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SUMMARY

This study investigates azimuthal thermoacoustic instabilities in a multi-nozzle can

combustor. Azimuthal modes can be modeled as a superposition of two counter rotating

eigenmodes where they can either compete and potentially suppress one of them (spin-

ning wave) or coexist (standing wave), depending on the operating conditions. In order to

identify the dominance of each eigenmode, multiple sensors must be mounted at different

azimuthal locations. This study first introduces a methodology to determine the optimal

sensor locations for identifying the azimuthal mode. The optimal locations are determined

in such a way that they minimize the variance of the estimated amplitude of two counter ro-

tating waves for a given number of sensors and acoustic modes. This leads to simultaneous

nonlinear equations, the solution of which provides the optimal sensor locations for iden-

tifying a single mode. Although the solutions can be obtained computationally, the paper

suggests a physically intuitive approach for identifying these sensor locations. Lastly, the

paper shows illustrative examples for optimally identifying multiple modes, which relies

on computational effort.

Based on the measurements obtained from optimally located sensors, the paper de-

scribes dynamical behaviors of two counter rotating waves. The experimental data were

taken at different mass flow rates as well as different azimuthal/radial fuel staging in a

multi-nozzle can combustor. It is shown that at low flow rates with uniform fuel distri-

bution, the two waves had similar amplitudes, giving rise to a standing wave. However,

the two amplitudes were slowly oscillating out of phase to each other, referred to as a

quasi-periodic standing wave, and the phase difference between the two waves also shows

oscillatory behavior. For intermediate flow rates, the dynamics showed intermittency be-

tween standing and counter-clockwise (CCW) mixed waves, indicating that the system is

bistable. It is found that the spin ratio, which quantifies the dominance between standing

and CCW mixed waves, and phase difference, which is directly related to the orientation of

xx



the anti-nodal line, transition simultaneously, implying a physical coupling between these

two quantities. For high flow rates, the system stabilized at a CCW mixed wave most

of the time. These experimental observations demonstrate that not only the amplitudes

of two waves but also the phase difference plays an important role in the dynamics of

azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibited

only an oscillatory standing wave behavior regardless of the mass flow rates. Compared to

the uniform fuel staging, however, the pressure magnitude considerably decreased, which

provides a potential strategy to mitigate and/or suppress the instabilities.

Based on the experimental observations, the paper develops the low order modeling

that governs the nonlinear azimuthal thermoacoustic oscillations. Utilizing the Galerkin

projection of wave equations yields two set of second order differential equations, which

are coupled through the nonlinear source terms. The governing equations are further sim-

plified to the first order differential equations by using the method of averaging, allowing us

to access to amplitudes and phases dynamics. The fixed point and stability analyses show

that the system’s non-uniformity has a significant impact on the onset of the instability

and the modal nature as well as the preference in spinning direction. When the system first

reaches the limit cycle, the azimuthal mode starts from a standing wave. Further increase in

the linear growth rate may change the system from a standing to a mixed wave depending

on the nonlinear coefficients. The numerical simulation shows that the frequency spac-

ing between two eigenmodes and the background noise are responsible for quasi-periodic

oscillation in modal dynamics during the standing wave, which are observed in the exper-

imental data as well. To reproduce the intermittency between standing and a mixed wave

observed from the experiments, the flame linear growth rate is modeled with a parametric

noise. The dynamics of the amplitudes and phases are simulated to reproduce the phase av-

erage portraits. These are qualitatively compared with the phase portraits obtained from the

experiments, and the model proved to be in good agreement with the experimental results.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As the regulation of NOx emissions has become stringent, many combustion systems

in modern gas turbines now rely on lean, premixed operating conditions, which introduce

a new challenge called “combustion instabilities”. These instabilities are serious problems

in that they can cause flash back, blow off, limit the turbine’s operating conditions, reduce

hardware lifetimes, and finally destroy the combustor hardware [1]. For example, Fig-

ure 1.1 is a picture of a can combustor both before and after having been exposed to the

combustion instabilities. The left picture shows a clean perforated dump plane around the

multiple nozzles, whereas the right picture shows the dump plane being destroyed by the

combustion instabilities. The parts of the hardware can propagate downstream and damage

the turbine blades, resulting in a significant financial loss.

Figure 1.1: (a) New burner nozzle assembly before exposed to combustion instability. (b)
Failed burner assembly after combustion instability [2].
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These instabilities can excite different acoustic modes, depending upon geometry or

operating conditions. In annular combustors, for example, the instabilities appear as low

frequency longitudinal [3, 4, 5, 6] or azimuthal [7, 8, 9] modes. Can type combustors [10]

and jet engine augmentors [11, 12, 13, 14, 15, 16] also exhibit high-frequency azimuthal

modes. The major focus of this study is high-frequency thermoacoustic azimuthal mode.

Prior studies of these azimuthal wave dynamics have largely focused on annular com-

bustors. Comparable studies of modal dynamics of azimuthal modes in can combustors are

relatively scarce. A key difference between the annular and can combustors is the number

of degrees of freedom of acoustic wave motions. Wave motions are nearly one-dimensional

in annular combustion chambers where the annulus width is small relative to the overall di-

ameter. Moreover, the “thin gap” assumption is remarkably accurate even when this ratio

is not small in annular combustors [17]. In contrast, azimuthal modes are inherently two-

or three-dimensional in can combustion chambers. Thus, one question arises as to how this

additional degree of freedom manifests itself in azimuthal modal dynamics.

This study aims to reveal the modal dynamics of azimuthal mode in a multi-nozzle

can combustor. The dynamics are investigated experimentally, and then a low order model

has been developed to capture the experimental observations. This study will improve the

understanding of the mechanism of the azimuthal thermoacoustic instabilities so that the

future combustors will have less experience with the instabilities, and thus, expand the

operating window.

1.2 Background

Combustion instability is an oscillation driven by a heat release fluctuation coupled

with one or more natural acoustic modes of the combustor. This phenomenon was first

observed in 1859 by Professor Rijke [18]. He observed that when heat source was placed

inside a glass tube, the sound was produced whose frequency was nearly the fundamental

natural mode of the tube. Later in 1878, Rayleigh theorized the necessary condition for the
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combustion instability, called “Rayleigh criterion” [19]. It states that the phase difference

between acoustic pressure and heat release fluctuation must be within ±90◦ to add energy

to the system. This criterion can be formulated in a mathematical way as follow.

∫
V

∫
t

p′(~x, t)q′(~x, t)dtdV > 0 (1.1)

The physical interpretation of the Rayleigh criterion is that when the heat release fluc-

tuation, which results in oscillations in local gas expansion/compression, is in phase with

pressure oscillations, the acoustic energy is periodically added by pdV work. Note that

this criterion is a necessary condition for combustion instability. In order for any system to

be self-excited, the value of the integral in Equation 1.1 must exceed the volume-integral

of the system damping, i.e., the net energy must be added to the oscillating mode. The

sources of the damping include losses of acoustic energy through inlet and outlet bound-

aries and energy transformation from acoustics to vorticity. When the net energy is positive,

the oscillation amplitude exponentially grows in time. As the amplitude grows, however,

the flame experiences nonlinear effects such as saturation in flame area fluctuation [20] or

flame extinction [21, 22, 23]. These nonlinear effects typically increase system damping

until the net energy becomes zero, causing the amplitude to saturate into a limit cycle.

To add energy to the acoustic field periodically, the heat release must be consistently

perturbed by some mechanisms to close the feedback loop. This feedback cycle between

heat release fluctuation and acoustics consists of three processes as shown in Figure 1.2.

The heat release oscillations induce acoustic oscillations, which propagate upstream and

downstream with a speed of sound. The upstream wave excites the vorticity and equiv-

alence ratio fluctuations, which advects to the flame region with a bulk velocity. These

oscillations lead to heat release fluctuations that close the feedback loop.

The detailed mechanisms of how acoustic oscillations excite the oscillations in heat

release rate have been studied by several researchers [17, 24, 25]. In general, these mech-

anisms involve one or multiple pathways, but here we will briefly discuss three representa-
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Figure 1.2: Thermoacoustic feedback cycle

tive coupling mechanisms. The first one is the “velocity-coupled mechanism”, in which the

heat release is sensitive to the velocity disturbances originated from acoustic and/or vortical

disturbances [26, 27, 28, 29, 30, 31, 32], where the vortical disturbances are excited by the

interaction between acoustic and mean flow fields [33, 34, 35]. The velocity disturbances

perturb the flame speed, wrinkling the flame surface area, which, in turn, oscillates the heat

release rate. The characteristic delay times between velocity and heat release oscillations

are associated with a convective time from the vortex’s point of origin to the midpoint of

the flame.

We next consider the “equivalence ratio (fuel/air ratio) oscillation mechanism” [36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. When the local equivalence ratio is perturbed

by acoustic wave at the injection point, the disturbance in equivalence ratio propagates to

the flame region, leading to heat release oscillation through multiple pathways, including

fluctuations in flame speed and mixture heat of reaction. The characteristic delay times

between equivalence ratio and heat release oscillations are also associated with a convective

time from the fuel injection point to the midpoint of the flame.

Lastly, consider the coupling between acoustic pressure and heat release rate. Note that

the acoustic pressure is isentropically related to fluctuations in temperature, velocity, and

density. Acoustic pressure generated from the flame can travel, reflect at the boundaries,

and travel back to the flame region. This reflected wave perturbs the flame through dis-

turbances in the reaction rate, flame speed, and reactant density. Compared to the velocity
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and equivalence ratio couplings, the effect of pressure coupling at very low frequencies

is of O(M), and thus, is often neglected in low Mach number flows [17, 49, 50, 51, 52,

53]. However, there are some instances where the pressure coupling mechanism is domi-

nant relative to other mechanisms, e.g., high frequency or flat flames propagating through

homogeneous mixtures [54, 55, 56, 57, 49].

Figure 1.3: Natural modes in a can combustor with multiple burners. Black and white
arrows denote the oscillation and flow directions, respectively. Black circles represent the
burners.

Combustion instabilities can occur over a wide range of frequencies, so operators in

air-breathing systems often classify the instabilities based on their frequencies. For in-

stance, “low frequency” instabilities are often called “humming” or “rumble”, and “high

frequency” ones are referred to as “screech”. However, it is more natural to categorize

them based on natural modes because the instabilities are associated with one of the natural

frequencies of the combustors. Given that the combustors are typically cylindrical (or annu-
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lar), the natural modes are classified as longitudinal, azimuthal, and radial modes as shown

in Figure 1.3. The direction of the pressure oscillation for longitudinal mode is parallel to

the flow direction, whereas the direction for azimuthal and radial modes are perpendicular

to the flow. For this reason, the azimuthal and radial modes together are often referred to as

“transverse mode”. Note that the natural frequency of the radial mode is higher than that of

the azimuthal mode. This can be explained by using a time of travel analogy. Given that the

frequency is inversely proportional to a wave travel time, the acoustic wave for the radial

mode travels from the center to the outer radius, whereas the wave for the azimuthal mode

propagates from the outer radius to the opposite side. Since the travel time for the radial

mode is shorter, its natural frequency is higher. However, the relative frequencies between

transverse and longitudinal modes are strongly dependent on the geometry. For example, if

the axial length is much shorter than the radial length, the natural frequency of the longitu-

dinal mode would be higher than that of the transverse mode, or vice versa. Therefore, low

frequency instabilities do not necessarily mean that it is the longitudinal mode. For exam-

ple, annular combustors with shorter axial dimension experience low frequency azimuthal

mode.

This study focuses on high frequency azimuthal mode instabilities. Before we get into

the detail of the high frequency instabilities, it is worthwhile to compare them with the low

frequency, longitudinal modes [58]. Typical longitudinal acoustic modes in real combustors

have a longer wavelength than the flame length in the direction of the mean flow, which

can be quantified by the Helmholtz number, He,

HeL =
δx
λL

<< 1, HeT =
δr
λA

> 0.1 (1.2)

where δ is the flame length and λ is the acoustic wavelength. The subscripts, L,A, x, r, de-

note longitudinal, azimuthal, axial, and radial. For small Helmholtz number, HeL � 1, the

flame can be regarded as ”compactness”. The assumption is very powerful in that the flame

describing function can be assumed as a global quantity, i.e., the pressure magnitude and
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Figure 1.4: Schematic of (a) longitudinal and (b) azimuthal acoustic mode with respective
flame heat release region.

phase are less dependent on space in a flame region. This is well illustrated in Figure 1.4

(a). For longitudinal modes with long wavelength, pressure variation across the flame is

negligible, and thus, the flame can be regarded as a global quantity.

However, this assumption is not valid for high frequency azimuthal modes where the

acoustic wavelength is comparable to the flame length in the azimuthal direction, HeT >

0.1. In other words, the acoustic field exhibits multi-dimensionality where the magnitude

and phase of acoustic pressure vary in the azimuthal and radial direction. See Figure 1.4

(b). This multi-dimensional acoustic field introduces three-dimensional hydrodynamics in-

stabilities or helical flow disturbances that subsequently perturb the flame differently. In

other words, depending on the flame location with respect to the acoustic structure, differ-

ent flame/flow dynamics appear. For example, O’Connor et al. [59, 60, 61, 62] showed that

when the flame is located at the location of the maximum pressure magnitude, referred to

as pressure anti-node, the flame fluctuates axisymmetrically, which leads to axisymmetric

hydrodynamic flow instabilities, see Figure 1.5 (a) and (c). In addition, the flame experi-

ences large pressure oscillation, which could propagate upstream through the injector, and

perturb the air/fuel ratio, referred to as “injector coupling” [63, 64, 65, 66, 67]. In contrast,

for a flame located at the minimum pressure magnitude, or pressure node, the pressure field

is out of phase across the burner centerline, exciting helical flow disturbances. This is il-

lustrated in Figure 1.5 (b) and (d). As the acoustic wavelength in the azimuthal direction
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is comparable to the nozzle/injector, each flame exhibits different behavior. Therefore, one

needs to describe the flame dynamics locally, which makes the analysis much complicated.

Figure 1.5: Schematic of burner located at (a) pressure anti-node and (b) pressure node.
The solid and dotted lines denote acoustic pressure and velocity, respectively. Instanta-
neous flame image where flame is located at (c) pressure anti-node and (d) pressure node.
Reproduced from O’Connor et al. [62]

One interesting thing about the azimuthal mode is that the pressure (anti-) nodal line can

locate anywhere around the circumference because of its geometrical axisymmetry. This

means that the (anti-) nodal line can rotate or randomly fluctuate in time, allowing each

burner to experience pressure anti-node and node at different time instants. The dynamics

of the (anti-) nodal line will be addressed later.

The other interesting phenomenon about the azimuthal mode is its acoustic structure.

Given that the azimuthal mode is a superposition of two CW/CCW waves, the acoustic

mode can be a standing, spinning, or a mixed mode depending on the relative strength

between two spinning waves. For example, if CW/CCW waves have equal amplitude, then

the resultant mode is a purely standing wave as shown in Figure 1.6 (a). In this case, the
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pressure magnitude is spatial dependent, whereas the phase is constant except at pressure

node, i.e., the phase abruptly shifts by 180◦ at the pressure node. If CW/CCW waves

have different, but finite amplitudes, the final mode is a mixed wave where both pressure

magnitude and phase are spatial dependent (Figure 1.6 (b)). Lastly, when either of CW or

CCW wave has zero amplitude, the final mode is a purely spinning wave. In this case, the

magnitude is constant, but the phase variation is linear (Figure 1.6 (c)).

Figure 1.6: (a) Standing wave with pressure anti-node at 0◦, 180◦ and node at 90◦, 270◦.
(b) CW dominant mixed wave with pressure anti-node at 90◦, 270◦ and node at 0◦, 180◦.
(c) CCW spinning wave.

Unlike the longitudinal and radial modes where the possible acoustic structures are

discrete, the structures for azimuthal mode are continuous, i.e., the relative amplitudes be-

tween CW/CCW waves can be arbitrary and the (anti-) nodal line can locate anywhere

around the circumference. This characteristic is originated from the periodicity in the az-

imuthal direction. The following question is then how acoustic structures manifest them-

selves in real applications. The answer to this question is addressed in the next section.

1.3 Literature Review

This section introduces the previous studies regarding the dynamics of azimuthal mode,

i.e., acoustic structure as well as its orientation. The studies are classified as computational,

experimental, and analytical approaches.

We first consider computational studies. The advantage of computational analysis is its
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cost-effectiveness. Compared to the experimental approach, which could be significantly

expensive, simulations can be performed as long as computational power is affordable.

This benefit especially stands out for the azimuthal mode analysis. For example, most ex-

perimental works explore combustion instability using simplified configuration because of

the cost. Instead of the full annular or annular-can combustors, only one sector is replicated

to reproduce the thermoacoustic instability as shown in Figure 1.7. This simplification is

legitimate for a longitudinal mode because, as mentioned in the previous section, the dy-

namics of each burner are almost identical, i.e., acoustically compact. Thus, one sector can

be a representative of the full annular combustor. However, the physics of azimuthal mode

in a single sector and in a full annular combustor differ significantly. For example, the

acoustic boundary conditions in a single sector are different from those in the full annular

combustor. For this reason, one may reproduce the standing wave in a single sector using

loud speakers on both ends, but not the spinning wave. Thus, the dynamics of standing and

spinning waves cannot be captured from a simplified configuration. In order to capture the

dynamics, one needs a full annular combustor facility, which would be costly, or one may

rely on the computational analysis.

Figure 1.7: Illustration of simplified geometry from a full annular to a single sector burner.

Large Eddy Simulation (LES) has received considerable attention for analyzing the az-

imuthal instabilities in full annular combustors because of its low price. Selle et al. [68]

10



used a compressible LES to analyze an industrial gas turbine burner mounted on a square

laboratory combustion chamber. They found that the hydrodynamic instability, or pro-

cessing vortex core, occurs for a non-reacting flow, but the first azimuthal mode driven by

thermoacoustic instability shows up for a reacting flow. The azimuthal mode rotates in one

direction, i.e., spinning wave. Staffelbach et al. [65] and Wolf et al. [69] presented a mas-

sively parallel LES of a full helicopter combustion chamber, and showed that the spinning

wave is dominant during the limit cycle. They also found that the injector coupling may

be a mechanism driving the azimuthal mode. Later, Sensiau et al. [70] applied the In-

dependence Sector Assumption in Annular Combustor (ISAAC) to LES simulations. The

ISAAC basically states that the injector coupling is the only driving mechanism of heat

release fluctuation. They adopted an n-tau model to each flame, and found that a standing

wave is present for azimuthal symmetry, i.e, the case where all flames have identical gain

and time delay. When the symmetry is broken, a spinning wave shows up. Later, Wolf et al.

[71, 72] found that the dominant mode is a standing wave with a slowly rotating anti-nodal

line at a mean swirl velocity, but the mode intermittently switches to a spinning wave. Sim-

ilarly, Ghani et al. [73] used the LES to study a swirled single burner inside a rectangular

chamber, and found that the self-excited azimuthal mode intermittently switches between

standing and spinning waves. Schmitt et al. [74] also computationally studied a cylindri-

cal combustor equipped with multiple coaxial injectors, and observed a standing dominant

wave.

We next consider the experimental studies of the azimuthal mode. The appearance of

standing and spinning waves was first reported by Kreb et al. [75, 76]. They installed

multiple pressure transducers along the circumference in the full scale gas turbine, and

observed standing as well as spinning waves. Moeck et al. [77] explored the azimuthal

instabilities in a Rijke tube with 12 injectors, and observed the standing as well as mixed

waves.

Using an academic annular combustor, Worth et al and Dawson et al, [78, 79, 9, 80]
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investigated the dynamics of azimuthal modes at different burner geometries. Particularly,

they found that the system transitions from switching between standing and spinning waves

to a standing dominant wave with increasing the burner spacing or the number of baffles.

When using the alternating swirl direction along the circumference, the mode remains the

standing wave. The other study by Worth and Dawson [81] investigated the effects of

equivalence ratio on the azimuthal modal dynamics. They observed that the mode transi-

tions from the CCW spinning to the standing wave with increasing the equivalence ratio.

Specifically, during the standing wave, the oscillation of the (anti-) nodal line was observed.

They first proposed a phase averaged technique to illustrate the modal dynamics, which will

be addressed later. Later, Faure-Beaulieu et al. [82] conducted the same experiments with

a reduced number of burners, and observed the standing wave at a low equivalence ratio,

but spinning wave at a high equivalence ratio.

Bourgouin et al. [83] carried out the azimuthal mode analysis with MICCA facility, and

observed intermittency between the standing and spinning waves. They first introduced the

concept of spin ratio, which quantifies the dominant mode between standing and spinning

waves. The same group [84] explored the azimuthal mode with the same facility without

the swirler, and found the standing wave with a nodal line located at a fixed azimuthal

position. However, they reported that the nodal line sometimes rotates abruptly by 90◦, or

randomly changes. They also reported a new pattern of thermoacoustic instability, called

the slanted mode [85], which is a combination of purely longitudinal and azimuthal modes

where the azimuthal mode exhibited the standing wave. Later, the same group [86] used

a matrix arrangement of small orifices in the injection system to eliminate the turbulent

nature of swirling flames. From that facility, they observed the CW/CCW dominant waves,

and reported that the direction of the spinning wave depends on the initial conditions, and

once the direction is determined, it can persist as long as the operating conditions are not

altered. Specifically, during the spinning wave, they observed that the nodal line sometimes

rotates at a speed of acoustic frequency, but other times it stays at preferred azimuthal
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locations. Laera et al. [87] and Prieur et al. [88, 89] investigated the azimuthal mode with

the same MICCA combustor, and observed both standing, spinning, and switching modes.

In addition, the nodal line of the standing wave was located at a fixed azimuthal position.

Using a sub-scale annular combustor without bulk swirl, Mazur et al. [90] ran exper-

iments at various flow rates and equivalence ratios, and observed a standing wave at low

amplitudes, but a spinning wave at high amplitudes. Specifically, the spinning wave showed

bistability between CW and CCW, but a preference in CW direction. They speculated that

despite the absence of bulk swirl, the higher probability of exciting CW is due to geo-

metrical asymmetry or flow non-uniformity [70]. Cohen et al. [4] observed the spinning

azimuthal mode from a can combustor equipped with symmetric fuel lines. They reduced

the instability amplitude by introducing asymmetric fuel staging, but did not report the

modal dynamics for this case.

The behavior of azimuthal mode in a single burner swirl stabilized combustor was also

investigated by Schwing et al. [91]. They observed a CCW spinning wave whose direction

coincides with the swirl direction. Later, the same group [92, 93, 58] reported the standing

wave at low amplitude with low swirl intensity, but spinning wave at high amplitude with

high swirl intensity.

To summarize the experimental observations, the azimuthal mode can manifest itself

as the standing, spinning, or switching modes depending on the operating conditions and

geometries. When the mode is stabilized to either standing or spinning wave, the nodal

line predominantly stays at a fixed azimuthal position even though it sometimes drifts and

rotates in a stochastic manner.

Based on these observations, numerous studies have proposed models to capture the

physics controlling which type of mode is present. These are generally nonlinear, as lin-

ear models can generally allow for any arbitrary superposition of these disturbances. This

problem appears to first have been treated by Schuermans et al. [94]. They examined the

nonlinear interaction of the two orthogonal standing eigenmodes of an azimuthal mode and
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showed that, when the system is linearly stable, only one standing mode persists under

steady state conditions; the other standing mode is driven to zero. However, when the sys-

tem is linearly unstable, both standing modes coexist, resulting in a spinning wave in one

direction, either CW or CCW. Which mode dominates is solely a function of initial con-

ditions. Similarly, Stow and Dowling [95] developed a time domain network model using

two orthogonal standing eigenmodes, and found that the spinning wave is always preferred

to the standing wave during the limit cycle. Hummel et al. [96, 92] investigated similar

nonlinear interaction, but using two counter-rotating eigenmodes. They found similar re-

sults with Schuermans’s work, but showed that loss of degeneracy in terms of frequencies

and growth rates causes one spinning wave to be more realizable than the other spinning

wave. However, the above works cannot capture the experimental observations where the

standing wave persists during the limit cycle.

To reproduce this experimental result, several studies have included the presence of

asymmetries in their models. Such non-asymmetries can exist in geometry, flow, or flame,

such as due to azimuthal variations in fuel-air ratio, swirl directions of individual nozzles,

or a discrete number of nozzles distributed azimuthally. Using two orthogonal standing

eigenmodes, Noiray et al. [97] incorporated flame asymmetries into a nonlinear model,

showing that it could lead to standing wave during the limit cycle. Similarly, Bauerheim et

al. [98] used two counter-rotating eigenmodes, and theoretically showed that non-identical

flame transfer functions between the burners induce the standing wave during the limit

cycle, but the azimuthal bulk mean flow causes non-degenerate growth rate, resulting in

spinning wave. However, their work is limited to a linear regime. Ghirardo et al. [99]

demonstrated that despite the identical burners with no swirling flow, the instability mode

could be either standing or spinning wave depending on the nozzle spacing. However, these

studies cannot explain “switching mode” between standing and CCW/CW spinning waves

during the limit cycle, which was observed from the experiments.

To account for this switching mode, Noiray and Schuermans [100] first introduced

14



background noise effects by including the stochastic additive forcing into their model.

They showed that the stochastic forcing may be responsible for the switching mode, but

their model cannot capture the bimodal probability distribution observed in the experi-

ments. Later, Faure-Beaulieu et al. [82] developed a low order model with non-uniform

flame describing function as well as the noise intensity, and found that the bimodal proba-

bility distribution between CCW/CW modes is achieved with a sufficient level of turbulent

noise intensity. However, this model cannot explain the switching mode between standing

and spinning waves observed from the experiments [9, 81]. Ghirardo et al. [101] showed

that the background noise pushes the azimuthal mode towards the standing wave, but the

experimental studies by Worth and Dawson [81] showed that the transition from stand-

ing to spinning wave is rather abrupt, showing intermittency. This intermittency cannot

be reproduced from Ghirardo’s model unless the noise intensity itself is intermittent. To

reflect this intermittency, Bothein et al. [102] showed that the even very small fluctuation

of flame temperature non-uniformity driven by the stochastic effect can induce the switch-

ing mode between standing and spinning waves. On the other hand, Ghirardo and Juniper

[103] accounted for the sensitivity of heat release to transverse velocity oscillations, and

showed that the standing and spinning waves could be bistable at the intermediate sensitiv-

ity, and thus, the mode could intermittently switch between them. This, however, is only

one possible explanation. In terms of nodal line dynamics, low order models predicted that

introducing non-axisymmetries makes the nodal line stay at a certain azimuthal location

[82, 104].

1.4 Scope of Work

As seen from the previous section, computational or theoretical studies miss at least

one of the experimental observations, e.g., standing wave limit cycle or oscillatory nodal

line dynamics. The ultimate goal of the study is to reduce these gaps between experimental

observations and analytical approaches.
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This thesis consists of three parts. The first part addresses the question of how to opti-

mally identify the azimuthal mode with a given number of pressure sensors. Assuming the

noise is additive Gaussian, the uncertainty of the estimated pressure can be quantified by a

mean of statistical properties. Then, the optimal probe location can be determined such that

it minimizes the uncertainty. This will allow us to extract the physical quantities, such as

spin ratio and nodal line position, with minimum uncertainty, and thus identify the modal

dynamic accurately.

Next, this work will demonstrate the modal dynamics of azimuthal mode obtained from

a multi-nozzle can combustor. Specifically, the experimental tests were conducted over a

range of flow rates/thermal power settings and azimuthal/radial symmetry of nozzle fuel-

ing, in order to better elucidate the functional relationship between modal dynamics, op-

erating conditions, and azimuthal/radial asymmetry. These experimental data will provide

an insight into key parameters that control the system’s dynamics. Additionally, the modal

dynamics will be described in phase portrait to filter out the contribution of high dimen-

sional dynamics, such as turbulent components. This phase portrait is significantly useful

to describe the complicated modal dynamics in a simple way.

As a final step, this proposed work will develop a low order modeling that captures the

experimental observations. The existing low order models cannot capture the following

observations simultaneously: (i) the standing wave during the limit cycle, (ii) a periodic

oscillation of the standing wave nodal line, (iii) the intermittency between standing and

spinning waves, and (iv) preference in spinning direction during spinning wave limit cycle.

The low order model developed in this study will capture all of these by introducing three

key parameters, i.e., flame non-uniformity, frequency spacing, and stochastic forcing.

