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SUMMARY

For two graphs GG and H, G has H as a minor if a graph isomorphic to H can be
obtained from a subgraph of G by repeatedly contracting edges. The Four Color Theorem
(4CT) says that every planar graph is 4-colorable. Due to the Kuratowski-Wagner theorem,
the 4CT can be restated that every graph with no K5 minor and K3 3 minor is 4-colorable.
The famous Hadwiger Conjecture is a generalization of the 4CT, which says that every
graph with no K, minor for integers ¢ > 1 is t-colorable. The Hadwiger’s Conjecture is
true for all £ < 5 and remains widely open for ¢ > 6.

To make progress on Hadwiger’s Conjecture for ¢ > 6, one major line of work has
focused on giving an upper bound on the number of edges for graphs without a /&; minor.
The maximum number of edges of an n-vertex graph with no K; minor is known as the
extremal function for K, minors. This dissertation focuses on the extremal function for
Ko minors.

Our main theorem says that every graph on n > 8 vertices and at least 8n — 35 edges
either has a Ky minor or falls into a few families of exceptional graphs. In Chapter 1,
we discuss more into the motivation and related results on the K79 minor work. In Chap-
ter 2, we present necessary graph theoretical background and a series of observations of the
exceptional graphs in the main theorem. We study structural properties of possible mini-
mal counter-examples to the main theorem in Chapter 3 and later dive into proving a main
technical lemma in Chapter 4. Finally, we conclude our main theorem in Chapter 5.

We note that the proof for the main technical lemma (Lemma 4.1.1) in our proof for
the main theorem is computer-assisted. We do not yet have a computer-free proof for

Lemma 4.1.1.
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CHAPTER 1
INTRODUCTION

We discuss motivation, related results, and further impact of my work in this chapter.

1.1 Motivation

My work is motivated by Hadwiger’s conjecture, which is a longstanding open problem
that generalizes the Four Color Theorem. The Four Color Theorem (4CT) states that every
planar graph is 4-colorable. By the Kuratowski-Wagner theorem [20, 39], a graph is planar
if and only if it has no K5 or K33 minor, which allows us to restate the 4CT that every
graph with no K5 minor and no K33 minor is 4-colorable. As K33 can in fact be colored
by four colors, one might wonder if every graph with no K5 minor is 4-colorable. This

leads us to Hadwiger’s famous conjecture [7].

Conjecture 1.1.1 (Hagwidger’s Conjecture). For every integert > 0, every graph with no

K1 minor is t-colorable.

For t < 3, Hadwiger’s conjecture is reasonably easy, as shown by Hadwiger [7] and Dirac
[5]. Wagner [39] proved the case t = 4 is equivalent to the 4CT in 1937, so the case t = 4
was eventually proved in 1976 when Appel and Haken [2, 3] proved the 4CT. In 1993,
Robertson, Seymour, and Thomas [23] showed the case ¢t = 5 is also equivalent to the 4CT.
Hadwiger’s conjecture remains open for ¢ > 6.

One major line of work on Hadwiger’s conjecture has focused on giving an upper bound
on the number of edges for graphs that lack a /K; minor. For positive integers ¢ and n, the
maximum number of edges that an n-vertex graph with no K; minor can have is known
as the extremal function for K; minors. My work in this dissertation focuses on the case

t = 10. Mader [21] proved the following theorem in 1968.



Theorem 1.1.2. For every integer t = 1,2,...,7, a graph on n > t vertices and at least

(t —2)n — (*;') + 1 edges has a K, minor.

Mader also pointed out /5 5 2 2 2 is a counter-example for the case ¢ = 8. One can construct
further counter-examples by repeatedly identifying cliques of size 5.

In general, for graphs H; and H, and an integer k, we define an (H;, Hs, k)-cockade
recursively as follows: Every graph isomorphic to H; or H, is an (Hy, Hs, k)-cockade; If
G1, Gy are both (Hy, Hs, k)-cockades, then the graph obtained from the disjoint union of
(G, and G4 by identifying a clique of size k in (G; with a clique of the same size in G is also
an (Hy, Hs, k)-cockade; Every (H;, Hs, k)-cockade can be constructed this way. If H; =
Hy = H, then an (H,, Hs, k)-cockade is also called an (H, k)-cockade. A graph G is a
trivial (H, k)-cockade if G = H, and otherwise a non-trivial (H, k)-cockade. For a (H, k)-
cockade G, the multiplicity of G is defined recursively as follows: G has multiplicity 1 if it
is a trivial (H, k)-cockade; G has multiplicity m = my + my for some my, mg > 1 if there
exist induced subgraphs GGy, G5 of G such that G = G U G5, G1 N Gy = K, and G} is an
(H, k)-cockade of multiplicity m, for i = 1, 2.

Jgrgensen [10] and Song and Thomas [32] generalized Theorem 1.1.2 for Kg minors

and Ky minors, respectively, as follows.

Theorem 1.1.3. Every graph on n > 8 vertices and at least 6n — 20 edges either has a Ky

minor or is a (K392 2, 5)-cockade.

Theorem 1.1.4. Every graph on n > 9 vertices and at least Tn — 27 edges either has a Ky

minor or is a (K1 22222, 6)-cockade, or is isomorphic to K323 3.

It is then natural to ask if every graph on n > 10 vertices and 8n — 35 edges with no
Ko minor falls into a few families of graphs. We prove Theorem 1.1.5 for Ky minors,
which is the main theorem of this dissertation.

For graphs H and G, let H + GG denote the graph obtained from the disjoint union of H
and G by adding edges xy forall x € V(H) and y € V(G).

2



Theorem 1.1.5. Every graph on n > 8 vertices and at least 8n — 35 edges either has a
Ko minor or is isomorphic to one of the following graphs:

(1) a (Ki1122222, 7)-cockade;

(3) Ko229 + Cs;

(4) K2233.45

(5) K333+ Cs;

(6) K2,2,2,2,2,3;

7777777777

77777

(9) K23333
(10) G3 = Ky 3333 — e where e € E(Ks3333) and both ends of e have degree 11;

(11) Gy = Ky 3333 — e where e € E(Ks 333 3) and the ends of e have degree 11 and 12;

77777

We note that in the proof for Theorem 1.1.5 that we will present later in this dissertation,
the proof for the main technical lemma (Lemma 4.1.1) is computer-assisted, and we do not

yet have a computer-free proof for it.

1.2 Related Work and Impact of the Main Theorem

We now discuss related work to our problem and impact of Theorem 1.1.5 to give a more

general context.

1.2.1 The extremal function for /&; minors

We first point out that the linear edge bound given by Mader in Theorem 1.1.2 actually is
incorrect for large ¢. Kostochka [17, 18] and de la Vega [38] proved that for large ¢, a graph
on n vertices must have at least {2(¢+/log tn) edges to guarantee a K; minor by showing that

a random graph with no K; minor may have average degree of order ¢1/log¢. Kostochaka
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[17, 18] and Thomason [35] proved the order of ¢y/log tn is also an upper bound, and later
Thomason [36] was able to determine the constant of proportionality exactly. Although it
may now seem unnecessary to study the extremal function for specific small values of ¢, the
random graph examples only provide finitely many counter-examples. Of course, for any
given value of ¢, more counter-examples can be made by taking disjoint unions or gluing
counter-examples along small cut sets, but we know of no construction of highly connected
infinite families of counter-examples. More specifically, Seymour and Thomas conjecture

the following.

Conjecture 1.2.1. For every integer t > 1, there exists a constant N = N (t) such that
every (t — 2)-connected graph onn > N vertices and at least (t — 2)n — (*,') + 1 edges

has a K; minor.

Note that Theorems 1.1.2, 1.1.3, and 1.1.4 imply that Conjecture 1.2.1 is true for ¢ < 9.
Since every Kjp-minor-free graph in Theorem 1.1.5 is not 8-connected, Theorem 1.1.5
implies that Conjecture 1.2.1 is also true for ¢ = 10. In particular, we have the following

corollary of Theorem 1.1.5.

Corollary 1.2.2 (Corollary of Theorem 1.1.5). Every 8-connected graph onn > 8 vertices

and at least 8n — 35 edges has a Ky minor.

1.2.2 Relating to Hadwiger’s Conjecture

The proof of the case t = 5 of Hadwiger’s conjecture [23] uses the case ¢ = 6 of Theorem
1.1.2 to get an upper bound on the number of edges for /s minor-free graphs. As the case
t = 6 of Hadwiger’s conjecture remains open, Kawarabayashi and Toft [15] proved that
every graph with no K7 minor is either 6-colorable or has a /{4 4 minor. It is not known yet
if every K7 minor-free graph is 7-colorable. Albar and Gongalves [1] and Rolek and Song
[28] proved that for t = 7, 8,9, a graph with no K; minor is (2¢ —6)-colorable. Their proofs

use the extremal function results for ¢ < 9 to find a vertex of degree of at most 2t — 5 in



every graph with no K; minor. Now, Corollary 1.2.2 and Theorem 5.2 in [28] immediately

imply the following corollary that every graph with no Ky minor is 14-colorable.

Corollary 1.2.3 (Corollary of Theorem 1.1.5). Every graph with no K,y minor is 14-

colorable.

Another weaker version of Hadwiger’s conjecture is the doubly-critical conjecture by
Kawarabayashi, Pedersen, and Toft [13]. A connected ¢-chromatic graph G is called
doubly-critical if G — {u, v} is (t — 2)-colorable for every edge uv € E(G). The doubly-
critical conjecture states that every doubly-critical ¢t-chromatic graph contains a K; minor.
Rolek and Song showed in [27] that the doubly-critical conjecture is true for all ¢ < 9,
and their proof again uses the extremal function for ¢ < 9. According to Song (private
communication), by following the ideas in [27] and the ideas proving Theorem 1.1.5 in this
dissertation, one can prove, with effort, that every double-critical 10-chromatic graph has a
K¢ minor, which then resolves the the doubly-critical conjecture for ¢ = 10.

Another way of weakening Hadwiger’s conjecture is to only consider ¢-chromatic graphs
with a unique ¢-coloring. A recent work by Kriesell [19] shows that for ¢ < 10, every graph
of chromatic number ¢ with a unique ¢-coloring has a K;y minor. Following the ideas in
[19] and the ideas proving Theorem 1.1.5 in this dissertation, we can then extend to obtain

the following corollary.

Corollary 1.2.4 (Corollary of Theorem 1.1.5). Every I1-chromatic graph with a unique

11-coloring has a K, minor.

The last line of work related to Hadwiger’s conjecture we want to mention here is the

Erdos-Lovasz Tihany Conjecture.

Conjecture 1.2.5 (Erdos-Lovasz Tihany Conjecture). For any pair of integers s,t > 2 and
any graph G with w(w) < x(G) = s+t — 1, there are two disjoint subgraphs G and G
of G such that x(G1) > s and x(G3) > t.



For integers s,t > 2 with s < ¢, say a graph an (s, t)-graph if it is a connected (s +t — 1)-
chromatic graph and does not contain two disjoint subgraphs with chromatic numbers s
and ¢, respectively. Then following the ideas in [16] by Kawarabayashi, Pedersen, and Toft
and the ideas of proving Theorem 1.1.5 in this dissertation, we can conclude the following

corollary, settling Conjecture 1.4 in the same paper [16] fors =2and 2 <t < 9.

Corollary 1.2.6 (Corollary of Theorem 1.1.5). Fort = 2,3, ...,9, every (2,t)-graph with

cliqgue number at most t has a Ko U K; minor.

1.2.3  Variants of the extremal function for K; minors

Thomas and Yoo [34] studied the extremal function for /; minors for triangle-free graphs.
They proved a theorem that for ¢ = 2, 3, ..., 9, a triangle-free graph on n > 2¢ — 5 vertices
and at least (t — 2)n — (t — 2)? + 1 edges has a K; minor. Now by Theorem 1.1.5 in this
dissertation and Theorem 3.2 in [34], we can extend the triangle-free theorem to the case

t = 10 and conclude the following corollary immediately.

Corollary 1.2.7 (Corollary of Theorem 1.1.5). Every triangle-free graph on n > 15 ver-

tices and at least 8n — 63 edges has a K,y minor.

The extremal functions for K, minors have also been studied, where K, denotes the
graph obtained from K; by deleting one edge. Jakobsen [8, 9] proved that for t < 7, every
graph onn > ¢ vertices and at least (¢ — 2)n— (¢ —3)(t — 1) edges has a K, minor, or is a
(K;—1,t —3)-cockade, or G is a (K322, K¢, 4)-cockade in the case ¢t = 7. Song [31] later

showed that every graph on n > 8 vertices and at least —11”2_ 35

edges either has a /g’ minor
orisa (Kj2922, K7,5)-cockade. Moreover, Song pointed out (private communication) it
is promising that the way of using the 3-linkage theorem by Thomas and Wollan [33] in our
proof for Theorem 1.1.5 in this dissertation can be applied to prove an analogous theorem

for K4, minor-free graphs.



CHAPTER 2
PRELIMINARIES

2.1 Graph Basics

All graphs are simple in this dissertation. For a graph G, V(G) and E(G) denote the set of
vertices and the set of edges of G, respectively. If two vertices x, y are adjacent in GG, we
say they are neighbors in GG and write xy or yx to denote the edge between them. x and y
are called the end vertices, or simply ends, of the edge xy. We use |G| = |V (G)| to denote
the number of vertices in G.

If a graph G satisfies that V(G’) C V(G) and E(G’) C E(G), then G’ is a subgraph
of G, denoted by G’ C G. For a subset A C V(G) of vertices, G[A] denotes the subgraph
of GG that has set of vertices equal to A and set of edges containing every edge of G with
both end vertices in A. Say G[A] is induced by the subset A. An induced subgrpah of G is
a subgraph of G equal to G[A] for some A C V(G).

For a vertex © € V(G), N(x) is the set of neighbors of z in G, and N|[z] = N(x)U{z}.
We also use N(z) and N|[z] denote the induced subgraphs of G on the subsets of vertices
N(z) and N{z], respectively. The degree of x is the size of N(z), denoted by d(x). The
minimum degree over all vertices in G is denoted by §(G). A subset A C V(G) of vertices
is a clique if every pair of vertices in A is an edge in G. The clique number of G is
maximum size of a clique in GG, denoted by w(G). For a subset A C V(G) of vertices and
a subset ' C FE(G) of edges, G — A denotes the graph obtained from G by deleting all
vertices in A, and G — F’ denotes the graph obtained from G by deleting all edges in F'. In
the case A = {v}, G —v =G — A. Lete € F(G). G — e is the graph obtained from G by
deleting e.

We now define edge contraction and a more general notion of graph containment called



minor. Let e = xy € E(G). The graph obtained from G by contracting e, denoted as
G\e, is the graph obtained from G by deleting both = and y and adding a new vertex whose
neighborhood in the new graph is equal to N¢(z) U Ng(y) — {z,y}. For some graph H,
say G contains H as a minor, or simply G has an H minor, if a graph isomorphic to H
can be obtained from a subgraph of GG by repeatedly contracting edges, denoted as G > H.
Equivalently, G has an H minor if there exist pairwise disjoint subsets S1, ..., Sjz| € V(G)
of vertices such that and a bijective function ¢ : V(H) — {54, ..., S|} such that G[S] is
a connected subgraph of G for all i = 1, ..., |H|, and that for every zy € E(H ), there is an
edge in G with one end in ¢(x) and one end in ¢(y). H is called a proper minor of G if
G>Hand G % H.

A graph P is a path if we can label the vertices of P as vy, ..., v, such that E(P) =
{v1vg, ..., vp_1vx }. We denote P = vyv;...v5. The length of a path is the number of edges
on it. vy and vy are the end vertices or simply ends of P. Say P links vy and vy or joins
vo and v, and say P is a vg-vg path. Say P is an A-B path if A, B C V(G) such that
vo € Aand v, € B. The vertices in V(P) — {vg, vy} are the internal vertices of P.
We also consider the graph on a single vertex as a path. A path is trivial if it has length
zero, and otherwise non-trivial. A subgraph P’ of P is a subpath if it is also a path. For
v;,v; € V(P), v;Pv; denotes the subpath of P linking v; and v;. A graph C'is a cycle if
we can label the vertices of C' as vy, ..., v; such that F(C) = {vjvg, ..., Up_10k, vxv1 }. We
write C' = v1vy...v5v1. The length of a cycle is the number of edges on it. A cycle of length
k is called a k-cycle, denoted Cj,.

In a graph G, two paths P, C G are disjoint if V(P) N V(Q) = 0, and they are
internally disjoint if the sets of internal vertices of P, Q) are disjoint. For A, B C V(G),
say a set of paths Py, ..., P, C G links or joins A, B, if every P, for all i = 1, ...,t has one
end in A, one end in B, and is otherwise disjoint from A U B.

A graph G is connected if for every x,y € V(G), there exists some path in G linking

x and y; it is disconnected otherwise. A connected component or simply a component of



G is a maximal connected subgraph of GG. G is k-connected for some integer k if for every
X C V(G) such that | X| < k, G — X is connected. A subset X C V(G) is a separating
set of G if G — X is disconnected. For vertices a,b € V(G) — X, say X separates a from
b if there is no path linking a,b in G — X. Fora € V(G) — X and B C V(G), say X
separates a from B, or X separates B from a, if there is no path linking a and some vertex
inBinG — X.

A separation of G is a pair (A, B) of subsets of vertices of G such that AU B = V(G)
and ab ¢ E(G) foralla € A— Bandb € B— A. For X C V(G), the pair (A, B) is
a separation of (G, X) if (A, B) is a separation of G such that X C A. For a separation
(A, B)of G, or (G, X) forsome X C V(G), the order of the separation is the size of ANB.
Itis called a k-separation (or < k-separation), if |[ANB| = k (or |ANB| < k, respectively).
A separation (A, B) is trivial if A C B or B C A; it is non-trivial otherwise. It is an easy
exercise that a graph is k-connected if and only if it has no non-trivial separation of order

at most k — 1.

2.2 Rooted K3 and Rooted K, Minors

Rooted minor is a special type of minor. Let G, H be graphs, and let X C V() such that
| X | = |H|. Say G has an H minor rooted at X if there is a function ¢ mapping vertices in
H to disjoint connected subgraphs of G such that |V (¢(u)) N X| = 1 forall u € V(H),
and that if uv € F(H) then there exists an edge in G joining a vertex in ¢(u) to a vertex in
6(v).

In this section, we will present our own result on rooted K3 minors, which is relatively
straight-forward, followed by a result on rooted /{; minors due to Robertson, Seymour, and

Thomas.



2.2.1 Rooted K5 minors

Lemma 2.2.1. Let G be a connected graph, and let X = {x1, x5, x3} be a subset of three
distinct vertices in G. Then, G has a K3 minor rooted at X if and only if there does not

exist a cut vertex w of G such that every component of G — {w} contains at most one vertex

from X.

Proof. Since GG connected, we assume without loss of generality that there is a path P in
G linking x1, z5 such that x3 € V (P).

First assume that G has a /3 minor rooted at X . Without loss of generality, we can then
assume that there exist two paths ()1, ()2 such that (), () each link x3 and some vertex on
P and are otherwise disjoint from P, and that V' (Q) NV (Q2) = {x3}. It follows that there
is no cut vertex separating x3 from P in (G, and therefore there is no cut vertex w of GG such
that every component of G — {w} contains at most one vertex in X.

Now, assume that GG does not have a K3 minor rooted at X. We will prove that there
exists a cut vertex w of G such that every component of G—{w} contains at most one vertex
in X. Since G is connected, there exists a path () linking x3 and some vertex w € V(P)
that is otherwise disjoint from P. Since GG does not have a K3 minor rooted at X, there
do not exist two paths ()1, ()5 each joining x3 and some vertex on P such that ()1, (), are
disjoint except for x3. Therefore, w is a cut vertex of (G, and there is a component .J3 of
G — {w} such that x5 € V/(J3) and V(P) NV (J3) = 0.

If w € {z1, x5}, without loss of generality, assume that w = z5. Then, the component
of G — {w} that contains xy, say .Jj, satisfies that V(J;) N X = {x}. It follows that
w satisfies that every component of G — {w} contains at most one vertex in X. If w ¢
{z1, 2}, we consider the block decomposition of G — V' (.J;). Notice that P C G — V (J3).
Choose blocks By, ..., By, of G — V(J3) and vertices vy, vs,...,up11 € V(P) such that
V] = T, Upy1 = T2, and vy, v € V(By) forall i = 1,.., k. Assume for a moment that

w € V(B;) — {vi, vi41} for some i € {1, ..., k}. Since B; is 2-connected, it follows that B;
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has K3 minor rooted at {w, v;, v; 11 }. It follows that B;UPUQ = B;Uv; Pv;Uv;, 1 Pug1UQ
has a K3 minor rooted at X, a contradiction. Hence, w = v; for some i € {2,...,k}. Let
Ji1, Jo be the components of G — {w} U V/(J3) such that V (v, Pv;) — {v;} € V(J;) and
V(v; Pvgy1) — {v;} € V(Jy). It follows that J1, J, J3 are distinct components of G — {w}
such that z; € V'(J;) fori = 1,2, 3. O

2.2.2 Rooted K, minors

The following theorem on rooted K 4-minors was proven by Robertson, Seymour, and
Thomas in their proof of Hadwiger’s Conjecture for graphs with no Kg-minor [23], in
which a K4-minor rooted at 1, xo, 23, x4 is called a cluster traversing {x1, x5, x3,24}. A
trisection of a graph G is a triple (A, B, C') of subsets of V(G) suchthat ANB = ANC =
BN C and G[A] UG[B]UGI[C| = G, the order of the trisection (A, B,C) is [ANBNC|.

Theorem 2.2.2 (Rooted K;-minor Theorem). Let G be a graph and let Z C V (G) with
|Z| = 4. Then

(i) G has a K, minor rooted at X, or

(ii) there is a trisection (A1, Aa, B) of order 2 such that |Z N (A; — B)| = 1 fori € {1,2},
or

(iii) there is a (< 3)-separation (A, B) with Z C Aand |B — A| > 2and |Z N B| < 2, or

(iv) G can be drawn in the plane so that every vertex in Z is incident with the infinite region.

We note that Fabila-Monroy and Wood [6] proved a stronger theorem than Theorem 2.2.2
by giving a complete characterization of graphs that have a K, minor rooted at four nomi-

nated vertices.

2.3 Disjoint Paths

Let GG be a graph. For a path P in G and vertices s,t € V(G), say P links s,t if s, t are the

end vertices of P. For an integer k and distinct vertices sy, ..., Sg, t1, ..., tx € V(G), the k
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disjoint paths problem asks whether there exist £ disjoint paths P, ..., Py in G such that
P; link s; and ¢; for all ¢ = 1,..., k. Robertson and Seymour [26] showed that there is a
polynomial time algorithm for deciding whether such disjoint paths exist. We now discuss

results on the & disjoint paths problem for k£ = 2, 3.

2.3.1 Two Disjoint Paths

In fact, the two disjoint path problem is a special case for another. Let C' be a cycle in a
graph GG. A C'-cross is a pair of disjoint paths P;, P, with ends x1,y; and x5, 1o, respec-
tively, such that x1, zo, Y1, yo occur on C' in the order listed, and the paths are otherwise
disjoint from C'. The feasibility problem for a C'-cross generalizes the feasibility problem
for the two disjoint paths problem: Notice that for distinct vertices s1, so,t1,t2 € V(G) ina
graph G, there exist two disjoint paths Py, P, in G such that P, for 7 = 1, 2 links s; and ¢; if
and only if the graph G’ = G U{s; 2, sat1, t1ta, t251} has a C-cross, where C' = s189t1t251
is the cycle that goes through the four vertices s1, so, t1, 2 in order. It follows that, to study
the feasibility of the two disjoint path problem, it suffices to study the characterization of
C-crosses in a graph.

Theorem 2.3.1 gives a characterization of graphs containing C'-crosses. This exact
version of the theorem is Theorem 1.3 in [14], obtained in varous forms by Jung [11],
Robertson and Seymour [24], Seymour [29], Shiloach [30], and Thomassen [37]. Let G be
a graph, and let X C V(G). Let (A4, B) be a < 3-separation of (G, X) such that there exist
|A N B| paths from some vertex v € B — A to X that are disjoint except for v. Let H be
the graph obtained from G[A] by adding an edge joining every pair of distinct vertices in
AN B. We say that H is an elementary X -reduction of G (determined by (A, B)). We say
that a graph .J is an X -reduction of G if it can be obtained from G by a series of elementary
X-reductions. If C' is a subgraph of GG, then by an (elementary) C-reduction we mean an

(elementary) V (C')-reduction.
Theorem 2.3.1 (Jung; Robertson and Seymour; Seymour; Shiloach; Thomassen). Let GG be
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a graph, and let C' be a cycle in G. Then, G has no C'-cross if and only if some C-reduction

of G can be drawn in the plane with C' bounding a face.

2.3.2 Three Disjoint Paths

We introduce a result on 3-linkage in Theorem 2.3.2 due to Thomas and Wollan [33].
Theorem 2.3.2 is used later in this dissertation to find three disjoint paths. Let G be a graph.
For X C V(@) and an integer ¢, the pair (G, X) is t-linked if for all £ < ¢ and distinct
vertices Si, ..., Sk, t1,...,tx € X, there exist k disjoint paths P, ..., P, in G such that P,
links s;,t; foralli = 1, ..., k. The pair (G, X) is linked if it is | | X |/2]-linked. A separation
(A, B) of G is t-linked if (G[B], AN B) is t-linked. Use p(X) to denote the number of
edges of G that have at least one end in V' (G) — X, i.e. po(X) = |E(G)| — |E(G[X])|-

Theorem 2.3.2 (Wollan and Thomas). Let G be a graph. Let X C V(G) be a subset of
vertices such that | X| = 6. Then, (G, X) is linked if p(V(G) — X) > 5|V(G) — X| + 4
and p(B — A) < 5|B — Al for every < 5-separation (A, B) of (G, X).

2.3.3 Menger’s Theorem and Perfect’s Theorem

A classic theorem of Menger states that if a graph G is k-connected, then for any two
disjoint subsets A, B C V(G) such that |[A| = |B| = k, there exist k disjoint paths
Py, ..., P, such that each P, links one vertex in A and one vertex in B.

Theorem 2.3.3 is a stronger version of Menger’s theorem due to Perfect [22], which is

also stated in Section 3.3 in Diestel’s text [4].

Theorem 2.3.3 (Perfect). Let G be a graph with A, B C V(G). Let k be the minimum
number of vertices separating A from B in G. If P is any set of fewer than k disjoint A — B
paths in G, then G contains a set Q of disjoint A — B paths such that |Q| = |P| + 1, and
that the set of vertices in A that lie on a path in ‘P is a proper subset of the vertices in A

that lie on a path in Q, and likewise for B.
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Corollary 2.3.4 (Corollary of Theorem 2.3.3). Let G be a graph with a € V(G) and
B C V(G) — {a}. Let k be the minimum number of vertices separating a from B in G. If
P is any set of fewer than k paths from a to B that are disjoint except for a, then GG contains
a set Q of paths from a to B that are disjoint except for a such that |Q| = |P|+ 1, and that
the set of vertices in B that lie on a path in ‘P is a proper subset of the vertices in B that lie

on a path in Q.
Let Sk denote the permutation group on k elements.

Corollary 2.3.5 (Corollary of Theorem 2.3.3). Let G be a graph. Let A, B C V(G) with
a vertex a; € A — B. Let k = |A|. Suppose there exist k disjoint paths Py, ..., P, such
that a; € A and b; € B are the ends of P, fori = 1, ..., k. If there does not exist a < k-
separation (X,Y) of G suchthat A C X, B C Y, and X —Y # (), then there exists
some by 1 € B —{by, ..., by}, a permutation 6 € Sy 1, and k + 1 internally disjoint paths
Q1 ..., Q41 linking A and B such that Q; links a; and begy for all i = 1, ..., k, and that

Qr+1 links ay and by(j41).

Proof. Let G’ be the graph obtained from G by adding a new vertex a} and an edge between
a) and every neighbor of a; in G. Let A’ = AU {a}}. Note that Py, ..., P are k disjoint
paths linking A" and B in G".

Assume for a moment that there exists a k-separation (X', Y”) such that A” C X’ and
B C Y'. Since there is no < k-separation (X,Y") of G such that A C X, B C Y, and
X =Y # 0, it follows that (X’ —Y") N V(G) = 0, and therefore X’ — Y' = {a}} and
X'NY"={ay,...,ax}. Since a; ¢ B, P; contains at least 2 vertices. Let u be the unique
vertex in P; that is adjacent to aq, and note that u € Y’ — X’. However, since a,u € E(G),
we know aju € F(G’), which is a contradiction to that (X', Y”) is a separation of G’ and
there is no edge between X' — Y"and Y’ — X',

Hence, there is no k-cut separating A’ and B in G'. By Theorem 2.3.3, there exist some

bpy1 € B — {by,...,b;}, a permutation § € Sy, and k 4 1 disjoint paths Q1, ..., Q)4
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linking A" and B in G’ such that @)} links a; and by(;) fori = 1,...,k and Q) _, links a}
and by(x+1). Back in the graph G, let ); = Q) forall i = 1, ..., k, and let Q1 be the path
obtained from @)}, , by replacing a) with a,. It follows that the vertex by, the permutation

0 € Sky1, and the paths )y, ..., Q41 are as desired. O

2.4 Bridges and Tripods

2.4.1 Bridges

Let G be a graph, and let .S be a subgraph of G. An S-bridge in G is a connected subgraph
B of G such that E(B) N E(S) = () and either E(B) consists of a unique edge with both
ends in S, or for some component C' of G\V(S) the set £/(B) consists of all edges of G
with at least one end in V (C). The vertices in V' (B) N V(.S) are called the attachments
of B on S. We say an S-bridge B attaches to a subgraph H of S if V(H)NV(B) # 0,
and in the case H = {v} for some v € V(5), we say B attaches to v. An S-bridge B is
called frivial if it consists of a unique edge with both ends in S, and it is called non-trivial
otherwise.

Let S be a subgraph of GG, and let W C V/(.S). A W-segment of S is a subpath P of S
of length at least one such that both end vertices of P are contained in ¥/, and that every
internal vertex v of P is not in I/ and has degree two in S. Say W is a segmenting set of
S if S is equal to the union of all W-segments of S. It is an easy exercise to check that a
segmenting set of S includes all vertices of degree not equal to two in S. Note that if W is
a segmenting set of .S, every edge of S is contained in a unique W-segment of S. Say an
S-bridge B is W -unstable if all attachments of B on S belong to some WW-segment of S,
and otherwise B is W -stable.

The next lemma, Lemma 2.4.1, says that it is possible to make every S-bridge 1/ -stable
by making the following “local” changes. For a segmenting set W C V' (S) of S, let P be a
W -segment of S of length at least two, and let () be a path in G linking z, y that is otherwise

disjoint from S. Let S” be obtained from S by replacing the path x Py by ). Then we say
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that S’ is obtained from S by rerouting P along (), or simply that S’ is obtained from S by
rerouting. Please note that P is required to have length at least two, and hence this relation
is not symmetric. Also note that I} is a segmenting set of S/, as S’ is equal to the union of
all W-segments of S’. We say the rerouting is proper with respect to W' if all attachments
of the S-bridge that contains () belong to P. Lemma 2.4.1 is a generalization of Lemma

2.1 1n [12] and is essentially due to Tutte.

Lemma 2.4.1 (Rerouting Lemma). Let G be a graph. Let S be a subgraph of G, and
W C V(S) be a segmenting set of S. Then, there exists a subgraph S’ of G obtained from
S by a sequence of proper reroutings with respect to W such that if all attachments of an
S'-bridge B belong to some W -segment P of S', then there exist vertices x,y € V (P) such

that some component of G\{x,y} includes a vertex of B and is disjoint from S"\V (P).

Proof. Choose a subgraph S’ C G that can be obtained from S by a sequence of proper
reroutings with respect to 17 such that the number of vertices in G — V'(S”) belonging to
W -stable S’-bridges is maximum, and subject to this, |V (S”)| is minimum. We will prove
that S’ is as desired. Let B be a I/ -unstable S’-bridge, and say all attachments of B on S’
belong to a W-segment P of S'.

Let vg, v1, ..., v;, be distinct vertices of P, listed in order of occurrence on P such that
vo and vy, are the ends of P and {vy, ..., vx_1 } is the set of all internal vertices of P that are
attachments of 1/ -stable S’-bridges.

Assume for a moment that for some i € {1,...,k — 1}, there exist two attachments
u,v of B such that v; is an internal vertex of uPv. Let S” be a subgraph of GG obtained
from G by replacing «Pv by an induced subpath of B linking u, v that is otherwise disjoint
from S’. It follows that every vertex in V(G) — V(S”) belonging to a W -stable S’-bridge
is in V(G) — V(5”) and belongs to a W-stable S”-bridge, and that v; € V(5’) is in
V(G) — V(S”) and belongs to a T¥-stable S”-bridge, a contradiction to the choice of 5’
Therefore, all attachments of B are on v; Pv;1 for some i € {0, 1, ...,k — 1}.

Since B is arbitrary, it follows that for every 1/ -unstable S’-bridge B’ that attaches to
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some vertex in the interior of v; Pv; 1, all attachments of B’ are on v; Pv;, 1. Hence, there
is a component K of G\{v;,v;11} such that V(B) — {v;,v;x1} € V(K) and V(K) N
(V(S)H\V(P)) = (). This means that if V(B) — {v;, v;41} # 0, then v; and v, give the
desired x and y. Therefore, we may assume that B is simply an edge joining v; and v;.
Note this implies that v; Pv; .1 has length at least two. Let S” be the subgraph of G obtained
from G by replacing v; Pv;,; by the edge v;v;41. It follows that |V (S”)| < |[V(S")| and
every vertex in V' (G) — V(S’) belonging to a W-stable S’-bridge is in V (G) — V(S”) and

belongs to a 11/ -stable S”-bridge, a contradiction to the choice of S’. O]

2.4.2 Tripods

We now introduce the tripod structure, which is originally due to Robertson and Seymour

[25].

Definition 2.4.2. In a graph G with a subset of three distinct vertices X = {1, 29,23} C
V(G), a subgraph T of G is called an X -tripod if T' can be written as a union of internally
disjoint subpaths Py, P, P3, 1, Q2, Q3, L1, Lo, L3 of G satisfying the following: For some
distinct vertices z1, 22, 23 € V(G), L; links z; and z; for : = 1, 2, 3; and for distinct vertices
p,q € V(G) — U?:l V(L;), P; links p, z; and Q; links ¢, z; for i = 1,2,3. Each path L;
for: = 1,2,3 is called a leg of T'. A leg is trivial if it is a single vertex; it is non-trivial

otherwise.

Lemma 2.4.3. Let G be a graph and X = {x1,29,23} C V(G) be a subset of three
distinct vertices such that G' cannot be drawn in the plane with x|, xs, x3 incident to the

infinite face. If there is no non-trivial < 2-separation of (G, X), then G has an X -tripod.

Proof. We will prove the lemma by inducting on |V (G)|.
First consider the case that |V (G)| < 5. Notice that the lemma is true if G = K3, as the
complete graph K5 is non-planar, has no non-trivial < 2-separation, and contains an X'-

tripod as a subgraph for every subset X' of three distinct vertices in it. Also notice that the
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Lemma is trivially true if |V (G)| < 4, since the complete graph K is planar, meaning that,
if |V(G)| < 4, G can always be drawn in the plane with x1, zo, 23 incident to the infinite
face . We may then assume |V (G)| = 5. If every vertex in X and every vertex in G — X
are adjacent, then GG has an X-tripod. So assume that there is some non-edge between a
vertex in X and a vertex in V(G) — X. This then implies that G U {x1x9, 123, 2223}
is isomorphic to some proper subgraph of K5 and therefore is planar. It follows that G U
{129, 1123, x93} can be drawn in the plane with 1 xox321 bounding the infinite face, and
therefore GG can be drawn in the plane with 1, x5, 3 incident to the infinite face.

From now on, we can assume |V (G)| > 6 and the assertion holds for all graphs on
fewer than |V (G)| vertices.

Observe that x5 does not separate x; from x3 in GG: For the sake of a contradiction,
assume that x5 is a cut vertex of (7, and there exist distinct components K5, K3 of G — {x2}
such that z; € V(K;) for i = 1,3. Note that if K3 — {x3} is non-empty, then {5, x3}
separates the non-trivial subgraphs K and K3—{x3}, a contradiction to the fact that (G, X)
does not have a non-trivial < 2-separation. By symmetry, it follows that V(K;) = {z;}
for i = 1,3, meaning that x5 is the only neighbor for z; and x5 in G. Since |V (G)| > 6,
we know that [V (G) — X| > 0. It follows that x5 separates {z1, x5} from G — X, again a
contradiction to the fact that (G, X') does not have a non-trivial < 2-separation.

Next, observe that we may assume E(G[X]) = {z122, zox3}: Let G’ = (GU{x 122, T223})—
{z123}. Note that since G cannot be drawn in the plane with z1, x5, x3 incident to the in-
finite plane, neither can G’; and since (G, X') does not have a non-trivial < 2-separation,
neither does (G’, X'). Also note that G has an X -tripod if and only if G’ has one. Hence, it
suffices to consider G’ instead of G, so we may assume that £(G[X]) = {122, z223}.

Let Px be the path x;z5x3 in G. We next prove that there exists some cycle C' such that

Px C (' and every C-bridge attaches to xs.

Claim 1. There exists a cycle C such that Py C C' and every C-bridge attaches to xs.

Proof of Claim 1. First observe that X is a segmenting set for every cycle in GG that includes
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all three vertices in X. Since x5 does not separate x; from z3 in GG, there exists some cycle
in G that includes all three vertices in X. By Lemma 2.4.1, since (G, X)) does not have a
non-trivial < 2-separation, there exists a cycle C' C G such that X C V(C”) and every
(’-bridge in G is X-stable. For i = 1,2, let P, be the subpath of C’ linking x; and z;
such that V(P;)) N X = {xz;, x;11}.

Let C' be the cycle obtained from C” by replacing P; with the edge x;x and replacing
P, with the edge z2x3. Let B C G be any C-bridge. Since V(C) C V(C"), B is contained
in a C’-bridge B’. Since every C’-bridge is X -stable, we know that B’ is an X -stable C'-
bridge and therefore attaches to some vertex on P; U P, — {x1, z3}. By the construction
of C, it follows that B attaches to x5. Since B is arbitrary, it follows that the cycle C'is as

desired. 4

By Claim 1, let C' C G be a cycle such that Px C (' and every C'-bridge attaches to xs.

We next show that we may assume G has a C'-cross.

Claim 2. If G has no C'-cross, then it has an X -tripod.

Proof of Claim 2. Assume that G has no C'-cross. Recall that G’ cannot be drawn in the
plane with x|, x5, x3 incident to the infinite face. Since 1, x5, x5 are all contained in C), it
follows that GG cannot be drawn in the plane with C' bounding a face. By Theorem 2.3.1,
some non-trivial C'-reduction of GG can be drawn in the plane with C' bounding a face.
This means that there exists a non-trivial < 3-separation (A, B) of (G, V(C')) such that
G, = G[A]U{wv : u,v € AN B} can be drawn in the plane with C bounding a face. Since
there is no non-trivial < 2-separation of (G, X), every non-trivial separation of (G, V (C))
has order at least three. It follows that |A N B| = 3, and there exist three disjoint paths
Ly, Ly, L3 linking X and A N B in G[A]. Tt also follows that there is no non-trivial < 2-
separation of (G[B], A N B). Due to the disjoint paths Ly, Lo, L3, since G does not have

an X -tripod, we know that G[B] does not have an (A N B)-tripod. Since |B| < |V(G)

)

by induction, G[B] can be drawn in the plane with every vertex in A N B incident to the

infinite face. This means that the graph Gy = G[B] U {uv : u,v € AN B} can be drawn
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in the plane with the cycle on A N B bounding the infinite face. Now, the drawings of (G}
and G5 can be combined to form a planar drawing of G; UGy = G U {uv : u,v € AN B}

with C' bounding a face, a contradiction. =

By Claim 2, we may assume that G has a C-cross. This means that there exist four
distinct vertices s1, So, t1, to in order on C' and two disjoint paths R, Ry in G such that R;
links s;, ¢; for i = 1,2 and is otherwise disjoint from C. Let P = C' — {x5}.

First observe that we may assume xs € {s1,t1, S2, t2}. To see this is true, assume that
xo & {s1,11, S2,t2}, which means that {sy, so, 11,2} C V(P). Without loss of generality,
assume that P goes through z1, s1, S, t1, ta, x3 in order, where {1, x3} may or may not be
disjoint from {s1, ¢, }. Since every C-bridge attaches to xo, it follows that there is a path
Ry linking z5 and some r € V(R; U Ry) — V(P) such that R is otherwise disjoint from
C U Ry U Ry. Without loss of generality, assume that r is an internal vertex of Rs. By
replacing R, with the path Ry U rRys2, we would then have x, as an end of R,, as desired.

Now, without loss of generality, say s, ¢ are distinct vertices on P such that V' (z1 Ps;)N
V (z3Pt1) = (), so is an internal vertex of s Pt1, and that x5 = t5. Since every C-bridge at-
taches to x,, the path R, has length at least two and is contained in some C-bridge attaching
to zo. It follows that there exists a path W linking an internal vertex of R; and some vertex
on Ry —{sy} such that TV is otherwise disjoint from CUR;URs. LetT = PUR;UR,UW.

It follows that 7" is an X -tripod as desired. [

Here we introduce more notations and definitions related to tripods.

Let G be a graph and X = {z1,z9, 23} C V(G) be a subset of three distinct vertices
in G. Let T' C G be an X -tripod. Let vertices 21, 29, z3,p, ¢ € V(T') and paths Ly, L, Ls,
Py, Py, Ps, 1, (2, Q3 be labeled as in Definition 2.4.2 for the X -tripod 7.

Let £L(T) = V(L1 U Ly U Lg), Z(T) = {z1,29,23},and R(T) = V(P U P, U P; U
Q1 U Q2 U Q3). For two subsets of vertices A, B C V(G), say the ordered pair (A, B)
splits T if (A, B) is a 3-separation of G such that L(T') C A, R(T) C B, Z(T) = AN B.
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Equivalently, we also say 7' is split by (A, B) or simply that 7 is split in G if some ordered
pair (A, B) splits T in G. Let W(T) = Z(T) U X U {p, q}. Observe that W(T) is a
segmenting set of 7". For convenience, we say a T-bridge is stable if it is WW(T')-stable and
otherwise unstable, and we say a subpath of 7' is a segment of T if it is a W(T')-segment
of T'. Also, we call a (proper) rerouting with respect to WW(T') simply a (proper) rerouting.

We next define three types of “local” changes, called tripod-transformations, that could
be made on some X -tripods.

Let R be a path in G linking some r; € L£(T) — Z(T) and ro € R(T) — Z(T).
Without loss of generality (up to relabeling the vertices and segments in 77), assume that
r1 € V(Ly) — {z1} and either ro, € V(P) — {z1} or ry € V(P2) — {22}. If ry €
V(P1) — {z1}, let T be obtained from 7" by including R and deleting internal vertices of
z1Pire. I ry € V(Py) — {22}, let T” be obtained from T by including R and deleting
internal vertices of P;. Then, 7" is an X-tripod in both cases. We say 7" is obtained
from T by a tripod-transformation of Type I, or simply that 7" is obtained from 7" by a
tripod-transformation.

