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SUMMARY 

The recently developed ability to simultaneously record thousands of neurons 

provides unprecedented opportunity for answering important questions about the brain. 

However, reliable analysis of large-scale neural data has to be established in advance to 

answer questions. The conducted project is two-fold: In the first half, I validated the 

reliability of large-scale neural data analysis, and in the second half, I applied these 

methods to large-scale neural data to investigate how neural information processing in mice 

is influenced by neural oscillations in multiple visual brain areas. 

To validate the method, I first benchmarked two commonly used spike-sorting 

algorithms: Kilosort2 and Klustakwik2 in detectability of pairwise neuronal functional 

connectivity. Then, I developed an analysis pipeline of intrinsic signal imaging that non-

invasively identifies specific visual cortical areas and their functional map. 

Then, I applied these validated methods to investigate coherent narrowband gamma 

oscillations (NBG) close to 60Hz (50 -70Hz) and prominent in multiple visual areas of 

mice during visual processing. More specifically, I investigated how NBG is represented 

in visual areas and inspect the role of NBG in visual processing. 

  NBG is present in higher visual areas (HVAs) as well as in the visual thalamus and 

the primary visual cortex, as previously detailed in literature. Interestingly, there is a 

hierarchy of the coherence and power of NBG present in HVAs and it is consistent with 

the thalamo-cortical hierarchy that processes visual stimuli. Also, narrowband gamma 

propagates through local subnetworks rather than globally. Moreover, two neuronal 



 x 

clusters exist in LGN and exhibit two different coherent NBGs, and also have different 

visual preference to ON/OFF stimulus. 

With this result, I suggest two hypotheses for the role of NBG: First, that NBG 

synchronize visual brain areas for efficient communication between them, also known as 

the “communication through coherence” hypothesis. Second, that narrowband gamma 

encodes luminance information in a computationally efficient way. 
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CHAPTER 1. INTRODUCTION 

1.1 The problem 

The objective of the proposed research is two-fold: first, to validate the reliability of 

large-scale neural data analysis, and second, to apply reliable methods to large-scale neural 

data to investigate how neural oscillations in multiple visual brain areas of mice influence 

neural information processing. 

The development of the Neuropixels probe has enabled electrical recording of neural 

activity from thousands of neurons in multiple visual areas simultaneously. (Jun et al., 

2017) With this unprecedented opportunity, it is possible to investigate neural information 

processing in multiple visual areas simultaneously. Specifically, I am interested in how 

previously found coherent gamma oscillations prominent in multiple visual areas of mice 

affect visual sensory processing. (Niell and Stryker, 2010; Saleem et al., 2017; Storchi et 

al., 2017) I asked three questions about the neural oscillation: 

1. Does coherent gamma oscillation previously found in visual thalamus (LGN) 

and primary visual cortex (V1) exist in higher visual areas?  

2. How does neural oscillation propagate between multiple visual areas? 

3. What is the role of this gamma oscillation in multiple visual areas?  

However, reliable analysis of large-scale neural data must be established in advance to 

answer these questions. There are two main factors that prevent the reliable analysis of 

large-scale electrophysiology recordings (Steinmetz et al., 2018): 

1. The deficit of ground truth dataset and variability between spike-sorting algorithms.  
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2. Variability in location of probe insertion sites. 

To cope with these problems suggested by (Steinmetz et al., 2018), I first 

benchmarked two commonly used spike-sorting algorithms with the metric of single unit 

stimulus response properties and the statistical likelihood of detecting short-latency 

interactions between pairs of simultaneously recorded neurons. Also, I developed a post-

processing pipeline of a non-invasive brain imaging system that reveals visuo-cortical areas 

before inserting probes. 

 

1.2 Introduction 

  The recent development of the Neuropixels probe (Jun et al., 2017) enables 

electrophysiological recording from thousands of neurons simultaneously. However, 

isolating action potentials (spikes) from single neurons (spike-sorting) is still an unresolved 

problem that not only requires significant computation but also lacks ground truth.  In 

addition, spike-sorting shows large variability between algorithms. (Magland et al., 2020; 

Steinmetz et al., 2018) 

 Multiple studies have compared the performance of spike-sorting algorithms. From 

these papers it is known that different spike-sorting algorithms give different results in miss 

rates and false-positive rates using hybrid ground-truth datasets. (Alessio P. Buccino, 2019; 

Magland et al., 2020) However, there remain many questions regarding the constraints 

posed by different spike-sorting algorithms, and how these may interact with other 
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experimental conditions such as choice of probes, analysis methods, areas of the brain, and 

visual stimuli.  

First, I compared the performance and constraints posed by two commonly used 

spike-sorting algorithms:  1) Klustakwik2, (Rossant et al., 2016) the algorithm that the 

Haider lab has used extensively for 32- 64 channel Neuronexus probes (Speed et al., 2019; 

Speed et al., 2020; Williams et al., 2020), and 2) Kilosort2, the algorithm that the lab plans 

on using primarily for Neuropixels with 384 channels. (Pachitariu et al., 2016b) The 

analysis focused specifically on neural activity evoked by visual stimulation of receptive 

fields (RF) in primary visual cortex (V1) of awake mice and also during a visual stimulus 

detection task. I used analysis methods that have been used previously (Speed et al., 2019; 

Speed et al., 2020; Williams et al., 2020) to analyze neural data to quantify the different 

effect of two spike-sorting algorithms on single unit stimulus response properties, as well 

as on the statistical likelihood of detecting pairwise short-latency interactions between pairs 

of simultaneously recorded neurons.   

Second, identifying the specific brain area of interest non-invasively before 

inserting an invasive electrical probe presents several challenges. These challenges include 

the small size of the mouse brain, mouse to mouse variability in the region of interest, and 

the existence of the skull, which filters and attenuates brain signals.  

The development of the Allen Mouse Brain Common Coordinate Framework 

(Allen CCF) provides a unified coordinate system for mapping brain areas repeatedly 

between labs in targeting mouse brain areas. (Wang et al., 2020) However, Allen CCF 
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ignores mouse to mouse variability in the brain anatomy which requires a technique that 

reveals anatomy of each specific mouse.  

In studying rodent sensory systems, there is a well-established method called 

intrinsic signal imaging (ISI). (Kalatsky and Stryker, 2003) ISI is a non-invasive brain 

imaging system that reveals a functional map of each mouse. ISI distinguishes V1 and up 

to 11 different higher visual areas (HVA) in the mouse visual cortex. (Garrett et al., 2014; 

Juavinett et al., 2017; Kalatsky and Stryker, 2003) With ISI, it is possible to accurately 

target visuo-cortical brain area of the mouse non-invasively before inserting an invasive 

electrical probe. 

Together, the development of the Neuropixels probe, Kilosort2 and the ISI system 

offer unprecedented opportunity to accurately record thousands of neurons in multiple 

visual areas simultaneously. With this ability, I asked how different visual areas 

synchronize neural activity to process visual information. I chose to focus my analysis on 

neural oscillations, which have been implicated in synchronizing neural activity across 

multiple brain regions 

Neural oscillations in the brain have been a subject of curiosity since they were first 

discovered from EEG data of human subjects, as alpha oscillation that appeared when 

subjects closed their eyes. (Berger, 1929; Buzsaki and Draguhn, 2004) Since then, neural 

oscillations have been found from various recording methods including single neuron 

recordings and extracellular field potentials, which are known to reflect synchronous neural 

population activity. (Buzsaki, 2004; Llinás, 1988) There is controversy over whether 

oscillations are simply a by-product of the brain’s function or if the oscillation carry a 
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functional implication. (Buzsaki and Draguhn, 2004; Buzsaki and Wang, 2012; Fries, 

2005) However, both perspectives accept the fact that there is periodic synchrony in neural 

activity. 

In mouse visual areas, there is prominent gamma oscillation (narrowband gamma 

oscillation, NBG) found in the primary visual cortex, in the lateral geniculate nucleus 

(LGN) of the thalamus, and in the retinal ganglion cells. (Niell and Stryker, 2010; Saleem 

et al., 2017; Storchi et al., 2017) Work from our lab (Speed et al., 2019) has revealed that 

NBG in mouse primary visual cortex (V1) layer 4 contributes to the detection of a visual 

stimulus during a visual detection task. (Speed et al., 2019). Layer 4 in V1 is known to get 

direct visual input from LGN, which is the main source of retinal information to V1. 

Moreover, it is known that V1 inherits NBG from LGN (Saleem et al., 2017).  

However, several questions remain unanswered about the functional role of NBG, 

including: 1) the existence of NBG in higher visual areas (HVA), 2) How coherent gamma 

oscillations are propagated in multiple visual areas, and 3) the role of NBG in mouse visual 

processing.  Many of these questions can be answered with detailed neural data analysis of 

simultaneous recordings from multiple brain areas spanning across the thalamus, V1, and 

HVAs.    

An open-source dataset – The Allen Visual Coding dataset – contains data from 

neural recordings of up to 6 simultaneous visual cortical areas revealed by intrinsic signal 

imaging (ISI) with Neuropixels probes, which are spike-sorted with Kilosort2, which I 

benchmark in the first half of this thesis. (Joshua H. Siegle, 2019) Hence, for the second 

half of this thesis, I study the above three unresolved questions about narrowband gamma 
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oscillation in visual areas by applying the validated methods to analyzing thousands of 

identified neurons (spikes) and population activity (local field potential, LFP) in visual 

areas. 
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CHAPTER 2. BACKGROUND AND METHODS 

2.1 Background 

2.1.1 Visual information propagation in mouse visual system. 

Mouse visual information propagates from retina to lateral geniculate nucleus 

(LGN) of the thalamus, to primary visual cortex (V1). Then the information in V1 goes to 

higher visual areas (HVA). (Figure 1.) 