The rest of the thesis is organized as follows. Chapter 2 briefly introduces the ba-

sic equations and derives important governing equations that will be used throughout this

paper. Chapter 3 introduces the experimental facility and diagnostics as well as the post-

processing. Chapter 4 presents the optimal sensor placements for single and multiple az-
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imuthal modes. Chapter 5 first introduces the acoustic mode shape analysis, and chapter 6

presents the experimental results such as pressure time series, dynamics of two spinning

waves, and phase portrait. Chapter 7 introduces the low order model of azimuthal mode.

The last chapter 8 presents conclusions and future works for this topic.
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CHAPTER 2

RELEVANT THEORY

In this chapter, we introduce important basic equations with several assumptions. The

derivation of these equations can be found in any classical acoustic textbooks or [17].

2.1 Linearized Euler Equations

The conservation variables (φ), density, velocity, and pressure, are governed by the

well-known Navier Stokes Equation (NSE). In acoustics, these conservation variables per-

turb from their time averaged values, and thus, can be modeled as a sum of the time aver-

aged values and a first order perturbation, i.e

φ(x, t) = φ̄(x) + εφ′(x, t) (2.1)

where bar ( ¯ ) donotes the time averaged value, prime (’) the time-dependent acoustic

quantities, and ε the smallness. Substituting Equation 2.1 into the NSE, neglecting viscous,

thermal diffusion, source/sink term, and second order O(ε2) terms leads to the following

conservation equations:

∂ρ′

∂t
+∇ · (ρ̄u′ + ρ′ū) = 0 (2.2)

ρ̄
(∂u′

∂t
+ ū ·∇u′ + u′ ·∇ū

)
+ ρ′(ū ·∇ū) +∇p′ = 0 (2.3)

∂p′

∂t
+ ū ·∇p′ + u′ ·∇p̄+ γ(p̄∇ · u′ + p′∇ · ū) = 0 (2.4)

Equation 2.2 – Equation 2.4 are called linearized continuity, momentum, and energy equa-
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tions, respectively, and they altogether are called Linearized Euler Equations (LEEs).

2.2 Wave & Helmholtz Equation

This section introduces the wave equation. Here, we assume homogeneous mean quan-

tities (i.e., not a function of space), no mean flow, and an isentropic process. The isentropic

assumption provides an additional relationship between pressure and density fluctuation,

i.e., p′ = c2ρ′, making the linearized continuity equation redundant. With these assump-

tions, combining the linearized momentum and energy equations yields the Wave Equa-

tion.

∂2p′

∂t2
− c2∇2p′ = 0 (2.5)

Assuming the perturbation terms oscillate harmonically in time allows to express them in

terms of a complex Fourier series, i.e.

p′(x, t) = Real
( N∑
n=1

p̂n(x) exp(−iωnt)
)

(2.6)

The hat symbol (â) represents the mode shape of the solution variables at a distinct angular

frequency, ωn. Applying Equation 2.6 to Equation 2.5 allows expressing the wave equation

in the frequency domain.

k2p̂+∇2p̂ = 0. (2.7)

Here k = ω/c is the wavenumber. Note that the summation can be dropped by making

use of the orthogonality between each mode shape. Equation 2.7 is called the Helmholtz

Equation.
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2.3 General Solution of Helmholtz Equation

This section derives the general solution of the wave and Helmholtz equation. The

general solution can be obtained by the method of separation of variables. Since typical

combustors have circular or annular geometries, we perform the analysis in a cylindrical

coordinate system. The Helmholtz equation in a cylindrical system is given by:

1

r

∂

∂r

(
r
∂p̂

∂r

)
+

1

r2

∂2p̂

∂θ2
+
∂2p̂

∂z2
+ k2p̂ = 0 (2.8)

Assume the form of the solution, p̂, as follows:

p̂(r, θ, z) = R(r)Θ(θ)Z(z) (2.9)

Substituting Equation 2.9 into Equation 2.8, and dividing both side by RΘZ yields

1

R

d2R

dr2
+

1

rR

dR

dr
+

1

r2Θ

d2Θ

dθ2
+

1

Z

d2Z

dz2
+ k2 = 0 (2.10)

Equation 2.10 can be rewritten as:

1

Z

d2Z

dz2
= − 1

R

d2R

dr2
− 1

rR

dR

dr
− 1

r2Θ

d2Θ

dθ2
− k2 ≡ −k2

z (2.11)

Note that the left hand side (LHS) of Equation 2.11 is only a function of z, but the right

hand side (RHS) is not. Therefore, the RHS must be a constant, which is defined as −k2
z ,

to satisfy Equation 2.11. Here, the minus sign follows conventions.

1

Z

d2Z

dz2
= −k2

z →
d2Z

dz2
+ k2

zZ = 0 (2.12)

The solution of Equation 2.12 is given by:

Z(z) = A1e
ikzz + A2e

−ikzz (2.13)
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where A1,2 are the amplitudes of ±z traveling waves, which are determined by the axial

boundary conditions, and kz is the axial wavenumber. Similarly, rearranging Equation 2.10

as follows.

1

Θ

d2Θ

dθ2
= −r

2

R

d2R

dr2
− r

R

dR

dr
− r2

Z

d2Z

dz2
− r2k2 ≡ −m2 (2.14)

The RHS is defined as −m2 as it is not a function of θ. Equation 2.14 can be rewritten as:

d2Θ

dθ2
+m2Θ = 0 (2.15)

The solution of Equation 2.15 is

Θ(θ) = feimθ + ge−imθ (2.16)

Here, f and g are the amplitudes of CCW/CW spinning waves, and the constant, m is the

azimuthal wavenumber, which must be an integer to ensure the fact that Θ is single valued

in θ.

Lastly, equation for R can be expressed as:

r2d
2R

dr2
+ r

dR

dr
+ (r2k2

r −m2)R = 0 (2.17)

where k2
r = k2− k2

z . Introducing a new variable, r̃ = rkr, Equation 2.17 can be written as:

r̃2d
2R

dr̃2
+ r̃

dR

dr̃
+ (r̃2 −m2)R = 0 (2.18)

This equation is known as the Bessel function. The solution of Equation 2.18 is given by

R(r̃) = B1Jm(r̃) +B2Ym(r̃) (2.19)
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or equivalently,

R(r) = B1Jm(rkr) +B2Ym(rkr) (2.20)

where B1,2 are constants determined by the radial boundary conditions, and Jm and Ym

are the Bessel functions of the first and second kind, respectively. Substituting Equa-

tion 2.13, Equation 2.16, and Equation 2.20 into Equation 2.9 gives the general solution

of the Helmholtz equation in a cylindrical system.

p̂(r, θ, z) =
(
A1e

ikzz + A2e
−ikzz

)(
feimθ + ge−imθ

)(
B1Jm(rkr) +B2Ym(rkr)

)
(2.21)

From Equation 2.6, the general solution of the wave equation is as follows:

p′(r, θ, z, t) = Real
{(
A1e

ikzz + A2e
−ikzz

)(
feimθ + ge−imθ

)
(
B1Jm(rkr) +B2Ym(rkr)

)
e−iωt

} (2.22)

where

k2 =
(ω
c

)2

= k2
r + k2

z
(2.23)

Equation 2.23 is called a dispersion relation. It relates the wavenumber of a wave to its fre-

quency. For purely longitudinal modes, for example, kr = 0, giving rise to kz = k = ω/c.

Thus, the axial wavenumber is simply the angular frequency divided by a speed of sound.

For transverse modes (kr 6= 0), however, an interesting thing can happen. Rearranging

Equation 2.23 in terms of kz,

kz =

√(ω
c

)2

− k2
r

(2.24)

If the term inside the square root is positive, kz would be a real number. If the term is
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negative, kz would be an imaginary number. Define kz = ik̂z where k̂z is a real number,

and substitute this into the axial component in Equation 2.21.

p̂(z) ∼
(
A1e

−k̂zz + A2e
k̂zz
)

(2.25)

Equation 2.25 shows that the axial wave is no longer traveling, but rather the amplitude

exponentially decays/grows. For example, the first (A1) and second terms (A2) on the right

hand side in Equation 2.25 indicate that the amplitude exponentially decays(A1)/grows(A2)

as the wave travels in positive z direction. However, exponential growth to infinity does

not physically make sense, and thus, A2 must be zero for the wave traveling in a positive z

direction. Therefore, only the first term remains. This wave is called an evanescent wave,

and it can only happen in transverse modes, which will be shown in chapter 5 later.
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CHAPTER 3

EXPERIMENT OVERVIEW

This section first introduces the experimental facility used in this study. The facility

is an industrial scale that can operate at approximately 2.5 MW thermal power with a

high Reynolds number. Acoustic pressure was measured with high frequency pressure

transducers. In addition, line-of-sight (LOS) CH* chemiluminescence was recorded by

high speed camera. Lastly, this section explains the post-processing of the recorded data.

3.1 Experimental Combustor Facility

Figure 3.1 shows the experimental facility. Air from four inlets passes a critical orifice,

making the upstream boundary condition as a pressure rigid, and enters near the axial

midpoint of the rig and flows through an annular section in the upstream direction, cooling

the chamber wall. At the front of the test article, the preheated air passes through one of

eight outer (‘O’) and center pilot (‘P’) nozzles (Figure 3.1 (b)). Each nozzle consists of a

swirler and fuel injector, and natural gas is used as fuel. The swirl directions of the pilot

and outer nozzles are CW and CCW, respectively. Fuel flow through the outer and pilot is

controlled separately, quantified by a pilot ratio (PR),

PR =
ṁP

ṁP + ṁO

(3.1)

where ṁP and ṁO are the fuel flow rate through the pilot and outer nozzles, respectively. In

addition, the outer nozzles are connected to two separate fuel lines, O1 and O2 (Figure 3.1

(c)), where fuel flow rate through each line is quantified by an outer ratio (OR),

OR =
ṁO2

ṁO1 + ṁO2

(3.2)
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Figure 3.1: Experimental facility: (a) image of combustor, (b) image of multi-nozzle, (c)
fuel line configuration, (d) sensor ports, (e) side-schematic of combustor, (f) sensor and
fuel configurations.
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Thus, OR = 0.5 means uniform fuel staging in the azimuthal direction, and the non-

uniformity gets severer with increasing (decreasing) OR from 0.5. Notice that the fuel

configuration of O1 and O2 described in Figure 3.1 (f) is one example of arbitrary config-

urations. The combustor consists of a liner whose diameter is 0.29 m and length is 1.2 m.

Two types of materials were used for the liner; steel and quartz (Figure 3.2 (a) and (b)).

The steel liner was used for exploring the operating conditions, and the quartz tube was

used for optical diagnostics at a certain condition. The combustor product accelerates near

the downstream contraction area and exits the system through the water-cooled exhaust.

The simulation shows that the flow is chocked at the outlet, and thus, the outlet boundary

condition can be assumed as a pressure rigid for low Mach number flow [17].

3.2 Flow System

The supply of the air and natural gas to the combustor is accomplished through 1 and

3 circuits, respectively, regulated independently upstream of the combustor. For exam-

ple, Figure 3.3 shows fuel lines installation. Although not shown here, air line configu-

Figure 3.2: (a) Metal (steel) liner with sensor and thermocouple ports. The sensor port is
designed to be water-cooled, and thermocouples are used to monitor the temperature near
the sensor. (b) Quartz tube with silica fabric strip. The strip is used to minimize air leakage.
(c) Camcorder image. Flames are attached to the outer edge of the flame holder.
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Figure 3.3: Experimental facility: (a) Photograph of flow metering and control segment of
fuel lines. (b) Schematic of fuel lines
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ration is similar to the fuel lines. As shown in Figure 3.3, each circuit is equipped with

a pressure regulator, subcritical orifice, static pressure sensor, differential pressure sensor,

and thermocouple. The pressure regulator controls the upstream pressure specified by the

user. The static pressure and differential pressure sensors are used to measure the up-

stream/downstream pressure across the subcritical orifice, and the thermocouple measures

the downstream fluid temperature. With these measurements, a mass flow rate through each

circuit is calculated in real time by using the Reader-Harris/Gallagher equation [105].

3.3 Acoustic Measurement

In order to reconstruct the acoustic mode shape, we need multiple sensors at distinct

locations. Total five 6021A Kistler pressure sensors (sensitivity: 62 pC/bar, range: 10

MPa, accuracy: ±1%) were used to measure the dynamic pressure signals in the post-

flame region. The facility has total of 36 ports at the exhaust (3 rows × 12 ports per row),

and two ports at the upstream chamber (Figure 3.1 (d)). Thus, we can choose five among

38 ports to measure the acoustic pressure, providing flexibility of the sensor locations.

Note that the sensor locations illustrated in Figure 3.1 (e) is just one example of arbitrary

locations. All sensors are water-cooled to prevent from being damaged by combustion heat.

They are connected to a Kistler 5181A differential charge amplifier (sensitivity: 10mV/pC,

range: ±10V, accuracy: ±0.5%). The accuracy of the measurement is determined by a

combination of the sensor and charge amplifier:

10 V︸︷︷︸
charge amp. range

× 1 pC

0.01 V︸ ︷︷ ︸
charge amp. sensitivity

× 1 bar

62 pC︸ ︷︷ ︸
sensor sensitivity

× ±1 %︸ ︷︷ ︸
sensor range

= ±0.16 bar = ±16 kPa. (3.3)

This value denotes the maximum deviation from a best fit line through the calibration curve,

i.e.,±16 kPa is the worst error you could get. This uncertainty can be considerably reduced

by implementing a least squares fit from multiple sensors, which will be explained in chap-
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ter 4. The pressure signal was recorded at the sampling frequency of 20 kHz, and then

digitized by a National Instrument (NI 9215).

3.4 CH* Chemiluminescence Measurement

CH* chemiluminescence imaging is performed at various test conditions, with the cam-

era positioned level, and perpendicular to the centerline of the combustion chamber. (Fig-

ure 3.1 (e)) A Photron Fastcam SA-X2 is used to capture video data at a sampling rate of

12.5 kHz, with a resolution of 1024x1024 pixels. At this resolution, the camera’s on-board

hard drive is capable of storing 5452 images. Two partitions are used, so each partition is

2726 images spanning a time 0.218 sec, each. Image decks are downloaded from the cam-

era hard drive to an external hard drive through a gigabit Ethernet cable. A Nikon Nikkor

35 mm diameter lens with focal length of 50 mm is used. Incident light is first optically fil-

tered using a lens with peak wavelength transmission at 434 nm, and then intensified using

a LaVision High Speed IRO, with the gate set to the full width of the open camera shutter.

The optical filter, lens, IRO, and camera are all attached end to end in this order. In each

take, the optical inlet to the filter is placed approximately 0.3 m from the centerline of the

test section.

3.5 Post Processing

3.5.1 Acoustic measurement

After stabilizing the operating condition, only a certain portion of the signals during

the instabilities are extracted for post-processing. A time-series pressure signal, given by

p(θ, t), is band-pass filtered around each peak frequency, fp, with a rectangular bandwidth

df = 60 Hz to not only isolate each acoustic mode from the other modes, but also improve
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the signal to noise ratio [93]:

p′(θ, t) = F−1
[
F{p(θ, t)} · H

(
f −

(
fp −

df

2

))
· H
(
− f +

(
fp +

df

2

))]
(3.4)

Here, p′(θ, t) is a filtered pressure signal, F is the Fourier transform, and H is the Heaviside

function. The bandwidth is determined such that it is wide enough, but includes only a

single peak frequency such that p′(θ, t) contains only one acoustic mode. The filtered signal

is then transformed into an analytic signal, p̂(θ, t), by applying the Hilbert transform, H

[93]:

p̂(θ, t) = p′(θ, t) +H[p′(θ, t)] (3.5)

This analytic signal is a complex number whose absolute value and angle correspond to

its magnitude and phase, respectively. The signal is then fitted to the solution of the wave

equation described later.

3.5.2 CH* chemiluminescence imaging

The objective of CH* images is to compare the heat release fluctuation data with the

pressure signal. It is assumed that the intensity of the images is proportional to the heat

release rate [93]. However, since the camera records the LOS integrated heat release,

the pressure must be reconstructed and integrated equivalently to compare between them.

Therefore, the following quantities are evaluated from the CH* images and the pressure

signal:

Q(t) =

∫ x2

x1

∫ R

0

∫ R

−R
q(x, y, z, y)dz︸ ︷︷ ︸

=Qimg(x,y,t)

dydx

P (t) =

∫ π

0

∫ R

0

prθ(r, θ, t)rdrdθ

(3.6)
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Here, Qimg is the heat release data of each image, which is already integrated into z-

direction because of the LOS effect, x1,2 are the axial coordinate of the left and right edges

of the image, and Q is the “top half” integrated heat release. In short, Q is the sum of the

intensity of the top half image. prθ is the reconstructed pressure distribution (reconstruction

method is introduced in chapter 5 in the azimuthal and radial space, and P is the top half

integrated pressure fluctuation. Q and P are then band-pass filtered at around their peak

frequencies in a similar way described in Equation 3.4,

Q′(t) = F−1
[
F{Q(t)} · H

(
f −

(
fp −

df

2

))
· H
(
− f +

(
fp +

df

2

))]
P ′(t) = F−1

[
F{P (t)} · H

(
f −

(
fp −

df

2

))
· H
(
− f +

(
fp +

df

2

))] (3.7)

Lastly, the filtered signals are transformed into analytic signals by taking the Hilbert

transform.

Q̂(t) = Q′(t) +H[Q′(t)]

P̂ (t) = P ′(t) +H[P ′(t)]

(3.8)

The procedures is described in Figure 3.4. To compare the magnitude and phase be-

tween heat release and acoustic pressure, the pressure data is downsampled from 20 kHz to

12.5 kHz.
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Figure 3.4: Post-processing procedure of the CH* image and reconstructed pressure time
series.
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CHAPTER 4

OPTIMAL SENSOR PLACEMENT

4.1 Introduction

Because there are many potential modes that can occur inside the combustor, it is not

straightforward to determine which particular acoustic mode is being excited, particularly

at higher frequencies where many different modes are present close to each other. For ex-

ample, the first azimuthal (1A) mode of a duct may be very similar in frequency to the fifth

longitudinal (5L) mode. Mitigation measures differ depending upon the spatial character-

istics of the excited acoustic mode. Similar considerations apply to the fatigue loading of

hardware and modeling the relationship between instability amplitude and hardware life.

Finally, even the issue of determining maximum pressure oscillation amplitudes is non-

trivial, as the same pressure magnitude measurement at a given spatial location, could cor-

respond to major differences in maximum amplitudes, depending upon the sensor location

relative to nodes and anti-nodes.

For practical systems, however, one cannot monitor the pressure everywhere inside the

chamber as the pressure transducers are placed at discrete locations. To estimate the max-

imum pressure magnitude, the measured pressure signals from multiple locations must be

interpolated/extrapolated, which requires the mode shape information [106]. Identifying

mode shape is important in that it provides the optimal placement for acoustic dampers

[106, 107, 108]. To identify the acoustic mode shape, analytical, computational, and exper-

imental approaches have been developed. For example, Lee and Santavicca [109] suggested

using at least three pressure transducers along the length of the combustor to identify a lon-

gitudinal mode, and explained that modes can be identified by estimating a frequency based

on combustor geometry. Hale et al. [110] developed a screech wave analysis methodology
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to differentiate between transverse, longitudinal, and complex modes. Krebs et al. [75],

Singla et al. [111], and Bourgouin et al. [83] combined experimental measurements with

numerical results to confirm the observed acoustic modes. However, these studies did not

address the issue of optimal sensor placement for modal identification.

This optimal placement question has been studied in vibration monitoring [112, 113,

114, 115, 116]. For example, Kammer [114] proposed a method called Effective Inde-

pendence (EI), which has been used for many applications [117, 118, 119]. Based on

the candidate target modes preselected from the FEM, EI method finds a given number of

sensor locations that maximize the determinant of the Fisher information matrix, which

is defined as the product of the mode shape matrix and its transpose. Another approach

utilizes energy matrix rank optimization [120]. This method basically finds the sensor con-

figuration such that it maximizes the strain energy of the structure. A similar method can

be done based on the kinetic energy rather than strain energy [121].

We are aware of one study that considered this question for the acoustic problem.

Schuermans [122] calculated variance of the least squares method for pressure estimates

derived from discrete sensor locations, and suggested that the error is minimized when the

distances between the sensors are equally spaced with ∆x = c/nω where c, n, and ω are

speed of sound, the number of sensors, and angular frequency. However, it turns out that

although the uniformly spaced sensors provide good results for one frequency, it may yield

infinite error at different frequencies.

This chapter proposes a methodology to determine the optimal sensor locations in the

azimuthal direction. It follows Schuermans’ work [122], who quantified how sensor loca-

tion influences propagation of noise and uncertainty in modal identification, but the paper

extends it by determining optimal sensor locations using similar to the Fisher information

matrix, introduced by Kammer [114]. As noted earlier, EI method starts from a large set of

candidate sensor locations obtained from FEM, and iteratively removes them based on the

Fisher information matrix, leaving the optimal sensor locations. However, explicit expres-
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sion of this Fisher information matrix can be obtained for azimuthal modes, enabling us to

analytically determine the optimal sensor locations. In addition, the method is applied to

the case where multiple modes are simultaneously considered.

4.2 Theoretical Formulation

4.2.1 Modelling of azimuthal acoustic mode

As shown in chapter 2, the acoustic mode shape in a cylindrical coordinate is given by

Equation 2.21.

p̂(r, θ, z, t) =
(
A1e

ikzz + A2e
−ikzz

)︸ ︷︷ ︸
Axial

(
feimθ + ge−imθ

)︸ ︷︷ ︸
Azimuthal

(
B1Jm(rkr +B2Ym(rkr)

)︸ ︷︷ ︸
Radial

e−iωt

(4.1)

To estimate azimuthal modes, multiple pressure sensors must be installed at the same ax-

ial and radial, but different azimuthal locations. Then, the difference in pressure signal

between the sensors is attributed to only the azimuthal component, i.e., the axial and ra-

dial components are the same across the sensors. Thus, we can omit the axial and radial

components.

p̂(θ, t) = f(τ)ei(mθ−ωt) + g(τ)e−i(mθ+ωt) (4.2)

Here, f(τ) and g(τ) are slowly time varying amplitudes of CCW and CW azimuthal waves,

respectively (also called as Riemann invariants), m is azimuthal mode number, which must

be integer because of the azimuthal periodicity, ω is the angular frequency, and τ is a ”slow”

time scale, i.e., τ = εt where ε � 1. p̂(θ, t) is the analytic function representation for

pressure obtained using the Hilbert transform of the time series signal. See. Equation 3.5.

We will work through this analysis for the case where the pressure sensors are mounted at

the same axial and radial locations, but this approach can be readily generalized to different
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axial locations. Notice that Equation 4.2 assumes a single azimuthal mode, but in real

applications, multiple azimuthal modes could appear simultaneously. In this case, one can

bandpass filter the signal around each peak in the spectrum.

Equation 4.2 is the pressure expression for one sensor at θ. Given multiple signals from

each sensor, p̂(θ, t) in Equation 4.2 can be rewritten as:

P = MX where P =



p̂(θ1, t)

p̂(θ2, t)

...

p̂(θn, t)


, M =



eimθ1 e−imθ1

eimθ2 e−imθ2

...
...

eimθn e−imθn


, X =

f(τ)e−iωt

g(τ)e−iωt

 . (4.3)

Here, n is the number of sensors, θj is the sensor j th location, P is analytic pressure matrix

from each sensor, M is a spatial matrix, and X is time dependent matrix that needs to be

evaluated. Our goal is to estimate the matrix X , as it provides the information of the mode

shape or the pressure distribution along the circumference. To illustrate this point, we can

further decompose f(τ) and g(τ) (or Riemann invariants) into their magnitudes and phases,

i.e., f(τ) = F (τ)eiϕF (τ), g(τ) = G(τ)eiϕG(τ),

p̂(θ, t) = F (τ)ei(mθ+ϕF (τ)−ωt) +G(τ)e−i(mθ−ϕG(τ)+ωt) (4.4)

The magnitude of pressure along the circumference can be obtained by taking an absolute

value of Equation 4.4.

|p̂(θ, τ)| =
[
F (τ)2 +G(τ)2 + 2F (τ)G(τ) cos(2mθ + ϕFG(τ))

]1/2
where ϕFG(τ) = ϕF (τ)− ϕG(τ).

(4.5)

Notice that the pressure magnitude at θ depends only on F (τ), G(τ) and ϕFG(τ), which

are all included in the matrix, X . These three are the parameters that determine the mode
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shape, e.g., if F (τ) = G(τ), it is a purely standing wave where the pressure magnitude

depends on θ. If either of F (τ) or G(τ) is zero, it is a purely spinning wave where the

pressure magnitude is constant along the circumference. Otherwise, it is a combination

of standing and spinning waves, i.e., a mixed wave. ϕFG(τ) determines the location of

the pressure (anti) node, i.e., the location where the pressure magnitude is (maximum)

minimum. The pressure anti-node is located at

θa(τ) =
2kπ − ϕFG(τ)

2m
where k = 0, 1, 2, . . . , (4.6)

and its magnitude is given by

|p̂
(
θa(τ), τ

)
| = F (τ) +G(τ) (4.7)

4.2.2 Variance of Riemann invariants

In real turbulence systems, certain levels of background noise are inevitable. Assuming

additive noise with zero mean and variance of σ2
n, Equation 4.3 can be rewritten as:

P = MX + ε where ε ∼ N(0, σ2
nI) (4.8)

where I is a complex identity matrix and P is now a random variable. We also assume that

the noises are uncorrelated and have the same variance between the sensors, i.e., the pres-

sure estimates from two sensors at the same location have uncorrelated noise contributions

from the measurement system. Then, the expectation and variance of P are given by

E(P ) = E(MX) + E(ε) = E(MX) = MX

Var(P ) = Var(MX) + Var(ε) = Var(ε) = σ2
nI.

(4.9)

Therefore, the random variable P follows P ∼ N(MX,σ2
nI). The time dependent matrix,
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X , can then be estimated by using a least squares method [83],

X̂ = (M∗M)−1M∗P, (4.10)

where X̂ is the estimate of X and M∗ is a complex transpose of M . The expectation and

variance of X̂ are given by

E(X̂) = E((M∗M)−1M∗P ) = E((M∗M)−1M∗MX) + E((M∗M)−1M∗ε)

= E(X) + (M∗M)−1M∗E(ε) = X

Var(X̂) = Var((M∗M)−1M∗P ) = Var((M∗M)−1M∗MX) + Var((M∗M)−1M∗ε)

= Var(X) + (M∗M)−1M∗Var(ε)((M∗M)−1M∗)∗

= (M∗M)−1M∗M((M∗M)∗)−1σ2
n

= ((M∗M)∗)−1σ2
n = (M∗M)−1σ2

n.

(4.11)

Notice that M∗M in Equation 4.11 corresponds to the Fisher information matrix, intro-

duced by Kammer [114]. Substituting the matrix M in the variance of X̂ yields

Var(X̂) =
σ2
n

n2 −D

 n −
∑n

j=1 e
2imθj∑n

j=1 e
−2imθj n


where D(θ1, . . . , θn;n,m) =

n∑
j=1

e2imθj

n∑
k=1

e−2imθk =
n∑
j=1

n∑
k=1

cosφjk,

φj = 2mθj, φjk = φj − φk.

(4.12)

The diagonal elements of this matrix are the variance of Riemann invariants, f(τ) and g(τ),

given by σ2
f and σ2

g .

σ2
f = σ2

g =
n

n2 −D
σ2
n →

σ2
f

σ2
n

=
σ2
g

σ2
n

=
n

n2 −D
≡ h(D) (4.13)
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Equation 4.13 explicitly shows that the variance associated with the local sensors, σ2
n, prop-

agates to the variance of Riemann invariants, factored by h(D).

4.2.3 Optimizing sensor locations

As our goal is to minimize the variance of Riemann invariants, the optimization problem

can be posed by finding sensor locations that minimize h(D). The nature of this minimiza-

tion problem depends on the values spanned by D. First, D ≤ n2 as shown below.

