(K)) ≥ δ(N(x)) − (d(x) − |N(K)|) ≥ 8 − d(x) + N . Let

d = d(x). It follows that

e(K) ≥ 8k +
1

2
(8− d+N)(N − 2)− 7N + 34.
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Observe that

2·
(1

2
(8−d+N)(N−2)−7N+34

)
= N2−(8+d)N+2d(x)+52 =

(
N−1

2
(8+d)

)2−1

4

(
d+4

)2
+40.

Therefore,

2e(K) ≥ 16k +
(
N − 1

2
(8 + d)

)2 − 1

4

(
d+ 4

)2
+ 40.

Assume |K| ≥ 8 for a moment. Since G > K, we know that e(K) ≤ 8k − 34, and

therefore

16k +
(
N − 1

2
(8 + d)

)2 − 1

4

(
d+ 4

)2
+ 40 ≤ 2e(K) ≤ 16k − 68,

meaning that
(
N− 1

2
(8+d)

)2− 1
4

(
d+4

)2
+108 ≤ 0, and therefore−1

4

(
d+4

)2
+108 ≤ 0.

Note that d = d(x) ≤ 15. It follows that −1
4

(
d + 4

)2
+ 108 ≥ −192

4
+ 108 > 0, a

contradiction.

We may then assume |K| ≤ 7. Note that

16k +
(
N − 1

2
(8 + d)

)2 − 1

4

(
d+ 4

)2
+ 40 ≤ 2e(K) ≤ 2

(
k

2

)
= k2 − k.

It follows that

k2 − 17k ≥
(
N − 1

2
(8 + d)

)2 − 1

4

(
d+ 4

)2
+ 40 ≥ 0− (15 + 4)2

4
+ 40 = −201

4
,

where the second inequality is due to d = d(x) ≤ 15. Since k2 − 17k ≥ −201
4

and k ≤ 7,

it follows that k ≤ 3. By Lemma 4.1.1, we know |N(K)| ≤ d(x) − 1 ≤ 14. Since

dG(y) ≥ 16 for every y ∈ K, it follows that |K| = k = 3, |N(K)| = 14, d(x) = 15, and

that every vertex in K is adjacent to all other vertices in G2 = G[V (K) ∪N(K)].

Recall that e(G2) + d2 = e(J2) ≤ 8|G2| − 35. Since |G2| = 3 + 14 = 17, it follows
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that e(G2) + d2 ≤ 8 · 17− 35 = 101. Therefore,

e(N(K)) + d2 =
(
e(G2) + d2

)
−
(
e(K) + e(K,N(K))

)
≤ 101− (3 + 3 · 14) = 56.

Note that δ ≥ δ(N(x))− 1 ≥ 7. This means that e(N(K)) ≥ 1
2
δ|N(K)| ≥ 1

2
· 7 · 14 = 49,

and thus d2 ≤ 56 − 49 = 7. If δ ≥ 8, then e(N(K)) ≥ 1
2
· 8 · 14 = 56. It follows that

d2 = 0, e(N(K)) = 56, and dN(K)(v) = 8 for every v ∈ N(K). This then implies that, by

contracting an edge between x and any vertex in N(K), we would obtain exactly 5 extra

edges on N(K), meaning d2 ≥ 5, a contradiction. We then conclude that δ = 7. Note now

d2 ≥ |N(K)| − 1 − δ = 14 − 1 − 7 = 6. Since d2 ≤ 7, it follows that d2 = 6 or 7 and

e(N(K)) = 49 or 50.

Now, note that N(K) is either a 7-regular graph or obtained from a 7-regular graph by

adding one more edge. Let U = {u ∈ N(K) : dN(K)(u) = 7}, and notices that |U | = 12 or

14. Choose distinct vertices u1, u2 ∈ U such that u1u2 6∈ E(G). Let w be the unique vertex

inN(x)−N(K). Since δ(N(x)) ≥ 8, every vertex v ∈ N(K) such that dN(K)(v) = 7 must

be adjacent to w and therefore U ⊆ N(w). Observe that |N(K)−N [u1]| = 14−1−7 = 6,

and |N(w)∩N(K)−N [u2]| ≥ |U −N [u2]| ≥ |U |− |N [u2]| ≥ 12− 8 = 4. Therefore, by

contracting xu1 and wu2, we can obtain |N(K)−N [u1]|+ |N(w)∩N(K)−N [u2]|−1 ≥

6 + 4− 1 = 9 extra edges on N(K). It follows that d2 ≥ 9, a contradiction to the fact that

d2 ≤ 7.
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Appendices



APPENDIX A

PROBLEM GRAPHS

We present the 101 problem graphs explicitly here, as mentioned in Lemma 4.2.3. There are

13 problems graphs on 11 vertices, 35 problem graphs on 12 vertices, 33 problem graphs

on 13 vertices, 11 problem graphs on 14 vertices, and 9 problem graphs on 15 vertices.

Here is how to read the problem graphs in this appendix: For k = 11, 12, 13, 14, 15,

for each problem graph on k vertices, the vertices are 0-indexed, and we give the full list

of neighbors of each vertex from vertex-0 to vertex-(k-1). For example, the third line of

the matrix for graph 1 on 11 vertices, as shown below, says “2 : 3 4 5 6 7 8 9 10”, and

this means that the neighborhood of vertex-2 in this graph is precisely the set of vertices

indexed 3, 4, 5, 6, 7, 8, 9, 10 in this graph.

A.1 Problem Graphs on 11 vertices

There are 13 problem graphs on 11 vertices, up to isomorphism.

Graph 1, on 11 vertices

0 : 3 4 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 3 4 5 6 7 8 9 10

3 : 0 1 2 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 6 7 8 9 10

6 : 0 1 2 3 4 5 9 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 9 10

9 : 0 1 2 3 4 5 6 7 8
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10 : 0 1 2 3 4 5 6 7 8

Graph 2, on 11 vertices

0 : 3 4 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 3 4 5 6 7 8 9 10

3 : 0 1 2 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 6 7 8 9 10

6 : 0 1 2 3 4 5 8 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 7 10

10 : 0 1 2 3 4 5 6 7 8 9

Graph 3, on 11 vertices

0 : 3 4 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 3 4 5 6 7 8 9 10

3 : 0 1 2 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 6 7 8 9 10

6 : 0 1 2 3 4 5 8 9

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 7 8

Graph 4, on 11 vertices

0 : 3 4 5 6 7 8 9 10
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1 : 3 4 5 6 7 8 9 10