2.1.2 Higher visual areas 

Higher visual areas are the visuo-cortical areas that is not V1 and known to process 

visual information. These areas are suspected to perform higher-order processing of visual 

signals. (Glickfeld and Olsen, 2017) The use of intrinsic signal imaging enabled accurate 

targeting of distinct higher visual areas before measuring electrical activity. (Garrett et al., 

2014; Glickfeld and Olsen, 2017; Juavinett et al., 2017) This allowed for many studies of 

anatomical and physiological structure of higher visual areas as well as functions. 

(Bienkowski et al., 2019; Glickfeld and Olsen, 2017; Harris et al., 2019; Murgas et al., 

2020; Siegle et al., 2019; Vangeneugden et al., 2019).     

Among various higher visual areas (Garrett et al., 2014), I focused analysis on these 

areas because there areas are the most clearly defined and Allen Visual coding dataset has 

extensive recording data (Garrett et al., 2014; Siegle et al., 2019) : LM (lateromedial area), 

RL (rostrolateral area), AL (anterolateral area), PM (posteromedial area) and AM 

(anteromedial area)   
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Figure 1. A schematic of visual information propagation of mouse adjusted 
from (Glickfeld and Olsen, 2017). Black lines are the information propagation 
that I consider in the thesis. Dotted line is non-conventional information 
propagation pathway. 
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2.1.3 Neuropixels 1.0 probe 

Neuropixels 1.0 probe is multi-channel silicon probe that significantly increased 

the number of simultaneously recordable channel using CMOS (Complementary Metal 

Oxide Semiconductor) fabrication methods. (Jun et al. 16) Neuropixels 1.0 probe has 986 

recording sites, and at most 384 channels could be used simultaneously. It spans at most 

1cm in depth, which in the visual system, permits targeted recordings from cortex, 

hippocampus, and lateral geniculate nucleus simultaneously. 

2.1.4 Action potential 

An action potential is an electrical signal that is triggered by a neuron, that is known 

to be a fundamental unit of information. (Kandel et al., 2000) Action potential is also called 

a spike of a neuron. All action potentials result from a specific process: depolarization, 

hyperpolarization and repolarization of membrane potential which forms a specific 

waveform when measuring membrane potential across time. 

2.1.4.1 Local Field Potential (LFP) 

Local field potential is an extracellular field potential that is recorded inside the brain. 

(Buzsaki et al., 2012) LFP is calculated by lowpass filtering the raw extracellular recording 

to get low frequency fluctuation (typically < 200 Hz) caused by synchronized population 

activity of neurons. It is known that the driving force of the LFP is mainly due to synaptic 

currents between neurons. (Haider et al., 2016) 
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2.1.4.2 Spike-train 

Neural spike-train is a vector of spike-times. It could be acquired with extracellular 

recordings followed by spike-sorting process as well as recording spikes with intracellular 

recordings. In neural analysis, usually spike-train is regarded as an activity of single/multi-

neuronal activity and LFP is regarded as an activity of population of neurons. 

2.1.5 Spike-sorting 

Spike-sorting is a process that extracts neural spike-trains from the raw extracellular 

electrophysiological data. (Carlson and Carin, 2019) Due to its unsupervised nature, there 

are multiple algorithms, but no clear winner. It is known that the performance of different 

algorithms varies significantly with the types and conditions of the data. (Magland et al., 

2020) 

2.1.5.1 Calculation of Peri-stimulus time histogram (PSTH) 

Peri-stimulus time histogram shows average neural response evoked by multiple 

repetitions of the same stimulus. It is computed by averaging neural activity of different 

trials such as LFP or spike-train on the stimulus onset. PSTH averages out single trial 

variability while maintaining the information regarding neuron’s response to the stimulus. 

2.1.6 Receptive field 

The spatial receptive field of visual neurons corresponds to the region of space where 

visual stimuli elicit evoked action potentials. (Hubel and Wiesel, 1962) 
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2.2 Methods that were used throughout the paper 

2.2.1 Kernel density estimation (KDE) on spike train 

Spike-train is a sequence of binary events. Transforming spike-train to a spike-time 

histogram would convert to digital signal. For an accurate analysis of the signal, often 

converting to discrete time series is beneficial such as comparison with LFP, and when 

inferring baseline firing rate of a spike-train. Kernel density estimation is used to convert 

digital spike-time histogram to discrete time series. The output of KDE to a spike-train is 

regarded as a baseline firing rates of the spike-train.  

2.2.2 Fourier analysis 

Any real signal that has period P could be decomposed of weighted linear 

summation of sinusoids that have has period of P divided by positive integer. Fourier 

analysis is a way to represent signal by a linear summation of sinusoids. The process to 

find weights A𝑛𝑛  of sinusoids of real signal s(x) is following (Oppenheim and Schafer, 

1975):   

𝑠𝑠(𝑥𝑥) = 𝐴𝐴𝑜𝑜
2

+ � A𝑛𝑛 cos (2𝜋𝜋𝑛𝑛𝜋𝜋
𝑃𝑃

−  𝜃𝜃𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
    While 𝐴𝐴𝑛𝑛 =  �𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛 and 

𝑎𝑎𝑛𝑛 = ∫ 𝑠𝑠(𝑥𝑥) cos �2𝜋𝜋𝑥𝑥 𝑛𝑛
𝑃𝑃
� 𝑑𝑑𝑥𝑥𝑃𝑃  , 𝑏𝑏𝑛𝑛 = ∫ 𝑠𝑠(𝑥𝑥) sin �2𝜋𝜋𝑥𝑥 𝑛𝑛

𝑃𝑃
� 𝑑𝑑𝑥𝑥𝑃𝑃  

Fourier analysis is often used to approximate periodic signal. Especially the first 

harmonic is often used to find the neuron’s responsive property to the periodic stimulus 

assuming cosine response function.  
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 Fourier transform is one way of Fourier series decomposition that considers non-

periodic signal as periodic signal with infinite period. 

2.2.3 Fast Fourier transform (FFT) 

Fast Fourier transform is an algorithm of performing discrete Fourier transform 

(DFT) or its inverse in computationally more efficient way. ( 𝑂𝑂(𝑁𝑁2) →

𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑒𝑒𝑒𝑒 𝑁𝑁𝑜𝑜 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑝𝑝𝑁𝑁𝑝𝑝𝑛𝑛𝑑𝑑𝑠𝑠. ). (Oppenheim and Schafer, 1975) 

Fourier transform is a basis transformation from original domain to frequency domain. In 

other words, like Fourier series, it is a way to explain original signal with weighted linear 

summation of sinusoids while considering the period of the signal is infinite in Fourier 

transform.   

2.2.4 Pearson correlation coefficient 

Pearson correlation coefficient is a statistic that measures bivariate linear 

correlation between two variables. (Perkel et al., 1967) The value is between -1 and 1, that 

1 indicates two variables are perfectly positively correlated and -1 indicates two variables 

are perfectly negatively correlated. The equation to compute Pearson correlation 

coefficient 𝜌𝜌𝑋𝑋,𝑌𝑌 is: 

𝜌𝜌𝑋𝑋,𝑌𝑌  =  
𝑐𝑐𝑁𝑁𝑐𝑐 (𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

  

𝑤𝑤ℎ𝑝𝑝𝑁𝑁𝑒𝑒 𝑐𝑐𝑁𝑁𝑐𝑐() ,𝑎𝑎𝑛𝑛𝑑𝑑 𝜎𝜎  𝑑𝑑𝑒𝑒𝑛𝑛𝑁𝑁𝑑𝑑𝑒𝑒𝑠𝑠 𝑐𝑐𝑁𝑁𝑐𝑐𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒 𝑎𝑎𝑛𝑛𝑑𝑑 𝑠𝑠𝑑𝑑𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑒𝑒𝑑𝑑 𝑑𝑑𝑒𝑒𝑐𝑐𝑝𝑝𝑎𝑎𝑑𝑑𝑝𝑝𝑁𝑁𝑛𝑛. 
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2.2.5 Cross-correlation 

Cross-correlation is a measurement of correlation in the function of displacement 

of signal. In discrete signals, the equation of cross-correlation is: 

𝑥𝑥𝑐𝑐𝑁𝑁𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦) =  � 𝑥𝑥[𝑛𝑛]𝑦𝑦[𝑛𝑛 + 𝑛𝑛]
∞

𝑚𝑚= −∞

 

It is often used between two spike-time histograms to find the correlation with time 

lag between two spike-trains. Also, by appropriately normalizing two signals X and Y 

which makes mean to be 0 and standard deviation to be 1, it is possible to get Pearson 

correlation coefficient as a function of displacement. 

2.2.6 Cell type identification with waveform width 

The identification of neuron types was done by measuring the waveform width of 

the action potential. Here, the distance between the maximally depolarized peak and the 

maximally hyperpolarized trough is considered as waveform width. (Figure 2.) Then the 

distances are compared to the threshold (0.57ms). (Speed et al., 2020; Speed et al., 2019) 

If the distance is larger than the threshold, it is identified as putatively excitatory cell 

(regular spiking; RS), and if the distance is smaller, it is identified as a putatively inhibitory 

cell (fast spiking; FS). (Nowak et al., 2003; Speed et al., 2019; Speed et al., 2020) 
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Figure 2. Average waveform of identified cell types spike-sorted with Kilosort2. 
Regular spiking cells (RS, putative excitatory neurons, 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 121) have longer 
waveform than fast spiking cells (FS, putative inhibitory neurons, 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 121). 
Cell types are identified with the waveform width, from trough to the peak of 
the waveform. 
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2.2.7 V1 layer4 identification with current source density (CSD) 

The cerebral cortex is a laminar structure. (Buzsaki, 2004; Buzsaki et al., 2012) 

Each layer exhibits different anatomical and functional properties. Specifically, in primary 

visual cortex, layer 4 is known to receive visual input from thalamus.  