D =
n∑
j=1

n∑
k=1

cosφjk ≤
n∑
j=1

n∑
k=1

1 = n2 (4.14)

Moreover, since h(D) monotonically increases with D ≤ n2, the minimum h(D) occurs

at the minimum D. Therefore, given the number of sensors, n, and the azimuthal mode

number, m, our goal is to find the optimal sensor locations, θ1, . . . , θn, that minimize D. In

order to find the minimum, we first need to find D at a critical point:

∂D

∂φp
=

n∑
j=1

sinφjp = 0 for p = 1, . . . , n (4.15)

Without loss of generality, we can fix φ1 = 2mθ1 = 0. For p = 1, Equation 4.15 becomes

n∑
j=1

sinφj1 = sin(φ1 − φ1) + · · ·+ sin(φn − φ1) = 0→
n∑
j=1

sinφj = 0 (4.16)

Next, consider Equation 4.15 for a general case.

n∑
j=1

sinφjp = sin(φ1 − φp) + · · ·+ sin(φn − φp) = 0 (4.17)
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Using trigonometric identities,

(sinφ1 cosφp − cosφ1 sinφp) + · · ·+ (sinφn cosφp − cosφn sinφp) = 0

→ cosφp(sinφ1 + · · ·+ sinφn)− sinφp(cosφ1 + · · ·+ cosφn) = 0

(4.18)

Since the bracket in the first term is zero by Equation 4.16, the second term must be zero.

sinφp(cosφ1 + · · ·+ cosφn) = 0 for p = 2, . . . , n (4.19)

There are two possible solution families, given below, that satisfy Equation 4.19.

(i)
n∑
j=1

cosφj = 0, or (ii) sinφj = 0 for j = 2, . . . , n (4.20)

Next, consider
∑n

j=1 cosφjk.

n∑
j=1

cosφjk = cos(φj − φk) + · · ·+ cos(φn − φk)

= (cosφ1 cosφk + sinφ1 sinφk) + · · ·+ (cosφn cosφk + sinφn sinφk)

= cosφk(cosφ1 + · · ·+ cosφn) + sinφk (sinφ1 + · · ·+ sinφn)︸ ︷︷ ︸
= 0

= cosφk

n∑
j=1

cosφj

(4.21)

If (i) in Equation 4.20 is the solution, then Equation 4.21 yields

n∑
j=1

cosφjk = 0. (4.22)
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This leads to the following at the critical point.

D =
n∑
j=1

n∑
k=1

cosφjk = 0 (4.23)

If (ii) in Equation 4.20 is the solution, then,

D =
n∑
j=1

n∑
k=1

cosφjk =
n∑
k=1

cosφk

n∑
j=1

cosφj =

(
n∑
j=1

cosφj

)2

> 0 (4.24)

Therefore, D at the critical point can take either zero (Equation 4.23) or positive (Equa-

tion 4.24) values. Now, consider D = 0 at a critical point. This point may be a local

minimum, local maximum, or a saddle point. If the point is either a local maximum or a

saddle point, then there must exist D < 0 at the critical point since D is differentiable and

periodic. This contradicts Equation 4.23 and Equation 4.24. Thus, D = 0 at the critical

point must be a local minimum as well as a global minimum.

minD = 0 (4.25)

At the minimum D, the following must hold by Equation 4.15 and Equation 4.22.

n∑
j=1

sinφjk =
n∑
j=1

cosφjk = 0 for k = 1, . . . , n. (4.26)

Therefore, the optimal sensor locations are such that they satisfy Equation 4.26. Substitut-

ing Equation 4.25 into Equation 4.13 yields:

h(minD) =
1

n
(4.27)

Equation 4.27 states that the variance ratio of the Riemann invariants is inversely propor-

tional to the number of sensors when they are optimally located.
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Consider next the case of multiple modes being simultaneously present. In general, the

optimal location for one mode, mi, may be different than another one, mj . As such, an

approach is needed to weight the optimum location across the modes of interest. There are

a number of different ways to do this and there is no “best” method for this weighting. For

example, it may be that one mode is more damaging than another, and so will want to be

better identified. We present results later using a “mini-max” strategy, which optimizes the

worst case; i.e., sensor locations where the maximum value of D over all mj is minimized.

{θ1, . . . , θn} = argmin
θ

[
max
mj

D(θ1, . . . , θn;n,mj), j = 1, . . . , N

]
(4.28)

Another method, referred to as “mini-sum” strategy hereafter, is to find sensor locations

that minimize the sum of D over all mj .

{θ1, . . . , θn} = argmin
θ

[ N∑
j=1

D(θ1, . . . , θn;n,mj)

]
(4.29)

In either case, the optimal locations for multiple modes cannot be obtained analytically and

must be identified computationally for a given number of sensors, n, and azimuthal modes,

mj .

4.2.4 Optimal locations for a single mode: Exact solutions and physical interpretation

Figure 4.1: n point masses on a round table for k=1

Equation 4.26 consists of n nonlinear simultaneous equations, which actually has an

exact solution. Moreover, we can determine a very helpful physical interpretation of this
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solution for a single mode, which can also be used to intuit the optimum distributions for

a small number of sensors [123]. Suppose the number of n points with mass, M , are

distributed around the circumference of a round table in such a way that the moment at the

center is zero (Figure 4.1). Then, the following must hold.

(x̄, ȳ) =

(
1

nM

n∑
j=1

M cosφjk,
1

nM

n∑
j=1

M sinφjk

)

=

(
1

n

n∑
j=1

cosφjk,
1

n

n∑
j=1

sinφjk

)
= (0, 0) for k = 1, . . . , n

→
n∑
j=1

sinφjk =
n∑
j=1

cosφjk = 0 for k = 1, . . . , n

(4.30)

The last expression in Equation 4.30 is identical to Equation 4.26. Therefore, configuration

for minimizing D can be easily found by balancing n point masses on the round table. The

actual sensor location is then θj = φj/2m.

4.2.5 Variance of estimated pressure

Given the estimated matrix, X̂ , the estimated complex pressure, P̂ , at each sensor loca-

tion can be evaluated as the following.

P̂ = MX̂ (4.31)

The mean and the variance of P̂ is then given by

E(P̂ ) = E(MX̂) = ME(X̂) = MX = P

Var(P̂ ) = Var(MX̂) = MVar(X̂)M∗ = M(M∗M)−1M∗σ2
n ≡ σ2

p̂

(4.32)
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Substituting the matrix, M , into the variance P̂ yields:

σ2
p̂ =

2σ2
n

n2 −D


n−

∑n
j=1 cosφ1j · · ·

. . .
... . . . ...

. . . · · · n−
∑n

j=1 cosφnj

 (4.33)

The diagonal elements are the variance of estimated complex pressure for each sensor. The

variance ratio between the measured and the estimated pressure for sensor, k, is then given

by:

σ2
p̂,k

σ2
n

=
2

n2 −D

[
n−

n∑
j=1

cosφkj

]
for k = 1, . . . , n (4.34)

For optimal sensor placement, D = 0 and
∑n

j=1 cosφkj = 0 from Equation 4.25 and

Equation 4.26, and thus,

σ2
p̂,k

σ2
n

=
2

n
. (4.35)

Notice that the estimated variance ratio does not depend on sensor location, i.e., it is con-

stant at 2/n across the sensors.

4.3 Results

This section illustrates several results to help understand the methodology for deter-

mining the optimal sensor locations. In the first example, the optimal sensor locations are

calculated when optimizing for a single azimuthal mode. The second example illustrates

the “mini-max” and “mini-sum” approaches by looking at the same problem but with con-

sidering multiple azimuthal modes. The last example illustrates the effect of optimal sensor

placement compared to the non-optimal case.
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4.3.1 Optimal sensor locations for a single azimuthal mode

Two sensors (n = 2)

Figure 4.2: (a) Two point masses and a round table. (b) Optimal sensor locations, top:
m = 1, k = 0 and bottom: m = 2, k = 1. h(θ2) as a function of S2 location for (c) m = 1
and (d) m = 2. S1 is located at 0◦. The red dots indicate the minimum h(θ2).

The first example considers the case where we would like to optimize the location of

two sensors (S1 and S2). Recalling the round table approach, two point masses must be

located 180◦ apart to balance the table. Without loss of generality, we can fix the first point
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mass (or sensor) at 0. Then, the second point mass must be located at 180◦.

Point 1 : φ1 = 0→ θ1 = φ1
2m

= 0

Point 2 : φ2 = π + 2kπ → θ2 = φ2
2m

=
(

1
2

+ k
)
π
m

where k ∈ Z (4.36)

For the first azimuthal mode (m = 1), Equation 4.36 indicates optimal sensor locations

at (0◦, 90◦ or (0◦, 270◦). Similarly, the optimum sensor locations for the second azimuthal

mode (m = 2) would be (0◦, 45◦), (0◦, 135◦), (0◦, 225◦), and (0◦, 315◦). Figure 4.2

(a) describes the round table with two point masses and Figure 4.2 (b) shows one of the

optimal sensor configurations for m = 1 and 2. To visualize the effect of the optimal

locations on the uncertainty propagation, a variance ratio of Riemann invariants to noise,

h(θ2), was numerically calculated as a function of S2, as shown in Figure 4.2 (c) . The

figure shows that for m = 1 case, h(θ2) is minimized to 1/n = 0.5 when S2 is at 90◦ or

270◦, which is consistent with Equation 4.36 and Equation 4.27. In this case, the variance

ratio of estimated to measured pressure is σ2
p̂/σ

2
n = 2/n = 1 for any sensor, i.e., there is no

reduction of the estimated complex pressure from the measured pressure. This is because

the degree of freedom of a least squares fit is n−2, which yields zero in this case. Similarly,

for m = 2 case, h(θ2) is minimized to 1/n = 0.5 when S2 is at 45◦, 135◦, 225◦ or 315◦.

The plot also quantifies the effect of the sensor not being located optimally.

Three sensors (n = 3)

Consider a case where we want to detect one azimuthal mode with three sensors. Three

point masses must be uniformly distributed to balance the round table. The optimal place-

ment is then given by:

Point 1 : φ1 = 0→ θ1 = φ1
2m

= 0

Point 2 : φ2 = 2π
3

+ 2k1π → θ2 = φ2
2m

=
(

1
3

+ k1

)
π
m

Point 3 : φ3 = 4π
3

+ 2k2π → θ3 = φ3
2m

=
(

2
3

+ k2

)
π
m

where k1, k2 ∈ Z (4.37)
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Figure 4.3: (a) Three point masses and a round table. (b) Optimal sensor locations, top:
m = 1, k1 = 1, k2 = 0 and bottom: m = 2, k1 = 2, k2 = 0. h(θ2, θ3) as a function of S2
and S3 locations for (c) m = 1 and (d) m = 2.

Figure 4.3 (a) shows the round table with uniformly distributed point masses and Figure 4.3

(b) is one of the optimal configurations for m = 1 and 2. Figure 4.3 (c) and (d) represent

the dependence of h(θ2, θ3) in S2 and S3 space for each m. Here, the grayscale indicates

h(θ2, θ3), the red lines are contour lines, and red dots denote the locations at which h(θ2, θ3)

is minimized. The figure shows that when the sensors are optimally located, the Riemann

invariant ratio, h(θ2, θ3) becomes 1/n = 1/3 at the minimum. Additionally, the variance
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ratio of estimated to measured pressure is calculated as σ2
p̂/σ

2
n = 2/n = 2/3 for any sensor.

This indicates that three sensors that are optimally located reduce the uncertainty by factor

of 2/3.

Four sensors (n = 4)

From the solutions for n = 2 and n = 3, it is possible to construct solutions for all

higher values of n > 3. We can illustrate this procedure for n = 4, noting that the two

sensor solution can be superposed to provide a solution for four sensors; for example, write

Equation 4.26 as:

4∑
j=1

sinφjk =
2∑
j=1

sinφjk +
4∑
j=3

sinφjk = 0 for k ∈ 1, 2, 3, 4

→
∑2

j=1 sinφjk = 0 for k ∈ 1, 2∑4
j=3 sinφjk = 0 for k ∈ 3, 4

(4.38)

The two bottom equations represent one possible solution, which is a superposition of the

n = 2 solution. However, a question arises as to whether there are additional solutions;

i.e., where the sum from j = 1 to 4 is zero, even while the sums from j = 1 to 2 and 3 to 4

are nonzero. For n = 4 and 5, we did numerically verify that they were the only solutions.

Note that the relative orientation of the (S1, S2) and (S3, S4) two sensor pairs is arbitrary,

so there is an infinite number of possible configurations. Specifically, the point masses are

balanced as long as each pair of them are 180◦ apart. The optimal placement is then given

by:

Point 1 : φ1 = 0→ θ1 = φ1
2m

= 0

Point 2 : φ2 = π + 2k1π → θ2 = φ2
2m

=
(

1
2

+ k1

)
π
m

Point 3 : φ3 = k2 → θ3 = φ3
2m

= k2
2m

Point 4 : φ4 = k2 + π + 2k3π → θ4 = φ4
2m

=
(
k2
2π

+ 1
2

+ k3

)
π
m

where k1, k3 ∈ Z, 0 ≤ k2 ≤ 2π

(4.39)
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Figure 4.4: (a) Four point masses and a round table. (b) Optimal sensor locations, top:
m = 1, k1 = k3 = 0, k2 = 2π, bottom: m = 1, k1 = k3 = 0, k2 = 3π/2. h(θ3, θ4) as a
function of two sensors given that the other two are fixed at (c) 0◦ and 90◦ or (d) 0◦ and
135◦. The grayscale, red lines, and red dots indicate h, contour of h, and the minimum h,
respectively.

For example, the top of Figure 4.4 (a) and (b) is the case where m = 1, k1 = k3 = 0

and k2 = 2π, and the bottom is the case where m = 1, k1 = k3 = 0 and k2 = 3π/2.

To visualize the dependence of h with respect to four sensors, we fixed two sensors and

plotted h as a function of the other two sensors, as shown in Figure 4.4 (c) and (d). The

optimal configurations yields h = 1/n = 1/4 and the estimated pressure ratio is σ2
p̂/σ

2
n =

2/n = 1/2. All solutions have the same variance ratio and, therefore, all provide equivalent
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performance. As such, the specific configuration that a user would want to choose would

be based upon access to installation.

4.3.2 Optimum sensor locations for multiple azimuthal modes

In this section, we consider how these results evolve when identifying multiple sensors.

To illustrate, consider the optimal placement of four sensors (as in the prior section), but for

the first three azimuthal modes simultaneously. The mini-max approach requires numeri-

cally finding the minimum of maxmj
D for entire combinations of the sensor locations. In

other words,D in Equation 4.12 is evaluated for eachmj value and the maximumD at each

combination is taken and plotted in Figure 4.5 (a). Here, maxmj
D at each (θ3, θ4) combi-

nation is denoted as grayscale, and S1 and S2 are fixed at 0◦ and 90◦ to visualize maxmj
D

in two dimensional space. The combinations at which maxmj
D is minimized are then

numerically found and chosen as optimal configurations denoted by red dots. Notice that,

unlike Figure 4.4 (c), the number of solutions is discrete due to considering multiple az-

imuthal modes simultaneously. A total of 2 out of 8 optimal configurations are unique,

which are shown in Figure 4.5 (c) and (d). Specifically, the uniformly spaced configuration

is no longer optimal because that leads to h(D) being infinity when m = 2. In general,

when the sensors are equally spaced, there may be an azimuthal mode at which the vari-

ance becomes infinitely large. If that azimuthal mode is one of the candidate modes we

care about, it is desirable to avoid the equally spaced configuration.

The mini-sum approach finds the optimal locations that minimize the sum of D over

each azimuthal mode number, mj . Figure 4.5 (b) plots the sum of D in (θ3, θ4) space, and

minimum (optimal) locations are denoted as red dots. Notice that the optimal locations are

identical to those in Figure 4.5 (a).

For either configurations in Figure 4.5 (c) and (d), maxmj
D or sum of D is minimized

to zero, and thus, the variance ratio, h(D) and σ2
p̂/σ

2
n, are calculated as 0.25 and 0.5, respec-

tively, for all azimuthal mode numbers considered here. Since the variance is not biased by
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Figure 4.5: (a) maxmj
D as a function S3 and S4 locations. The red dots indicate the

minimum value of maxmj
D. (b)

∑
D as a function S3 and S4 locations. The red dots

indicate the minimum value of
∑
D. (c), (d) Two optimal sensor locations.

the azimuthal mode number, one can determine the actual mode number among the candi-

dates by identifying which one provides the smallest variance between the measured and

the estimated complex pressure signal.

The full results for n = 2 − 4 sensors are summarized in Appendix A. It presents the

optimal sensor locations with a different number of sensors and azimuthal mode numbers

for up to three modes. For example, it shows that if n = 2, then an optimal location

(note that there are other optimum locations as well) of the second sensor to identify the

m = 1, 2, and 3 modes individually is 90◦, 45◦, and 30◦, respectively, with respect to the

first sensor. However, an optimum location to identify all three modes simultaneously is at
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37◦.

4.3.3 Example results: Pressure reconstruction from optimal sensor placements

This section illustrates these results on synthetic time series data. Table 4.1 shows the

parameter setting for the synthetic data with additive Gaussian noise. The sensor location

for case 1 is arbitrarily selected as a reference, whereas that for case 2 is determined from

the optimal locations, Figure 4.5 (c). Given this parameter set, the pressure anti-node is

located at θa = −60◦ (or 300◦) and its magnitude is |p(θa)| = F +G = 1.8.

Figure 4.6 (a) shows a detailed and long time series version of the simulated signals

from each probe. The dots indicate the true signal without the noise, and the lines are the

fitted signals obtained by using a least-squares method. The fitted line and the true signal

are in good agreement, indicating that the least-squares method is successfully applied.

Figure 4.6 (c) illustrates the same plots for case 2.

Figure 4.6 (b) and (d) represent a PDF of the difference between true and measured

signal (blue) and the difference between true and fitted signal (orange) for each sensor. The

variance of the noise is set to 0.1 for all cases. Compared to the variance of the measured

signal, the variance of the fitted signal is lower for both cases 1 and 2, implying that the

least-squares fit reduces the uncertainty. For case 1, the variance of the fitted signal depends

on each probe location, e.g., sensors 2 and 4 have the same variance (0.047) whereas sensor

1 has a maximum variance (0.066) and sensor 3 has a minimum variance (0.039). On the

other hand, the variances of the fitted signals are similar to each other for case 2, i.e., in this

case, they are all 0.05, which is half of the noise variance. This is consistent with the result

Table 4.1: Parameter setting for synthetic data

Case m fsample (Hz) facoustic (Hz) F G ϕFG (deg) σ2
n

Sensor location (deg)
S1 S2 S3 S4

1
1 20,000 1,600 1.0 0.8 120 0.1

0 60 220 240
2 0 90 135 225
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from Equation 4.35, i.e., the variance ratio, σ2
p̂/σ

2
n, for optimal configuration is 0.5 for all

sensors.

Figure 4.7 (a) shows the pressure magnitude distribution along the circumference ob-

tained from Equation 4.5. The red solid line indicates the true pressure magnitude and

the gray and black lines are for cases 1 and 2, respectively. The solid lines are the mean

pressure magnitude, the dashed lines are 95% confidence interval, and the vertical dotted

lines are the sensor locations. Strictly speaking, the distribution of the pressure magnitude

is not normal (Equation 4.5), especially around the pressure node (Figure 4.7 (c)). Based

on the normality test (not shown here), however, one can reasonably assume the normal

distribution around the pressure anti-node, as shown in Figure 4.7 (b).

Around the pressure node in Figure 4.7 (a), the mean pressure magnitudes for case 1 are

closer to the true value than that for case 2. This is because the sensors for case 1 are more

concentrated around the pressure node, e.g., sensors 3 and 4 (gray). In contrast, the mean

pressure magnitude for case 2 is more accurate than that for case 1 around the pressure

anti-node for the same reason. Specifically, the confidence interval for case 2 is much

narrower than that for case 1 around the pressure anti-node. This observation shows that

case 2 configuration is better to minimize the overall uncertainty of the magnitude around

the pressure anti-node. One may argue that the sensor configuration for case 1 would be

more useful when the pressure anti-node is located around the sensors. The problem is

that the pressure anti-node can locate anywhere or even rotate in the circular geometry for

the azimuthal mode. Therefore, the sensor configuration for case 2 is likely to capture the

magnitude of the pressure anti-node more accurately.

4.4 Conclusion

This chapter has introduced a methodology to determine the optimal sensor placements

for detecting azimuthal acoustic modes. Given the number of sensors and the modes of

interest, the optimal locations are selected in such a way that it minimizes the variance of
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Figure 4.6: (a) Pressure signal in time series for (a) case 1 and (c) 2. Dots: true signals,
lines: fitted signals using a least squares method. Subfigures show the zoom out version.
PDF of difference between true and measured/fitting signals for (b) case 1 and (d) 2.
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Figure 4.7: (a) Pressure magnitude distribution along the circumference. Red, gray, and
black lines represent the true, case 1, and case 2, respectively. The solid lines are mean
value, dashed lines are 95% confidence interval, and vertical dotted lines are sensor loca-
tions. PDF of pressure magnitude at (b) anti-node and (c) node.

the estimated amplitudes of CW and CCW waves (or Riemann invariants). The explicit ex-

pression for such locations requires solving simultaneous nonlinear equations, the physical

interpretation of which allows us to obtain the solutions intuitively. For n ≥ 4, the optimal

locations can be obtained from the combination of a lower number of sensors. It is found

that the optimal placements decrease the uncertainty of Riemann invariants by 1/n and that

of estimated pressure by 2/n. When the number of modes of interest is more than one,

mini-max and mini-sum approaches have been used to weight the different modes. Lastly,
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the paper has introduced a model problem to illustrate the effectiveness of the optimal sen-

sor locations. It is shown that the optimal placement provides a better estimate of pressure

magnitude at the anti-node.
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CHAPTER 5

ACOUSTIC MODE SHAPE ANALYSIS

5.1 Introduction

Thermoacoustic instabilities can occur over a wide range of frequencies and different

types of combustors. The particular focus of this thesis is on azimuthal modes. Annular

combustors are prone to exhibit low frequency azimuthal modes [7, 8]. On the other hand,

can combustors exhibit high frequency azimuthal modes referred to as “screech” [12, 13,

14, 11]. This screech tone is particularly problematic in combustion industries because its

high frequency and high amplitude pressure oscillations can damage hardware very rapidly

by fatigue failure [10, 124].

Several approaches have been developed to suppress high frequency thermoacoustic in-

stabilities. For example, baffles have been used to modify the acoustic resonance properties

and thus dampen the instability in a combustion chamber [125]. In addition, the distribution

of propellant injection, porous injector faceplate, and injection geometry have been used

to reduce the screech amplitudes [126]. Specifically, acoustic dampers, such as Helmholtz

or quarter-wave resonators, are commonly used to suppress high frequency or azimuthal

instabilities as they require physically smaller dampers [106, 108, 127]. The performance

of these acoustic dampers strongly depends on their location relative to the acoustic mode

shapes of the azimuthal instabilities [128, 129, 130, 131]. To efficiently mitigate these

azimuthal instabilities by using acoustic dampers, it is significantly important to identify

which acoustic mode is excited.

Different approaches have been used for identifying acoustic mode shapes. For exam-

ple, Krebs et al. [75], Singla et al. [111] and Bourgouin et al. [83] combined experimental

measurements with numerical results to validate a modal analysis. Hale et al. [110] devel-
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oped a screech wave analysis methodology to differentiate between transverse, longitudi-

nal, and complex modes. Poinsot et al. [65, 132], Wolf et al. [69, 72], and Nicoud et al.

[133] used a finite element method (FEM) to determine thermoacoustic modes, including

unsteady flame effects.

However, most of the approaches previously mentioned have focused on multi-nozzle

annular combustors, where the thin gap assumption is applicable, i.e., the length scale of

the annular gap is much shorter than that of the combustor’s radius. This assumption is not

valid for can combustors, where the geometry is not annular, but cylindrical. In addition,

can combustors with a large ratio of axial to radial dimension possess multiple transverse

and longitudinal modes with natural frequencies that are very close to one another. Because

the frequency spacing is very close, it is difficult to distinguish between each mode solely

based upon frequency calculations due to the inherent uncertainty in boundary conditions

and temperature profiles. The goal of this chapter is to propose a method for reconstructing

the mode shape of high frequency instability. Using multiple sensors in axial and azimuthal

directions, the method reconstructs the pressure distribution in each direction. The sensor

configuration used in this chapter is shown in Figure 3.1.

5.2 Pressure Reconstruction Method

5.2.1 Azimuthal direction

It has been shown from chapter 4 that the time varying complex amplitudes, f(τ) and

g(τ), can be estimated by a least squares fit described in Equation 4.10. The error of the

least squares fit can be quantified by an R squares value, R2 [111], i.e.

R2
θ = 1− ||P −M · X̂||

2

||P ||2
(5.1)

where ‖P‖ denotes the Frobenius norm of P . Here, R2
θ = 1 indicates zero error between

the fitting and the experimental data.
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Once the matrix,X , is estimated, a spin ratio (SR), which quantifies the dominant mode

between CW and CCW waves, can be defined as [83]:

SR =
F −G
F +G

(5.2)

Here, F and G are the magnitudes of CCW/CW waves. See Equation 4.4. Note that SR

ranges from −1 to 1. SR = 0 indicates a purely standing wave, SR = ±1 a purely

spinning wave in CW (−) or CCW (+) direction. Otherwise, the mode is a combination

of standing and spinning waves, i.e., a mixed wave. The presence of noise in these modal

amplitudes introduces bias errors in the SR estimate, whose magnitude was estimated from

Monte Carlo simulations. The detailed approach is described in Appendix B.

The pressure distribution in the entire azimuthal direction can be reconstructed as fol-

lows:



p̂(θ′1, t)

p̂(θ′2, t)

...

p̂(θ′N , t)


︸ ︷︷ ︸

P ′

=



eimθ
′
1 e−imθ

′
1

eimθ
′
2 e−imθ

′
2

...
...

eimθ
′
N e−imθ

′
N


︸ ︷︷ ︸

M ′

×X̂ (5.3)

where θ′j (j = 1, 2, .., N) is the azimuthal position ranging from 0 to 2π, and N is the num-

ber of grid points. Given the complex spatio-temporal pressure matrix, P ′, one can plot the

magnitude and phase distributions along the azimuthal direction at each realization. How-

ever, the actual distributions slowly vary in time because of the unsteadiness, which hinders

identification of the mode shape. Thus, to minimize the variation of the distributions,

1. The magnitude distribution at each realization is normalized by its spatial average.

2. The phase distribution at each realization is plotted with respect to one of the sensors.

3. Then, the temporal averages of both distributions with the error bar are plotted to
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visualize the mode shape.

5.2.2 Axial direction

The pressure distribution in the axial direction can be reconstructed in a similar way.

Considering sensors at the same radial and azimuthal, but different axial locations, the

radial and azimuthal components in Equation 2.21 do not contribute to the difference in

pressure signals between the sensors. Thus, the acoustic wave in the axial direction can

be modeled as a combination of Right-Ward (RW) and Left-Ward (LW) waves with time

dependent magnitudes and phases, i.e.

p̂(z, t) = (A1e
ikzz + A2e

−ikzz)e−iωt (5.4)

where the first and second terms on the RHS denote the traveling wave in RW (+) and LW

(−) direction, respectively. Given multiple sensor measurements at the same radial and

azimuthal, but different axial locations, Equation 5.4 can be rewritten as a matrix form, i.e.



p̂(z1, t)

p̂(z2, t)

...

p̂(zn, t)


︸ ︷︷ ︸

Pz

=



eikzz1 e−ikzz1

eikzz2 e−ikzz2

...
...

eikzzn e−ikzzn


︸ ︷︷ ︸

L

×

A1e
−iωt

A2e
−iωt


︸ ︷︷ ︸

Z

(5.5)

where xj (j = 1, 2, .., n) denotes the axial location of jth sensor. The matrix, Z, can be

estimated by a least squares fit.

Ẑ = (L∗L)−1L∗Pz (5.6)

It should be noted that, unlike the azimuthal mode number, the axial wavenumber is not

necessarily an integer. Therefore, it must be evaluated in advance. Otherwise, the matrix,

L, is unknown, preventing us from utilizing the least squares fit, Equation 5.6. This chapter
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estimates the axial wavenumber that minimizes a least squares error, using a procedure

detailed in Appendix C. The error of the least squares fit is given by

R2
z = 1− ||Pz − L · Ẑ||

2

||Pz||2
. (5.7)

Similar to the SR, a travel ratio, TR, can be defined as follows.

TR =
|A1| − |A2|
|A1|+ |A2|

(5.8)

Here, TR = 0 indicates a purely standing wave, and TR = ±1 means purely RW (+) and

LW (–) traveling waves. Otherwise, it is a combination of standing and traveling waves.

The axial pressure distribution can then be reproduced as follows:



p̂(z′1, t)

p̂(z′2, t)

...

p̂(z′N , t)


︸ ︷︷ ︸

P ′z

=



eikzz
′
1 e−ikzz

′
1

eikzz
′
2 e−ikzz

′
2

...
...

eikzz
′
N e−ikzz

′
N


︸ ︷︷ ︸

L′

×Ẑ (5.9)

where x′j(j = 1, 2, .., N) is an axial coordinate. By plotting the pressure in the axial

direction, one can visualize the axial mode shape. Notice that this reconstruction method

is not applicable across the flame or the contraction area due to the constant temperature

assumption.