2 : 3 4 5 6 7 8 9 10

3 : 0 1 2 5 6 7 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 4 5 6 9 10

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

Graph 5, on 11 vertices

0 : 2 4 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 1 4 5 6 7 8 9 10

4 : 0 1 2 3 6 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 5 8 9 10

8 : 0 1 2 3 4 5 6 7

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7

Graph 6, on 11 vertices

0 : 2 3 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10
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4 : 1 2 5 6 7 8 9 10

5 : 0 1 2 3 4 7 9 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 6 9 10

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

Graph 7, on 11 vertices

0 : 2 3 5 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 1 2 5 6 7 8 9 10

5 : 0 1 2 3 4 7 8 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 6 7 10

10 : 0 1 2 3 4 5 6 7 8 9

Graph 8, on 11 vertices

0 : 2 3 4 6 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 1 2 3 6 7 8 9 10

6 : 0 1 2 3 4 5 8 9
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7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 7 8

Graph 9, on 11 vertices

0 : 2 3 4 5 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 1 2 3 4 7 8 9 10

7 : 0 1 2 3 4 5 6 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 6 10

10 : 0 1 2 3 4 5 6 7 8 9

Graph 10, on 11 vertices

0 : 2 3 4 5 7 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 1 2 3 4 7 8 9 10

7 : 0 1 2 3 4 5 6 9

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 6 7
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10 : 0 1 2 3 4 5 6 8

Graph 11, on 11 vertices

0 : 2 3 4 5 6 8 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 9 10

7 : 1 2 3 4 5 8 9 10

8 : 0 1 2 3 4 5 6 7

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7

Graph 12, on 11 vertices

0 : 2 3 4 5 6 7 9 10

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 5 9 10

8 : 1 2 3 4 5 6 9 10

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

Graph 13, on 11 vertices

0 : 2 3 4 5 6 7 8 9
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1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 6 7 8 9 10

3 : 0 1 5 6 7 8 9 10

4 : 0 1 2 6 7 8 9 10

5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 6 7

10 : 1 2 3 4 5 6 7 8

A.2 Problem Graphs on 12 vertices

There are 35 problem graphs on 12 vertices, up to isomorphism.

Graph 1, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 8 9 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 8 9 10 11

8 : 0 1 2 3 4 5 6 7

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 5 6 7

Graph 2, on 12 vertices
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0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 9 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11

8 : 0 1 2 3 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 3, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11

8 : 0 1 2 3 4 5 6 11

9 : 0 1 2 3 5 6 7 11

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 5 6 7 8 9

Graph 4, on 12 vertices

0 : 4 5 6 7 8 9 10 11
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1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 5 6 7 11

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 9

Graph 5, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 9 10

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11

8 : 0 1 2 3 4 5 6 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 5 6 7 8

Graph 6, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11
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2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 10 11

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 5 10 11

8 : 0 1 2 3 4 6 10 11

9 : 0 1 2 3 5 6 10 11

10 : 0 1 2 3 4 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8 9

Graph 7, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 9 11

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 5 10 11

8 : 0 1 2 3 4 6 10 11

9 : 0 1 2 3 4 5 6 11

10 : 0 1 2 3 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8 9

Graph 8, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11
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3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 9 10

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 5 10 11

8 : 0 1 2 3 4 6 10 11

9 : 0 1 2 3 4 5 6 11

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 5 6 7 8 9

Graph 9, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 7 8 10 11

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 6 10 11

9 : 0 1 2 3 5 6 7 11

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 8 9

Graph 10, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11
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4 : 0 1 2 3 7 8 10 11

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 6 9 11

9 : 0 1 2 3 5 6 7 8

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 5 6 8

Graph 11, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 6 8 9 10

5 : 0 1 2 3 7 9 10 11

6 : 0 1 2 3 4 8 9 11

7 : 0 1 2 3 5 9 10 11

8 : 0 1 2 3 4 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 7 8

11 : 0 1 2 3 5 6 7 8

Graph 12, on 12 vertices

0 : 4 5 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 4 5 6 7 8 9 10 11

4 : 0 1 2 3 6 8 9 11
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5 : 0 1 2 3 7 8 9 10

6 : 0 1 2 3 4 8 10 11

7 : 0 1 2 3 5 9 10 11

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 3 4 5 7 11

10 : 0 1 2 3 5 6 7 8

11 : 0 1 2 3 4 6 7 9

Graph 13, on 12 vertices

0 : 3 4 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 5 6 7 8 9 10 11

4 : 0 1 2 6 8 9 10 11

5 : 1 2 3 7 8 9 10 11

6 : 0 1 2 3 4 9 10 11

7 : 0 1 2 3 5 9 10 11

8 : 0 1 2 3 4 5 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 14, on 12 vertices

0 : 3 4 6 7 8 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 5 6 7 8 9 10 11

4 : 0 1 2 6 7 8 10 11

5 : 1 2 3 7 8 9 10 11
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6 : 0 1 2 3 4 9 10 11

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 9 11

9 : 0 1 2 3 5 6 7 8

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 5 6 8

Graph 15, on 12 vertices

0 : 3 4 5 6 7 9 10 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 5 6 7 8 9 10 11

4 : 0 1 2 7 8 9 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11

8 : 1 2 3 4 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 16, on 12 vertices

0 : 3 4 5 6 7 8 9 10

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 5 6 7 8 9 10 11

4 : 0 1 2 7 8 9 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11
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7 : 0 1 2 3 4 9 10 11

8 : 0 1 2 3 4 5 6 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7

11 : 1 2 3 4 5 6 7 8

Graph 17, on 12 vertices

0 : 3 4 5 6 7 8 9 10

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 5 6 7 8 9 10 11

4 : 0 1 2 6 7 9 10 11

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 4 8 9 10

7 : 0 1 2 3 4 8 10 11

8 : 0 1 2 3 5 6 7 11

9 : 0 1 2 3 4 5 6 11

10 : 0 1 2 3 4 5 6 7

11 : 1 2 3 4 5 7 8 9

Graph 18, on 12 vertices

0 : 3 4 5 6 7 8 9 11

1 : 4 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 4 5 6 7 8 10 11

4 : 0 1 2 3 7 8 9 10

5 : 0 1 2 3 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 2 3 4 9 10 11
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8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 4 5 6 7 11

10 : 1 2 3 4 5 6 7 8

11 : 0 1 2 3 5 6 7 9

Graph 19, on 12 vertices

0 : 3 4 6 7 8 9 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 6 7 8 9 10 11

4 : 0 2 6 7 8 9 10 11

5 : 1 2 6 7 8 9 10 11

6 : 0 1 2 3 4 5 9 10

7 : 0 1 2 3 4 5 10 11

8 : 0 1 2 3 4 5 10 11

9 : 0 1 2 3 4 5 6 11

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 7 8 9

Graph 20, on 12 vertices

0 : 3 4 6 7 8 9 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 6 7 8 9 10 11