In all types of neural activity, currents flow in and out of cells. (Mitzdorf, 1985). 

CSD applies second spatial derivative to the local field potential to get local current flow, 

and outputs areas the gets inward current flow (sink) and areas that gives outward currents 

(source). (Mitzdorf, 1985) 

In the case of CSD on visual stimulus response, the earliest sink corresponds to the 

area that gets the earliest visual information. (Niell and Stryker, 2008; Speed et al., 2019) 

Since layer 4 is the area that gets visual input from thalamus, in CSD, the earliest sink 

channel corresponds to layer 4 of V1. (Figure 3.) 

This method identifying layer 4 in V1 could not be generalized in HVAs because it 

is not known if HVA gets enough direct input from LGN, and also if the input layer is layer 

4 or not. However, for consistency, for analysis that requires one LFP channel from HVA, 

I used earliest sink channel from HVA. 

 

 

 

 



 16 

 

 

 

 

 

 

 

 

Figure 3. Example of stimulus triggered V1 current source density (CSD) using full 
field flash stimulus, from the Neuropixels probe. Cortex is top 1mm which corresponds 
to 100 channels of the Neuropixels probe.  (Yellow: sink and black: source in the 
figure.) 
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CHAPTER 3.  BENCHMARKING SPIKESORTING ALGORITHMS 

3.1 Introduction 

Spike-sorting is a process that extracts neural spike trains from the raw extracellular 

electrophysiological data. (Carlson and Carin, 2019) Action potential is considered as unit 

of information in the brain, thus the attempt to extract neural spikes from extracellular 

recording is essential in the field. (Carlson and Carin, 2019) 

There are multiple spike-sorting algorithms in the field that use diverse methods. The 

problem with these algorithms is that they give significantly different result spike-trains 

from the same neural data. (Carlson and Carin, 2019) Moreover, there are spike-sorting 

algorithms that require manual manipulation after the automatic process which produces 

even more variant sets of result spike-trains from same neural data (Magland et al., 2020)  

The quality of spike-sorting is difficult to quantify because collecting ground-truth 

data is difficult. There are two widely used methods on collecting ground-truth data: 

juxtacellular recordings which use simultaneous extracellular and intracellular recordings, 

and hybrid ground-truth that use only spikes that were previously spike-sorted. Each 

method has its own limitation, such as juxtacellular recordings being very difficult to 

perform, and nets one ground-truth neuron per experiment which limits the amount of data. 

The hybrid ground truth dataset is inherently limited by the performance of spike-sorting 

algorithm ability to generate a dataset. 

This difficulty in having high quality ground-truth dataset caused the lack of 

amount of total available dataset. Hence, existing analyses focus on performance 
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considering general conditions such as types of probes, and cortical versus subcortical 

areas. (Buccino et al., 2019; Wouters et al., 2019) On the other hand, the performance of 

spike-sorting algorithm is highly variant in different conditions. For example, it is known 

that Kilosort2 has high performance at high channel count multi-electrode arrays data but 

poorly at tetrodes or lower channel electrodes data. (Magland et al., 2020).  

 Different brain regions have different types and density of neurons, firing rates and 

patterns. (Nowak et al., 2003) Hence, as different spike-sorting algorithms gives different 

results with types of electrodes, I hypothesized that the performance of the spike-sorting 

algorithms would vary with the specific brain region and behavioural states of the mouse 

(such as passively viewing  stimulus or engaged to the task.). Specifically, I asked how 

different algorithms affects the scientific questions about single cell stimulus response 

statistics and the statistical detectability of short-latency pairwise neuronal interactions in 

mouse primary visual cortex with 32 channel multi-electrode probe.  

3.1.1 Potential candidates: Kilosort2 and Klustakwik2 

Klustakwik2 and Kilosort2 are spike-sorting algorithm developed in the same lab. 

(Pachitariu et al., 2016a; Rossant et al., 2016) Two algorithms use different methods of 

spike-sorting, hence they have distinct constraints and outcomes. The main difference of 

the known outcome of two algorithms is their ability to distinguish spikes that occur at the 

same time and same channel of the probe. (spatio-temporally overlapping spikes) Also, 

with high electrode count probes such as Neuropixels, Kilosort2 could perform spike 

sorting with acceptable computation time, while Klustakwik2 cannot handle the number of 

computations. 
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3.1.2 Haider lab extracellular electrophysiology dataset 

Haider lab dataset is an invasive in-vivo neural recording dataset on mouse brain. 

It has times series of neural recording, timing information of stimulus presentation and 

mouse behavior such as lick timing and reward timing. Most of the dataset I use in this 

thesis is acquired with 32 channel single shank linear probe (Neuronexus A1x32) then 

spike-sorted with Klustakwik2 and Kilosort2. The dataset I used were ones that recorded 

primary visual cortex that spans all layers, which the mouse is has either passively shown 

a receptive field mapping stimulus or engaged to a behavioral task. (Speed et al., 2019; 

Speed et al., 2020; Williams et al., 2020) 

3.1.2.1 Receptive field mapping using bar stimulus 

Receptive field mapping is done with passive stimulus presentation of bar stimulus 

that is either vertical or horizontal bar to the contralateral hemifield. The bars are either 

white or black, 9° wide and spans -37.8°  to 115.8° horizontallyin the visual space of the 

mouse. (Williams et al., 2020). 

3.2 Methods 

3.2.1 Overview 

First, I spike-sorted the same recording with both Kilosort2 and Klustakwik2. The 

recordings were all done in head-fixed awake mice with Neuronexus probes targeted to 

V1. (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 = 22, passive receptive field mapping stimulus presentation, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 = 

8, active behavioral task.) After spike-sorting, Haider lab members and I manually curated 

the spike-sorted results with Phy2. (Rossant et al., 2016) Only clusters with distinct 
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waveform shapes from other clusters in Phy2 output were considered as unique neurons. 

To identify putative same neuron among Kilosort2 and Klustakwik2, I considered neurons 

that had greater than 50% overlap of spike-times in the analysis. This criterion is less strict 

for a truly identical neurons, which I did to have statistical significance which requires 

large number of neurons. I compared single neuron receptive field statistics and 

detectability of pairwise interaction of putative same neurons between Kilosort2 and 

Klustatkwik2.  

3.2.2 Single cell stimulus response statistics 

Here, I compared stimulus response statistics of identified neurons. Receptive field 

is a fundamental property of neurons in V1 that require various types of analysis to fully 

understand. The properties that used on comparing are following: receptive field 

center/variance, response amplitude, response amplitude normalized by spontaneous firing 

rate and response duration. (Figure 4.) 

3.2.2.1 Response amplitude 

Response amplitude is a measurement of firing rate when the stimulus is present at 

the receptive field of the cell. I measured raw response amplitude and response amplitude 

normalized by spontaneous firing rate. (Figure 4. B) 

3.2.2.2 Receptive field width 

I fit Gaussian distribution on cell’s response amplitude to stimuli presented at 

different positions in the visual field and took the standard deviation of the fit as a receptive 

field width. (Figure 4. B) 
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3.2.2.3 Receptive field center 

I fit Gaussian distribution on cell’s response amplitude to stimuli presented at 

different positions in the visual field and took the mean of the fit as a receptive field center. 

(Figure 4. B) 

3.2.2.4 Response duration 

Response duration is a duration of cell responding to the stimuli that is nearest to 

the receptive field center. Raw firing pattern was filtered with Gaussian kernel, and the 

duration was the period that the response was higher than half of the maximum firing rate 

of the response. (Figure 4. C) 

3.2.2.5 Response latency 

Response latency was measured by the filtered firing pattern first went above half 

maximum. (Figure 4. C) 

3.2.2.6 Coefficient of variation (CV) of the inter-spike-interval (ISI) (Spikes in 

receptive field during the response) 

Coefficient of variation (CV) of the inter-spike-interval (ISI) is defined as: 

𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑠𝑠𝑑𝑑𝑑𝑑 (𝐼𝐼𝐼𝐼𝐼𝐼)
𝑛𝑛𝑒𝑒𝑎𝑎𝑛𝑛(𝐼𝐼𝐼𝐼𝐼𝐼)

 

CV(ISI) is a metric to quantify spike regularity. In the stimulus driven model, spiking 

activity is more regular, so CV(ISI) is smaller. In the noise driven model, spiking activity 

is more irregular, so CV(ISI) is relatively larger. A different way of understanding is 
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CV(ISI) indicates how similar the spiking activity is to the Poisson process. If  the spike 

generation process is a perfect Poisson process, CV(ISI) = 1, and if it’s perfectly regular 

process, CV(ISI) = 0. (Qinglong Gu, 2020) 

3.2.2.7 Fano factor of spikes in receptive field during the response 

Fano factor is defined as: 

𝐹𝐹𝑎𝑎𝑛𝑛𝑁𝑁 𝑜𝑜𝑎𝑎𝑐𝑐𝑑𝑑𝑁𝑁𝑒𝑒 =  
𝑐𝑐𝑎𝑎𝑒𝑒 (𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒 𝑐𝑐𝑁𝑁𝑛𝑛𝑛𝑛𝑑𝑑)
𝑛𝑛𝑒𝑒𝑎𝑎𝑛𝑛(𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒 𝑐𝑐𝑁𝑁𝑛𝑛𝑛𝑛𝑑𝑑)

 

Fano factor is another metric to quantify spike regularity like CV(ISI). Unlike 

CV(ISI), Fano factor is using number of spikes in certain period, T. Spike generation 

process is often explained with the renewal process that accounts Poisson spike generation 

and get rid of spikes that disobey set refractory period. In the renewal process, if T goes 

infinity, the Fano factor and CV(ISI) becomes identical property that gives same output. 

(Destexhe et al., 2012) 
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Figure 4. Summary of receptive field mapping properties. 