5.3 Computational Analysis

The FEM solver COMSOL Multiphysics is used to calculate the acoustic mode shapes

at the experimental conditions. Figure 5.1 shows a two-dimensional slice of the entire

computational domain. The acoustic boundary condition for the inlet is set to rigid because

of the choked orifices, and the outlet to pressure release. All other solid surfaces including
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Figure 5.1: Mesh, boundary conditions, and flame shape.

walls are regarded as rigid boundaries with infinite impedance. The flame is regarded

as a cone shape, and the temperature of the domains before and after the flame is set to

uniform with preheat and combustion temperature, respectively. The detailed description

of estimation of combustion temperature is illustrated in Appendix C. The computational

domain is meshed with 2,495,747 tetrahedral elements, which gives 3,811,121 degrees of

freedom to be resolved. The FEM is then carried out to solve the Helmholtz equation to

predict eigenfrequencies and the corresponding mode shapes. Note that the flame transfer

function is not considered in the FEM, as it has little impact on the eigenfrequencies and

the associated mode shapes. Based upon the frequencies observed from the experiments,

this study considers only the first four azimuthal/longitudinal modes, which are shown

in Figure 5.2. It was found that the boundary conditions at the outlet have a negligible

effect on the eigenfrequencies and the associated mode shapes. This is because the cutoff

frequency drops at the area contraction, thus, the wave magnitude exponentially decays in

the axial direction, preventing it from interacting with the outlet boundary.

5.4 Results

5.4.1 Frequency spectrum

Figure 5.3 shows the frequency spectrum measured from sensors 1 and 3 for 1 second

during the instabilities. The peak frequency of the instability was around 1600 Hz. The

rough calculation from the FEM provides that the frequencies of the second azimuthal
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Figure 5.2: Azimuthal acoustic mode shapes obtained from FEM. ‘A’ and ‘L’ stand for
azimuthal and longitudinal, respectively.

Figure 5.3: Measured frequency spectrum from sensor 1 and 3, (a) zoom out and (b) zoom
in version. frequency and pressure amplitude are normalized by its peak frequency and
static pressure, respectively.
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(m = 2) and the first radial (l = 1) modes occur at approximately 2700 and 3500 Hz,

respectively, which are much greater than the observed frequencies. This confirms that the

instabilities are either a pure longitudinal (m = 0, l = 0) or azimuthal mode (m = 1, l = 0).

Notice that two distinct peaks appeared in the spectrum, the first peak at fp1/fp1 = 1

and the second at fp2/fp1 = 1.03, illustrating these closely spaced natural frequencies. The

acoustic mode identification is carried out for each peak.

5.4.2 Acoustic mode identification

This section describes the pressure dynamics and the acoustic mode shapes during the

instabilities. We will investigate the azimuthal and axial dependency separately.

Azimuthal dependency

Figure 5.4 (a) shows the time series signals from each sensor filtered at fp1 ± df/2.

Notice that the magnitudes (or envelopes) of each signal are similar to each other, but the

phases are different. This observation clearly indicates that the instability is not only the

first azimuthal mode (m = 1), but also close to a spinning wave. CCW and CW waves

are extracted by using a least squares fit given by Equation 4.10. Then, the SR and the

anti-nodal line are evaluated and plotted in the second and third rows in Figure 5.4. The

SR is close to unity indicating that the wave is predominantly spinning in CCW direction.

In Figure 5.4, the anti-nodal line hovers at around 80◦ and it jumps in CCW direction

at t = 0.4 s to around 260◦. A similar behavior is observed at t = 0.05 s, but in this case,

the anti-nodal line jumps in the other direction. This behavior seems to occur at the SR

near unity. The possible explanation for this phenomenon is that when the mode becomes

an instantaneously pure spinning wave, the anti-nodal line disappears, and when the mode

comes back to a mixed wave, the anti-nodal line reappears. This re-established anti-nodal

line may now be located at completely different locations from the initial location, which

appears to be an anti-nodal line jumping. A similar explanation is described in [9]. In
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Figure 5.4: First row: measured pressure signals in time series filtered at (a) fp1 ± df/2
and (b) fp2 ± df/2. The pressure is normalized by static pressure. SR (second row) and
anti-nodal line (third row) in time series.

addition, bearing in mind that the anti-nodal line is straight for the first azimuthal mode,

the line at 80◦ is the same at 260◦, which implies that the anti-nodal line seems to hover at

a fixed location. This may be attributed to the non-uniformity of the temperature or flow

field in the azimuthal direction. Lastly, the anti-nodal line is furthest from sensor 5 and

closest to sensor 2, yielding the minimum magnitude at sensor 5 and maximum magnitude

at sensor 2 in Figure 5.4 (a). As mentioned before, however, the magnitude differences

between the sensors are small because of the nearly spinning wave.

Figure 5.4 (b) shows the pressure signals filtered at fp2±df/2. Notice that the pressure
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magnitudes are also similar to each other, implying that the mode is close to the spinning

wave. This is obvious in the SR plot in the second row in Figure 5.4 (b) where the SR is

close to unity. However, unlike fp1, the anti-nodal line is predominantly rotating in CCW

direction.

The pressure magnitude and phase distributions along the azimuthal direction are re-

constructed by Equation 5.3 and plotted in Figure 5.5. Here, the black solid line is the

temporal averaged pressure distribution and the dashed lines denote the standard error. The

red cross represents the temporally averaged magnitude or the phase from each sensor. The

blue dash line denotes the distribution for 1A-a (Figure 5.5 (a)) and 1A1L-a (Figure 5.5

(b)) modes from the FEM results in Figure 5.2. The axial location in FEM is selected at the

same axial position of sensor 2.

In Figure 5.5 (a), the pressure magnitude of fp1 varies in the azimuthal direction, in-

dicating that it is not a pure longitudinal, but an azimuthal mode. In addition, non-zero

magnitude at the nodal line implies that the mode is not standing, but rather close to the

spinning wave. Last, the phase distribution from the experiments in Figure 5.5 (a) shows

an almost linear relationship with θ, which is the characteristic of the spinning wave.

It should be emphasized that the FEM, which solves the Helmholtz equation, provides

two orthogonal standing wave solutions. The actual mode is then a linear combination

of two solutions. For example, if either of the two solutions is negligible, then the resul-

tant mode is a pure standing wave, whereas if the two solutions are equally dominant, the

resultant mode is a pure spinning wave. In real combustors, however, the dominance of

each solution depends on the test conditions, providing standing, spinning or a combina-

tion of both waves [9, 90, 81, 79]. In Figure 5.5, the two orthogonal solutions are linearly

combined in such a way that the resultant mode is similar to those from the experiments.

Figure 5.5 (b) also shows a spinning wave mode shape, but the detail description is

omitted here as the general features are similar to those in Figure 5.5 (a).
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Figure 5.5: Pressure magnitude and phase along the azimuthal direction: (a) fp1 (b) fp2.
The magnitude is normalized by its spatial averaged value. The phase is plotted with respect
to sensor 2.
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Figure 5.6: First row: measured pressure signals in time series filtered at (a) fp1 ± df/2
and (b) fp2 ± df/2. The pressure is normalized by static pressure. Second row: TR in time
series

Axial dependency

Even though we found the instabilities to be the first azimuthal modes, they may also

have an axial dependency. Given the frequency and the estimated sound speed, the axial

wavenumber for fp1 was found to be purely imaginary, implying that the pressure mag-

nitude exponentially decays in the axial direction as explained in Equation 2.25. This

evanescent wave occurs due to a temperature jump across the flame [134]. This feature is

evident in the pressure magnitude distribution in Figure 5.7 (a).

Figure 5.6 (a) and (b) describe the pressure signals filtered at fp1 ± df/2 and fp2 ±

df/2, respectively. In Figure 5.6 (a), the pressure magnitude is maximum for sensor 1
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and minimum for sensor 3, whereas in Figure 5.6 (b), the magnitude is maximum for

sensor 2 and minimum for sensor 1. The second row in Figure 5.6 shows that the TRs

for both peaks fluctuate at a positive value, implying that the mode is slightly propagating

in the RW direction. For fp1, however, recall that the axial wavenumber is imaginary,

yielding the magnitude in RW and LW direction to be A1,2e
∓kiz where ki = k/i; i.e., the

magnitude depends on the axial position as well as A1,2. In other words, the acoustic wave

generated by the flame propagates in the RW direction, but the magnitude of the RW wave

exponentially decays, which then leads to an extremely small magnitude in the LW wave

at the reflection boundary. Therefore, the magnitude of the LW wave would be negligible

compared to that of the RW wave, leading to a nearly traveling wave in RW direction. The

reason for the TR far from the unity in Figure 5.6 (a) is that Equation 5.8 does not account

for the axial dependent term, e∓kiz, when the axial wavenumber is imaginary.

Figure 5.7 presents the pressure magnitude and the phase distributions along the refer-

ence line indicated in Figure 5.1. Here, z = 0 corresponds to the axial location at the area

contraction in the combustor. The FEM is plotted for 1A-a (Figure 5.7 (a)) and 1A1L-a

(Figure 5.7 (b)) modes from Figure 5.2. In the first row in Figure 5.7 (a), notice that FEM

also predicts the evanescent wave for fp1. However, the discrepancy between the experi-

ments and the FEM appears at the right end of the domain. This difference originates from

the fact that for evanescent wave, FEM predicts only the RW wave, resulting in a monoton-

ically decreasing magnitude and constant phase, whereas the reconstruction method takes

into account for both RW and LW waves in Equation 5.4. Whether to include the LW wave

or not is indeterminate, but without the LW wave, the phase variation between the sensors

in Figure 5.7 (a) would not be explained. Except for this deviation, the magnitude and the

phase from the experiments are in good agreement with those from the FEM. For fp2 in

Figure 5.7 (b), the experimental data shows the slightly RW propagating mode, whereas

the FEM predicts the perfect standing mode. This may be attributed to the effect of mean

flow [17] or the boundary condition at the outlet, i.e., some of the acoustic energy leaves
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the domain through the exhaust. However, considering the nodal line location and phase

variation in Figure 5.7 (b), the experimental data is close to the FEM results.

To sum up the acoustic mode shapes, we can conclude that fp1 and fp2 correspond

to 1A-a and 1A1L-a modes, respectively, which are described in Figure 5.2 (a) and (c)

from the FEM results. The R2 values of each direction and the frequency comparison

between the experimental and the FEM results are summarized in Table 5.1. Here, ∆f =

|fexp − fFEM|.

Figure 5.7: Pressure magnitude and phase along the axial direction: (a) fp1 (b) fp2. the
phase is plotted with respect to sensor 1.
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5.5 Conclusion

In this chapter, the acoustic mode shapes of the azimuthal instabilities in a multi-nozzle

can combustor have been investigated. During these instabilities, two strong distinct peaks

were observed, which is a common observation in a can combustor with a longer axial

than radial dimension. The rough calculation from the FEM suggests that the observed

frequencies were either a pure longitudinal or azimuthal mode. Next, the different pressure

signals between the sensors at distinct azimuthal locations confirm that the instabilities

correspond to the first azimuthal modes. However, the axial dependency of each mode is

difficult to be identified solely from the FEM as the eigenfrequencies of each mode are too

close to each other, which motivates the current study.

This chapter has introduced the methodology to reconstruct the pressure distributions

in axial and azimuthal direction by using measured signals from multiple pressure sensors

as well as the solution of the wave equation in a cylindrical cavity. The results from the

reconstruction method are compared with those from the FEM to validate the method. For

the azimuthal distribution, both peaks indicated that the modes are close to a spinning

wave. The axial distribution for the first peak showed an evanescent wave, and, for the

second peak, it manifested propagating wave. These distributions show a good agreement

between the experiments and the FEM results, validating the first and the second peaks as

1A-a and 1A1L-a modes, respectively. In conclusion, the methodology presented in this

chapter can be used to identify the high frequency azimuthal acoustic modes even though

Table 5.1: R2 values and comparison between experimental and fem results.

Frequency Mode ∆f/fFEM (%) R2

fp1 1A-a 0.139
R2
θ 0.9961

R2
z 0.9543

fp2 1A1L-a 0.422
R2
θ 0.9940

R2
z 0.8912
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their frequencies are close to each other.
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CHAPTER 6

EXPERIMENTAL INVESTIGATION OF MODAL DYNAMICS OF AZIMUTHAL

INSTABILITIES

6.1 Introduction

As explained in section 1.3, most analyses of this azimuthal mode have been performed

in annular combustors based on experimental and theoretical approaches. For example,

experimental studies have revealed that the azimuthal mode can manifest itself as a spinning

wave that propagates in CW or CCW, a standing wave whose nodal line stays at a fixed

location or rotates slowly compared to the speed of sound, or a mixed wave, which is a

combination of spinning and standing waves. The appearance of spinning, standing, and

mixed waves depends on the operating conditions such as equivalence ratio [81] and nozzle

geometry [9].

However, comparable studies of modal dynamics of azimuthal modes in can combus-

tors are relatively scarce. A key difference between the annular and can combustors is the

number of degrees of freedom of acoustic wave motions. Wave motions are nearly one-

dimensional in annular combustion chambers where the annulus width is small relative

to the overall diameter. Moreover, the “thin gap” assumption is remarkably accurate even

when this ratio is not small in annular combustors [17]. In contrast, azimuthal modes are in-

herently two- or three-dimensional in can combustion chambers. Thus, one question arises

as to how this additional degree of freedom manifests itself in azimuthal modal dynamics.

The experiments in this chapter were conducted over a range of flow rates/thermal

power settings and azimuthal symmetry of nozzle fueling, in order to better elucidate

the functional relationship between modal dynamics, operating conditions, and azimuthal

asymmetry in a can combustor. Although this study focuses on azimuthal asymmetry, the
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Table 6.1: Operating conditions

Case
Fuel

config.

Preheat Equiv.
PR
(-)

OR
(-)

Air mass
temp. ratio flow
(K) (-) (kg/s)

1

1 600 0.55 0.1
0.5

1.2
2 1.4
3 1.54
4

0.55
1.19

5 1.53

effects of other operating conditions are reported in section 6.7.

6.2 Experimental Setup

Figure 6.1 shows the sensor configuration and two different fuel staging configurations.

The sensor configuration shown in Figure 6.1 (b) is the optimal location obtained from

chapter 4 for detecting the first azimuthal mode. For fuel configuration 1, the alternating

pairs of O1 and O2 are placed around the circumference. For configuration 2, O1 and O2

are placed in alternating order. In this chapter, we swept the total mass flow rate of air and

fuel, maintaining other parameters, such as preheat temperature and global equivalence

ratio, constants. For example, Figure 6.2 shows the time trace of operating conditions at

which the experimental data was obtained. Before the data was analyzed, the operating

conditions were stabilized for 30 seconds. The sweep was carried out with uniform (OR =

0.5) and non-uniform (OR > 0.5) azimuthal fuel staging. We will first examine the uniform

fuel staging cases at three different mass flow rates and then briefly explore the non-uniform

staging cases, which are summarized in Table 6.1.
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Figure 6.1: (a) Side schematic of combustor. (b) Schematic of multi-nozzle and sensor
configuration. ‘P’ and ‘O’ denote pilot and outer nozzles, respectively.
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Figure 6.2: Time trace of operating conditions and instability amplitude. Red vertical lines
indicate the conditions at which the data is analysed. Top: air mass flow rate, middle:
global equivalence ratio and pilot ratio, bottom: instability amplitude from each sensor.

6.3 Mode Characterization

As shown in Equation 4.4, the acoustic pressure in azimuthal direction can be modeled

as a superposition of CCW and CW waves.

p̂(θ, t) = Fei(mθ+ϕ̃F−ωF t) +Ge−i(mθ−ϕ̃G+ωGt) (6.1)

Notice that the oscillation frequencies of CCW/CW waves are set differently to provide a

more general expression. However, assuming their difference is small, we can absorb the

frequency difference into the phase, and express the oscillation frequencies to be identical

by introducing a mean angular frequency, ω̄FG = (ωF + ωG)/2, and frequency difference,

∆ω = ωF − ωG where ω̄FG � ∆ω.

p̂(θ, t) = Fei(mθ+ϕF−ω̄FGt) +Ge−i(mθ−ϕG+ω̄FGt) (6.2)
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Here, ϕF = ϕ̃F −∆ωt/2, and ϕG = ϕ̃G + ∆ωt/2. The pressure magnitude as a function

of θ is given by Equation 4.5.

|p̂(θ)| = [F 2 +G2 + 2FG cos(2mθ + ϕFG)]1/2 (6.3)

Here, ϕFG = ϕF − ϕG.

To remind the readers the important parameters, the spin ratio is defined as Equation 5.2

[83]

SR =
F −G
F +G

(6.4)

The anti-nodal line and the corresponding pressure magnitude are given by Equation 4.6

and Equation 4.7.

θ =
nπ − ϕFG

2m
≡ θa, where n = 0, 2, 4, . . . (6.5)

|p̂(θ = θa)| = F +G (6.6)

For the first azimuthal mode (m = 1), θa = −ϕFG/2. Note that ϕFG is directly related to

the anti-node, which is dependent on the coordinate system.

The quantities, F, G, SR, ϕFG, are extracted from the measurements using a least

squares fit (Equation 4.10) and used to describe the modal dynamics of the azimuthal mode.

6.4 Phase Portrait Reconstruction

As shown in the previous section, the azimuthal mode can be modeled as a superpo-

sition of two CW/CCW waves, which provides 3 degrees of freedom, i.e., the amplitudes

of each wave (F and G) and their phase difference (ϕFG). Describing these dynamics in

a phase portrait requires three-dimensional space. This portrait with numerous trajectories
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may be difficult to interpret because of its complexity. Therefore, the two amplitudes are

combined into the spin ratio (SR), and two dimensional phase portrait in SR and ϕFG space

is visualized.

Furthermore, a phase averaging technique was applied to the time series to eliminate

the high dimensional (turbulent) dynamics. The basic idea is to determine the average

evolution of SR and ϕFG after time, ∆t. In other words, given a certain value of SR and

ϕFG at a time, t, this procedure determines the average behavior of SR and ϕFG after time,

∆t. Thus, the following procedures were applied to the time series data.

1. Divide phase space (SR,ϕFG) into M ×M grid.

2. For each grid, evaluate mean value, (SRi, ϕFG,i).

3. From time series data, find every points satisfying |SR − SRi| < εSR and |ϕFG −

ϕFG,i| < εϕFG
simultaneously, denoted by (SR(ti), ϕFG(ti)).

4. Identify every data points, (SR(ti + ∆t), ϕFG(ti + ∆t)).

5. Compute ensemble average of (SR(ti + ∆t), ϕFG(ti + ∆t)), denoted by (〈SR(ti +

∆t)〉, 〈ϕFG(ti + ∆t)〉).

6. Plot vector from (SR(ti), ϕFG(ti)) to (〈SR(ti + ∆t)〉, 〈ϕFG(ti + ∆t)〉) in phase

space.

7. Repeat these steps for each SR and ϕFG pair. Results are plotted for all pairs with >

10 realizations.

For the results presented here, we used M = 21, εSR = 2/M, εϕFG
= 2π/M , and ∆t = 10

acoustic cycles. When plotted in this way, limit cycle oscillations appear as fixed points in

(SR,ϕFG) phase space.
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6.5 Results

This section first introduces the uniform fuel staging case in detail such as time series

pressure data, frequency spectrum, and phase portrait. The non-uniform staging cases will

be shown later.

6.5.1 Uniform fuel staging

Pressure signals in time series

The first row of Figure 6.3 (a) – (c) shows 10 seconds time trace of the raw pressure

signals measured from two sensors, S1 and S2, for cases 1 – 3. S3 and S4 are omitted

here, as they are similar to S1 and S2, respectively. The bottom of Figure 6.3 (a) – (c)

illustrates the ensemble averaged magnitudes of the Fourier transform, which is obtained

by estimating the Fourier transform for 1 second of data, averaging the power spectrum,

and then taking the square root of the averaged value. The figures show two distinct peaks

whose frequency difference is about 53 Hz. The mode shape analysis described in chapter 5

demonstrated that the first and second peaks correspond to the first azimuthal (1A) and the

first azimuthal/longitudinal (1A1L) modes, respectively. This chapter focuses on 1A mode

only, i.e., the signal is band-pass filtered around 1A with a bandwidth indicated by the

shaded region.

As shown in Figure 6.3 (a), when the flow rate is low (case 1), the pressure amplitude

for S1 is larger than that for S2, but they are almost out-of-phase, implying that the mode

is close to a standing wave. In addition, one can see that the 1A mode in the spectrum

consists of two very closely spaced peaks, approximately 6 Hz apart, that will be discussed

further later.

For an intermediate flow rate (case 2), the relative amplitude changes in time, i.e.,

sometimes S1 has a larger amplitude than S2; other times they have similar amplitudes.

The spectrum also shows two closely spaced peaks 11 Hz apart, which is higher than case
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Figure 6.3: Top: raw pressure signals from sensor 1 and 2 for (a) case 1, (b) 2, and (c) 3. In
subfigures, thick and thin lines denote the band-pass filtered and raw signals, respectively.
Bottom: ensemble-averaged Fourier transform from sensor 1 and 2 for each case.
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1.

For a high flow rate (case 3), the amplitudes remain similar to each other all the time,

and the spectrum is composed of only a single peak.

Dynamics of CW/CCW wave magnitudes

We next consider the slow time scale characteristics of the extracted parameters. The

top of Figure 6.4 (a) – (c) illustrates the time trace of extracted CCW/CW wave magnitudes

normalized by static pressure, and the normalized pressure magnitude at the instantaneous

anti-node for each case. The bottom of Figure 6.4 (a) – (c) plots the ensemble averaged

Fourier transform of CCW/CW waves for each case.

For case 1, F and G are oscillating around a fixed value, but their oscillations are

approximately sinusoidal and out-of-phase to each other. The corresponding Fourier trans-

form shows two peaks closely spaced to each other where their difference is about 6 Hz.

Bulk azimuthal flow is one potential mechanism for this frequency difference as calcula-

tions based upon the computed flow indicate a frequency difference of 10 Hz. If the az-

imuthal flow were the mechanism for these two peaks, however, the CW and CCW waves

would separately peak at one of the two frequencies. However, Figure 6.4 (a) clearly shows

that each of the CCW/CW waves has two peaks overlapping each other. These two peaks

are a manifestation of a quasi-periodic oscillation, where the instantaneous amplitudes F

and G oscillate at their frequency difference. Hereafter, we refer to this as a quasi-periodic

standing wave.

For case 2, F and G show intermittency as they sometimes show standing wave behav-

ior observed in case 1; other times F dominates overG. The Fourier transform also exhibits

two peaks: the first peak where CCW/CW have a comparable amplitude, the second peak

where CCW amplitude is greater than CW amplitude.

For case 3, F dominates over G most of the time, which is also seen in the Fourier

transform.
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Figure 6.4: Top: time trace of CCW(F )/CW(G) wave magnitudes as well as the pressure
anti-node magnitude for (a) case 1, (b) 2, and (c) 3. Bottom: ensemble averaged Fourier
transform of CCW/CW waves for each case, normalized by their peak value.
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Figure 6.5: SR and ϕ̄FG in time series for (a) case 1, (d) 2, and (g) 3. PDF of SR and ϕ̄FG
for (b) case 1, (e) 2, and (h) 3. Ensemble averaged Fourier transform of SR and ϕ̄FG for (c)
case 1, (f) 2, and (i) 3.

Dynamics of SR and ϕ̄FG

Figure 6.5 plots the time trace of SR and the normalized phase difference, ϕ̄FG =

ϕFG/π, between CCW/CW waves, their PDFs, and the ensemble averaged Fourier trans-

form for each case. Starting from case 1, SR is oscillating around zero as expected, but ϕ̄FG

is also oscillating in a sinusoidal manner. Since ϕ̄FG is directly related to the orientation of

the anti-node, the oscillation in ϕ̄FG is equivalent to the oscillation in the anti-nodal line.

Also note that the oscillations of SR and ϕ̄FG are not synchronized, but the oscillation in

ϕ̄FG leads that in SR by about 90◦, e.g., see subfigure in Figure 6.5 (a). This phase lag will
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result in a circular orbit in averaged phase portrait, discussed later. The PDFs of SR and

ϕ̄FG show a unimodal distribution, implying one stable equilibrium point. The peak of SR

PDF is around zero, meaning that the instability mode is close to a standing wave. The peak

of ϕ̄FG PDF is around 0.4 or ϕFG = 72◦, indicating that the anti-node is located at around

θa = −36◦ from Equation 4.6. This explains the reason for the relative amplitudes and out

of phase between S1 and S2 in Figure 6.3 (a), i.e., anti-node is close to S1 than S2, and the

node is located between S1 and S2. The FFT in SR and ϕ̄FG shows a dominant peak at

around 10 Hz, demonstrating a coherent oscillation. Also, note that the peak frequency in

the spectra is close to the frequency spacing observed in Figure 6.4 (a). These observations

imply that they are not driven by simply a stochastic forcing, but rather coupled to each

other by a lower degree of freedom process.

For case 2, SR and ϕ̄FG intermittently switch between two values. Specifically, SR

hops between zero and 0.5, whereas ϕ̄FG hops between 0.4 and -0.7. Note that their transi-

tions occur simultaneously. In subfigure, for example, when SR switches from 0.5 to zero,

ϕ̄FG shifts from -0.7 to 0.4, and vice versa. In addition, when ϕ̄FG lingers around -0.7, it

sometimes drifts to one/the other directions equivalent to the rotation of the anti-nodal line.

The PDFs of SR and ϕ̄FG exhibit a bimodal distribution, implying bistability of the system.

Lastly, the peak amplitude around 10 Hz in the FFT is reduced compared to case 1.

For case 3, SR and ϕ̄FG mostly linger around nearly fixed values of 0.55 and -0.7,

respectively, indicating that the system has one stable equilibrium point. This is confirmed

by a unimodal distribution in the PDF. As discussed in Appendix B, the SR estimate is

subject to bias errors, which can influence the interpretation of estimated SR values. Using

the approach described there to estimate this bias error leads to an estimated bias of 0.1 ±

0.05. As such, we can confidently say that this SR = 0.55 value reflects a mixed wave, not

a purely spinning wave with large noise intensity. SR transitions to -0.55 at t = 7.5 s, but

it immediately returns to 0.55. Also, note that the Fourier transforms for case 3 show no

dominant peak compared to case 1.
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Figure 6.6: Averaged phase portrait in SR and ϕ̄FG space for (a) case 1, (b) 2, and (c) 3.
The gray scale denotes the joint PDF of SR and ϕ̄FG. The red arrows and their head size
indicate the trajectories and velocity magnitude.

Phase averaged portrait

To eliminate the high dimensional (turbulent) dynamics and visualize the low order

dynamics, a phase averaging technique, detailed in section 6.4, was applied to each case.

When SR and ϕ̄FG are plotted in the phase space, limit cycles and quasi-periodic oscil-

lations appear as Fixed Point (FP)s and closed orbits, respectively (while, theoretically,

quasi-periodic orbits are never closed, the averaging procedure necessarily has finite phase

space resolution and closes them).

Figure 6.6 shows the SR and ϕ̄FG phase portraits for case 1 - 3. For case 1, the phase

portrait shows the trajectories converging to the center, (SR, ϕ̄FG) = (0, 0.4), and the joint

PDF shows a unimodal distribution. This implies that the system has one stable attractor

at the center, denoted by AS where subscript ‘S’ indicates a standing wave. In addition,

the trajectories are spiraling in towards the attractor in the CW direction, which is expected

from the 90◦ phase lag between the oscillations in SR and ϕ̄FG described in Figure 6.5

(a). Without the noise contribution, the system would be stabilized at the stable attractor.

However, the noise continuously perturbs the system from its attractor, and the system

repeatedly converges towards this attractor, forming the CW spiral trajectories.

For case 2, a much larger range of behaviors and attractors are observed and the struc-
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ture of the phase portrait is more complex. First, the stable attractor at (0, 0.4) observed

from case 1 still exists, but the system shows another stable attractor at (SR, ϕ̄FG) =

(0.55,−0.7), denoted by ACCW , which corresponds to the CCW dominant mixed wave.

The joint PDF similarly demonstrates discrete peaks associated with these two attractors at

(0, 0.4) and (0.55,−0.7). Second, two saddle points, denoted by S, are also observed near

the top and bottom boundaries.