4 : 0 2 6 7 8 9 10 11

5 : 1 2 6 7 8 9 10 11

6 : 0 1 2 3 4 5 9 10

7 : 0 1 2 3 4 5 9 11

8 : 0 1 2 3 4 5 10 11
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9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 8

11 : 0 1 2 3 4 5 7 8

Graph 21, on 12 vertices

0 : 3 4 5 6 8 9 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 6 7 8 9 10 11

4 : 0 2 6 7 8 9 10 11

5 : 0 1 2 7 8 9 10 11

6 : 0 1 2 3 4 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 3 4 5 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 22, on 12 vertices

0 : 3 4 5 6 7 8 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 6 7 8 9 10 11

4 : 0 2 6 7 8 9 10 11

5 : 0 1 2 7 8 9 10 11

6 : 0 1 2 3 4 9 10 11

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 3 4 5 9 11

9 : 1 2 3 4 5 6 7 8
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10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 5 6 8

Graph 23, on 12 vertices

0 : 3 4 5 6 7 8 9 10

1 : 3 4 5 6 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 6 7 8 9 10 11

4 : 0 1 2 6 7 8 9 11

5 : 0 1 2 7 8 9 10 11

6 : 0 1 2 3 4 9 10 11

7 : 0 2 3 4 5 9 10 11

8 : 0 1 2 3 4 5 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 5 6 7 8

11 : 1 2 3 4 5 6 7 8

Graph 24, on 12 vertices

0 : 3 4 5 6 8 9 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 4 6 7 9 10 11

4 : 0 2 3 7 8 9 10 11

5 : 0 1 2 7 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 4 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8
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11 : 0 1 2 3 4 5 6 7 8

Graph 25, on 12 vertices

0 : 3 4 5 7 8 9 10 11

1 : 3 5 6 7 8 9 10 11

2 : 4 5 6 7 8 9 10 11

3 : 0 1 4 6 7 8 9 10

4 : 0 2 3 6 8 9 10 11

5 : 0 1 2 6 7 8 10 11

6 : 1 2 3 4 5 8 9 10

7 : 0 1 2 3 5 9 10 11

8 : 0 1 2 3 4 5 6 11

9 : 0 1 2 3 4 6 7 11

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 4 5 7 8 9

Graph 26, on 12 vertices

0 : 2 4 5 6 7 9 10 11

1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 6 8 9 10 11

3 : 1 5 6 7 8 9 10 11

4 : 0 1 2 7 8 9 10 11

5 : 0 2 3 7 8 9 10 11

6 : 0 1 2 3 8 9 10 11

7 : 0 1 3 4 5 9 10 11

8 : 1 2 3 4 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8
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Graph 27, on 12 vertices

0 : 2 4 5 6 7 9 10 11

1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 7 8 9 10 11

3 : 1 5 6 7 8 9 10 11

4 : 0 1 2 6 8 9 10 11

5 : 0 2 3 7 8 9 10 11

6 : 0 1 3 4 8 9 10 11

7 : 0 1 2 3 5 9 10 11

8 : 1 2 3 4 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 28, on 12 vertices

0 : 2 4 5 6 8 9 10 11

1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 7 8 9 10 11

3 : 1 5 6 7 8 9 10 11

4 : 0 1 2 6 7 9 10 11

5 : 0 2 3 7 8 9 10 11

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 3 5 6 10 11

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

Graph 29, on 12 vertices
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0 : 2 4 5 6 7 8 9 10

1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 6 7 8 10 11

3 : 1 5 6 7 8 9 10 11

4 : 0 1 2 5 8 9 10 11

5 : 0 2 3 4 8 9 10 11

6 : 0 1 2 3 7 8 9 11

7 : 0 1 2 3 6 9 10 11

8 : 0 1 2 3 4 5 6 10

9 : 0 1 3 4 5 6 7 11

10 : 0 1 2 3 4 5 7 8

11 : 1 2 3 4 5 6 7 9

Graph 30, on 12 vertices

0 : 2 3 5 6 8 9 10 11

1 : 3 4 5 6 7 8 10 11

2 : 0 4 5 7 8 9 10 11

3 : 0 1 5 6 7 9 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 10 11

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 4 5 6 10 11

9 : 0 2 3 4 6 7 10 11

10 : 0 1 2 3 4 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8 9

Graph 31, on 12 vertices

0 : 2 3 5 6 8 9 10 11
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1 : 3 4 5 6 7 8 9 11

2 : 0 4 5 7 8 9 10 11

3 : 0 1 5 6 7 9 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 10 11

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 4 5 6 10 11

9 : 0 1 2 3 4 6 7 11

10 : 0 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8 9

Graph 32, on 12 vertices

0 : 2 3 5 6 8 9 10 11

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 7 8 9 10 11

3 : 0 1 5 6 7 9 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 10 11

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 4 5 6 10 11

9 : 0 1 2 3 4 6 7 11

10 : 0 1 2 3 4 5 6 7 8

11 : 0 2 3 4 5 6 7 8 9

Graph 33, on 12 vertices

0 : 2 3 5 6 8 9 10 11

1 : 3 4 5 6 7 8 9 10
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2 : 0 4 5 7 8 9 10 11

3 : 0 1 5 6 7 8 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 9 10

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 3 4 5 6 11

9 : 0 1 2 4 5 6 7 11

10 : 0 1 2 3 4 5 6 7

11 : 0 2 3 4 6 7 8 9

Graph 34, on 12 vertices

0 : 2 3 5 6 8 9 10 11

1 : 3 4 5 6 7 8 9 10

2 : 0 4 5 7 8 9 10 11

3 : 0 1 5 6 7 8 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 9 11

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 9 10 11

8 : 0 1 2 3 4 5 6 10

9 : 0 1 2 4 5 6 7 11

10 : 0 1 2 3 4 6 7 8

11 : 0 2 3 4 5 6 7 9

Graph 35, on 12 vertices

0 : 2 3 5 6 7 8 9 10

1 : 3 4 5 6 7 8 10 11

2 : 0 4 5 7 8 9 10 11
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3 : 0 1 5 6 7 9 10 11

4 : 1 2 6 7 8 9 10 11

5 : 0 1 2 3 7 8 9 11

6 : 0 1 3 4 8 9 10 11

7 : 0 1 2 3 4 5 9 10

8 : 0 1 2 4 5 6 10 11

9 : 0 2 3 4 5 6 7 11

10 : 0 1 2 3 4 6 7 8

11 : 1 2 3 4 5 6 8 9

A.3 Problem Graphs on 13 vertices

There are 33 problem graphs on 13 vertices, up to isomorphism.