A. Example color plot of an example single unit firing rate across different 
stimulus location and time. (yellow: high firing rate, black: low firing rate) 

B. Response of the neuron in one specific time that has maximum response. 
Gaussian distribution was fitted to the data to get the response amplitude, 
center of receptive field and response standard deviation. 

C. Response of the neuron to the stimulus location that maximally evoke 
response. Response latency denotes the time when the response first exceeds 
half of the maximum response amplitude. Response duration denotes the 
duration that exceeds half of the maximum response amplitude. 
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3.2.3 Statistical detectability in pairwise neuronal interaction 

Here, I compared detectability in pairwise putative functional connectivity between 

cells measured with cross-correlation of two spike-trains. Specifically, I analyzed two types 

of interactions. First, I analyzed correlograms that had synchronized firing. In cross-

correlogram these type of interaction shows peak at 0-time lag. I named this type of 

correlograms as time-synced functional connectivity. (TSFC) Second, I analyzed 

correlograms that showed synchronized firing with a constant time lag between them. In 

cross-correlogram these type of interaction shows narrow peak with short-latency. I named 

these correlograms time-lagged functional connectivity. (TLFC) For the analysis in this 

chapter, I focused more on time-lagged functional connectivity (TLFC) which could be 

subdivided to functional excitatory/inhibitory interaction. (Figure 6. A, B) 

 TLFC is identified by its shape and significance. The shape that I used to identify 

was narrow peak within short latency. Also, the correlogram was identified as putative 

functional connectivity if it crosses the significance threshold. The significance threshold 

was calculated using Poisson process. (Fujisawa et al., 2008; Senzai et al., 2019; Stark and 

Abeles, 2009) 

3.2.3.1 Interpretation of pairwise neuronal connectivity 

 How to interpret TLFC anatomically has been debated for decades. Groups of 

people claims that TLFC it a monosynaptic connectivity (Fujisawa et al., 2008; Platkiewicz 

et al., 2019; Senzai et al., 2019; Stark and Abeles, 2009), and groups of people contradicts 

this by claiming that the correlation in firing pattern between neurons does not specify the 
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anatomical structure. (Cohen and Kohn, 2011; Das and Fiete, 2020; Kohn and Smith, 2005; 

Siegle et al., 2019)  

 In this thesis, my analysis was in support of the latter hypothesis, that time-lagged 

functional connectivity does not specify mono-synaptic connectivity. Anatomically, this 

functional connectivity could denote mono-synaptic connectivity but also a cascade of 

synaptic connectivity and delayed common input.  I interpreted that the time delay between 

the activation of cells as a temporal correlation in activation pattern that contributes to the 

function of the neural circuit. Moreover, I distinguished excitatory and inhibitory 

interaction from the functional connectivity. Since the functional connectivity does not 

necessarily denote monosynaptic connectivity, I interpreted as in the local circuit, pre and 

post-activated neurons are positively (excitatory) and negatively (inhibitory) correlated in 

short time lag with narrow time window. 

 For the time-synced functional connectivity (TSFC), I interpreted as two neurons 

shares common input.  

3.2.3.2 Reliable pairwise neuronal functional connectivity detection pipeline 

These are the steps that I used to detect functional connectivity between pair of neurons: 

a. Convert spike-train to spike-time histogram using 0.5ms bin. 

b. Compute cross-correlation of spike-time histogram between neurons. (use -50ms 

to 50ms lag)  

c. High-pass filter the correlogram with cutoff frequency of 70Hz to get rid of 

artefactual threshold crossing caused by lower frequency oscillations. 
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d.  Convolve Gaussian filter with 4ms standard deviation on correlogram and set the 

output as a null hypothesis (If there is no correlation between neurons). 

e. Use null hypothesis correlogram as mean of the Poisson process, compute 10−6 

significance threshold. 

f. If there is more than two consecutive points above the threshold only between 

1.5ms to 4.5ms (including the border), it is identified as time-lagged functionally 

connected pair (TLFC). If two points above the threshold exists between 0-1.5ms 

(including the border), it is identified as time-synced functionally connected pair. 

(TSFC).   

3.3 Results 

3.3.1 Single cell statistics 

3.3.1.1 Kilosort2 catches more spikes than Klustakwik2 

The biggest difference between Kilosort2 and Klustakwik2 in single cell receptive 

field statistics is a receptive field response amplitude. Single neurons sorted with Kilosort2 

had on average 1.5 times higher firing rates (in spikes/s), and 3 times higher when 

normalized to the spontaneous firing rate. (Figure 5. A, B)  

With other metrics, receptive field center, width, response latency, response 

duration, Fano factor and coefficient of variation did not show significant difference 

between the results from Kilosort2 and Klustakwik2. (data not shown) 
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This suggests that Kilosort2 catches significantly more spikes than Klustakwik2, 

but not significantly biased in toward different functional properties of V1 neurons in 

passive bar receptive field mapping task.  

I also analysed data of V1 when mice were engaged in a behavioural task. I found 

that this effect of Kilosort2 catching more spikes than Klustakwik2 was stronger when 

background firing rate was high. The effect was not significantly biased to behavioural task 

outcome (such as correct stimulus detection, failure in stimulus detection or false stimulus 

detection). (data not shown) 

Figure 5. Kilosort2 catches more spikes than Klustakwik2. (𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 22) 

A. Scatter plot of response amplitude to a visual stimulus inside the neuron’s 
receptive field.  (red: average response amplitude of single units from one 
session to white stimulus, black: same for black stimulus)  

B. Same as A but response amplitude is normalized by spontaneous firing rate.  
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3.3.2 Pairwise cell statistics 

3.3.2.1 Kilosort2 can detect more functional pairwise neuronal connectivity 

Pairwise cell statistics were significantly different between the two algorithms. 

Kilosort2 had a 3 times higher probability of identifying time-lagged functional 

connectivity in both putative excitatory and inhibitory interactions. The main reason is that 

Kilosort2 has less false negatives because it can distinguish spatio-temporally overlapping 

spikes while Klustakwik2 cannot. Since detecting pairwise neuronal connectivity requires 

two spikes within 4ms or narrower window, ability to distinguish spatio-temporally 

overlapping spikes is essential.  

 Next, I quantified the limit of Klustakwik2’s ability on detecting temporally 

overlapping spikes spatially. I quantified the number of artificial narrow trough around 

0ms lag in the cross-correlogram that only occurred in Klustakwik2. I found the detection 

ability increases as spikes are spatially more separable with completely distinguishable 

temporally overlapping spikes when the source neurons were spatially separated by more 

than 160 microns (8 channels in Neuronexus A1x32 probe) (Figure 6. C) 
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Figure 6. Kilosort2 is better at detecting time-lagged functional connectivity. 
(𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 22) 

A. Example time-lagged functional connectivity here showing putative 
excitatory interaction revealed by cross-correlation of two neurons.  

B. Example time-lagged functional connectivity here showing putative 
inhibitory interaction revealed by cross-correlation of two neurons.  

C. (blue) Histogram of total pairs as a function of distance (estimated from the 
probe channel with largest action potential amplitude). (red) Histogram of 
pairs that had artifactual inhibitory TLFC that is spike-sorted with 
Klustakwik2. (The correlogram looks like in B but counts drops to 0 at 0ms 
due to inability of Klustakwik2 distinguishing spatio-temporally overlapping 
spikes as a function of distance.          
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3.3.3 Discussion 

The existing surveys about the performance of spike-sorting algorithms considers 

types of probes and broad region of interest, such as if the area is cortical or subcortical. 

(Buccino et al., 2019; Magland et al., 2020) However, fewer studies have surveyed spike-

sorting performance of different algorithms that could directly affect the conclusion of 

scientific question. (Laboy-Juárez et al., 2018) Hence, the goal of this project is to find out 

how would Kilosort2 and Klustakwik2 affect our lab’s scientific question about neural 

information processing and visual stimulus response in visual cortex. Specifically, we 

started utilizing Neuropixels probe which Klustakwik2 cannot handle, and started changing 

the algorithm from Klustakwik2 to Kilosort2. Hence, I quantified the difference in spike-

sorting output using Kilosort2 from Klustakwik2.  

I found that Kilosort2 captures significantly mores spikes during stimulus 

presentation than Klustakwik2. This effect is stronger during high background firing. 

However, whether this result comes from Kilosort2 catching true spikes or false positive 

spikes is an open question. Also, I did not quantify how much is different during 

spontaneous, which I suggest to do in the future. 

Spike-sorting is highly variant process which even with same recording, different 

algorithms find different putative neurons. (Magland et al., 2020) The ratio of putative 

same neurons over all identified neurons by either Kilosort2 or Klustakwik2 was less than 

50%. Moreover, the criterion to identify putative same neuron was 50% overlap in spike-

times, which is relatively mild for a truly identical neuron. I suggest how the result in this 

chapter changes with different criterion as a future verification step. 
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It is known that when mouse is engaged to active behavioural task, more neurons 

fire than when the mouse is passive. (Niell and Stryker, 2010) I found that also when mice 

are performing active task, Kilosort2 captures more spikes but I did not quantify how 

different it is. A valuable next step would be to quantify the spike-sorting performance 

during behavioural status such as task performance and arousal.  