For some distinct indices 7, j € {1,2,3}, let 51, 52 C G be two disjoint paths such that
Sy links z; and a vertex on L; — {x;}, S, links z; and a vertex on L, — {xz;}, and that S;, S,
each are internally disjoint from 7". Without loss of generality, say ¢ = 1 and j = 2. Let 7"
be obtained from 7" by including S; U S, and deleting the internal vertices of P and ().
Then, 7" is an X -tripod. We say 7" is obtained from 7" by a tripod-transformation of Type
11, or simply that 7" is obtained from 7" by a tripod-transformation.

Letr € V(G) — V(T) and Ry, Ry, R3 be three paths in G such that R; fori = 1,2,3
links  and some u; € V/(L;) and is otherwise disjoint from 7', u; # z; for some i €
{1,2,3}, and that Ry, Ry, R3 are pairwise disjoint except for r. Let 7" be obtained from 7’
by including R; U Ry U R3 and deleting V (P, U P, U P3)\Z(T'), and let 7" be obtained
from T by including R; U Ry U R3 and deleting V(Q U Q2 U @3)\Z(T'). Then, we say

T' and T" are obtained from T by a tripod-transformation of Type III, or simply that T” is
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obtained from 7' by a tripod-transformation.
In the next lemma, we observe a series of properties of tripod-transformations and

reroutings on tripods.

Lemma 2.4.4. Let G be a graph and X = {x1, x5, 23} C V(G) be a subset of three distinct
vertices in G. Let T' C G be an X -tripod. Then, the following statements are true.

(1) There is a 3-separation of G splitting T' if and only if there is no X -tripod in G that
can be obtained from I’ by a tripod-transformation of Type 1.

(2) If at least two legs of T are trivial, then there is no X-tripod in G that can be
obtained from T" by a tripod-transformation of Type II.

(3) If T' is an X -tripod in G obtained from T by a tripod-transformation of Type II,
then T has at least two trivial legs.

(4) There exists an X-tripod T' C G that can be obtained from T' by a sequence of
tripod-transformations of Type I such that some 3-separation of G splits T".

(5) If there is no non-trivial < 2-separation of (G, X), then there exists an X -tripod
T C G obtained from T by a sequence of proper reroutings such that every T'-bridge is

stable. Furthermore, if some 3-separation (A, B) of G splits T, then (A, B) also splits T".

Proof. (1)-(3) are simply true due to the definitions of tripod-transformations of Type I and
Type II.

To prove (4), we may assume that 7" is not split by any 3-separation of (5, since other-
wise we could just let 7/ = T. Let Ty = T. By (1), we can recursively find a sequence
of X-tripods 71, T5, ... such that for every ¢ >= 0, if T} is not split by a 3-separation of
G, then T, is an X-tripod obtained by a tripod-transformation of Type I. Notice that
3 < |L(Tit1)] < |L(T;)]| for all i by the definition of tripod-transformations of Type I. It
follows that the sequence of X -tripods Tg, 11, Ts, ... must have finite length. Let 7" be the
last X -tripod in this sequence. By (1), it follows that 7” is split by some 3-separation of G.

It remains to prove (5). Let W = W(T), and recall that IV is a segmenting set of

T. By Lemma 2.4.1, there exists an X-tripod 7" C G obtained from 7" by a sequence of
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proper reroutings such that if all attachments of an unstable 7”-bridge B, belong to some
segment P of 7", then there exist vertices z,y € V/(P) such that some component K of
G\{x,y} includes a vertex of By and is disjoint from 7"\ P. Note that if such an unstable
T-bridge By exists, let the segment P of 7", vertices x,y € V(P), and the component K
of G\{z,y} be labeled as in the description above. Then, V' (K) N V(T) is a subset of the
set of internal vertices of P, and therefore {z, y} separates K from X in G, a contradiction
to the fact that there is no non-trivial < 2-separation of (G, X). Therefore, every T’-bridge
is stable. Now, assume that (A, B) is a 3-separation of G that splits 7". Then, since 7" is
obtained from 7" by a sequence of proper reroutings, which contains A N B as a subset,
every proper rerouting in the sequence is completely includes in either A or B. It follows

that (A, B) also splits 7" as well. O

Lemma 2.4.5. Let G be a graph and X = {x1,x9,23} C V(G) be a subset of three
distinct vertices such that there exists some X -tripod in G — N[z|. If there is no non-trivial
< 2-separation of (G, X), there exist an X -tripod T satisfying the following properties:
(i) Some 3-separation of G splits T.
(ii) Every T-bridge in G is stable.

(iii) There is no X -tripod in G that can be obtained from T’ by a tripod-transformation.

Proof. By (4) and (5) of Lemma 2.4.4, there exists an X -tripod 77 in G such that every 7 -
bridge in G is stable and some 3-separation of G splits 7;. By (1) of Lemma 2.4.4, there
is no X-tripod in G that can be obtained from 77 by a tripod-transformation of Type I. If
there is no X -tripod in G that can be obtained from 77 by a tripod-transformation of Type
II, then 7} would be as desired. So we may assume that there exists an X -tripod 75 in G
that can be obtained from 77 by a tripod-transformation of Type II. By (3) of Lemma 2.4.4,
at least two legs of 75 are trivial.

By (4) and (5) of Lemma 2.4.4 again, we can obtain an X-tripod 75 from 75 by a
sequence of tripod-transformations of Type I, followed by a sequence of proper reroutings,

such that every T5-bridge is stable and some 3-separation of G splits 73. Note that 75
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has at least two trivial legs, and so does 75, due to the construction of 75. By (1) and
(2) of Lemma 2.4.4, there is no X-tripod in G that can be obtained from 7" by a tripod-

transformation. Hence, 73 is an X -tripod in G satisfying the desired properties. [

2.5 Exceptional graphs

Say a graph is an exceptional graph if it is isomorphic to one of the /1y minor-free graphs
stated in Theorem 1.1.5. In a graph G, a subset U C V' (G) of vertices is called an island of
G if it is a minimal subset of vertices such that G = G[U] + G[U'] where U’ = V(G)\U.
An island of size k is called a k-island. A partition P = (Vi,...,V;) of V(G) is called an

island partition of G if every Vj is an island of G.
Lemma 2.5.1. Every graph G has a unique island partition.

Proof. 1f there exist two non-empty graphs K and L such that G = K + L, then G has an
island partition of size at least 2; otherwise V' (G) itself is an island in G. This shows the
existence of an island partition of G.

For the sake of a contradiction, suppose P = (V4,...,V;) and Q = (Uy,...,U,) are
two distinct island partitions of G. Without loss of generality, assume V; N U; # () and
Vi — U, # (. Since Vi — U is not included in U, in the partition Q, for every a € V; — U,
and every b € V1 N Uy, ab € E(G). This shows G[V;] = G[V; — Uy] + G[V4 N U] where

both V; — Uy and V3 N U; are non-empty, a contradiction to the fact that V; is an island. [

Let G be a graph. For any edge xy € E(G), the vertex w € V(G /xy) obtained from the
contraction of zy in G is called the new vertex of G /xy. For asubset U C V() of vertices,
denote g (U) = |U|—w(G[U]), i.e. the minimum number of vertices to delete from U such

that the remaining vertices induce a complete subgraph. For a partition P = (14, ..., V;) of

V(G), denote qo(P) = >y cp 4c(Vi) and lo(P) = [qa(P)/2].
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Lemma 2.5.2. Let G be a graph on n vertices. Let P = (V1, ..., V;) be a partition of V (G)
such that G = G[Vi] + ... + G[V)]. If max{qc(V;) : 1 < i <t} < 3q6(P), then G > K,
where | = lg(P).

Proof. For convenience, let ¢; = q¢(V;) for all 7. If ¢; = 0 for some i, then every vertex in
V; is adjacent to all other vertices in G. We can then just delete V; from G since G > K,,_;
if and only if G — V; > K,,_jy;—;. This means we may assume ¢; > 1 for all . Since
¢; < |V;| — 1 for every 4, it follows that |V;| > 2 for all 7. Also, since max{qs(V;) : 1 <
i<t} < %qg(P) and ¢; > 1 for all 7, it follows that ¢ > 2. By relabeling the subsets in P,
we may assume V; are sorted in the decreasing order of ¢;, meaning that ¢; < % Zle Q-

We are going to prove the lemma by inducting on Zle ¢;- The base case is 22:1 G =
2, which happens precisely when ¢ = 2 and ¢; = ¢ = 1. Inthis case, [ = [(1+1)/2] = 1.
Let u; € V; foreach i € {1,2} such that G[V; — {u;}] is complete. By contracting the edge
u1us We can get a K, 1 minor.

Soassume >'_, ¢; > 3. Choose u; € V; foreachi € {1,2} such thatw(G[V;—{w;}]) =
w(G[V;]). Let w be the new vertex of G/ujus. Let H = G/ujus —{w}. Note |H| = n—2.
To show G' > K,,_;, we will show H > K, _;_, = K|g|_y Where " = 1 — 1 by proving that
a complete minor can be obtained within [’ = [ — 1 contractions from H.

Let W; = V; — {w;} for i € {1,2} and let W; = V; for all 3 < i < ¢. For each i, since
|Vi| > 2, |W;| > 1, and therefore P’ = (W1, ..., W,) is a partition of V (H) where each W;
is non-empty. Let ¢; = ¢y (W;). Note ¢, = ¢; fori > 3 and ¢} = ¢; — 1 for i = 1,2. This
implies

t t t

r= -1 = [ 0)/21-1 = [ (@@ 1) +5 (3 @] = [ d)/2] = (P,

i=1 1=3

By induction, it suffices to prove max{q; : 1 < i <t} < 13' ¢/ Since ¢; are in the

decreasing order, either max{q} : 1 <i <t} = ¢ ormax{q, : 1 <i <t} = ¢} in the case
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t > 3. Ifmax{q, : 1 <i <t} = q],then

t t
Gl=q—-1<> g—1=) dq,
=2 =2

meaning that ¢ < %Zle ¢;. We may then assume ¢ > 3 and ¢5 > ¢ > ¢). Since
¢1 > g2 > gs, it follows that ¢; = ¢2 = ¢3, and we let this value be ¢ for convenience. If

q > 2, then

t
Gh=9<2¢-2=(q—D)+(g-) =g+ <) d—d,
i=1
meaning ¢; < %ZZZI ¢;. We may then assume ¢ = 1, meaning ¢; = 1 for all 4. If there
exists ¢4 > 1, then we get g5 < 2 5°'_ ¢/ again. If t = 3, then !’ = [(0+ 0+ 1)/2] = 1.
Recall |[IW;| > 1. Let v} € W be arbitrary and let uz3 € Wj such that H[W3 — {us}] is

complete. By contracting the edge w}jusz in H, we can get a complete minor. [

Lemma 2.5.3. Let G be an exceptional graph that is not isomorphic to a non-trivial

77777

tition of G. Then, qc(P) = 2(|G| — 10) + 1 and q(C) < |G| — 10 for every C' € P.

Proof. Suppose G 2 G, for any i. Let C' be an island of G. Note that C' is either an
independent set or induces some 5-cycle. If C' is an independent set, then ¢ (C') = |C| —1;
and if G[C] = Cj, then ¢;(C') = 3. One can then check the proposition holds by simply
counting.

or K5 3333. Let C be an island of G. Note if C' is an independent set, then again ¢ (C) =
|C| — 1 = gg1e(C). Otherwise, we can write C' = C; U Cy where C, Cy are two distinct
islands of G + e, and e has one end in ) and the other one in (5. Observe that, in any

case, we always have ¢ (C) = ¢a(C1) + 96(C2) = ga+e(C1) + qa+e(Ch). It follows that

77777
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|G| = 13 and max{qe(C) : C € P} = 3;andif G + e = Ky3333, |G| = 14 and
max{qs(C) : C € P} = 4. Therefore, the proposition holds for G = G; where i €

{1,2,3,4}, too. O

77777

77777

77777777777

multiplicity 2, it suffices to check the following:
e(K11222922) =61 =8-12— 35,

1Ly L)y

e(Kyn00+Cs) =69 =813 — 35,
e(Kyn334) =77 =8-14 — 35,
e(Ksss+C5) =77 =814 — 35,
e(Kyn9293) =70 = (813 — 35) + 1, and
e(Kys333) =78 = (8- 14 — 35) + 1.

7777777777

777777

G1,Go are both (K7 1222922, 7)-cockades, G; N G = K-, and there is no edge between

777777

G1 — G5 and G5 — G4. By induction, e(G;) = 8|G;| — 35 for ¢ € {1, 2}. It follows that

e(G) = e(Gh)+e(Ga) —e(K7) = 8(|G1|+|Ga]) —70—21 = 8(|G|+T7) —91 = 8|G| — 35.

]

Lemma 2.5.5. Let H be a t-connected graph for integert > 0. Let G be an (H , t)-cockade.

Then, G is t-connected.
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Proof. We prove this lemma by inducting on |G|. The base case G = H is trivially true, and
we may assume that G = ;UG5 such that G, G are both (H, t)-cockades, G1NGy = K,
and there is no edge between (G; — (G5 and Gy — (1. By induction, both G, G5 are t-
connected. Let A C V(G) such that |A| = ¢t — 1. Let A, = ANV(G;) fori = 1,2.
Note that [A;] < ¢t —1fori = 1,2 and V(G; N Gy) — A # 0. Fori = 1,2, since
G is t-connected, G; — A; is connected. Since V(G N Gy) — A # (), we know that
G— A= (Gy— A)) U (Gy — Ay)is connected. It follows that G is t-connected, as A was

chosen arbitrarily. [

Lemma 2.5.6. Let H be a graph, and let w(H) = t. Let G be an (H,t)-cockade.Then, G

does not contain a subgraph isomorphic to K.

Proof. We prove this lemma by inducting on |G|. The base case G = H is trivially true,
as w(H) = t. We may then assume that G = G; U G such that Gy, G5 are both (H,t)-
cockades, G; N Gy = K, and there is no edge between GG; — Gy and Gy — G;. By
induction, neither G; nor G5 contains a subgraph isomorphic to K. Since there is no
edge between V(G — G3) and V(G2 — G1), every subset A C V(G) of vertices such that
G[A] is a clique is completely contained in either G or G5. It follows that G does not have

a subgraph isomorphic to K. 0

2.5.1 Deletion Lemma

We will next prove that adding an edge to an exceptional graph would make it have a K
minor, unless the new graph is isomorphic to another exceptional graph. We call this lemma
the deletion lemma, which will later be used to show that a minimum counter-example

graph to our main theorem on n vertices has exactly 8n — 35 edges.

Lemma 2.5.7 (Deletion Lemma). Let G be an exceptional graph. Let x and y be two

non-adjacent vertices in G. Then, either G + xy is an exceptional graph, or G +xy > K.
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Proof. We will consider the two cases whether or not GG is a non-trivial (H, t)-cockade,

777777

77777

(Ki122222,7).

Let P be the island partition of G. By Proposition 2.5.3, go(P) = 2(|G| — 10) + 1.
Note that x, y are in the same island C' € P as x, y are non-adjacent. We will first show
din(P) = 2(|G| — 10).

If G 2 G, for some i € {1,2,3,4}, then every island of G is either an independent

set or induces a 5-cycle. It follows that g¢ ., (C) = ¢(C) — 1 and therefore g4, (P) =
qc(P) — 1 =2(|G| — 10).
K5 3333. Notice that since e ¢ E(G), C includes either zero or two ends of e. If C' does not
include any end of e, then C'is just an independent set and we have ¢ ., (C) = ¢o(C) — 1
again. It follows that ¢gi.y(P) = 2(]G| — 10). We may then assume C' includes both
ends of e. This means that C' is the disjoint union of islands C, 5 of G + e, where
(G +¢€)[C;] = K, or K3 forboth i = 1, 2. Note that if e = xy, then G + 2y = G; for some
i € {1,2,3,4}, and we would then be done with the proof. So we may assume that e # v,
meaning that x, y are both contained in C; for some i € {1,2}. One can then check that
we have gg14,(C) = go(C) — 1 1in all cases. It follows that ¢,y (P) = qa(P) — 1 =
2(|G| — 10).

Now in both cases, we have g1,y (P) = 2(|G| — 10). By Lemma 2.5.3, ¢(C") <
|G| — 10 = 1qg1ay(P) for every island C” of G. It follows that gg 4, (C") < qa(C") <

+4G+ay(P). By Lemma 2.5.2, we conclude that G + zy > K.

77777777777

77777

multiplicity 2. Write G = GG; U G5 such that GG, G5 are both (H, t)-cockades, G; N Gy =

K3, and there is no edge between G; — GG and G — (G1. Due to Case 1 and Lemma 2.5.4,
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we may assume that for both ¢ = 1,2, G; + zw > Kj, for every pair of non-adjacent
vertices z, w € V(G;). This means that we may assume that x, y not both contained in one
of G and (s.

Without loss of generality, say x € V(Gy) — V(G3) and y € V(G2) — V(Gy). Since
know that there exists some ' € V(G N G3) such that za’ ¢ E(G), and that G[V (G2 —
G1) U {2'}] is connected due to Lemma 2.5.5. It follows that there exists a path ) C
G[V(Gy — G1) U {z'}] linking 2’ and y. Notice that Gy + xza2’ > Ky, as zz’ ¢ E(Gy). It
follows that by contracting edges on () to one single vertex in G+ xy, we would then obtain
resulting graph that contains a subgraph isomorphic to G; + zz’, meaning that G + zy >

K. ]

2.5.2 Contraction Lemmas

The goal of this subsection is to prove that if a graph GG has §(G)) > 8 and two adjacent
vertices x,y such that G/xy is isomorphic to an exceptional graph, and that x,y share
exactly 8|G| — e(G/xy) — 36, then either G > K, or GG is isomorphic to some other
exceptional graphs. We call lemmas in this form contraction lemmas. We will prove 5 con-
traction lemmas in this subsection, namely Lemma 2.5.10, Lemma 2.5.11, Lemma 2.5.12,
Lemma 2.5.13, and Lemma 2.5.14. These contraction lemmas will be later used to show
that in a minimum counter-example graph to our main theorem, every edge is contained in

at least eight triangles.

Lemma 2.5.8. Let G be a graph, and let x,y € V(QG) be two distinct vertices. Let N =
Ng(z) U Ng(y) — {x,y}. Let N' C N and o, € Z* be such that z,y each have
at least o neighbors in N', and that they have at least 5 common neighbors in N'. Let
P = (C4, ..., C}) be the island partition of G[N'|, and let d be the number of 1-islands of
G[N'].

Suppose the triple (G[N'], a, B) satisfies the following properties: (i)t > 2, (ii) « > [ +1,
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(i) B > >_'_, w(G[Ci]), and (iv) B > max;{|Ci|} + d + 1. Then, there exist two distinct
islands C;, C; of G|N'| such that C; contains non-adjacent vertices wy,w, € N(z), and

C; contains non-adjacent vertices ws, wy € N(y).

Proof. Let Z = N(z)NN(y)NN',and let Z; = ZNC; foralli = 1, ..., t. For convenience,
let w; = w(G[C;)) forall i = 1, ..., t. By (iii), 3./, w; < B = 3_'_, | Z|. Note that w; > 1
for all 7.

Note that |Z| = 8 > a+1 > 2. We now observe that we may assume G[Z] is a clique.
To see this is true, assume that there exist non-adjacent vertices w, wy € Z; C C; € P for
some island C;. By (iv), there exists some C; in P — {C;} such that |C;| > 2 and Z; # (.
Let ws € Z; and wy € C; — {ws}. Note that w, is adjacent to at least one of x and y. It
follows that C;, C; and w;, wq, w3, wy are as desired.

Therefore, we now assume that G[Z;] is a clique forall i = 1, ..., ¢, and hence w; > |Z;].
Since ', wi < 3°'_, | Z;|, we know that | Z;| = w; and that G[Z;] is a maximum clique in
G[C;] foralli = 1, ..., t. By (ii), there exists an island C; € P such that z has at least w; + 1
neighbors in C;, meaning that there exists some vertex of C; that is adjacent to = but not to
y. For the sake of a contradiction, we may assume that for every island C; € P — {C;},
every vertex in C; — Z; is adjacent to  but not to y.

Assume for a moment that C; — Z; = () for all j # 4. Since G[Z;] is a clique and
C; = Z; is an island of G[N'], it follows that | Z;| = |C;| = 1 for all j # i. Since |C;| > 2,
wehaved =t — 1 and thus 8 = |Z;| +t — 1 = |Z;| + d < |C;| + d, a contradiction to (iv).
It follows that there exists some island C; € P — {C;} such that C; — Z; # (. Since every
vertex in C; — Z; is adjacent to = but not to y, we may then assume every vertex in C; — Z;
is adjacent to z but not to y. It follows that every vertex in N — Z is adjacent to = but not

to y, meaning that y has exactly |Z| = [ neighbors in N’, a contradiction to (ii). O

Lemma 2.5.9. Let G be a graph with 6(G) > 8. Suppose there is an edge xy € E(G)
such that x and y share at least 6 common neighbors in G. Suppose G /xy is isomorphic to

an exceptional graph that is neither a non-trivial (K11 22222, 7)-cockade nor non-trivial
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G/xy + e; otherwise, let H = G /xy. Let w be the new vertex of G/xy. Let C,, be the
island of H that contains w. Then, there are two distinct islands Cy, Cy of H — C', such
that

(1) Cy contains two non-adjacent vertices wy, wy € Ng(x),

(2) Cy contains two non-adjacent vertices ws, wy € Ng(y),

(3) for every u € V(G /xy) — Ng/uylw), u is adjacent to w; for every i € {1,2,3,4} in
G/xy,

(4)if G/xy =2 Ky992+Cs and G [2y[C] = Ko, then G /xy[Cj] is isomorphic to a 5-cycle

for some i € {1,2}.

Proof. Let N = Ng/ay(w) = Ng(z) U No(y) — {z,y} € V(G). Note that H = G//xy if
and only if H ¢ G, for any i € {1,2,3,4}. We will prove this lemma by considering the
following two cases: C,, is an island of G /zy, or G/xy = G, for some i € {1,2,3,4}, and
(' is not an island of G/zy.

Case 1: C,, is an island of H as well as G/xy.

Note now it is not the case that G/zy = G; for some ¢ € {1,2,3,4} and an end of e is
contained in C,,. Since C,, is an island of G//xy, every vertex u € V(G /xy) — Ng/py[w]
must be in C,, and thus is adjacent to every vertex in V(G /zy) — C,, in the graph G /xy.

This means that it suffices to find two distinct islands satisfying (1), (2), and (4).

77777

77777777777

isomorphic to a 5-cycle. In this case, it suffices to find desired islands satisfying (1) and
(2), and we will use Lemma 2.5.8 to find them. Note that H[N| = H —C,, and every island
of H[N] is equal to a unique island of H — C,,. Also note that z and y have at least § = 6
common neighbors in N, and since §(G) > 8 they each have at least « = 7 neighbors

in N. Let P = (C1,...,C}) be the island partition of G[N], and let d be the number of
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l-islands in it. Notice that for every C; € P, w(C?) = 1 if H[C!] is an independent set,
and w(C!) = 2 if H[C]] is isomorphic to a 5-cycle. Since H[N] contains at most one
island isomorphic to a 5-cycle, ¢, w(H[C!]) = ¢ + 1 if H[N] contains a 5-cycle, and
St w(H[C!]) = t otherwise. One can then check that the triple (H[N], o, 3) satisfies all
(1)-(iv) in Lemma 2.5.8, and it follows that the desired islands satisfying (1) and (2) can be
found.

We may then assume that H = K333 + C5 or K299 + Cs, and H|[C,,] is isomorphic
to a 5-cycle. We will again use Lemma 2.5.8 to find islands C', C5 that satisfy (1) and (2)
first. Let N/ = V(H) — C,, C N, so every island of H[N'] is equal to a unique island
of H — C,,. Since in either case w has exactly two neighbors in C, in G/zy, we know
|N — N'| = 2. It follows that = and y each have at least o’ = 7 — 2 = 5 neighbors in N/,
and they have at least f/ = 6 — 2 = 4 common neighbors in N’. One can then check the
triple (H[N'], o/, ') satisfies all (i)-(iv) in Lemma 2.5.8, and therefore there exist distinct
islands C, C satisfying (1) and (2).

It remains to show (4) in the case H = G /2y = Ka945 + Cs and G/zy[C,,] =2 K.
Note that we may assume the two islands C,Cy of H — C), that we just found using
Lemma 2.5.8 are both 2-islands. Let C' denote the 5-island of /. Since every vertex in C'is
adjacent to w in G//zy, it must be adjacent to at least one of = and y in G. Since G /zy[C] is
a 5-cycle, there exist two non-adjacent vertices w}, w) € C' such that they are both adjacent
to x or both adjacent to y in the graph GG. Without loss of generality, assume w) and w), are
both adjacent to x. We can then use C' to replace C'y, use wj and w;, to replace wy and wo,

and keep Cy = {ws, w4} the same. The modified islands C and Cs are as desired.

Case 2: C,, is not an island of H as well as G /xy.

In this case, G/xy = G; for some i € {1,2,3,4}, and C,, is not an island of G /zy. It
suffices to find distinct islands C7, Cs that satisfy (1)-(3) now. Recall that e is the unique
edge in £ (H) — E(G/zy), and note in this case C',, must contain an end of e. Let N/ =

{v € N : vis adjacent to u for every u € V(G/xy) — Ng/uy[w]} € N. Note that since
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every island of H is an independent set, every island C’ of H[N'] is a subset of a unique
island of H — C,,, say h(C"). Assume that there exist distinct islands C;, C’; of H[N'] such
that C; contains two non-adjacent vertices both adjacent to z in (7, and that C'} contains two
non-adjacent vertices both adjacent to y in G. Then by the definition of N’, C}, = h(CY)
and Cy = h(Cj) are distinct islands of H — C, satisfying (1), (2), and (3). Note that
x and y each have at least o/ = 7 — |N — N’| neighbors in N’, and they have at least
' =6 —|N — N’| common neighbors in N'. It follows that to find the desired islands, it
suffices to show (H[N'], o/, ') satisfies (i)-(iv) in Lemma 2.5.8. Againlet P = (C1, ..., C})
be the island partition of H[N’], and let d be the number of 1-islands in it. We consider all

cases in the following table.

Table 2.1
G/zy | |Cy| | ifwisanendofe | G[N] | H[N'|=G[N'] | I[N —=N'| | (¢, 5, t,d)
G 2 yes Ki2223 K393 1 (6,5,4,0)
2 no K2727272’3 K172,27273 1 (6, 5, 57 1)
G2 2 yes K272’2’2’2 K2’272’2 2 (5, 4, 4, 0)
3 yes K1727272’2 K272’272 1 (6, 5, 47 0)
2 no K29223 Ks2229 1 (6,5,5,0)
3 no K2,2,2,2,2 K1,2,2,2,2 1 (6, 9,9, 1)
Gg 3 yes K27273,3 KQ,373 2 (5, 4, 3, 0)
3 no Kj333 Kj233 1 (6,5,4,0)
G4 2 yes K27373,3 K3,373 2 (5, 4, 3, 0)
3 yes Kis33 K333 1 (6,5,3,0)
2 no K3’373’3 K2’373,3 1 (6, 5, 4, 0)
3 no K2,373’3 K173’3’3 1 (6, 5, 4, 1)

For each case in this table, one can check that the triple (H[N'], o/, 3') satisfies (i)-(iv)

in Lemma 2.5.8. Therefore, the desired islands can be found. OJ

Lemma 2.5.10 (Contraction Lemma 1). Let G be a graph with §(G) > 8. Suppose there

is an edge xy € F(G) such that x and y share at least 6 common neighbors in G. Suppose
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adjacent to all other vertices, then G > K.

34



Proof. We continue using the same definitions and notations used in Lemma 2.5.9: If
G/xy = G; for some i € {1,2,3,4}, let e ¢ E(G/zy) be the unique non-edge of
erwise, let H = G/xy. Let w be the new vertex of G/xy and C,, be the island of H
containing w.

By Lemma 2.5.9, we can choose distinct islands C;, Cy of H — (', and vertices
wy, Wy, w3, wy such that (1) wywy € E(G) and {wy, we} C C1 N Ng(x), (2) wswy & E(G)
and {ws, ws} € Cy N Ng(y), (3) for every u € V(G /xy) — Nejay|w], u is adjacent to w;
for every i € {1,2,3,4} in G/xy, and (4) if G/zy = K95 + Cs and G /zy[C,] = Ko,
then G/xy[C;] is isomorphic to a 5-cycle for some i € {1, 2}.

Define H' = (H — {w}) + wywy + wsw,. We first prove the following claim that
H > K.

Claim 1. H > K.

Proof of Claim 1. Let P be the island partition of H. Note P contains C,, C, and C. Let
Py ={Cy,C1,Cs} and P, = P —P;. Let P’ be the partition of V' (H') obtained from P by
replacing C,, with C,, — {w}. Let P; = {C,, — {w}, C1,Cy} and P, = P’ — P;. Observe
that for every C' € Py, H[C] = H'[C] and thus ¢/ (C') = qu(C). Also observe that every
island in P either is an independent set of size at least 2 or induces a 5-cycle. This implies
that for i € {1,2}, ¢/ (C1) = qH1w,w,(C1) = qu(C1) — 1 and g/ (C2) = qrrtwsw, (C2) =

qu(Cy) — 1, and furthermore that ¢/ (C,, — {w}) = qg(C,) — 1. Hence, we can write

g (P) = > aw(C)+ Y aw(C)
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= (]H(P) - 3.
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lw(P') = I5au(P)] = (% -(2(1H| = 10) +1=3)] = [[H] - 11] = |H'| - 10.

By Lemma 2.5.2, to show H' > Kj, it now suffices to prove gz (C’) < 3qu/(P’) for
every island C’ € P’. Note that Jqu/(P') = |H| — 11 as shown above. Let C’ € P’
be arbitrary. If ¢’ = C, — {w}, let C = C,,; otherwise let C' = C’. Recall that if
C € Py, then g (C') = qu(C) — 1; and if C' € Py, then gy (C') = qu(C). Note H is
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graphs, we observe that gy (C') < |H| — 11 unless H = K3955 + C5 and H[C] = C5. If
qu(C) < |H| — 11, then we have g/ (C") < qu(C) < |H| —11. If H = K555+ C5 and
H[C| = Cs, qu(C) = 3 = |K2222+C5| —11+1. We may then assume qp/(C") = qu(C),
meaning that C' € P, and thus |C,,| = |C}| = |Cs| = 2, a contradiction property (4) of our

choice of C'; and (5. ]

Let L be the graph obtained from G by contracting the edges xw; and yws. To prove
G > Ko, we just need to show L > Kj,. Note if G/xzy = H, then H' = (H — {w}) +
wywe+wswy C L by properties (1)-(3). By Claim 1, it follows that L > Ky if G/xy = H.
We can then assume G /zy # H, meaning that G/zy = G, forsome i € {1,2,3,4}. Recall
a, b be the ends of e, and note a and b are in two distinct islands of H. Let C, and (', be the
islands of H containing a and b, respectively. Observe that if w is an end of e or e = w;ws,
then L O H’ > Kjo. This means we may assume w is not an end of e and e # w;ws. More

generally, we can assume e is not an edge between {w;, w, } and {ws, w,}, since otherwise
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we can relabel the vertices wy, w9, w3, w4 and use the previous argument to show L > K.

Let G' = (G/zy — {w}) + wywy + wsw,. Observe that G’ C L, so it suffices to prove
G’ > Kjo. The rest of the proof now falls into two cases: {C,,Cy} C {C,, Cy,Cs} or
{Ca, Cp} £ {Cu, C1, Co}.

Case 1: {C,,C,} C {C,, Cy, Cs}.

Note {C,,Cy} C {Cy,C1,Cy} means that e = ab crosses two distinct islands of H
among C.,, C1, and Cy. Let Q be the island partition of G/xy. Let D,, be the island in Q
that contains w. Let Q' be the partition of V' (G’) obtained from Q by replacing D,, with

D! = D, — {w}. We make the following claim.

Claim 1. (i) g (Q') = qc/ay(Q) — 3, and (ii) g (C”) < |G'| — 10 for every ¢’ € Q'.
Before proving Claim 1, we first show it implies G’ > K7y. Assume Claim 1 is true. By
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cockade nor a (K322 3,6)-cockade of multiplicity 2, ¢q/.y(Q) = 2(|G/zy| — 10) + 1.
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Since |G’| = |G /zy| — 1, by (i) in Claim 1,

4c(Q) = qe/2y(Q) — 3 = 2(|G/wy| = 10) + 1 — 3 = 2(|G'| - 10),

meaning that I (Q') = [3¢e(Q')] = |G’| — 10. By (ii) and Lemma 2.5.2, it follows that
G’ > K.

Proof of Claim 1. Note that D, = C, U C, is one single island in Q. D, and D,, may
or may not be distinct islands, but it does not matter. Let O; be the minimal subset of
Q that covers vertices in C,C5, and C,,, and let Q) be the minimal subset of Q' that
covers vertices in Cy, Cy, and C,, — {w}. Observe that D,, € Q; and D!, € Q). Let
Q=09 —Q;and Q, = Q — Q). Since {C,,C,} C {C,,C4,Cs}, we know Qs = Q)
and Eg/yy(C) = Eq/(C) for every C € Qy = Q5. It follows that ¢/, (C) = g (C') for
every C' € Qy = Q).

We now prove (i) first. If {C,,C} = {C1,C5}, then D, = C,UC, = C; UC, € Q
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and D, # D,,. It follows that Q; = {D,., D,,} and Q] = {D,., D.,}. Since e = ab is
not between {wy, we } and {ws, w,}, one of Cy and C;, contains at least 3 vertices. Without
loss of generality, assume |C}| = 3, C} = {w;,ws,a}, and b € Cy. Note E(G'[D.]) —
E(G/xy[D.]) = {wiws, wsws}. One can check that if |Cy| = 2, qg/qy(De) = 3 and
qer(De) = 1; and if |Cy| = 3, ¢g/ay(De) = 4 and g (D,) = 2. Therefore, in any case, we
have qo/ (D) = 4G /oy(De) — 2 and ger (D.) < 2. Since D,, is an independent set in G /zy
and | D, | = |D,| — 1, it follows that q¢/ (D;,) = qc/2y(Dw) — 1. Therefore,

4o(Q) = Y (@) + > e (C)

Cc'eQy C'eQ’y

= qor(De) + 4 (D) + Y qe(C)
C'eQ’y

= (QG/:py(De) - 2) + (QG/zy(Dw> - 1) + Z CIG/xy(C)
CeQo

This proves (i) for the case {C,, C} = {C4,Cs}. To finish proving (i), we may assume
{C4, Cy} = {Cy, C;} for some i € {1,2}. Without loss of generality, assume i = 1,
Cy = C,, and C; = C,. Tt follows that D, = C, U Cy; = D, Q1 = {D,,Cs},
and Q) = {D,,,C,}. Itis easy to see that go/(C2) = qg/zy(Ca) — 1 since G/xy[Cs] —
G'[Cy] = {wsw,}. Since w is not an end of e, w € C, — {a} and is not adjacent to a
in G/zy. By property (3), both w; and w, are adjacent to every vertex that is not adja-
cent to w in G//xy. It follows that {wi,wa} C Ng/gy(a), and thus b # w; or w, and
Cy = {b, wy,w,} is a 3-island. One can then check that if |C\y| = 2, ¢g/zy(Dw) = 3 and
qer (D) = 1y and if |Cy| = 3, ¢¢/2y(Dw) = 4 and qer (D,,) = 2. In either case, we have
4cr(Dw) = qc/ay(D;,) — 2 and ger (D)) < 2. Using the same argument as above, we can
show ¢/ (Q') = qa/zy(Q) — 3 again. This finishes proving (i) in Claim 1.

To prove (ii), note when we were proving (i) we also showed that go/(D.) < 2 if
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{C.,Cy} = {C,Cq}, and that g (D)) = qo(D. — {w}) < 2if {C,, Cp} = {Cy, Ci}
for some i € {1,2}. For every island C" € Q' that is not D, or D, — {w}, |C'| < 3 and

therefore go/ (C") < 2. It follows that for every C' € Q', qo(C’) < 2. Since G/xy =

K2 22,223 Or K273,373’3, G/| — 10 = |G/[L‘y| —1-10 Z 13 — 11 = 2. It follows that

)

qo(C") <2 < |G'| — 10 for every C" € Q’, which proves (ii). O

Case 2: {C,,C,} Z {C\, Cy, Co}.
Without loss of generality, assume C, ¢ {C\,, Cy, Cy}. Inthe case {C,, C, }N{Cy, C1,Cy} =
(), we choose C, to be a 3-island if possible. For the rest of the proof, the goal is to find a

vertex a’ € N¢(a) such that G’ /aa’ > K. Note this then implies G' > K.
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wiwy + wywy. Let H” = H' — C; U Cy U O, and note H” contains exactly 3 islands of
H and that C, is one of them. Also note this implies there exists an island C,, of H” such
that Cyy & {C,, Cp}. Let o’ € Cy. Since o’ and b are adjacent in G, it follows that the new
vertex of G’ /aa’ is adjacent to bin G’ /ad’, and therefore G’ /aa’ = H'/aa’. This means that
to prove G’ > K, we just need to choose an island C,/ of H” such that C,, ¢ {C,, C}}
and H' /aa’ > K for some @’ € C,. In the following table, we list all possible cases; and
for each case, we show our choice of C, by giving the size of it as well as the graph H/aa’

where a’ is any vertex in the chosen C,.

Table 2.2
‘Ow‘ 01 and 02 H”:H’—C’luCQUCw |Ca‘ |Ca/‘ H’/aa’
2 |Cl| = ’CQ| =2 K272,3 3 2 K7 + K2’2
2 |Ol| = |02| =2 K2’273 2 3 K7 ‘F_KQ’Q_
2 |C1] # |Cy K29 2 2 | Kg+P+ P
3 |Gy = [Cy] =2 K90 2 2 K7+ Ky,

We note that in the case |C,,| = |Cy| = |C3] = 2 and |C,| = 2 (second row in the
table), (', must not be the 3-island of H” by the choice of C,, which allows us to choose

the 3-island of H” to be C,,. In other cases, it is easy to see that it is possible to choose the
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island C,, of H” of the size listed in the table such that C, ¢ {C,, C}}. Since each case in
the table has H'/aa’ = K7 + Ky or K¢ + P5 + P, and both of these two graphs have a

Ko minor, it follows that H' /aa’ > K. It follows that G’ /aa’ = H'/ad’ > Ky.

Case 2.2: H = K, 3333 In this case, there are fewer islands in H, and we will have
to choose the vertex a’ more carefully. Observe that at least one of C'; and C is not equal
to C}, so without loss of generality we can assume C'; # Cj. In the table below, we list
all possible cases with the range to choose a’ from and the corresponding resulting graph

H'/ad' in each case.

Table 2.3
|C C; and Oy |C, | choose @’ in H'ad
2 |C1| = |Co| =3 3 C1 — {wy, ws} Ki+ Koz + D3
3 Gy = |Cy] =3 2 Oy — {wy, ws) K+ Koy + Py
3 |C1| = |Cy| =3 3 Cy — {wy, ws} K3+ Kono+ P
3 ‘Cl| :3, ’CQ| =2 3 Cl —{wl,wg} K5+K2,2’3
3 G =2,|C| =3,Co#Cy | 3 Co — {ws, wa} Ks+ Kpp3
3 1G] =2,|C=3,C0=C,| 3 |H-C,UCLUCUC, | K5+ Ks20+ P35

Observe that for every case in this table, the graph H'/aa’ always has a Ky minor.
Since a’ is always chosen from an island of H that is not C, or C}, @’ is adjacent to b
in G’, and therefore the new vertex of G'/ad’ is adjacent to b in G'/aa’. Tt follows that
G'/ad' = H'/ad' > K.

O]
Lemma 2.5.11 (Contraction Lemma 2). Let G be a graph with §(G) > 8. Suppose there
is an edge vy € E(QG) such that x and y share exactly 7 common neighbors in G. If
In particular, (1) if G = Ky33.4, then one of x and y has degree 10 and the other one
has degree 11, and (2) if G = G35 or Gy, let e be the unique non-edge such that G + e =
Ky 3333 if G = Gs, one of v and y is an end of e, and the other one is not an end of e in a
3-island of G + ¢; if G = G4, one of v and y is an end of e in a 3-island, and the other one

is not an end of e in a 3-island of G + e.
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Proof. Let w be the new vertex of G/zy. By Lemma 2.5.10, we may assume w is the vertex
in G//xy that is adjacent to all other vertices. Let N = N/, (w) = Ng(z) U Ng(y) —
{z,y}. Note G|N| = Kj9.433. It follows that

(dG('T) - 1) + (dG(y) - 1) - 7= dG/zy(w) - 127

meaning that dg(z) + dg(y) = 21. Without loss of generality, assume dg(z) < dg(y). In
the rest of the proof, we consider the following two cases: dg(z) < 9 and dg(y) > 12, or
dg(x) =10 and dg(y) = 11.

Case 1: dg(r) < 9and dg(y) > 12. Note that dg(y) > 12 means that there is at most
one vertex in [V that is not adjacent to y. Choose 3y’ € N such that y is adjacent to every
vertex in N —{y'}. Let C, be the island of G| N] that contains y'. Since d¢(z) > 8, z has at
least 6 neighbors in N —{y'}. Since G[N] = K5 1 3 3, there exist two non-adjacent vertices
wy, we € N — {y'} that are both adjacent to x. Let C, be the island of G[N] that contains
wy and wy. Note C, and C,y may or may not be the same island, but it does not matter. Let
(" be an island of G[N] — C, UCy, and let ws € C'. By contracting y'ws and zw;, we can
obtain a resulting graph that has a subgraph isomorphic to G’ = (G[NU{y}]/y'w3)+w;ws.
Let H = G[N U {y}]/y'ws, and note it is now enough to prove G’ = H + wjw, has a K,
minor. Since y is adjacent to every vertex in N — {¢'}, it is adjacent to w3 in G and thus

adjacent to the new vertex of H. It follows that H = (G[N U {y}] + yy')/y'ws. Since
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are not adjacent. This means that to prove G’ = H + w;ws has a K7, minor, it suffices to
show forevery f & E(H), H+ f > K. Let f ¢ E(H) be arbitrary. If H = K, + K» 33,
then H+ f = K+ Ksz0or Ky+ Koz+Ps;if H > K3+ Kooo3, then H+ f = Kz + Koo
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H + f is isomorphic to a graph that has a K minor, and it follows that H + f > Kj.

Case 2: dg(x) = 10 and dg(y) = 11. In this case, x has exactly 3 non-neighbors and
y and exactly 2 non-neighbors in N. Let x1, 29, x5 and y;, y» be the non-neighbors of z
and y, respectively. Note that {1, 22, 23} N {y1, 91} = 0, and {1, 22, 23} C Ng(y) and
{y1, 92} C Ne(x). Let N' = {x1, 22, 23,41, 92} € N.

Assume y; and y» are in two distinct islands of G[N]. Let these two islands be C’;
and C;. Note there are exactly three islands of G[N] — C} U C7. If some island C” of
G[N] — C;, U C7 is such that every vertex in C” is adjacent to x, let the two islands in
GIN] = C,uC;UC" be Cy and C7. Let wy € Cy, wy € C7, and wy € C'. Contract ywy,
y2ws, and zws in G, and we can get a resulting graph isomorphic to K7 + Ky9 > K.
We may then assume that the three islands in G[N] — Cyl U C’; are C}, C?, and C?, and
that x; € C" for each i € {1,2,3}. Now, each one of the five islands of G[N] contains
exactly one vertex in V. Observe that we can choose a vertex wy € N — N’ that is in some
3-island of G[N| — C’g. Contract edges 1y, r2y2, and xswy, and we can then obtain a
graph isomorphic to K;; > K.