Graph 1, on 13 vertices

0 : 5 6 7 8 9 10 11 12

1 : 5 6 7 8 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 5 6 7 8 9 10 11 12

4 : 5 6 7 8 9 10 11 12

5 : 0 1 2 3 4 10 11 12

6 : 0 1 2 3 4 10 11 12

7 : 0 1 2 3 4 10 11 12

8 : 0 1 2 3 4 10 11 12

9 : 0 1 2 3 4 10 11 12

10 : 0 1 2 3 4 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8 9

12 : 0 1 2 3 4 5 6 7 8 9

Graph 2, on 13 vertices
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0 : 5 6 7 8 9 10 11 12

1 : 5 6 7 8 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 5 6 7 8 9 10 11 12

4 : 5 6 7 8 9 10 11 12

5 : 0 1 2 3 4 9 11 12

6 : 0 1 2 3 4 9 11 12

7 : 0 1 2 3 4 10 11 12

8 : 0 1 2 3 4 10 11 12

9 : 0 1 2 3 4 5 6 10

10 : 0 1 2 3 4 7 8 9

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 3, on 13 vertices

0 : 5 6 7 8 9 10 11 12

1 : 5 6 7 8 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 5 6 7 8 9 10 11 12

4 : 5 6 7 8 9 10 11 12

5 : 0 1 2 3 4 9 10 11

6 : 0 1 2 3 4 9 10 12

7 : 0 1 2 3 4 9 11 12

8 : 0 1 2 3 4 10 11 12

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 6 8

11 : 0 1 2 3 4 5 7 8

12 : 0 1 2 3 4 6 7 8
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Graph 4, on 13 vertices

0 : 5 6 7 8 9 10 11 12

1 : 5 6 7 8 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 5 6 7 8 9 10 11 12

4 : 5 6 7 8 9 10 11 12

5 : 0 1 2 3 4 8 9 10

6 : 0 1 2 3 4 9 10 11

7 : 0 1 2 3 4 10 11 12

8 : 0 1 2 3 4 5 11 12

9 : 0 1 2 3 4 5 6 12

10 : 0 1 2 3 4 5 6 7

11 : 0 1 2 3 4 6 7 8

12 : 0 1 2 3 4 7 8 9

Graph 5, on 13 vertices

0 : 4 5 6 7 9 10 11 12

1 : 4 5 6 7 9 10 11 12

2 : 4 6 7 8 9 10 11 12

3 : 5 6 7 8 9 10 11 12

4 : 0 1 2 8 9 10 11 12

5 : 0 1 3 8 9 10 11 12

6 : 0 1 2 3 9 10 11 12

7 : 0 1 2 3 9 10 11 12

8 : 2 3 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

176



12 : 0 1 2 3 4 5 6 7 8

Graph 6, on 13 vertices

0 : 3 4 5 6 9 10 11 12

1 : 4 5 6 7 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 0 6 7 8 9 10 11 12

4 : 0 1 7 8 9 10 11 12

5 : 0 1 2 8 9 10 11 12

6 : 0 1 2 3 9 10 11 12

7 : 1 2 3 4 9 10 11 12

8 : 2 3 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 7, on 13 vertices

0 : 3 4 6 8 9 10 11 12

1 : 4 5 6 7 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 0 5 6 7 9 10 11 12

4 : 0 1 7 8 9 10 11 12

5 : 1 2 3 8 9 10 11 12

6 : 0 1 2 3 9 10 11 12

7 : 1 2 3 4 9 10 11 12

8 : 0 2 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8
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11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 8, on 13 vertices

0 : 3 4 5 6 8 9 11 12

1 : 5 6 7 8 9 10 11 12

2 : 5 6 7 8 9 10 11 12

3 : 0 4 5 7 8 9 10 12

4 : 0 3 6 7 8 10 11 12

5 : 0 1 2 3 7 9 11 12

6 : 0 1 2 4 9 10 11 12

7 : 1 2 3 4 5 10 11 12

8 : 0 1 2 3 4 9 10 11

9 : 0 1 2 3 5 6 8 10

10 : 1 2 3 4 6 7 8 9

11 : 0 1 2 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7

Graph 9, on 13 vertices

0 : 3 4 6 7 8 9 11 12

1 : 4 5 6 8 9 10 11 12

2 : 4 5 6 8 9 10 11 12

3 : 0 5 6 7 9 10 11 12

4 : 0 1 2 7 8 9 10 11

5 : 1 2 3 7 8 10 11 12

6 : 0 1 2 3 7 9 10 12

7 : 0 3 4 5 6 8 10 12

8 : 0 1 2 4 5 7 11 12

9 : 0 1 2 3 4 6 10 11
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10 : 1 2 3 4 5 6 7 9

11 : 0 1 2 3 4 5 8 9

12 : 0 1 2 3 5 6 7 8

Graph 10, on 13 vertices

0 : 3 4 5 6 8 9 10 11

1 : 4 5 6 7 8 10 11 12

2 : 4 5 6 7 8 10 11 12

3 : 0 5 6 7 8 9 10 12

4 : 0 1 2 7 8 9 10 12

5 : 0 1 2 3 9 10 11 12

6 : 0 1 2 3 9 10 11 12

7 : 1 2 3 4 8 9 11 12

8 : 0 1 2 3 4 7 10 11

9 : 0 3 4 5 6 7 11 12

10 : 0 1 2 3 4 5 6 8

11 : 0 1 2 5 6 7 8 9

12 : 1 2 3 4 5 6 7 9

Graph 11, on 13 vertices

0 : 3 4 5 7 8 10 11 12

1 : 4 5 6 7 8 9 10 11

2 : 5 6 7 8 9 10 11 12

3 : 0 4 6 7 9 10 11 12

4 : 0 1 3 7 8 9 11 12

5 : 0 1 2 6 8 9 10 12

6 : 1 2 3 5 8 9 10 11

7 : 0 1 2 3 4 10 11 12

8 : 0 1 2 4 5 6 9 11
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9 : 1 2 3 4 5 6 8 12

10 : 0 1 2 3 5 6 7 12

11 : 0 1 2 3 4 6 7 8

12 : 0 2 3 4 5 7 9 10

Graph 12, on 13 vertices

0 : 3 4 6 7 9 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 6 7 9 10 11 12

4 : 0 2 6 8 9 10 11 12

5 : 1 2 7 8 9 10 11 12

6 : 0 1 3 4 9 10 11 12

7 : 0 2 3 5 9 10 11 12

8 : 1 2 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 13, on 13 vertices

0 : 3 4 6 7 9 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 6 7 9 10 11 12