Another important finding is that Klustakwik2’s ability in distinguishing 

temporally overlapping spikes within 8 channels (160𝜇𝜇𝑛𝑛) apart is highly unreliable; this 

limitation contributes to decreased detectability in pairwise functional connectivity. The 

effect is spatially biased, that could potentially contribute to the wrong conclusion to 

scientific questions. Hence, using Kilosort2 over Klustakwik2 is essential when interested 

in pairwise neuronal connectivity. (Kilosort2’s ability in distinguishing spatio-temporally 

overlapping spikes is not perfect but the effect is much more spatially localized ( ≤20 𝜇𝜇𝑛𝑛) 

and the temporally limited. (≤ 1ms), which does not affect time-lagged functional 

connectivity. (TLFC)) 

Biases in spike-sorting could affect estimating neural population dynamics which 

is getting more popular with the ability of large-scale neuronal recording. (Vyas et al., 

2020; Williamson et al., 2019) In estimating neural population dynamics, spike-sorting 

seems an essential pre-processing step because normally spike-train is an input to 

algorithms that estimates population dynamics. However, I predict the bias of spike-sorting 

algorithms such as Klustakwik2 in detecting synchronized firings from multiple neurons 

could also give rise to artefactual result in precise population dynamics. To cope with this 

problem, (Trautmann et al., 2019) proposed a temporary solution of  using threshold 

crossing of extracellular recording from each electrode to infer neuronal population 
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dynamics. They found that using simple threshold crossing can estimate as accurate neural 

population dynamics result as using spike-trains from spike-sorting algorithm. However, 

great majority of scientific questions about neural population dynamics also requires 

information about the units that consists the dynamics which limits the finding of 

(Trautmann et al., 2019). Hence, a valuable next step would be to validate and quantify 

how spike-sorting algorithms affect to estimating neural population dynamics 

Even though this study gave only limited results, I carefully conclude that the 

transition in the lab from Klustakwik2 to Kilosort2 is beneficial. I suggest three reasons: 

Kilosort2 has less false-negative especially during high background firing rates that would 

happen during active behavioural task, has ability to capture more abundant and accurate 

pairwise connectivity and has ability deal with larger channel count probes. 

 

 

 

 

 

 

 

 



 33 

CHAPTER 4.  REVEALING HIGHER VISUAL AREAS ACROSS CORTEX  

4.1 Introduction 

Intrinsic signal imaging (ISI) is a non-invasive brain functional imaging method that 

uses visible light to get functional map of the brain. It finds active brain areas by leveraging 

the fact that the brain surface reflectance of light changes with the oxygen level of blood. 

To find a functional map, standard input-output approach applies. Stimulus in various 

visual fields were shown, while simultaneously measuring reflectance of the light from the 

cortical surface. (Kalatsky and Stryker, 2003) 

ISI is widely used in mouse experiments because mice have a thin skull that the 

visible light could penetrate into. For electrophysiology, a highly invasive and spatially 

localized neural recording method targeting the area of interest reliably before inserting 

probe is crucial. ISI is a non-invasive method that identifies the area of interest, by 

providing precise functional map of each individual mouse. 

Development of ISI system requires system to acquire the signal, and post-process 

the acquired signal to compute functional maps. My project focused on post-processing the 

acquired signal to compute functional maps. It includes: 

1.  Compute retinotopic map from the acquired video and visual stimuli using 

Fourier analysis. 

2. Calculate visual field sign map to separate distinct visuo-cortical areas.  

3. Align of retinotopic map to vasculature of the mouse.  
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The result was then verified with previously reported ISI results from various 

literature. (Garrett et al., 2014; Juavinett et al., 2017; Kalatsky and Stryker, 2003) 

4.1.1 Blood-oxygen-level-dependent imaging 

High firing neuron requires high energy. To supply energy, blood needs to be 

concentrated near the neurons, and supply oxygen that results in the transformation of 

oxy- haemoglobin to deoxy-haemoglobin. Blood-oxygen-level-dependent (BOLD) 

imaging detects changes in blood oxygen level. 

ISI that I used here detects deoxy-haemoglobin concentration change with red 

light (wavelength = 610nm) because in that wavelength deoxy-haemoglobin has much 

higher absorbance. For a reference map I used green light (wavelength = 525nm that has 

identical absorbance to both oxy and deoxy-haemoglobin), that reveals vasculature. 

(Sheth et al., 2012). 

4.1.2 Retinotopic map 

If the adjacent points in the visual field are represented by neurons in adjacent areas, 

the area is retinotopically organized. (Kandel et al., 2000) Visual cortex is retinotopically 

organized and the map that shows the receptive field of neurons is called a retinotopic map. 

(Figure 8. A, B) 

4.1.3 Visual field sign map 

It is known that visual cortex is retinotopically organized. Among different visuo-

cortical areas, some visuo-cortical areas preserve original visual field, and the others have 
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mirror image of the visual field in its retinotopy. This means different visuo-cortical areas 

have different visual field signs. (Figure 8.C, D)  (Garrett et al., 2014; Zhuang et al., 2017) 

For example, primary visual cortex preserves original image of visual field in the 

retinotopic map, while RL has mirror image. Hence, with this knowledge that different 

visuo-cortical areas have different visual field sign, it is possible to localize specific visuo-

cortical area with visual field sign map.  

4.1.4 Alignment of functional map on top of vasculature image 

After acquiring retinotopic map, it is necessary to align the computed map on a 

visible indicator for actual experimental use of the acquired map. The most straight forward 

indicator for an experimenter is a vasculature on the skull which does not change day to 

day. Hence, I aligned functional maps on the vasculature image. 

Specifically, alignment of the acquired functional map on top of vasculature image 

is used in four cases. First, it indicates where acquired retinotopy locates in the mouse 

visual cortex to the experimenter before inserting probe. Second, precise alignment is 

necessary for acquiring visual field sign map with both horizontal and vertical retinotopic 

maps. Third, alignment is crucial in merging multiple experiments that are recorded in 

either different recordings or different days to get improved quality retinotopic map. 

Fourth, the identified locations of functional map were subsequently directly compared 

with electrical activity of the LFP recorded from populations of neurons. This is an analysis 

to confirm if the hemodynamic response from ISI highly correlates with electrical signal 

recorded from neurons. 
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4.2 Methods 

4.2.1 Retinotopic mapping 

The main obstacle of using blood-oxygen-level-dependent (BOLD) signal to get 

the functional map of the brain is hemodynamic delay. Unlike the electrical signals that 

directly reflects the activity of neuron, blood oxygen level responds with variable delay of 

several seconds after neuron’s activity. Not only that the delay is several seconds, the 

variability makes difficult to interpret the signal. Hence, traditional approach using 

episodic stimuli and time-series analysis to find region that responds to stimuli is inherently 

limited by the variable delay. 

Interestingly, bi-directional periodic horizontal and vertical bar stimulus with 

Fourier analysis suggested in (Kalatsky and Stryker, 2003) is known to be relatively robust 

to the variable haemodynamic delay which we adopted to use. (Schematic of general 

experiment is in Figure 7.) This method has two assumptions. First, within each area (pixel 

in the map) and each recording, the delay is constant.  Second,  neuronal population activity 

of the region of interest does not have directional bias, so the forward and backward run of 

the stimulus presentation is symmetric. (Kalatsky and Stryker, 2003) 

 Periodic stimulus could denoise activity outside of the period of the visual 

stimulation. We used the period of the stimuli, 18 second, that is outside of other inherent 

periodic oscillations of blood flow activity such as heart beat, (2-5Hz), respiration rate (0.3 

– 1 Hz) and vasomotor signal (0.05-0.1Hz). Furthermore, bi-directional stimulation is able 

to cancel out hemodynamic delay through its symmetry.  
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The detailed processing steps to achieve retinotopic map is following. The acquired 

video is in the dimension of (x pixels, y pixels, time). First, the image subtracts the mean 

2D image to get rid of DC components. Then, first harmonic response to visual stimuli of 

each pixel is calculated to get the phase of the first harmonic. In other words, Fourier 

transform was performed and the value that has frequency of stimulus is used for analysis. 

The phase of the first harmonic is regarded as each pixel’s receptive field added with 

hemodynamic delay. (For the forward stimuli, 𝜃𝜃𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 =  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜑𝜑𝑟𝑟𝑟𝑟𝑑𝑑𝑓𝑓𝑑𝑑) 

In order to get rid of the hemodynamic delay, we used symmetric backward 

presented stimuli as well. Same processing step was performed to each pixel. The result 

phase of the first harmonic is the inverse of each pixel’s receptive field plus hemodynamic 

delay. (𝜃𝜃𝑏𝑏𝑓𝑓𝑟𝑟𝑏𝑏𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 =  2𝜋𝜋 −  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜑𝜑𝑟𝑟𝑟𝑟𝑑𝑑𝑓𝑓𝑑𝑑) 

Finally, subtracting backward run phase from forward run phase and divide by 2 

gives the receptive field of each pixel. (𝜃𝜃𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟  −  𝜃𝜃𝑏𝑏𝑓𝑓𝑟𝑟𝑏𝑏𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 = 2𝜋𝜋 +  2 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, which 

is equal to 2 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 by periodicity. Then dividing by 2 gives 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. ) In conclusion the 

receptive field property was calculated by 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜃𝜃𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑− 𝜃𝜃𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑 
2

. (Kalatsky and 

Stryker, 2003) 
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Figure 7. Experimental set up of intrinsic signal imaging system. (Figure adjusted 
from unpublished work from the lab) 

Mouse is anesthetized and head fixed. For functional mapping, only red light is 
present and the camera is taking a video of the skull with sampling rate of 10Hz. 
(Green light is used to visualize the vasculature) A moving checkerboard bar stimuli 
is presented to the mouse with the period of 18s. (Forward run direction denoted as 
an arrow). At the same time, a photodiode is measuring each event times such as 
start of the recording, start of the stimuli and the end. 
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4.2.2 Visual field sign map 

The acquired retinotopic maps of vertical and horizontal visual field are used to get 

visual field sign (VFS) map. VFS map has VFS at each pixel that is acquired by computing 

the difference between spatial gradient direction of vertical and horizontal retinotopic 

maps. The equation to get visual field sign S is following:  

𝐼𝐼 = sin(∠𝛻𝛻𝐶𝐶 −  ∠𝛻𝛻𝛻𝛻)  

∠𝛻𝛻𝐶𝐶 𝑎𝑎𝑛𝑛𝑑𝑑 ∠𝛻𝛻𝛻𝛻 are the gradient direction of vertical and horizontal retinotopic map. 