For case 3, ACCW still exists at the bottom right corner, but AS is not visible, demon-

strating that it is strongly repelling. Rather, a CW mixed wave attractor, ACW , appears at

the bottom left corner although the joint PDF around it is sparse. This implies that ACW

may be a stable attractor, but its strength is so weak that the system can be readily expelled

from the attractor by the external noise, and it converges toACCW . The system stays around

this attractor most of the time.

Figure 6.6 shows the overall structure of the phase portrait. However, there exist empty

regions in the portrait because of either insufficient sampling time or low noise intensity.

We have acquired additional phase portraits with longer sampling time at a range of other

operating conditions in Appendix D. These portraits show that there is a saddle point in

the empty regions in Figure 6.6, but the overall structure remains the same even at different

operating conditions.

6.5.2 Non-uniform fuel staging

Dynamics of SR and ϕ̄FG

This section presents cases 4 and 5 where the fuel is non-uniformly staged through fuel

configuration 1. The fuel staging effect of configuration 2 will be shown in subsection 6.5.4.

Here, we present only the dynamics of SR and ϕ̄FG as well as the phase portraits for

brevity, i.e., the dynamics of CCW/CW waves and the associated Fourier transform are

similar to those in case 1. From Figure 6.7, several observations have been made. First, the

quasi-periodic standing wave only appears with non-uniform staging cases. Second, as the
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Figure 6.7: SR and ϕ̄FG in time series for (a) case 4, and (d) 5. PDF of SR and ϕ̄FG for (b)
case 4, and (e) 5. Ensemble averaged Fourier transform of SR and ϕ̄FG for (c) case 4, and
(f) 5.

flow rate increases, the modulation frequency, fmod, increases from 19 Hz to 27 Hz. This

increase in frequency was not shown in Figure 6.5 as the mode switches to a mixed wave

for a high flow rate. Third, the amplitude of modulation grows with increasing flow rate

as shown in the spectra. The dependence of the modulation frequency and amplitude as a

function of mass flow rates will be analyzed further in the next subsection.

Phase averaged portrait

Figure 6.8 illustrates the phase portraits for cases 4 and 5. The overall structures are

similar to Figure 6.6 (a), i.e., the system possesses a standing wave stable attractor, and

the trajectories are spiraling in CW direction. The only difference is that the attractor is

now located at (SR, ϕ̄FG) = (0, 0) for both cases as opposed to case 3. This is presum-

ably because the hot flames are oriented in a horizontal direction for fuel configuration 1

with OR > 0.5 (Figure 6.1), fixing the anti-nodal line at the horizontal direction. Thus,

θa = ϕFG = 0. Comparing cases 4 and 5, the joint PDF in case 5 shows the wider dis-
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Figure 6.8: Averaged phase portrait in SR and ϕ̄FG space for (a) case 4, and (b) 5.

tribution, demonstrating large amplitude modulations shown in Figure 6.7 (d). In addition,

the trajectory velocity is higher for case 5 than case 4 because of the higher modulation

frequency shown in Figure 6.7 (f).

6.5.3 Comparison between uniform and non-uniform fuel staging

Figure 6.9 (a) represents the normalized anti-node magnitude, (F +G)/p̄ , with respect

to air mass flow rate with different ORs. The magnitude exhibits a supercritical Hopf

bifurcation at a certain mass flow rate, at which it exhibits oscillations at 1A mode. The

magnitude increases monotonically with mass flow rates over the range tested here. As

shown in the figure, both the location of the Hopf bifurcation and magnitudes are also

functions of azimuthal non-uniformity parameter, OR.

Figure 6.9 (b) illustrates SR as a function of anti-node magnitude. The SR in this plot is

averaged value over 1 second. At low magnitudes, SR is close to zero, implying a standing

wave. For intermediate magnitudes, SR fluctuates between zero and 0.55, demonstrating

intermittency. For high amplitudes, SR is stabilized at 0.55. Notice that when OR > 0.5,

the magnitude is too low to reach the bistable regime, resulting in a standing wave only.
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Figure 6.9: (a) Normalized pressure anti-node magnitude as a function of air mass flow rate
with different ORs. (b) SR as a function of normalized pressure anti-node magnitude with
different ORs.

Figure 6.10: (a) SR modulation frequency as a function of normalized anti-node magnitude
with different ORs. (b) SR modulation amplitude as a function of normalized anti-node
magnitude with different ORs.
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We have observed in Figure 6.7 that the SR modulation frequency, fmod, and the asso-

ciated amplitude, ∆SR(fmod), vary with mass flow rates. Thus, it is worthwhile to explore

their relations in detail. As the instability amplitude is monotonically related to overall

combustor power/flow rate for this investigated parameter range (but certainly not in gen-

eral), these dependencies more probably reflect a sensitivity of this quasi-periodic standing

wave to linear amplification/damping parameters (as also suggested by the theory described

in chapter 7) that influence combustion instability amplitude. As such, we plot the modula-

tion frequency and the associated amplitude as a function of anti-node magnitude at differ-

ent ORs in Figure 6.10. Figure 6.10 (a) shows that the modulation frequency increases with

the anti-node magnitude as long as the azimuthal mode remains as a standing wave. In ad-

dition, the modulation frequency increases with azimuthal non-uniformity. Figure 6.10 (b)

shows that as the anti-node magnitude increases, the modulation amplitude first decreases

and then increases. This can be understood by examining how small perturbations in wave

amplitudes, translate to perturbations in SR:

∆SR =
2(G∆F − F∆G)

(F +G)2
(6.7)

The sinusoidal oscillation in SR, described in Figure 6.5 (a), Figure 6.7 (a) and (d), implies

that the derivative of F and G are out-of-phase to each other. Thus, for the case where

∆F = −∆G, Equation 6.7 can be rewritten as:

∆SR|∆G=−∆F =
2∆F

F +G
=

2∆F

|p̂(θa)|
(6.8)

Equation 6.8 explicitly shows that when the anti-node magnitude is small, the small per-

turbation of F and G induces a large fluctuation in SR. As the anti-node magnitude grows,

the SR modulation amplitude decreases. When the increase in ∆F dominates over that

in |p̂(θa)|, the SR modulation amplitude starts to increase. These are clearly observed in

Figure 6.10 (b).
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Figure 6.11: (a) Effects of mass flow rate and OR on the mode structure. (b) Effects of
anti-node magnitude and OR on the mode structure.

To sum up the overall observations, the system inherently possesses multiple FPs whose

stability depends on the operating conditions. For low flow rates with uniform fuel distri-

bution, the attractor consists of a standing wave. For intermediate flow rates, both standing

and CCW mixed wave FPs are attractors. In this case, background noise perturbs the sys-

tem state so that it never lies on one attractor, but is occasionally driven from one attracting

domain to another. Lastly, for high flow rate, CW/CCW mixed wave FPs are attractors,

but their relative strength considerably differs. When the fuel is staged non-uniformly,

the system exhibits only the standing wave FP regardless of mass flow rates. Figure 6.11

summarizes these results, showing them in two different ways. The cloud of points in the

images represents the experimental conditions that this plot is based upon.

6.5.4 Effects of fuel staging pattern

Here, we briefly show the effects of fuel staging configuration 2. Figure 6.12 (a) and (b)

show the same plots with Figure 6.9 (a) and (b) but with fuel configuration 2. Figure 6.12

(a) demonstrates that the onset of the instability follows similar trends with those for fuel

configuration 1, i.e., Hopf bifurcation point advances and delays as the OR increases. As

the flow rate increases, however, the pressure magnitudes collapse to each other, implying

that the fuel configuration 2 has little effect of mitigating/suppressing the instability. In

addition, Figure 6.12 (b) shows that the instability mode exhibits not only a standing wave
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Figure 6.12: (a) Normalized pressure anti-node magnitude as a function air mass flow rate
with different ORs. (b) SR as a function of normalized pressure anti-node magnitude with
different ORs.

at low magnitudes but also a switching mode at large magnitudes regardless of OR. This

suggests that fuel configuration 2 has a negligible impact on modal dynamics.

Figure 6.12 shows a very significant implication. That is, the pattern of the fuel staging

plays an important role in controlling the azimuthal instabilities. A natural question is then

what pattern has the most impact on the azimuthal mode. This question will be answered

in chapter 7.

6.5.5 Relationship between acoustic pressure and heat release fluctuation

Having considered the various modal natures of the azimuthal modes, it is interest-

ing to explore how the heat release fluctuation behaves with respect to acoustic pressure.

CH* chemiluminescence image was used to estimate the LOS heat release fluctuation. Un-

fortunately, when we changed the chamber liner from a metal to a quartz tube, only the

standing wave appeared during the instability. It is believed that the static pressure inside

the chamber dropped with the quartz tube because of the air leakage, decreasing the overall

instability amplitude, and thus, only standing wave showed up.

Before moving on, we would like to introduce the CH* chemiluminescence image.

Figure 6.13 illustrates the phase average CH* chemiluminescence image. The average in-
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Figure 6.13: Mean subtracted phase average image of CH* chemiluminescence. T denotes
one period of acoustic cycle.

tensity over one cycle is subtracted from each frame. Thus, red, blue, and green denote

positive, negative, and zero intensity, respectively. As expected, the CH* intensity oscil-

lates in a vertical direction. In other words, the intensities of the top and bottom of the

frame are always out of phase to each other. The overall intensity is maximized at t = T/8

and t = 5T/8. Noting that the intensity is a LOS image, almost zero intensity at the middle

implies that the nodal line is located at the middle at this moment. Also, note that the phase

average image exhibits somewhat vortical structures convecting downstream. These struc-

tures are probably the result of the interaction between acoustics and mean flow gradient

[91]. Note that the vortical structures are not clear as those in [91] because Figure 6.13 is

the LOS integrated image.

As explained in section 3.4, the top half of the chemiluminescence image was integrated

to get a scalar quantity as a function of time. Similarly, the pressure distribution in r − θ
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Figure 6.14: The normalized magnitudes and the phase difference between the recon-
structed pressure and the heat release fluctuation in time series.

plane was reconstructed using the azimuthal and radial components in Equation 2.21, and

then the top half of the pressure was integrated.

The magnitudes and the phase difference between the reconstructed pressure and the

heat release fluctuation are described in Figure 6.14. It shows a positive correlation be-

tween the magnitudes of these two quantities. In other words, when the pressure magnitude

increases/decreases, so does the heat release fluctuation. In addition, the phase difference

between two quantities is about ∠P ′Q′ ≈ 20◦. This satisfies the Rayleigh criterion ex-

plained in Equation 1.1 in chapter 1; the phase difference between pressure and heat release

fluctuations must be between -90◦ and 90◦ to add acoustic energy into the system. Thus,

Figure 6.14 implies that the acoustic energy is keep adding into the system, and the same

amount of energy is damped out, resulting in finite magnitude oscillations (not exponential

growth).

One may ask why the magnitudes of pressure and heat release fluctuations vary in time

if the additive acoustic energy is balanced with the damping of the system. This is because

the top half of the magnitude depends on the orientation of the nodal line, which varies

in time as shown in Figure 6.5 (a) and Figure 6.7. To illustrate this point, Figure 6.15
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Figure 6.15: The normalized heat release fluctuation magnitude as a function of nodal line
orientation. The color denotes sampling time.

represents the normalized heat release fluctuation magnitude as a function of nodal line

orientation. First, the nodal line starts from 50◦, increases up to 180◦, and oscillates around

180◦. An interesting point is the relationship between the nodal line orientation and the

heat release fluctuation magnitude. It is obvious that when the nodal line is around 90◦, the

magnitude is minimized, and when the line is around 180◦, the magnitude is maximized.

Specifically, when the nodal line moves away from 180◦, one can clearly see the decrease

in the heat release fluctuation magnitude. This is because of the LOS effect.

Figure 6.16 shows the LOS effect when the nodal line is oriented at (a) 90◦ and (b)

180◦. When the nodal line is in a vertical direction (Figure 6.16 (a)), the left and right sides

of the heat release are oscillating out of phase to each other. Therefore, when the top half

of the chemiluminescence image (the square dash box) is integrated, the left and right sides

cancel out, resulting in a minimum magnitude. If it were a purely standing wave (SR = 0),

then the integrated magnitude would be zero. The fact that the minimum magnitude in

Figure 6.15 is not zero implies that the SR is not exactly zero, but close to it. In contrast,

when the nodal line is in a horizontal direction (Figure 6.16 (b)), the left and right sides of

the heat release are oscillating in phase, enhancing the integrated heat release magnitude.
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Figure 6.16: Line of sight effect. (a) Nodal line at 90◦. (b) Nodal line at 180◦.

Thus, the magnitude would be maximized.

A takeaway from these observations is that (i) acoustic pressure and heat release fluc-

tuations are positively correlated, satisfying the Rayleigh criterion and (ii) orientation of

(anti-) nodal line has an influence on not only pressure but also the heat release oscilla-

tions. Notice that we have observed the (anti-) nodal line oscillation in Figure 6.5 (a) and

Figure 6.7. This observation was accomplished from the pressure measurements, which

are independent of the chemiluminescence measurement. However, Figure 6.15 shows that

chemiluminescence data also supports the oscillation of the (anti-) nodal line.

6.6 Discussion

It is worth emphasizing some common and different findings between this study and

the previous works.

First, the dynamics of SR have been reported from several experimental studies. For

example, SR exhibits not only standing and spinning waves but also bistable behavior de-

pending on the operating conditions [81, 9, 79]. However, the dynamics of ϕFG have

received little attention so far. This study experimentally demonstrates that ϕFG also has a

bistable regime. In addition, when the mode switches from a standing to a spinning wave,

ϕFG shifts by 180◦. These behaviors must be taken into account when developing low
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order models.

Second, Figure 6.9 (a) shows that as the mass flow rate increases, the magnitude in-

creases smoothly, implying that the system is transitioning from stable to a limit cycle via

a supercritical Hopf bifurcation. These observations can be captured by low order mod-

els using a flame describing function with a cubic nonlinearity [97, 100]. However, the

transition from a standing to a spinning wave is not smooth, but rather abrupt, as shown in

Figure 6.5 (d) and Figure 6.9 (b). This suggests that the transition occurs through a subcrit-

ical bifurcation, which requires higher-order nonlinearity. Hence, in order to capture this

bistable behavior, one may need to include the terms higher than the cubic order.

Third, the azimuthal fuel staging effect has already been studied by Noiray et al. [97].

The study shows that for mth azimuthal mode, only 2m component of the Fourier expan-

sion of the describing function and the temperature field affects the dynamics nature of

azimuthal modes. Since the first azimuthal mode appeared in this study, fuel configuration

1 corresponds to 2m component. This explains the reason that fuel configuration 1 has a

major impact on pressure magnitude, but not configuration 2. However, the dependence of

the Hopf bifurcation on the non-uniformity needs further investigation.

Last, Worth et al. [81] reconstructed similar phase portraits in SR and nodal line space.

This results in CCW spiral trajectories around a standing wave attractor, which is in the op-

posite direction from those in this study. This discrepancy originates from the relationship

between (anti-) nodal line and ϕFG. Note that the relationship in Equation 4.6 involves

a minus sign. Therefore, if corresponding to the phase space, one would obtain similar

portraits from [81] and this paper.

6.7 Effects of Other Parameters

The prior sections mainly focus on the total flow rates (or thermal power) and azimuthal

non-uniformity effects on the instability magnitude and modal nature. This section briefly

shows the other parameters effect such as PR or global equivalence ratio. A detailed anal-
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Figure 6.17: (a) Dependence of azimuthal instability magnitude in air flow rate and global
equivalence ratio space. (b) Top, middle: side view. Bottom: top view. The color denotes
the normalized instability magnitude.

ysis has not been conducted for these parameters, but the results shown in the section will

provide a recommendation for future works. The total number of runs and data points we

have collected are 64 and 88,752, respectively.

Figure 6.17 illustrates the dependence of azimuthal instability magnitude in air mass

flow rate and global equivalence ratio (φ). Here, the magnitude is the anti-node magnitude

normalized by static pressure. It should be noted that the magnitude is not just a function

of air flow rate and global φ, but there are other parameters not shown here, i.e., PR and

preheat temperature also have an influence on the magnitude. We have chosen the air flow

rate and global φ to visualize the magnitude plot in three dimensional space.

The top of Figure 6.17 (b) is a side view of Figure 6.17 (a), representing the magnitude

as a function of global φ. It is shown that the magnitude is maximized around global φ =

98



0.552, and it decreases as the global φ moves away from this value. Although not analyzed

in detail, this is presumably due to the variations in flame location, product temperature,

and speed of sound. This nonlinear behavior is typical in combustion instabilities. Notice

that even though global φ = 0.552 may produce the maximum magnitude, there exist data

points with low magnitudes ranging from 0 to 0.1. This implies that the global φ = 0.552

is not a sufficient condition for the maximum magnitude, but there are other parameters

that affect the magnitude. For example, the middle of Figure 6.17 (b) shows the instability

magnitude as a function of air mass flow rate. it shows that the instability magnitude

increases with air mass flow rate, implying that the flow rate is also a key parameter to

produce the large instability magnitude. The bottom of Figure 6.17 (b) is the top view of

Figure 6.17 (a). It represents that the maximum magnitude occurs at global φ = 0.552 and

air flow rate of 1.5 kg/s. Although not explored in this test matrix due to the flow rate limit,

it is speculated that the magnitude would increase with a higher mass flow rate.

It is worth noting that even at the operating conditions of global φ = 0.552 and air

flow rate of 1.5 kg/s, there still exists data points with relatively low magnitudes. This

implies the other hidden parameters affecting the magnitude. To illustrate this point, we

have filtered the data point based on different ranges of PR, and plotted the instability

magnitude in global φ and air flow rate space, similar to the bottom of Figure 6.17 (b),

which is illustrated in Figure 6.18. The PR ranges from 0.06 to 0.14 with a step size of

0.01. The white dot indicates the normalized magnitude lower than a threshold, which is

0.01 in this case. The white dot tells us that we have explored those operating conditions,

but the magnitude is negligible.

Figure 6.18 explicitly shows that even if the global φ and the air flow rate are 0.552 and

1.5 kg/s, respectively, the instability magnitude is still dependent on PR. Specifically, the

maximum magnitude occurs at around 0.1 < PR < 0.11, and when PR deviating from

this range, the magnitude decreases, showing nonlinearities. This trend implies a potential

strategy to mitigate combustion instability. In fact, utilizing the pilot flame has already
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Figure 6.18: Dependence of azimuthal instability magnitude in global φ and air mass flow
rate space, filtered by PR. The color denotes the normalized magnitude, and white dot
represents the normalized magnitudes lower than 0.01.

been used to overcome the combustion instability problem in many applications [5, 3, 135,

136, 137]. However, the prior studies focus on the longitudinal instabilities, not azimuthal

ones. To the best of the author’s knowledge, Figure 6.18 would be the first report of pilot

flame effect on azimuthal instability.

Figure 6.19 (a) represents the dependence of SR in PR and normalized instability mag-

nitude, p′/p̄, space. The two parameters, PR and p′/p̄, have been selected because they

shows a large influence on SR. For example, the top of Figure 6.19 (b) is a side view of

Figure 6.19 (a), demonstrating the effect of p′/p̄ on SR. It demonstrates that when p′/p̄ is

small, the SR is clustered around zero, indicating a quasi-periodic standing wave as shown

in Figure 6.5 (a) and Figure 6.7 . When p′/p̄ gets larger, the SR is distributed between

±0.5, demonstrating intermittent regime. Further increase in p′/p̄ results in SR being ei-

ther ±0.5 or zero. These trends are similar to Figure 6.9 (b) except that zero SR at high

magnitudes was not observed in Figure 6.9 (b). This is presumably due to the other param-

eters not explicitly shown here. For example, section 7.3 proved that OR or the azimuthal

non-uniformity delays the transition from a standing to a mixed wave. Moreover, although

not analyzed here, other parameters such as preheat temperature may have an impact on

SR.
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Figure 6.19: (a) Dependence of SR in PR and normalized instability magnitude space. (b)
Top, middle: side view. Here, SW = standing wave, Int = intermittency, MW = mixed
wave. Bottom: top view. The color denotes the SR.
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Figure 6.20: Dependence of SR in PR and p′/p̄ space, filtered by preheat temperature. The
color denotes the SR.

The middle of Figure 6.19 (b) illustrates the dependence of SR on PR. It shows that

when the PR is relatively small (0.08 - 0.1), SR ranges between ±0.5, indicating the az-

imuthal mode could be a standing or CW/CCW mixed wave depending on the other param-

eters not shown here. However, when the PR is large (0.12 - 0.14), only the standing and

CW mixed wave show up. i.e., CCW mixed wave disappears at high PRs. This observation

somewhat agrees with the relationship between the bulk swirl direction and the spinning

direction [98]. When PR is high, relative fuel flows through the pilot nozzle increases,

and thus, the spinning direction is dominated by the pilot nozzle’s swirl direction, which is

CW. When PR is low, spinning directions between the outer and pilot nozzles compete with

each other, and the system may exhibit the standing or CW/CCW wave. To support this

hypothesis, however, measurements of the overall flow field or the detailed CFD analysis

need to be provided.

Figure 6.20 is a similar plot with Figure 6.19, but filtered by preheat temperature. The

temperature ranges from 540 K to 660 K with a step size of 15 K. The figure shows that

the instability magnitude is maximized at preheat temperature between 600 K and 630 K.

Notice that the positive (or red) SR only appears around PR between 0.08 and 0.1 at some

preheat temperature ranges, which is in agreement with the middle of Figure 6.19 (b). An
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Figure 6.21: Phase portraits for (a) CCW, (b) SW, and (c) CW dominant system.

interesting observation from this figure is the SR change with the increase in temperature.

In particular, if focusing on the positive (red) and negative (blue) SR only, one can see that

when the preheat temperature is low, the SR is relatively positive (or CCW mixed wave),

but it gradually shifts to negative (or CW mixed wave) at higher preheat temperature. This

is evident in the preheat temperature ranges of 600 K - 615 K (red dominated) and 615

K - 630 K (blue dominated). This implies the potential impact of preheat temperature on

the azimuthal spinning direction. We hypothesize that increasing the preheat temperature

alters the dominant bulk swirl direction, but to support this, the flow field measurements or

CFD analysis must be provided.

We close this section by introducing representative phase portraits for CW/CCW, and

SW dominant system with a large instability magnitude (p′/p̄ ≈ 0.08). Figure 6.21 illus-

trates each case, and Table 6.2 summarizes each operating condition. Notice that the overall

structure of the phase portraits resembles those in Figure 6.6. This similarity demonstrates

that even though the operating conditions are different, the overall phase portrait structure

remains the same.

6.8 Conclusion

In this chapter, the modal dynamics of azimuthal thermoacoustic instability have been

experimentally investigated. Multiple pressure sensors were installed at distinct azimuthal
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Table 6.2: Operating conditions for each case in Figure 6.21.

Figure 6.21 (a) Figure 6.21 (b) Figure 6.21 (c)
∆t (s) 30 30 30

Preheat temp. (K) 630 626 606
Global φ 0.557 0.576 0.545

PR 0.11 0.11 0.1
OR 0.5 0.487 0.5

Air flow rate (kg/s) 1.343 1.582 1.532
p′/p̂ 0.088 0.087 0.081

Dominant mode CW SW CCW

locations to extract the CW and CCW wave components from the measurements. The tests

were conducted at various mass flow rates with different azimuthal fuel staging, quantified

by an outer ratio (OR). No matter what the OR was, the instability amplitude monotonically

increased with mass flow rate, but for a uniform fuel staging case, the mode transitioned

from standing, intermittent regime, to spinning waves. The phase difference between CW

and CCW waves also showed the switching behavior at the bistable regime. The dynamics

of spin ratio (SR) and the phase difference (ϕFG) were well described in a phase averaged

portrait, showing multiple attractors and saddle points. For the non-uniform fuel staging

cases, only the standing wave was observed while sweeping the flow rates. In addition, the

amplitude was relatively lower than the uniform staging case, and the onset of the instability

showed a non-monotonic relationship with the outer ratio. Specifically, a sufficiently high

OR delayed the onset of the instability. These observations suggest potential mechanisms

to mitigate and/or suppress the instability level in the gas turbines.
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CHAPTER 7

LOW ORDER MODELING OF AZIMUTHAL MODE INSTABILITY

7.1 Introduction

As seen in the previous chapter, the azimuthal instabilities in can combustors exhibit

a variety of behaviors - including standing, spinning, mixed waves, and intermittent be-

haviors, as well as periodic limit cycles and quasi-periodic oscillations – depending upon

varying power and azimuthal symmetry. Similar behaviors were also observed in annu-

lar combustors. For example, experimental studies have reported standing, spinning, and

mixed waves depending on the operating conditions such as equivalence ratio [81, 90],

wall temperature [89], swirl intensity [93], fuel staging [4], and nozzle geometry [9, 79].

Numerical studies have reported similar behaviors of different azimuthal modes [72, 132,

65, 138, 87].

Based on these observations, numerous studies have proposed models to capture the

physics controlling which type of mode is present and its amplitude. These are nonlinear

models, as linear models can allow for any arbitrary superposition of disturbances. For

example, Equation 7.1 represents general two coupled second order harmonic oscillators.

η̈1 + α1η̇1 + ω2
1η1 = fNL,1(η1, η2, η̇1, η̇2)

η̈2 + α2η̇2 + ω2
2η2 = fNL,2(η1, η2, η̇1, η̇2)

(7.1)

Here, η1(t) and η2(t) describe the time varying amplitudes of two eigenmodes that are cou-

pled through the nonlinear terms on the RHS. Both eigenmodes are linearly stable when

the linear damping terms, α1,2, are positive, i.e., any perturbation to the system decays to

zero. When either of the linear damping terms is negative, the system is linearly unsta-

ble. For a single oscillator, the disturbance amplitudes exponentially grow in time until
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they saturate to a limit cycle through the nonlinear terms. Similar behavior can occur for

multiple modes, but other behaviors are also possible. For example, even though both

eigenmodes are linearly unstable, they do not necessarily coexist at the limit cycle - one

eigenmode can completely suppress the other, referred to as “quenching” [139]. This in-

teraction/competition between two eigenmodes is a typical feature of nonlinear systems.

For instance, when ω1 = ω2 and α1 = α2 < 0 in Equation 7.1, a nonlinearity of the form,

fNL,1 = −(aη2
1 + η2

2)η̇1 and fNL,2 = −(aη2
2 + η2

1)η̇2, allows both modes to co-exist at the

limit cycle for a > 1, while one mode drives the other to zero if a < 1.

Returning to the modeling of azimuthal modes, the azimuthal eigenmodes can be posed

in two equivalent ways: (1) as the nonlinear interaction and possibly competition be-

tween two standing eigenmodes (e.g., cos(mθ) and sin(mθ), where m is the azimuthal

wavenumber), or, equivalently, (2) as the interaction/competition between two counter-

rotating eigenmodes (e.g., exp(imθ) and exp(−imθ)). Depending on the choice of eigen-

mode pairs as well as the form of nonlinearity, both eigenmodes can coexist or one mode

suppresses the other. In addition, the associated eigenvalues could be identical (degener-

ate) or different (non-degenerate) from each other, depending on the problem setup. For

example, two standing waves could be non-degenerate through azimuthal non-uniformities

in the system [97], while for two spinning waves, bulk azimuthal flow is a source of non-

degeneracy [98].

The nonlinear interactions between these two azimuthal eigenmodes appear to first have

been treated by Schuermans et al. [94], who considered a nominally axisymmetric system

with degenerate eigenmodes. They examined the nonlinear interaction of two orthogonal

standing modes of an azimuthal instability and showed that, when the system is linearly

unstable, it evolves to a limit cycle where both standing modes coexist because of their

degeneracy. The combination of two standing eigenmodes results in a single spinning

wave, which could rotate in either the CW or CCW direction. The direction of the spinning

wave is solely a function of initial conditions. Hummel et al. [96, 140] investigated a
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similar problem, posing it in the form of two counter-rotating eigenmodes, considering a

nominally axisymmetric system, but allowing for non-degeneracy in the forms of different

frequencies and/or growth rates of the CW and CCW waves. Similar to Schuermans’s work,

they showed that only spinning waves are present at limit cycle conditions, but also showed

that non-degeneracy causes one spinning mode to be more probable than the other spinning

mode. To summarize, these studies point to the fact that the nominally axisymmetric system

shows only spinning wave dominant behavior at the limit cycle and, thus, do not capture

the fact that standing wave can also be present.