4 : 0 2 6 8 9 10 11 12

5 : 1 2 7 8 9 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 0 2 3 5 9 10 11 12
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8 : 1 2 4 5 6 10 11 12

9 : 0 1 2 3 4 5 6 7

10 : 0 1 2 3 4 5 7 8

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 14, on 13 vertices

0 : 3 4 6 8 9 10 11 12

1 : 3 5 6 7 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 6 7 9 10 11 12

4 : 0 2 6 8 9 10 11 12

5 : 1 2 7 8 9 10 11 12

6 : 0 1 3 4 9 10 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 2 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 15, on 13 vertices

0 : 3 4 7 8 9 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 6 7 9 10 11 12

3 : 0 1 6 7 9 10 11 12

4 : 0 2 6 8 9 10 11 12

5 : 1 2 7 8 9 10 11 12

6 : 1 2 3 4 9 10 11 12
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7 : 0 2 3 5 9 10 11 12

8 : 0 1 4 5 9 10 11 12

9 : 0 1 2 3 4 5 6 7 8

10 : 0 1 2 3 4 5 6 7 8

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 16, on 13 vertices

0 : 3 4 5 6 9 10 11 12

1 : 3 5 6 7 8 9 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 6 7 8 10 11 12

4 : 0 2 6 8 9 10 11 12

5 : 0 1 2 7 9 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 8 10 11 12

8 : 1 2 3 4 6 7 11 12

9 : 0 1 2 4 5 6 11 12

10 : 0 2 3 4 5 7 11 12

11 : 0 1 2 3 4 5 6 7 8 9 10

12 : 0 1 2 3 4 5 6 7 8 9 10

Graph 17, on 13 vertices

0 : 3 4 5 6 8 9 11 12

1 : 3 5 6 7 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 6 7 9 10 11 12

4 : 0 2 7 8 9 10 11 12

5 : 0 1 2 6 8 9 11 12
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6 : 0 1 3 5 8 10 11 12

7 : 1 2 3 4 9 10 11 12

8 : 0 2 4 5 6 10 11 12

9 : 0 1 2 3 4 5 7 10

10 : 1 2 3 4 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7 8

Graph 18, on 13 vertices

0 : 3 4 5 7 8 9 11 12

1 : 3 6 7 8 9 10 11 12

2 : 4 5 6 7 8 10 11 12

3 : 0 1 5 6 9 10 11 12

4 : 0 2 6 7 8 9 11 12

5 : 0 2 3 7 8 10 11 12

6 : 1 2 3 4 9 10 11 12

7 : 0 1 2 4 5 9 10 11

8 : 0 1 2 4 5 9 10 12

9 : 0 1 3 4 6 7 8 10

10 : 1 2 3 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7

12 : 0 1 2 3 4 5 6 8

Graph 19, on 13 vertices

0 : 3 4 6 7 8 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 5 7 8 10 11 12

4 : 0 2 6 7 9 10 11 12
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5 : 1 2 3 7 9 10 11 12

6 : 0 1 4 8 9 10 11 12

7 : 0 2 3 4 5 10 11 12

8 : 0 1 2 3 6 10 11 12

9 : 1 2 4 5 6 10 11 12

10 : 0 1 2 3 4 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8 9

12 : 0 1 2 3 4 5 6 7 8 9

Graph 20, on 13 vertices

0 : 3 4 6 7 8 10 11 12

1 : 3 5 6 7 9 10 11 12

2 : 4 5 6 7 8 10 11 12

3 : 0 1 5 8 9 10 11 12

4 : 0 2 6 7 8 9 10 11

5 : 1 2 3 8 9 10 11 12

6 : 0 1 2 4 7 9 10 12

7 : 0 1 2 4 6 9 11 12

8 : 0 2 3 4 5 9 10 11

9 : 1 3 4 5 6 7 8 12

10 : 0 1 2 3 4 5 6 8

11 : 0 1 2 3 4 5 7 8

12 : 0 1 2 3 5 6 7 9

Graph 21, on 13 vertices

0 : 3 4 6 7 9 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 6 8 9 10 11 12

3 : 0 1 5 7 8 10 11 12
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4 : 0 2 6 7 8 9 11 12

5 : 1 2 3 7 8 9 10 12

6 : 0 1 2 4 7 9 10 11

7 : 0 3 4 5 6 8 10 11

8 : 1 2 3 4 5 7 11 12

9 : 0 1 2 4 5 6 10 12

10 : 0 1 2 3 5 6 7 9

11 : 0 1 2 3 4 6 7 8

12 : 0 1 2 3 4 5 8 9

Graph 22, on 13 vertices

0 : 3 4 6 7 8 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 5 6 7 10 11 12

4 : 0 2 6 7 8 9 11 12

5 : 1 2 3 7 9 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 0 2 3 4 5 10 11 12

8 : 0 1 2 4 6 9 10 12

9 : 1 2 4 5 6 8 11 12

10 : 0 1 2 3 5 7 8 12

11 : 0 1 2 3 4 5 6 7 9

12 : 0 1 2 3 4 5 6 7 8 9 10

Graph 23, on 13 vertices

0 : 3 4 6 7 8 10 11 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12
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3 : 0 1 5 6 7 10 11 12

4 : 0 2 6 7 8 9 11 12

5 : 1 2 3 7 9 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 0 2 3 4 5 10 11 12

8 : 0 1 2 4 6 9 10 11

9 : 1 2 4 5 6 8 11 12

10 : 0 1 2 3 5 7 8 12

11 : 0 1 2 3 4 5 6 7 8 9

12 : 0 1 2 3 4 5 6 7 9 10

Graph 24, on 13 vertices

0 : 3 4 6 7 8 9 10 12

1 : 3 5 6 8 9 10 11 12

2 : 4 5 7 8 9 10 11 12

3 : 0 1 5 6 7 9 11 12

4 : 0 2 6 7 8 10 11 12

5 : 1 2 3 7 9 10 11 12

6 : 0 1 3 4 8 10 11 12

7 : 0 2 3 4 5 9 11 12

8 : 0 1 2 4 6 9 10 11

9 : 0 1 2 3 5 7 8 10

10 : 0 1 2 4 5 6 8 9

11 : 1 2 3 4 5 6 7 8

12 : 0 1 2 3 4 5 6 7

Graph 25, on 13 vertices

0 : 2 4 5 6 8 9 10 11

1 : 3 4 6 7 8 9 11 12
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2 : 0 4 5 7 8 9 10 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 9 10 11 12

5 : 0 2 3 7 8 9 10 11

6 : 0 1 3 4 8 10 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 2 3 5 6 9 12