Now we may assume y; and y, are in the same island C,, of G[N], meaning that N’ can
cover up to 4 islands of G[N]. This means there exists some island Cj, of G[N] such that
NN Cy = (). Choose Cj to be a 3-island if possible, and let w, be a vertex in Cj.

If N’ covers exactly four islands of G[N], then x4, x5, 3 are in three distinct islands
that are distinct from C,. By contracting z,y1, £2y2, and z3w,, we can obtain a resulting
graph isomorphic to K7+ K, 5 if |Cy| = 2 and K7, if |C,| = 3. In either case, the resulting
graph has a Ko minor and hence G > K.

Assume N’ covers exactly three islands of G[N], say C,, C;, and C,. Without loss of
generality, assume z; € C; fori = 1,2. If x3 € Cy, then C,, = {y1, y», z3}. By contracting
Z1Y1, T2Y2, and zwyp, we can obtain a resulting graph isomorphic to K7 + K39 > K since
we chose () to be a 3-island if possible. Without loss of generality, we may then assume

zy € C1. If|Cy] = |Cy| = 2, then G = G4 if |C] = 2and G = G5 if |Cy] = 3. In
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particular, let e be the unique non-edge of G such that G + € = K5 3533, then if |Cy| = 2
and G = Gy, x is an end of e in a 3-island of G + e and y is not an end of e in a 3-island
G+e;if |Cs] = 3and G = G3, x is an end of e and y is not an end of e in a 3-island of G'+e.
We may then assume at least one of C, and C contains 3 vertices. By contracting 1y,
T2y, and x3w,, we can get a resulting graph isomorphic to K, > Ky if |C,)| = |C| = 3
or K7 + Ky 5 > K if exactly one of C), and C is a 3-island.

Finally, consider that N covers exactly two islands of G[N]. If |C,| = 2, then x1, x5, x5
form a 3-island of G[N|, meaning that G = K5 3334 With d(x) = 10 and d(y) = 11. If
|Cy| = 3, first assume Cy = {x1,xs, x3}. By contracting z1y;, Tay2, and 3wy, we can
obtain a resulting graph isomorphic to K7 4+ Ky9 > Kj9. We can then assume, without
loss of generality, that C;, = {y1, 42, 23} and {z1, 22} C Cy. If |Cy| = 3, contract 1y,
TaYa, and zwy, and we can obtain a graph isomorphic to K7 + Koo > K. If |Cy] = 2,
then by the choice of Cjy we have |Cy| = 3. Let wy, wy be two vertices from distinct islands
in G[N] — C, U C; U Cy. By contracting y, w1, yaws, and xwy, we will obtain a graph

iSOl’IlOI'phiC to K7 + K2’2 > KlO- ]

Lemma 2.5.12 (Contraction Lemma 3). Let G be a graph with 6(G) > 8. Suppose there

is an edge vy € E(QG) such that x and y share exactly 7 common neighbors in G. If

77777777777
’’’’’

77777

is in the 3-island in G + e and the other one is an end of e; if G = (o, one of x and y is the
end of e in the 3-island of G + e, and that the other one is not an end of e and in a 2-island

of G.

Proof. Let w be the vertex in GG /xy obtained by the contraction of xy in G. Let C,, be the
island of GG /xy that contains w. By Lemma 2.5.10, we may assume w is adjacent to all other

vertices in G/ xy, meaning that |C,,| = 1. Let N = Ng/py(w) = Ng(2) U No(y) — {=,y}.
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(dG(‘r) - 1) + (dG(y) - 1) - 7= dG/xy(w> = 117

meaning that dg(x) + de(y) = 20. Without loss of generality, assume dg(x) < dg(y).
Note that §(G) > 8. We will proceed the rest of the proof following these three cases:
dg(x) =8 and dg(y) = 12, dg(x) = 9 and dg(y) = 11, and dg(z) = dg(y) = 10.

Case 1: di(z) = 8 and dg(y) = 12. Since dg(y) = 12, y is adjacent to every vertex in
a 2-island {wy, w9} of it such that both w; and w, are adjacent to x. By contracting zw,
we get a resulting graph isomorphic to K4y + K222 > Kj, and therefore G > K.

Case 2: dg(x) = 9 and dg(y) = 11. In this case, = has exactly 8 neighbors in NN,
and that there is a unique ¢’ € N that is not adjacent to y. Let C,, be the island of
G|[N] that contains . If |C\y| = 2, then x has at least 6 neighbors in N — C,,. Since
G[N| — Cy = K 32292, there exists a 2-island C'; = {wy, w,} of it such that both w; and
wo are adjacent to x. Let Cy = {ws, w4} be any 2-island of G|N| — C,, U C. Note that
both w3 and w, are adjacent to y and 3’. Contracting zw; and y'ws in G, and we get a
resulting graph isomorphic to K7 + K; 5 > Ko, implying that G > K;o. We may then
assume |Cy/| = 1. Note x has exactly three non-neighbors in N. Call them 1, x5, and
xs. If 21,29, x5 are in three distinct islands in G[N — y'| = K599, then there remain
two 2-islands C; = {wy,wy} and Cy = {ws, w,} that do not contain any non-neighbor of
x. By contracting xiwq, zows, and x3y’, we obtain a resulting graph isomorphic to K.
Without loss of generality, we may then assume {x1, 2} is a 2-island of G[N]. It follows
follows that z is the end of e in the 3-island of G + e and y is not an end of e in a 2-island
of G.

Case 3: dg(z) = de(y) = 10. In this case, x and y each have exactly two non-
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neighbors in V. Let the non-neighbors for = be z; and x5 and the non-neighbors for y

be y; and y,. Note that 1, x9, Y1, yo are four distinct vertices. Assume {z1, 25} is a 2-
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x is in the 3-island of G + e and y is an end of e. If y; and y- are in two distinct 2-islands
in G[N] — {x1, 22}, by contracting z,y; and z,y, we get a resulting graph isomorphic
to K7 + Ks5 > Kjo. We may then assume z;, x are in distinct islands of G[NV], and
by symmetry y; and y, are in distinct islands of G[N] too. At most one vertex among
x1, %2, Y1, Yo 1s in the 1-island, so without loss of generality assume that x; and x5 are in
two distinct 2-islands. Note that there exists a 2-island Cj of G[N] such that both vertices
in Cj, are common neighbors for x and y. Let wy € Cj. This implies that the new vertex of
G /ywy is adjacent to both y; and ys,. It follows that G /ywy = K3 + Ka9 + Ps. Itis easy
to observe that K3 + K55 + P > K, implying that G > K.

[

Lemma 2.5.13 (Contraction Lemma 4). Let G be a graph with 6(G) > 8. Suppose there
is an edge xy € E(QG) such that x and y share exactly 7 common neighbors in G. If G /xy
isa (K1122222,7)-cockade, then either G > Ky or G is isomorphic to Ky 22233, G1, or

Go.

’’’’’
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is in the 3-island in G + e and the other one is an end of e; if G = G, one of x and vy is the

end of e in the 3-island of G + e, and that the other one is not an end of e and in a 2-island

of G.

Proof. We will prove the lemma by inducting on |G/zy|. The base case is G/zy =

777777

cockade. Choose subgraphs H;, Hy of G/xy such that H;, H, are both (K 122222,7)-
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cockades, H; U Hy = G/xy, and Hy N Hy = K. Let w be the new vertex of G /xy. For
eachi € {1,2}, let HX = G[(V(H;) — {w}) U {x,y}]. Observe that since each H; is a
(K11,22222,7)-cockade, §(H;) > 10. It follows that for every vertex v € V(H;) — {z, y},
dp+(v) > dg;(v) > 10. Suppose w € V/(Hy) — V(Hz). Then x, y have exactly 7 common
neighbors in HY, implying that dy:(z) > 8 and dp:(y) > 8. It follows that §(H}) > 8,
a contradiction, since H; contains a subgraph isomorphic to K but any one of these three
exceptional graphs does not.

By symmetry, we may assume w € V(H; N Hs). Let S = V(H, N Hy) —{w}, and note
that G[S] = K. Let Z C V(G) be the set of the 7 common neighbors of = and y. Assume

Z C V(H{) for amoment. This again implies that both x and y have at least 8 neighbors in

77777
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islands. Since H{[S] = K, every vertex in S is in a distinct island in L. Since = and y are
adjacent in L, they must be in different islands. It follows that there exist unique vertices
x',y’ € S such that 2’ and x are in the same island, and that ¥/’ and y are in the same island
of L. Let K be a component of H; — H;. Note that No(K) C SU{x,y}. By Lemma 2.5.5,
7-connected. It follows that | Ny, (K)| > 7 and therefore | Ng(K)| = [ Ny; (K)| > 7. Since
|S U{z,y}| = 8, without loss of generality we can assume both x and z’ are contained in
N¢(K). By contracting all vertices in K to x, we can get a resulting graph on V' (H7) that
contains H + xa’ as a subgraph. Since z and 2’ are in the same island of L, xx’ # f in
the case H} = GG1 or Go. By Lemma 2.5.7, H{ + xa2’ > K, and therefore G > K.

Now, we may assume Z ¢ V' (H{), and by symmetry we may also assume Z ¢ V (H;).
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Foreachi € {1,2},1let Z, = Z NV (H; — Hj_,), and note that | Z;| > 1. It follows that
1S =2]=6-12Nn5[=6-(7T—|%4] 12| =2+ |2| -1 = |Z

for every i € {1,2}. Again by Lemma 2.5.5, H;, H, are both 7-connected. This implies
that H; —{w} — SN Zis (6 —|Z N S|)-connected, and equivalently |S — Z|-connected, for
each i € {1,2}. Since |Z;| < |S — Z|, there exist | Z;| disjoint paths from Z; to S — Z in
H;—{w}—SNZ foreachi € {1,2}. Foreachi € {1,2}, choose disjoint paths I}, ..., P,
between Z; and S — Z in H; — {w} — SN Z, and let Z! C S — Z be the set of endpoints of
these paths in S— Z. Contract P}, ..., P|iZ¢|’ and let H{ be the induced subgraph on V' (H;) of
the resulting graph. Note now in H}, x and y have exactly 7 common neighbors, implying
G, with detailed positions of x and y in H/ described in the statement of the lemma.
Foreachi € {1,2},if H = G or Gy, lete; ¢ F(H]) be the unique non-edge such that
H!+e = Kygs9osandlet L; = H! 4+ e;; and if H] = K 55933, let L; = H]. In either
case, L; contains exactly 6 islands, implying that every vertex in S is in a distinct island
of L;. By induction, for each i € {1,2}, if H] = K 229233, then dy(v) = dp/(y) = 10,
if H = G, one of z and y is in the 3-island in L; and the other one is an end of ¢;; if
H] = G5, one of x and y is the end of ¢; in the 3-island of L;, and that the other one is
not an end of e; and in a 2-island of H]. Observe that in any of the three cases, there exist
exactly three islands, say C'!, C?, and C?, that are all 2-islands of L; such that both vertices
in C7 are common neighbors for z and 3 for j = 1,2, 3. For every i € {1,2} and every
J € {1,2,3}, since exactly one vertex in Cf is contained in S, the other one must be in
V(H} — HZ_,). Note the vertex that is in C/ NV (H} — H ;) must be adjacent to both
and y in the graph H, meaning that this vertex is contained in Z;. It follows that | Z;| > 3
for both i = 1,2. Since |Z1| + |Z»| < |Z| = 7, without loss of generality we can assume

|Z3| = 3, and that the three vertices in Z, are precisely one from each C, C%, and C. For
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each v € Zy, note that Ny (v) = Ny, (v). It follows that in the graph H;, each v € Z, has
exactly one non-neighbor in S. Recall Py, P, P; are three disjoint paths linking S — Z and
Zyin Hy — {w} — SN Z. Therefore, we may choose each path P; to have length exactly 1
forj; =1,2,3.

Now, since x and y are adjacent, they are in distinct islands of L;. Since each vertex in
S is in a distinct island of Ly, there exist unique vertices z’, 3’ € S such that 2’ and z are
in the same island of L, and that 3’ and y are in the same island of L. Note if H] = G,
or G, 2’ # ey and yy' # e;. By Lemma 2.5.7, H; + z2' > Ko and H; + yy' > K.
Therefore, it suffices to show that there exists a path () in H; that is internally contained in
H} — Hf — Z5 and links x and 2’ or links y and /.

Now, since H) = K 39233, G1, or G2, we know that |H;| = |H}| = 13 and therefore
|V (H5— H{)— Z3| = 2, meaning that there are exactly two vertices, say u, ug, in Hj — Hy
that are not common neighbors of = and y in G. Observe that Ng(u;) = Npz(u;) =
Npy(u;) fori = 1,2. Also observe that regardless of which graph Hj is isomorphic to, any
vertex in it that is not = or y has degree at least 10. It follows that w1, us each has at most
two non-neighbors in H;. We may then assume, in the graph H), u;, uy each has exactly
two non-neighbors among {x, 2’, y, 3’} and that u;, u, are adjacent to each other.

Note that in any case, at least one of = and y is contained in a 3-island of L,. Without
loss of generality, assume that y is contained in a 3-island of L,. Call this island C,, and
note that exactly one of u;, us is contained in C',. Without loss of generality, say u; € C,,.
Then, observe that in any case we have u; adjacent to y in H}. This means we may assume
Npy(u1) N{z,2',y,9'} = {x,y'}. Since uy,u, are adjacent to each other, we may further
assume that Ny (uz) N {z, 7', y,y'} = {x,y'} too. It follows that H;[{z', y, u1, us}] has a
supergraph isomorphic to @, which is a contradiction, since none of K 22933, G, and

G+ contains a subgraph isomorphic to K5 5. [

Lemma 2.5.14 (Contraction Lemma 5). Let G be a graph with §(G) > 8. Suppose there

is an edge xy € FE(G) such that x and y share exactly 7 common neighbors in G. Suppose
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G/zy. fw € V(H; — Hs_;) for some i € {1,2}, then we can apply Lemma 2.5.10
to G[V(H; — {w}) U {z,y}| and show that G > Kj,. Therefore, we may assume that
w € V(Hy N Hy). Fori=1,2,let H = G|V (H; — {w}) U{z,y}].

v e V(G) —{z,y}. Let Z C V(G) — {z,y} be the subset of 7 vertices that are common
neighbors of z and y in G. Fori = 1,2, let Z; = Z NV (H} — H}_,). If |Z;| = 0, then
x and y have exactly 7 common neighbors in H;, which implies that dg; (), du; (y) > 8.
It follows that 6(H;) > 8. Since Hy /xy = Hy = Kj2223, by Lemma 2.5.10 it follows
that H; > Ko and therefore G > K7j,. By symmetry, we may then assume |Z;| > 1 for
i=1,2. Let S = V(H, N Hy) — {w}, and it follows that | Z;| + [S N Z| < 6 fori = 1, 2.
Since |S| = 5, we have | Z;| + 5 — |S — Z] < 6 and thus |S — Z| > |Z;| — 1 fori =1, 2.

Assume for a moment that |S — Z| = |Z;| — 1 = |Z3| — 1. Then,

T=|\Z|=|Z|+|Z| +|SNZ|=2|S - Z|+2+|SNZ|=T+]|S - Z|,

and therefore |S — Z| = 0. It follows that S C Z and |Z;| = |Z| = 1. Let z; be the
unique vertex in Z; for ¢ = 1,2. Note now x and y have exactly 6 common neighbors in
HY, meaning that dgx (), dg:(y) > 7. Note that if N(z) NV (Hf — H3) — {z1} # 0 and
N(z)NV(H{ — Hs) — {21} # 0, then we would have dp: (), dp:(y) > 8 and therefore
d(H) > 8. By Lemma 2.5.10, it follows that H; > K, and thus G > K. Without loss
of generality, we may assume that in the graph G, every vertex in N/, (w) NV (Hy) — {2}
Now, note that there exists a unique vertex s; € S that is not adjacent to z; in Hy. Since

S C Z, sy is adjacent to y. It follows that (H; — {y}) U {z1s1} C H{/ys;. Since
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Hy —{y} = K322223, by Lemma 2.5.7 we know that (H; — {y}) U {z151} > Kjo. It
follows that Hy > Ko and thus G > K.

Hence, we may assume there exists some i € {1, 2} such that |S — Z| > |Z;|. Without
loss of generality, assume that |S — Z| > | Z;|. Observe that if there exist | Z; | disjoint paths
linking Z; and S — Z in Hf — {x,y} U (S N Z), then by contracting each of these paths
to its end in S — Z, we would obtain a resulting graph Hj on V (H;) such that §(H}) > 8
and z, y have 7 common neighbors in H). By Lemma 2.5.10, it follows that H), > K, and
thus G > K. Therefore, it suffices to prove such disjoint paths exist.
matching from Z; to S — Z, and therefore the desired disjoint paths exist. If |Z;| = 2,
we may assume |Z;| = |S — Z| = 2 and the two vertices u;,us € Z; and one vertex
v, € S — Z form a 3-island in H;. Let vy be the vertex in S — Z that is not equal to us.
Let wy € V(H} — Hj) — Z; be the unique vertex that is not adjacent to vo, and let w- be
any vertex in V(H; — Hy) — Z; U {w;}. We can then observe that w; is adjacent to both
u; and v; for ¢ = 1, 2, and therefore paths going through u;, w;, v; in order for both = 1, 2
are as desired. If | Z;| = 1, then we may assume |S — Z| = 1 as well and the vertex u € Z;
w € V(Hf — H}) — {u} that is a common neighbor for u and v. The path going through

u, w, v in order is then as desired. ]
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CHAPTER 3
STRUCTURE OF POSSIBLE MINIMAL COUNTER-EXAMPLES

In this chapter, we study the structure of possible minimal counter-examples to Theo-
rem 1.1.5. We will prove a series of lemmas on the number of edges, minimum degree,
connectivity, and separations of possible minimal counter-examples to Theorem 1.1.5.

In particular, we say a graph G on n > 8 vertices is a minimal counter-example to
Theorem 1.1.5 if the following statements hold:

(1) e(G) > 8n — 35,

(2) G # Ko,

(3) G is not isomorphic to any exceptional graph,

(4) For every graph G’ such that 8 < |G| < n — 1 and ¢(G’) > 8|G’| — 35, either
G’ > K or G’ is isomorphic to an exceptional graph, and

(5) Subject to (1)-(4), e(G) is minimum.

To prove Theorem 1.1.5, for the sake of a contradiction, we assume that a minimal
counter-example to Theorem 1.1.5 exists. For convenience, we will use GG to denote a
fixed minimal counter-example to Theorem 1.1.5 in the rest of Chapter 3, Chapter 4, and

Chapter 5.

3.1 Basic Properties

Lemma 3.1.1. G has the following properties:

(1)|V(G)|=n>11, e(G) = 8n — 35.

(2) 6(G) > 10, and 6(N(z)) > 8 for every v € V(G).

(3) If G' is a proper minor of G such that |G'| > 8, then e(G") < 8|G'| — 34 and the equality

77777
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Proof. To see (1) is true, first observe that there is no graph on at least 8n — 35 edges for
n = 8 or 9, and that the only graph on n = 10 vertices with at least 8n — 35 edges is K1o.
It follows that n > 11. If e(G) > 8n — 35, then by the definition of a minimal counter-
example to Theorem 1.1.5, G'\e must be an exceptional graph for every e € E(G), which
is a contradiction to Lemma 2.5.7. Hence, ¢(G) = 8n — 35.

To show (2), we first prove §(G) > 8 and 6(N(x)) > 6 for every x € V(G). Suppose
there exists an edge xy € F/(G) such that x and y share at most 5 common neighbors. This
means that e(G/xy) > 8n — 35— 6 = 8(n — 1) — 35 + 2. By Lemma 2.5.4, G/xy is not
an exceptional graph, a contradiction to the fact that G is a minimal counter-example to
Theorem 1.1.5. It follows that every pair of adjacent vertices in GG share at least 6 common
neighbors, meaning that §(G) > 7 and 6(N(z)) > 6 for every x € V(G). Suppose
there exists some « € V(G) such that d(z) = 7. This implies that N (z) = K7, which is a
subgraph of G\ z. Note ¢(G\z) = 8(n—1)—35+1. Since G is a minimal counter-example
or Ks3333, which is a contradiction since neither one of these two exceptional graphs
contains a subgraph isomorphic to K. We conclude that §(G) > 8 and (N (z)) > 6 for
every z € V(G).

To continue proving (2), for the sake of a contradiction, assume that there exists some
xy € E(G) such that = and y have kK common neighbors where k& = 6 or 7. It follows that
e(G/ry) =8n—35—(k+1) =8(n—1) - 35+ (7 —k) > 8|G/xy| — 35. Again since G
is a minimal counter-example to Theorem 1.1.5, G/xy must be isomorphic an exceptional
Ky 3333 by Lemma 2.54. Since §(G) > 8, Lemma 2.5.10 implies that G > Kj, a
contradiction. We may then assume k£ = 7 and e(G/zy) = 8|G/xy| — 35, so again G/xy
is isomorphic to an exceptional graph. Since §(G) > 8, by Lemma 2.5.10-Lemma 2.5.14,
it follows that either G > Kj, or GG is isomorphic to some exceptional graph, again a

contradiction to the fact that GG is a minimal counter-example to Theorem 1.1.5. Therefore,
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we have so far proved that (N (z)) > 8 for every z € V(G), which then implies 6(G) > 9.
Notice that if d(x) = 9 for some = € V (), then we would immediately have N|[x] > K7,
as 0(N(x)) > 8, a contradiction to the fact that G ¥ K. This completes the proof for (2).

To show (3), assume that G’ is a proper minor of G with |G'| > 8 and e(G") > 8|G’| —

77777

:::::

e(G') = 8|G"| — 34. O

3.2 Separations and Connectivity

The major goal of this section is to prove Lemma 3.2.9 that G is 7-connected. To prove it,
we will first need to prove s series of lemmas on separations of G. Some of these lemmas

before Lemma 3.2.9 will be used later in this thesis as well.

Lemma 3.2.1. Let (Ay, As) be a non-trivial separation of G. Fori = 1,2, let G; = G[A,),
and let G; be a non-empty subset of minors of G on V(G;), i.e. every graph in G; has its set
of vertices equal to V(G;) and can be obtained from G by deleting or contracting edges
that have at least one end in V (G5_; — G;). Fori = 1,2, define d(G;) and r(G;) as follows:

d(G;) = maxpy,eg,{e(H;) — e(G;)}; 7(G:) = 1 if there exists a graph in G; isomorphic to

77777

8]S| = 35 + d(G1) + d(G2) + e(G[S]) = r(G1) = 7(G2) = 33 + d(G1) + d(G2) + e(G[S]).

Proof. For convenience, let d; = d(G;) and r; = r(G;) fori = 1,2. Choose H; € G; with

follows that e(G1) 4+ e(Gy) = e(H;) +e(Hs) —d; —dy. By (2) of Lemma 3.1.1, 6(G) > 10.
Since (A;, Ay) is a non-trivial separation of G, |H;| = |G;| > 11 for both i = 1,2. Since

H,, Hy are both proper minors of G with |H;| > 11 for i = 1,2, by (3) of Lemma 3.1.1
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it follows that e(H;) < 8|H;| — 35 + r; for i = 1,2. Since ¢(G) = 8n — 35 by (1) of

Lemma 3.1.1, it follows that

8n — 35 = e(G1) + e(Gs) — e(G[S])
= G(Hl) + €(H2> - d1 - d2 - G(G[S])
< 8(|H,| + |Hy|) — 70 + 71 + 75 — dy — dy — e(G[S])

=8n+8|S| =70+ 1 + 1y —dy — dy — e(G5)).

Therefore,

8‘S| Z 35+d1 +d2+€(G[S]) — 71 —To.

Since r; = r(G;) < 1 for both i = 1,2, it follows that

8|S| > 35+ dy +dy + e(G[S]) — r1 — 12 > 33+ dy + dy + e(G[9)).

Lemma 3.2.2. GG is 6-connected.

Proof. Let (A1, As) be a non-trivial separation of G of minimum order. Let S = A; N As.
Fori = 1,2, let G; = G[A,] and let d; be the maximum number of edges that can be
added to S by contracting edges that have at least one end in G5_; — ;. By Lemma 3.2.1,
8|S| > 33 + dy + dy + e(G[S]), which implies |S| > 5. For the sake of a contradiction,
assume |S| = 5. It follows that d; + da + e(G[S]) < 7. Let 6 = §(G[S]) for convenience.
Since S is a minimum separating set of G, every vertex in .S has some neighbor in G; —G5_;
for both i = 1, 2. It follows that d; > |S| — 1 — 0 = 4 — § for i = 1,2, as we can contract
all of G3_; — G; to some vertex v € S with dgs)(v) = J to make v adjacent to all other

vertices in S. Since ¢(G[S]) > $|S]6 = 24, it follows that

1
7Zd1+d2+e(G[S])22(4—5)+g5:8+§5,
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which means that § < —2, a contradiction. O

Lemma 3.2.3. Let U C V(QG) such that U # () and |[N(U)| < 6(G) — 1. If there is no
non-trivial separation of (GI[UUN (U)], N(U)) of order at most |N (U )| — 1, then for every
Z C N(U) such that |Z| = 4, the following statements are true:

(1) IfIN(U)| < 6(G) — 2, then G|U U Z| has a K4 minor rooted at Z.

(2)If IN(U)| = d(G) — 1, then one of the following two statements is true: (2a) For every
two vertices y1,ys € Z, GIlUUZ] has a minor L such that V(L) = Z and LU{y1y2} = K.
(2b) If 6(G) = 11, then for every Z' C N(U) — Z such that |Z'| = 4, G[U U Z'| has a K4

minor rooted at 7.

Proof. Let H = G[U U Z]. Note we may assume that H does not have a K, minor rooted
at Z. We will show either a contradiction, or that one of (2a) and (2b) holds true and
INU)| = 6(G) - 1.

Since there is no non-trivial separation of (G[U U N(U)], N(U)) of order at most
IN(U)| — 1, there is no non-trivial < 3-separation of (H, 7). Choose (X,Y) to be a
4-separation of (H, Z) such that Y — X = (), and subject to that |Y'| is minimum. Note
that such a separation exists due to the trivial 4-separation (Z,Z U U) of (H,Z). Let
Z* = X NY. Then note that the minimality of |Y'| implies that there is no non-trivial
< 4-separation (G[Y], Z*). Since there is no non-trivial < 3-separation of (H, Z), there
exist four disjoint paths linking Z and Z* in G[X]. Since H does not have a K, minor
rooted at Z, it follows that G[Y'] does not have a K; minor rooted at Z*.

By Theorem 2.2.2, one of (ii)-(iv) is true for H and Z. Since there is no non-trivial
< 3-separation of (H, Z), we know (iii) is not true. Therefore, one of (ii) and (iv) is true.

Case 1: (ii) is true, i.e. there is a trisection (A;, A;, B) of G[Y] of order 2 such that
|Z* N (A; — B)|=1fori=1,2.

Let z; be the unique vertex in Z* that is in A; — B for ¢ = 1,2, and let a, b be the two
vertices in A; N A; N B. Notice that if Ay — B — {21} # 0, then (A, U BU {21}, 4)

would be a non-trivial 3-separation of (G[Y], Z*), a contradiction to the fact that there is
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no non-trivial < 4-separation (G[Y], Z*). By symmetry, it follows that A; — B = {z;} for
i1 =1,2. If B—A;UA;UZ* # (), then similarly we would have a non-trivial < 4-separation
(A UAUZ*, B) of (G[Y], Z*), again a contradiction. It follows that B— A;UA,UZ* = (),
and therefore Y — Z* C {a, b}. Notice that vertices in Y — Z* = Y — X have no neighbor

in X — Y, meaning that Ng(Y — Z*) C Z* U (Ng(U) — Z). It follows that

INa(Y = 29[ <27 U(Na(U) = 2)| = [27] + [N(U) = 2] = [Na(U)|.

If [INg(U)| < §(G) — 2, then |[Ng(Y — Z*)| < §(G) — 2. This means that every vertex
in Y — Z* has at least two neighbors in Y — Z* and thus |Y — Z*| > 3, a contradiction to
the fact that Y — Z* C {a, b}.

If IN¢(U)| = 6(G) — 1, then |[Ng(Y — Z*)| < 0(G) — 1. We will prove that (2a) is true.
Note that |[Ng(Y — Z*)| < §(G) — 1 means that every vertex in Y — Z* has at least one
neighbor in Y — Z*. Since Y — Z* C {a, b}, it follows that Y — Z* = {a, b}, ab € E(G),
and that a, b each are adjacent to all vertices in Ng(Y — Z*) = Z* U (Ng(U) — Z). This
means that for every pair of vertices y;, v, € Z*, G|Y| = G[Z* U {a, b}] has a minor L’ on
Z* such that L' U {y y4} = Kj, as we can simply contract the edges ayj and by, where
Z* —{y1, ¥4} = {v4, vy }. Recall that there exist four disjoint paths linking Z and Z* in
H[X]. Tt follows that for every pair of vertices y;,y2 € Z, H has a minor L such that
V(L) = Z and L U {y,y2} = K,. Therefore, (2a) is true.

Case 2: (iv) is true, i.e. G[Y] can be drawn in the plane so that every vertex in Z*
is incident with the infinite region.

Since G'[Y'] can be drawn in the plane so that every vertex in Z* is incident with the
infinite region, there exists a planar graph J that can be obtained from G[Y] by making

J[Z*] isomorphic to K, . Note that

e(J)=e(J[Z*) +e(Z*)Y = Z*) +e(G]Y — Z*]) =5+e(Z",Y — Z*) +e(G]Y — Z7]).
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Since J is planar, e(J) < 3|.J| — 6. It follows that

5re(Z4,Y —Z)+e(GlY —2%)) = e(J) < 3|J|—6 = 3(|Y — Z*|+4)—6 = 3|Y — Z*|+6.

Therefore,

e(Z*Y = Z*) +e(GY — Z*]) <3|V — Z*| + 1.

If  IN(U)| < 0(G) — 2, then §(G) — |[N(U)| > 2. It follows that

e(Z*Y — Z*) + 3|Y — Z¥|.

1 1
eo(ZY = Z) +e(GlY = 2') = 5e(Z"Y = Z°) + 5 > ds()
veY —Z*
1 1
> 5e(Z27Y = Z7) + 5(0(G) = [N(U) = Z|) - |Y = 77
1 1
= SelZ°Y = Z) + 5(6(G) = IN(U)| +4) - [V = 2]
1 1
> e(Z0Y = Z) + 52+ )Y - 2|
1
2

Since e(Z*,Y — Z*) + e(G]Y — Z*]) < 3|Y — Z*| + 1, it follows that
1
Se(Z7Y = Z)+3lY = 2 S e(Z',Y = Z7) + e(GY = Z) S3)Y - Z'] + 1,

meaning that e(Z*)Y — Z*) < 2. By the minimality of |Y| when choosing (X,Y), ev-
ery vertex in Z* has at least one neighbor in Y — Z*, meaning e(Z*,Y — Z*) > 4, a
contradiction.

It remains to consider |V (U)| = 6(G) — 1, and we will prove that (2b) is true. To prove
(2b), assume that 6(G) = 11. Since J is planar, G[Y — Z*] which is a subgraph of J is
also planar, and therefore e(G[Y — Z*]) < 3|Y — Z*| — 6. Recall that e(Z*,Y — Z*) +
e(GlY — Z*]) < 3]Y — Z*| + 1. It follows that

e(Z°Y — Z*) + 2¢(GlY — Z*]) < 6|Y — Z*| — 5.
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Since 6(G) = 11, we now have

e(N(Y = Z°),Y = Z*)+2e(GlY = Z")) = ) da(v) > 11]Y — Z7|.

veY —Z*

Notice that

e(N(U) - Z,Y — Z%) :(e(N(Y —Z°),Y = Z*) + 2¢(G[Y — Z*])) -
(e(z*, Y — Z°) + 2¢(GY — Z*])>
>11]Y — Z*| — (6]Y — 27| - 5)

=5|Y — Z*| + 5.

Since N(U) = §(G) — 1 = 10, we have |[N(U) — Z| = |[N(U)| — 4 = 6. It follows that
there exist five distinct vertices vy, vo, U3, U4, V5 € Y — Z* such that each of them is adjacent
all 6 vertices in N(U) — Z. Let Z/ C N(U) — Z such that |Z'| = 4 be arbitrary, and let
7" = {2, 2}, 2%, 2} }. By contracting edges z/v; for i = 1,2,3, we would then obtain a K,
minor of G[(Y — Z*) U Z'] rooted at Z'. Since G[(Y — Z*) U Z'] C G[U U Z'}, it follows
that G[U U Z’| has a K, minor rooted at Z'. O

Lemma 3.2.4. Let S be a separating set of G. The following statements are true:

(1) There is no w € S such that G[S — {w}] is complete.

(2)If |S| < 6(G) — 2 and is minimum over all separating sets of G, then there isno Z C S
with |Z| = 4 such that the graph obtained from G|S] by making Z a clique is complete.

(3) G|S] contains an independent set of size 3 or two disjoint non-edges.

Proof. Let (A1, As) be a non-trivial separation of G. Let S = A; N A and G; = G[A;] for
i=1,2.

We first prove that (1) implies (3). Assume (1) is true. Since G[S — {w}] is not a
complete graph for all w € S, for every non-adjacent vertices x,y € S, neither G[S — {z}]

nor G[S — {y}] is a complete graph. It follows that there exists some z € S — {z, y} such
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that xz,yz ¢ E(G), or that there exist some 21,20 € S — {x,y} such that 2,2, ¢ E(G).
The former case implies that G[S| contains an independent set of size 3 on {z,y, z}, and
the latter case implies that G[S] has two disjoint non-edges, namely zy and z; z5.

It now suffices to prove (1) and (2) in the rest of this proof. Let w € S and Z C S such
that |Z| = 4. Fori = 1,2, let H” be the graph obtained from G; by making w adjacent
to all other vertices in S, and let HZ be the graph obtained from G; by making Z a clique.
If S is a minimum separating set of G and |S| < 0(G) — 2, let (H,, H2) be equal to one
of (HY, HY) and (HZ, H?). Otherwise, let (Hy, Hy) = (HY, HY). Let H = H; U Ho. It
suffices to prove that H[S] is not a complete graph. For the sake of a contradiction, assume
that it is not.

Observe that we can choose S such that it is a minimal separating set of G. This is
because, if S is not minimal, we would have (H,, Hy) = (H{", HY), and we can then
replace S with a minimal subset S’ C S such that S’ separates (G, and that there exists
some w’' € S’ where G[S" — {w'}] is complete. It follows that G > H; for i = 1,2 in both
cases: If (Hy, Hy) = (H{", HY), since S is a minimal separating set, we can contract all of
V(Gs_;—G;) tow fori = 1,2; and if (Hy, Hy) = (HZ, HZ), we know |S| < 6(G) —2 and
S is a minimum separating set of GG, which then allows us to apply Lemma 3.2.3 to obtain
that G > H; for i = 1,2. Finally, notice that |S| < 8, since otherwise we could contract
all of V/(H;) — S to one single vertex and obtain a /;p minor of H;, meaning G > K, a

contradiction. By Lemma 3.2.2, it follows that 6 < |S| < 8.

’’’’’
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H[S] = Kg. Letd = e(H[S]) — e(G[S]). Note e(G;) = e(H;) — d fori = 1,2, and that
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e(G[S]) + d = e(H[S]) = e(Kg) = 15. Since e(G) = 8n — 35, we have

8n—35 = e(G1)+e(Gs) —e(GS]) = e(Hy) —d+e(Gy) —e(G[S]) = e(Hy) +e(Ge) — 15.

7777777777

that

e(Gy) = 8n — 35— 70+ 15 = 8(n — 7) — 34 = 8|Gy| — 34.

Note that |S| < 8, so |G2| > 8. Notice that G5, Hy are both proper minors of G such

that e(H,) > e(G2). By (3) of Lemma 3.1.1, it follows that Go = Hy = K5959093 Or

77777
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This means that G is isomorphic to a (K322 23, 6)-cockade of multiplicity 2, which is an

exceptional graph, a contradiction. -

Now, let d; be the maximum number of edges that can be added to .S by contracting
edges that have at least one end in G3_;, — G; for ¢ = 1,2. Since H|[S] is complete,
dl = dg = Q(H[S]) — €(G[S]) Since Hl ,7\':# K222223 or K273737373 for 1 = 1,2, by

77777

Lemma 3.2.1 it follows that

Claim 2. G[S] = K7, Kg, or Kg
Proof of Claim 2. We consider the case (Hy, Hy) = (H{", HY') and the case (Hy, Hs) =
(HZ, HY) separately.

Case 1: (Hy, Hy) = (H", HY). Let 6 = dgs)(w). Thend; = |S| —1—dfori =1,2
and e(G[S]) = (L) +-4. It follows that 8] S| > 35+ 2(|S|—1—8) + (*17") 45, meaning
that 0 > 33 + (|S|2_1) —6]S]. Since 6 < |S| —1and 6 < |S] < 8, it follows that § > 6 and
|S| = 7 or 8. Therefore, G[S] = K7, Ks, or Ky .
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Case 2: (Hy, Hy) = (HZ,HY). Let 2 = ¢(G[Z]). Thend; = 6 — z fori = 1,2 and
e(G[S]) = (‘g‘) — (6 — z). It follows that 8|S| > 35+ 2(6 — 2) + (‘g‘) — (6 — z), meaning
that 2 > 41+ (‘g‘) —8|9]. Since z < 6 and 6 < |S| < 8,we have either |S| = 7 and z = 6,

or that |S| = 8 and =z > 5. Again, it follows that G[S] = K7, Ks, or Ky . .

Consider the case G[S] = K7 first, which implies that H; = G; for i = 1,2. By
Claim 1, G; 2 Ks29923 or Ky3333 for i = 1,2. By Lemma 3.1.1, |G;| > 11 and
therefore e¢(G;) < 8|G;| — 35 for both i = 1, 2. Therefore, ¢(G1) + e(Gs) < 8(|G| 4+ 7) —
70 = 8n — 14. On the other hand, e(G1) +¢(G2) = e(G) + (}) = 8n—35+21 = 8n — 14.
It follows that for both i = 1,2, e(G;) = 8|G;| — 35 and hence G; is isomorphic to some

exceptional graph, due Lemma 3.1.1 as G, is a proper minor of GG on at least 11 vertices.

Note that GG; contains a clique of size 7 for both ¢ = 1, 2. It follows that each G; for: = 1,2

777777
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We may now assume G[S] = Ky or K. Note that H; for i = 1,2 is a proper minor
of G on at least 11 vertices that contains a clique of size 8. Also note that no exceptional
graph contains a clique of size 8. It follows that e( H;) < 8| H;| — 36 for both i = 1, 2. Let
t=e(H;) —e(G:) = (5) — e(G[S]) = 28 — e(GS]), and note that t = 0 or 1. Then,

2

e(G) =e(Gh) + e(Gh) — e(GS))
<(8|Hy| — 36 — t) + (8| Ha| — 36 — t) — (28 — #)
—S(|H,| + |Ha|) — 100 — ¢
=8(n + 8) — 100 — ¢

=8n — 36 —¢.

Since t = 0 or 1, ¢(G) < 8n — 36, a contradiction to the fact that e(G) = 8n — 35. O
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Lemma 3.2.5. Let (Ay, As) be a non-trivial separation of G such that |A;NAy| < §(G)—2
and | Ay N Ag| is minimum over all non-trivial separations of G. Let w € Ay N A, and let

H, fori = 1,2 be the graph obtained from G|A;] by making w adjacent to all other vertices

77777

Proof. Let S = A; N Ag and G; = G[A;] fori = 1,2. By Lemma 3.2.2 and Lemma 3.2.4,
|S| > 6 and H1[S] is not a clique.

let {z;,y;} fori = 1,2,3,4,5 be the five 2-islands and {7, 79, 73} be the 3-island of H;;
if H) = Ky3333, let {x;,y;, 2} fori = 1,2, 3,4 be the four 3-islands and {ry, 7} be the
2-island of H;. Observe that up to isomorphism, we may assume either w = x; or w = 1,
in both cases. Let ', be the island of H; that contains w. Since w is adjacent to every
vertex in S in Hy, it follows that C, — {w} C A; — S.

Claim 1. There do not exist four distinct vertices a1, by, as,bs € S — {w} such that a;b; ¢
E(Hy) fori=1,2.

Proof of Claim 1. For the sake of a contradiction, assume that ay, by, ag, by € S — {w} are
distinct vertices such that a;b; ¢ E(H,) for i = 1,2. Let Z; = {aq, b1, az, bo}, and let Ry
be the graph obtained from G by making Z; a clique. By Lemma 3.2.3, we know that
G > R;. We then consider all cases, up to isomorphism, in the following table. Notice that

Ry — {w} > Ky in every case in the table. It follows that G > R; > K, a contradiction.

Table 3.1

Hl w Zl R1 — {U)}
Ko29923 | o1 | {22, Y2, T3, Y3} K5 + K2,2,3_
Ko999923 | o1 | {x2,y2,71,72} | K3+ Koo + Ps
K2,2,2,2,2,3 1 {1317 Y1, T2, y2} Ky + @2,2,2_

Ks3333 | ®1 | {x2,y2,23,y3} | Kooz + Ps +_P:3
K2,3,3,3,3 T {952, Y2,71, 7“2} K1,1,2,3,3_+ P3_
Kossss | r1 | {22, y2,03,y3} | Kiss+ P+ Py
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Note that H;[S] is not a clique, and w is adjacent to all other vertices in S — {w}. It
follows that there exists some non-edge in H;[S — {w}]. By Claim 1, there is a unique
island Cy of H; such that |Cy N S| > 2. Choose distinct vertices p1,ps € Cp N S. Notice
that |S—CoU{w}| > 6—3—1 = 2, meaning that at least two islands if H; have exactly one
vertex in S—{w}. Let C; be the island of H; that contains xo. Without loss of generality, in
both cases we can then assume that Cy NS = {x5}. Observe that that Zo = {w, 22, p1, p2 }
is a set of four distinct vertices by construction. Let Ry be the graph obtained from G by
making 7, a clique. Again by Lemma 3.2.3, we have G' > R,.

Now, note that y; € Cy — {x2} and thus y, € V(H;) — S, which then implies that w, y,
are adjacent in G and therefore in R,. Furthermore, observe that the new vertex in Ry /wys
is adjacent to all other vertices in it. In the following table, we consider all cases up to
isomorphism and show that Ry /wy, > Kjg in every case. It follows that G > Ry > Kjo,
a contradiction.

Table 3.2

H, w | {p1,p2} Ry /wy,
Ks999923 | 1 | {3,935} Ks + K2,2,3_
Ko299223 | 1 | {r1i,m2} | Ks+ K00+ Ps
K2,2,2,2,2,3 1 {$3, ys} K, + K2,2,2,_2
K2,3,3,3,3 T1 {5537 93} K1,2,2,2,3 + P3
Ks3333 | 21 | {ri,r2} Ks + Kz,z,:)i
Ks3s33 | ™1 | {3, y3} Ki1233+ Ps

]

Lemma 3.2.6. Let (Ay, As) be a non-trivial separation of G such that |A;NAy| < §(G)—2
and |Ay N As| is minimum over all non-trivial separations of G. Let Z C S such that
|Z| =4, and let H; = G[A;] U{z122 : 21,20 € Z} fori = 1,2. Then, H; % K329223 or
Ks3333fori=1,2.