Noting this point, several studies have included the presence of non-uniformities into

their models. Such non-uniformities can exist in geometry, flow, or flame, such as due to

azimuthal variations in fuel-air ratio, swirl directions of individual nozzles, or a discrete

number of nozzles distributed azimuthally. Noiray et al. [97] analyzed a non-degenerate

combustor system due to non-uniform flame-acoustic coupling and mean temperature dis-

tributions, and showed that two standing modes could coexist for weak non-uniformities,

resulting in a spinning or mixed wave. For sufficiently large non-uniformities, only one

standing mode survives. Which standing mode appears depends on the shape of non-

uniformities. Later, Bauerheim et al. [98] considered a system with non-degeneracy due to

non-uniformities as well as azimuthal bulk flow, and showed that non-uniformities promote

standing waves, while azimuthal flow promotes spinning waves. A mixed wave could exist

when both non-uniformities and azimuthal flow are present. Ghirardo et al. [99] considered

a problem with degenerate eigenmodes and identical flames, so that the azimuthal varia-

tion was due to the presence of discrete nozzles located azimuthally, and similarly showed

co-existing standing/spinning waves, whose relative strengths were a function of nozzle

spacing.

As noted earlier, experiments show the presence of erratic switching between standing

and spinning waves at a fixed “steady-state” operational point. This switching may occur

in three ways. First, consider the case where the deterministic model possesses one stable
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attractor associated with either standing or spinning wave. In this case, background noise

perturbs the system continuously, allowing it to visit other points in the phase space, such

as repelling or saddle point solutions. In this case, the joint PDF of amplitudes of two

eigenmodes exhibits a unimodal distribution, roughly centered at the stable FP. This type

of model was first studied by Noiray and Schuermans [100], who introduced background

noise effects by including stochastic additive forcing into their model. They showed that

how stochastic forcing manifests itself in a unimodal joint PDF of two standing mode am-

plitudes, which could be centered around standing or spinning wave-dominant behaviors,

depending on the level of azimuthal non-uniformity. Second, the deterministic model could

have multiple attractors. In the deterministic case, the system will remain on one attractor,

based upon initial conditions. However, with sufficient noise levels, the system can travel

between these multiple attractors. The joint PDF in this case exhibits multiple peaks in the

distribution, associated with the different stable attractors [81, 9, 79]. For example, Faure-

Beaulieu et al. [82] developed a background noise driven model with non-uniform flame

describing function, and found that the system can switch between two stable CCW/CW

spinning attractors with a sufficient level of turbulent noise intensity. Similarly, Ghirardo

and Juniper [103] developed a deterministic model that incorporated sensitivity of heat re-

lease to transverse velocity oscillations, and showed that the standing and spinning waves

could be bistable at a fixed operating point, and thus, the system could intermittently switch

between them due to background noise. Thirdly, parametric noise can qualitatively change

system dynamics, stabilizing or destabilizing attractors for sufficient parametric noise. For

instance, Bothein et al. [102] noted that the preference of standing or spinning wave is

very sensitive to azimuthal flame temperature non-uniformity. Thus, the parametric noise

would be expected to lead to intermittency between standing and spinning waves at a fixed

operating condition. In any of these cases, it is clear that the inherent background noise

that is present in combustion systems plays an important role in the system’s dynamics.

Another interesting point about azimuthal modes is the behavior of the nodal line during
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the limit cycle. As noted earlier, in a system with azimuthal symmetry, there is no reason for

the nodal line to remain fixed during azimuthal mode oscillations, in contrast to axial/radial

mode oscillations. For example, LESs have shown that the nodal line of the standing wave

slowly rotates at a mean swirl velocity [72, 132]. Similarly, the experimental study by

Vignat et al. [141] reported the nodal line moving in a seemingly random fashion. However,

the system’s non-uniformities can fix the nodal line at a certain azimuthal location as shown

in the experiments [89] as well as reduced order models [82, 104].

In addition, the deterministic motion of the nodal line has been observed. Experimental

studies from Worth et al. [81] showed that the nodal line periodically oscillates around

a fixed azimuthal location with a slow time scale (referred to as quasi-periodic standing

wave hereafter). In other words, the nodal line’s average location appeared to be fixed, but

it did oscillate about this point in an approximately sinusoidal, coherent fashion; i.e., not

randomly. These oscillations lead to modulations in pressure amplitude measured at a fixed

azimuthal position. To the best of the author’s knowledge, none of the low order models

captures these observations. We show in this chapter that this behavior is the manifestation

of quasi-periodic oscillations, associated with two closely spaced frequencies, and is a

strong function of linear growth/damping rate and azimuthal non-uniformities.

We note in closing an additional point around modeling nonlinear systems with two

closely spaced frequencies, which introduce an additional slow time scale, 1/(ω1 − ω2),

and, therefore additional terms when applying the method of averaging techniques for non-

linear oscillator dynamics. These additional terms have not been applied in most studies of

nonlinear azimuthal modal dynamics [97, 96, 100], but as noted by Acharya et al. [142],

they can incorporate additional sensitivities to frequency spacing, as well as influence limit

cycle amplitudes and their stability. In extending this work to noise driven systems, John

et al. [143] similarly noted how these additional slow time scale terms led to drift in phase-

space trajectories.

To summarize the findings of reduced order models, azimuthal modes exhibit a purely
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spinning wave during the limit cycle if the system is axisymmetric. The spinning direction

depends on initial conditions, but non-degeneracy causes the system to prefer one direction

over the other. In systems with azimuthal non-uniformity, the system may show a mixed

or standing wave, and the orientation of the nodal line relies on the shape of the non-

uniformity. Lastly, background noise may responsible for switching between standing and

spinning waves.

While previous models capture some of the aforementioned effects, the main contribu-

tion of this chapter is to present a comprehensive framework that includes all of the effects,

as well as the additional slow time scale interactions associated with two closely spaced

frequencies.

7.2 Mathematical Formulation

This section derives the governing equations that describe the azimuthal modal dynam-

ics. This approach closely follows the procedure used in prior studies – namely, assuming

linear acoustics with nonlinear source terms, using a Galerkin expansion to decompose the

nonlinear partial differential equation into a system of nonlinear, coupled ordinary differen-

tial equations [97, 96, 100]. The resulting equations are then temporally averaged over the

fast acoustic time scale, following the Krylov-Bogoliubov method [144], leaving nonlinear

coupled equations for the slow time scale evolution of the disturbance amplitude and phase

difference. The key contribution of this section is incorporating all the effects noted into

Introduction in a rigorous, unified fashion.

7.2.1 Governing equations

This subsection briefly summarizes the development of the stochastic, nonlinear wave

equation, presented below, closely following prior studies, [97, 145].

∂2p

∂t2
− c2

R2

∂2p

∂θ2
= h1

(
p,
dp

dt

)
+ ξ1(t) + h2

(
p,
dp

dt

)
ξ2(t) (7.2)
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Here, p is the acoustic pressure, c the sound speed, R the chamber radius, ξ1 an additive

background noise term, ξ2 a parametric noise term, and h1,2 represent all other source/sink

and wave propagation terms due to unsteady heat release, temperature non-uniformity, bulk

flow effects, and nonlinearities [145]. Notice that the wave equation has been spatially

integrated into the axial and radial directions, and that mean flow, density gradient, and

losses at boundaries are encapsulated in these general functions, h1,2(p, dp/dt).

Note that the solutions of the homogeneous wave equation, given by:

p(θ, t) =
∞∑
n=1

[η1,n cos(nθ) + η2,n sin(nθ)] (7.3)

constitute a complete, orthogonal set of basis functions. As such, the essence of the

Galerkin method is to use these basis functions for writing the solution of the more general,

nonlinear Equation 7.2. There is no approximation when the infinite summation is retained,

but truncation necessarily introduces approximations. We will truncate this summation as a

single mode that nonlinearly interacts with itself. Nonlinear interactions between multiple

modes are essential to include for cases where gas dynamical nonlinearities are important,

but these types of nonlinearities are negligible in the “low” acoustic amplitudes typically

observed in lean premixed systems (e.g., Figure 6.9 (a) shows (F + G)/p̄ levels of maxi-

mum 8%) [145, 146]. Furthermore, the heat release nonlinearities, which generally domi-

nate nonlinear effects in lean premixed systems, lead to strong self-interactions of a mode

with itself [147, 148, 149]. Thus, we shall approximate the acoustic pressure associated

with a given nth eigenmode as [97]

p(θ, t) ≈ η1 cos(mθ) + η2 sin(mθ)] (7.4)

where η1 and η2 are the amplitudes of two orthogonal standing modes of azimuthal wavenum-

ber, m. The subscript, m, in η has been omitted here.

Next, we can treat the function h1(p, dp/dt) in Equation 7.2 quite generally by expand-
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ing it as a Taylor series [150] truncated at fourth order:

h1

(
p,
dp

dt

)
=B00(θ) +B10(θ)p+B01(θ)ṗ+B20(θ)p2 +B11(θ)pṗ+B02(θ)ṗ2

+B30(θ)p3 +B21(θ)p2ṗ+B12(θ)pṗ2 +B03(θ)ṗ3 +B40(θ)p4

+B31(θ)p3ṗ+B22(θ)p2ṗ2 +B13(θ)pṗ3 +B04(θ)ṗ4

(7.5)

where ṗ is the time derivative of p, and Bij’s are coefficients of piṗj . Note that in previous

studies, h1(p, ṗ) was often considered as the time derivative of heat release fluctuation,

dQ̇/dt, where Q̇(p) is a function of pressure only [97, 96]. This approach, however, cannot

capture some of the terms in Equation 7.5 (e.g., B10p and B12pṗ
2) that will be shown

to introduce important qualitative features in the modal dynamics. The coefficients Bij

are non-time varying but can vary azimuthally; physically this would occur because of

discrete nozzle locations, azimuthally non-uniform temperature distribution, azimuthally

non-uniform thermo-acoustic coupling strength, etc. In order to account for this in a general

fashion, we write them as the following series:

B01(θ) = −α + β

(
1 +

∞∑
n=1

Cn,01 cos(nθ) +
∞∑
n=1

Sn,01 sin(nθ)

)
︸ ︷︷ ︸

=β0(θ)

Bij(θ) = bij

(
1 +

∞∑
n=1

Cn,ij cos(nθ) +
∞∑
n=1

Sn,ij sin(nθ)

)
for i 6= 0, j 6= 0

(7.6)

Although not necessary, it is convenient to decompose the linear growth/damping term,

B01, into a linear damping term, α, which is not dependent on θ, and the linear growth

term, β0(θ), which is a function of θ [97].

We next follow the standard steps in the Galerkin expansion approach - substitute Equa-

tion 7.4, Equation 7.5, and Equation 7.6 into Equation 7.2, multiply both sides by cos(mθ)
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or sin(mθ), and integrate these equations from 0 to 2π with respect to θ, producing two

sets of second order differential equations,

η̈1 +

[
α− β

(
1 +

C2m,01

2

)]
η̇1 + ω2

1η1 = f1(η1, η2, η̇1, η̇2)

η̈2 +

[
α− β

(
1− C2m,01

2

)]
η̇2 + ω2

2η2 = f2(η1, η2, η̇1, η̇2)

(7.7)

where

f1(η1, η2, η̇1, η̇2) =
β

2
S2m,01η̇2 +

b10

2
S2m,10η2+

b30

8

(6 + 4C2m,30 + C4m,30)η3
1 + 3(2− C4m,30)η1η

2
2+

3(2S2m,30 + S4m,30)η2
1η2 + (2S2m,30 − S4m,30)η3

2]

+

b21

8

(6 + 4C2m,21 + C4m,21)η2
1 η̇1 + (2− C4m,21)(η2

2 η̇1 + 2η1η2η̇2)+

(2S2m,21 − S4m,21)η2
2 η̇2 + (2S2m,21 + S4m,21)(η2

1 η̇2 + 2η1η2η̇1)

+

b12

8

(6 + 4C2m,12 + C4m,12)η1η̇
2
1 + (2− C4m,12)(η1η̇

2
2 + 2η2η̇1η̇2)+

(2S2m,12 − S4m,12)η2η̇
2
2 + (2S2m,12 + S4m,12)(η2η̇

2
1 + 2η1η̇1η̇2)

+

b03

8

(6 + 4C2m,03 + C4m,03)η̇3
1 + 3(2− C4m,03)η̇1η̇

2
2+

3(2S2m,03 + S4m,03)η̇2
1 η̇2 + (2S2m,03 − S4m,03)η̇3

2

+

+ ζ +

∫ 2π

0

h2(η1, η2, η̇1, η̇2) sin(nθ)ξ2dθ,

(7.8)
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f2(η1, η2, η̇1, η̇2) =
β

2
S2m,01η̇1 +

b10

2
S2m,10η1+

b30

8

(6− 4C2m,30 + C4m,30)η3
2 + 3(2− C4m,30)η2η

2
1+

3(2S2m,30 − S4m,30)η2
2η1 + (2S2m,30 + S4m,30)η3

1]

+

b21

8

(6− 4C2m,21 + C4m,21)η2
2 η̇2 + (2− C4m,21)(η2

1 η̇2 + 2η1η2η̇1)+

(2S2m,21 + S4m,21)η2
1 η̇1 + (2S2m,21 − S4m,21)(η2

2 η̇1 + 2η1η2η̇2)

+

b12

8

(6− 4C2m,12 + C4m,12)η2η̇
2
2 + (2− C4m,12)(η2η̇

2
1 + 2η1η̇1η̇2)+

(2S2m,12 + S4m,12)η1η̇
2
1 + (2S2m,12 − S4m,12)(η1η̇

2
2 + 2η2η̇1η̇2)

+

b03

8

(6− 4C2m,03 + C4m,03)η̇3
2 + 3(2− C4m,03)η̇2η̇

2
1+

3(2S2m,03 − S4m,03)η̇2
2 η̇1 + (2S2m,03 + S4m,03)η̇3

1

+

+ ζ +

∫ 2π

0

h2(η1, η2, η̇1, η̇2) cos(nθ)ξ2dθ.

(7.9)

Here,

ω = mc/R, ω2
1 = ω2 − b10(1 + C2m,10/2), ω2

2 = ω2 − b10(1− C2m,10/2) (7.10)

and ζ(t) is a spatially averaged additive noise source. Equation 7.7 describes the second

order harmonic oscillators of two orthogonal standing eigenmodes coupled through the

source terms. Note that even order nonlinearities (e.g., terms multiplied by b20, b11, and

b40, etc) are eliminated during the spatial averaging , i.e., only the odd order terms survive

[96]. Similarly, azimuthal non-uniformity terms higher than 4m order are averaged out,

and only 2m and 4m terms have an impact on the dynamics [97]. For the first azimuthal

mode (n = 1), for example, only terms multiplied by C2, S2, C4, and S4 remain. Moreover,

the C8 and S8 terms, which would be nonzero for the eight outer nozzle configuration used

in this experimental facility, average out. This is due to the truncation at fourth order in
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Equation 7.5, e.g., if truncated at sixth order, Equation 7.8 and Equation 7.9 would contain

the non-uniformity terms up to 6n.

Consider the effects of non-uniformity on two oscillators. By comparing Equation 7.7

with Equation 7.1, one can see that the term, α − β(1 ± C2m,01/2), determines the linear

stability of each oscillator. Specifically, when C2m,01 = 0, two oscillators have identical

linear growth/damping rates. i.e., they are both linearly stable or unstable. However, when

C2m,01 6= 0, their linear growth/damping rate would be different. For instance, one oscil-

lator could be linearly unstable while the other is stable. In addition, Equation 7.10 shows

that C2m,10 influences the natural frequencies of the two oscillators and, consequently, con-

trols whether the natural frequencies of the two eigenmodes are identical or different. For

example, when C2m,10 > 0 and b10 < 0, the natural frequency of η1 is greater than that of

η2.

7.2.2 Averaged equations

Given the fact that η(t) is oscillating harmonically with a temporally varying amplitude

and phase, it is convenient to utilize a Van der Pol decomposition to rewrite the temporal

dynamics, η(t) [151].

η1(t) = A(t) cos(ω1t+ φA(t)) = A(t) cos(ω̄t+ ϕA(t))

η2(t) = B(t) cos(ω2t+ φB(t)) = B(t) cos(ω̄t+ ϕB(t))

(7.11)

where

ω̄ =
1

2
(ω1 + ω2), ∆ω = ω2 − ω1

ϕA(t) = φA(t)− 1

2
∆ωt, ϕB(t) = φB(t) +

1

2
∆ωt

(7.12)

We assume that the characteristic time scales over which the amplitudes and phase (A,B

and φ, respectively) vary are much slower than the acoustic time scale, i.e., τA,B,ϕ >> 1/ω.

Assuming ζ in Equation 7.8 and Equation 7.9 is Gaussian white noise, one can perform
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deterministic and stochastic averaging [144, 152, 153, 154] to produce the following first

order differential equations for the slowly varying amplitudes and phase:
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dA

dt̃
=

1

4

[
β̃(2 + C2,01 − 2α̃)

]
A−

[
b̃10S2,10 sinϕ

2(∆− 2)
+
b̃01

4
S2,01 cosϕ

(
∆ + 2

∆− 2

)]
B

+

[
b̃21

64
(6 + 4C2,21 + C4,21) +

3b̃03

256
(∆− 2)2(6 + 4C2,03 + C4,03)

]
A3

−

 3b̃30 sinϕ
32(∆−2)

(2S2,30 + S4,30)− b̃21
64

cosϕ
(

∆−6
∆−2

)
(2S2,21 + S4,21)+

b̃12
128

sinϕ(5∆− 2)(2S2,12 + S4,12) + 9b̃03
256

cosϕ(∆2 − 4)(2S2,03 + S4,03)

A2B

−

 3b̃30 sin 2ϕ
32(∆−2)

(2− C4,30)− b̃21
64

(
2−

(
3∆+2
∆−2

)
cos 2ϕ

)
(2− C4,21)−

b̃12
128

sin 2ϕ(∆ + 2)
(

3∆−2
∆−2

)
(2− C4,12)− 3b̃03

256
(2 + cos 2ϕ)(∆ + 2)2(2− C4,03)

AB2

−

 3b̃30 sinϕ
32(∆−2)

(2S2,30 − S4,30) + b̃21
64

cosϕ
(

∆+2
∆−2

)
(2S2,21 − S4,21)+

b̃12
128

sinϕ
(

(∆+2)2

∆−2

)
(2S2,12 − S4,12) + 3b̃03

256
cosϕ

(
(∆+2)3

∆−2

)
(2S2,03 − S4,03)

B3

+
Γ

4ω̄3A
+
ζA
ω̄

dB

dt̃
=

1

4

[
β̃(2− C2,01 − 2α̃)

]
B −

[
b̃10S2,10 sinϕ

2(∆ + 2)
+
b̃01

4
S2,01 cosϕ

(
∆ +−2

∆ + 2

)]
A

+

[
b̃21

64
(6− 4C2,21 + C4,21) +

3b̃03

256
(∆ + 2)2(6− 4C2,03 + C4,03)

]
B3

−

 3b̃30 sinϕ
32(∆+2)

(2S2,30 − S4,30)− b̃21
64

cosϕ
(

∆+6
∆+2

)
(2S2,21 − S4,21)+

b̃12
128

sinϕ(5∆ + 2)(2S2,12 − S4,12) + 9b̃03
256

cosϕ(∆2 − 4)(2S2,03 − S4,03)

B2A

−

 3b̃30 sin 2ϕ
32(∆+2)

(2− C4,30)− b̃21
64

(
2−

(
3∆−2
∆+2

)
cos 2ϕ

)
(2− C4,21)−

b̃12
128

sin 2ϕ(∆− 2)
(

3∆+2
∆+2

)
(2− C4,12)− 3b̃03

256
(2 + cos 2ϕ)(∆− 2)2(2− C4,03)

BA2

−

 3b̃30 sinϕ
32(∆+2)

(2S2,30 + S4,30) + b̃21
64

cosϕ
(

∆−2
∆+2

)
(2S2,21 + S4,21)+

b̃12
128

sinϕ
( (∆−2)2

∆+2

)
(2S2,12 + S4,12) + 3b̃03

256
cosϕ

( (∆−2)3

∆+2

)
(2S2,03 + S4,03)

A3

+
Γ

4ω̄3B
+
ζB
ω̄

(continued on next page)
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dϕ

dt̃
= ∆− 3b̃30

32(∆2 − 4)

 ((10 + 4C2,30 − C4,30)∆ + (4 + 8C2,30 + 6C4,30)
)
A2

+
(
(10− 4C2,30 − C4,30)∆− (4− 8C2,30 + 6C4,30)

)
B2


b̃12

128

 ((10 + 4C2,12 − C4,12)∆ + (4 + 8C2,12 + 6C4,12)
)(

∆−2
∆+2

)
A2

−
(
(10− 4C2,12 − C4,12)∆− (4− 8C2,12 + 6C4,12)

)(
∆+2
∆−2

)
B2

−

b̃10S2,10

2

(A/B
∆+2

+ B/A
∆−2

)
+ 3b̃30

32

((2S2,30+S4,30

∆+2

)
A3

B
+ 2S2,30−S4,30

∆−2

)
B3

A

)
+9b̃30(S2,30∆+S4,30)

8(∆+2)(∆−2)
A
B
− b̃12

32
(S2,12∆ + 3S4,12)AB

+ b̃12
128

(
(2S2,12 + S4,12) (∆−2)2

∆+2
A3

B
+ (2S2,12 − S4,12) (∆+2)2

∆−2
B3

A

)
 cosϕ−


b̃01S2,01

4

(
∆−2
∆+2

A
B

+ ∆+2
∆−2

B
A

)
+ 3b̃03S2,03

256
(∆2 − 4)AB − b̃21

64

5S2,21∆2+6S4,12∆+4S2,21

∆2−4
AB

+3b̃03
256

(
(S2,03 + S4,03) (∆−2)3

∆+2
A3

B
+ (S2,03 − S4,03) (∆+2)3

∆−2
B3

A

)
+ b̃21

64

(
(2S2,21 + S4,21)∆−2

∆+2
A3

B
+ (2S2,21 − S4,21)∆+2

∆−2
B3

A

)
 sinϕ

−

 3b̃30
32

(2− C4,30)
(

A2

∆+2
+ B2

∆−2

)
+

b̃12
128

(2− C4,12)
(

(2−∆)(3∆+2)
∆+2

A2 − (2+∆)(3∆−2)
∆−2

B2
)
 cos 2ϕ

−

3b̃03
256

(2− C4,03)
(
(∆− 2)2A2 + (∆ + 2)2B2

)
−

b̃21
128

(2− C4,21)
((

3∆−2
∆+2

)
A2 +

(
3∆+2
∆−2

)
B2
)

 sin 2ϕ+

(
1

A
+

1

B

)
ζϕ
ω̄

(7.13)

where ϕ = ϕB −ϕA,∆ = ∆ω/ω̄, α̃ = ω̄α, β̃ = ω̄β, b̃ij = ω̄2−jbij, t̃ = ω̄t, and ζA, ζB, and

ζϕ are uncorrelated white noises of intensity Γ/2ω̄2. Here, the m in the subscript of Cij

and Sij has been dropped. Also notice that the parametric noise term has been neglected

for simplicity, i.e., ξ2(t) = 0. The effect of this term will be numerically considered later.

Equation 7.13 describes the amplitudes and phase difference dynamics of the second order

coupled oscillators in Equation 7.7. These equations are a quite general representation of

the modal dynamics, and serve as a useful point of departure for a range of different types

of analyses. For example, referring back to the discussion in section 7.1, azimuthal non-

uniformity effects are parameterized by Cij and Sij , nondegeneracy by Cij, Sij , and ∆,

nonlinearities by b̃ij , and background noise by ζ . In subsequent sections, we will consider
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the deterministic FP solutions of a simplified version of these equations, the stability of

those FPs, and the bifurcation point.

7.3 Illustrative Results

While the equations developed earlier are quite general, they also exhibit a very broad

range of behaviors, and the formulation has 2 independent linear and 24 independent non-

linear coefficients. Notice that in reality, some of these parameters may be interconnected

to each other, preventing us from isolating them separately in experiments. The model

problems considered in this section allow us to isolate each parameter, and thus, help us

understand their individual effects. This section works from simple cases that are amenable

to analytical results and insights to a more involved problem that captures the observed dy-

namics. In particular, we start by analytically considering problems with frequency spac-

ing, ∆, and one of the non-uniform parameters, S2,10, set to zero in subsection 7.3.2. Next,

we consider the effects of ∆ and S2,10 in subsection 7.3.3, and effect of additive noise, Γ, in

refeffect of additive noise, showing how these introduce quasi-periodic oscillations as well

as the system’s preference in CW/CCW direction. Finally, we consider parametric noise,

ξ2(t), in subsection 7.3.5, and show how it is needed to capture the simultaneous presence

of standing and spinning attractors. We will consider the first azimuthal mode (m = 1)

since that was the mode appeared in the experiments.

7.3.1 Simplified equations

In order to reduce the number of independent parameters, we consider the model equa-

tions in Equation 7.14 below. First, without loss of generality, we define the azimuthal

origin such that S2,01 = 0 [97]. Second, we consider a subset of the larger independent pa-

rameter space by (1) setting C4,ij = S4,ij = 0; this is equivalent to assuming that 4m non-

uniformity is negligible relative to 2m, and (2) setting the nonlinear coefficients, b30, b12,

and b03 to zero. In the zero frequency spacing case that is analytically considered in the next
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section, these assumptions eliminate the coupling between amplitude and phase dynamics,

enabling us to solve for all FP’s and their stability. It will be shown later that the simula-

tion with these assumptions still can capture the experimental observations quite well. The

governing equations then simplify to:

Ȧ = [β(2 + C2,01)− 2α]
A

4
− kA1 sinϕB + kA2A

3 + (k3 + kA3 cos 2ϕ)AB2 +
Γ

4ω̄3A
+
ζA
ω̄
,

Ḃ = [β(2− C2,01)− 2α]
B

4
− kB1 sinϕA+ kB2B

3 + (k3 + kB3 cos 2ϕ)BA2 +
Γ

4ω̄3B
+
ζB
ω̄
,

ϕ̇ = ∆− b10S2,10

2

(
A/B

∆ + 2
− B/A

∆− 2

)
cosϕ+ (kϕA

A2 + kϕB
B2) sin 2ϕ+

(
1

A
+

1

B

)
ζϕ
ω̄

(7.14)

where

kA1 =
b10S2,10

2(∆− 2)
, kB1 =

b10S2,10

2(∆ + 2)
, kA2 =

b21

32
(3 + 2C2,21), kB2 =

b21

32
(3− 2C2,21),

k3 =
b21

16
, kA3 = −b21

32

(
3∆ + 2

∆− 2

)
, kB3 = −b21

32

(
3∆− 2

∆ + 2

)
,

kϕA
=
b21

64

(
3∆− 2

∆ + 2

)
kϕB

=
b21

64

(
3∆ + 2

∆− 2

)
(7.15)

The tildes on α, β and bij have been omitted. Recall that C2,01, S2,10 and C2,21 are parame-

ters that describe the non-uniformities in the source term response, such as dQ/dt, to ṗ, p

and p2ṗ, respectively. Note that these parameters and ∆ cause the coefficients in the Ȧ and

Ḃ equations to differ; stated differently, if ∆ = C2,01 = S2,10 = C2,21 = 0, the equations

for Ȧ and Ḃ are symmetric. Equation 7.14 will be used to simulate the dynamics of A,B,

and ϕ later.

7.3.2 Fixed points analysis with ∆ = S2,10 = 0

This section considers the deterministic limit cycle solutions (i.e., the FPs of A,B,

and ϕ) and their stability with the absence of pressure coupled azimuthal non-uniformity
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parameter, S2,10 = 0 , and no frequency shift, ∆ = 0. The effects of nonzero values of

these parameters will be numerically investigated in the subsequent subsections. For the

deterministic FP analysis, the time derivative of each variable as well as the noise terms are

set to zero, leading to the following equations.

0 =
1

4
[β(2 + C2,01)− 2α]A+ kA1A

3 + (k2 + kA2 cos 2ϕ)AB2

0 =
1

4
[β(2− C2,01)− 2α]B + kB1B

3 + (k2 + kB2 cos 2ϕ)BA2

0 = (kϕA
A2 + kϕB

B2) sin 2ϕ

(7.16)

The FPs are given by:

FP#1: A∗2 = B∗2 = 0

FP#2: A∗2 =
16α− (16 + 8C2,01)

b21(3 + 2C2,21)
, B∗2 = 0

FP#3: B∗2 =
16α− (16− 8C2,01)

b21(3− 2C2,21)
, A∗2 = 0

FP#4: A∗2 =
8α(1− C2,21)− 4β

(
C2,01(2− C2,21) + 2(1− C2,21)

)
b21(2− C2

2,21)

B∗2 =
8α(1 + C2,21) + 4β

(
C2,01(2 + C2,21)− 2(1 + C2,21)

)
b21(2− C2

2,21)

ϕ∗ = ±π
2
,±3π

2
,±5π

2
, . . .