9 : 0 1 2 4 5 7 8 11

10 : 0 2 3 4 5 6 7 12

11 : 0 1 3 4 5 6 7 9

12 : 1 2 3 4 6 7 8 10

Graph 26, on 13 vertices

0 : 2 4 5 6 8 9 11 12

1 : 3 4 6 7 8 9 10 12

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 8 9 10 12

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 3 4 5 6 10 12

9 : 0 1 2 4 6 7 11 12

10 : 1 2 3 4 5 7 8 12

11 : 0 2 3 5 6 7 9 12

12 : 0 1 2 3 4 5 6 7 8 9 10 11

Graph 27, on 13 vertices

0 : 2 4 5 6 8 9 11 12
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1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 8 9 10 12

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 3 4 5 6 10 12

9 : 0 1 2 4 6 7 11 12

10 : 1 2 3 4 5 7 8 12

11 : 0 1 2 3 5 6 7 9

12 : 0 2 3 4 5 6 7 8 9 10

Graph 28, on 13 vertices

0 : 2 4 5 6 8 9 11 12

1 : 3 4 6 7 8 9 10 12

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 8 9 10 11

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 3 4 5 6 10 12

9 : 0 1 2 4 6 7 11 12

10 : 1 2 3 4 5 7 8 12

11 : 0 2 3 4 5 6 7 9

12 : 0 1 2 3 5 6 7 8 9 10

Graph 29, on 13 vertices
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0 : 2 4 5 6 8 9 11 12

1 : 3 4 6 7 8 9 10 11

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 8 9 10 11

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 3 4 5 6 10 12

9 : 0 1 2 4 6 7 11 12

10 : 1 2 3 4 5 7 8 12

11 : 0 1 2 3 4 5 6 7 9

12 : 0 2 3 5 6 7 8 9 10

Graph 30, on 13 vertices

0 : 2 4 5 6 8 9 11 12

1 : 3 4 6 7 8 9 10 12

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 8 9 10 11

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 11 12

7 : 1 2 3 5 9 10 11 12

8 : 0 1 3 4 5 6 10 12

9 : 0 1 2 4 6 7 11 12

10 : 1 2 3 4 5 7 8 11

11 : 0 2 3 4 5 6 7 9 10

12 : 0 1 2 3 5 6 7 8 9
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Graph 31, on 13 vertices

0 : 2 4 5 6 7 9 10 12

1 : 3 4 6 7 8 10 11 12

2 : 0 4 5 7 8 9 10 11

3 : 1 5 6 7 8 9 11 12

4 : 0 1 2 6 8 9 10 11

5 : 0 2 3 7 8 9 11 12

6 : 0 1 3 4 9 10 11 12

7 : 0 1 2 3 5 10 11 12

8 : 1 2 3 4 5 9 10 12

9 : 0 2 3 4 5 6 8 11

10 : 0 1 2 4 6 7 8 12

11 : 1 2 3 4 5 6 7 9

12 : 0 1 3 5 6 7 8 10

Graph 32, on 13 vertices

0 : 2 4 5 6 7 9 10 11

1 : 3 4 6 7 8 9 11 12

2 : 0 4 5 7 8 9 10 12

3 : 1 5 6 7 8 10 11 12

4 : 0 1 2 6 9 10 11 12

5 : 0 2 3 7 8 9 10 11

6 : 0 1 3 4 8 10 11 12

7 : 0 1 2 3 5 9 10 12

8 : 1 2 3 5 6 9 11 12

9 : 0 1 2 4 5 7 8 11

10 : 0 2 3 4 5 6 7 12

11 : 0 1 3 4 5 6 8 9
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12 : 1 2 3 4 6 7 8 10

Graph 33, on 13 vertices

0 : 2 4 5 6 8 9 11 12

1 : 3 4 6 7 8 9 10 12

2 : 0 4 5 7 9 10 11 12

3 : 1 5 6 7 8 9 10 11

4 : 0 1 2 6 7 9 11 12

5 : 0 2 3 7 8 10 11 12

6 : 0 1 3 4 8 9 10 11

7 : 1 2 3 4 5 10 11 12

8 : 0 1 3 5 6 9 10 12

9 : 0 1 2 3 4 6 8 11

10 : 1 2 3 5 6 7 8 12

11 : 0 2 3 4 5 6 7 9

12 : 0 1 2 4 5 7 8 10

A.4 Problem Graphs on 14 vertices

There are 11 problem graphs on 14 vertices, up to isomorphism.

Graph 1, on 14 vertices

0 : 3 4 6 7 10 11 12 13

1 : 4 5 7 8 10 11 12 13

2 : 5 6 8 9 10 11 12 13

3 : 0 6 7 9 10 11 12 13

4 : 0 1 7 8 10 11 12 13

5 : 1 2 8 9 10 11 12 13

6 : 0 2 3 9 10 11 12 13

7 : 0 1 3 4 10 11 12 13
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8 : 1 2 4 5 10 11 12 13

9 : 2 3 5 6 10 11 12 13

10 : 0 1 2 3 4 5 6 7 8 9

11 : 0 1 2 3 4 5 6 7 8 9

12 : 0 1 2 3 4 5 6 7 8 9

13 : 0 1 2 3 4 5 6 7 8 9

Graph 2, on 14 vertices

0 : 3 5 6 7 9 10 11 12

1 : 4 5 7 8 9 10 12 13

2 : 4 6 7 8 9 11 12 13

3 : 0 5 6 8 9 10 11 13

4 : 1 2 7 8 10 11 12 13

5 : 0 1 3 6 9 10 12 13

6 : 0 2 3 5 9 11 12 13

7 : 0 1 2 4 8 10 11 12

8 : 1 2 3 4 7 10 11 13

9 : 0 1 2 3 5 6 12 13

10 : 0 1 3 4 5 7 8 11

11 : 0 2 3 4 6 7 8 10

12 : 0 1 2 4 5 6 7 9

13 : 1 2 3 4 5 6 8 9

Graph 3, on 14 vertices

0 : 3 5 6 7 8 10 12 13

1 : 4 7 8 9 10 11 12 13

2 : 4 7 8 9 10 11 12 13

3 : 0 5 6 7 9 10 11 13

4 : 1 2 5 6 8 9 11 12
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5 : 0 3 4 6 8 10 11 12