Proof. Let S = A; N Ay and G; = G[A;] for i = 1,2. By Lemma 3.2.2 and Lemma 3.2.4,

|S| > 6 and H,[S] is not a clique. For the sake of a contradiction, assume H; = K55999 3
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or K5 3333. Label the vertices in H as in the proof for Lemma 3.2.5. Note that H;[Z] =
K. Without loss of generality, assume that either Z = {x1, o, x3, 24} or Z = {21, 29, x3, 71}

in both cases.
Claim 1. Forevery z € Zand 2’ € S — Z, z2' € E(G).

Proof of Claim 1. For the sake of a contradiction, assume that there are vertices z € Z
and 2’ € S — Z such that zz' ¢ E(G), and note that this means that 22’ ¢ F(H,) either.
Without loss of generality, assume that either = = x; and 2’ = y;, or that z = r; and
2l =1y Let Zy = {z,2/, 29,23} and R, be the graph obtained from G; by making 7, a
clique. By Lemma 3.2.3, G > R;. Note that |Z N Z;| = 3 in all cases. Let z, be the unique
vertex in Z — Zj.

Let 2, € V(H,) — Z such that 2 is adjacent to every vertex in Z in H;. Then, by the
construction of H;, observe that z; is also adjacent to every vertex in Z in G and therefore
in R, as well. It follows that the new vertex in R, /2(z(, is adjacent to all vertices in Z N Z;.
In the following table, we consider all cases up to isomorphism, and in each case we show
that there exists some z, € V' (H;) — Z such that z{, is adjacent to every vertex in Z in H;

and Ry /zpzy > K. It follows that G > R; > K3, a contradiction.

Table 3.3

H, Z (z,2") (20, 20) Ry /202

Ks99923 | {21, %2, 3, x4} or {z1, 22,253,171} | (z1,y1) | (Ta,71) OF (71, 24) Ky+ Kpp22
Ks299223 {x1, 20, 23,71} (w1, 24) K3+ K9+ P

)
(r1,72) Y.
K2,3,3,3,3 {xl, T2,T3, $4} or {1‘1, T2,T3, 7’1} (1’17 Z/l) ($4, 7’1) or (7’17 1’4) K1,1,2,3,3 + P
K33333 {@1, 29, 3,71} ( ) (21, 24) K3+ Ky233

_|

Recall that H,[S] is not a clique and H,[Z] = K,. By Claim 1, there exist vertices
p1,p2 € S — Z suchthat pyps & FE(Hy). Let Zy = {x1, 29, p1,p2}, and let R, be the graph
obtained from (G; by making Z, a clique. Again we have G > R, by Lemma 3.2.3, and
therefore it suffices to prove Ry > K. We will consider the case H; = K339 3 and the

case H; = K, 3333 separately in the remaining proof.
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First assume that H; = K559293. In this case, Z N Zy = {1, 22}. Let uy, us be the
two distinct vertices in Z — Z5, and note that Ng, (v) = Ny, (v) forevery v € V(G;) — Z.
Therefore, if there exist vertices u’,u), € V(H;) — Z U Z, both contained in some island
of H; that is disjoint from Z U Z,, then by contracting edges u,u} and usul, in Ry, we
can then have the two new vertices wy, w» in the resulting graph satisfying that wy, wo are
adjacent to each other and w; for : = 1,2 is adjacent to both x; and x5. It follows that
(Ro/uru}) Jusuly = ((Hy/uyuh)/usuh) U {vv' : v,0" € Zy}. In the table below, we show
that in each case we can always find some v}, u, € V(H;,) — Z U Z; contained in some
island of H, disjoint from Z U Z, such that the corresponding graph (R /uju})/usul, =
((Hi/uyuh)/uguh) U{vv' : v,v" € Zo} has a Ko minor. It follows that G > R, > K, a
contradiction.

Table 3.4

H, Z {p1,p2} | {uruo} | {uj, ub} | (Ro/uuy)/ugus
K2,2,2,2,2,3 {Il, X2, X3, $4} {5E5, y5} {ffs, I4} {7”1, 7“2} K7+ K2,2
Ks99923 | {x1, 22, w3, 24} | {r1,7m2} | {xs,va} | {25, 95} K7+ Kjo
K2,2,2,2,2,3 {1’17 T2, T3, 7“1} {$4, y4} {373, 7'1} {9557 3/5} K7+ K2,2

Now, assume that Hy = Ks3333. If Z = {21,290, 23,24}, then {py,p2} = {r1,r2}.
Observe that 3, x4 each are adjacent to all of yy, yo, 21, 22 in G1. It follows that (Ry /2311 ) /T4y2
contains H, [V (G1) — {x3,14}] U {y121, Yoz, 1172} = Ky 122 + P3 + Ps as a subgraph.
Since Ki122 + Py + Py > Ky, it follows that G > Ry, > Kj, a contradiction. If
Z = {x1,x9,x3,7r1}, then without loss of generality assume that {p;,ps} = {z4,vy4}.
Now, x3,r; each are adjacent to all of yy, ys, 21, 22 in Gy. It follows that (R;/x3y1) /192
contains H,[V(G1) — {x3, 71 }] U {v121, Yazo, Tays} = K12+ P3 + P53+ P; as a subgraph.

Since K 5 + Ps + P; + P3K)j, it follows that G > R, > K, again a contradiction. [
We can now combine Lemma 3.2.5 and Lemma 3.2.6 to form the next lemma.

Lemma 3.2.7. Let (Ay, As) be a non-trivial separation of G. Let S = Ay N Ay, If |S| <

d(G) — 2 and |S| is minimum over all non-trivial separations of G, then the following
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statements are true for both i1 = 1, 2.
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The next lemma is an immediate consequence of Lemma 3.2.1 and Lemma 3.2.7.

Lemma 3.2.8. Let (A1, Ay) be a non-trivial separation of G and S = Ay N Ay such that
|S| < §(G) —2 and |S| is minimum over all non-trivial separations of G. Let S = A; N As.
Let d = maxyz.zcg)z1=416 — e(G[Z])} and d = max{d',|S| — 1 — 6(G[S])}. Then,
8|S| > 35 + 2d + e(G]5]).

Proof. Fori = 1,2, let G/ be the set of graphs obtained from G; by making some w € S
adjacent to all other vertices in S, and let G be the set of graphs obtained from G; by
making some subset Z C S of size 4 a clique. Let G; = G/ UG/ for i = 1,2. By
Lemma 3.2.3, every graph in G; for i = 1,2 is a minor of G with vertex set V' (G;).

Note that [S| — 1 — 0(G[S]) = maxpeg/{e(H) — e(G;)} and d' = maxpegr{e(H) —
e(G;)} fori = 1, 2. It follows that for both i = 1,2,

d =max{d,|S| — 1 —06(G[S])} = max{e(H) — e(G;)}.

Heg;
By Lemma 3.2.7, no graph in G; is isomorphic to K392223 or Ks3333 for i = 1,2.
Therefore, by Lemma 3.2.1, we have that 8|.S| > 35 + 2d + e(G[5]). O

Lemma 3.2.9. (G is 7-connected.

Proof. Let (A1, A) be a non-trivial separation of G of minimum order. Let S = A; N A,
and G; = G[A;] fori = 1,2. By Lemma 3.2.2, | S| > 6, so we may assume |S| = 6 for the
sake of a contradiction. Note that 6(G) > 10, so |S| < d(G) — 2, which allows us to apply
Lemma 3.2.8. Let 0 = 6(G[S]). Let d = max{5 — 6, maxz.zcg,z=1{6 — e(G[Z])}}. By
Lemma 3.2.8, 8|S| > 35 + 2d + e(G|[S]). With |S| = 6, it follows that

2d < 13 — e(G[S]).
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Since d > 5 — &, we have e(G[S]) < 13 — 2d < 3+ 24. Since e(G[S]) > 15[S| = 34, it

follows that 36 < e(G[S]) < 3+ 2J and hence ¢ < 3.

Claim 1. Either ¢(G[S]) < 1 or E(G]S)) is precisely a perfect matching of size 3.

Proof of Claim 1. By the definition of d, e(G[Z]) > 6 — d for every Z C S with |Z| = 4.
Note that each pair of vertices is contained in exactly (3) subsets of size 4 of S. It follows

that

¢(G1S]) = ZZ:ZQS,\Z\:zL e(G[Z]) (2) (6 —d) _ 15— §d.

B G 2

G[S]), we know 15 — 3d < e(G[S]) < 13 — 2d and therefore d > 4.

Since 2d < 13 — ¢(
Note that e(G[S]) > £]5|d = 34. It follows that 36 < e(G[S]) < 13 —2d <13 -8 =5,
which shows § < g and therefore § < 1.

If d = 4, observe that 5 = 15 — 2 - 4 < ¢(G[S]) < 13 — 2 -4 = 5. It follows that (i)
e(G[S]) = b and (ii) e(G[Z]) = 2 for every Z C S with |Z| = 4. Note that (i) implies
A(G) > 2 and (ii) implies A(G) < 2, so we can choose v € S such that dgg(v) = 2.
Let Ngigj(v) = {u1,us} and S — Ngg[v] = {wi,we,ws}. Let Z1 = {v,u1,uz, ws}.
Since e(G[Z1]) = 2, wy is adjacent to neither u; nor us. By symmetry, it follows that w; is
adjacent to neither u; nor usy for i = 1,2,3. Let Zy = {uq, ug, wy, wy}. We then see that
e(G|Z5]) < 1, a contradiction.

Hence, d > 5 and e(G[S]) < 13 — 2d < 3, meaning that 6 < 1. For the sake of
a contradiction, assume that e(G[S]) = 2 or 3 and E(G[S]) is not a perfect matching of
size 3. It follows that GG[S] is isomorphic to one of the following graphs: the union of two
disjoint edges, a path of length 2 or 3, a 3-star, and the disjoint union of a path of length
2 and an isolated edge. In every one of these 5 graphs, observe that there always exists an
independent set Z of size 4 in S. It follows that d = maxy.;zcgz=4{6 — e(G[Z])} = 6

and therefore e(G[S]) < 13 — 2d = 1, a contradiction. =

Claim 2. For ¢ = 1,2, G has a minor L; on V' (G;) obtained by contracting edges that have

at least one end in G'3_; — G; such that
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(1) e(L;) —e(G;) > Tif e(G]S]) < 1,and e(L;) — e(G;) > 6 if e(G[S]) = 3, and

(2) there exists a vertex in L;[S] adjacent to all other vertices in S in L;.

Proof of Claim 2. We will prove (1) and (2) hold for ¢ = 1, and the case of + = 2 will
follow by symmetry. Let S = {s1, s2, 53, S4, S5, S }. Without loss of generality, assume
that E(G[S]) = {s1s2} if e(G[S]) = 1 in all cases, and E(G[S]) = {5152, $354, S5} if
e(G[S]) = 3. Since §(G) > 10, |Go — G1| > 5. Choose two distinct vertices z,y €
V(Gy — G1). Since G is 6-connected, there exist 6 paths P, ..., Ps in G between {x} and
S that are disjoint except for . Without loss of generality, assume that P; links x and s;
forj=1,...,6.

Assume that every P; has length exactly 1 for a moment. Since G' — z is 5-connected,
there exist five paths @1, ..., Q5 in Gy — x between {y} to S that are disjoint except for y.
If e(G[S]) < 1, without loss of generality, assume s4 is an end of ();. By contracting the
edge xs3, contracting all vertices on (); to s4, and contracting other (); paths properly, we
could obtain a minor L, of G on V(G), which is isomorphic to some graph obtained from
(G; by making s3 adjacent to all other vertices in S and making s, adjacent to at least four
other vertices in S. It follows that e(L;) —e(G1) > 8, and s3 is adjacent to all other vertices
in S in the graph L,. If e(G[S]) = 3, without loss of generality, assume s3 is an end of Q).
By contracting the edge xs;, contracting all vertices on (); to s3, and contracting other Q);
paths properly, we could obtain a minor L; of G on V(G), which is isomorphic to some
graph obtained from (G; by making s; adjacent to all other vertices in .S and s3 adjacent to
at least two vertices other than s, and s, in S. It follows that e(L,) — e(G1) > 6.

We can now assume F; has length at least 2 for some j € {1,...,6}. Since now, for
every path P, we will use /(P) to denote the set of internal vertices of P.

Consider e(G[S]) < 1 first. Without loss of generality, we can assume one of Py, P», Ps
has length at least 2. Let X; = [(P) U I(P) UI(P;)andY) = V(Py U Ps U Py — ),
and note that X; # () and Y} # (). Since G is 6-connected, C; = {x, sy, $2, $3} is not a

cut of GG. It follows that there exists a path ), in G5 — (' that links some x; € X; and
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11 € Y7 such that no internal vertex of (), is in X; or Y;. Without loss of generality, assume
y1 € V(P —x). Let Xo = X1 UV (PyUQy) —{z,s4} and Yo = V(P U Bs) — {x}. Note
that Xy # () and Y5 # (), and that Cy = {x, s1, S2, S3, S4} is not a cut of G. It follows that
there exists a path ()5 in G2 — (5 linking some 25 € X5 and y» € Y5 such that no internal
vertex of Qs is in X, or Y. Without loss of generality, assume yo € V(P5s — x). Observe
that ; and (), are internally disjoint, and that (); is internally disjoint from F; for every
je{1,2},1€{1,2,3,4,5,6}. For j = 1,2, contract edges on (); such that (); eventually
becomes a path of length 1 linking x; and y;. Then, contract edges on P, ..., P such that
vertices in V' (P;) — {z} are identified as one vertex at s; for i = 1, ..., 5, and all vertices of
Ps are identified as one vertex at sg. It follows that in the resulting graph, there is an edge
between sg and every other vertex in S, an edge between s, and {s1, o, S3}, and an edge
between s5 and {s1, o, S3, S4}. Let Ly be the resulting graph induced on V' (G). We see
thate(L,) — e(G;) > 5+ 2 = 7, and s is adjacent to every other vertex in .S in L;.

Now, consider e¢(G[S]) = 3 and E(G][S]) = {s152, s354, S556}. Without loss of gener-
ality, assume I(Py) # (). Let X; = I(P,) UI(Py) and Y} = V(U_; P, — ). Similarly to
the previous case, since C; = {z, s1, 2} is not a cut of G, there exists a path Q); in G5 — C
linking some z; € X; and y; € Y7 such that no internal vertex of () is in X; or Y;. Without
loss of generality, assume y; € V(P; —x). Let Xo = X; UV (PsU P, U Q) — {x, s3,54},
Yo = V(Ps U Fs) — {x}, and Cy = {x, s1, S9, 83, S4}. Since Cs is not a cut of G, there
exists a path (), linking some x5 € X5 and yo € Y5 such that no internal vertex of ()5 is
in X, or Y>. Without loss of generality, assume y, € V(Ps — x). By contracting edges
on (; such that (); becomes a path of length 1 for j = 1,2 and contracting edges on
Py, ..., Ps such that every internal vertex of P; gets identified to s; fori = 1,...,6, and x
gets identified to sg, we can obtain a resulting graph in which there is an edge between sg
and every other vertex in S, an edge between s3 and {s;, s2}, and an edge between s5 and
{s1, s2, 83, s4}. Let L be the induced subgraph of the resulting graph on V' (G1). It follows

that e(L;) —e(G1) > 442 = 6, and that s¢ is adjacent to every other vertex in S'in Ly.
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For i = 1,2, define d; to be the maximum number of edges that can be added to G[S5]
by contracting edges that have at least one end in G3_; — G, and let J; be a graph on
V(G;) obtained from contracting edges that have at least one end in G3_; — G; such that
K 3333, and r; = 0 otherwise; d; = 7 if e(G[S]) < 1, and d} = 6 if e(G[S]) = 3. By

Claim 2, d; > d; for both ¢ = 1,2. By Lemma 3.2.1, it follows that

dl—l—dg—l—e(G[S])§8|S|—35—|—T‘1+T2:13+7‘1+T2§15

Claim 3. If r;, = 1 for some ¢ € {1, 2}, then B(G[S]) =3,di=dy =6, J; = K273737373, and
Ji[S] = Kj3.

Proof of Claim 3. Without loss of generality assume 7, = 1 and J; = Kj99993 Or

77777

77777

11 edges, and every induced subgraph of K5 3333 on 6 vertices has at least 9 edges. It
follows that e(G[S]) + di = e(J1[S]) > 9 and therefore dy < 6. Recall that ¢(G[S]) < 3
and d; > d, > 6 for i = 1,2 by Claim 1 and Claim 2. It follows that ¢(G[S]) = 3 and
d; = dy = 6, which then implies that J; = K3 3335 and J;[S] = Kj 3. =

Now, if e(G[S]) < 1, by Claim 3 we know that r; = ry = 0 and therefore d; + ds +
e(G[S]) < 13, acontradiction to the fact that d; > d; = 7 fori = 1, 2. We may then assume
e(G[S]) =3.ByClaim2,d; > d, = 6 fori = 1, 2. Since d; +dy+¢e(G[S]) < 13471, +79,
it follows that d; = d; = 6 and r; = 1 for both ¢ = 1, 2. By Claim 2, for both i = 1, 2 there
exists a minor L; of G on V(G;) obtained by contracting edges of G that have at least one
end in G3_; — G such that e(L;) > e(G;) + 6, and that there exists a vertex in S adjacent
to all other vertices in S in L;. Since d; = d, = 6, we may choose J; to be equal to L; for
both ¢ = 1,2. This is then a contradiction to Claim 3 that J;[S] = J5[S] = Kj 3, since no

vertex in K3 3 is adjacent to all other vertices in S. L]
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3.3 Bounding Minimum Degree

We proved earlier in Lemma 3.1.1 that (G) > 10. In this section, we will show §(G) > 11.
Lemma 3.3.1. §(G) > 11.

Proof. For the sake of a contradiction, assume that there exists a vertex x € V(G) such that
d(z) < 10. By Lemma 3.1.1, d(z) > 10 and §(N(x)) > 8. It follows that d(z) = §(G) =
10, and that N (x) contains a subgraph isomorphic to K55229. Let N(z) = Uﬁzl{si, tits
and assume that N[s;] N N(z) D N(z) — {t;} and N[t;] N N(z) 2 N(x) — {s;} for all
i=1,2,3,4,5.

Note that if there exist at most two non-edges in N (z), then N [z] would have a subgraph
isomorphic to K7 + K3 2, which has a Ky minor, a contradiction. It follows there exist at
least three non-edges in N (z), meaning that e(N[z]) < (1)) —3 =52 <53 =811 —35.
Since e(G) = 8n — 35, it follows that |G — Nlz]| > 0. Let (A;, A3) be a non-trivial
separation of (G, N|[z]) of minimum order. Let S = A; N As. Since (N[z], V(G) — {x})
is a non-trivial 10-separation of (G, N|z]), we know that |S| < 10. By Lemma 3.2.9, it
follows that 7 < |.S| < 10.

Fori = 1,2, let G; = G[A4,], and let .J; be a minor of G on V' (G;) that can be obtained
from G by contracting edges that have at least one end in G3_; — GG; such that d; = e(J;) —

e(@G,;) is maximum. Let r be the number of graphs among .J; and J, that are isomorphic to

di + dy + e(G[S]) < 8|S| — 35+ .

Since §(G) = 10, by the minimality of |S| and Lemma 3.2.3, if |S| < 8 then for every
Z C S with |Z] = 4 we know G[(Ay — Ay) U Z] has a K, minor rooted at Z. By
Lemma 3.2.4, G[S] contains an independent set of size 3 or two disjoint non-edges. It

follows that d; > 2 if |S| < 8.
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Observe that by the minimality of |S|, * ¢ S and that there exist |S| disjoint paths
Py, ..., Pg in G; — {«} linking N(x) and S. Let U C N(z) be the subset of vertices that
are ends of P, ..., Pjg; in N(x). We now prove the following claim that |.S| > 8, and that if

|S| = 8, then G[U] = K2’2’272.

Claim 1. |S| > 8; and if |S| = 8, then G[U] = Ks22.
Proof of Claim 1. First assume that |S| = 7, for the sake of a contradiction. Recall that this
implies d; > 2. With |S| = 7, we have d; + dy + e(G[S]) < 21 + 7. Since |U| = |S| =7,
it follows that G[U] has a subgraph isomorphic to K 5 2. Furthermore, note that if there
exist s;, t; € U that are not adjacent for some i € {1, 2, 3,4, 5}, then s;, t; each are adjacent
to all four vertices in N[z] — U. Therefore, by contracting edges between U and N [z] — U
properly and then contracting each path among P, ..., P; to a single vertex, we would
obtain a clique on S. It follows that J,[S] & K7 and dy + e(G[S]) = (]) = 21. Since
therefore r < 1. It follows that dy < 21 +7r — (ds +¢(G[S])) =21 +r—21=r < 1l,a
contradiction to the fact that d; > 2.

We may now assume that |S| = 8, and it suffices to prove G[U] = Ks222. With
|S| = 8, we have d; + da + ¢(G[S]) < 29 + r. Since |U| = |S| = 8, G[U] contains a
subgraph isomorphic to K 5 5 2. For the sake of a contradiction, assume G[U] % K322 2.
contains a subgraph isomorphic to K ; 2 2 2. Also note that every two non-adjacent vertices
in U are adjacent to all vertices in N[z] — U, where |N[z] — U| = 3 as |U| = |S| = 8.
Therefore, by contracting edges between U and N[z| — U properly and then contracting
each path among P, ..., Ps to a single vertex, we would obtain a clique on .S. It follows that
Jo[S] = Ks, dy +e(G[S]) = () = 28, and r < 1. Hence, d; < 29+7r — (dy +e(G[S])) =
r+1 < 2. Since d; > 2, it follows that d; = 2, r = 1, and therefore J; = K399923

or Ky3333. Note that .J; O G; which has N[z] as a subgraph. Since N¢[z] contains a

77777
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Nglz] =2 Ki222290. Let the two vertices in V(G) — N[z| be v and w. Since u,w are
not contained in N(z) and x ¢ S, x is adjacent to neither v nor w in J;. It follows that
{z,u,w} is exactly the 3-island of J; = K512 3, meaning that these three vertices are
pairwise non-adjacent in both G and J;. Since N, [z] = Ng,[z]and e(J;) = e(G1)+dy =
e(G1) + 2, we know that the two edges in £(.J; — G) each has exactly one end in {u, w},
and therefore {u,w} NS # (.

Let S" = S —{u,w}. Assume {u, w} C S for a moment. Note that at most two vertices
in S are not adjacent to both «, w, meaning that | (S"— Ng(u))U(S’— Ng(w))| < 2. Choose
distinct vertices y;, y2 € S such that (S — Ng(u)) U (S — Ng(w)) € {y1, y2}. Note that
e(G[{u,w,y1,y2}]) < 3. On the other hand, since |S| = 8 and d; = 2, by Lemma 3.2.3,
e(GZ]) > 6 —2 = 4 for every Z C S with |Z| = 4, a contradiction. We may then
assume that S N {u,w} = {u}, without loss of generality. Note this then implies that w
is adjacent to every vertex in N (x). Since |S’| = 7, without loss of generality we assume
that {s1, 1, s2,t2} € S’. By Lemma 3.2.3, the graph G, obtained from GG; by adding the
edges s1t; and syto is @ minor of G. Then, in the graph G| — {u}, by contracting the edges
wss and sys; we could obtain a Ky minor. This means that G > G} — {u} > Kjg, a

contradiction. =

By Claim 1, without loss of generality, we can assume that {s;,?1,...,84,t4} C U.
For each 1 = 1,2,3,4,5, if s; (or t;) is in U, we let the vertex in S corresponding to it
via the paths P, ..., Pg| be s (or t}, respectively). Let I = {1,2,3,4} if |S| < 9 and
I={1,2,3,4,5}if |S| = 10.

Observe that if there exist three disjoint paths ()1, ()2, )3 internally contained in Ay — A,
such that, for some distinct indices 4, j,k € I, @y links s, i, (2 links sg,t;, and Q3
links s;,, t;,, then by contracting the paths Q1, Q2, Q3, Py, ..., Ps| properly, we can obtain a

resulting graph on N|[z| that contains a subgraph isomorphic to K7 + K35 > Kj, which is
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a contradiction. Therefore, it is enough to prove the existence of such three disjoint paths
@1, Q2, @3, meaning that it suffices to show that (G[(As — A;) U X], X) is 3-linked for
some X = {s,;, 5"t s, 1.} where 4, j, k are distinct indices in /.

79 Y10 _]7 ]7

Let ¥ = {X C §: X = {s],1],5,1},s,,1),} where i, j, k € [ are distinct}. For the
sake of a contradiction, we may assume that for every X € X, (G[(As — A1) U X], X) is
not 3-linked. Let S" = J,.,{si,t;} € Sandt = |S —.5'|. Note that t = 0 if |S| = 8 or 10,

and t = 1if |S| = 9. We now prove a few inequalities in the next claim.

Claim 2. The following statements are true:

(D) ("7 e(S, Ay — A1) + () e(GA2 — A)]) < (1) - (5] 45 — Ay| +3),

(2) (10 = t)| Ay — Aq| < e(S', Ay — Ay) + 2e(G[As — Aq]),

3) (8 —1)]As — A|+ 1 <e(5, Ay — Ay) + e(G[As — Ay)).

Proof of Claim 2. Let X € X. By the minimality of |S|, (G[(A2 — A1) U X], X) does
not have separation of order at most 5. Since (G[(A2 — A1) U X, X) is not 3-linked, by
Theorem 2.3.2 we know that pga,—a,)ux](A2 — A1) < 5]Ay — Ay|+3. Since X € X was

arbitrary and | X| = (!I), we have

I
Z PG[(As—Anux] (A2 — Ay) < <|3‘) - (5|Ay — Ay + 3).

XeX

Since every pair {s;,t;} C S’ is contained in exactly ('I |2_ 1) sets in X, it follows that

<|I‘2_ 1>e(S’,A2 — A+ <|é’>e(G[A2 — A1) =) peiian-—anux) (A2 — Ay)

XeX

< <|§|) (5|4 — Ay] +3),

and this proves (1).

Note t = |S — 5’|. Since 6(G) = 10, every vertex in Ay — A; has at least 10 — ¢
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neighbors in G[(As — A;) U S’]. It follows that

(10— t)[Ay — Ay | < ) djap—anus(v) = e(S', Ay — Ay) + 2¢(G[Ay — Ay)),

vEAs—Aq

and this proves (2).

To see (3), first observe that (S, Ay — A1) + e¢(G[A2 — Ay]) = e(G) — e(Gy). Since
G > Gy, we know e(G1) < 8|Gy| — 34. Assume e(G) > 8|G1| — 35, and note this
means that (¢; is isomorphic to some exceptional graph. By Lemma 3.2.4, there exist two
distinct pairs of non-adjacent vertices {a1, b; } and {aq, bo} in G[S], i.e. {a1, b1} # {az, b2}
and a;, b; are not adjacent in G for ¢ = 1,2. By the minimality of |S|, we know that
G > G1 + {a;b;} for both ¢ = 1,2. On the other hand, by Lemma 2.5.7, there exists at
most one pair of non-adjacent vertices in G; such that after adding an edge between them,
the resulting graph does not have a Ky minor. By the minimality of S, it follows that
G > Gy + {a;b;} > K for some i € {1,2}, a contradiction. Hence, we conclude that

e(G1) < 8|G4| — 36, and therefore
6(57 AQ—A1)+6(G[A2—A1]) = €(G)—6(G1) Z (871-35)-(8‘6%‘-36) = 8|A2—A1H‘1

Since B(S/, AQ_A1)+6(G[A2_A1]) = 6(5, AQ—A1)+€(G[A2—A1])—6(8—5,, AQ—Al),
and G(S — S,, A2 — Al) < ’S — S,| . ’AQ — Al‘ = t‘AQ — All, it follows that

e(S/, AQ — Al) + €(G[A2 — A1]> Z (8 — t)|A2 — Al‘ + 1,

which completes the proof of (3). -
Proof of Claim 3. We first assume |.S| < 9, which means that |I| = 4. By (1) of Claim 2,
3e(S', Ay — Ay) + 4e(G[As — Ay]) < 4(5|Ay — Ay +3) = 20|Ay — Aq| + 12
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Observe that

36(3/, A2 - Al) + 46(G[A2 — Al]) :(G(S/, A2 - Al) + 26(G[A2 — Al]))

+ 2((6(3,, AQ - Al) + €<G[A2 - Aﬂ))

By (2) and (3) of Claim 2, we have

(10 — t)|As — Ay |+ 2((8 — t)|A2 — A1 + 1) < 20]Ay — Ay| + 12,

which can be simplified to (6 — 3t)|A2 — A;| < 10. If |S| = 8, then t = 0 and thus
|Ay — A;| < 1, a contradiction to the fact that 6(G) = 10.

If |S| =9, thent = 1 and thus |4y — A;| < 3. Since 0(G) = 10, |4y — Ay = 2
or 3. If |Ay — Ay| = 2, then every vertex in A, — A; is adjacent to all vertices in .S and
the other vertex in A, — A;. Without loss of generality, assume that s; € U and t5 ¢ U.
By contracting each path F; to a single vertex for ¢ = 1,...,9 and contracting the edges
xS1, $283, and sut5, we would obtain a Kjy minor, a contradiction. If |4y — A;| = 3,
let v1, v9, v3 be the three vertices in A; — A;. Since 6(G) = 10, v; is adjacent to at least
7 vertices in S” for i = 1,2,3. This means that for each i = 1,2, 3, there exists three
distinct indices ', 4%,* € I such that v; is adjacent to s/; and t/; for all j = 1,2,3. By
relabeling vertices in .S’, we may assume that v; is adjacent to both s and ¢ fori = 1,2, 3.
By contracting each path P; to a single vertex for ¢ = 1,...,9 and contracting each edge
v;s;; for j = 1,2, 3, we would obtain a resulting graph on N [x] that contains a subgraph
isomorphic to K7 + K; 9 > Kj, a contradiction.

We now assume |S| = 10, meaning |I| = 5,¢ = 0,and S = S’. By (1) of Claim 2,

6e(S, Az — Ar) +10e(G[Az — A1]) < 10(5]|As — A1 +3) = 50[ Az — Ay [ + 30.
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Note that

66(57 AQ — Al) + 106(G[A2 - Al]) :4(6(3, A2 — Al) + 26(G[A2 - Al]))

+2(e(S, Ay — Ay) + e(G[Ay — Ay))).

By (2) and (3) of Claim 2, it follows that

4(10] Ay — Ay]) +2(8] Ay — Ay| 4+ 1) < 5042 — 44| + 30.

This means that 6| Ay — A;| < 28, and therefore |4, — A;| < 4. =

Claim 3 shows that S| = 10 and |A; — A;| < 4. Note that we may just choose
Ay = Nlz|, Ay = V(G) — {z}, and S = N(z). It follows that |G — N|z]| < 4. Let
| = |G — NJz]|, and let vy, ..., v; be the vertices in G — N|z].

If [ = 1, then the only vertex v; in G — N|[z] is adjacent to every vertex in N (z) since
d(G) = 10. Observe that e(N(z)) = e(G) — d(x) — d(v;) = 8- 12 — 35 — 10 — 10 = 41,
graph, a contradiction.

If | = 2, since §(G) = 10, we know v; is adjacent to at least 9 vertices in N (z) for
1 = 1,2. Without loss of generality, we can assume that v, vo each are adjacent to s; and
t; for i = 1,2,3. Note that if s;t; € F(G) for some i € {1,2,3,4,5}, then by contracting
v1s; and vysy, for some distinct j, k € {1,2,3} we would obtain a new graph on N[z] that
has a subgraph isomorphic to K7 + Ky5 > Kjg, a contradiction. Hence, s;t; € E(G)
e(G[{v1,v2}]) = e(G) —e(Ki122222) = 8-13—35—50 = 19. Since §(G) = 10, it follows
that vy, vy are adjacent and they each are adjacent to exactly 9 vertices in N (x). Without
loss of generality, assume sj is the unique vertex in N (x) not adjacent to vy, and that either

s4 or t5 is the one that is not adjacent to vs. If s4, v, are not adjacent, then by contracting
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xSs1, S253, and s455 we could obtain a K3y minor, a contradiction. If ¢5, vo are not adjacent,
the G = K5 9922 + Cs, which is an exceptional graph, again a contradiction.

We may then assume [ = 3 or 4. Say s; and ¢; form a pair for j = 1,2,3,4,5. Since
d(v;) > 10 for each i, each v; has at least 10 — (I — 1) = 11 — [ neighbors in N(z).
Note that 11 — [ > 7 since [ < 4, and this means that each v; is a common neighbor for
at least two pairs in N(z). Also note that if some v; is a common neighbor for 3 pairs
in N(z), then, by relabeling the vertices in N(z) and G — N|x], we may assume that v;
is a common neighbor for s; and ¢; for ¢ = 1,2,3. By contracting v;s; for i = 1,2, 3,
we would then obtain a new graph having a subgraph isomorphic to K7 + K2 > Kjp, a
contradiction. Therefore, we may assume that every v; is a common neighbor for exactly
two pairs in N (x), meaning that [ = 4 and every v; has exactly 7 neighbors in N(x). Since
d(v;) > 10 for every i = 1,2, 3,4, it follows that G — N|[x] = K,. Therefore, e(N[z]) =
e(G) = (e(N(z),G—Nlz])+e(G—Nlz])) = (8-15—35) — (4- 7+ (3)) = 85— 32 = 53,

meaning that N[z] = K; + K5 > K, a contradiction. O
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CHAPTER 4
MAIN TECHNICAL LEMMA

The goal of the entire Chapter 4 is to prove Lemma 4.1.1, the main technical lemma in our

proof for Theorem 1.1.5.

4.1 Statements and Proof Outline

We state the main technical lemma and give an outline of its proof in this section.

Lemma 4.1.1. Let x € V(G) such that 11 < d(x) < 15. Let M be the subset of vertices
of N(x) that are not adjacent to all other vertices of N(z), i.e. M = {v € N(x) : vu ¢
E(G) for some u € N(x) — {v}}. Then, for every component K of G — N|x], there exists
some component K' of G — N|x] such that N(K') N M € N(K).

To prove Lemma 4.1.1, for the sake of a contradiction, assume that there exists some
x € V(G) with 11 < d(z) < 15 and a component K of G — N|x] such that for every
component K’ of G — N[z], N(K') N M C N(K) where M = {v € N(x) : vu ¢
E(G) for some u € N(z)—{v}}. We choose such a pair (z, K') such that d(x) is minimum

over all choices.

The rest of our proof for Lemma 4.1.1 can be outlined as follows.

In Section 4.2, we first prove M C N(K) and N(z) # KU K in Lemma 4.2.1 and
Lemma 4.2.2. Notice that 11 < d(z) < 15 and 6(N(z)) > 8 by Lemma 3.1.1. It follows
that N (x) is isomorphic to some graph H such that (i) 11 < |H| < 15, (ii) 6(H) > 8, and
(iii) H # Kg U K. Note that there are only finitely many graphs satisfying (i)-(iii). In
Lemma 4.2.3, we present all edge-minimal graphs satisfying (i)-(ii1), which are generated
by a computer program. There are precisely 101 such graphs, up to isomorphism, and we

call them problem graphs. It remains to show that if N(x) has a subgraph isomorphic to
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some problem graph, then we can contract edges that have at least one end in G — N|[z]
such that the resulting graph on N[x] has a K7, minor. It turns out that if N(z) has a
subgraph isomorphic to the three problem graphs K333, K33 + Cs, or K44, we would
need to spend some more effort to find the desired K minor; and if N (x) does not have a
subgraph isomorphic to those three graphs, a Ky minor is relatively easier to be found.

In Section 4.3, we consider the case that [V (z) has a subgraph N = K5 353, K33+ Cs,
or Ky 44. We first prove that N(z) = N’, so N(z) itself is isomorphic to one of the three
problem graphs in Lemma 4.3.1. We then prove |G — N[z]| > 3 in Lemma 4.3.2 and a
quite technical result on 2-separations of each component of G — N|z| in Lemma 4.3.4.
Then, we show that a K7y minor can be found if G — N{[z] is 2-connected in Lemma 4.3.5
and Lemma 4.3.6, and that a K, minor can be found if G — N|[z| is NOT 2-connected in
Lemma 4.3.7.

In Section 4.4, we consider the case that N () does NOT have a subgraph isomorphic to
Ky 333, K33+Cs5, or Ky 44. We use computer programs to verify that every problem graph
that is NOT isomorphic to K3 333, K33 + Cs, or K4 44 satisfies one of the properties (A1)
and (A2) in Lemma 4.4.1 and one of the properties (B1)-(B6) in Lemma 4.4.3. Finally,
we use properties (A1) and (A2) to show that a K7, minor can be found if G — N{[z] is
2-connected and has at least two vertices in Lemma 4.4.2, and we use properties (B1)-(B6)

to show that a /{;o minor can be found otherwise in Lemma 4.4 .4.

4.2 Problem Graphs

We will prove M C N(K) in Lemma 4.2.1 and N(z) # Kg U K, in Lemma 4.2.2.
Lemma 4.2.1. M C N(K).

Proof. For the sake of a contradiction, assume that M — N (K) # ().
We first observe that for every v € M — N(K), v does not have any neighbor in
G — Nz}, since otherwise there would exist some component K’ of G — N|[z| such that

y € N(K')N M buty ¢ N(K), which is a contradiction to the choice of x and K.
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Choose y € M — N(K) such that d(y) is minimum. Let M, = {v € N(y) : vu ¢
E(G) for some u € N(y) — {v}}. By the previous observation, it follows that y has no
neighbor in G — N|z] and therefore N|y|] C N[z]. Since y € M, y is not adjacent to every
vertex in N (z), and it follows that d(y) < d(x). Let J be the component of G — N |x] that
contains K. We will complete the proof by considering the following two cases: N(x) —
Nyl € V(J), or N(z) — Nly] € V(J).

Case 1: N(z) — N[y] CV(J).

Since d(y) < d(z), by the choice of x and K we know that .J is not the only component
of G — NJy|. Let J' be any component of G — N|y| such that J’ # .J. Since .J’ is chosen
arbitrarily, it suffices to show a contradiction by proving that N(J') N M C N(J).

Observe that since N[y] C N[z], G — N|z] is an induced subgraph of G — N[y]. Since
N(z) — N[y] € V(J), every vertex in G — N[y] but not in G — N|x] is contained in the
component J of G — N[y|. It follows that .J itself is also a component of G — N[z]. By
the choice of x and K, it follows that N(J') N M C N(K). Since N[y] C N[z], we know

that x ¢ M, and therefore M, C M. It follows that

N(J'YN M, C N(J')NnM C N(K).

Now, observe that since V (K) C V (.J), every neighbor of K is either in J orin N(.J), and

therefore

N(J)N M, C N(K) = (N(K) N V(J)) U (N(K) N N(J)).

Notice that N(.J') N M, C N(y) and N(K)NV(J) C V(J) which is disjoint from N (y).
It follows that

NJ)YNM, CNK)NN(J)C N(J).
Case2: N(z) — N[y] £ V(J).
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Let H be a component of N(z) — N[y| U V(J). Note that H C G — N[y] UV (J),
meaning that H is contained in some component of G — N[y| disjoint from .J.

We will first show that H itself is a component of G — N|y|. For every z € V(H),
note that z € N(x) — N[y], meaning that = € M and therefore = € M — N(K). By the
observation at the beginning of this proof, it follows that z has no neighbor in G — N|z]. It
follows that N(H) C N|x]. Let J' be the component of G — N|y] that contains H. Note
that if V' (J' — H) # (), since N[y] C N{z] then every vertex in J' — H must be contained
in some component K’ of G — N|z] such that K’ # K, a contradiction to the fact that
N(H) C N|[z]. Hence, we conclude that H itself is a component of G — N|y].

Now, since V(K) C V(J) and J, H are disjoint components of G — N[y], it follows
that for every z € V(H) we have z ¢ N(K) and therefore = € M — N(K). By the
choice of y, d(z) > d(y) for every z € V(H). Lett = |H|. Assume ¢ = 1 for a moment,
and let z* be the unique vertex in H. It follows that N(H) = N(z*) = N(y). Since
d(y) < d(z), this means that (y, H) contradicts the choice of (z, K'). Therefore, t > 2.
On the other hand, since H C N(z) — N[y] = N(x) — (N]y] — {x}), we know that
t <d(x)—d(y) < 15— 11 = 4. Hence, we have 2 < t < 4.

Now, let L = G[N[y] UV (H)]. Note |L| = d(y) + t + 1, and that
e(L) = d(y) + e(N(y)) + e(N(y), V(H)) + e(H).

Note that z € N(y) is adjacent to all other vertices in N(y). Since 6(N(y)) > 8, we know

d(N(y) — {z}) > 7. It follows that

e(N(y)) = e({z}, N(y) —{z}) +e(N(y) —{z}) = d(y)—1+%'7(d(y)—1) =5dly) -5
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For every z € V(H), since N(z) C V(H)U N(y) and d(z) > d(y), we have

e(N(y), V(H)) 4 2e(H Z d(z)> Y dy) =

zeV(H 2€V (H)

and therefore e(N (y), V(H)) + e(H) > td(y) — e(H) > td(y) — (}). Hence, we have

2
11 1 1 9
= (= +t)d(y) — =t* + =t — =
(5 +0dy) =58+ 51— 5
5 1 15 25
= 1 - = — 2 ==
8(d(y) +t+1)+ (¢ 2)d(y) 2t 2t 5
5 1 15 25
= 8|L — = S
SIL| + (t = 5)d(y) — 5t = St =

LetGy = GIV(J)UN(J)], S = N(J),and Gy = G—V(J). Observe that G UG, = G,
G1 NGy = G[S],and L C Gs. Let dy be the maximum number of edges that can be added
to G[S] by contracting edges that have at least one edge in V(G — G3). Let L’ be a graph
with V(L’) = V(L) that can be obtained from G by deleting vertices in V(Gy — L) and

contracting edges that have at least one end in .J such that e(L’) = e(L) 4 ds. We then have

5 1 15 25
e(L') =e(L) +dy > 8|L'| + (t — 5)d(y) — §t2 — 71t -3 + ds.

If t =3or4,thent — 2 > 0. Since d(y) > 11,

o, 1 15, 25 7., 271
6([/) > 8|L/’+11(t_§)_§t2_7t__ d2 - 8|L/’——(t—§)2—? d2 = 8’L/|—34+d2

If t = 2, note N(y) C N[z|] — {y} — H, meaning that d(y) < d(z) —t < 15 —2 = 13.

Then,
1 1 15 25
>Q|L)| — =13 — =22 — —2 — — 4+ dy, = 8|L'| — 36 + ds.
(L) 2 8|1 = S13 = 22 = 22— 2 4 dy = §1| ~ 36+ d,
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Note that |L'| = d(y) +t+1>11+2+1 =14 > 8. If e(L’) > 8|L'| — 35, then by
induction we know that ' is isomorphic to some exceptional graph. If e(L’) > 8|L'| — 35,
then by induction we know that L’ is isomorphic to some exceptional graph. This is not
possible, because x is adjacent to all other vertices in L', and there is no exceptional graph
on at least 14 vertices in which there is a vertex adjacent to all other vertices. It follows
that e(L') < 8|L'| — 36, which could happen when t = 2 and dy = 0. However, by (3)
of Lemma 3.2.4, the connectivity of G; — G2 = J implies that by contracting all of J to
a vertex in S that has the minimum degree inside G[S] we would obtain at least one extra

edge on G[S]. It follows that dy > 1, a contradiction. O
Lemma 4.2.2. N(x) # KgU K.