(Garrett et al., 2014) (Detailed methods and explanation are in Garrett et al. 2014) 

4.2.3 Alignment of functional map on top of vasculature image 

There are two types of alignment. The first type of alignment is to place functional 

map on right anatomical location. Second type is to align the two vasculature images from 

different recordings to merge retinotopic maps to improve the quality of map. For the both 

of the alignment types, I made three assumptions: 

1. The distance between the camera and the cranial window is consistent 

across experiment. i.e. the size of the map does not change across the 

experiment. 

2. ISI camera does not rotate in any experimental situation. 

3. Within one recording session, ISI camera does not move its position and 

angle. 
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Alignment was performed in three steps. First, I get rid of unnecessary rows and 

columns that are outside of the cranial window. (Figure 9.A) Second, each of two images 

subtracted mean of each image than divided by the standard deviation image. Third, I crop 

both images to match the size of images by selecting rows and columns that minimizes the 

Euclidean distance of two images.  

4.3 Results 

4.3.1 Retinotopic map and visual field sign map 

With the sufficient repetition of periodic stimulus, I was able to get vertical and 

horizontal retinotopic map and VFS map. (Figure 8. A, B, C) The retinotopic maps had 

clear continuous retinotopy spans monocular and binocular visual field that were shown. 

Also, the gradient of the retinotopy is perpendicular in horizontal and vertical receptive 

field that is consistent with the literature. 

Then, the calculated VFS maps were compared with the literatures. (example VFS 

map in Figure 8. D) (Garrett et al., 2014; Juavinett et al., 2017; Zhuang et al., 2017) General 

structure of the acquired VFS map is consistent with VFS map in Zhuang et al. 2017. 

Compare to the VFS map in Zhuang et al .2017, the location of V1, LM, RL and PM is 

very clearly shown in our result, the location of AL and AM are less clear but still inferable.  
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Figure 8. An example of acquired functional maps from ISI.  

A. Retinotopic map of the horizontal visual field of the mouse. The color 
axis denotes the angle in the horizontal visual field. 

B. Retinotopic map of the vertical visual field of the mouse. The color 
axis denotes the angle in the vertical visual field. 

C. Example visual field sign map that was calculated with A and B.  

D. Example visual field sign map from Zhuang et al. 2017.  
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4.3.2 Alignment is accurate. 

The alignment error is less than 30 𝜇𝜇𝑛𝑛 within same day experiment and 75 𝜇𝜇𝑛𝑛 

within different day experiment. (Figure 9. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟 = 1, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 = 3) However, an 

angular noise potentially from rotational movement of the camera was found, 

contrary to assumptions made. (Figure 9. B, C.) 

Figure 9. Alignment of functional maps and merging different recordings. 

A. Matching the size (Alignment) between the vasculature frame (Green light, 
top) and the first frame of the functional map (Red light, bottom) in the same 
session. Numbers below the figures denote size of frames in pixel. Maximum 
aligning error is less than 2 pixels (30𝜇𝜇𝑛𝑛).  

B. Matching the size between different vasculature frames that were recorded 
in different days. Maximum error is less than 5 pixels (75𝜇𝜇𝑛𝑛).  

C.  The average of three different vasculature frames on the right side of B. 
There is a blurry effect because of the angular noise. 
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4.4 Discussion 

Advances in behavioural and systems neuroscience have resulted in a surge of 

experiments where training mouse to a behavioural task for weeks and simultaneous 

recording is becoming more common. The failure in targeting the desired brain area 

accurately is costly in mice that have significant experimenter investment in behavioural 

task training. ISI provides functional map of individual mice to the experimenters. Hence, 

the development of generating retinotopic map and VFS made possible for experimenters 

to know the area of interest before inserting probes, minimizing costly experimental errors 

in targeting recording sites.  

The acquired retinotopic map and visual field sign map were consistent with the 

maps from previous literature. The automatic alignment algorithm of the functional map to 

the vasculature was accurate that usually had only few tens of micron error. Also, 

comparison with LFP recording reassured that the retinotopic map from hemodynamic 

response reflected neural receptive fields. 

Retinotopic maps that I calculated needed more repetitions for good quality result 

compared to ones in the literature. I hypothesized two reasons. First, the post-processing 

pipeline is non-optimal. I found small error in sampling frequency from what we used in 

doing Fourier transform. I interpolated the frequency domain signal to get exact frequency 

which did not change the result. Also, I found acquiring video is not perfectly uniformly 

sampled while post-processing assumes uniform sampling. Hence, I got the time points 

each sample was acquired, and tried non-uniformly sampled FFT, but the change was 

trivial.  
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Second, the result from literature is with mice with skull removed while our result 

is with skull intact. Skull reflects significant amounts of signal, which attenuates SNR, 

which could require more repetition to get same quality when skull is removed. However, 

we did not record mice without skull to verify this hypothesis. I suggest it for a valuable 

future work verification step. 

There is inherent limitation of ISI. ISI is stimulus dependent process, so with visual 

stimulus, it is only possible to reveal functional map of visual cortex. The field is moving 

to multi-modal area recording, ISI couldn’t be used in areas out of visual cortex without 

changing the stimulus modality (e.g. auditory or somatosensory). 

The lab is continuing this line of research by quantifying the variability of the ISI 

system in different visuo-cortical areas. This research aims to quantify how variable ISI is, 

how noisy and how repeatable the result is. Finding how to reduce the noise level would 

be a good next step. 

In the future, since computational ability is not a bottleneck anymore, it would be 

beneficial to use more than the first Fourier harmonics. With the current approach that uses 

only the first Fourier harmonic is assuming that the stimulus tuning to bar stimulus is 

cosine. Physiologically it is true for V1 but it is not for areas other than V1. Hence, with 

current approach it is not guaranteed the phase found from ISI would actually denote the 

receptive field of the area.  Hence, implementation of phase detection with all possible 

Fourier harmonics would be required for accurate analysis, and it would not only improve 

the quality of ISI drastically but also reduce number of repetitions needed and show distinct 

visual tuning of different visuo-cortical areas. 
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CHAPTER 5. NARROWBAND GAMMA OSCILLATION ACROSS MOUSE BRAIN 

5.1 Introduction 

5.1.1 Allen institute visual coding dataset 

Allen Institute visual coding dataset is a systemic survey of spiking activity in the 

mouse visual system including cortex, thalamus and hippocampus. (Siegle et al., 2019) It 

acquires spiking data from awake mouse with up to 6 simultaneous Neuropixels recording. 

Each probe target V1, LM, RL, AL, PM and AM respectively, and these probes go deeper 

than cortical areas to subcortical areas, with a subset of them successfully recording activity 

in LGN and LP (lateral posterior; higher-order visual thalamus) in thalamus and 

hippocampal areas. For my analysis, I analyzed spiking activity in all 6 visuo-cortical areas 

and LGN in thalamus. (Figure 10. B. Figure 2 from (Siegle et al., 2019)) 

While recording, mice are exposed to various set of visual stimuli. (Detailed 

explanation in white paper. (Siegle et al., 2019)) For my analysis, I focused analysis on 

100% positive/negative contrast full field flash, and drifting Gabor grating stimulus with 

different drifting direction.  

In Allen Institute visual coding dataset, each mouse has been recorded only once to 

localize the inserted probe accurately. (Siegle et al., 2019) 
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5.1.1.1 Full field flash 

Each recording contains 75 presentations of both positive/negative full field flash, 

for 250ms. The Inter-stimulus interval is 1750ms. During inter-stimulus interval, grey 

screen was presented. 

5.1.1.2 Drifting grating 

In each recording, there is more than 600 presentations of drifting grating. This 

includes full contrast and 0 contrast (blank) drifting grating stimulus. The duration of the 

stimulus is 200m0s and inter-stimulus interval is 1000ms. 

 

 

Figure 10. Allen Institute Visual coding dataset summary figure from Figure 2 in 
(Siegle et al., 2019). Up to six Neuropixels probes targeted six visuo-cortical areas 
respectively. Dots represent location of neurons aligned with Allen common 
coordinate framework. Different color denotes receptive field of the neuron. Subset 
of neurons penetrated cortex and reached to LGN and LP (lateral posterior) in the 
thalamus. 
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5.1.2 Narrowband Gamma Oscillation 

Narrowband Gamma oscillation (NBG) is as a periodic fluctuation of brain activity 

between 50-70 Hz specific to mouse visual area. NBG is first studied by (Niell and Stryker, 

2010). They recorded V1 LFP and found NBG is prominent in V1 and promoted by 

locomotion and suppressed by visual contrast. (Niell and Stryker, 2010) 

The study was followed by (Saleem et al., 2017). Researchers recorded V1 and LGN, 

and found NBG power is enhanced with increasing luminance and arousal and suppressed 

by visual contrast. (Saleem et al., 2017) Also, NBG could be detected in the spiking activity 

of LGN as well. Auto-correlogram and cross-correlogram of spike-sorted clusters exhibits 

NBG. (Saleem et al., 2017) In single cells in LGN, NBG is coherent and it is thought that 

this coherence enhances visual signaling. (Saleem et al., 2017; Storchi et al., 2017)  

NBG is inherited from retina (Storchi et al., 2017) and propagates to LGN to V1 

through excitatory neurons, in feedforward pathway. (Saleem et al., 2017) Especially, NBG 

in V1 disappears when LGN is inactivated, (Saleem et al., 2017) and NBG in retina 

disappear when intrinsically photosensitive retinal ganglion cells (ipRGC) are inactivated. 