(7.17)

where ∗ is the value at each FP. Note that there are 4 possible solutions to this equation.

Here, FP#1 is a zero amplitude mode, FPs #2 and #3 are purely standing waves orthogonal

to each other, and FP#4 is a mixed wave. Although not written here, if FP#4 solution

is recast as two counter rotating eigenmodes using Equation E.5 in Appendix E, it can

be shown that the dominance between CW and CCW waves for FP#4 is determined by

ϕ∗, i.e., if ϕ∗ = π/2 (−π/2) , CW (CCW) dominates over CCW (CW). When C2,01 =

C2,21 = 0, FP#4 becomes a purely spinning wave whose direction is determined by its

initial condition.
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The physical realization of the above FPs depends on the stability of each FP. The

stability analysis can be done by perturbing the steady-state solutions:

Ȧ = A∗ + A′ where A′ � A∗

Ḃ = B∗ +B′ where B′ � B∗

ϕ̇ = ϕ∗ + ϕ′ where ϕ′ � ϕ∗

(7.18)

The details of the stability analysis are provided in Appendix F, showing that each FP is

stable when:

FP#1: γ ≤ γHopf,1

FP#2, 3: γHopf,1 < γ ≤ γHopf,2

FP#4: γ > γHopf,2

(7.19)

where

γ = β/α

γHopf,1 =


2

2+C2,01
if 0 ≤ C2,01 < 1 (FP#2)

2
2−C2,01

if − 1 < C2,01 < 0 (FP#3)

γHopf,2 =


2(1+C2,21)

2(1−C2,01)+C2,21(2−C2,01)
if 0 ≤ C2,01 < 1 and C2,01 <

2(C2,21+1)

2+C2,21
(FP#2)

2(1−C2,21)

2(1+C2,01)−C2,21(2+C2,01)
if − 1 ≤ C2,01 < 0 and C2,01 <

2(C2,21−1)

2−C2,21
(FP#3)
(7.20)

It has been assumed that the non-uniformity parameters, C2,01 and C2,21, are bounded be-

tween ±1. This physically implies that the non-uniform parameters are less than mean

value in Equation 7.6. Here, γHopf,1 corresponds to the bifurcation from FP#1 (zero am-

plitude) to FP#2 or #3 (standing wave), and γHopf,2 is the bifurcation from FP#2 or #3

(standing wave) to FP#4 (mixed wave). Figure 7.1 summarizes the stability of each FP in

122



Figure 7.1: Stability map in (C2,01, γ) space with difference C2,21 values. Red and blue
lines denote the first and second bifurcation boundaries. The horizontal dash line denotes
γ = 1. Contour lines indicate |SR|.

(C2,01, γ) space with different C2,21 values. Here, the horizontal dash line indicates γ = 1,

and the contour lines denote |SR|. Consider a case where γ is increasing with fixed val-

ues of C2,01 and C2,21. This is equivalent to moving in a vertical direction in the plot.

As γ increases, a system transitions from FP#1 (zero amplitude) to FP#2 or #3 (standing

wave), and then FP#4 (mixed wave). However, when C2,01 is zero, the system transi-

tions directly from FP#1 to FP#4. Specifically, when the system is azimuthally uniform,

C2,01 = C2,21 = 0, the mode exists either as a zero amplitude or a purely spinning wave,

depending upon γ. Also note from γHopf,1 that the more C2,01 deviates from zero, the lower

γ the system becomes unstable at, i.e., the non-uniformity promotes the onset of the insta-

bility. When being unstable, the system transitions towards the standing wave with C2,01

deviating from zero. Lastly, nonzero C2,21 causes γHopf,2 to be asymmetric about C2,01 = 0

line.

To summarize, this figure clearly shows that under unstable conditions, the system can

be dominated by standing, spinning, or mixed waves, and shows how the relative domi-

nance of these waves is controlled by linear damping/amplification effects, (γ = β/α), and

azimuthal non-uniformities, (C2,01, C2,21).

Further insight into these FP’s and their stability can be obtained from transient com-

putations, showing the systems relaxation to these FP’s from arbitrary initial conditions,
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Figure 7.2: Top: simulations of η1, η2, A,B, and ϕ̄. Subfigures describe the dynamics of
the first eight cycles. Bottom: simulations of F,G, SR and ϕFG. γ values are (a) 0.9, (b)
1, and (c) 1.1. The other parameters are b21 = −0.05, C2,01 = 0.05, S2,10 = 0, C2,21 =
0.75, ω̄ = 1,∆ = 0,Γ = 0. The Hopf bifurcation points calculated from Equation 7.20 are
γHopf,1 = 0.9757, γHopf,2 = 1.041.

see Figure 7.2. The first row illustrates simulations of η1, η2, A,B, and ϕ̄ with different γ

values. Here, ϕ̄ ≡ ϕ/π. η1 and η2 are numerically obtained from Equation 7.7, and A,B,

and ϕ are from Equation 7.14. Subfigures in each plot demonstrate that the method of

averaging technique closely captures the magnitudes of the second order oscillators. After

each simulation, A,B, and ϕ are mapped into F,G, and ϕFG using Equation E.5. Lastly,

SR is calculated by Equation 5.2.

Figure 7.2 (a) represents the zero amplitude mode (FP#1) where γ < γHopf,1, and thus,

both amplitudes, A and B, decay to zero, i.e., the system is linearly stable. In this case,

ϕ̄, SR, and ϕFG do not have any physical meaning.

Figure 7.2 (b) is the case where γHopf,1 < γ < γHopf,2, and the system is linearly

unstable. As expected from Equation 7.20, FP#2 is stable, and only A converges to a finite

value since C2,01 > 0. The bottom plot shows that F and G converge to the same value,

resulting in zero SR or a purely standing wave. Also note that ϕ̄FG converges to zero,

implying from Equation 4.6 that the anti-nodal line (θa = −ϕFG/2) is located horizontally.

This is physically reasonable because the flames that strongly couple with acoustics are

oriented in the horizontal direction for positive C2,01.
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Figure 7.3: (a) Pressure anti-node magnitude as a function of γ with different C2,01 values.
(b) Zoom in version of (a). (c) SR as a function of γ with different C2,01 values. The other
parameters are b21 = −0.05, S2,10 = 0, C2,21 = 0.75, ω̄ = 1, δ = 0,Γ = 0. The grayscale
vertical lines in (b) and (c) denote the first and second bifurcation points, respectively.

Further increase in γ > γHopf,2 leads to a mixed wave as shown in Figure 7.2 (c) where

both A and B converge to finite values. This state corresponds to FP#4 in Equation 7.17.

In the bottom plot, F is greater than G at steady state, and thus, SR > 0. Notice that ϕ̄FG

converges to 1, indicating that the anti-nodal line of the mixed wave is in the vertical direc-

tion. Finally, note that, near the FP values, both A and B relax towards their equilibrium

values as damped exponentials for all cases; i.e., they do not exhibit decaying oscillations

as they asymptote to their FPs. As discussed in the next section, this is not true in general

and, even in cases where the FPs are stable, damped oscillations about the FPs are possi-

ble. In this case, these systems exhibit significantly different behavior in the presence of

background noise.

Figure 7.3 (a) describes the effect of linear damping/growth rate, γ, on the steady state

pressure anti-node magnitude with different C2,01 values, determined from computational

solutions. Here, the simulation was run out to sufficient time to reach a steady state, and

was repeated at different initial conditions to explore their effects. For reference, Figure 7.3

(b) shows a detail of Figure 7.3 (a) with the dashed vertical lines indicating the theoreti-

cal predictions for the bifurcation points, γHopf,1. Note the excellent agreement between

these computed results and Equation 7.20. As expected from Equation 7.20, the first Hopf

bifurcation point, γHopf,1, decreases with increasing C2,01. In other words, the larger the
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azimuthal non-uniformity, the earlier the system becomes unstable. The figure also shows

that the higher the non-uniformity, the slower the instability amplitude grows with γ.

Figure 7.3 (c) plots SR as a function of γ with different C2,01 values, showing the

presence of purely standing and spinning waves, as well as mixed waves. When C2,01 = 0,

the azimuthal mode has a constant SR = ±0.38, or a mixed wave. For C2,01 > 0, SR starts

from zero at γ = γHopf,1 and maintains this value until γ = γHopf,2. After γHopf,2, SR first

rapidly approaches a pure spinning wave value of ±1 and then decays to a mixed wave.

Comparing between different C2,01 cases, γHopf,2 increases with increasing C2,01, i.e., the

non-uniformity delays the transition from a standing to a mixed wave. Note that there are

two branches, positive and negative SR. Which branches the system is stabilized at depends

on the initial conditions. These simulated results are consistent with the analytical results

plotted in Figure 7.1 (c).

Figure 7.3 (c) demonstrates that the system does not exhibit a standing wave limit cycle

when C2,01 = 0. However, the experimental data in Figure 6.5 (a) shows the standing wave

even in the nominally “uniform” fuel staging case, implying that the value of C2,10 in our

facility is actually nonzero. This is probably due to inevitable manufacturing differences,

leakage flows, and so forth. As such, these results show that relatively small manufacturing

variations can introduce significant impacts on the dominance of spinning/standing waves,

and so forth (e.g., see Figure 7.1, and also suggest that these behaviors can vary between

engines.

7.3.3 Effect of frequency shift, ∆, and pressure coupled azimuthal non-uniformity, S2,10

Having considered the basic FPs and their stability, this section considers the important

generalization of more general azimuthal non-uniformities (i.e., nonzero S2,10) and the dif-

ference in frequencies between the two eigenmodes, ∆. Although analytical solutions are

not possible for these cases, some insights into their behavior (which are confirmed from

the computations shown later) can be obtained from consideration of the equation structure
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for small perturbations about the FPs derived in the prior section, denoted by A∗ and B∗.

The equation for ϕ can be written in a potential form as:

ϕ̇ = −dU
dϕ

(7.21)

where the potential, U , is given by:

U = −ϕ∆ +
b10S2,10

2

(
A∗/B∗

2 + ∆
− B∗/A∗

2−∆

)
sinϕ+

1

2
(kϕA

A∗2 + kϕB
B∗2) cos 2ϕ (7.22)

and, consistent with the approximation of considering very small departures of the system

from the Section subsection 7.3.2 analysis, it has been assumed that the amplitudes, A

and B, are constant at their FP values, A∗ and B∗ [82] in this equation. The potential in

Equation 7.22 consists of three terms: the first term, proportional to ∆, causes ϕ to drift

in one direction linearly with time. The second term, proportional to S2,10, provides one-

well potential at either CW or CCW spinning wave, which is determined by the sign of

the second term. The third term, proportional to kϕA
and kϕB

, provides two-well potential

at both CW/CWW spinning waves. Figure 7.4 shows each term as a function of ϕ and

their contribution to the potential shape for two different cases. The figure clearly shows

that S2,10 term causes a preference to either CW or CCW spinning wave. When this term is

sufficiently larger than the other terms, it will suppress one of the spinning waves, and foster

the other spinning wave (Figure 7.4 (a)). In contrast, when ∆ term dominates over the other

terms, ϕ can continuously drift in one direction (Figure 7.4 (b)) without a local minimum,

which serves as a local attractor. As can be seen in Equation E.5, this drift causes not only

the out-of-phase oscillations between CW/CCW amplitudes, resulting in the oscillation of

SR, but also the oscillation in ϕFG, both of which were observed experimentally.

We next present computations, starting first with the case where S2,10 = 0, but ∆� 1.

Notice that in a linear regime, a nonzero ∆ imposes two different frequencies on the system.
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Figure 7.4: Potential and contributions of each term to its shape for two example cases (a)
S2,10 term dominant system, leading to a local minimum in U , (b) ∆ term dominant system,
which has no local minimum in U .

Depending upon the value of ∆, the ratio of the two frequencies may be irrational (i.e.,

quasi-periodic) or rational (leading to period-N oscillations, with the value of N being a

function of ∆). Even if it is rational, if ∆ � 1, then N becomes so large that the system

appears as quasi-periodic in real applications. Thus, we will use the word “quasi-periodic”

in the rest of this chapter.

While a nonzero ∆ implies a system with two distinct frequencies in the linear case, it

does not necessarily do so in the nonlinear case at steady state conditions. Nonlinearities do

this in two ways - first, through amplitude dependent frequency shifts which can synchro-

nize the two distinct frequencies and, second, by “quenching”, where two linearly unstable

oscillators compete with each other and one oscillator’s amplitude is driven to zero. Both

behaviors are illustrated in Figure 7.5. The first row of Figure 7.5 (a) shows the simula-

tions of A,B, and ϕ̄ with a finite frequency spacing, showing how the system relaxes to

“steady state” from a prescribed initial condition. In contrast to Figure 7.2 (a), note from

the second row of Figure 7.5 (a) how F and G decay in an oscillatory manner towards

the FP at the frequency of ∆, evidence of a damped quasi-periodic solution. However,

the quasi-periodicity disappears at a steady state because one of the oscillators (B in this

case) decays to zero, resulting in a single frequency oscillation. In other words, nonlinear

competition between the two standing eigenmodes leads to quenching of oscillator B, even
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Figure 7.5: Top: simulations of A,B, and ϕ̄. Bottom: simulations of F,G, SR and ϕ̄FG. γ
values are (a) 1.067, (b) 1.073, and (c) 1.14. The other parameters are b21 = −0.05, C2,01 =
0.05, S2,10 = 0, C2,21 = 0.75, ω̄ = 1,∆ = −0.01,Γ = 0.

though both oscillators are linearly unstable.

Increase in γ causes a self-sustained quasi-periodic oscillation as shown in Figure 7.5

(b). Note from the first row that the two oscillators coexist, and their phase difference

drifts in one direction, demonstrating a presence of two different frequencies in the system.

This state corresponds to Figure 7.4 (b) where the drift term The second row in Figure 7.5

(b) shows that SR oscillates around zero, and the phase lag between ϕ̄FG and SR is about

90◦. This is in good agreement with the quasi-periodic standing wave observed in the

experiments, e.g., Figure 6.5 (a), Figure 6.7 (a) and (d).

Further increase in γ alters the system to a mixed wave as shown in Figure 7.5 (c).

The first row shows that the two oscillators coexist, but their phase difference is constant

at a steady state, indicating that their oscillation frequencies are synchronized. Thus, the

quasi-periodicity vanishes as shown in the second row of Figure 7.5 (c).

Figure 7.6 is a similar plot with Figure 7.3, but with a nonzero ∆. Here, the first and

second bifurcation points, γHopf,1 and γHopf,2, for ∆ = 0 are indicated for comparison.

Comparison between Figure 7.6 (a), (b) and Figure 7.3 (a), (b) shows that ∆ has little

impact on the pressure anti-node magnitude nor the first bifurcation point. In contrast,

Figure 7.6 (c) demonstrates that nonzero ∆ shifts the second bifurcation point from the
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Figure 7.6: (a) Pressure anti-node magnitude as a function of γ with different C2,01 values.
(b) Zoom in version of (a). (c) SR as a function of γ with different C2,01 values. The
other parameters are b21 = −0.05, S2,10 = 0, C2,21 = 0.75, ω̄ = 1,∆ = −0.01,Γ = 0.
The grayscale vertical lines in (b) and (c) denote the first and second bifurcation points,
respectively, when ∆ = 0.

γHopf,2 values analytically calculated in Equation 7.20. However, the largest qualitative

change is the quasi-periodic regimes. When the system exhibits quasi-periodicity, it never

converges to the steady state, but rather continuously oscillate around the FP, as shown

in Figure 7.5 (b). This causes the oscillation in SR, which is shown in Figure 7.6 (c) for

nonzero C2,01 cases. The quasi-periodic behavior only appears at a certain range of γ,

which depends on C2,01.

We close this subsection by introducing a bifurcation plot in (C2,01, γ) space for the

noise free system, which is similar to Figure 7.1, but with a finite frequency spacing. Fig-

ure 7.7 shows regions where the system is linearly stable (zero amplitude), exhibits single

frequency standing waves (i.e., nonlinear effects lead to quenching of one of the standing

eigenmodes), exhibits self-sustained quasi-periodic standing waves, and exhibits single fre-

quency mixed waves (i.e., not purely standing or spinning). This plot shows a region where

the quasi-periodic behavior can occur with a noise free system. The region becomes wider

with increasing frequency split. Note that even if the system’s parameters are not inside

the region, but close to it, the system exhibits damped oscillation as shown in Figure 7.5

(a). However, when the system moves far away from the region, the oscillatory behavior

disappears even with the noise contribution.
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Figure 7.7: Bifurcation plot in (C2,01, γ) space showing quasi-periodic behavior with two
different frequency spacing values (a) ∆ = −0.01 and (b) ∆ = −0.02. Here, QP = quasi-
periodic standing wave region. The horizontal dash line denotes γ = 1. The red crosses in
(a) indicate (C2,01, γ) in Figure 7.5 (a)-(c). The other parameters are b21 = −0.05, S2,10 =
0, C2,21 = 0.75, ω̄ = 1,Γ = 0.

Figure 7.8: (a) Pressure anti-node magnitude as a function of γ with different C2,01 values.
(b) Zoom in version of (a). (c) SR as a function of γ with different C2,01 values. The
other parameters are b21 = −0.05, S2,10 = 0.02, C2,21 = 0.75, ω̄ = 1,∆ = 0,Γ = 0.
The grayscale vertical lines in (b) and (c) denote the first and second bifurcation points,
respectively, when ∆ = 0.
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We next consider the effect of pressure coupled azimuthal non-uniformity, S2,10. Recall

from Figure 7.4 that S2,10 has an impact on the preference in CW/CCW direction. Fig-

ure 7.8 represents the similar plot with Figure 7.3, but with non zero S2,10 = 0.02 � 1.

Figure 7.8 (a) and (b) shows that S2,10 does not dramatically alter the trends of pressure

anti-node magnitude as well as the first bifurcation point. However, Figure 7.8 (a) demon-

strates that after the second bifurcation point, the magnitude between positive/negative SR

splits, and they have slightly different magnitudes. The effect of S2,10 is well illustrated in

Figure 7.8 (c). The figure clearly shows that S2,10 imposes a preferential spinning direc-

tion. For C2,01 = 0, a system has a preference in a positive SR, or CCW direction, but CW

direction also appears above γ = 1.15. In contrast, the system with C2,01 = 0.05 or 0.1

has a preference in a negative SR, or CW direction. The change in preferential direction is

due to the sign change of the second term in Equation 7.22f. To summarize, introducing

the non-uniformity, S2,10, causes a mixed/spinning wave to be biased towards either CW or

CCW direction. This provides a possible explanation for why the experimental data shown

in Figure 6.5 (c) show a bias towards positive SR values.

7.3.4 Effect of additive noise, Γ

Figure 7.5 (a) shows that when ∆ � 1, quasi-periodic behavior only appears during

the initial transient. However, in the presence of background noise, the damped oscillator

B will be continuously excited and the phase averaged system will be quasi-periodic. To

illustrate, Figure 7.9 plots representative time traces, and corresponding spectra, of SR and

ϕ̄FG for computed cases with background noise of two different noise intensities. The white

noise terms in Equation 7.14 have been simulated using the Euler-Maruyama scheme [155].

The top is the raw signal, and the bottom is the low pass filtered signal whose bandwidth

is shown as the shaded region in the spectra. Notice that introducing the background noise

prevents the SR and ϕ̄FG from decaying to zero, causing them to continuously oscillate

around zero, i.e., as a quasi-periodic standing wave. In addition, noise intensity increases
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Figure 7.9: Simulation of SR and ϕ̄FG with background noise (a) Γ = 10−4 and (b) Γ =
10−3. Top plot: raw signal, bottom plot: filtered signal, right plot: Fourier transform.
The shaded region in the Fourier transform denotes the low pass filter width. The other
parameters are γ = 1.067, b21 = −0.05, C2,01 = 0.05, S2,10 = 0, C2,21 = 0.75, ω̄ = 1,∆ =
−0.01.

the oscillation amplitude. In particular, Figure 7.9 (b) shows that sufficiently high noise

intensity may cause ϕ̄FG to jump from ±1 to ∓1 e.g., at t/T = 500, which was also seen

experimentally in Figure 6.7 (d). Recalling that ϕ̄FG is directly related to the anti-nodal

line by Equation 4.6, this demonstrates the rotation of the anti-nodal line in CW/CCW

direction.

To further explore the effect of noise on system’s dynamics, Figure 7.10 (a) represents

the pressure magnitude as a function of γ at different C2,01 values with noise intensity,

Γ = 10−4. Notice that the frequency shift, ∆, and pressure coupled non-uniformity, S2,10,

are also present. It is shown that there is no quantitative difference between Figure 7.10

(a) and Figure 7.3 (a), especially in terms of the bifurcation points and relative magnitude

between different C2,01 values. Figure 7.10 (b) plots SR as a function of γ at different C2,01

values The quasi-periodic regimes are denoted in the figure as well. Comparison between

Figure 7.6 (c) and Figure 7.10 (a) shows that when exposed to the noise, the quasi-periodic

behavior appears from the onset of instability to right before the mixed wave solutions. This

makes it difficult to differentiate between noise driven and self-sustained quasi-periodic

behavior from the time trace data (Figure 7.9) or the bifurcation plot (Figure 7.10 (b)).

They can be differentiated, however, from the averaged phase portrait, such as shown in
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Figure 7.10: (a) Pressure anti-node magnitude as a function of γ with different C2,01 val-
ues. (b) SR as a function of γ with different C2,01 values with noise intensity, Γ = 10−4.
The data points with anti-node magnitude less than 0.1 are omitted because of their large
fluctuations. The red vertical lines denote the quasi-periodic standing wave regions. Aver-
aged phase portrait in SR and ϕ̄FG space for (c) γ = 1.067 and (d) γ = 1.073. The other
parameters are b21 = −0.05, S2,10 = 0.02, C2,21 = 0.75, ω̄ = 1,∆ = −0.01.
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Figure 7.10 (c) and (d). The phase portrait was obtained by repeating the simulations at

distributed initial conditions over the phase space. Figure 7.10 (c) and (d) are the phase

portraits with the same condition as Figure 7.9 (b) and Figure 7.5 (b), respectively, with

noise contribution. It can be seen that the center point is an attractor for the noise driven

quasi-periodic case, whereas it is a repeller for the self-sustained quasi-periodic case. Also,

note that the trajectory and the joint PDF form a ring structure around the center. Consider-

ing the experimental data, this suggests that the FP in Figure 6.6 (a) corresponds to a noise

driven quasi-periodic standing wave, and the center FP in Figure D.1 (b) is a self-sustained

quasi-periodic standing wave.

It is also interesting to note that the trajectories are CW spiraling into/around the FP in

Figure 7.10 (c) and (d). As mentioned before, this is due to the 90◦ phase lag between SR

and ϕ̄FG oscillations. If SR and ϕ̄FG exponentially decay to their FPs without oscillations

such as a mixed wave solution in Figure 7.5 (c), the trajectories in the phase portrait would

directly converge to the FP without the spiraling. This behavior can be seen experimentally

in Figure 6.5 (c).

7.3.5 Effect of parametric noise, ξ2(t)

This subsection considers parametric noise effects which, as noted in prior studies,

introduces qualitatively new phenomenon [156, 157, 158, 159]. As noted in the prior

sections, certain features of the data can be understood from purely deterministic consid-

erations, some require additive noise, and as, discussed here, some also require introduc-

ing parametric noise. In particular, within the modeling assumptions described in subsec-

tion 7.3.1, parametric noise is required to capture the intermittency between the standing

and mixed waves observed experimentally because these solutions are not simultaneously

stable, as shown in Equation 7.20. Specifically, given the fact that the behavior of SR

abruptly changes with γ, or equivalently β, for C2,01 > 0 as illustrated in Figure 7.10 (b),

parametric noise in β will lead to the intermittency. To illustrate, we consider parametric
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Figure 7.11: Top: time series simulation of γ(t) for (a) γ̄ = 1.033, (b) γ̄ = 1.117, (c)
γ̄ = 1.2. Middle: dynamics of SR and ϕ̄FG for each γ̄. Bottom: simulated phase portrait
for for each γ̄. The other parameters are b21 = −0.05, C2,01 = 0.05, S2,10 = 0.02, C2,21 =
0.75, ω̄ = 1,∆ = −0.01,Γ = 10−4.

fluctuations in the parameter β, i.e., h2(p, p′) = βṗ and assume that the noise term, ξ2(t),

follows the Ornstein–Uhlenbeck (OU) process [160], which drifts toward its mean value

over time, numerically simulated with the Euler-Maruyama scheme [155]. This process is

more appropriate than the Brownian motion, where the variance grows with time (i.e., in an

unbounded fashion); in contrast, the variance for the OU process reaches a constant value.

Figure 7.11 illustrates three representative cases with C2,01 = 0.05 where the asymp-

totic means of γ(t) are γ̄ = 1.033, 1.117, and 1.2. Figure 7.11 (a) - (c) describes the

time trace of γ(t) (top) as well as SR and ϕ̄FG (middle), and the last row of Figure 7.11

represents the average phase portrait for each case.

For γ̄ = 1.033 (Figure 7.11 (a)), both SR and ϕ̄FG fluctuate around zero. Note that

the modulation amplitude is not steady as opposed to Figure 7.9 because of time varying
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γ(t). The dynamics of SR and ϕ̄FG resemble the experiments in Figure 6.5 (a) except

that ϕ̄FG oscillates around 0.4. Given the fact that ϕFG is related to the anti-nodal line

(Equation 4.6), the value of which depends on the azimuthal origin, the discrepancy can

be eliminated by rotating the origin. The phase portrait in Figure 7.11 (a) shows a stable

attractor at the center (AS), and the trajectories are spiraling into the attractor. These results

resemble the experimental observations in Figure 6.6 (a).

When γ̄ = 1.117, SR and ϕ̄FG start to show intermittency. In particular, transition of

SR and ϕ̄FG from one state to the other occurs simultaneously, which was evident from the

experiments in Figure 6.5 (b). In the simulation, they are hopping between three different

states, i.e., quasi-periodic standing wave, and CCW/CW mixed waves. The phase portrait

in Figure 7.11 (b) reveals three attractors, AS, ACW/CCW , as well as multiple saddle points.

Notice that the joint PDF around ACCW is denser than that around ACW , manifesting the

system’s preference in a CCW mixed wave. The portrait reasonably coincides with Fig-

ure 6.6 (b).

Lastly, for γ̄ = 1.2 (Figure 7.11 (c)), SR stays either±0.5, and ϕ̄FG remains around±1.

The transition between two states may occur when γ(t) drops below a certain value. The

corresponding phase portrait in Figure 7.11 (c) manifests two stable attractors, ACW/CCW ,

and multiple saddle points. Here, AS is no longer a stable attractor, which explains the

reason for no realization at the center in Figure 6.6 (c). Similar to Figure 7.11 (b), the joint

PDF demonstrates the preference in CCW spinning wave. Comparing with Figure 6.6 (c),

notice the similarities.

7.4 Discussion

It is worth relating the simulation results to the experimental observations. In particu-

lar, the different linear and nonlinear coefficients in the formulation are certainly coupled

through various combustor and flame physics. This section briefly reflects on these points

and how they manifest themselves in the data.
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First, the modeling results clearly illustrate the very important role of azimuthal non-

uniformities; because there are eight outer nozzles in the experimental facility, this implies

that C8 and S8 are nonzero; as these higher order terms average out in the analysis, they

have no impact on the first azimuthal mode, see Equation 7.7. In addition, lower order az-

imuthal non-uniformities, i.e., C2, and S2, are nonzero for non-uniform fuel staging cases.

However, comparison of the modeling results and experimental data implies that C2 and

S2 are nonzero even in the “uniform” fuel staging case, due to inevitable manufacturing

differences, leakage flows, and so forth. As such, these results show that relatively small

manufacturing variations can introduce significant impacts on spin direction, the domi-

nance of spinning/standing waves, and so forth (e.g., see Figure 7.1), and also suggests that

these behaviors can vary between engines.

Second, Equation 7.10 shows that ∆ and C2,10 (not C2,01) are correlated, i.e., if |C2,10|

gets larger, |∆| as well. This explains the reason for higher modulation frequency with

higher OR at a fixed instability amplitude in Figure 6.10 (a). However, the sign of the

correlation depends on the sign of b10. A natural question is whether it is positive or neg-

ative. This can be answered from a physical point of view. Given the azimuthal origin

at 3 o’clock position, ω1 and ω2 are the undamped natural frequencies of two orthogonal

standing waves oscillating in horizontal and vertical directions, respectively. C2,10 is the

coefficient of cos(2θ) of the non-uniformity. If C2,10 > 0, then the temperature (or speed

of sound) distribution in the horizontal direction would be higher than that in the vertical

direction, giving rise to ω1 > ω2. Therefore, it is reasonable to assume ∆ω = ω2 − ω1 < 0

when C2,10 > 0, and vice versa, or equivalently, b10 < 0 from Equation 7.10. As shown in

Figure 7.11, the simulation with this assumption provides CW spiraling trajectories around

AS in the phase portrait, which is in agreement with the experiments.