Proof. For the sake of a contradiction, assume N (z) > Ky U K;. Choose y € N(z) such
that N(z) — {y} > Ks. We may assume that y is not adjacent to some vertex in N(x),
since otherwise N (x) > Ko which then implies G > K, a contradiction. It follows that
y € M C N(K). By contracting all vertices in K to y, in the resulting graph on N (z),
y would be adjacent to all other vertices in M, meaning that y would be adjacent to all
other vertices in N (x). It follows that the new graph on N (x) has a K¢ minor and therefore

G > K, a contradiction. O

Lemma 4.2.3 (computer-assisted). N (z) has a subgraph that is isomorphic to one of the

101 graphs listed in Appendix.

We call each one of these 101 graphs a problem graph.

43 Ks333, K33+ Cs,and K44

Now, assume that /N (x) contains a subgraph N’ isomorphic to Ky 333, K33+ Cs, or K444
such that [N (x)| = |N'|.
We first define three types of minors of GG. For a minor H of G — x rooted at N (x), say

H is a minor of G of type I if there exist distinct vertices s1, So, S3,t1,t2,t3 € N(z) such

84



that for some distinct islands C, Cy, C3 of N', s;,t; € C; and s;t; € E(H) — E(N') for
1 = 1,2,3; say H is a minor of G of type Il if there are distinct vertices x1, T2, T3, Y1, Yo
such that zq, 29,23 € C; and y;,y, € Co for some distinct islands C;,Cy of N’ and
T1Ta, T1T3, Tok3, Y1y2 € E(H)—E(N'); say H is a minor of G of type IIl if N' = K3 3+C}
and there are distinct vertices 1, xa, Y1, Yo, Y3, Y4 € N(x) such that 21, x4 are contained in a
3-island of ', y; fori = 1, 2, 3, 4 are in the 5-island of N’, and that x5, Y112, Yoy3, Y3ys €
E(H) — E(N').

Observe that since N’ = Ky 333, K33+ C5, or K444, if G has aminor H of one of the
three types defined above, then G > K, a contradiction. Hence, GG does not have a minor

of type I, type II, or type III.
Lemma 4.3.1. N(z) = N'.

Proof. For the sake of a contradiction, assume that N (z) # N'.

We first prove that G — N[z] # 0. Let E' = E(N(x)) — E(N'). Note that the end
vertices of edges in £’ are in at most two islands of N’, since otherwise G would have a
minor of type I, a contradiction. If G — N[x] = (), then |E'| = e(G) — (d(x) + e(N')) =
8- |G| — 35 — (d(x) + e(N’)). This means that if N’ = Ks333, then |E'| = (812 —
35) — (11 4+ 45) = 5;if N’ = K33+ Cs, then |E'| = (8 - 12 — 35) — (11 + 44) = 6; and
if N = Ky 44, then |[E'| = (813 —35) — (124 48) = 9. One can then check that in all

cases, G would have a minor of type II or type III, a contradiction. Hence, G — N|x] # ().

Now, let s1,t; € N(x) be such that s1¢; € E(N’) — E(G), and let C; be the island
of N’ containing sy,t;. Recall that K is a component of G — N |[z] such that M C N(K)
where M = {v € N(z) : vu € E(G) for some u € N(z) — {v}}.

We next show that N — C} = N(x) — C;. For the sake of a contradiction, assume
that there exist sy, o € N(z) and an island Cy of N’ — C} such that sy, t, € Cs and
Sots € E(N(z)) — E(N'). Then, we see that N' — C, U Cy = N(z) — Cy U Cy, since

otherwise G would have a minor of type I, a contradiction. Since N’ has at least three

85



islands in all cases, there exist two vertices s3,t3 € N(z) — C; U C, that are not adjacent
to each other in both N’ and N(x). It follows that s3,t3 € M C N(K). By contracting
all of K to one of s3 and ¢3, we would then obtain a resulting graph on N(z) that has
edges s1t1, salo, S3t3, meaning that G has a minor of type I, a contradiction. Therefore,
N'—C} = N(z)—C}. Observe that in all cases, every vertex in N’ has some non-neighbor

in it. It follows that N(z) — C; C M C N(K).

In the rest of the proof, we consider the case || > 2 and the case that | K| = 1.

Case 1: |K| > 2.

Observe that since N' = Ky 333, K33 + C5, or K4 44, in all cases there exists a subset
of vertices X = {x1, 29,23} C N(z) — C; such that N'[X] = G[X] = K3. Let Cs be the
island of N’ containing X, and note that X C Cy C N(K). Note that G[V(K) U X] is
connected, and it does not have a K3 minor rooted at X, since otherwise G would have a
minor of type II due to the edge s;;, a contradiction. By Lemma 2.2.1, G|V (K) U X| has
a cut vertex w, and that there are components .J;, Jo, J3 of G[V (K) U X] — {w} such that
x; € V(J;) fori = 1,2,3. Notice that w € V(K), as K itself is a connected subgraph of
G.

Since |K| > 2, K — {w} # 0. Without loss of generality, assume that either .J; —
{12} #0or K' = GIV(K)U X] — V(J; U Jy U J3) U{w} # (. Let L be a non-trivial
component of J; — {x1} if J; — {12} # 0, and let L be a component of K’ if K’ # (). In
both cases, notice that L is a non-trivial subgraph of K — V' (J, U J3) U {w, 21} such that
N(L) N (V(G) — N|z]) € {w}, meaning that L has at most one neighbor in G — N|x].
Since G is 7-connected, L has at least six neighbors in N (x). Observe that L does not have
non-adjacent neighbors in some island C of N (z) — C} UCs, since otherwise we could just
contract all of V' (JoU J3 —{x3})U{w} to x5 and contract all of L to one of its non-adjacent

neighbors in Cj to obtain a minor of GG of type I, a contradiction. It follows that

IN(L) N C1| > 6 — [N(L) N Cy| — w(N' — Cy UCY).
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If N = Ky3330r K33+ Cs,thenCy = X and N(L)NCy = N(L)NX C {z1},
meaning that | V(L) N Cy| < 1. If C is an independent set, then one can observe that in all
cases we have w(N'—C1UCy) = 2 and thus |[N(L)NCy| > 6—1—2 = 3. It follows that C
is an independent set of size 3 and C; C N(L). Then, by contracting all of L to the unique
vertex in Cy — {s1,t;} and contracting all of V' (J,U J3 — {x3}) U{w} to x5, we then obtain
a minor of GG of type II, a contradiction. It follows that C; is not an independent set, and
this means that N’ = K3 3+ C5 and N'[C] is the 5-cycle. Note now N’ —C UCy is simply
an independent set of size 3, so w(N’'—C,UCy) = 1. Therefore, |[N(L)NC,| > 4. Without
loss of generality, we can assume that s, s3,t3 € C} are all neighbors of L where s3, ¢3
are in the positions such that s;s3, s3st3 ¢ E(N'). Then, by contracting all of L to s3 we
can then obtain a resulting graph that includes edges s1t1, 5153, S3ts. By further contracting
all of V/(Jo U Js5 — {z3}) U {w} to x2, we would then obtain a minor of G of type III, a
contradiction.

We may then assume that N’ = K 4 4. In this case, every island of N’ is an independent
set of size 4, and thus |N(L)NCy| < {21} U (Cy — X)| =2and w(N'—C1UCy) = 1. It
follows that [N (L) N Cy| > 6 — 2 — 1 = 3. Note that if L has all four vertices in C} as its
neighbors, then by contracting all of L to one vertex in C; — {1, t1 }, we would then obtain
a clique of size 3 in (', and this implies that G has a minor of type II due to .Js, J3, and
w. It follows that L has exactly three neighbors in C'y, two neighbors in C5, one neighbor
in N(z) — Cy U Cy, and one neighbor in G — N|[z], and this means that |N(L)| = 7. By
Lemma 3.2.3, it follows that G[V (L) U (N (L) N C})] has a K3 minor rooted at N (L) N C}.

Therefore, G has a minor of type II due to J5, J3, and w, a contradiction.
Case2: |K| = 1.
Case 2.1: G — N|z] is disconnected.
Let K’ be a component of G — N|x] such that K # K’. Assume for a moment that

there exists an island Cy of N(x) — C; such that K’ has some non-adjacent neighbors

S9,19 € (5. Since N’ has at least three islands in all cases, there exists an island Cs
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of N — C; U (5. Let s3,t3 € (5 be two non-adjacent vertices, and note this means
that {s3,t3} € M C N(K). Then, by contracting all of K’ to s, and contracting all
of K to s3, we would then obtain a minor of G of type I, a contradiction. Therefore,
N(K') N (N(z) — C)) is a clique. One can then check that unless N’ = K33 + C5 and
C} is the 5-cycle in it, [N(K’)| < |Cy| + w(N(z) — Cy) < 6, which is a contradiction to
the 7-connectivity of G. It follows that N’ = Kj 3 + Cs and N'[C}] is a 5-cycle. Due to
the 7-connectivity of G, K’ has exactly one neighbor in each 3-island of N’ and has all five
vertices in C as its neighbors. Let so,ty € C) — {s1,t1} be such that s159, soty & E(N').
Then, by contracting all of K’ to s, and contracting all of K to any vertex in N (z) — (Y,

we would then obtain a minor of type III, a contradiction.

Case 2.2: G — N|z] is connected.
Since | K| = 1, let y be the unique vertex in K, and let t = e¢(G[C}]) — e(N'[C4])). We
then have 8n — 35 = ¢(G) = d(x) + d(y) + e(N') + t, and therefore

t = (8n —35) — (d(x) + d(y) + e(N")).

If NV = Ky3330r K33+ Cs, thenn = 13 and d(x) = d(y) = 11 since 6(G) > 11.
It follows that ¢ = 8 - 13 — 35 — (11 + e(N')) — 11 = 47 — e(N"). f N’ = Ky 353,
then e(/N') = 45 and therefore ¢ = 2. This implies that C is an 3-island of N’, and that
contradiction. If N' = K3 3 4+ Cj, then e(N') = 44 and therefore ¢t = 3. If (', is a 3-island,
then G = K3 + K3 + C5 > Kj, a contradiction. If N'[C}] = Cj, note G[C1] is either

a path of length 3 or a disjoint union of an edge and a path of length 2. It follows that

77777

77777

If N = K44, thenn = 14, d(z) = 12, d(y) < 12, and e(N’) = 48. It follows that
t > (8-14 —35) — 12 — 48 — 12 = 5. Since every island of N’ is a 4-island, G[C}]
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has at least five edges on 4 vertices, meaning that there is a clique of size 3 on (' in G.
Note that V' (K) = {y} has all vertices in N(z) — C} as its neighbors. By contracting an
edge between y and any vertex in N(z) — C, we would then obtain a minor of type I, a

contradiction. L]
Lemma 4.3.2. |G — N[z]| > 3.

Proof. For the sake of a contradiction, assume |G — N[z]| < 2. By Lemma 4.3.1, we know
that N(z) = N' = Ky 333, K33+ Cs, or Ky 44. Notice that if N(z) = K, 44, then every
two adjacent vertices in N (x) have exactly five common neighbors in G — N|z], so they
must have at least three common neighbors in G — N|z], a contradiction to the assumption
that |G — N[z]| < 2. Hence, either N(x) = K333 0r N(z) = K335+ Cs.

If N(z) = K, 333, then observe that every two adjacent vertices each contained in some
3-island of N (x) have exactly 6 common neighbors in G — N[z] and therefore have at least
two common neighbors in G — N|z]. It follows that |G — N[x]| = 2, and that every vertex
in a 3-island of N (x) is adjacent to both vertices in G — N{[z]. Let V(G) — N[z] = {a, b}.

Note now |G| = 14, and

d(a) + d(b) — e(G[{a,b)]) = (8- 14 — 35) — e(K\20,0) = 21.

Since §(G) > 11, ab € E(G) and a, b each have exactly 10 neighbors in N (x). Recall that
every vertex in a 3-island of N(z) is adjacent to both a and b. Since §(G) > 11 and every
vertex in a 3-island of N(z) has exactly 10 neighbors in N|z], it follows that the set of
edges between {a, b} and the 2-island of N (x) is precisely a perfect matching. It follows
that G = K3 33 + C5, which is an exceptional graph, a contradiction.

If N(z) = K33+ Cs, then observe that every two vertices from distinct islands of N (z)
have exactly six common neighbors in N |[z] and thus have at least two common neighbors
in G — Nlz]. It follows that |G — N[z]| = 2, |G| = 14, and every vertex in G — N|[z]

is adjacent to all vertices in N(z). Since ¢(G) = 8 - 14 — 35, one can then check that
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there is no edge between the two vertices in G — Nz] and thus G = K335 + Cj, again a

contradiction since K333 + Cs is an exceptional graph. ]

If N(z) = Ky3330r K33+ Cs, let T1, T, be two distinct 3-islands of N (z); if N(x) =
Ky 4.4, let Ty, T, be two disjoint independent sets of size 3 each in a 4-island of N(z). In

all cases, let 77 = {x1, 29, x5} and To = {y1, Y2, Y3 }-

Lemma 4.3.3. In all cases, the following statements are true:
(1) There is no clique of size 5 in N (x).

(2) Foralli,j € {1,2,3}, x;,y; have at least two common neighbors in G — N |z].

Proof. (1) is simply true, as there is no clique of size 5 in K3 333, K33 + Cs, or Ky 4.4.
To see (2) is true, note that for any 4, j € {1,2,3}, z;y; € E(G) and they have at least
eight common neighbors in G' by Lemma 3.1.1. One can observe that x;, y; have at most
five common neighbors in N (z) in all cases, due to the construction of 77, T5. It follows
that z;, y; have at most six common neighbors in N (x) and therefore at least two common

neighbors in G — N|z]. O

Let H C G be a subgraph, and let S C V(H) be a subset of vertices. Say a vertex
v € V(G) is associated with S with respect to H if there is a path P linking v and some

vertex u € S such that P is otherwise disjoint from H.

4.3.1 Proof of Lemma 4.3.4

Lemma 4.3.4. Let (A, B) be a 2-separation of a component of G — N [z| such that AN B =
{a,b}, B— A # 0, and there is a path linking a,b in G|B]. If no vertex in G — N|[z] is a
common neighbor for two non-adjacent vertices in N (x), then there exist two disjoint paths
in G|B] such that one links a,b and the other one links a neighbor of y, and a neighbor of

Y for some non-adjacent vertices y1,y2 € N(x) N N(B — A).
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Proof. Say a 2-separation (A’ B') of G[A U B satisfies property P if there exist two
disjoint paths in G[B’] such that one links a’ and 0’ and the other one links a neighbor of
and a neighbor of v} for some y|,y5 € N(z) N N(B' — A’) such that v}y, ¢ E(G). For
the sake of a contradiction, assume that (A, B) fails property P such that | B| is minimum
among all 2-separations of G| A, B] that fail property P. With these assumptions, we make

the following claim.

Claim 1. The following statements are true:

(1) N(x) does not contain a clique of size more than 4.

(2) Foreveryv € B — A, [N(v) N N(x)| <4 and dgp(v) > 7.

(3) For any a — b path P in G[B], there is no < 2-separation (B, By) of G[B] such that
V(P) C Byand By — By # 0.

(4) There is no cut vertex of GG[B] that separates a and b.
Proof of Claim 1. (1) is simply true because N(x) = K333, K33 + Cs5, or K444 by
Lemma 4.3.1, and none of these three graphs has a clique of size more than 4. Then, (2)
and (3) follow immediately from (1), due to the facts that §(G) > 11, G is 7-connected, and
that no vertex in G — N|z] is a common neighbor for two non-adjacent vertices in N (z).

To see (4) is true, for the sake of a contradiction, assume that there is a cut vertex
w € B — A of G[B] that separates a, b. Let By, B, be the components of G[B] — {w} such
thata € V(By) and b € V(Bs). Since there is a path linking a, b in G| B], there exists a path
P, lining a, w in G[B; U{w}| and a path P, linking b, w in G[B2U{w}|. By the minimality
of | B| when choosing (A, B), we know that B = V(B U By) U{w}. By (2), w has at least
7 neighbors in B and thus one of By — {a} and By — {b} is non-empty. Without loss of
generality, say B; — {a} # 0. Let A’ = AU B — (B; — {a}) and B’ = B; U {w}. Notice
that (A’, B’) is a 2-separation of G[A U B] such that B’ — A’ # () and there is a path linking
the two vertices a, w in A’ U B’. Then by the minimality of |B| when choosing (A, B),
it follows that (A’, B’) satisfies property P, meaning that there exist two disjoint paths in

G[B'] such that one links a, w and the other one links a neighbor of y; and a neighbor of v,
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for some non-adjacent vertices y;, y5 € N(z) N N(B’— A’). Then, by extending the a — w
path along P, to make it an a — b path, we would then have a path linking a, b and a path
linking v/, y5 that are disjoint from each other. This means that (A, B) satisfies property
P, a contradiction. It follows that B; = {a} and therefor B, = {b} by symmetry, meaning
that B — A = {w}. Since 6(G) > 11, w has at least 9 neighbors in N(z), a contradiction

to (2). =

Since G is 7-connected, B — A has at least 5 neighbors in N'. By (1) of Claim 1, there
exist two non-adjacent vertices vy, v, € N(z) N N(B — A). Let uy, us be neighbors of
vy, vy in B — A, respectively. Note that u; # usg, as no vertex in G — N|z] is a common

neighbor for two non-adjacent vertices in N (z).

Claim 2. There exist two internally disjoint a—b paths L1, Ly in G[B] such that u; € V(L)

and Uy € V(LQ)

Proof of Claim 2. By (4) of Claim 1, there exist two disjoint internally disjoint a —b paths in
G|[B]. Let them be ); and ()». Observe that if u;, us are both included in @)y, then u; Qus
would be a u; — us path that is disjoint from the a — b path ()2, which implies property P, a
contradiction. By symmetry, it follows that |V (Q; N {uy,us}| < 1 fori = 1,2, so we may
assume that one of uy, uy is not included in V' (Q1 U Q).

Next, we show that we may assume that one of ()1, ()2 goes through u;. To see it,
assume that u; € V(Q1 U Qs). By (3) of Claim 1, there exist three paths S, Sy, S3 linking
uy and V(Q1UQ-) in G[B] that are pairwise disjoint except for u;. Let s; be the end of S; in
V(Q1UQ9) fori = 1,2, 3. Notice that, without loss of generality, we can assume that sq, $o
are both on ()1, and that ); goes through a, s1, S5, b in order. (It is possible that s; = a or
b for i = 1,2, but it does not matter.) Replace (); with the path a()1s; U S7 U Sy U 59010,
and it follows that (); now goes through ;.

Now, since u; € V' (Q)1) and one of u;, us is not included in V(@1 U Q)2), it follows that

us & V(Q1 U Q2). Again by (4) of Claim 1, there exist three paths Ry, Ry, R3 linking us
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and V(Q1 U @)2) in G[B] that are pairwise disjoint except for us. Let r; be the end of R; in
V(Q1UQs) fori=1,23.If r;, € V(Q1) — {a,b} for some i € {1,2,3}, then we would
have the u; — us path R; Ur;QQ1u, being disjoint from the a — b path ()5, implying property
P, a contradiction. It follows that r; € V(Q3) for i = 1,2,3. Without loss of generality,
say ()5 goes through a,ry, 7o, b in order (possible that r; = a or ro = b). Then, the a — b

paths L; = @ and Ly = aQ)ory U Ry U Ry U re(Qob are as desired. =

Claim 3. There exists a non-trivial 3-separation (D, F) of G[B] such that
()a,b € Dand N(v;) N B C D fori=1,2,
(2) G[E] and G[E — D] are both connected, and
(3) there is no non-trivial < 3-separation of (G[E], D N E).
Proof of Claim 3. We first prove that G[B] is not a planar graph. By (2) of Claim 1,

deip)(v) > 11 —4 = Tforallv € B — A, and it follows that
7 1
e(G[B]) = 5|B — Al + §(dG[B](CL) + dap (D).
If G|B] is planar, then
7 1
§|B — A| + §(dG[B](a) + dG[B](b)) < 6(G[B]) < 3|B| —6= 3|B — A|,

which means that $|B — A| + 1 (dgp)(a) + dgp)(b)) < 0, a contradiction.

Let H be the multigraph obtained from G[B U {vy, v2}] by adding the four edges an,,
n1b, bny, nea and eliminating the edge v, v, if v1v9 € E(G). Since G[B] is a subgraph of
H, H is not planar either. Observe that any v; — vy path P in H such that a,b ¢ V(P)
has a subgraph P’ that links a neighbor of v; and a neighbor of vy. Since (A, B) does not
satisfy property P, it follows that there do not exist two disjoint paths in H such that one
links v; and v, and the other one links a and b. Let C' be the cycle in A that goes through

a,v1,b,ve in order. By Theorem 2.3.1, there exists a non-trivial C-reduction of H that
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can be drawn on the plane such that C' bounds the infinite region. This means that there
exists a non-trivial < 3-separation (D', E’) of (H,V(C)). Choose (D', E’) such that |E’|
is minimum over all such < 3-separations.

Let D = D'N B and E = E'. 1t follows that (D, F) is a < 3-separation of G[B] such
that a,b € D and E — D # (). (2) and (3) can then be simply implied by the minimality
of |E'| when choosing (D', E'). Observe that if N(v;) N B C D fori = 1,2, then we
know D — E # () since a, b, u, uy are four distinct vertices, and therefore (D, E) is a
non-trivial separation of G|B]. Hence, in the remaining of the proof, it suffices to show
that |[D N E| =3and N(v;) N B C D fori =1,2.

To see [DNE| = 3, assume | DN E| < 2 for the sake of a contradiction. Since a,b € D,
it follows that at least one of the a — b paths L, and L, is included in D completely, a
contradiction to (3) of Claim 1. Since DN E = (D' N E")\{v1,v2} and | D' N E’| < 3,
it follows that |[D’' N E’| = 3 and vy,vy € D’ — E'. Therefore, no neighbor of v; or vy
is included in £’ — D'. Since E — D = E' — D', it follows that N(v;) N B C D for
1=1,2. —

The next goal is to prove that V(L;) N (E — D) # 0 for i = 1,2 in Claim 5. To prove
it, we need to introduce a few definitions first and make some observations first in Claim 4.
Let Y = {y € N(x) : viy,vy € E(G)} C N(z). We will need to consider explicit
positions of vy, v, in N/, and observe that it suffices for us to consider the following five

cases, up to isomorphism:

1%

Case 1: N(z K333 and vy, v, are both contained in a 3-island.

1%

Case 2: N(x K> 333 and vy, vy are both contained in the 2-island.

I

K33 + Cs and vy, v, are both contained in a 3-island.

1%

Case4: N(z K33 + Cs and vy, v, are both contained in the 5-island.

()
()
Case 3: N(x)
()
()

I

Case 5: N(z Ky 4.4 and vy, vy are both contained in a 4-island.

Claim 4. The following statements are true.

(1) G[Y'] does not contain a clique of size 4.
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(2) Let v3,v4 € Y be non-adjacent and Y’ = {y € Y : v3y, vy € E(G)} C Y. Then,
G[Y'] does not have a clique of size 3.

(3) In Case 2 and Case 5, N(x) — {vy, v2} does not have a clique of size 4.

(4) In Cases 1, 3, and 4, if Z C N(z) — {v1,v2} such that G[Z] = K}, then there exist

vertices v}, vy € Z such that v;v] ¢ FE(G) fori = 1,2, where v} and v}, are not necessarily
distinct.
Proof of Claim 4. In Cases 1-5, Y] is isomorphic to K 33, K33 3, K3 + Cs, K 33, and
K4 4 respectively. Since none of these five graphs have a clique of size 4, it follows that (1)
is true. Observe that N (z) —{vy,v2} = K333 in Case 2, and that N(x) — {vy,v2} = Ko 44
in Case 5. Since neither K33 3 3 nor K5 4 4 has a clique of size 4, it follows that (3) is true.

To see (2), observe that vz, v, are in the same island of G[Y], as they are non-adjacent.
In Case 3, G[Y] = K3 + C5 and therefore G[Y'] = C5 or K 3. Neither of these two graphs
has a clique of size 3, meaning that (2) is true in Case 3. In other cases, observe that G[Y]
has at most three islands and each island is an independent set. This means that no vertex
in Z is in the same island with v3 and v4 in G[Y']. By (1), G[Y”] does not contain a clique
of size 3.

To see (4), let C be the island of N(z) that contains v; and v,. Observe that Cj is an
independent set of size 3 in Case 1 and Case 3. Also observe that N(z) — Cy = Ks 33
in Case 1 and N(z) — Cy = K5 + Cs in Case 3, and both of these two graphs have their
maximum clique of size 3. It follows that if Z C N(x) — {vy, v2} such that G[Z] = K,
then Z must contain the unique vertex in Cp— {vy, v, } which is adjacent to neither of vy, vs.
In Case 4, if Z C N(x) — {vy,v2} such that G[Z] = K, then Z must contain exactly one
vertex in each one of the two 3-islands and two vertices in the 5-island Cy. Since the two
vertices in Z N Cy are adjacent to each other, it follows that one of them is not adjacent to

vy and the other one is not adjacent to vs. =

Claim5. V(L;)N (E — D) #( fori =1,2.
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Proof of Claim 5. For the sake of a contradiction, assume that V(L) C D. By Claim 3,
we know that vy,vy € N(E — D) N N(z). Since G[E — D] is connected by Claim 3,
N(E —D)N N(x)] must be a clique, because otherwise there would be a path in G[E — D)|
linking neighbors of two non-adjacent vertices in N (z) which is disjoint from the a — b
path L;, meaning that property P holds, a contradiction. By (1) of Claim 1 and the 7-
connectivity of G, it follows that N(E — D) N N(z) = K,4. By (3) of Claim 4, Case 2 and
Case 5 are not possible, so it remains to consider Cases 1, 3, and 4. By (4) of Claim 4, we
can choose v, € N(E — D) N N(x) for i = 1,2 such that v;v] ¢ E(G), where v}, v} are
not necessarily distinct.

Assume V(Ly) N (E — D) # () for a moment. Since G[E — D] is connected, there
exists a path R C G[E — D] linking some ), € N(v}) N (E — D) and a vertex on Ly such
that R is otherwise disjoint from L,. We can then extend R to obtain a vy — v}, path which
is disjoint from the a — b path L. This implies property P is true, a contradiction.

We may then assume that V' (L; U Ly) C D. Letr € E — D. By (3) of Claim 1,
there is no 2-cut of G[B] separating r from V' (L; U Lo). It follows that there exist three
paths linking r and V' (L; U Ls) that are pairwise disjoint except for r and are disjoint
from V(L; U Ly) otherwise. Note that at least one of these three paths has an end in
V(L1 U Ly) — {a,b}. Without loss of generality, assume that one of these three paths has
anend in V' (Ly) — {a, b}. It follows that there is a path R; linking r and u, that is disjoint
from Ly. Since G[E — D] is connected and contains some vertex v} € N (v}), it follows
that there exists a path R, linking u; and «] that is disjoint from the a — b path, meaning

that property P holds true, a contradiction. -

By Claim 5, since the end vertices a, b of L; are both contained in D, we know |V (L;) N
(DNE)| > 2. Since | DNE| = 3, without loss of generality, we can assume thata € DNE,
beD—FE,and |V(L,)N(DNE)—{a}| =1fori =1,2. Let DN E = {wy,ws, w3}

where a = w3 and w; is the unique vertex in V(L;) N (DN E) — {a} fori =1, 2.
Claim 6. There exists a (D N E)-tripod in G[E] such that every leg of the tripod is trivial.
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Proof of Claim 6. We first prove that G|E] is a non-planar graph. By (2) of Claim 1, every

vertex in F — D has at least 7 neighbors in G[E]. It follows that

1 1 7 1 7. 21
e(G[E]) = 52650[151(@) > 5 > deim(v)+5|E-D| = 5 > dem) () +5| El==-

veE veEDNE veEDNE

If G[E] is planar, then

1 7 21
5 D dam(v) + 5Bl = T < e(GlE]) < 3|E| -6,

vEDNE
meaning that )~ - - dgg)(v) +|E| < 9. Since £ — D # () and every vertex in £ — D has
at least 7 neighbors in G[E], we know that || > 8. It follows that Y, x dag (v) < 1,
meaning that some vertex in D M £ has no neighbor in £ — D, a contradiction to Claim 5.

Now, recall that there is no non-trivial < 3-separation of (G[E], D N E) by (3) of
Claim 3. By Lemma 2.4.3 and (4) of Lemma 2.4.4, there exists some (D N E)-tripod
T C G|E] that is split by some 3-separation (E4, E) of G[E]. This means that D N E C
L(T) C E; and E;— E; # (). Since there is no non-trivial < 3-separation of (G[E], DNE),
it follows that D N £ = L(T) = E; and therefore every leg of T is trivial. Hence, the
(D N E)-tripod T is as desired. .

Claim7. N(E—D)N N(z) CY where Y = {y € N(z) : v1y, vy € E(G)} as defined
before Claim 4.

Proof of Claim 7. For the sake of a contradiction, assume that v} € N(E — D) N N(x) is
not adjacent to v;.

By Claim 6, let ' C G[E] be a (D N E)-tripod such that every leg of T is trivial. Let
p,q € V(T) — DN E and paths P;, Q; for i = 1,2, 3 be such that 7" is the union of the
internally disjoint paths P, P, Ps, 1, (2, Q)3 such that P; links p, w; and @Q; links q, w;
for: =1,2,3.

Note that v] € N(E — D) N N(x) has some neighbor r; € £ — D. By (2) of Claim 1,
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r1 has at least 7 neighbors in the connected subgraph G[E]. Therefore, without loss of
generality, we can assume that there is a path R linking r; and some r; € V(P, U P, U
P;) — D N FE that is disjoint from 7" otherwise. Recall that u; is a neighbor of v; in
B — A included in the path L;. By Claim 3, u; € V(L;) N D — {b}. It follows that
RUP,UP,U P; —{a, ws} has a subpath R’ linking r; and w, that is disjoint from Q2 U Q3.
Then, R’ U u; Lyw; would be a path linking 1, u; which is disjoint from the a — b path

@3 U Q2 U wy Lyb, meaning that property P holds, a contradiction. -

Claim 8. Let T C G[E] be a (D N E)-tripod such that every leg of 7" is trivial. Let
p,q € V(T) — DN E and paths P;, Q; for i = 1,2, 3 be such that T is the union of the
internally disjoint paths P, P, P3, 1, ()2, Q)3 such that P; links p, w; and @Q; links q, w;
fori = 1,2, 3. If there exist non-adjacent vertices y;,y» € N(E — D) N N(z), then every
neighbor of y; or yo in E — D is not associated with V(P; U P, U Q1 U Q2) — {p, ¢} with

respect to 7.

Proof of Claim 8. Lett; € E — D be a neighbor of y; for © = 1,2. For the sake of a
contradiction, assume that ¢; is associated with V' (P, U P, U Q1 U Q2) — {p, ¢}. Without
loss of generality, say ¢, is associated with P, — {p}.

For convenience, let P/ = PLUP,UP;— DNFE and Q' = Q1 UQ.UQ3—DNE. By (2)
of Claim 1, ¢; has at least 7 neighbors in the connected subgraph G[E], so i, is associated
with V(P’) or V(Q') with respect to 7. If ¢, is associated with V' (P’) with respect to
T, then there exists a path linking ¢; and ¢, that is disjoint from )7 U Q2 U Q3. If 5 is
associated with V' (Q’) with respect to 7', then there is a path linking ¢, o that goes through
wy (possibly ¢ as well) and is disjoint from P, U P5. In both cases, we can find a t; — ¢,

path that is disjoint from some a — b path, which implies property P, a contradiction.

Now, let T C G[FE] be a fixed (D N E)-tripod. Let vertices p, g and paths P;, @Q); be
labeled as in Claim 8. Since G is 7-connected and G[E — D] is connected, we know that

IN(E — D) N N(z)| > 4. By Claim 7 and (1) of Claim 4, N(E — D) N N(z) is not a
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clique. Hence, we choose non-adjacent vertices vs, vy € N(E — D) N N(x) and vertices

ug, uq € E — D such that uv; € E(G) fori = 3, 4.

Claim 9. There exists a < 2-separation (E1, Ey) of G[E] such that V(P U P,UQ; UQR3) C
Fianda € E; — E;.

Proof of Claim 9. For the sake of a contradiction, assume that there exist three paths
Ry, Ry, R3 in G[E] linking a and V (P, U P, U@ U(Q)-) that are pairwise disjoint except for
a. Let r; be the end of R; on P, U P, U Q) U Q5 fori = 1,2, 3. Due to Corollary 2.3.4 and
the existence of the paths P;, ()3, we may choose R;, Ry, R3 such that p = r, and ¢ = r3.
Then, without loss of generality, assume that 1 € V' (P;) — {p}.

Observe that 7" = P, U P,UQ; UQ2U Ry U Ry C G[E] is also a (D N E)-tripod such
that every leg of 7" is trivial. By Claim 8 and the construction of ug, u4, it follows that both
ug, ug are associated with V (Ry U R3) — {a} with respect to T”. Tt follows that, for i = 3, 4,
there exists some path S; C G/[FE] linking u; and some vertex V (Ry U R3) — {a} that is
otherwise disjoint from 7”. Observe that V'(S;) N V(R;) = 0 for i = 3,4, since otherwise
u; would be associated with V(P;) — {p} with respect to 7", a contradiction to Claim 8.
Therefore, we can find a subpath of S3 U Sy U P, U Ry U Q2 U Ry — {a} linking ug and
uy that is disjoint from the a — b path Ry U ry Pyw,; U wy L1b. This implies property P, a

contradiction. -

By Claim 9, we choose (E1, E5) to be a < 2-separation of G[E] such that V(P U
P,UQUQy) C Eyand a € Ey — E such that |F5| is maximum over all choices.

Observe that |E; N E3| = 2 due to the paths Py and Q3. Furthermore, we can write

Ei\NE; = {po, qo} suchthat py € V(P3)—{a}, o € V(Q3)—{a}, V(pP3poUqQsq) C Ei,
and V(popga U qOQ?,CL) - EQ.

Claim 10. Every vertex in N (E} — {po, qo, w1, w2 }) N N(z) is adjacent to all other vertices
in N(E — D) N N(x).

Proof of Claim 10. Assume that there exist two vertices y;,y2 € N(E — D) N N(z) such
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that y;yo ¢ FE(G). It suffices to prove that neither y; nor y» has a neighbor in F; —
{Po, qo, w1, wy}. Observe that if p = py and ¢ = qo, then V' (P3 U Q3) C Es, and it follows
that v, y» have no neighbor in £} — F, by Claim 8. Therefore, without loss of generality,
we may assume that p # py.

Let W = V(P U P, U@ UQ>), just for convenience. By the maximality of |Es|
when choosing (E1, F»), there is no non-trivial < 2-separation (Fi, Fy) of G[FE;] such
that W C F} and {po, o} C F». By Corollary 2.3.5, it follows that there exist internally
disjoint paths Sy, S5, S3 in G[E,] satisfying the following properties: (1) .S; for i = 1,2
each link py and some vertex in W, (2) S5 links gg and some vertex in 1/, and (3) the end
vertices of S, .5,,.55 in W are distinct and include both p, g. Observe that in all cases,
there exist distinct vertices p’, ¢’ € W — {wy, w2, po} and seven internally disjoint paths
P}, Py, Q, Q4 PY,Q4, R in G[E] such that (i) P/ for i = 1,2 links p/, w;, (i) @} for
i = 1,2 links ¢, w;, (iii) P4 links p’, p, (iv) Q% links ¢’, qo, and (v) R links p, and some
re V(PPUPUQLUQ,) —{p,q}. Let P, = P{ UpyPsp and Q5 = Q4 U qoQsq. It
follows that 7" = J,_, » 5(F; U @;) is a (D N E)-tripod in G[E] such that every leg of T"
is trivial, and that R is a path linking py, r that is disjoint from 7" otherwise.

Let t1,t2 € E — D be neighbors of v, 12, respectively. Note that it suffices to prove
t1,to € E; — Es. For the sake of a contradiction, assume that t; € E; — E5. Note that
forboth: = 1,2, ¢; € £ — D, meaning that ¢; has at least 11 — 4 — 3 = 4 neighbors in
the connected subgraph G[E — D] by Claim 1, and therefore there exists some non-empty
S; CV(T") — EN D such that ¢; is associated with S; with respect to 7”. By Claim 8, ¢;
fori = 1,2 is not associated with V(P U P,U Q| U Q%) — {p/, ¢'} with respect to T". Since
t1 € By — E,, without loss of generality, assume that ¢; is associated with V' (p' Pipo) — {po }
with respect to 7”. Note that ¢, is not associated with V' (P;) — {a} with respect to 7", since
otherwise there would exist a path linking ¢, ¢, that is disjoint from an a — b path obtained
by extending (), U ()5, which implies property P, a contradiction. It follows that ¢, is

associated with V' (Q%) — {a} with respect to 7".
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Recall that R is a path linking pp and 7 € V(Pj U Py U Q) U Q%) — {p,¢'} that is
otherwise disjoint from 7”. Without loss of generality, assume that either r € V' (P;) — {p'}
orr € V(Q})—{¢}. Note that R is disjoint from 7} and T3, since otherwise ¢, or ¢, would
be associated with V/(P] U Py U Q) U Q%) — {p/, ¢'} with respect to 7", a contradiction to
Claim 8.

Let by, by be the end vertices of paths 77, T», respectively, on p' Pipo—{po } and Q5—{a},
respectively. Let O1 = 11 U by Pip’ U Py U Q) U ¢'Q%by U T5. Then, observe that in both
the case r € V(P) — {p'} and the r € V(Q)) — {¢'}, Oy is a t; — t5 path disjoint
from the subgraph O} = (P{ U Q| — {p',¢'}) URUaPip,. If r € V(P]) — {p'}, let Oy =
aPipoURUr Pjw;Uw, Lib; and if r € V(Q)) —{¢'}. let Oy = aPipyURUrQ w; Uwy Ly b.
In both cases, we see that O, is a subpath of O, linking a and b, and therefore O, O, are

disjoint paths. This implies property P again, a contradiction. -

To finish the proof, we first show that Fy = {w;,ws,p,q}. Note that it suffices to
prove that Ey = {wi,ws,po,qo}. For the sake of a contradiction, assume that F; —
{wy,we,po,q0} # 0. Let K; be a component of G[FE;] — {w1, ws, po,qo}. Since G is
7-connected, |N(K;) N N(xz)] > 3. Recall that Y = {y € N(x) : viy,my € E(G)}.
Since V(K,) € E — D, we have N(K,) N N(z) € N(E — D)0 N(z) C Y by
Claim 7. By Claim 10, N(K;) N N(z) is a clique such that every vertex in it is adjacent
all other vertices in N(E — D) N N(z). Recall that v3,vs € N(E — D) N N(x) are non-
adjacent by construction. It follows that N (K;) N N(x) is a clique contained in the subset
Y'={y €Y :v3y,ny € E(G)}. By (2) of Claim 4, it follows that | N(K7) N N(z)| < 2,
a contradiction.

Now, p € EF — D has at least 3 neighbors in Ej, and that p has at least 4 neighbors in
N(z). Since 6(G) > 11, p has at least 4 neighbors in F>— F1, meaning that Fy— FyU{a} #
(. Let F} = Ey; U {a} and F, = E». It follows that (Fy, F3) is a non-trivial 3-separation of

(G[E], D N E), a contradiction to (3) of Claim 3. O
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4.3.2 Proof of Lemma 4.3.5

Lemma 4.3.5. If G — N|[z] is 2-connected and no vertex in G — N [x] is a common neighbor
for two non-adjacent vertices in N (z), then G — x has a minor J rooted at N (x) such that

J > K.

Proof. For the sake of a contradiction, assume that such a minor J does not exist. Recall
the definitions of T} = {x1, x5, 23} and Ty = {y1, y2, y3} right before Section 4.3.1. By
Lemma4.3.3, foralli, j € {1,2, 3}, x;, y; have at least two common neighbors in G— N [z].
Since no vertex in G — N|[z] is a common neighbor for two non-adjacent vertices in N (z),
there exist a subset of three vertices X = {v;, v2,v3} C V(G) — N[z] and a subset of nine
vertices A C V(G) — N[z|U X such that v; for i = 1,2, 3 is a common neighbor for z;, y;,
and that every vertex in A is a common neighbor for z;, y; for some unique ordered pair
(1,7) where i, 5 € {1,2,3}.

Our proof for Lemma 4.3.5 is a bit lengthy. An outline of the proof is as follows. In
Claim 1 and Claim 2, we will make a series of observations on the structure of G — N|z],
given that it is 2-connected and no vertex in it is adjacent to two non-adjacent vertices in
N(z). In Claim 3, we find an X-tripod T satisfying a few desired extremal properties.
Then in Claim 4 and Claim 5, we prove that 7" has at least one non-trivial leg. Without loss
of generality, assume that the leg L, of 7" on v; is non-trivial. In Claim 6-Claim 10, we
prove that there is a non-trivial 7-bridge B; that attaches to v; and exactly one of vy, v3
as its only attachment on 7" outside L;. Without loss of generality, say B attaches to v,.
Let A3 C A be the subset of vertices in A that are adjacent to x3 or y3. We will then use
the T-bridge B; to show that every vertex in A3 is not associated with 7" — {vy} U V/(L3)
in Claim 11-Claim 14. Finally, we use these vertices in .43 and the 7-bridge B; to show a

minor of type II exists, a contradiction.

We start the proof with observing a few properties of G — N |x].

Claim 1. The following statements are true:
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(1) For every two vertices a;, ay € A, there exist distinct vertices vy, v, € T for some
J € {1,2} such that a;v; € E(G) fori = 1,2.

(2) There do not exist two disjoint connected subgraphs Gy, G2 of G — N|z| and a
subset X’ C V() of three vertices such that for some j € {1,2}, each vertex in X’ has
a unique neighbor in 7j, G has a K3-minor rooted at X', and G has two non-adjacent
neighbors in N (z) — 7).

(3) There do not exist two disjoint connected subgraphs G, G5 of G — N|[z] such that
X C V(Gy), G7 has a K3-minor rooted at X, and G5 has two non-adjacent neighbors in
N(x).

(4) If G; € G — Nlz] such that X C V(G;) and G, has a K3-minor rooted at X, then
|[V(K)N A| <1 forevery component K of G — N[z] UV (Gy).

Proof of Claim 1. One can observe that (1) is simply true by the definition of .4, and that
(3) and (4) immediately follow (1) and (2). So it suffices to prove (2). For the sake of a
contradiction, assume that such subgraphs G1, G2 and X’ C V(G) exist. Without loss of
generality, say each vertex in X’ has a unique neighbor in 7}, and wy,ws € N(x) — T}
are non-adjacent and both neighbors of G. It follows that G[V (G;) U T3] has a K3 minor
rooted at 7. By contracting edges in G[V (G1) U T}] properly and contracting all vertices
in GGy to one of wy,wy, we could then obtain a minor of G of type II, a contradiction.

Therefore, (2) is true. .

In the next claim, we make observations on some properties of X -tripods in G — N|x].

Claim 2. If G — N|z] has an X-tripod T" as a subgraph, then the following statements are
true.

(1) T has a K53-minor rooted at X.

(2) For every component K of G — (N[z] U V(T)), N(K) N N(x) is a clique.

(3) Every non-trivial 7-bridge in G — N[z] has at least three attachments on 7.