6 : 0 3 4 5 9 10 12 13

7 : 0 1 2 3 8 9 11 13

8 : 0 1 2 4 5 7 11 12

9 : 1 2 3 4 6 7 11 13

10 : 0 1 2 3 5 6 12 13

11 : 1 2 3 4 5 7 8 9

12 : 0 1 2 4 5 6 8 10

13 : 0 1 2 3 6 7 9 10

Graph 4, on 14 vertices

0 : 3 4 6 8 9 11 12 13

1 : 3 5 6 7 10 11 12 13

2 : 4 5 7 8 9 10 12 13

3 : 0 1 6 7 9 11 12 13

4 : 0 2 6 8 9 10 12 13

5 : 1 2 7 8 10 11 12 13

6 : 0 1 3 4 9 10 12 13

7 : 1 2 3 5 9 11 12 13

8 : 0 2 4 5 10 11 12 13

9 : 0 2 3 4 6 7 12 13

10 : 1 2 4 5 6 8 12 13

11 : 0 1 3 5 7 8 12 13

12 : 0 1 2 3 4 5 6 7 8 9 10 11

13 : 0 1 2 3 4 5 6 7 8 9 10 11

Graph 5, on 14 vertices

0 : 3 4 6 8 9 11 12 13

1 : 3 5 6 7 10 11 12 13
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2 : 4 5 7 8 9 10 12 13

3 : 0 1 6 7 9 11 12 13

4 : 0 2 6 8 9 10 12 13

5 : 1 2 7 8 10 11 12 13

6 : 0 1 3 4 9 10 12 13

7 : 1 2 3 5 9 11 12 13

8 : 0 2 4 5 10 11 12 13

9 : 0 2 3 4 6 7 10 11

10 : 1 2 4 5 6 8 9 11

11 : 0 1 3 5 7 8 9 10

12 : 0 1 2 3 4 5 6 7 8

13 : 0 1 2 3 4 5 6 7 8

Graph 6, on 14 vertices

0 : 3 4 7 8 9 11 12 13

1 : 3 5 6 8 10 11 12 13

2 : 4 5 6 7 9 10 12 13

3 : 0 1 6 7 9 11 12 13

4 : 0 2 6 8 9 10 12 13

5 : 1 2 7 8 10 11 12 13

6 : 1 2 3 4 9 10 12 13

7 : 0 2 3 5 9 11 12 13

8 : 0 1 4 5 10 11 12 13

9 : 0 2 3 4 6 7 10 11

10 : 1 2 4 5 6 8 9 11

11 : 0 1 3 5 7 8 9 10

12 : 0 1 2 3 4 5 6 7 8

13 : 0 1 2 3 4 5 6 7 8
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Graph 7, on 14 vertices

0 : 3 4 7 8 9 11 12 13

1 : 3 5 6 8 10 11 12 13

2 : 4 5 6 7 9 10 11 12

3 : 0 1 6 7 8 11 12 13

4 : 0 2 6 8 9 10 11 12

5 : 1 2 7 9 10 11 12 13

6 : 1 2 3 4 8 10 11 12

7 : 0 2 3 5 9 11 12 13

8 : 0 1 3 4 6 9 10 13

9 : 0 2 4 5 7 8 10 13

10 : 1 2 4 5 6 8 9 13

11 : 0 1 2 3 4 5 6 7

12 : 0 1 2 3 4 5 6 7

13 : 0 1 3 5 7 8 9 10

Graph 8, on 14 vertices

0 : 2 4 6 7 8 10 11 13

1 : 3 5 6 7 9 10 11 12

2 : 0 4 6 8 9 11 12 13

3 : 1 5 7 8 9 10 12 13

4 : 0 2 6 8 10 11 12 13

5 : 1 3 7 9 10 11 12 13

6 : 0 1 2 4 8 10 11 12

7 : 0 1 3 5 9 10 11 13

8 : 0 2 3 4 6 10 12 13

9 : 1 2 3 5 7 11 12 13

10 : 0 1 3 4 5 6 7 8
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11 : 0 1 2 4 5 6 7 9

12 : 1 2 3 4 5 6 8 9

13 : 0 2 3 4 5 7 8 9

Graph 9, on 14 vertices

0 : 2 4 6 7 8 9 11 12

1 : 3 5 6 7 9 10 11 13

2 : 0 4 6 8 9 10 11 12

3 : 1 5 7 8 9 10 12 13

4 : 0 2 6 8 10 11 12 13

5 : 1 3 7 9 10 11 12 13

6 : 0 1 2 4 8 10 11 13

7 : 0 1 3 5 9 11 12 13

8 : 0 2 3 4 6 10 12 13

9 : 0 1 2 3 5 7 11 12

10 : 1 2 3 4 5 6 8 13

11 : 0 1 2 4 5 6 7 9

12 : 0 2 3 4 5 7 8 9

13 : 1 3 4 5 6 7 8 10

Graph 10, on 14 vertices

0 : 2 4 6 7 8 9 10 12

1 : 3 5 6 7 8 10 11 13

2 : 0 4 6 8 9 10 11 12

3 : 1 5 7 8 9 10 11 13

4 : 0 2 6 8 9 11 12 13

5 : 1 3 7 9 10 11 12 13

6 : 0 1 2 4 8 11 12 13

7 : 0 1 3 5 9 10 12 13

196



8 : 0 1 2 3 4 6 11 13

9 : 0 2 3 4 5 7 10 12

10 : 0 1 2 3 5 7 9 12

11 : 1 2 3 4 5 6 8 13

12 : 0 2 4 5 6 7 9 10

13 : 1 3 4 5 6 7 8 11

Graph 11, on 14 vertices

0 : 2 4 6 7 8 10 11 13

1 : 3 5 6 7 8 9 11 12

2 : 0 4 6 8 9 10 12 13

3 : 1 5 7 8 9 10 11 12

4 : 0 2 6 8 10 11 12 13

5 : 1 3 7 9 10 11 12 13

6 : 0 1 2 4 8 9 12 13

7 : 0 1 3 5 9 10 11 13

8 : 0 1 2 3 4 6 11 12

9 : 1 2 3 5 6 7 12 13

10 : 0 2 3 4 5 7 11 13

11 : 0 1 3 4 5 7 8 10

12 : 1 2 3 4 5 6 8 9

13 : 0 2 4 5 6 7 9 10

A.5 Problem Graphs on 15 vertices

There are 9 problem graphs on 15 vertices, up to isomorphism.