(Storchi et al., 2017) 

NBG has been rarely studied in terms of mouse behavior. A study from our lab 

(Speed et al. 19) found that in visual detection task, trials of correct stimulus detection had 

higher pre-stimulus NBG power in V1 layer 4 than trials of incorrect detection. This finding 

suggests the possibility that NBG promotes detection of visual stimulus. 
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5.1.3 Broadband Gamma Oscillation 

Broadband Gamma oscillation (BBG) is a periodic fluctuation of brain activity 

typically between 30-90Hz that exists in mammalian cortex. (Buzsaki and Wang, 2012; 

Fries, 2009, 2015) BBG in cortex is thought to have distinct mechanisms. For example, 

BBG benefits sensory processing through precise synchronized activity of inhibitory 

neurons. (Fries, 2009; Saleem et al., 2017; Siegle et al., 2014; Tiesinga and Sejnowski, 

2009) BBG gives periodic “windows of opportunities” to pyramidal neurons that relay 

stimulus information by periodically giving lowest inhibition from synchronized inhibitory 

neuron activity. (Siegle et al., 2014) In the mouse visual cortex, BBG is modulated with 

stimulus formation especially is enhanced with visual contrast. (Saleem et al., 2017).  

In this thesis, my main focus is NBG. Hence, I used BBG as a control for 

investigating NBG. I restricted the frequency of BBG to non-overlapping with NBG. (30-

50Hz) 

5.1.4 Intrinsically photosensitive retinal ganglion cells (ipRGC) 

It is thought that NBG in the brain originates from retina. (Koepsell et al., 2009; 

Saleem et al., 2017; Storchi et al., 2017) Within retina, intrinsically photosensitive retinal 

ganglion cells (ipRGC) are known to modulate NBG in the visual system. (Storchi et al., 

2017) by increasing firing rates with luminance. (Do, 2019)  

ipRGC has photosensitive protein, melanopsin which makes ipRGC photosensitive 

without receiving input from rods and cones like other retinal ganglion cells . (Huberman 

and Niell, 2011).  
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Multiple functions of ipRGCs to visual and non-visual functions have been 

suggested. That includes regulating circadian rhythm, pupillary light reflex. (Do, 2019)  

5.1.5 Questions and hypothesis of NBG 

I am trying to answer three large questions about NBG in this thesis. First, would 

visual areas other than LGN and V1 exhibit NBG? This question is highly relevant in 

hypothesizing the role of NBG in sensory processing. If NBG is only in an early visual 

stage, it would have simpler role, while if it is also in HVA, it would be more likely to 

perform more complex role in visual processing. To answer this question, I analyzed 

electrical activity of LGN, V1, and the higher visual areas RL, LM, AL, AM and PM during 

spontaneous activity and stimulus presentation.  

 The next question is how NBG is propagated in multiple visual areas. With initial 

analysis, I found that NBG is present in HVAs. With correlation analysis, I found in some 

recordings, correlation between LGN and HVA was higher than correlation between LGN 

and V1. This contradicts with the known visual pathway that visual information propagates 

from LGN to V1 to HVA. Hence, I was curious about what route NBG in HVA is 

propagated from LGN.  

The last question is what would be the role of NBG. The results of previous 

literatures have suggested three hypotheses on the role of NBG. First, (Saleem et al., 2017) 

suggested NBG as an idling rhythm. Since NBG is active during spontaneous and 

suppressed to visual contrast, they suggested NBG is in visual system to represent idle 

status. Second, the other hypothesis they suggested is NBG as a channel for thalamo-

cortical, and cortico-cortical communication, that is consistent with the hypothesis 
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suggested as the role of neural oscillations. (Fries, 2015) Third, (Storchi et al., 2017) 

suggested the coherence of NBG within cells promotes visual signaling of luminance 

information. Also, (Speed et al., 2019) did not explicitly mention a novel hypothesis, but 

suggested NBG during the pre-stimulus period could improve the mouse’s ability to detect 

visual stimuli. 

From hypothesis suggested from previous literatures and result of my own analysis 

I hypothesized two potential roles of NBG. First, I hypothesize NBG synchronizes 

excitability of retinal-thalamo-cortical pathway and provides “window of opportunity” for 

sensory information to be propagated. (Fries, 2015; Saleem et al., 2017) 

Second, I hypothesize NBG encodes luminance information in the early visual 

system in a computationally convenient and efficient way. (Storchi et al., 2017).   

5.1.6 Methods 

5.1.6.1 Cycle histogram 

Cycle histograms reveal the level of coherence of the selected frequency band of 

the LFP and the timing of spikes. This method aligns spike to each cycle of bandpass 

filtered LFP. The detailed steps for calculating cycle histograms is the following: 

1. First, I bandpass filtered the LFP and found the location of peaks (local 

maxima) of the filtered LFP.  

2. Then, I defined a period of the oscillation as peak to peak. 
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3. Lastly, I aligned the spikes to the phase of period of the oscillation and acquired 

histogram of phase location of the spikes. (Example cycle histogram in Figure 

15. A)  

5.1.6.2 Spike triggered local field potential 

As PSTH is a triggered average on stimulus onset, spike triggered LFP is a spike 

triggered average LFP. 

5.1.6.3 Short time Fourier transform 

Short-time Fourier transform (STFT) is a widely used method to reveal how 

spectral components of signal evolves in time. STFT consists two parts, windowing and 

Fourier transform. Windowing is a way to segment time-domain signal. A convenient way 

is to use a rectangular window, that it just split time-domain signal into multiple segments. 

A better way of windowing is to use windows that account for edge effects such as 

Hamming or Kaiser window. Then each segment is Fourier transformed. Usually STFT is 

plotted with time-frequency spectrogram. 

5.1.6.4 Hilbert transform 

Hilbert transform is a method that recovers imaginary part of the hypothetical 

complex signal. It is often used to identify instantaneous amplitude of the oscillation and 

instantaneous phase of the narrowband oscillation. 
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5.1.6.5 Identification of cells exhibit narrowband gamma in visual areas 

I identified cells that exhibit NBG in their spike-trains and identified these as NBG 

cells. I analyzed auto-correlograms and cross-correlograms between every cell in one 

recording. If any of correlogram has prominent 50-70Hz power in the spectral domain, I 

identify these as pairwise NBG pair.  

Since spectral power of spike-train does not follow usual 1/f relationship in LFP 

(Saleem et al., 2017), residual NBG power is defined heuristically. The NBG power should 

fulfill two conditions:  

1. NBG power should be higher than the z value of power between 30 to 150Hz. 

2. NBG magnitude should be higher than maximum magnitude within 150 to 

1000Hz 

  From putative NBG pairs, I identified both cells from the correlogram that shows 

prominent NBG power as NBG cells. (Figure 11. example correlograms of NBG cells and 

one example cell, and correlograms of non-NBG cells and one example cell.) 
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Figure 11. Identification of “narrowband gamma” cells across thalamo-cortical 
visual areas using pairs in one example recording. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 304) 

A. Example cross-correlogram between cells during spontaneous activity that 
shows narrowband gamma oscillation. If the auto/cross-correlogram 
exhibits NBG, I classified both of the cells as “narrowband gamma” cells. 

B. Example cross-correlogram between example “narrowband gamma” cell 
and non-“narrowband gamma” cell during spontaneous activity.  

C. Cross-correlogram of one example “narrowband gamma” cells and all 
other “narrowband gamma” cells recorded in LGN (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 58), V1 
(𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄= 21) and HVA (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄= 8) in one example recording. 

D. Example cross-correlogram between example “narrowband gamma” cell 
(same cell from C) and all of non-“narrowband gamma” cell in the 
example recording. 
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5.2 Is narrowband gamma oscillation present in higher visual areas? 

5.2.1 Methods 

5.2.1.1 Current source density to identify earliest response layer of higher visual area. 

For the analysis to find if HVA population activity exhibits NBG, I focused on the 

layer that exhibits earliest stimulus response. This comes from the assumption that if HVA 

exhibits NBG, this comes from feedforward pathway from V1 or the thalamus. Unlike the 

earliest sink layer of V1 that is assumed to be layer 4, which layer in HVA exhibits first 

visual response is unknown. I used current source density analysis of stimulus trigger 

averaged LFP of the probes that goes to HVA to find the earliest sink layer of the area that 

exhibits the earliest stimulus response. The example CSDs of different visuo-cortical areas 

are in Figure 12. 
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Figure 12. Finding the earliest stimulus response channel of the visuo-cortical area 
through current source density. (Each example with one recording) 

CSD was computed with full field flash stimulus on probes in different visuo-
cortical areas. Red arrow denotes the earliest sink channel of the CSD which 
corresponds to earliest stimulus response channel. (Yellow: sink and black: source)  

A. CSD of a probe in V1. (Earliest sink channel = 240, latency = 38.4ms) 

B. CSD of a probe in RL. (Earliest sink channel = 291, latency = 42.4ms) 

C. CSD of a probe in LM. (Earliest sink channel = 252, latency = 42.4ms) 

D. CSD of a probe in AL. (Earliest sink channel = 241, latency = 44.8ms) 

E. CSD of a probe in AM. (Earliest sink channel = 284, latency = 56.8ms) 

F. CSD of a probe in PM. (Earliest sink channel = 280, latency = 50.4ms) 
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5.2.2 Results 

5.2.2.1 NBG exists across all higher visual areas 

5.2.2.1.1 NBG exist in pairwise neuronal functional connectivity 

Understanding how NBG is represented within single cells spikes is important. 

Since spike is a binary event, raw single unit spike-train has negligible NBG signal. Hence, 

I used cross-correlation and auto-correlation to reveal NBG in spikes. If there is shared 

NBG between cells, it will be identified as putative pairwise shared NBG pair. 