(4) Let vertices p, g and z; for i = 1,2, 3 and paths L;, P;, Q); for i = 1,2, 3 be labeled

for T" as in Definition 2.4.2. Then for each ¢ € {1, 2,3}, there exists at most one vertex in
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A associated with V' (P;) — {z;, p} with respect to 7" and at most one vertex in A associated

with V(Q;) — {2, q} with respect to 7.

Proof of Claim 2. One can easily check that (1) is true, and that (2) can be implied by (1)
and Claim 1.

To prove (3), recall that N (z) has no clique og size greater than 4 by Lemma 4.3.3. By
(2), it follows that every non-trivial 7-bridge B haw at most four neighbors in N (z). Since
G is 7-connected, it follows that B has at least three attachments on 7.

To see (4) is true, let Gy = T — (V(P;)\{z,p}). Observe that G has a K5 minor
rooted at X. Let K be the component of G — (N[z] UV (G,)) such that P, — {z;, p} C K.
It follows that |V (K) N A| < 1, meaning that at most one vertex in A is associated with
V(P;) — {zi, p} with respect to T'. By symmetry, it follows that at most one vertex in A4 is

associated with V' (P;) — {z;, p} with respect to 7. .

Claim 3. There exists an X-tripod T in G — N|z]| split by some 3-separation of G — N|[z]
such that every T-bridge in G — N|[x] is stable, and that there is no X -tripod in G — N|z]
that can be obtained from 7' by a tripod-transformation.

Proof of Claim 3. Let (A1, Ay) be a 2-separation of (G — N|z], X ) such that |A;]| is min-
imum. Note that we know there exists some 2-separation, as we know |G — Nlz]| > 3
by Lemma 4.3.2 and we do not require the 2-separation to be non-trivial. By the choice of
(A1, Ay), there is no non-trivial < 2-separation of (G[A4], X).

We next prove that G[A;] is non-planar. By Lemma 4.3.3, there is no clique of size 5 in
N(z). Since no vertex in G — N|[z] is a common neighbor for two non-adjacent vertices in
N(z), it follows that every vertex in V' (G) — N|[z] has at most 4 neighbors in N (x). Since
§(G) > 11 by Lemma 3.1.1, we have dg_n[y)(v) > 7 forevery v € V(G) — N|[z], meaning
that all but at most 2 vertices in G[A;] has degree at least 7 inside G[A;]. Therefore,

e(GlA1]) > 1(JA| — 2) = I|Ay| — 7. If G[A,] is planar, then

7
§|A1‘ — 7 < e(G[A1]) < 3|A1] -6,
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meaning that |A;| < 2. This is a contradiction, since X C A; and therefore has cardinality
at least 3.

Now, since (G[A;] is non-planar and (G[A;], X) has no non-trivial < 2-separation,
by Lemma 2.4.3 and Lemma 2.4.5, there exists an X-tripod 7" in G[A;] such that some
3-separation of G[A;] splits 7', every T-bridge in G[A;] is stable, and that there is no X-
tripod in G[A;] that can be obtained from T by a tripod-transformation. It now suffices to
prove that Ay — A, = ().

For the sake of a contradiction, assume that A, — A; # (). Let a, b be the two vertices
in A; N Ay. Then, since G — N|[z] is 2-connected, there exists some a-b path in G[As).
By Lemma 4.3.4, there exists two disjoint paths P, () in G[As] such that P links a, b and @
links a neighbor of w; and a neighbor of w, for some non-adjacent vertices wy, wy € N(z).
Then, the path @ excludes a and b and is therefore disjoint from the X -tripod 7" in G— N[z},

a contradiction to (2) of Claim 2. =

Now, fix T' C G — NJz| to be an X-tripod and fix (A, B) to be a 3-separation of
G — NJz| such that (A, B) splits 7', every T-bridge in G — N|z] is stable, and that there
is no X-tripod in G — N|[z| that can be obtained from 7 by a tripod-transformation. Let
vertices 21, 22, 23, p,q € V(T') and paths Ly, Lo, L3, Pi, Py, P3, 1, Q2, Q5 are labeled as
in Definition 2.4.2 for 7.

Claim 4. If every leg of T is trivial, then there is a trisection (A, Ao, A3) of order 2 of
G — Nlz| such that {p,q} = Ay N AN Asand V(P,UQ;) C A; fori =1,2,3.

Proof of Claim 4. For the sake of a contradiction, assume that there exists a path R linking
somer; € V(PLUQ1) —{p,q} and ry € V(P> U Q2) — {p, q} that is otherwise disjoint
from 7. Note that up to symmetry, we can assume that r; € V(P;) — {p} and either r, €
V(Py)—{p} or V(Q2) — {q}. One can observe that both TUR — {p} and TU R — {¢} have
a K3 minor rooted at X in all cases. It follows that at most one vertex in A is associated
with s for s € {p, q} with respect to 7.

Note that |A| = 9, and it follows that at least 7 vertices in A are associated with
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V(T) — {p, q}, with respect to 7. By (4) of Claim 2, there exists some vertex ay € A
that is not associated with V(T') — X with respect to 7. Since X N .A = (), it follows that
ap is contained in some non-trivial 7-bridge By C G — N|[z| whose set of attachments is
a subset of X. By Claim 2, the set of attachments of By on 7" is precisely X. Note that
P, U P, U P; U By now has a K3-minor rooted at X, and therefore there is at most one
vertex in A associated with V' (Q; U Q2 U @3) — X with respect to 7. By symmetry, there
is at most one vertex in A associated with V (P, U P, U P3) — X with respect to 7', too.
By Claim 2, it follows that there exist 7 vertices ay, ...,a; € Asuchthatfori=1,...,7,
each a; is contained in a unique non-trivial 7-bridge B; C G — N[z]| whose attachments on
T are precisely vy, vo, v3. Without loss of generality, assume that a; is a common neighbor
for x3 and y; for i = 1,2, 3. It follows that P; U P, U By — {v3} has a K3 minor rooted on
v1, Vg, a1 and By U B3y — {1, vo} contains a path linking as, a3. By contracting edges that
have at least one end in P, UP,UB; —{v3} properly and contracting all of BoUB3—{vy, v2}
to 42, we can then obtain a clique on 77 and the edge y-y3 in 75, meaning G has a minor of

type 11, a contradiction. -

Claim 5. Some leg of 1" is non-trivial.

Proof of Claim 5. For the sake of a contradiction, assume every leg of 7’ is trivial for some
X-tripod T C G — Nlx]. Let vertices p,q € V(T') and paths Py, P», P3, Q1,Q2, Q3 be
labeled as in Definition 2.4.2 for 7. By Claim 4, there is a trisection (A;, A, A3) of order
2 of G — N|x] such that {p,q} = AN AyNAsand V(P,UQ;) C A; fori =1,2,3. Since
Al =9, |AN(A; — {p,q})| > 3 for some i € {1,2,3}. Without loss of generality, say
there are distinct vertices ay, as, ag € A that are all contained A; — {p, ¢}.

Assume for a moment that there exist pairwise disjoint subsets Sp,S5,53 C A; —
{v1,p, ¢} such that for i = 1,23, a; € S;, G[S;] is connected, and {vy,p,q} C N(S5;).
If a; is adjacent to 1, then note that the subgraph G; = G[S; U V(P U Q2 U QQ3)] has
a K3 minor rooted at {a;, ve, v3}. By contracting edges inside this subgraph properly and

contracting edges between T} and {ay, v, v3}, we can then obtain a clique on 7}. Note that
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the subgraph G[S2US3U{v, }] is disjoint from Gs. It follows that N (a;)NT> = {y; } for both
1 = 2, 3, since otherwise we would be able to obtain a minor of G of type II, a contradiction.
Without loss of generality, we then assume that a, is adjacent to x5 and y;. Now since as is
adjacent to y;, by the same argument as above, a,, as are both adjacent to z;. It follows that
ag is adjacent to both x; and y;. Using the same argument again, we then have a; is adjacent
to both z, 1y, for all © = 1,2, 3, a contradiction to the construction of A. Hence, a; is not
adjacent to 1, and it follows that a; is not adjacent to x; or y; for all « = 1,2, 3. Without
loss of generality, we can then assume that a,zo, a1ys, a2, asys € E(G). It follows that
the subgraph of G induced on S; U Sy U {vy, p} has a K3 minor rooted at {v1, a1, as}. By
contracting edges in G[T; U S7 U Sy U {vq, p}| properly we can then obtain a clique on 75,
and by contracting edges in G[{z2, 23} U V(Q2 U @3)] properly we can obtain the edge
xox3. This again shows that GG has a minor of type II, a contradiction.

Therefore, it now suffices to prove that there exist pairwise disjoint subsets S, S5, S3 C
A;—{v1,p,q} suchthatfori = 1,2, 3, a; € S;, G[S;] is connected, and {vy, p, g} C N(S;).
Let A" C {a1, as, asz} be the subset of vertices that are not associated with V(7")—{v1, p, q}.
Note that |A’| < 3. Also note that a; € A} — {p,q, v} for all ¢ = 1,2, 3, which means
that every vertex in A’ is contained in a unique non-trivial 7T-bridge inside G[A;] whose
set of attachments on 7" is a subset of {vy, p, ¢}. By (3) of Claim 2, the attachments of this
bridge are precisely vy, p, g. It follows that if |A’| = 3, then we have found the desired
three pairwise disjoint subsets already. So we may assume that |A’| < 2. Notice that every
vertex in A’ is associated with V' (P;) — {v,p} or V(Q1) — {v1, ¢} with respect to T". By
(4) of Claim 2,

A'l > 1 and thus | A’| = 1 or 2. We will discuss the case | A’| = 1 and the
case |A'| = 2 separately in the rest of this proof.

Case 1: |A'| = 2.

Without loss of generality, assume that A" = {a;,as}, and that a3 is associated with
V(P UQ1) —{v1,p,q}. Let B; C G[A;] for i = 1,2 be the non-trivial 7-bridge such

that a; € V(B;). Note that the attachments of B; for i = 1,2 on T are precisely vy, p, q.
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Also note that ag ¢ V(B U By), since otherwise one of a;, a; would be associated with
V(P U Q1) — {v1,p,q} with respect to T" as well, a contradiction to the fact that A" =
{a1, as}.

Let H = (T—V(P,UQ1))UB1UBsy, and let Ry be a path linking v, p and R, be a path
linking vy, ¢ such that Ry, Ry are internally disjointand V' (R;) C V(B;) fori = 1,2. Let T”
be the graph obtained from 7" by substituting Py, (); with Ry, R, respectively. Observe that
T' C H is an X-tripod such that ay, as are associated with Ry — {vy, p} and Ry — {v1, ¢},
respectively, with respect to 7”. Note that a3 ¢ V(H) and therefore ay ¢ V(1"). By
Claim 2, a3 is contained in a non-trivial H-bridge B; C G|[A;] whose attachments on H
are all included in V' (B;UB;). Notice that B has no attachment in V' (B;)—{vy, p, ¢}, since
otherwise az would be associated with V' (R1) — {vy, p} or V(Ry) — {vy1, ¢} with respect to
T’, a contradiction to (4) of Claim 2. By (3) of Claim 2, it follows that the attachments of
Bs on H are precisely vy, p, q. Let S; = V(B;) — {v1,p,q} fori = 1,2, 3, and it follows

that S, S, S3 are as desired.

Case2: |A'| = 1.

Without loss of generality, assume that A" = {a;}, ay is associated with V(P;) —
{v1,p}, and ag is associated with V(Q1) — {v1,¢}. Let By C G[A;] be the non-trivial
T-bridge whose attachments are precisely vy, p,q. Let 7" be the X -tripod obtained from
T by replacing P, with a v; — p path P| that in internally contained in B;. Let H =
(T'—V(P,))UBy. Note that 7" C H and ay ¢ V(H) is not associated with V' (P) — {vy, p}
or V(Q1)—{v1, q} with respect to T”. It follows that a, is contained in non-trivial H-bridge
By such that the attachments of B, on H are precisely vy, p, q. Let H' = (T'—V (Q1))UBa,
and let 7" be the X-tripod obtained from 7" by replacing (); with a v; — ¢ path ()] that
is internally contained in B,. It follows that 7" C H’ and a3 ¢ V(H') is contained in
a non-trivial H'-bridge B3 such that the attachments of B3 on H are precisely vy, p, q. It

follows that S; = V(B;) — {v1,p, q} fori = 1,2, 3 are as desired. -

NOW, let Rl = V(LZ U B U QZ) — {p, q, UZ‘} fori = 1, 2, 3.
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Claim 6. At least two vertices in A are associated with R; with respect to 7' for some
i € {1,2,3} such that z; # v;.

Proof of Claim 6. We first prove that there exist at most two vertices in A that are not
associated with V' (T') — X with respect to T'. For the sake of a contradiction, assume that
there are distinct ay, as, a3 € A that are not associated with V(7') — X with respect to
T. Note that X N A = (). By Claim 2, a; for each i = 1,2, 3 is contained in a unique
non-trivial 7-bridge B; such that set of attachments of B; on 7' is equal to X. Without loss
of generality, assume that a; is adjacent to z3. Note that L; U Ly U P, U P, U By — {wv3}
has a K3 minor rooted at {v;, v9, 23}, and therefore by contracting this subgraph properly
and contracting edges between T} and {v;, v5, x3} We can obtain a clique on T}. Since v3 is
adjacent to ys, it follows that a, a3 are both adjacent to y3. Since as, ag are both adjacent
to y3, by the same argument that we applied to a;, it follows that aq, as, ag are all adjacent
to x3. This means that a9, as are both common neighbors for x3, y3, a contradiction to the
construction of A.

Since |A| = 9, it follows that at least 7 vertices in A are associated with V(7') — X.
Note V(T')— X = R{URyUR3U{p, q}, and therefore at least 5 vertices in .A are associated
with Ry U Ry U R3. Note that if z; # v; for some i € {1,2,3}, we may assume that at
most one vertex in 4 is associated with R;. If z; = v; for some i € {1,2, 3}, then by (4)
of Claim 2, at most one vertex in A is associated with V' (P;) — {v;, p} and at most one
vertex in A is associated with V' (Q;) — {v;, ¢}, and therefore at most two vertices in .A are
associated with R;. By Claim 5, without loss of generality, we can assume that v; # 2y,
v; = z; for i = 2,3, and for any subset of vertices V' € { R,V (P2) — {va,p}, V(Q2) —
{va, ¢}, V(P3) —{vs,p}, V(Q3) — {vs, ¢} }, there exists exactly one vertex in .4 associated
with V', In particular, note that there exist two vertices a1, as € A that are both associated
with V(Q2 U @Q3) — {v2, v3}.

Note that {z;, ve,v3} now separates V(L;) from V(P U P, U P3s U Q1 U Q2 U @3)

in G — N|z]. Since G — N|[z] is 2-connected, there exist two paths S, S, linking v; and
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{z1,v9,v3} such that Sy, S are disjoint except for v; and they are both internally disjoint
from T' — V' (L;). It follows that G; = P, U P, U P3 U S; U S, has a K3 minor rooted at
X. Note that a a; € A are both associated with V (Q2 U QQ3) — {v2, v3} with respect to 7',
and that G, is disjoint from V(Q2 U Q3) — {ve, v3}. This is then a contradiction to (4) of

Claim 1. 4

By Claim 5 and Claim 6, without loss of generality, assume that v; # z; and there exist
two vertices by, by € A such that by, by are both associated with R;. Fori = 1, 2, let W, be
a path in G — N|z]| linking b; and some vertex in R; that is otherwise disjoint from 7". Tt
follows that G[R;] U W, U W, contains a path linking by, b, in G — N|z].

From Claim 7 to Claim 10, we will show that there exists some non-trivial 7-bridge
attaching to vy, and that every such 7™-bridge attaches to exactly one of v5 and v3 as its only

attachment on 7’ outside L;.

Claim 7. The following statements are true.

(1) There does not exist a non-trivial 7-bridge with attachments u; € V(L;) for i =
1,2, 3 such that u; # z; for some i € {1,2,3}.

(2) There do not exist two disjoint paths S, Se in G — N|[x] such that for some distinct
indices j, k € {1,2,3}, S; links v; and some vertex on L, — {v;}, S; links v;, and some
vertex on L; — {v;}, and that S}, S, are both internally disjoint from 7.

(3) If a non-trivial 7'-bridge D attaches to v; and at least two vertices on Lo U L3, then
b; € V(D) —V(T) for some i € {1,2}.

(4) If a non-trivial 7-bridge D attaches to v; and a vertex on L; — {v;} for some
J € {2, 3} and there is a path S linking v; and some vertex on L5_; such that S is otherwise
disjoint from 7', then b; € V(D) — V(T) for some i € {1,2}.

Proof of Claim 7. (1) and (2) are simply true since there is no X -tripod that can be obtained
from 7" by any tripod-transformation.

To see (3), assume some non-trivial 7-bridge D attaches to v; and at least two vertices

on LyUL3. Then notice that G; = (D\(L;—{v1}))ULsUL3UP,UP; has a K3 minor rooted
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at X and is disjoint from Ry. If by, by neither are in D —V (T'), then Gy = G[R;]JUW; U,
would be disjoint from (; and contain a path linking b; and by, a contradiction to (4) of
Claim 1. It follows that b, € V(D) — V(T') for some i € {1,2}.

To see (4), without loss of generality, assume that a non-trivial 7-bridge D attaches to
vy and a vertex on Ly — {v9 }, and that a path S links v, and some vertex on L3 such that S is
otherwise disjoint from 7'. By (1), D has no attachment on L3 and therefore S is internally
disjoint from 7"U D. Then, observe that G} = (D\(Ly —{v1})) U Lo U L3 U S U P, U Pj
has a K3 minor rooted at X and is disjoint from R;. By a similar argument as above, it

follows that b; € V(D) — V(T) for some i € {1,2}. =

Claim 8. The following statements are true.

(1) If v; # z; fori € {1,2,3}, then v; has at least 6 neighbors in A — V' (L;).

(2) There exists a non-trivial T-bridge attaching to v;.
Proof of Claim 8. We first prove (1). Since (A, B) splits 7" and v; # z;, we know that
v; € A — B. Since no vertex in G — N|z| is a common neighbor for two non-adjacent
vertices in N(x), by Lemma 4.3.3, v; has at most four neighbors in N(x). Since every
T-bridge is stable, v; has exactly one neighbor on L;. As §(G) > 11 by Lemma 3.1.1 and
v; € A — B, it follows that v; has at least 6 neighbors in A — V' (L;).

We now prove (2). Since v; # 21, by (1) it follows that v; has at least 6 neighbors in
A — V/(Ly). If there is no non-trivial 7-bridge attaching to vy, then v; must have at least 6
neighbors on LyULg. It follows that the subgraph G/[{v, } UV (LyUL3UP,UP;3)] C G—N|z]
has K3 minor rooted at X and is disjoint from G[R;] U W U W, which contains a path
linking by, bs, a contradiction to (3) of Claim 1. Hence, there exists some non-trivial 7™-

bridge attaching to v;. -

Claim 9. If a non-trivial T-bridge B; attaches to v; and some uy € V' (L;) — {v;} for some
J € {2, 3}, then the following statements are true.

(1) There exists a path S linking v; and v; or some vertex on Ls_;. If v; is an end of S,
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then B, attaches to v; and S is internally contained in B, — V(7).

(2) b; € V(B;) — V(T) for some ¢ € {1,2}.

(3) Neither one of by, by is a common neighbor for z; and y;.

(4) by, by are the only vertices in A that are associated with (L; — {v1}) U (R(T) —
{22, 23}).

Proof of Claim 9. Without loss of generality, assume that uy € V' (Lg) — {vs}.

We first prove (1) and (2). Note that there is a v;-u9 path internally contained in B, —
V(T'). By (2) of Claim 7, there is no path linking v, and some vertex on L; — {v; } that is
otherwise disjoint from 7" U B;. Note that the fact that B attaches to us € V' (Ly) — {vs}
implies that v5 # z5. By (1) of Claim 8, vy has at least 6 neighbors in A — (V(L; U
Ly)\{v1}). It follows that there exists a path S linking v, and either v; or some vertex on
L3 such that S is otherwise disjoint from 7' U B;. Moreover, if v; is an end of S, then B;
attaches to vo and S is internally contained in By — V' (7'). Then, due to the existence of the
path S, by (3) -(4) in Claim 7, it follows that b, € V(B;) — V(T') for some ¢ € {1,2}. We
are now done with proving (1) and (2).

Now assume that b; € V' (B;) — V(T') without loss of generality. Since b is associated
with Ry = V(L1 U PLU Q) — {v1,p,q} and (A, B) splits 7', we know that B, attaches to
some u; € V(Ly) — {v1}. Recall that W; for i = 1,2 is a path linking b; and some vertex
in Ry in G — N|[z] that is otherwise disjoint from 7".

To prove (3), note that (7" — {v;,}) U W5 has a K3 minor rooted at {b, v, v3} and is
disjoint from some path linking v, and b, inside B;. If by is a common neighbor for x;
and y1, then b; is not adjacent to both z; and y; by the definition of A and thus v; and b,
have distinct neighbors in at least one of 7} and 75. This is then a contradiction to (2) of
Claim 1. Therefore, b is not a common neighbor for x1, 3;. Note that either S is contained
in the T-bridge B, or that S links v, and some vertex on L3 and is otherwise disjoint from
T'U By. Inboth cases, Gq = (B; —V(L1))USU Ly U Ly U P, U Ps has a K3 minor rooted

at {by,ve,v3} and is disjoint from Gy = G[R; U {v;}] U W5 which contains a path linking
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v, and by, again a contradiction to (2) of Claim 1. To conclude, b, is neither a common
neighbor for x; and ;.

To prove (4), let G} = (B; — R1) US U Ly U L3 U P, U P3. Observe that G/ has a K3
minor rooted at X and is disjoint from by and G[R;] U Q2 U Q3 — {22, 23}, which includes
all vertices in Ry. Since by ¢ V(G)) and b, is associated with R;, by (4) of Claim 1, by
is the only vertex in A — {b,} that is associated with Ry U V(Q2 U Q3) — {22, 23}. Let
G| = (B1—R1)USULyUL3UQ2UQs3. Then notice that G} has a K3 minor rooted at X too
and is disjoint from by and G| R;]U P,UP;—{ 29, z3}. Therefore, b, is also the only vertex in
A—{b, } that is associated with RyUV (P,UPs)—{z2, z3}. Combining the two observations,
we conclude that by, by are the only vertices in A associated with Ry U R(T') — {22, 23},

the union of (R UV (P, U P3) — {22, 23}) and (R UV (Q2 U Q3) — {22, 23}). -

Claim 10. Every non-trivial T-bridge attaching to v; attaches to exactly one of vy, v3 as its

only attachment on 7’ outside L.

Proof of Claim 10. Let B; be any T-bridge attaching to v;. Since every 7T'-bridge is stable,
B4 has some attachment on L, U L3. By (1) of Claim 7, attachments of B; outside L, are
all included in one of Ly and L3. Without loss of generality, say attachments of B; outside
L are all on L. It then suffices to prove that B; does not attach to any vertex on Ly — {vy}.
For the sake of a contradiction, assume that B; attaches to some uy € V(L) — {v2}, and
it follows that (1)-(4) in Claim 9 are true. Let S be a path linking v, and v; or a vertex on
L3 as described in (1) of Claim 9.

Let a; € A be the vertex adjacent to both 1 and y;. By Claim 9, a; # b; or by, and a4 is
not associated with (L; —{v1 }) U(R(T) — {22, 23}). Assume for a moment that there exist
distinct mq, my € V(Lo U L3) and two paths M7, M5 in G — N|x] such that M, fori = 1,2
links a; and m; and is otherwise disjoint from 7". It follows that Lo U LsUM;UMyU P,U Py
has a K3 rooted minor at {ay, ve, v3} and is disjoint from the subgraph B; — V(Ls) which
contains a path linking v; and b;. Since a; is adjacent to both zy,y;, we know v; and

by have distinct neighbors in 7} or 7. This is then a contradiction to (2) of Claim 1.
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Hence, a, is associated with at most one vertex on Ly U L3. Note that a; ¢ X and every
non-trivial 7'-bridge has at least three attachments on 7. Since a; is not associated with
(L1 —{v1}) U(R(T) — {22, z3}), it follows that a, is simply a vertex on L; — {v;} for some
i € {2,3}. In the remaining proof, we will discuss the case a; € V(Ly) — {v,} and the

case ay € V(L3) — {vs} separately.

Case 1: a; € V(Ls) — {ve}.

In this case, first observe that if the path S links v5 and some vertex on L3, then Ly U
L3 U S U P, U Py would have a K3 minor rooted at {a;, v9, v3} and be disjoint from some
v1-b; path contained in B; — V'(Ly), a contradiction to (2) of Claim 1. By (1) of Claim 9,
S links v, vy and By attaches to ve. Now, note that (B; — V(L)) U Ly has a K3 minor
rooted at {ay, vo, b1} and is disjoint from the v;-v3 path L; U L3 U Py U Ps. It follows that
by is not adjacent to x3 or y3. Note that b; is not a common neighbor for z; and y; by (3)
of Claim 9. It follows that b, is adjacent to one of x5 and y,. Then, one can observe that
subgraph (B; — V(L)) U Ly U P, U Py has a K3 minor rooted at {vy, by, v3} and is disjoint

from the path vy Loa, linking a; and vs, a contradiction to (2) of Claim 1.

Case 2: a; € V(L3) — {vs}.

In this case, first observe that B; U L; U Ly U Py U Q1 U P5 has a K5 minor rooted at
{v1,v9,b1} and is disjoint from the path v3L3a;. By (2) of Claim 1, b; is not adjacent to
x3 or y3. By (3) of Claim 9, b; is not a common neighbor for x1,y;. So without loss of
generality, we can assume that b, is adjacent to xs.

We next prove that there is no path linking v3 and some vertex in L; U Ly — {v; } that is
otherwise disjoint from 7'. If a path S’ links v3 and a vertex on L; — {v; } and is otherwise
disjoint from 7', then the subgraph S"U(L; —{v; })ULsUL3UR(T) would have a K3 minor
rooted at {ay, vy, v3} and is disjoint from some v;-b; path contained in Bj, a contradiction
to (2) of Claim 1. If a path S” links v3 and some vertex on L, and is otherwise disjoint
from 7', then Lo U L3 U S" U P, U P; would have a K3 minor rooted at {a;, vs, v3} and is

disjoint from some v;-b; path in By, again a contradiction to (2) of Claim 1.
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Now, since a; € V(L3) — {v3}, we know vz # z3. By (1) of Claim 8, v3 has at least 6
neighbors in A — V' (L3). As there is no path linking v3 and some vertex in L; U Ly — {v;}
that is otherwise disjoint from 7', there is a non-trivial T-bridge B, # B; attaching to v,
and vs. Since (A, B) splits 7" and every T-bridge has at least three attachments on 7', By
also attaches to some vertex on Lz — {v3}. It follows that By U Ly U L3 U P, U P has a K3
minor rooted at X and is disjoint from G[R;] U W U W5 which contains a path linking b,

and b,, a contradiction to (4) of Claim 1. =

Recall that every non-trivial 7T'-bridge has at least three attachments on 7". By Claim 10,
since the X -tripod T’ is split, every 7'-bridge attaches to some vertex on L; — {v; }. By (2)
Claim 8, we now fix a vertex v} € V(L;) — {v1} and a non-trivial T-bridge B attaching to
vy such that there is no non-trivial 7-bridge B attaching to a vertex on v} L1z, — {v]}. By
Claim 10, assume that vy is the only attachment of B; on T outside L;. Let L] = vy Liv]
for notation. Let A3 C A be the subset of five vertices in A that are adjacent to x5 or y3. In
Claim 11-Claim 14, we will show that every vertex in .43 is not associated with anywhere

on 7T outside V' (L3) U {v2} due to the existence of the T-bridge B;.

Claim 11. (V(By) — V(T)) N A3 = 0.

Proof of Claim 11. For the sake of a contradiction, assume there exists some ¢ € (V(B;) —
V(T)) N As. Without loss of generality, say c is adjacent to z3. Fori = 1,2, let a; € A be
the vertex adjacent to both 5 and y;. By Claim 2, a; ¢ V/(By) — V/(T) fori = 1, 2.

If a; forsome i € {1, 2} is associated with (V' (L1)—{v, } ) U(V(PLUP,UP;) —{ 29, 23}),
then Gy = Ly U (B; — {v2}) U P, U Py U P3 — {29, 23} would have a K3 minor rooted at
{v1, a;, c}. Note that Go = Ly U L3 U Q2 U Q3 is a path linking vy, v that is disjoint from
(G1. By contracting edges in G, G5 and edges between 7; and G; for ¢ = 1, 2 properly, we
can then obtain a clique on 77 and the edge y-ys in 75, a contradiction. Therefore, aq, as
are not associated with (V(Ly) — {v1}) U (V (P, U Py U P3) — {22, z3}). By symmetry, they

are not associated wtih (V(Ly) — {v1}) U (V(Q1 U Q2 U Q3) — {22, 23 }) either. It follows
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that ay, ay are not associated with (V' (L;) — {v1}) U (R(T') — {22, 23}).

Now note that L; U Ly, U By U Py U P, has a K3 minor rooted at {v,vq,c}. Since
vs is adjacent to ys, it follow that neither a; nor a, is associated with V' (L3). Therefore,
ai, ay are not associated with V(7') — V(Ly) U {v1 }. Notice that {a1, as} N {v1,ve} = 0.
By Claim 2, ay, as are both associated with V' (Ly) — {vo}. It follows that for i = 1,2,
there exists some path S; linking a; and some vertex on Ly — {v2} such that S; is otherwise
disjoint from T'U By. Let G} = L1B; UUP, U P3U Lz and Gy = (Ly — {vo}) U S1 U Ss.
It follows that G|, GG/, are disjoint connected subgraphs of G — N|[z] such that G/ has a
K3 minor rooted at X, and that G, contains a path linking a;, as, a contradiction to (4) of

Claim 1. 4

Claim 12. There is no vertex in A; associated with V' (L}) — {v; }.

Proof of Claim 12. For the sake of a contradiction, assume that there exists some ¢ € A3
associated with V(L}) — {v;}. Without loss of generality, say c is adjacent to x3. By
Claim 11, ¢ € V(B;) — V(T'). Let S. be a path linkling ¢ and some vertex in V' (L}) —
{v1} such that S, is otherwise disjoint from 7'U B;. Let G; = B; U L} U S,, and note
that G has a K3 minor rooted at {vy, vo,c} and is disjoint from the connected subgraph
T — (V(L}) U{ve}) of G — N[z]. By contracting edges in GG; and edges between 77 and
(1, we can obtain a clique on 7. Since v3 € V(1)) — (V(L}) U {v2}), by (2) of Claim 1,
no vertex adjacent to y; or y» is associated with V(T") — (V(L}) U {va}).

Let A" C A be the subset of vertices that are adjacent to y; or y, and are not contained
in B; — V(T'). Notice that |A’| > 5, and that every vertex in A’ is either a vertex on L}
or contained in a non-trivial 7-bridge whose attachments are contained in V' (L}) U {v2}.
Notice that B; UT — (V(L})\{v1,v}}) has a K5 minor rooted at X and is disjoint from
the interior of L. By (4) of Claim 1, at most one vertex in .4 is associated with the interior
of L. Also, at most one vertex in A’ is equal to v]. Since every non-trivial 7T-bridge
is stable and has at least three attachments on 7, it follows that there exist three distinct

vertices a; € A’ for i = 1,2, 3 each contained in a unique non-trivial 7-bridge D; whose
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attachments on 7" are precisely vy, vo, and v].

Assume for a moment that a, is adjacent to 3. Recall that A'N(V (B;)—V(T)) = () by
definition. Let G; = ByUD; —(V(L})\{v1}). Then observe that G; has a K3 minor rooted
at {v1, vo, a1 } and therefore a clique on T} can be obtained by contracting edges in G; and
edges between G and T properly. Let Gy = (Dy — {v1,v9}) UviLizy U Ly U Py U P,
and note that G5 contains a path linking as, v3 and is disjoint from G;. Since as is adjacent
to y; or ys, by the definition of A’, it follows that by contracting edges in G2 and edges
between 75 and GG, properly, we can then obtain the edge y»y3, which then implies a minor
of type Il, a contradiction. By symmetry, it follows that none of a4, as, ag is adjacent to x3.

Now, each a; for i = 1,2, 3 is a common neighbor for one of x, x5 and one of yy, ys.
Without loss of generality, assume that a; is a common neighbor for x; and y; for some
jge {2} Ifj =1,1letGy, = (D; —{vn1}) UviLiz; U Ly U L3 U P UP,U P,
Gy = Dy — {v],v2}, and X' = {ay,ve,v3}. Then, Gy, Gs are disjoint subgraphs of
G — N|z] such that G; has a K3 minor rooted at X’ and (G5 contains a path linking vy
and as. Since a, is adjacent to both x; and y;, as is adjacent to x5 or y,. This is then a
contradiction to (2) of Claim 1. If j = 2, let Gy = (D; — {v2}) UL U L3 U P, U P,
Gy = Dy — {vy,v}, and X’ = {v1, aq,v3}. Then, Gy has a K3 minor rooted at X’ and G+
contains a path linking v, and as. Since a, is adjacent to x5 and s, as is adjacent to z; or

y1. Again, a contradiction to (2) of Claim 1. -

Claim 13. There is no vertex in A3 associated with V (v]L121) UR(T) — {22, 23}

Proof of Claim 13. For the sake of a contradiction, assume that ¢ € A3 is associated with
V(viL1z1) UR(T) — {22, 23}. Without loss of generality, assume that c is adjacent to x3
and is associated with V (v]L1z1 U Py U P U P3) — {29, 23}. Let s € V(v L1z1UP, U P, U
P3) — {23, 23} such that there exists a path S} linking ¢ and s that is otherwise disjoint from
T, and let Sy be the subpath of v L1z U Py U P, U Py — {29, 23} linking v} and s. Note
that we may choose ¢, s and the paths S7, S5 such that no vertex in Aj is associated with

V' (S3) — {s}, and subject to this, |S;| is minimum.
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Now, let G; = By U L} U S; U Sy. Observe that G; has a K3 minor rooted at {vy, vo, ¢}
and v3 ¢ V(G1). By (2) of Claim 1, no vertex adjacent to y; or y, in G — N|[z] is associated
with V(T') — V(G,). By the definition of Aj, there exists some ¢ € A3 — {c} that is
adjacent to y; or yo. Observe that V/(G1) N V(T) = {we} U V(L}) U V(Sz), so either
d € {v} UV (L)) UV(Sy) or ¢ is contained in a non-trivial 7-bridge whose attachments
on T are all included in {ve} U V(L)) U V(S,). By Claim 13 and the choice of ¢, s and
S1, 52, no vertex in Aj is associated with V(L}) U V(Sy) — {vy, s} and ¢ # s. Since
{v1,v5} N A = () and every non-trivial 7-bridge has at least three attachments on 7', it
follows that ¢’ is contained in a non-trivial 7-bridge, say B’, whose attachments on 7" are
precisely vy, v9, and s.

Since (A, B) splits T"and v; € A — B, it follows that B’ is contained in A and therefore
s € V(vyLyz). By Claim 12, ¢ is not associated with v}, so s € V(v{L1z) — {v}}. Tt
follows that B’ is a non-trivial 7T-bridge whose attachments on 7" are precisely v1, v9, and

s where s € V(v Lyz1) — {v}}, a contradiction to the choice of B; and v]. =

Claim 14. There is no vertex in A3 associated with vy or V/(Lg) — {vy}.

Proof of Claim 14. Note that if some vertex in A3 is associated with vy, then it is contained
in V(D)—V/(T) for some non-trivial 7-bridge D, since v; ¢ A. By Claim 10, since (A, B)
splits 7" and every non-trivial 7'-bridge has at least three attachments on 7', D attaches to
some vertex on L; —{v; } and therefore some vertex in Aj is associated with V(L) — {v; },
a contradiction to Claim 12. Therefore, no vertex in Az associated with v;.

It remains to prove that no vertex is associated with V' (Ls) — {vy}. Notice that B; U
LU L3UP;UP; has a K3 minor rooted at X and is disjoint from L, — {vy}. If two vertices
c1, co € Ajs are both associated with V' (Ls) — {v2}, note that neither of them is contained
in By, as B; has no attachment on Ly — {vy}. It follows that we can extend some subpath
of Ly — {vy} to a ¢; — ¢y path that is disjoint from B; U L; U L3 U P; U P, a contradiction
to (4) of Claim 1. Therefore, at most one vertex in Aj3 is associated with V' (Ls) — {va}.

For the sake of a contradiction, assume ¢ € Aj is associated with V' (Ly) — {vy}, and
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let S be a path linking ¢ and some vertex on Ly — {vy} such that S is otherwise disjoint
from 7T'. Without loss of generality, say c is adjacent to x3. By the definition of Aj, there
exists some ¢ € Aj such that ¢ # c¢ and ¢ is adjacent to x3 and one of ¥, 1y,. Notice
that ¢’ is not associated with V(7T') — (V(L3) U {v2}) by Claim 11-Claim 13 and the fact
that ¢ is the only vertex in A3 associated with V' (Ly) — {vy}. Since vy ¢ Az and every
T-bridge is stable, it follows that ¢’ is associated with V'(L3), meaning that there exists a
path S’ linking ¢’ and some vertex on L3 such that S’ is otherwise disjoint from 7. Let
Gi=B UL UL, USUDP, UP,and Gy = L3 US’. Then, G; has a K5 minor rooted at

X and G contains a path linking ¢’ and v3, a contradiction to (3) of Claim 1. =

By Claim 11-Claim 14, every vertex in Aj is either a vertex on L3 —{wv3} or contained in
D—V(T) for some non-trivial 7-bridge D attaching to v, and at least two vertices on L, as
every non-trivial 7'-bridge is stable and has at least three attachments on 7. It follows that
every vertex in Aj is associated with V' (L3) —{vs}. Choose ¢ € Az and uz € V(L3)—{vs3}
such that some c-u3 path S is disjoint from 7" except for u3 and no vertex in A3 is associated
with V(u3L3z3) — {us}, and subject to these, |.S| is minimum. Without loss of generality,
say c is adjacent to x3. Notice that G; = B; U L; U S Uwuzlzz3 U P; U P has a K3 minor
rooted at {v;, v9, ¢} and is disjoint from vy Lyug — {us}, so a clique on 77 can be obtained
by contracting edges in G; and edges between 7 and G, properly. By the definition of
As, choose ¢ € Az such that ¢ # ¢ and ¢ is adjacent to x3 and one of y;, y». It follows
that ¢’ is not associated with V' (v; Lzugz) — {us}, since otherwise there would exist a path
linking v3 and ¢’ disjoint from (71, a contradiction to (2) of Claim 1. Since ¢ is associated
with some vertex on L3 — {v3} and no vertex in A3 is associated with V (ugLsz3) — {us}
by the choice of usg, it follows that ¢ associated with exactly uz on Ls. Moreover, ¢’ = us,
as every non-trivial 7™-bridge is stable and thus has at least two attachments on L3. By the
minimality of |\S| when choosing ¢’ and w3, this means that we should have chosen ¢’ and

us instead of ¢ and w3, a contradiction. ]
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4.3.3 Proof of Lemma 4.3.6

Lemma 4.3.6. Suppose G — N|[z| is 2-connected. If there exists a vertex w € V(G) — N|z]

that is common neighbor for two non-adjacent vertices in N (x), then G — = has a minor J

rooted at N (z) such that J > K.
Proof. Fori = 1,2,let C; be the island of N(x) such that T; C C;.

Claim 1. There do not exist vertices distinct a,b € V(G) — N|[z] such that a is adjacent to

at least two vertices in each one of 77, T5, and that b has at least five neighbors in 77 U T5.

Proof of Claim 1. For the sake of a contradiction, assume that such a,b € V(G) — N|x]
exist, where b is adjacent to all vertices in 7} and at least two vertices in 7, without loss
of generality. Since |G — N|z]| > 3 by Lemma 4.3.2, there exists some component L of
G — N[z|] U {a,b}. Since G — N|z| is 2-connected and G is 7-connected, a,b are both
neighbors of L and |N(L) N N(z)| > 5. By Lemma 4.3.3, there is no clique of size 5 in
N (z). Therefore, there exist 21, zo € N(L) N N(z) that are not adjacent to each other.

Note that if {21, 25} N (C}; U Cy) = 0, then by contracting an edge between T} and a,
an edge between 75 and b, and contracting all of L to z;, we would then obtain a minor of
G of type I, a contradiction. It follows that {z;, 25} C C; for some i = 1, 2.

Assume for a moment that z1, 2, are both contained in ;. Note that |C; — 17| < 1, so
at least one of 2, 25 is contained in 77. Since |T3| = 3, without loss of generality, assume
that z; = xy and 29 # x5. This means that z, z5, x5 are three distinct vertices in C';. Note
that b is adjacent to 1, x2, z3 and b € N (L), so by contracting all of L to z; and contracting
the edge bxs, we would then obtain a clique on {z1, 2o, x2}. Then, by contracting an edge
between a and a neighbor of it in 75, we then obtain a minor of G of type II, a contradiction.

We may then assume {z1, 2o} C C5. Note that a has at least two neighbors in 77, so
without loss of generality, we say a is adjacent to z; and x5. Then, by contracting ax; and
bz and contracting all of L to z;, we would then obtain a clique on 7 and the edge z; 2,

in C5. This means that we obtained a minor of GG of type II again, a contradiction. -
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Claim 2. There exist distinct vertices vy, vo,v3 € V(G) — N[z] U {u} such that v; is a

common neighbor of x; and y, ;) for 7 = 1,2, 3, for some permutation o € Ss.

Proof of Claim 2. Note that by Lemma 4.3.3, every vertex in 7 and every vertex in 75 have
at least two common neighbors in G — N|z].

By Claim 1, there do not exist two vertices G — N|[z] that are both adjacent to all six
vertices in 7} U Ty. This means that [(V(G) — Nz]) N (U;_y 05 N(2:) N N(yo,))| > 3
for every permutation o € S3. Therefore, there are three distinct vertices vy, vy, v3 €
V(G) — N|x] such that v; is a common neighbor for z; and y; for i = 1,2, 3. Similarly,
there are distinct vertices uy, us, us € V(G) — N[z| such that u; € N(z1) N N(yz), us €
N(z2) N N(ys), and us € N(x3) N N(y;). Hence, we may assume that u € {vy,ve, v3}
and u € {uy, us, us}.

Without loss of generality, assume that « = wv;. Note that if there exists some v, €
V(G) — {1, v9, v3} such that v, is adjacent to both 1 and yy, then vy, v3, vy are as desired.
Therefore, we may assume that all common neighbors of x1,y; in G — N|x] are included
in {vy, v9, v3}. Since x1, y; have at least two common neighbors in G — N{[z], without loss
of generality, we assume that v, is adjacent to both x; and y;. By the same argument as
above, it follows that all common neighbors of x5, y» are contained in {v;, v9, v3} and that
one of v; and v3 is a common neighbor for x5, 5.

Assume for a moment that v3 is a common neighbor for x5 and y,. Then, by the previous
argument, one of v; and vy is a common neighbor for x5 and y3;. Observe that v, is not
adjacent to x3 or y3, since otherwise this would be a contradiction to Claim 1 due to the
fact that vs has at least two neighbors in 7; for both 7 = 1, 2. It follows that v; is adjacent
to both x3 and y3. Since G — N{z] is 2-connected, there exists a path P linking v, and v
in G — N|[z] that does not include v;. Note that v; is adjacent to both 1, x5 in T}, vy is
adjacent to y1,y» € T5, and that vs is adjacent to ys,ys € T5. By contracting the edges
V121, VoY1, V3y3 and contracting the path P to a single edge, we would then obtain a minor

of type II of G, a contradiction.
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Hence, v; is a common neighbor for x5 and y,. Notice now both v; and v, are adjacent
to all four vertices x1, y1, T2, y2, meaning that they each have at least two neighbors in 7;

fori = 1,2. By Claim 1, we can then make the following observation.