Graph 1, on 15 vertices

0 : 3 4 6 8 10 12 13 14

1 : 4 5 7 9 10 12 13 14
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2 : 5 6 8 9 11 12 13 14

3 : 0 7 8 10 11 12 13 14

4 : 0 1 6 9 10 12 13 14

5 : 1 2 7 9 11 12 13 14

6 : 0 2 4 8 9 12 13 14

7 : 1 3 5 10 11 12 13 14

8 : 0 2 3 6 11 12 13 14

9 : 1 2 4 5 6 12 13 14

10 : 0 1 3 4 7 12 13 14

11 : 2 3 5 7 8 12 13 14

12 : 0 1 2 3 4 5 6 7 8 9 10 11

13 : 0 1 2 3 4 5 6 7 8 9 10 11

14 : 0 1 2 3 4 5 6 7 8 9 10 11

Graph 2, on 15 vertices

0 : 3 4 7 8 9 11 12 14

1 : 3 5 6 8 9 10 12 13

2 : 4 5 6 7 9 10 12 13

3 : 0 1 6 7 9 11 13 14

4 : 0 2 6 8 9 11 13 14

5 : 1 2 7 8 10 11 12 13

6 : 1 2 3 4 9 10 13 14

7 : 0 2 3 5 10 11 12 14

8 : 0 1 4 5 10 11 12 14

9 : 0 1 2 3 4 6 12 13

10 : 1 2 5 6 7 8 12 14

11 : 0 3 4 5 7 8 13 14

12 : 0 1 2 5 7 8 9 10
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13 : 1 2 3 4 5 6 9 11

14 : 0 3 4 6 7 8 10 11

Graph 3, on 15 vertices

0 : 3 4 5 8 10 11 12 13

1 : 4 6 7 8 9 10 13 14

2 : 5 6 7 8 9 11 12 14

3 : 0 6 7 9 10 11 12 13

4 : 0 1 5 8 10 11 13 14

5 : 0 2 4 8 10 11 12 14

6 : 1 2 3 7 9 10 12 14

7 : 1 2 3 6 9 11 13 14

8 : 0 1 2 4 5 9 12 13

9 : 1 2 3 6 7 8 12 13

10 : 0 1 3 4 5 6 12 14

11 : 0 2 3 4 5 7 13 14

12 : 0 2 3 5 6 8 9 10

13 : 0 1 3 4 7 8 9 11

14 : 1 2 4 5 6 7 10 11

Graph 4, on 15 vertices

0 : 3 4 6 7 9 10 12 13

1 : 3 5 6 8 9 11 12 14

2 : 4 5 7 8 10 11 13 14

3 : 0 1 6 7 9 10 12 13

4 : 0 2 6 8 9 11 12 14

5 : 1 2 7 8 10 11 13 14

6 : 0 1 3 4 9 10 12 13

7 : 0 2 3 5 9 11 12 14
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8 : 1 2 4 5 10 11 13 14

9 : 0 1 3 4 6 7 12 13

10 : 0 2 3 5 6 8 12 14

11 : 1 2 4 5 7 8 13 14

12 : 0 1 3 4 6 7 9 10

13 : 0 2 3 5 6 8 9 11

14 : 1 2 4 5 7 8 10 11

Graph 5, on 15 vertices

0 : 3 4 6 7 9 11 12 13

1 : 3 5 6 8 10 11 13 14

2 : 4 5 7 8 9 10 12 14

3 : 0 1 6 7 9 11 13 14

4 : 0 2 6 8 9 10 12 13

5 : 1 2 7 8 10 11 12 14

6 : 0 1 3 4 9 10 12 13

7 : 0 2 3 5 9 11 12 14

8 : 1 2 4 5 10 11 13 14

9 : 0 2 3 4 6 7 12 14

10 : 1 2 4 5 6 8 12 13

11 : 0 1 3 5 7 8 13 14

12 : 0 2 4 5 6 7 9 10

13 : 0 1 3 4 6 8 10 11

14 : 1 2 3 5 7 8 9 11

Graph 6, on 15 vertices

0 : 3 4 6 7 9 11 12 14

1 : 3 5 6 8 10 11 12 13

2 : 4 5 7 8 9 10 13 14

200



3 : 0 1 6 7 9 11 12 13

4 : 0 2 6 8 9 10 12 14

5 : 1 2 7 8 10 11 13 14

6 : 0 1 3 4 9 10 12 13

7 : 0 2 3 5 9 11 13 14

8 : 1 2 4 5 10 11 12 14

9 : 0 2 3 4 6 7 12 13

10 : 1 2 4 5 6 8 13 14

11 : 0 1 3 5 7 8 12 14

12 : 0 1 3 4 6 8 9 11

13 : 1 2 3 5 6 7 9 10

14 : 0 2 4 5 7 8 10 11

Graph 7, on 15 vertices

0 : 3 4 6 7 9 11 12 14

1 : 3 5 6 8 10 11 13 14

2 : 4 5 7 8 9 10 12 13

3 : 0 1 6 7 9 11 13 14

4 : 0 2 6 8 9 10 12 14

5 : 1 2 7 8 10 11 12 13

6 : 0 1 3 4 9 10 13 14

7 : 0 2 3 5 9 11 12 13

8 : 1 2 4 5 10 11 12 14

9 : 0 2 3 4 6 7 12 13

10 : 1 2 4 5 6 8 13 14

11 : 0 1 3 5 7 8 12 14

12 : 0 2 4 5 7 8 9 11

13 : 1 2 3 5 6 7 9 10
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14 : 0 1 3 4 6 8 10 11

Graph 8, on 15 vertices

0 : 3 4 6 7 10 11 12 14

1 : 3 5 6 8 9 10 13 14

2 : 4 5 7 8 9 11 12 13

3 : 0 1 6 7 9 11 13 14

4 : 0 2 6 8 10 11 12 13

5 : 1 2 7 8 9 10 12 14

6 : 0 1 3 4 9 10 12 13

7 : 0 2 3 5 9 11 12 14

8 : 1 2 4 5 10 11 13 14

9 : 1 2 3 5 6 7 12 13

10 : 0 1 4 5 6 8 12 14

11 : 0 2 3 4 7 8 13 14

12 : 0 2 4 5 6 7 9 10

13 : 1 2 3 4 6 8 9 11

14 : 0 1 3 5 7 8 10 11

Graph 9, on 15 vertices

0 : 3 4 6 8 9 11 12 13

1 : 3 5 6 7 10 11 13 14

2 : 4 5 7 8 9 10 12 14

3 : 0 1 6 7 9 11 12 13

4 : 0 2 6 8 9 10 12 14

5 : 1 2 7 8 10 11 13 14

6 : 0 1 3 4 9 10 12 13

7 : 1 2 3 5 9 11 13 14

8 : 0 2 4 5 10 11 12 14
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9 : 0 2 3 4 6 7 12 13

10 : 1 2 4 5 6 8 12 14

11 : 0 1 3 5 7 8 13 14

12 : 0 2 3 4 6 8 9 10

13 : 0 1 3 5 6 7 9 11

14 : 1 2 4 5 7 8 10 11
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