Third, it is shown that the non-uniformity, or the frequency spacing between two or-

thogonal standing eigenmodes, causes the oscillation in ϕFG for the quasi-periodic standing

wave. Since ϕFG is the phase difference between CCW/CW waves, the time derivative of
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ϕFG, or dϕFG/dt, is the frequency difference between CCW/CW waves, which also oscil-

lates in time. This explains why the spectra of both CCW/CW waves exhibit double peaks

in Figure 6.4 (a), i.e., the frequency difference between CCW/CW waves is not constant,

but rather oscillating. Furthermore, since ϕFG is directly related to the anti-nodal line, θa,

by Equation 4.6, oscillation in ϕFG is equivalent to oscillation in anti-nodal line. Thus, one

can interpret that the frequency difference between CCW/CW waves depends on the be-

havior of theanti-nodal line. For example, when the anti-nodal line is fixed, the frequency

difference is zero. When the anti-nodal line is oscillatory, so is the frequency difference.

When the anti-nodal line is rotating at a constant angular velocity, the frequency difference

is constant. This rotation in the anti-nodal line may result from the azimuthal mean flow

[98] but not necessarily because of the non-uniformity. For example, even if the azimuthal

mean flow is present, the anti-nodal line can be stuck between the burners, and oscillate,

leading to oscillation in frequency difference between CCW/CW waves as shown in this

study.

Fourth, Figure 6.9 (a) and Figure 7.10 (a) are in good agreement in terms of instabil-

ity amplitude. Specifically, the behavior of the first Hopf point in the experiment is in

agreement with that in the simulation up to OR ≤ 0.55. For OR > 0.55, however, the

Hopf point is retarded as opposed to the model. The reason for this disagreement is most

probably twofold. First, the direct comparison between Figure 6.9 (a) and Figure 7.10 (a)

assumes that the mass flow rate is proportional to the ratio between linear coefficients, γ ,

which is not guaranteed. Furthermore, in reality, changing the mass flow rate may affect

not only the linear coefficient, but also the other parameters such as non-uniformity and the

damping rate, which in turn, affect the first Hopf point. Second, the governing equations

in this paper assumed weakly nonlinear, which may not valid for strong non-uniform fuel

staging. Specifically, the pressure expansion in Equation 7.4 is not valid for large spatial

temperature variations.
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7.5 Conclusion

This chapter presented low order modeling work to better understand wave structures

and temporal dynamics of azimuthal modes in combustors. The chapter analyzed a weakly

nonlinear model, derived from the wave equation and a generalized source term. The source

term was modeled with a Taylor expansion up to fourth order with the additive and para-

metric noise terms. Each coefficient in the expansion was allowed to vary azimuthally.

This model clearly showed that these parameters influence the azimuthal mode stability as

follows.

• Linear damping/growth coefficients, α and β, determine the linear stability of two

standing eigenmodes.

• The parameter, C2m,01, describing the azimuthal non-uniform coupling between the

source and ṗ, influences both linear (stability boundary) and nonlinear process (de-

pendence of limit cycle amplitude, such as upon β). It also affects relative preference

between standing and spinning/mixed waves.

• The parameter, C2m,21, describing the azimuthal non-uniform coupling between the

source and p2ṗ, affects relative preference between standing and spinning/mixed

waves.

• The parameter, S2m,10, describing the azimuthal non-uniform coupling between the

source and p, introduces a preference in CW/CCW spinning direction on the system.

• The parameter, C2m,10, describing the azimuthal non-uniform coupling between the

source and p, causes a frequency spacing between the two orthogonal standing eigen-

modes, ∆, which introduces quasi-periodic oscillations. The system can decay or

self-excited in an oscillatory manner depending upon β.

• Additive noise, Γ, with nonzero ∆ leads to quasi-periodic oscillations, even in cases
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where the limit cycle FP is stable, as it excites oscillatory, but decaying, disturbances

around the limit cycle FP at a specific frequency, ∆.

• Parametric noise, ξ2(t), is responsible for the intermittency between standing and

spinning/mixed waves.

The effects of each parameter are summarized in Figure 7.12. The low order modeling

was clearly useful in understanding the experimental observations. First, the instability

magnitude increases with linear growth rate (or mass flow rates), but the rate of increase is

reduced with increasing the non-uniformity (or OR). Second, as the magnitude increases,

the azimuthal mode starts from a standing wave, passes the intermittency between standing

and mixed waves, and then becomes a mixed wave. Third, a quasi-periodic oscillation

appears during the standing wave. Last, the mode prefers CCW to CW spinning direction

during the mixed wave. Finally, the model clearly emphasized that important real world

effects, such as azimuthal asymmetry, introduce qualitatively important phenomena, such

as quasi-periodicity.

Figure 7.12: Effects of each parameter on azimuthal modal dynamics.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This chapter summarizes the key contributions of this thesis. It recapitulates the results

and key findings of each chapter. Additionally, this chapter proposes future works and new

topics that originated from the current works.

8.1 Summary of Contributions

The first major contribution of this paper is that it introduces the optimal sensor lo-

cations for detecting the azimuthal thermoacoustic instabilities. In many research studies

[87, 85, 82], multiple sensors were placed equidistantly to measure the pressure oscillations

along the circumference. As shown in chapter 4, however, this sensor configuration may

result in an infinite error for a certain azimuthal mode number, and thus, uniform sensor

distribution must be avoided in real applications. In addition, for large scale, expensive

facilities or testing campaigns, such as engine testing, equidistant configuration may not be

possible because of the limited space. This leads to a question of where to place those mul-

tiple sensors. Chapter 4 directly tackled this problem. Given the azimuthal mode number

and the number of sensors, the optimal sensor locations are determined in such a way that

they minimize the variance of the estimates, which in this case is the complex amplitudes

of CW/CCW rotating waves. For a single azimuthal mode, simultaneous nonlinear equa-

tions, the solutions of which correspond to the optimal sensor locations, are analytically

derived. The nonlinear equations can be solved numerically, but the physical interpretation

of the equations allows us to solve them intuitively without computational efforts. This

method is verified by comparing the sensor locations obtained from the computation. For

multiple azimuthal modes considered, the chapter proposes two different methods for de-

termining the optimal sensor locations; mini-max and mini-sum approaches. The mini-max
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approach numerically finds the sensor locations that minimize the worst cases, whereas the

mini-sum approach minimizes the sum of the variances from each azimuthal mode num-

ber. Table A.1 summarizes the optimal sensor locations with different combinations of a

number of sensors and azimuthal mode numbers. This will help manufacturers determine

the sensor locations depending on their interests.

The second major contribution is the identification of high frequency azimuthal acous-

tic modal dynamics. One of the problems of the high frequency instabilities is that the fre-

quencies of potential modes are too close to each other, preventing us from differentiating

between them. For a can combustor, for example, the natural frequencies of longitudinal

and azimuthal modes as well as mixed modes between them are so densely distributed that

they may occur simultaneously as shown in this study. This high frequency characteris-

tic makes it difficult to differentiate between complex modes solely based on the frequency

contents. Chapter 5 solved this problem by measuring pressure signals at multiple axial and

azimuthal locations and implementing axial and azimuthal wave equations that are coupled

through the dispersion relation. The pressure distributions obtained from this method are

compared with those obtained from the FEM, showing excellent agreements between them.

Moreover, this method is particularly important in combustors experiencing the thermoa-

coustic instabilities in terms of mitigation strategy. For example, the effectiveness of an

acoustic damper, which has been used to suppress the instabilities, strongly depends on its

location relative to pressure anti-node. Since this method enables us to estimate the loca-

tion of the pressure anti-node, it will help us determine the optimal location for the acoustic

damper.

Chapter 6 further analyzed the modal dynamics of azimuthal instabilities. Given the fact

that the azimuthal mode can take the form of either a standing, spinning, or mixed wave,

it is quite important to identify how the modal structure varies with different operating

conditions. The results showed that the instability magnitude and the modal nature are very

sensitive to the operating conditions, such as the mass flow rates (or thermal power) and
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azimuthal fuel staging (or outer ratio). Similar works have been conducted in past studies,

but the major difference between the facility used in this study and the facilities used in

prior research institutes is its thermal power comparable to the industrial scale combustor.

The facility is capable of delivering the thermal power of 2.5 MW with a high Reynolds

number. In addition, the facility contains multiple nozzles with different swirl directions,

making flow fields and flame structure very complicated (i.e., it is not simply a single

bunsen flame), but they are more comparable to the industrial scale combustors. These

imply that the experimental results from this study can be applied to real applications.

The last contribution of this thesis is the development of the low order modeling that

captures the important experimental observations. These observations can be summarized

as follows: azimuthal non-uniformities, background noise, oscillations of nodal line and

spinning direction, and frequency spacing from the spectrum. While previous models cap-

ture some of these effects, a key contribution of chapter 7 is to present a comprehensive

framework that includes all these effects. This chapter used a traditional approach used in

many previous studies, but we are able to accomplish this goal by introducing a generalized

source term in the wave equation, which differentiates this from the past studies. It is inter-

esting to note that although the experimental facility is significantly complicated in terms

of flow fields and flame structure, the low order model successfully captures the important

features observed in the experiments.

The contributions from each chapter are essential to monitoring the azimuthal ther-

moacoustic instability, providing mitigation strategy, and developing the stability margin

in real time. The author believes that the works presented here will be greatly beneficial to

combustion systems experiencing thermoacoustic issues.

8.2 Future Work

This section recommends several future works that have not been answered from this

thesis or that can support the hypotheses suggested from the thesis. These future works
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will enhance the understanding of the physics governing the azimuthal thermoacoustic in-

stabilities.

The first recommended future work is experimental. The experimental study in chap-

ter 6 shows that the instability magnitude as well as the modal natures are strongly de-

pendent on the azimuthal non-uniformity. This azimuthal non-uniformity is quantified by

the outer ratio, which is the fuel split between two separate fuel lines going through the

outer nozzles. However, this does not represent the actual flame non-uniformity. To bet-

ter quantify the non-uniformity, the flame structure needs to be measured. For example,

chemiluminescence or planar laser induced fluorescence (PLIF) can be used to measure

the flame structure. Note that we have used the chemiluminescence measurement where

the camera is pointing the flame from the side window. To estimate the azimuthal non-

uniformity, however, the measurements must be taken from the downstream, pointing to

the upstream flame direction. This experimental setup may be challenging because of the

hot product flowing towards the camera, but an air cooled mirror can be used to avoid this

situation [9, 80]. The azimuthal non-uniformity obtained from the flame structure can be

directly related to the azimuthal non-uniformity parameters, Cn and Sn, in the low order

model.

In addition, Figure 6.19 shows the dependence of azimuthal spinning direction on pilot

ratio. We hypothesize that this might be related to the bulk flow motion [98], i.e., for

high pilot ratio, the pilot nozzle, the swirl direction of which is CW, is more dominant

than the outer nozzles with CCW swirlers, resulting in a CW mixed wave. Furthermore,

Figure 6.20 shows the effect of preheat temperature on the modal nature. This suggests

that increasing preheat temperature may change the bulk azimuthal flow direction, which,

in turn, affects the azimuthal spinning direction. To support these hypotheses, azimuthal

flow field must be measured, for example, using a particle image velocimetry (PIV). With

this measurement, we can understand how the dominant azimuthal bulk flow changes with

the operating conditions such as pilot ratio and preheat temperature.
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The second recommendation for the future work is system identification. We learn

from the low order model that the azimuthal instability is a strong function of γ, or the

ratio between linear amplification/damping coefficients. The distance between γ and unity

provides the linear stability of the system. For example, if γ is much lower than unity, the

system is linearly stable and far away from the stability boundary. If γ is less than unity,

but close to it, the system is still linearly stable, but close to the stability boundary. In or-

der to make this information useful in practical systems, we need to be able to extract this

parameter from the measurements, i.e., system identification. The system identification for

thermoacoustic instability has been developed by other researchers [161, 162, 163, 164,

165, 166]. Typically, the method uses pressure magnitude measured from one sensor, and

then extracts the linear damping/growth coefficients using a Fokker-Planck equation. How-

ever, the method is applicable for only a longitudinal mode where the pressure magnitude is

relatively steady, but not for the azimuthal mode because the pressure magnitude measured

at a single point is typically not constant. Rather, it oscillates periodically because of the

oscillation in the anti-nodal line, see Figure 6.4 (a). Therefore, a new system identification

approach needs to be developed for the azimuthal mode. One potential method could be

using pressure magnitude at the anti-node instead of pressure magnitude at a single sen-

sor. As can be seen in Equation 4.6), the anti-node pressure magnitude is not a function

of anti-node location, and thus, it is only perturbed by the additive noise. Therefore, the

traditional method, the Fokker-Planck equation, may be applicable for extracting the linear

coefficient, which needs to be proven in the future.
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APPENDIX A

SUMMARY OF OPTIMAL SENSOR LOCATIONS

Table A.1 summarizes the optimal sensor locations for different combinations of sensor

number, n, and azimuthal mode numbers, m. Here, S1 is fixed at 0◦, and the values in the

table indicate the other sensor’s locations. For n = 3 and m = {1, 2}, for example,

the optimal locations for S2 and S3 are either (60◦, 120◦) or (120◦, 240◦). ∆ in n = 4

case means the angle between each pair. For example, ∆ = {45◦, 135◦} indicates that the

sensors are optimally located as long as the angle between two sensors of each pair is either

45◦ or 135◦. The relative angle between two pairs does not matter. Similarly, ∆ = {90◦}

indicates that two sensors of each pair must be placed 90◦ apart.
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Table A.1: Optimal sensor locations for different combinations of n and m.

m
n

2 3 4

{1} 90◦
60◦, 120◦

∆={90◦}
120◦, 240◦

{2}

30◦, 60◦

∆={45◦, 135◦}
45◦ 30◦, 150◦

135◦ 60◦, 120◦

60◦, 210◦

120◦, 240◦

{3}

20◦, 40◦

∆={30◦, 90◦, 150◦}

20◦, 100◦

20◦, 160◦

30◦ 40◦, 80◦

90◦ 40◦, 140◦

150◦ 40◦, 200◦

80◦, 160◦

80◦, 220◦

100◦, 200◦

{1, 2} 52◦ 60◦, 120◦ 45◦, 90◦, 135◦

128◦ 120◦, 240◦ 90◦, 135◦, 225◦

{1, 3} 90◦
79.5◦, 100.5◦

∆={90◦}79.5◦, 159◦

100.5◦, 201◦

{2, 3}

15◦, 45◦, 150◦

15◦, 45◦, 330◦

38◦, 76◦ 15◦, 150◦, 225◦

34.5◦ 38◦, 142◦ 30◦, 75◦, 220◦

145.5◦ 76◦, 218◦ 30◦, 135◦, 165◦

45◦, 90◦, 135◦

45◦, 135◦, 270◦

45◦, 150◦, 195◦

{1, 2, 3}
37◦ 41.5◦, 83◦ 45◦, 90◦, 135◦

143◦ 41.5◦, 138.5◦ 90◦, 135◦, 225◦

83◦, 221.5◦
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APPENDIX B

ESTIMATION OF SPIN RATIO BIAS

As can be seen in Figure 6.5, SRis an intrinsically noisy or oscillatory quantity and, the

fact that it cannot exceed unity means that there is a potential for bias errors in its estimate.

For example, if the average SRis 0.9, and it oscillates about its value with an amplitude

of 0.2, its maximum value still cannot exceed 1.0, while its minimum is 0.7. As such,

the estimate of it will be biased towards SR= 0 when exposed to noise. Understanding

the magnitude of this bias error is important relative to understanding the nature of the

attractors. For example, an estimated SRof 0.7 can be interpreted in different ways, such

as a mixed wave of SR= 0.8 with small noise intensity, or a spinning wave of SR= 1 with

large noise intensity. In order to estimate this bias error, we used Monte Carlo simulations

to find a combination of true SRand noise variance such that the peak and skewness of the

simulated SR PDF coincide with those of the experimental SR PDF.

To illustrate this point, CCW/CW waves were modeled as a sum of complex oscillatory

signal and noise following the complex normal distribution with a variance of σ2.

f̂(t) = Feiωt + ξF (t) and ĝ(t) = Geiωt + ξG(t)

where ξF,G ∼ CN(0, σ2)

(B.1)

Here, F and G are the constant CCW/CW magnitudes. The true SR(SRt) and simulated

SR(SRs) are then given by:

SRt =
F −G
F +G

, SRs(t) =
|f̂(t)| − |ĝ(t)|
|f̂(t)|+ |ĝ(t)|

(B.2)

The PDF of SRs at different combinations of SRt and σ was numerically obtained to

extract the peak and the skewness. Next, a combination of SRt and σ that yields the peak
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and the skewness similar to those from the experiments was found. The bias error was then

evaluated as the difference between SRt and the average of SRs.
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APPENDIX C

SOUND SPEED ESTIMATION

In order to utilize Equation 5.6, we must determine the axial wavenumber in advance,

which depends on the sound speed. The axial wavenumber and the sound speed are re-

lated by the dispersion relation. For homogeneous sound speed with no mean flow in a

cylindrical duct, the dispersion relation is given by Equation 2.23 or

f =
c

2π

√
k2
r + k2

z =
c

2π

√(αml
R

)2

+ k2
z (C.1)

where R is the chamber radius, c sound speed, and αml the root of d
dr
Jm(αml) = 0. The set

of αml for the different radial and azimuthal mode number is tabulated in Table C.1 . Given

the frequency, f , from the spectrum Figure 5.3 and the dispersion relation, Equation C.1,

we can obtain the axial wavenumber, kz, as a function of sound speed. Given kz, we can

utilize Equation 5.6 and the associated error, which depends on speed of sound.

Without any noise, R2
z given by Equation 5.7 would be unity. However, the noise is

inevitable in a turbulent combustion environment, resulting in R2
z less than unity. There-

fore, R2
z is evaluated for a range of values of sound speed, and the optimal sound speed is

Table C.1: Roots of d
dr
Jm(αml) = 0

αml/2π m = 0 m = 1 m = 2 m = 3
l = 0 0 0.2930 0.4861 0.6686
l = 1 0.6098 0.8485 1.0673 1.2757
l = 2 1.1166 1.3586 1.5867 1.8058
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determined as the value that maximizes R2
z [111].

copt = argmax
c∈[cl,cu]

R2
z (C.2)

where cl/u are the lower and the upper bounds for the sound speed values, which are es-

timated from the measured temperature at the exhaust (1200 K) and the adiabatic flame

temperature (1800 K), respectively. R2
z was evaluated at the range of sound speed given

each peak, fp1 and fp2, yielding two plots of R2
z with respect to sound speed values as

shown in Figure C.1 (a). Here, R2
z,1 and R2

z,2 denote the R2
z value of fp1 and fp2, respec-

tively. The optimal sound speed is supposed to maximize both R2
z simultaneously, but the

trends of each R2
z are quite different. Therefore, the optimal value is selected in such a way

that it maximizes the product of each R2
z, i.e., R2

z,1 · R2
z,2. In Figure C.1 (a), the two red

dots represent the first and the second local maxima of R2
z,1 · R2

z,2. As shown in the result

section, the sound speed of the first maxima, which is 794 m/s, provides a good agreement

between the experiments and the FEM, validating the method of sound speed estimation.

For reference, this sound speed value corresponds to a temperature of 1570 K. However,

considering the uncertainty of the least squares fit, the value at the other local maxima,

which is 763 m/s, is also investigated here.

Figure C.1 (b) illustrates the eigenfrequencies of each mode obtained from the FEM

depending on the sound speed at the combustion region. Note that the eigenfrequencies of

1A-a and 1A-b modes saturate at high sound speed because of the frequencies being lower

than the cutoff frequency. Given the sound speed of 763 m/s, fp1 and fp2 from the experi-

ments are close to 1A1L-a and 1A1L-b modes from the FEM, respectively. Therefore, the

pressure distribution along the axial direction for these modes are compared in Figure C.2.

Figure C.2 illustrates the pressure magnitude and phase distribution from the exper-

iments and the FEM in the axial direction for 1A1L-a and 1A1L-b modes. Notice that

for 1A1L-a mode, a discrepancy between the experiments and the FEM appears, i.e., the

nodal line location is not consistent, and the phase relationship between the sensors does
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Figure C.1: (a) R2
z with respect to sound speed for each peak. (b) sound speed versus

eigenfrequencies of each mode obtained from FEM.

Figure C.2: Pressure magnitude and phase distributions along the axial direction for c =
763 m/s. (a): 1A1L-a mode. (b): 1A1L-b mode.
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not match. Specifically, sensor 1 is nearly in phase with sensors 2 and 3 in the experiments,

which is not in the FEM. 1A1L-b mode from the FEM is relatively close to that from the

experiment, but the optimal sound speed is supposed to provide a good agreement for both

modes simultaneously. Therefore, one can conclude that not only is 794 m/s the optimal

sound speed, but also estimating the sound speed by minimizing a least squares error is ac-

ceptable. Once the sound speed is determined, the associated temperature can be estimated

from the ideal gas assumption, i.e., c =
√
γRT where γ and R are specific heat ratio and

the gas constant for air, respectively, under lean condition.
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APPENDIX D

PHASE AVERAGED PORTRAIT AT DIFFERENT OPERATING CONDITIONS

Figure D.1 shows two phase portraits at two different operating conditions. The sam-

pling length was 30 seconds, or approximately 50,000 cycles of oscillations. The portraits

demonstrate the system’s preference in CCW (Figure D.1 (a)) and CW (Figure D.1 (b))

mixed wave depending on the operating conditions, which are summarized in Table D.1.

Table D.1: Operating conditions for Figure D.1

Case
Preheat Equiv.

PR OR
Air mass

temp. (K) ratio (-) flow (kg/s)
Figure D.1 (a)

625
0.57 0.087

0.5
1.41

Figure D.1 (b) 0.55 0.09 1.34
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Figure D.1: Representative data obtained under conditions detailed in Figure D.1 that ex-
hibit (a) CCW and (b) CW preferred wave dynamics.
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APPENDIX E

RELATIONSHIP BETWEEN TWO DECOMPOSITION METHODS

There are two methods to decompose the azimuthal pressure. One decomposes the

pressure into two purely standing eigenmodes orthogonal to each other. The governing

equations, Equation 7.13 are derived based on this method. When one of the modes has a

zero amplitude or the phase difference between two modes is 0 or ±π, the final mode is a

purely standing wave. When they have equal amplitudes with a phase difference of ±π/2,

the final mode is a purely spinning wave. As shown, this decomposition method requires

amplitudes and phase difference information to determine the final mode. However, their

values strongly depend on the orientation of acoustic structure relative to the azimuthal

origin. This will be problematic for a case where the structure is fluctuating as shown in

Figure 6.5 (a).

Alternatively, two counter-rotating decomposition method has been used widely, espe-

cially in experimental studies. This method decomposes the pressure into CW and CCW

eigenmodes. When one of the modes is suppressed, the final mode is a purely spinning

wave, and when they have equal amplitude, then the final mode is a purely standing wave.

The key advantage of this decomposition method is that first, the final mode is determined

based on only CCW/CW amplitudes. The phase difference only affects the orientation of

the wave structure. Second, the CCW/CW amplitudes do not depend on the azimuthal

origin. For these reasons, numerous experimental studies including this work adopted this

decomposition method, and presented their results. In this work, we simulated the govern-

ing equation describing the dynamics of two orthogonal standing modes, and transformed

them into the two counter-rotating modes to present the results. This appendix introduces

the relationship between the two decomposition methods.

Equation 6.2 represents the complex acoustic pressure in azimuthal direction written as
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the superposition of CW and CCW waves. To convert the pressure into a real quantity, we

add a complex conjugate (c.c.) to Equation 6.2

p(θ, t) = Fei(mθ+ϕF−ω̄FGt) +Ge−i(mθ−ϕG−ω̄FGt) + c.c. (E.1)

After some manipulations, the acoustic pressure can be rewritten as follows.

p(θ, t) =[2F cos(ω̄FGt− ϕF ) + 2G cos(ω̄FGt)− ϕG] cos(mθ)

+ [2F sin(ω̄FGt− ϕF )− 2G sin(ω̄FGt− ϕG)] sin(mθ)

(E.2)

Comparing Equation E.2 with Equation 7.4 and Equation 7.11 yields the following rela-

tions.

2F cos(ω̄FGt− ϕF ) + 2G cos(ω̄FGt− ϕG) = A cos(ω̄t+ ϕA)

2F sin(ω̄FGt− ϕF )− 2G sin(ω̄FGt− ϕG) = B sin(ω̄t+ ϕB)

(E.3)

Using the trigonometric identities, one can deduce the following relations.

ω̄FG = ω̄

A2 = 4(F 2 +G2 + 2FG cosϕFG)

B2 = 4(F 2 +G2 − 2FG cosϕFG)

ϕ = arctan

(
2FG sinϕFG
G2 − F 2

)
− π

2

(E.4)

Equation E.4 enables us to transform the variables, F,G, and ϕFG into A,B, and ϕ. The

opposite transformation can be achieved by the following relations.

F 2 =
1

16
(A2 +B2 − 2AB sinϕ)

G2 =
1

16
(A2 +B2 + 2AB sinϕ)

ϕFG = arctan

(
2AB cosϕFG
A2 −B2

) (E.5)

Table E.1 summarizes which conditions of A,B, and ϕ give the standing or spinning wave.
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For simplicity,Table E.1 considers only purely standing and spinning waves. The other

cases that are not described in Table E.1 correspond to a mixed wave.

Table E.1: Azimuthal mode dependence on A,B, ϕ, F,G, and ϕFG

Decomposition method Standing wave CCW spinning wave CW spinning wave
Two standing AB = 0 or A = B 6= 0 A = B 6= 0
eigenmodes ϕ = 0,±π and ϕ = −π

2
and ϕ = −π

2

Two spinning
F = G 6= 0

F 6= 0 and G 6= 0 and
eigenmodes G = 0 F = 0
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APPENDIX F

FIXED POINT STABILITY ANALYSIS

Substituting Equation 7.18 into Equation 7.14 with ∆ = S2,10 = Γ = ζ = 0 yields the

following linear system:


Ȧ′

Ḃ′

ϕ̇′

 = J


A′

B′

ϕ′

 (F.1)

where the elements of the 3× 3 Jacobian matrix J are given by:

J11 =

(
1

2
+
C2,01

4

)
β − α

2
+

3b31

32
[9A2 + (2 + cos 2ϕ)B2]

J12 =
3b31

16
AB(2 + cos 2ϕ)

J13 = −3b31

16
AB2 sin 2ϕ

J21 =
3b32

16
AB(2 + cos 2ϕ)

J22 =

(
1

2
− C2,01

4

)
β − α

2
+

3b32

32
[9B2 + (2 + cos 2ϕ)A2]

J23 = −3b32

16
BA2 sin 2ϕ

J31 = −3b32

16
A sin 2ϕ

J32 = −3b31

16
B sin 2ϕ

J33 = − 3

16
(b32A

2 + b31B
2) cos 2ϕ

(F.2)

In order to determine the stability of each FP, we first need to find the eigenvalues that

satisfies the following characteristic equation:

det(J |A=A∗,B=B∗,ϕ=ϕ∗ − λI) = 0 (F.3)
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Here, λ is the eigenvalue and I is a 3× 3 identity matrix. Since the system is three dimen-

sional, the characteristic equation can be expressed as the polynomial up to cubic order in

terms of λ:

λ3 + a2λ
2 + a1λ+ a0 = 0 (F.4)

where a0, a1, and a2 are the coefficients of the characteristic equation. For any given FP to

be stable, all solutions of Equation F.4 must be real and negative, which requires solving

the cubic equation. Alternatively, the stability of each FP can be assessed by using the

Routh Hurwitz (RH) criterion without solving the equation [167, 168, 169, 170]. The RH

criterion states that the necessary and sufficient conditions for a FP to be stable are:

i. ai > 0 for i = 0, 1, 2 and ii. a2 · a1 > a0 (F.5)

The RH criterion gives four inequalities, which are greater than the number of eigenvalue

solutions. However, a key advantage of the RH criterion is that we do not have to solve

Equation F.4 to assess the stability.
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