Observation. The following statements are true.

(1) v has at most four neighbors in Ty U Ts.

(2) v; is not adjacent to x3 or ys for i = 1, 2.

Recall that uy, ug, ug € V(G)— N|[z] are distinct vertices such that u; € N (x1)NN(y2),
us € N(x9) NN (y3), and ug € N(x3) NN (y;). Also recall that u € {uy, us, usz}. By (2) of
Observation, © = vy is not adjacent to x5 or y3. This means that u # us or ug, and therefore
u; = u = vy. If there exists some uy € V(G) — {uy, uq, us} such that us is a common
neighbor for x; and y,, then we would have wu,, us, u4 as desired. Since x4, 5 have at least
two common neighbors in G — N |[x], we may assume that one of their common neighbors
in G — N|x] is uy or us.

If uy 1s a common neighbor for x4, 2, then us is adjacent to both x5 and y». Since all
common neighbors of 5, ys in G — N|z| are contained {vy, v2,v3}, we know that uy €
{v1, v, v3}. Note that us # vy since v; = v = uy and u; # us. Since v, is not adjacent
to y3 by (2) of Observation but us, y3 are adjacent, it follows that u, # v9 and therefore
us = wvs. This means that us = w3 is adjacent to all of x1, x5, ys, x3, Y3, a contradiction
to (1) of Observation due to the fact that u; is adjacent to all four of =1, y1,yo. If us is
a common neighbor for 1, y», then u3 is adjacent to both x; and y;. Since all common
neighbors of z1, y; in G — N|x] are contained {vy, v9, v3} and v; = u = uy # ug, it follows
that u3 = v, or v3. Then, we can again find contradictions to (2) and (1) of Observation in

cases u3 = v9 and ug = vy, respectively. =

By Claim 2, without loss of generality (by relabeling the vertices in 77,75), we can
assume that v; is a common neighbor for z; and y; fori = 1,2, 3. Let wy,wy € N(z) be
the two non-adjacent vertices that have u as a common neighbor. Without loss of generality,

assume that wy, wy & CY.
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Note that this means G[(V (G) — N[z] U {u}) UT1] does not have a K3 minor rooted at
T}, since otherwise we would obtain a minor of G of type II due to the common neighbor u
for wy, wy & T;. Since G — N|[z] is 2-connected, we know G — N [x]U{u} is connected. By
Lemma 2.2.1, since 77 is an independent set, it follows that G[(V (G) — N[z] U {u}) U T}]
has a cut vertex w € V(G) — N[z] U {u}, and that there are distinct components Jy, J5, J3
of G[(V(G) — Nz] U {u}) UTi] — {w} such that z; € V(J;) for i = 1,2, 3. Without loss
of generality, assume that w # vy or vy, and it is possible that w = v3. Since v; is adjacent
to z; for i = 1,2,3, it follows that v; € V(J;), vo € V(J2), and v3 € V(J3) U {w}.
For i = 1,2, let L; be the component of J; — {x;} such that v; € L;. If w = vs, then let
L3 = {v3} = {w}; otherwise, let L3 be the component of J;—{z3} such that vg € L3. Note
that since G — N|[z] is 2-connected,{u, w} C N(L;) fori = 1,2, and that {u, w} C N(L3)
if w #£ vs.

Claim 3. The following statements are true.

(1) x9, x5 & N(L1), 1,23 € N(L2), and if w # vg then 1,29 & V(L3).

(2) V(G) = N[z]U{u} = V(L1 U Ly U Lg) U {w}.
Proof of Claim 3. Since w € V(G) — N|x] U {u} is a cut vertex of G[(V(G) — N[z| U
{u})UTi] and Jy, Jo, J5 are distinct components of G[(V(G) — N[z]U{u}) UTi] — {w}
such that z; € V(J;) fori = 1,2, 3, we know that N(J; — {z;}) N1} = {x;} fori = 1,2,
and that if w # v3 then N(J3 — {x3}) N Ty = {x3}. By the definition of L; fori = 1,2, 3,
it follows that (1) is true.

To prove (2), for the sake of a contradiction, assume that there is some component L of
G — N[z]U{u,w} such that V(L") N{vy, v9, v3} = . Note that u, w are the only neighbors
of L' in G — NJz]. Since G is 7-connected and N (x) does not have a clique of size 5, it
follows that L' has at least 5 neighbors in N(z) and therefore it has two non-adjacent
neighbors 71,7, € N(x). Note that we can fix j € {1,2} such that ry,7, & C;. Then,
observe that we can contract edges in G[V (L; U Ly U L) U {u, w}] property to become a

cycle that goes through vy, v5, vs, and this means that G[[V(L; U Ly U Ls) U {u, w} U Tj]
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has a K3 minor rooted at 7;. Since L’ has non-adjacent neighbors 71,7, € N(x) — T}, it

follows that G' has a minor of type II, a contradiction. -

In the rest of the proof, we consider the case w = v3 and the case w # v3 separately.

Case 1: w = vs.

By Claim 3, there is no neighbor of z3 in L; or Ly and therefore N(z3) N (V(G) —
Nlz]) C {u,w}. Note that 23 and y; for i = 1,2, 3 have at least two common neighbors in
G — N — [z]. It follows that u and w are precisely the common neighbors for 3 and y; in
G — N|z] for ¢ = 1,2, 3. Hence, both u and w are adjacent to x3 and all three vertices in
1.

Assume for a moment that y3 € N(L;). Then, by contracting all of L; to y; and
contracting the edge y,u, we would then obtain a clique on 75. By contracting all of
Ly U {w} to x5, we can obtain the edge xox3. It follows that G has a minor of type II,
a contradiction. This means that y3 ¢ N(L;), and furthermore by symmetry we know
y3 € N(Ly) either.

By (2) of Claim 3, we have N(y3) N (V(G) — N[z]) C {u,w}. Fori = 1,2, 3, since
there are at least two common neighbors for z; and y3 in G — N{z], it follows that they are
precisely v and w. This means that v and w each are adjacent to all six vertices in 7 U 75,

a contradiction to Claim 1.

Case 2: w # vs.

By (1) of Claim 3, we know that xo, x3 & N(Ly), 2,23 ¢ N(Ls), and x1, 2o & V(L3).
Assume for a moment that yo,y5 € N(L1), v1,y3 &€ N(Lz), and y;,y2 ¢ N(L3). This
would then imply that « and w are precisely the common neighbors for z; and y; in G—N|[z]
for 7,5 € {1,2,3} such that ¢ # j. This means that u and w each are adjacent to all six
vertices in 77 U T5, a contradiction to Claim 1. It follows that y; € N(L,) for some
i,j € {1,2,3} such that i # j. Without loss of generality, we assume that y» € N(L).

Recall that wy,wy € N(z) are two non-adjacent neighbors of u, and we previously

assumed that they are not in C'; without loss of generality. Now observe that if w;, wo
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are contained in an island of N(z) outside C; U (5, then by contracting all of L; to y,
contracting all of Ly U L3 U {w} to 5, and contracting the edge uw,, we would then obtain
a minor of GG of type I, a contradiction. It follows that wq, ws € C5. In the rest of the proof,
we will consider the cases |[{wy, w2} N {y1, 12} = 0,1, or 2, separately.

Assume [{wy,ws} N {y1,y2}| = 0, and note that this is only possible when N (z) =
Ky 44 and {wy, we} = Cy — {y1,y2}.Without loss of generality, say w; = y3 and y, is the
unique vertex in Cs — T5. By contracting all of L; to y; for ¢ = 1,2 and contracting all of
Ly U{w} to ys, we first obtain a clique on T} = {y1, ¥2, y3}. Then, by contracting the edge
uyy, we see that y, would then be adjacent to all three vertices v, y2, y3 due to the fact that
u € N(L;) for i = 1,2,3. This means that the resulting graph now on N |[x] is isomorphic
to K5 + K44, which has a K, minor. It follows that G > K, a contradiction.

Assume |[{wy,wa} N {y1,y2}| = 1. Then, without loss of generality, assume that y; =
wy and ys # ws. Notice that y; = wy, Y2, and w, are now three distinct vertices in Cy.
By contracting contracting the edge uw-, contracting all of L; to vy, and contracting all of
Ly U Ly U {w}, we would then obtain a clique on {y;, yo, ws} in Cy and the edge z5z3 in
(1. This means that G has a minor of type II, a contradiction.

Finally, assume [{wy, w2} N {y1,y2}| = 2. Then, without loss of generality, assume
that w; = y; and wy = y,. Note that if y3 € N(L;), then by contracting all of L,
to ys3, contracting the edge uys, and contracting all of Ly U Ly U {w} to x5, we would
then obtain a clique on 75 and the edge xox3 in T;. This means that G has a minor of
type II, a contradiction. Therefore, y3 ¢ N(L;1). Since y3 ¢ N(L; U Ly) by Claim 3,
N(ys) N (V(G) — N[z]) C {u,w}. Since x; and y3 have at least two common neighbors
in G — NJz], it follows that their common neighbors in G — N|x] are exactly u and w,
and this means that  is in fact adjacent to all three vertices in 75. Then, by contracting all
of L, to y;, contracting the edge uys, and contracting all of Ly U L3 U {w} to x5, we can
obtain a clique on 75 and the edge zox3 in 7. This means that GG has a minor of type II, a

contradiction. ]
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4.3.4 Proof of Lemma 4.3.7

Lemma 4.3.7. If G — N|x] is not 2-connected, then G — x has a minor J rooted at N (z)

such that J > K.

Proof. Recall that by Lemma 4.2.1, M C N(K) where K is a component of G — N|z]
and M = {v € N(z) : vu € E(G) for some u € N(z) — {v}}. Since N(z) = Ks333,
K3 3+Cj5,or Ky 44 by Lemma4.3.1, we see that N (z) = M and therefore N(K) = N(z).

If G — N|z] is disconnected, let L, Ly be two distinct components of G — N |[x] such

that N(L;) = N(z) and, subject to that,

Ly is maximum. If G — N|xz] has a cut vertex w,
let Ly, Lo be two distinct components of G — N [x|U{w} such that | L;|+ |L2| are maximum
among all choices. In both cases, let A; = V(L;) N N(x) and H; = G[A; UV (L;)] for

1 =1, 2. We first make some simple observations in Claim 1 and Claim 2.

Claim 1. The following statements are true:

(1) Ly, Lo are disjoint connected induced subgraphs of G, and V(H; N Hy) = A; N Ay C
N(x).

(2) |A;| > 6fori=1,2.

(3) A; € Ng(L;) and |Ng(L;) — A;| < 1fori=1,2.

4) |L;| > 2 for some i € {1,2}.

Proof of Claim 1. (1) is simply true by the construction of L;, A;, and H; for i = 1,2.
Observe that in all cases, L; has at most one neighbor in G — N|z] for i = 1,2, and it
follows that (2) and (3) are true since G is 7-connected.

To prove (4), for the sake of a contradiction, assume that |L;| = 1 for i = 1,2. By
the choice of L; and Lo, it follows that either G — N{[z]| is a star or V(G) — N|x] is just
an independent set in G. Recall that |G — N|[z]| > 3 by Lemma 4.3.2. Therefore, in both
cases, there exist three distinct vertices vy, vo,v3 € V(G) — NJ[z] such that vy, vo each
have at most one neighbor in G — N|[z], and v3 has at most two neighbors in G — N|z].

Since 0(G) > 11, vy, v each have at least 10 neighbors in N(z) and v has at least 9
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neighbors in N(z). Since N(z) = Kj333, K33 + C5, or K444, we observe that vy, vy
each have non-adjacent neighbors in three distinct islands of N(z), and that v3 has non-
adjacent neighbors in at least two distinct islands of N(z). Hence, there exist distinct
vertices s1, t1, Sa, ta, S3,t3 € N(x) suchthat s;, ¢; fori = 1,2, 3 are non-adjacent, contained
in a distinct island of N (x), and both adjacent v;. By contracting edges v;s; fori = 1,2, 3,

we would then obtain a minor of G of type I, a contradiction. -

Now, let G; = L;. Let Gy = Lo if G — N|x] is disconnected, and let Gy = G — N|[x] U
V(L) if G — N|x] has a cut vertex.

Claim 2. The following statements are true:

(1) Gy, G are disjoint connected induced subgraphs of G — N|[z].

(2) A; = N(G1) N N(x), Ay € N(G5) N N(x).

B)N(z) = (N(G1) N N(x)) U(N(Ga) N N(z)) = Ay U(N(G2) N N(z)).

Proof of Claim 2. (1) and (2) are simply due to the construction of L, Ly and G, Go. If
G — N|z] is disconnected, recall that we chose L, such that N(L,) = N(z), and therefore
(3) is true. If G — N|[z] has a cut vertex, then G; UGy = G — Nlz]. Since V(G — N[z]) =
N(z), it follows that (3) is true. .

Claim 3. If G[A;] for some ¢ € {1,2} does not have an independent set of size 3, then the
following statements are true.

(1) For S C A, such that |S| > 6, there exists a subset Z = {z1, 29, 23, 24} C S of size
4 such that z; 29, 2324 & E(G).

(2) |A;| <9, where the equality holds only if N (z) = K3 3+Cs and G[A;] = K 5+Cs.
Proof of Claim 3. Let S C A; be such that |\S| > 6 be arbitrary. Since there is no dependent
set of size 3 in G[4;], A; includes at most two vertices in each island of N (x) that is an
independent set, and so does S.

Since |S| > 6, we see that if N (x) = K 3 53, then G[A;] and G[S] each are isomorphic

to one of K2’272, K1’272’2, or K2’272,2; and if N(I) = K4’4’4, then G[AZ] = G[S] = K2’272.
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This shows that N (x) = Ky 3 33 or K3 3+Cs5, then the desired subset Z exists and | A;| < 8.

If N(z) = K33+ Cs, let Cy, Cy be the two 3-islands and let C'; be the 5-island. Since
A, does not contain an independent set of size 3, |4; N C;| < 2 for j = 1, 2. Furthermore,
we may assume |A; N C;| < 1 for some j in{l,2}, since otherwise we can find a subset
Z C A;N(CLUCy) of size 4 that is as desired. Without loss of generality, say |A;NCy| < 2
and |A; N Cy| < 1. Since |A;| > 6, it follows that |A; N C3| > 3 and thus there are non-
adjacent vertices s3,t3 € A; N Cs. Now, if [A; N Cy| = 2, then Z = (A; N Cy) U {s3,t3}
is as desired. If |A; N Cy| < 1, then |A; N C5| > 4. It follows that any subset Z C A; N Cy
such that |Z| = 4 satisfies that G[Z] is a path of length 3 and therefore is as desired.
Finally, if |A;| > 9, one can simply observe that this is only possible if |A;] = 9 and

G[AJ = KQ,Q + 05. =

Claim 4. The following statements are true about A; for both i = 1, 2.

(1) If |A;| < §(G) — 3, there exists a subset S C A; such that |S| > 6 and for every
Z C Ssuchthat | Z| =4, G[V(L;) U Z] has a K, minor rooted at Z.

(2) If G[A;] does not contain an independent set of size 3, then there exists Z =

{71, 22, 23,24} C A; such that z129, 2324 ¢ E(G) and G[V(L;) U Z] has a K, minor
rooted at Z.
Proof of Claim 4. Recall that we defined H; = G[A; UV (L;)] fori = 1,2. Let (A, B) be a
separation of (H;), A;) such that (i) B — A # (), (ii) | A N B| is minimum subject to (i), and
(iii) | B| is minimum subject to (i) and (ii). Since (A’, B") = (A;, V(L;)) is a separation of
(H;, A;) where B' — A’ = (), it follows that | AN B| < | A;|. Note that B — A C V(L;). By
Claim 1, we know |Ng(B — A)| < |AN B|+ 1. Since G is 7-connected, |[Ng(B — A)| > 7
and therefore |[A N B| > 6.

By the minimality of | AN B, there exist disjoint paths Py, ..., P 4qp| linking A; and AN
Bin G[A]. Let S C A; be the collection of end vertices of the disjoint paths P, ..., P anp
in A;. It follows that |S| = |AN B| > 6. By the minimality of |A N B| and |B| when

choosing (A, B), there is no non-trivial separation of (G[B], ANB) of order at most | ANB|.
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Since AN B C Ng(B — A), there is no non-trivial separation of (G[(B — A) U Ng(B —
A)|, N¢(B — A)) of order at most |[A N B|. Since |[Ng(B — A)| < |AN B| + 1, it follows
that there is no non-trivial separation of (G[(B — A) U Ng(B — A)], Na(B — A)) of order
at most |[Ng(B — A)| — 1.

To prove (1), assume that 6(G) — 3, and we will show that S is as desired. Let Z C S be
any subset such that |Z| = 4. Without loss of generality, say P;, P, P3, P, are the disjoint
paths whose end vertices in S are Z. Let Z] C A N B be the collection of end vertices of
Py, Py, P;, Pyin AN B. Note that by Claim 1, | 4;| < §(G) — 3 implies that |[Ng(B— A)| <
d(G) —2. Since there is no non-trivial separation of (G[(B—A)UNg(B—A)|, Na(B—A))
of order at most |[Ng(B — A)| — 1, by Lemma 3.2.3 it follows that G[(B — A) U Z;]| has a
K, minor rooted at Z;. Due to the disjoint paths P;, P,, Ps, P, linking Z and Z; in G[A],
G[V(L;) U Z] has a K4 minor rooted at Z. This completes the proof of (1).

To prove (2), assume that G[A;] does not contain an independent set of size 3. By
Claim 3, |A;| < 9 and there exists Z = {z1, 29, 23, 24} C S such that 2129, 2324 € E(G).
Again without loss of generality, assume that for j = 1,2,3,4, P, links z; € Z C A; and
z; € AN B. Let Zy = {2}, 23, 23,23y € AN B. Observe that if [Ng(B — A)| < §(G) — 2,
then by the same argument above we can show that G[(B — A) U Z;] has a K, minor rooted
at Z,, and therefore G[V'(L;) U Z] has a K, minor rooted at Z due to the disjoint paths
Py, Py, P, P,. Thus, we may assume that |[Ng(B — A)| > §(G) —1 > 10 as 6(G) > 11.
Note that by Claim 1, |[Ng(B — A)| < |A;|+1 < 10. If follows that |[Ng(B — A)| = 10 and
|A;| = 9. By Claim 3, this is only possible if N(z) = K33 + C5 and G[4;] = K35 + Cs.

Now, let Y/ C A; be the union of the two 2-islands of G[A;], and let Y, be four vertices
in the 5-islands of G[A;]. Without loss of generality, assume that Z = Y] and the disjoint
paths Py, P», P3, P, each have an end vertex in Y. Let Y7 C AN B be the collection of end
vertices of these paths in A N B. Also assume that P, Py, P;, Py each have an end vertex
in Yy, and let Y5 C A N B be the collection of end vertices of these paths in A N B. Note

that G[Y/] and G[Y;] each contain two disjoint pairs of non-adjacent vertices, so it suffices
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to prove that one of Y/ and Y7 is as desired.

By Lemma 3.2.3, one of (2a) and (2b) is true with respect to G[(B — A) U Ng(B — A)]
and Y]. First assume that (2a) is true with respect to G[(B — A) U Ng(B — A)] and Y.
Note that G[Y{] = Ks, so there exist y1,y2 € Y] such that y1y» € F(G). Without loss
of generality, say P; for j = 1,2 links y; € Y] and y; € Y;. By (2a), G[(B — A) U Y]
has an H-minor rooted at Y/ such that H U {y}y5} = K,. Due to the edge y,y2 € FE(G)
and the disjoint paths Py, P,, Ps, P, linking Y] and Y7, it follows that G[V'(L;) U Y/] has
a K, minor rooted at Y/. This completes the proof of (2) as G[Y{] = K, contains two
disjoint pairs of non-adjacent vertices. We may then assume (2b) is true with respect to
G[(B—A)UNg(B—A)]and Y;. Since Y1 NY3 = (0, by (2b) it follows that G[(B — A) UY3)]
has a K4 minor rooted at Y5, implying that G[V'(L;) U Y;] has a K, minor rooted at Y, due
to the disjoint paths Ps, P, Pr, Ps. This again completes the proof of (2) as G[Y]] = K_;

contains two disjoint pairs of non-adjacent vertices. -

Claim 5. Let Cy, C5 be two islands of N (x) that are not necessarily distinct. Suppose that
forsome ¢ € {1,2}, thereisasubset Z = {s1,1, 52,2} C A; of size4 suchthats;,t; € C;
for j = 1,2 and G[V (L;) U Z] has a K, minor rooted at Z. Then, the following statements
are true.

(1) A3_; — C1 U Cyis a clique.

(2) If C; # (5 and Cj is an independent set for some j € {1,2}, then |4;_; N C;| <
max{2, |C;| — 1}.

(3) If C, # Cy and (4, Cs are both independent sets, then there exists a subset 7' =
{81,171, 85, t5} C Az of size 4 such that s}, ¢ € Cj for j = 1,2 and G[(V(L3_;) U Z'] has
a K, minor rooted at 7.

Proof of Claim 5. To see (1) is true, assume for the sake of a contradiction that there exist
s3,t3 € Az_; — C1 U Cy such that s3t3 ¢ F(G). Note that if C; # Cy, then by contracting
edges in G|V (L;) U Z] properly to obtain a clique on Z = {s1, 11, S2,t2} and contracting

all of L3_; to s3, we would then obtain a resulting graph on N[z] that contains edges s;t;
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for 7 = 1,2,3. This means that G has a minor of type I, a contradiction. It follows that
C} = (), and this means that either N(z) = K33 + C5 and C; = () is the 5-island in i,
or that N(z) = K444 and Cy = C is a 4-island in it. In the former case, by contracting
edges in G|V (L;) U Z] properly to obtain a clique on Z = {sy, 1, S2, 2} and contracting
all of L3_; to s3, we would then obtain a minor of G of type III, a contradiction. In the
latter case, we see that the graph obtained from N (x) = K, 4 4 by making one of its islands
a clique is isomorphic to K, + K, 4, which has a Ky minor. It follows that by contracting
edges in G|V (L;) U Z] properly to obtain a clique on Z, the resulting graph on N[z] would
have a ;o minor, a contradiction.

To see (2) is true, without loss of generality, assume that C'; is an independent set. Note
that if |A3_; N Cy| > max{2,|Cy| — 1}, then |C}| > |A3_; N Cy| > 3. Letr; € A3, N C}
such that 71 # s; or t;. Then, by contracting edges in G[V (L;) U Z] properly to obtain
a clique on Z = {s1,t1, 2,12} and contracting all of L3_; to r;, we would then obtain a
clique on {sy,t;,71} in C; and the edge ssts, meaning that G has a minor of type II, a
contradiction.

It remains to prove (3). If N(z) = K> 333, let Cs, Cy be the two islands of N (z)—C;U
C5. We would then have |A;_;NC;| < 1forj = 3,4by(1)and |A;_;NC;| < 2forj =1,2
by (1). Since |A3_;| > 6, it follows that [A;5_; N C;| = 2forj = 1,2, [A5_; N C;| =1
for j = 3,4, and |A3_;| = 6. By (1) of Claim 4, Z' = A3_; N (C; U () is as desired.
If N(x) = Ks333, then Cy, Cy are precisely the two 3-islands of N(x). Let C5 be the
5-island of N(z). Note that the maximum independent set in a 5-cycle has size 2. By (1)
and (2), it follows that [A;_; N C;| < 2 for j = 1,2,3. Since |A3_;| > 6, it follows that
|As_;| =6and |[A3_;NC;| =2forj =1,2,3. By (1) of Claim 4, Z' = A3 ;N (C1UCy) is
as desired. Finally, if N(x) = K, 44, let C5 be the 4-island of N (z) — C; U Cs. By (1) and
(2), it follows that |[As_; N C;| < 3for j = 1,2 and |A3_; N C5| < 1. Note that this shows
that |A;_;| < 7and |SNC;| > 2forevery S C A;_,. By Claim 1, |A;_;| < 7 implies that
|INo(Ls—i)| < |As—i| +1 < 8 < 0(G) — 3 as 6(G) > 11. Therefore, by (1) of Claim 4,
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there exists some 2" = {s, ], 55,15} C As_; such that s, t; € C; for j = 1,2. =

Claim 6. For i = 1,2, for every subset Z C A; of size 4 that is the union of two disjoint

pairs of non-adjacent vertices, G[V (L;) U Z] does not have a K4 minor rooted at Z.

Proof of Claim 6. For the sake of a contradiction, assume that for some ¢ € {1,2},
G[V(L;) U Z] has a K, minor rooted at Z where Z C A; such that Z has size 4 and is
the union of two disjoint pairs of non-adjacent vertices. Let Z = {s1,11, S2,t2} where
s;t; & E(G) for j = 1,2. Let C; be the island of N(z) containing s; and ¢; for j = 1, 2.
Note it is possible that C; = (5, and we will consider the case C'; = C and the C; # C5

separately in the rest of the proof.

Case 1: C| = (.

Note that C'} = C means that either N (x) = K33+ C5 and Cy = () is the the 5-island
of N(z), or that N(z) = K, 44 and C; = Cy = Z is the 4-island of N(z). Observe that
in the latter case, we can just contract edges in G|V (L;) U Z] to obtain a K4 minor rooted
at Z, and the resulting graph on N[z] would be isomorphic to K5 + K, 4 which has a K
minor, a contradiction.

We may then assume that N (z) = K33 + C5 and C; = Cs is the the 5-island of N (x).
By (1) Claim 5, A3_; — C} U Cj is a clique, meaning that A3 ; has at most one vertex in
each of the 3-island of N(x). Since |A;_;| > 6, we have |A3_; N Cy| > 4. Furthermore,
this means that for every S C Aj_; such that |S| > 6, S contains two disjoint pairs of
non-adjacent vertices. By Claim 4, there exists a subset Z' C As_; N C of size 4 such
that G[(V (L3s—;) U Z'] has a K; minor rooted at Z’. We can then apply the same argument
back to A; to show that A; has at most one vertex in each 3-island of N(z). It follows
that A; and A, each have at most one vertex in each 3-island of N(x). By Claim 2 ,
N(z) € A; U N(G>), and it follows that NV (G5) contains at least two vertices in each 3-
island of N (). Therefore, by contracting edges that have at least one end in L, properly to

obtain a clique of size 4 in the 5-island of N (x) and contracting all of GG, to a neighbor of it
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in a 3-island of N (x), we would eventually obtain a minor of G of type III, a contradiction.

Case 2: (] # (Ch.
We will consider the case that one of ', C5 is not an independent set and the case that

both ('}, 5 are independent sets separately.

Case 2.1: One of (', (5 is not an independent set

Observe that one of (4, C, is not an independent set only if N (z) = K3 3+ C5 and one
of (1, Cs is the 5-island. Without loss of generality, assume that C is a 3-island and C% is a
5-island. Let C be the 3-island in N (z) —C; UC5. By (1) and (2) of Claim 5, we know that
|As_;NCs| < land|A3_;NCy| < 2. Since |Az_;| > 6, it follows that 3 < |A3_;NCy| < 5.
Furthermore, observe that for every S C Aj_; such that |\S| > 6, S has some subset of size
4 that is the union of two disjoint pairs of non-adjacent vertices. By (1) of Claim 4, there
exists a subset Z' C As_; such that Z’ is the union of two disjoint pairs of non-adjacent
vertices and that G[(V(L3_;) U Z'] has a K, minor rooted at Z’. Since |A3_; N C3] < 1,
|Z' N C3] < 1. By applying (1) in Claim 5 back to A;, we see that |A; N C3| < 3. Now by
Claim 2, N(z) € A; U N(G2), and therefore N(G) contains at least two vertices in Cs.
Then, by contracting edges that have at least one end in L, to obtain a /; minor rooted at
Z or Z' and contracting all of GG5 to one of its vertex in C3, we would then obtain a minor

of G of type I or type III, a contradiction.

Case 2.2: ('}, (5 are both independent sets.
By (3) of Claim 5, there exists a subset Z' = {s, 1}, 5, t5} C As_; of size 4 such that
s, € Cjfor j = 1,2 and G[(V(L3—;) U Z'] has a K, minor rooted at Z'. Observe that

regardless of which graph N (x) is isomorphic to, there exists an island C5 of N (x)—C1UCq
such that |C3| > 3. By (1) of Claim 5, it follows that for both j = 1,2,

A; NGyl < Tif
(5 is an independent set, and that |4; N C3| < 2 if G[C3] = C5. By Claim 2, we know
that C3 C A; U N(Gs), and therefore | N(G3) N C3| > 2 if Cj is an independent set, and
|IN(G2) N Cs] > 3if G[C3] = C5. In both cases, observe that G has two non-adjacent

neighbors s3,t3 € (3. By contracting edges that have at least one end in L; properly to
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obtain a K4 minor rooted at one of Z and Z’ and contracting all of G5 to s3, we would then

obtain a type I, a contradiction. -

By Claim 6 and (2) of Claim 4, we can now conclude that A; contains an independent

set of size 3 for both ¢ = 1, 2.

Claim 7. If |L;] > 2 for some i € {1,2} and X C A; such that G[X] = K3, then
G[V(L;) U X] has a K3 minor rooted at X.

Proof of Claim 7. Let x4, x9, x3 be the three vertices in X . For the sake of a contradiction,
assume that G[V'(L;) U X|] does not have a K3 minor rooted at X. By Lemma 2.2.1, there
exists a cut vertex u € V(L;) of G[V(L;) U X], and there are distinct components .J;, J5, J3
of G[V(L;) UX] — {u} such that z; € V(J;) for j = 1,2, 3.

Since |L;| > 2, there exists some component R of L; — {u}. Observe that due to the
components .Jy, J2, J3 of G|V (L;) U X] — {u} where z; € V(J;) for j = 1,2,3, we can
assume that RN J, = RN J3 = () without loss of generality. Therefore, |[N(R) N X| < 1.
We also have |[N(R) N (V(G) — N[z])| < 2since |[N(L;) N (V(G) — N[z])| < 1. Since
G is 7-connected, it follows that |[N(R) N (N(z) — X)| > 4. Let C'x be the island of
N(z) that contains X, and note that X = Cx if N(z) = Ky333 or K33 + C5, and
that C'x is a 4-island if N(x) = Ky44. It follows that |[N(R) N (N(z) — Cx)| > 4 if
N(z) = Ky3330r K33+ Cjs,and [N(R) N (N(z) — Cx)| > 3if N(z) = K4 44. Observe
that N(z) — Cx = Kyz30r K3+ Csif N(2) & Ky333 0r K33+ Cs, and N(z) & K, 4 if
N(z) = Ky4.4. Hence, in all cases, R has two non-adjacent neighbors ry,ry € N(x)—Cy.
By contracting all of G[V (J2 U J3) U {w} — {23}] to 22 and contracting all of R to 71, we
would then obtain a clique of size four on {zs, x5, 71,72} Where xoxs, 7170 € E(G), a

contradiction to Claim 6. =

Claim 8. Suppose |L;| > 2 for some i € {1,2}. Then, |A3_;|] = 6. Furthermore, for
any X C A; such that G[X] = K3, let C is the island of N(z) that contains X, then

Cx C A3 ;and A3_; — C'x is a maximum clique in N (z) — Cx.
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Proof of Claim 8. Note that we showed that there exists some independent set of size 3 in
A;. Let X C A; that G[X] = K3 be arbitrary. We will prove that |A3_;| = 6, Cx C As_,
and A;_; — Cx is a maximum clique in N(z) — Cx. By Claim 7, G[V(L;) U X]| has a
K5 minor rooted at X. This implies that A;_;, — C'x is a clique, since otherwise we would
have a minor of G of type II, which is a contradiction. It follows that |A3_; — Cx| < 3 if
N(z) = Kysssor K3+ Cs,and |[As_; — Cx| < 2if N(x) = Ky44. Since [A5_;| > 6
by Claim 1, it follows that A;_; is precisely the union of C'y and a maximum clique of
As_; — Cx. Therefore, |A5_;| = 6, Cx C As_;, and A3_; — Cx is a maximum clique in

N(C(])—Cx. =

To finish the proof, we first show that |L;| > 2 for i = 1, 2. For the sake of a contradic-

tion, assume that |L;| = 1 for some ¢ € {1,2}. Since §(G) > 11 and L; has at most one

neighbor in G — N{[z|, we have |A;| = |[N(L;) N N(z)| > 10. By Claim 1, |L;| = 1 implies
that |Ls_;| > 2. It follows that | A;| = 6 by Claim 8, a contradiction.

Now, let X C A, such that G[X] = K3, and let C; be the island of N (z) that contains
X. By Claim 8, since |L;| > 2, it follows that X C C; C A,. Since |Ls| > 2 and
X C A,, by Claim 8 again, A; — (' is a maximum clique in N(z) — C;. Note that in
all cases, there exists some island Cy of N(z) — C} that is an independent set of size at
least 3. Since A; — ) is a maximum clique in N(z) — C}, we have |A; N Cy| = 1. By
Claim 1, N(z) = A; U (N(G2) N N(z)). It follows that there exist non-adjacent vertices
y1,y2 € N(G2) N N(x) that are both contained in Cy. By Claim 7, we can contract edges
that have at least one end in L, to obtain a clique on X in C;. Then, by contracting all of

(G5 to one of y,y2, we would then obtain the edge y;1y- in C5. This shows that G has a

minor of type I, a contradiction. [

4.4 Other Problem Graphs

Lemma 4.4.1 (computer-assisted). Let H be a problem graph such that H % Ks333,

K354 Cs, or Ky 4.4. Then, there exists a subset Z = {ay, as,by,bs} C V(H) of size 4 such
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that a1by, asby € E(H), a;, b; for i = 1,2 share at most 4 + i common neighbors in H, and
one of the following statements is true:

(Al) as, by share at most 5 common neighbors in H, and that there exists some z € Z and
v € V(H)—Z such that v has at most 9 neighbors in H and HU{ayaz, a1by, byag, b1bs, zv} >
K.

(A2) by has at most 8 neighbors in H, there exists some v € V(H)—Z such that a; and v are
adjacent and share at most 6 common neighbors in H, and that HU{ayaz, a1by, a;v,b1by} >

K.

Lemma 4.4.2. If G — N|x] is 2-connected or has at most two vertices, then N(z) % H

where H is a problem graph and H % K333, K33+ Cs, or Ky 4.4.

Proof. For the sake of a contradiction, assume that N(x) = H for some problem graph
H such that H 2 K333, K33 + C5, or K444. By Lemma 4.4.1, there exists a subset
Z = {ai,a2,b1,b} C V(H) of size 4 such that a;by, a0, € E(G), a;,b; fori = 1,2
share at most 4 4 ¢ common neighbors in N (x), and one of the properties (A1) and (A2) in
Lemma 4.4.1 is true.

Since a;, b; share at most 4 + i common neighbors in N(x) for i = 1,2, they share at
most 5 + ¢ common neighbors in N[z] and thus share at least 3 — ¢ common neighbors in
G — N[z]. This means that there exist distinct vertices u1, uy € V(G) — N|[z] that are both
common neighbors for a; and b;. In the rest of the proof, we will consider the case (A1) is

true and the case (A2) is true separately.

Case 1: (A1) in Lemma 4.4.1 is true.

In this case, as, by share at most 5 common neighbors in N(x), and that there exists
some z € Z and v € N(z) — Z such that v has at most 9 neighbors in N(z) and N(x) U
{arag, asby, byas, bibe, zv} > Kg. To show a contradiction, it suffices to prove that we can
contract some edges that have at least one end in G — N|x] in a way to obtain the edges
a1a9, azbe, biag, biby, zv in N(z), since this would then imply G — {z} > Ky and thus

G > Kyp.
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Observe that the fact that as, by share at most 5 common neighbors in /N (z) means that
they share at least two common neighbors in G — N{[z], so there exist distinct vertices
wy,wy € N(G) that are both common neighbors for a, and by. Note that a;, b; now share
at least two common neighbors in G — N{[z| for both i = 1, 2, so without loss of generality,
we can assume z to be equal to any vertex in Z, say z = as. Since |G — N[z]| < 2
or G — N|[z] is 2-connected, there exist two disjoint paths @1, Q)2 between {uy, us} and
{wy,ws} in G — N[z]. Without loss of generality, assume that (); joins u;, w; for i = 1, 2.
Since v has at most 9 neighbors in N(z), it has some neighbor in G — N[z]. So without
loss of generality, we can assume that there exists a path R linking v and some vertex on
()1 such that R is contained in G — N|x] except for v and R is disjoint from (5. Then, by
contracting all of V(Q; U R) — {v} to as = z, we would obtain the edges a,as, byas, and

asv = zv, and by contracting all of V' (Q)2) to by, we would then obtain a;by and by bs.

Case 2: (A2) in Lemma 4.4.1 is true.

In this case, by has at most 8 neighbors in N(z), there exists some v € N(z) — Z
such that ay and v are adjacent and share at most 6 common neighbors in N(z), and that
N(z) U {ayaz, a1bs, aiv, bibs} > Ky. To show a contradiction, it suffices to prove that we
can contract some edges that have at least one end in G — N[z] in a way to obtain the edges
ay1asg, a1be, ayv, bybs.

Since a5 and v are adjacent and share at most 6 common neighbors in N (), they share
at most 7 common neighbors in N |[x] and thus at least one common neighbor in G — N|x].
Letw; € V(G)—N|[z] be acommon neighbor for a, and v. Since b, has at most 8 neighbors
in N(z), it has at most 9 neighbors in N |[z] and therefore at least two neighbors in G — N|[z]
due to the fact that §(G) > 11. Therefore, there exists some wy € V(G) — N|[z] such that
wy # wy and bywy € FE(G). Recall that a;,b; share at least 3 — i common neighbors
in G — NJz| for i = 1,2, meaning that there exists some common neighbor of as, by in
G — Nlz]. Therefore, if w; is not a common neighbor for as, by, we choose ws to be

a common neighbor for them. This means that one of w;, w, is a common neighbor for
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as, bo.

Again since |G — Nz]| < 2 or G — NJz| is 2-connected, there exist two disjoint
paths @1, Q2 between {u;,us} and {w;, ws} in G — N|x], and without loss of generality
we assume that (); joins u;, w; for ¢ = 1,2. If w; is a common neighbor for as, by, then
wy € V(Qy) is adjacent to all three of as, be, v. This means that by contracting all of Q); to
a1, we can obtain edges ajas, aibs, and a;v. Then, by contracting all of ()5 to by, we can
obtain the edge b;b,. We may now assume that w, is a common neighbor for as, b,. Then,
by contracting all of (), to a; we can obtain edges a,ay and a,v, and by contracting all of

(2> to b, we can obtain edges a1, and agb,. O

Lemma 4.4.3 (computer-assisted). Let H be a problem graph such that H % Ks 333,
K33+ C5, or Kya4. Let M be the subset of vertices in H that are not adjacent to all other
verticesin H, i.e. M ={v € V(H):Ju € V(H) — {v} such that vu ¢ E(H)}. Then, for
every By, Bs C V(H) such that |B;| > 6 fori = 1,2, M C By U By, and neither H[B|
nor H|[Bs] is a clique, one of the following statements is true:

(B1) There exist by € By — By and by € By — By such that by, by are adjacent and share at
most 6 common neighbors in H.

(B2) There exist by € By and by € By such that H' > Ko, where H' is the graph obtained
from H by making b, adjacent to all other vertices in By and making by adjacent to all
other vertices in Bs.

(B3) For some i € {1,2},

B;| < 8 and for every B! C B; such that |B.| > 6, there exist
some Z C Bl with |Z| = 4 and b € Bs_; such that H' > Ky, where H' is the graph
obtained from H by making Z a clique and making b adjacent to all other vertices in Bs_;.
(B4) One of By, By is contained in the other such that | By N By| = 6, and there exists some
Z C By N By such that |Z| = 4 and e(H[B, N By)) — e(H|[Z]) — §(H[By N By]) > 6.

(B5) One of By, By is contained in the other such that | BN Bs| = 6 and G[B1NBy] = K .
(B6) (B1, Bs) is a non-trivial separation of H of order k < 7 such that e(H[B, N By]) =

4k — 20 + (kj’) and that edges with at least one end in B; — Bs_; for i = 1,2 can be
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contracted in a way such that the new graph on By N By has at most 3 non-edges.

Lemma 4.4.4. If G — N|z| is not 2-connected and |G — N[z|| > 3, then N(x) 2 H where

H is a problem graph and H % K 333, K33+ Cs, or Ky 44.

Proof of Lemma 4.4.4. For the sake of a contradiction, assume that N(z) = H for some
problem graph H that is not isomorphic to K333, K33 + Cs, or Ky44. Let M = {v €
N(z) : Ju € N(x) — {v} suchthatvu ¢ E(G)} C N(z). Recall that by the choice of
x and Lemma 4.2.1, there exists a component K of G — N|x] such that M/ C N(K) and
N(K'YN M C N(K) for every component K’ of G — N|z].

If G — N|x] is disconnected, choose G to be one component of G — N|[z] and let
Gy = G— N[z]UV(G;). If G — N|z] is connected and has a cut vertex w, choose (G; to be
one component of G— N [z]U{w} and let Gy = G—N|[z]UV (G,). Let B; = N(G;)NN(z)

for ¢ = 1,2 in both cases. We now make the following observation.

Observation. The following statements are true.

(1) V(G1) NV (Gy) =0 and V(G1) UV (Gy) = V(G) — Nlz].

(2) IN(G;) " N(z)| = |B;| > 6 fori=1,2.

(3) If | B;| = 6 for some i € {1,2}, then G — N|x] is connected and has a cut vertex.

(4) M C By U Bos.

(5) M C B, for some i € {1,2} if G — N|z] is disconnected.

(6) For i = 1,2, there exists a connected induced subgraph L; of G; such that |Ng(L;) N
(V(G) — N[z])| < 1and |[Ng(L;) N N(z)| > 6.

(7) Neither G| B, | nor G|Bs) is a clique.

Proof of Observation. (1)-(3) are simply true due to the construction of GG;, G and the
7-connectivity of GG. (4) and (5) true because there exists some component K of G — N|x]
such that M/ C N(K) by Lemma 4.2.1.

To see (6) is true, let L; = G in both cases. If G — N|[z] is disconnected, let Ly be

one single component of Go; and if G — N|[z] has a cut vertex w, let L, be a component of
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Go — {w}. Since G is 7-connected, Ly, L, are as desired and therefore (6) is true in both
cases.

To see (7)is true, let L; C G; fori = 1,2be asin (6), and let A; = Ng(L;)NN(x) C B;
for i = 1, 2. Then, notice that A; for both : = 1,2 is a separator of GG if GG is disconnected,
and that A; U {w} is a separator of G if w is a cut vertex of G — N|x] that defines GG; and
Go. By Lemma 3.2.4, G[A;] is a clique for neither ¢ = 1, 2. Since A; C B, fori = 1,2, it

follows that neither G[B;] nor G[Bs] is a clique. O

Hence, by (2), (4), and (7) in Observation and Lemma 4.4.3, one of the properties in
Lemma 4.4.3 is true about B; and B,. We will consider each one of them separately in the

rest of this proof.

Case 1: (B1) in Lemma 4.4.3 is true

In this case, there exist b € By — By and by € By — Bj such that by, b, are adjacent and
share at most 6 common neighbors in N (z), meaning that they share at most 7 common
neighbors in N[z] and thus at least one common neighbor u € V(G) — N[z]. Since
by € By — By and by € By — By, we know b; € N(G5) and by ¢ N(G4). It follows that

u ¢ V(G1) UV(Gs), a contradiction to (1) in Observation.

Case 2: (B2) in Lemma 4.4.3 is true

In this case, there exist b € B and b, € B, such that J > Ky, where J is the graph
obtained from N (z) by making b; adjacent to all other vertices in B; and making b, adja-
cent to all other vertices in By. This means that by contracting all of G; to b; € B; and
contracting all of Gy to by € By, we can then obtain a resulting graph on N (z) that has a

K¢ minor, and therefore G > K, a contradiction.

Case 3: (B3) in Lemma 4.4.3 is true
In this case, |B;| < 8 for some fixed i € {1,2}, and for every B, C B; such that
| Bi| > 6, there exist some Z C B! with |Z| = 4 and b € B;_; such that J > Ky, where J

is the graph obtained from N (z) by making Z a clique and making b adjacent to all other
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vertices in Bs_;.

By (6) in Observation, choose a connected induced subgraph L; of G; such that | Ng(L;)N
(V(G) — Nlz])| < 1 and |Ng(L;) N N(z)| > 6. Then, in the graph G[V (L;) U N¢(L;)],
choose a separation (X,Y") of (G[V(L;) U Ng(L;)], Ng(L;)) such that Y — X # () and
|X NY] is minimum over all choices of (X,Y’). Notice that the minimality of | X N Y|
implies that there exist disjoint paths P, ..., Pixny| linking N¢(L;) and X NY in G[X].
Note that Y — X # () and Ng(Y — X) = X NY. Since G is 7-connected, it follows that
IXNY] = [Ne(Y — X)| > 7.

Since |[Ng(L;) N (V(G) — N[z])| < 1, without loss of generality, we can assume that
the end vertices of P, ..., Pixny|—1 in Ng(L;) are all contained in N¢(L;) N N(z). Let
U C Ng(L;)) N N(x) and U € X NY be the sets of end vertices of Py, ..., Pxny|—1 in
Ne(L;)) N N(x) and X NY, respectively. Note that |U| = |U'| = | X NY|—1 > 6. Since
U C Ng(L;) N N(z) € Ng(G;) N N(z) = By, it follows that U is a subset of B; of size
at least 6. By (B3) in Lemma 4.4.3, there exist Z C U with |Z| = 4 and b € B;3_; such
that J > Ky, where J is the graph obtained from N (x) by making Z a clique and making
b adjacent to all other vertices in B;_;. Without loss of generality, say vertices in Z are
precisely the end vertices of Py, P, P3, Py in U, and say Z’ is the set of end vertices of
P, Py, Py, PinU' C XNY,

Note now we have |[Ng(L;)N(V(G)— N[z])| < 1, Ng(L;)NN(x) C B;, and |B;| > 8.

It then follows that

ING(Li)| < |Ne(L) N N(@)| + 1 < [Bi| +1 <9 < 6(G) —2.

By the choice of (X, Y), since the trivial separation (X', Y") = (Ng(L;), V(L;) UNg(L;))
satisfies that Y’ — X’ # (), we know that | X NY| < | X' NY'| = |Ng(L;)| due to the
minimality of | X N Y. It follows that | X NY| < §(G) — 2. Observe that the choice of

(X,Y) also implies that there is no non-trivial separation of (G[Y], X NY’) of order at
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most | X NY| — 1. Hence, by Lemma 3.2.3, G[(Y — X)) U Z’] has a K, minor rooted at Z'.
Now, by contracting all of G3_; to b € B;_; and by contracting edges in G[Y'] properly and
contracting each path P; for i = 1,2, 3,4 to a single vertex, we can then eventually obtain
a resulting graph on N (z) that contains J as a subgraph. Since J > Kj, it follows that

G — {z} > K, and therefore G > K, a contradiction.

Case 4: (B4) in Lemma 4.4.3 is true

In this case, B; C Bj_; for some fixed ¢ € {1,2} such that | B;| = 6 and there exists
some Z C By N By such that |Z] = 4 and e(G[B; N By)) — e(G[Z]) — 0(G[By N By]) > 6.
By (3) and (6) of Observation and by the 7-connectivity of G, G — N|x] is connected and
has a cut vertex w, and that N(G;) = B; U {w} is a minimum separator of G.

Let H, = G[V(G;) U B; U{w}| and Hy = G — V(G,). Notice that H;, H, defines a
non-trivial 7-separation of G, where V' (H, N Hy) = B;U{w} is a separator of order 7 of G.
By Lemma 3.2.3, G[V (G;) U Z] has a rooted- K, minor at Z and therefore we can contract
edges that have at least one end in G; to Z properly to obtain 6 — e(G[Z]) extra edges. Let
other hand, note that x € V(Hy; — H;) and G3_; — {w} C Hy — H;. Since B; U {w} is
a minimum separator of G, by contracting all vertices in one component of G3_; — {w}
to w, we can have w adjacent to all six vertices in B; in the new graph. Furthermore, let
u € B; such that dgp,)(u) = 0(G[B;]). Since B; C N(x), by contracting the edge zu we
can then have u adjacent to all other vertices in B;. Let 6 = §(G[B;]). Then, by contracting
all vertices in one component of G3_; — {w} to w and contracting the edge xu, we are able
to obtain 6 + e(G[B;]) + (5 — ) = 11+ e(G[B;]) — 0 edges on B; U{w} in the new graph.

By Lemma 3.2.1, it follows that

87> 35+ (6 — e(G[2)) + (11 + e(G[By]) — 8) — 1 = 51 + e(G[By)) — e(G[Z]) — 6,

meaning that e(G[B;]) — e(G[Z]) — 0 < 5, a contradiction to the inequality e(G[B;]) —
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e(G[Z]) — 6 > 6 in property (B4).

Case 5: (B5) in Lemma 4.4.3 is true

In this case, B; C Bs_; for some i € {1,2} such that |B;| = 6 and e(G[B;]) = K .
By (3) and (6) in Observation and by the 7-connectivity of G, it follows that G — N|x]
is connected and has a cut vertex w such that N(G;) = B; U {w}. Notice that N(G;) =
B; U{w} is a minimum separator of G. Since G[B;] = Ky , there is a unique missing edge
in G[B;]. Let t = dy(c,)(w). It follows that e(N (G;)) = 14 +t. Since N(G;) = B; U {w}
is a minimum separator of (G, we know that by contracting all vertices in any component of
G — N(G;) to w, we can obtain 6 — ¢ extra edges on N(G;). By Lemma 3.2.8, it follows
that

8-7>35+2(6—1t)+ 14+t =061—t.

This means that ¢ > 5 and therefore w has at most one non-neighbor in B;. By (1) in
Lemma 3.2.4, w has exactly one non-neighbor in B;. Since G[B;] = K , there exists some
Z C B; U{w} such that |Z| = 4 and that the graph obtained from N (G,;) by making Z a

clique is isomorphic to K, a contradiction to (2) in Lemma 3.2.4.

Case 6: (B6) in Lemma 4.4.3 is true

In this case, (B, Bs) is a non-trivial separation of N(x) of order k& < 7 such that
e(G[B1 N By)) = 4k — 20 + (*,°), and that edges with at least one end in B; — B;_; for
1 = 1,2 can be contracted in a way such that the new graph on B; N Bs has at most 3
non-edges.

Notice that if G — N|[z] is disconnected, then (B, N By) U{x} separates V (G1) U (B —
By) from V(G3) U(By — By); and if G — N|x] has a cut vertex w, then (B; N By) U {x, w}
separates V (G1)U (B — By) from (V(Gs) —{w})U(By— By). Let H; = G|V (G1)U B U
{z}] in the former case, and let H; = G[V(G;) U By U {z,w}] in the latter case. In both
cases, let Hy = G — V(G1) U (B; — Bs). It follows that (V(Hy), V(H,)) is a separation

of G in both cases. Let S = V(H; N Hy). Notice that if G — N[z] is disconnected,
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then S = (B; N By) U {x} and |S| = k + 1; and if G — N|x] has a cut vertex w, then
S = (B1NBy)U{z,w} and |S| = k+2. We will again apply the inequality in Lemma 3.2.1
to this separation to show contractions.

We first prove an upper bound to e¢(G[S]) in both cases. Since B; N By C N(x),
we know that x is adjacent to all vertices in S. Therefore, if G — N[x] is disconnected,
then e(G[S]) = e(G[B1 N By]) + k; and if G — N|x] has a cut vertex w, then e(G[S]) =
e(G[B1N By]) + k+dgs)(w) < e(G[B1 N By]) + 2k, where the last inequality is due to the
facts that w ¢ N (z) and dgs)(w) < |BiNBe| = k. Since e(G[BiNBy]) = 4k—20+ (*}°),
it follows that

e(G[S]) < (4415] — k)k — 20 + (k ; 5)
in both cases.

We now prove a lower bound to the number of edges in H; for i« = 1,2, a supgraph
on V(H;) that can be obtained from G by contracting edges that have at least one end in
H;_; — H;. In the case G — N|x] has a cut vertex w, note that w € S = V(H; N Hy) and
forboth i = 1,2, G; — {w} C H; — Hs_; and w is a neighbor for every component of
G; — {w}. This means that for i = 1,2, by contracting all of G; — {w} to w, we would
have w to be adjacent to all vertices in B, N By C B; in the new graph on S. Recall that for
1 = 1,2, edges with at least one end in B; — B3_; can be contracted in a way such that the
new graph on B; N B, has at most 3 non-edges. Therefore, for ¢ = 1, 2, there is a supgraph
H! on V(H,) obtained by contracting edges that have at least one end in Hs_; — H; such
that if G — N{z] is disconnected, then

e(H;[S]) = e(H[B1 N Ba]) + dujs)(z) > (S) —3+k;

and that if G — N|z] has a cut vertex, then

e(H[S)) = e(HJ[B1 1 By)) + dingsy () + diagsg(w) > (‘;) 3ok,
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To summarize, in both cases we have

k

e(H![S]) > (2> — 3+ (S| - k)k.

By Lemma 3.2.1, we know that 8|S| > 33+e(H{[S])+e(H5[S]) —e(G[S]). Due to the
upper bound for e(G[S]) and the lower bounds for e(H{[S]) and e( H5[S]) above, it follows

that

3/5| > 33+2((’;) 34 (|S|— k) k) ((4-+] S| —k)k—20+ (k ) 5)) — 4T4(|S]=5)h— (k N 5).

If G — Nlx] is disconnected, then |S| = k + 1 and thus

k — Lk —
8(k+1)247+(k—4)k—( 25) :47+k2_4k_( 25)’

meaning that k% — 12k — (kj’) + 39 < 0, a contradiction to the fact that k < 7.

If G — N|x] has a cut vertex, then |S| = k + 2 and thus
k—5 k—5
8(k+2)247+(k—3)k:—( ):47+k:2—3k:—( )

2 2

again a contradiction to the fact that £ < 7. O
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CHAPTER §
CONCLUSION

Finally, in this chapter we apply Lemma 4.1.1, the main technical lemma, to complete the

proof for Theorem 1.1.5.

Proof of Theorem 1.1.5. By Lemma 3.1.1 and Lemma 3.3.1, there exists a vertex = €
V(G) with 11 < d(x) < 15. We choose such a vertex x with a component K of G — N|z]
such that | K| is minimum over all choices of z and K. In the next Claim, we prove that

every vertex in K has degree at least 16 in G.

Claim 1. Forevery y € V(K), da(y) > 16.

Proof of Claim 1. Choose y € V(K) such that d(y) is minimum among all vertices in K.
For the sake of a contradiction, assume that d;(y) < 15. Note that z € V(G) — N[y, as
x,y are not adjacent to each other. Let L be the component of G — N[y| that contains x,
and let M,, C N(y) be the subset of vertices that are not adjacent to all other vertices in
N(y).

Since di(y) < 15, by Lemma 4.1.1 there exists some vertex z € M, — N(L). Note
this implies that z ¢ N(z) and therefore z € V(K) — {y}. By the choice of y, we know
dc(z) > dg(y). Since z € M, is not adjacent to some vertex in /N (y), z must be adjacent
to some 2z’ € V(G) — N[y] U V(L). Let L’ be the component of G — N|y| that contains
', and note that L # L' since z ¢ N(L). It follows that 2’ & N(x). Since 2’ is a neighbor
of z and z € V(K), it follows that 2’ € V(K) as well. Furthermore, since z € V(L) and
L, L' are two distinct components of G — Ny, it follows that V(L) N N(z) = ) and thus
some component of G — N|[z| includes all vertices in L. Since 2z’ € V(L) is contained in
K, it follows that V(L") C V(K). Notice thaty € V(K ) and y ¢ V(L'), and it follows

that |L/| < |K|. Since dg(y) < 15, the fact that |L’| < |K| is a contradiction to the choice
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of x and K. =

Now, let G; = G — V(K) and Gy = G[N(K) U V(K)]. Let dy be the maximum
number of edges that can be added to G, by contracting edges that have at least one end in
G1 — G, and let J, be a minor of G on V' (G3) such that e(J;) = e(G3) + ds. By Claim 1,
da(y) > 16 for every y € V(K). Since |K| > 0, we know A(Jy) > A(G2) > 16, and

77777

e(J2) < 8|Gy| — 35. Let § = §(N(K)) and choose z € N(K') such that dy(x)(2) = 0.
Note that N(K) C N(x), and therefore by contracting the edge xz we could have the new
vertex adjacent to all other vertices in N (K). This shows that dy > |[N(K)| — 1 — 4, and

therefore
e(Gy) = e(Jz) —dy < (8|Ga| —35) — (|N(K)| —1—0) =8|K|+ 7|N(K)|+ ¢ — 34.

By Claim 1, dg(y) > 16 forevery y € V(K), and this implies that 16| K| < >° ) da(y) =
2¢(K) + e(K, N(K)). Note that e(N(K)) > $0|N(K)|. For simplicity, let & = |K| and
N = |N(K)|. It follows that

e(K) = (26(K) + e(K,N(K))) +e(N(K)) — e(Gy)

1
216k+§(5N—(8k+7N+5—34)
1
=8k + S0(N —2) = TN +34.

Since 0(N(z)) > 8,6 = 6(N(K)) > 0(N(z)) — (d(z) — |[N(K)|) > 8 —d(x) + N. Let
d = d(z). It follows that

1
e(K) > 8k + (8 = d+ N)(N —2) = TN + 34,
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Observe that

1 1 1
2. (5(8—d+N)(N—2)—7N+34> = N?—(8+d)N+2d(z)+52 = (N—§(8+d))2—1(d+4)2+40.
Therefore,
1 1
2¢(K) > 16k + (N — (8 + d))® - Z(d+4)2 +40.

Assume | K| > 8 for a moment. Since G > K, we know that e(K) < 8k — 34, and

therefore

1

16k 4 (N — %(8 +d))” 4(d+4)2 + 40 < 2¢(K) < 16k — 68,

meaning that (N — 1(8 —i—d))2 —2 (d—|—4)2 +108 < 0, and therefore —1 (d—|—4)2 +108 < 0.
Note that d = d(z) < 15. It follows that —1(d + 4)* + 108 > —1 £ 108 > 0, a
contradiction.

We may then assume | K| < 7. Note that

1 1 k
16k + (N — 5(8+d))2 — Z(d+4)2 +40 < 2¢(K) < 2(2) =k — k.
It follows that
1 1 15 + 4)?2 201
B =17k > (V= S(8+d)” - 7(d+4)* +40> 0 as+4?2 0 =

where the second inequality is due to d = d(x) < 15. Since k* — 17k > —% and k£ < 7,
it follows that £ < 3. By Lemma 4.1.1, we know |N(K)| < d(z) — 1 < 14. Since
da(y) > 16 for every y € K, it follows that |[K| = k = 3, |[N(K)| = 14, d(z) = 15, and
that every vertex in K is adjacent to all other vertices in G, = G[V(K) U N(K)].

Recall that e(Gy) + dy = e(J2) < 8|Ga| — 35. Since |Go| = 3 + 14 = 17, it follows
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that e(G3) + dy < 8- 17 — 35 = 101. Therefore,

e(N(K)) + dy = (e(Ga) + d3) — (e(K) + e(K, N(K))) < 101 — (3 + 3 - 14) = 56,

Note that § > §(N(z)) — 1 > 7. This means that e(N(K)) > 36| N(K)| > 1 -7-14 = 49,
and thus dy < 56 — 49 = 7. If § > 8, then e(N(K)) > % -8 - 14 = 56. It follows that
dy =0, e(N(K)) = 56, and dn(k)(v) = 8 for every v € N(K). This then implies that, by
contracting an edge between x and any vertex in N(K'), we would obtain exactly 5 extra
edges on N(K), meaning ds > 5, a contradiction. We then conclude that 6 = 7. Note now
dy > IN(K)|—1—-§=14—-1—7 = 6. Since dy < 7, it follows that dy = 6 or 7 and
e(N(K)) =49 or 50.

Now, note that N (K) is either a 7-regular graph or obtained from a 7-regular graph by
adding one more edge. Let U = {u € N(K) : dy(k)(u) = 7}, and notices that |U| = 12 or
14. Choose distinct vertices u1, uy € U such that ujus ¢ F(G). Let w be the unique vertex
in N(z)—N(K). Since §(N(x)) > 8, every vertex v € N(K) such that dy k) (v) = 7 must
be adjacent to w and therefore U C N (w). Observe that |[N(K)— Nu]| =14—1-7 =6,
and |[N(w) NN (K)— Nlus]| > |U — Nlug]| > |U| — |Nug]| > 12 — 8 = 4. Therefore, by
contracting zu; and wus, we can obtain [N (K) — N{u ||+ |N(w) N N(K) — Nug)| —1 >
6+ 4 — 1 =9 extraedges on N(K). It follows that dy > 9, a contradiction to the fact that

dy < 7. ]
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APPENDIX A
PROBLEM GRAPHS

We present the 101 problem graphs explicitly here, as mentioned in Lemma 4.2.3. There are
13 problems graphs on 11 vertices, 35 problem graphs on 12 vertices, 33 problem graphs
on 13 vertices, 11 problem graphs on 14 vertices, and 9 problem graphs on 15 vertices.
Here is how to read the problem graphs in this appendix: For £ = 11,12,13, 14,15,
for each problem graph on k vertices, the vertices are 0-indexed, and we give the full list
of neighbors of each vertex from vertex-0 to vertex-(k-1). For example, the third line of
the matrix for graph 1 on 11 vertices, as shown below, says “2: 34567 8 9 10”, and
this means that the neighborhood of vertex-2 in this graph is precisely the set of vertices

indexed 3, 4, 5, 6, 7, 8, 9, 10 in this graph.

A.1 Problem Graphs on 11 vertices

There are 13 problem graphs on 11 vertices, up to isomorphism.
Graph 1, on 11 vertices
0:345678910
1:345678910
:345678910
:012678910

2

3

4:012678910
5:012678910
6:012345910
7:012345910
8:012345910

9:012345678
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10:012345678

Graph 2, on 11 vertices

0:

10:0123456789

Graph 3, on 11 vertices
0:
1
2:

~ W

~N N W

9:

345678910

:345678910
:345678910
:012678910
012678910
:012678910
:012345810
:012345910
:012345610
:012345710

345678910
345678910
345678910

:012678910
:012678910
012678910
:01234589

:012345910
:012345610

01234567

10:01234578

Graph 4, on 11 vertices

0:

345678910
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N N e AW

9:
10:012345678

Graph 5, on 11 vertices
0:
1
2:

~ W

~N N W

9:

:345678910
:345678910
:012567910
:012678910
:012378910
:012348910
:012345910
:012456910

012345678

245678910
345678910
045678910

:145678910
:012368910
:012378910
:012348910
:012358910
:01234567

01234567

10:01234567

Graph 6, on 11 vertices
0:
1
2:
3:

235678910
345678910
045678910
015678910
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G- N SN N

9:
10:012345678

Graph 7, on 11 vertices
0:
1
2:

&~ W

~N O W

9:
10:0123456789

Graph 8, on 11 vertices
0:

AN L B W

125678910
:012347910
:012348910
:012345910
:012346910

012345678

235678910
345678910
045678910

015678910
0125678910
:012347810
:012348910
:012345910
:012345610

012346710

234678910

:345678910
:045678910
015678910
:012678910
0123678910
:01234589
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7
8:
9:

012345910
012345610
01234567

10:01234578

Graph 9, on 11 vertices
0:

1

NG N R N

8:
9:
10: 0123456789

Graph 10, on 11 vertices
0:

234578910

:345678910
:045678910
015678910
:012678910
:012378910
:123478910
:012345610

012345610
012345610

234578910

:345678910
:045678910
:015678910
:012678910
:012378910
:123478910
:01234569

:012345610
:01234567
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10:01234568

Graph 11, on 11 vertices
0:

234568910

:345678910
:045678910
015678910
012678910
:012378910
:012348910
:123458910
:01234567

:01234567

10:01234567

Graph 12, on 11 vertices
0:
1
2:

~ W

~N N W

9:
10:012345678

Graph 13, on 11 vertices
0:

234567910
345678910
045678910

015678910
:012678910
:012378910
:012348910
:012345910
0123456910

012345678

23456789
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1:345678910
:045678910
:015678910
:012678910
:012378910
:012348910

N N e AW

:012345910
8:012345610
9:01234567
10: 12345678

A.2 Problem Graphs on 12 vertices

There are 35 problem graphs on 12 vertices, up to isomorphism.
Graph 1, on 12 vertices
0:4567891011
1:4567891011
14567891011
4567891011
0123891011
0123891011
0123891011

N N e AW

0123891011
8:01234567
9:01234567
10:01234567
11:01234567

Graph 2, on 12 vertices
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10:012345678
11:012345678

Graph 3, on 12 vertices
0:

1
2

N O e B~ W

9:

4567891011
:4567891011
:4567891011
4567891011
:0123791011
0123891011
0123891011
:0123491011
:0123561011
:01234567

4567891011

:4567891011
:4567891011
4567891011
:0123781011
0123891011
0123891011
:0123491011
:012345611

012356711

10:01234567

11:0123456789

Graph 4, on 12 vertices
0:

4567891011
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N N e AW

9:

4567891011
:4567891011
:4567891011
:0123781011
0123891011
0123891011
:0123491011
:012345610

012356711

10:012345678

11:012345679

Graph 5, on 12 vertices

0:

4567891011

:4567891011
:4567891011
:4567891011
:012378910
:0123891011
0123891011
:0123491011
:012345611
:01234567

10:01234567

11:01235678

Graph 6, on 12 vertices

0:
1:

4567891011
4567891011
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[\

4567891011
:4567891011

~ W

:0123781011
0123791011
0123891011

~N O W

:0123451011
8:0123461011
9:0123561011
10:0123456789
11:0123456789

Graph 7, on 12 vertices
0:4567891011
1:4567891011
2:4567891011

4567891011

~ W

012378911
0123791011
:0123891011

~N N W

:0123451011
8:0123461011
9:012345611
10:01235678
11:0123456789

Graph 8, on 12 vertices
0:4567891011
1:4567891011
2:4567891011
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4567891011
:012378910

:0123791011
0123891011

~N O e AW

:0123451011
8:0123461011
9:012345611
10:012345678
11:012356789

Graph 9, on 12 vertices
0:4567891011
1:4567891011
2:4567891011
3:4567891011
4:0123781011
5:0123791011
6:0123891011
7:012345910
8:0123461011
9:012356711
10:012345678
11:012345689

Graph 10, on 12 vertices
0:4567891011
1:4567891011
2:4567891011
3:4567891011
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N O b

9:

:0123781011
:0123791011
:0123891011
:012345910
:012346911

01235678

10:01234567

11:01234568

Graph 11, on 12 vertices

0:
1:

~N O e AW

9:

4567891011
4567891011

:4567891011
:4567891011
:012368910

0123791011
:012348911

0123591011
:0123461011

01234567

10:01234578

11:01235678

Graph 12, on 12 vertices

0:

1
2

4567891011

4567891011
:4567891011
:4567891011
:012368911
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:012378910
:0123481011

~N O WD

:0123591011
8:012345610
9:012345711
10:01235678
11:01234679

Graph 13, on 12 vertices
0:3467891011
1:4567891011
2:4567891011

0567891011

&~ W

0126891011
1237891011
:0123491011

~N O W

:0123591011
8:0123451011
9:01234567
10:012345678
11:012345678

Graph 14, on 12 vertices
0:3467891011
1:4567891011
2:4567891011
3:0567891011
4:0126781011
5:1237891011
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9:

:0123491011
:012345910
:012345911

01235678

10:01234567

11:01234568

Graph 15, on 12 vertices

10:012345678
11:012345678

Graph 16, on 12 vertices
0:

AN L B W

:3456791011
4567891011
:4567891011
0567891011
0127891011
0123891011
0123891011
:0123491011
01234561011
:01234567

345678910

:4567891011
:4567891011
0567891011
0127891011
:0123891011
0123891011
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7
8:
9:

0123491011
012345611
01234567

10:01234567

11:12345678

Graph 17, on 12 vertices
0:
1:
2:

~N O e B~ W

9:

345678910
4567891011
4567891011

:0567891011
0126791011
0123891011
:012348910
:0123481011
:012356711

012345611

10:01234567

11

Graph 18, on 12 vertices
0:
1:

~N O e AW

012345789

345678911
4567891011

4567891011
:0456781011
:012378910

0123891011
:0123891011
:0123491011
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8:
9:

012345610
012456711

10: 12345678

11:01235679

Graph 19, on 12 vertices
0:

1

NG N R N

8:
9:
10:012345678
11:012345789

Graph 20, on 12 vertices
0:
1:
2:

N O e B~ W

3467891011

:3567891011
:4567891011
0167891011
:0267891011
1267891011
:012345910

:0123451011

0123451011
012345611

3467891011
3567891011
4567891011

0167891011
:0267891011
1267891011
:012345910
:012345911
:0123451011
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9:01234567
10:01234568
11:01234578

Graph 21, on 12 vertices
0:3456891011
1:3567891011
2:4567891011

3:0167891011

4:0267891011

5:0127891011

6:0123491011

7:1234591011

8:0123451011

9:01234567

10:012345678

11:012345678

Graph 22, on 12 vertices
0:3456781011
1:3567891011
2:4567891011

3:0167891011

4:0267891011

5:0127891011

6:0123491011

7:012345910

8:012345911

9:12345678
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10:01234567
11:01234568

Graph 23, on 12 vertices
0:345678910
1:3456891011
2:4567891011

0167891011

~ W

012678911
0127891011
:0123491011

~N N W

:0234591011
8:0123451011
9:01234567

10:01235678
11: 12345678

Graph 24, on 12 vertices
0:3456891011
1:3567891011
2:4567891011

0146791011

> W

:0237891011
0127891011
:0123891011

~N N W

01234591011
8:0124561011
9:01234567
10:012345678
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11:012345678

Graph 25, on 12 vertices
0:3457891011
1:3567891011

14567891011
:014678910

2

3
4:0236891011
5:0126781011
6:123458910
7:0123591011
8:012345611
9:012346711
10:01234567

11:01245789

Graph 26, on 12 vertices
0:2456791011
1:3467891011
2:0456891011
3:1567891011
4:0127891011
5:0237891011
6:0123891011
7:0134591011
8:1234561011
9:01234567
10:012345678
11:012345678
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Graph 27, on 12 vertices
0:
l:
2:

~ W

N N W

9:
10:012345678
11:012345678

Graph 28, on 12 vertices
0:
1:

~N O e AW

9:
10:012345678
11:012345678

Graph 29, on 12 vertices

2456791011
3467891011
0457891011

01567891011
0126891011
:0237891011
:0134891011
:0123591011
01234561011

01234567

2456891011
3467891011

:0457891011
1567891011
0126791011
:0237891011
:0134891011
01234591011
:0123561011

01234567
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:245678910
:3467891011
:0456781011
1567891011
:0125891011
:0234891011
012378911
:0123691011
:012345610
:013456711

10:01234578

11:12345679

Graph 30, on 12 vertices
0:

1:

2

N O e B~ W

9:
10:0123456789
11:0123456789

Graph 31, on 12 vertices
0:

2356891011
3456781011

:0457891011
0156791011
01267891011
0123781011
0134891011
01234591011
:0124561011

0234671011

2356891011
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N N e AW

9:

:345678911

0457891011
0156791011
1267891011
:0123781011
0134891011
01234591011
:0124561011

012346711

10:02345678

11:0123456789

Graph 32, on 12 vertices
0:

10:012345678
11:023456789

Graph 33, on 12 vertices
0:
l:

2356891011

:345678910

:0457891011
0156791011
1267891011
:0123781011
0134891011
1234591011
:0124561011
:012346711

2356891011
345678910
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~ W

~N O W

9:

:0457891011
0156781011
1267891011
:012378910

0134891011
01234591011
:012345611

012456711

10:01234567

11: 02346789

Graph 34, on 12 vertices
0:
1:
2:

~ W

~N N W

9:

2356891011
345678910
0457891011

:0156781011
1267891011
012378911
:0134891011
:1234591011
:012345610

012456711

10:01234678

11:02345679

Graph 35, on 12 vertices
0:
l:
2:

235678910
3456781011
0457891011
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0156791011
01267891011
:012378911

0134891011

~N O e AW

:012345910
8:0124561011
9:023456711
10:01234678
11:12345689

A.3 Problem Graphs on 13 vertices

There are 33 problem graphs on 13 vertices, up to isomorphism.
Graph 1, on 13 vertices

0:567891011 12

1:567891011 12

2:567891011 12
256789101112

~ W

:56789101112
01234101112
:012341011 12

~N N W

:01234101112
8:01234101112
9:01234101112
10:0123456789
11:0123456789
12:0123456789

Graph 2, on 13 vertices
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0:567891011 12
1:56789101112
2:56789101112
3:567891011 12
4:567891011 12
5:0123491112
6:0123491112
7:01234101112
8:01234101112
9:012345610

10:01234789

11:012345678
12:012345678

Graph 3, on 13 vertices
0:567891011 12
1:567891011 12

:567891011 12

:567891011 12

56789101112

0123491011

0123491012

~N O e AW

:0123491112
8:012341011 12
9:01234567
10:01234568
11:01234578
12: 01234678
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Graph 4, on 13 vertices
0:56789101112
1:567891011 12
2:567891011 12

56789101112

:567891011 12

:012348910

:0123491011

~N O e B~ W

:012341011 12
8:0123451112
9:012345612
10:01234567
11:01234678
12:01234789

Graph 5, on 13 vertices
0:45679101112
1:456791011 12

:467891011 12
:56789101112

2

3
4:01289101112
5:01389101112
6:01239101112
7:01239101112
8:23459101112
9:012345678
10:012345678

11:012345678
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12:012345678

Graph 6, on 13 vertices
0:34569101112
1:456791011 12

:567891011 12
06789101112

2

3
4:01789101112
5:01289101112
6:01239101112
7:12349101112
8:23459101112
9:012345678
10:012345678
11:012345678

12:012345678

Graph 7, on 13 vertices
0:346891011 12
1:45679101112
2:567891011 12

05679101112

~ W

01789101112
12389101112
01239101112

~N N W

12349101112
8:024591011 12
9:012345678

10:012345678

177



11:012345678

12: 012345678

Graph 8, on 13 vertices

0:

1:

2

~ W

~N N W

9:

3456891112
56789101112

56789101112
:0457891012
03678101112
0123791112
:012491011 12
:123451011 12
:0123491011

012356810

10:12346789
11:01245678
12:01234567

Graph 9, on 13 vertices

:3467891112
:456891011 12
:456891011 12
:056791011 12
0127891011
12378101112
:0123791012
:0345681012
:0124571112
:0123461011
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10: 12345679

11:01234589

12:01235678

Graph 10, on 13 vertices

:3456891011
:456781011 12
45678101112
:0567891012
0127891012
012391011 12
:012391011 12
01234891112
:0123471011
:0345671112

10:01234568

11:01256789

12:12345679

Graph 11, on 13 vertices
0:

1

2:

N O e B~ W

34578101112

14567891011

56789101112

046791011 12
0137891112
0126891012
1235891011
01234101112
:012456911
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9:123456812
10:012356712
11:01234678
12: 023457910

Graph 12, on 13 vertices

0:

1

~N o e A~

8:
9:

346791011 12

:35689101112
:457891011 12
016791011 12
:026891011 12
12789101112
01349101112
:02359101112

12459101112
012345678

10:012345678

11:012345678

12:012345678

Graph 13, on 13 vertices
0:
1:

~N O e AW

34679101112
35689101112

:457891011 12
01679101112
:026891011 12
: 127891011 12
0134891112
:023591011 12
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8:12456101112

9:01234567
10:01234578

11:012345678

12:012345678

Graph 14, on 13 vertices
0:
1:
2:

~N O e B~ W

9:

34689101112
35679101112
45789101112

01679101112
:026891011 12
127891011 12
:01349101112
12359101112
:02459101112

012345678

10:012345678

11:012345678

12:012345678

Graph 15, on 13 vertices
0:

AN L B W

34789101112

:356891011 12
:456791011 12
01679101112
:026891011 12
12789101112
12349101112
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7:02359101112
8:014591011 12
9:012345678

10:012345678
11:012345678
12:012345678

Graph 16, on 13 vertices
0:345691011 12
1:3567891112

145789101112
01678101112

2

3
4:02689101112
5:01279101112
6:0134891112
7:12358101112
8:1234671112
9:0124561112

10: 0234571112
11:012345678910

12:012345678910

Graph 17, on 13 vertices
0:3456891112
1:356791011 12
2:45789101112
3:016791011 12
4:02789101112
5:0126891112
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9:

01358101112
:123491011 12
:024561011 12

012345710

10: 12346789

11:012345678

12:012345678

Graph 18, on 13 vertices
0:

1:

2

&~ W

~N O W

9:

3457891112
36789101112

:456781011 12
01569101112
:0267891112
:023781011 12
12349101112
:0124591011
:0124591012

013467810

10: 12356789
11:01234567
12:01234568

Graph 19, on 13 vertices
0:

1
2

34678101112

:356891011 12
:457891011 12
01578101112
026791011 12
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123791011 12
:014891011 12

~N O WD

:02345101112
8:01236101112
9:12456101112
10:0123456789
11:0123456789
12:0123456789

Graph 20, on 13 vertices
0:346781011 12
1:356791011 12

45678101112

01589101112

0267891011

12389101112

0124791012

~N O e AW

:0124691112
8:0234591011
9:134567812
10:01234568
11:01234578
12:01235679

Graph 21, on 13 vertices
0:34679101112
1:356891011 12
2:45689101112
3:01578101112
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0267891112
1237891012
:0124791011

N O b

:0345681011
8:1234571112
9:0124561012
10:01235679
11:01234678
12:01234589

Graph 22, on 13 vertices
0:34678101112
1:356891011 12
2:45789101112
3:01567101112
4:0267891112
5:12379101112
6:0134891112
7:02345101112
8:0124691012
9:1245681112
10:012357812
11:012345679
12: 012345678910

Graph 23, on 13 vertices
0:34678101112
1:356891011 12
2:457891011 12
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01567101112
0267891112
12379101112
0134891112

~N O e AW

:02345101112
8:0124691011
9:1245681112
10:012357812
11:0123456789
12:01234567910

Graph 24, on 13 vertices
0:3467891012
1:356891011 12
2:457891011 12

0156791112

~ W

02678101112
123791011 12
01348101112

~N N W

:0234591112
8:0124691011
9:012357810
10:01245689
11: 12345678
12: 01234567

Graph 25, on 13 vertices
0:2456891011
1:3467891112
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~ W

~N O W

9:

:0457891012
15678101112
01269101112
:0237891011
:013481011 12
12359101112
:012356912

012457811

10: 023456712

11:01345679

12:123467810

Graph 26, on 13 vertices
0:

2456891112

:3467891012
:045791011 12
15678101112
0126891012
:023781011 12
0134891112
123591011 12
:0134561012
0124671112

10:123457812

11:023567912

12:01234567891011

Graph 27, on 13 vertices
0:

2456891112
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1:3467891011
:045791011 12
15678101112
0126891012
:023781011 12
0134891112

N N e AW

123591011 12
8:0134561012
9:0124671112
10:123457812
11:01235679
12: 02345678910

Graph 28, on 13 vertices
0:2456891112
1:3467891012
2:045791011 12

15678101112

0126891011

02378101112

0134891112

N O e B~ W

12359101112
8:0134561012
9:0124671112
10:123457812
11:02345679
12:01235678910

Graph 29, on 13 vertices
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0:2456891112
1:3467891011
2:04579101112
3:156781011 12
4:0126891011
5:02378101112
6:0134891112
7:12359101112
8:0134561012
9:0124671112
10:123457812
11:012345679
12:0235678910

Graph 30, on 13 vertices
0:2456891112
1:3467891012

04579101112

15678101112

0126891011

02378101112

0134891112

~N O e AW

12359101112
8:0134561012
9:0124671112
10: 123457811
11:0234567910
12: 012356789
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Graph 31, on 13 vertices

0:
1:
2:

~N O e B~ W

9:

2456791012
34678101112
0457891011

1567891112
0126891011
:0237891112
:01349101112
01235101112
:1234591012

023456811

10:012467812

11

212345679

12:013567810

Graph 32, on 13 vertices

02456791011
:3467891112
:0457891012
15678101112
01269101112
:0237891011
01348101112
:0123591012
1235691112
:012457811

10:023456712

11:01345689
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12:123467810

Graph 33, on 13 vertices
0:2456891112
1:3467891012

:045791011 12
1567891011

2

3
4:0126791112
5:02378101112
6:0134891011
7:12345101112
8:0135691012
9:012346811
10: 123567812
11:02345679

12:012457810

A.4 Problem Graphs on 14 vertices

There are 11 problem graphs on 14 vertices, up to isomorphism.
Graph 1, on 14 vertices
0:346710111213
1:457810111213
568910111213
067910111213
017810111213
128910111213
:023910111213

N N e AW

013410111213
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8:124510111213
9:235610111213
10:0123456789
11:0123456789
12:0123456789
13:0123456789

Graph 2, on 14 vertices
0:356791011 12
1:45789101213

:46789111213
05689101113

2

3
4:127810111213
5:01369101213
6:02359111213
7:01248101112
8:12347101113
9:0123561213
10:013457811
11:023467810
12:01245679

13:12345689

Graph 3, on 14 vertices
0:35678101213
1:478910111213
2:478910111213
3:056791011 13
4:1256891112
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:034681011 12
:034591012 13

~N O WD

0123891113
8:0124571112
9:1234671113
10:0123561213
11: 12345789

12:012456810
13:012367910

Graph 4, on 14 vertices
0:34689111213
1:356710111213
2:45789101213
3:01679111213
4:02689101213
5:127810111213
6:01349101213
7:12359111213
8:024510111213
9:0234671213
10:1245681213
11:0135781213
12:01234567891011
13:01234567891011

Graph 5, on 14 vertices
0:34689111213
1:356710111213

193



~ W

~N O W

10
11
12
13

:457891012 13
01679111213
:02689101213
127810111213
:01349101213
12359111213
:024510111213
:0234671011

124568911
013578910
012345678
:012345678

Graph 6, on 14 vertices

0:
1:
2

N O e B~ W

10
11
12
13

34789111213
356810111213

:456791012 13
01679111213
:02689101213
127810111213
:12349101213
:02359111213
014510111213
:0234671011

124568911
013578910
:012345678
012345678
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Graph 7, on 14 vertices

0:
1:
2:

~N O e B~ W

10
11
12
13

34789111213
356810111213
456791011 12

01678111213
:026891011 12
127910111213
12348101112
:02359111213
:0134691013

:0245781013

124568913
:01234567
:01234567
013578910

Graph 8, on 14 vertices

0:
1:
2:

~ W

~N N W

10

24678101113
35679101112
04689111213

15789101213
026810111213
137910111213
:012481011 12
01359101113
:023461012 13
12357111213

:01345678

195



11
12
13

:01245679
12345689
:02345789

Graph 9, on 14 vertices

10
11
12
13

12467891112

:356791011 13
:046891011 12
15789101213
026810111213
137910111213
01248101113
01359111213
:023461012 13
0123571112

123456813
:01245679
02345789
134567810

Graph 10, on 14 vertices

0:
1:

~N O e AW

2467891012
35678101113

:046891011 12
15789101113
02689111213
137910111213
:01248111213
01359101213
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8:0123461113
9:0234571012
10:012357912
11:123456813
12:024567910
13:134567811

Graph 11, on 14 vertices
0:24678101113
1:3567891112

:04689101213
15789101112

2

3
4:026810111213
5:137910111213
6:0124891213
7:01359101113
8:0123461112
9:1235671213
10:0234571113
11:013457810
12: 12345689

13:024567910

A.5 Problem Graphs on 15 vertices

There are 9 problem graphs on 15 vertices, up to isomorphism.
Graph 1, on 15 vertices

0:3468101213 14

1:4579101213 14
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~ W

~N O W

10
11
12
13
14

568911121314
07810111213 14
:0169101213 14
127911121314
:024891213 14

13510111213 14
:0236111213 14
0124561213 14

01347121314
223578121314

:01234567891011
:01234567891011
:01234567891011

Graph 2, on 15 vertices

0:
1:

~N O e AW

9:

34789111214
35689101213

:456791012 13
01679111314
:026891113 14
127810111213
:123491013 14
:023510111214
:014510111214

0123461213

10: 1256781214
11: 0345781314
12: 012578910
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13

123456911

14:0346781011

Graph 3, on 15 vertices

0:
1:
2

~ W

~N N W

10
11

12 :
13:
14 :

345810111213
46789101314

56789111214
067910111213
015810111314
:024810111214
:123791012 14
12369111314
:0124591213

01236781213

:0134561214
:0234571314
023568910
013478911
1245671011

Graph 4, on 15 vertices

0:
1:

~N O e AW

34679101213
35689111214

:4578101113 14
01679101213
02689111214
127810111314
:01349101213
:02359111214
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8:1245101113 14
9:0134671213
10:0235681214
11:12457813 14
12:013467910
13:023568911
14:1245781011

Graph §, on 15 vertices
0:34679111213
1:3568101113 14
2:457891012 14

016791113 14

&~ W

:02689101213
127810111214
:01349101213

~N O W

:02359111214
8:1245101113 14
9:0234671214
10:1245681213
11:01357813 14
12: 024567910
13:0134681011
14:123578911

Graph 6, on 15 vertices
0:34679111214
1:356810111213
2:457891013 14
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~N O e AW

10
11
12
13
14

01679111213
:026891012 14
127810111314
:01349101213
:02359111314
:1245101112 14
:0234671213

01245681314
0135781214
013468911
123567910
0245781011

Graph 7, on 15 vertices

0:
1:
2

N O e B~ W

10
11
12
13

34679111214
356810111314

:457891012 13
01679111314
:026891012 14
127810111213
:013491013 14
:02359111213
124510111214
:0234671213

1245681314
0135781214
:024578911
123567910
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14

:0134681011

Graph 8, on 15 vertices

10 :
11:
12:
13:
14 :

:346710111214
:356891013 14
:45789111213
:016791113 14
:026810111213
127891012 14
:01349101213
:02359111214
:1245101113 14
01235671213

0145681214
0234781314
024567910
123468911
0135781011

Graph 9, on 15 vertices

0:
1:
2:

N O e B~ W

34689111213
356710111314
457891012 14

01679111213
:026891012 14
127810111314
:01349101213
12359111314
:0245101112 14
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9:0234671213
10:1245681214
11: 0135781314
12: 023468910
13:013567911
14:1245781011
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