I applied my previously validated pairwise interaction methods in Section 3.2.4 on 

analyzing thousands of neurons in seven visual areas. (𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚  =  17435).   I analyzed 

putative shared NBG input between areas (Table 1. and Figure 11.A) and putative 

functional excitatory/inhibitory interaction. (Table 2. and Figure 6 A, B) I found NBG pairs 

between LGN, V1 and HVAs as well as within LGN and V1. This confirms at least in few 

cells in HVA exhibits NBG in their activity. (Table 1.) 
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Table 1. Number of cells and NBG pairs within/between visual 
areas. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17435, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 58) 

 

Table 2. Number of time-lagged functional connectivity (TLFC) pairs between visual 
areas. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17435, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 58) 
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5.2.2.1.2 Spectral narrowband gamma power of raw population activity suggests 

possibility of NBG exist in higher visual areal population activity. 

Next, I inspected if NBG exists in population activity in HVA. I looked at the raw 

LFP of HVA recordings (about 3 hours long) to get power spectral density. I compared 

spectral power of LFP with the smoothened spectral power, the baseline indicates when 

there is no NBG (1/f), (Saleem et al., 2017) to verify the existence of residual NBG power. 

V1 layer 4 LFP always had a prominent residual NBG power. Among 14 

recordings, I found every HVA had residual NBG power at least one recording but not in 

every recording. (𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑛𝑛 =  15). Figure 13. shows example power spectral density of 

different visuo-cortical areas. 

5.2.2.2 Narrowband gamma oscillation in HVA population activity is coherent with 

narrowband gamma oscillation in LGN spiking activity. 

Here I tested if NBG in HVA population activity exists across all recording and is 

coherent with NBG in LGN spiking activity. I used two methods to amplify NBG signal in 

HVA and verify spike-LFP coherence of the oscillation: spike triggered LFP and cycle 

histogram. These two analyses are complementary to each other. STLFP shows dominant 

frequency and power of spike locked oscillations in LFP and cycle histogram focuses on 

the level of coherence of the specific narrowband between spikes and LFP. 
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Figure 13. Raw LFP in V1 and higher cortical areas show narrowband gamma 
oscillation. (each example with one recording) 

A. Example spectral power of raw V1 layer 4 LFP of example recording 
(recording duration = 3hours) that shows clear residual NBG power. (blue) 
and 1/f smoothened power line as a reference. (red) ` 

B. Example spectral power of raw RL LFP of example session. Unlike V1 which 
every recording session had prominent NBG power of raw LFP, only few 
recordings had prominent NBG power of raw LFP. 

C. Same as B but LM LFP. 

D. Same as B but AL LFP. 

E. Same as B but AM LFP. 

F. Same as B but PM LFP. 
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5.2.2.2.1 Spike triggered local field potential (STLFP) shows reliable narrowband 

gamma oscillation in HVA 

I analyzed spike triggered LFP of cortical areas to see if there is spike driven 

oscillatory activity in HVA. If there is precise frequency and phase relationship between 

spiking activity and LFP, STLFP should reveal a clear oscillation. To separate effects that 

are driven by stimulus, I only used spikes that are not during stimulus presentation 

(spontaneous activity). 

I computed STLFP using spiking activity of identified NBG cells in LGN, and 

using earliest sink layer of HVA LFP. After I got result STLFP (example using V1 layer 4 

LFP, Figure 14.A), I applied spectral analysis to find the dominant frequency of the 

oscillation and compared with the smoothened spectral power (1/f) to find residual NBG 

power.  

The result of STLFP in every HVA had residual NBG power and the residual power 

within the NBG band was higher than residual power within BBG band (control). (Figure 

14.B, C) This results reassures that the NBG exists in HVA as well and is coherent with 

LGN spiking activity. 

To get a sense of how precise phase coherence is required to exhibit prominent 

NBG in STLFP, I added uniformly distributed noise to the spike times of LGN spikes. 

(Figure 17.) With small width of the noise ( ≤ 4ms, quarter of NBG period), NBG is still 

prominent. However, larger than 4ms width noise gets rid of NBG. 
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5.2.2.2.2 Cycle histogram shows clear coherence between HVA LFP and LGN spikes. 

If there is phase coherence between spike and LFP, cycle histogram should exhibit 

one period of phase shifted cosine. Therefore, I extracted the amplitude of cosine from 

normalized histogram to verify and quantify coherence between spike and LFP (Figure 

15.A), and I computed SNR (Figure 15.C) to quantify how strong the coherence is. 

The cycle histogram of every HVA LFP exhibited higher coherence than the 

baseline null hypothesis. (cycle histogram using simultaneously recorded hippocampal 

LFP). (Figure 15.B, D) As well as result from STLFP, this result reassures that the NBG 

exists in HVA as well, and is highly coherent with LGN spiking activity. 
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Figure 14. Hierarchy of the power of narrowband gamma oscillation in population 
activity of visuo-cortical areas revealed with spike-triggered LFP is consistent with 
the functional hierarchy. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 402, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 15) 

A. Example STLFP acquired with spikes from an example “narrowband 
gamma” cell in LGN and V1 LFP. 

B. (top) Population average of the NBG power of STLFP of different visuo-
cortical areas using “narrowband gamma cell” in LGN of all recording. (red 
line, standard deviation) Data point means average NBG power of STLFP of 
each session. (bottom) Same as top. Data point means NBG power of STLFP 
with each cell. Difference color denotes different recording session. 

C. Same as B but BBG power of STLFP as a control. 
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Figure 15. Hierarchy of power of narrowband gamma oscillation in population 
activity of visuo-cortical areas revealed with cycle histogram is consistent with the 
functional hierarchy. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 402, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 15) 

A. Example of signal amplitude from cycle histogram. (a/b) Cosine was fit to the 
normalized histogram to get the strength of oscillation. Example with V1 
LFP and spikes from an example “narrowband gamma” cell in LGN.  

B.  (top) Population average of cycle histogram amplitude of different visuo-
cortical areas using “narrowband gamma cell” in LGN of all recording 
session. (red line, standard deviation) Data point means mean cycle 
histogram amplitude of each session. (bottom) Same as top. Data point 
means cycle histogram amplitude with each cell. Difference color denotes 
different recordings. 

C. Example of signal-to-noise ratio (SNR) from cycle histogram. Signal is the 
fitted cosine, and noise is the residual normalized to have mean of 0.  

D.  Same as B but SNR from cycle histogram. 
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Figure 16. Functional hierarchy is consistent with anatomical hierarchy, from 
Figure 3 of (Siegle et al., 2019). Functional hierarchy is consistent with anatomical 
hierarchy from (Harris et al., 2019). Functional hierarchy is revealed with 
stimulus response properties of each visual areas. 

Figure 17. Uniform Jitter on spike times gets rid of narrowband gamma oscillation 
in spike-triggered LFP. (example with one cell in one recording) 

A. Example STLFP without artificial noise on the spike-train. 

B. Example STLFP with uniformly distributed noise [-4ms, 4ms] on the spike-
train. 

C. Attenuation of NBG power with uniformly distributed noise relative to no 
NBG without noise in example LGN cell and example V1 LFP.  
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5.2.2.3 The level of coherence and power of NBG across HVA is consistent with 

anatomical and functional hierarchy from previously reported literatures. 

From the spike-LFP coherence analysis from above, I found that the NBG exists in 

HVA and is highly coherent with LGN spiking activity. Next, I asked if there is any 

difference between HVAs exhibiting NBG. Interestingly, I found the hierarchy in NBG 

coherence and power among HVAs all consistently with cycle histogram amplitude, SNR 

and STLFP NBG power. (V1 > RL > LM > AL >AM > PM). (Figure 14, 15,16. HPC and 

STLFP BBG power for a control) 

Notably, NBG hierarchy among HVAs is remarkably consistent with the previously 

suggested anatomical hierarchy of the visuo-cortical area found with anatomical tracer 

experiments (Harris et al., 2019, Figure 5.8.A). Also, the result is consistent with the 

functional hierarchy found with stimulus response latency, size of receptive field, 

modulation index, and autocorrelation timescale. (Siegle et al., 2019, Figure 5.8.B) 

5.2.3 Discussion 

To answer the first question, does NBG exist in higher visual areas, I found NBG 

exists in HVAs in multiple analysis methods. With spike-spike correlation analysis 

between cells in different areas, I found single units in HVA that exhibits NBG and 

correlated with NBG in LGN and V1. Then, I computed the power spectral density of the 

input layer of different visuo-cortical areal raw population activity. This suggested that 

there is NBG in population activity of HVA as well as V1, but the raw LFP activity did not 

confirm that it exists in every recording in every mouse. 
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Hence, I used spikes from identified NBG cells in LGN to perform spike-LFP 

coherence analysis. The result of coherence analysis confirmed that there is reliable NBG 

signal in HVA that is coherent with NBG in LGN spiking activity. Impressively, the power 

and the level of coherence of NBG in HVA varied across areas, and resembled the 

anatomical and functional hierarchy suggested from (Harris et al., 2019; Siegle et al., 

2019). 

This hierarchical representation of NBG in HVA suggests the possibility of NBG 

is propagated along the same route as visual information is propagated from LGN to HVAs. 

Moreover, if the possibility is true, it invigorates both of the hypothesis of NBG role: NBG 

improves visual information processing and NBG itself is a visual information that is 

encoding luminance. 
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5.3 How does NBG propagate? 

5.3.1 Introduction 

With the spike-LFP coherence analysis performed in the previous section, I 

concluded that there is coherent NBG between LGN and visuo-cortical areas. Next, I asked 

how coherent NBG is propagated from LGN to multiple visuo-cortical areas through 

specific subnetworks of neurons, and through specific routs (directly from LGN, or relayed 

via V1).  

First, I asked if NBG propagates through cells in visual areas globally or through 

subset of cells that exhibits NBG. I answered by comparing the probability of functional 

connectivity among all cells in visual areas, versus pairs of cells that exhibit NBG. 

Additionally, I asked in which route would NBG propagate from LGN to higher 

visual areas. Since NBG hierarchy is consistent with anatomical and functional hierarchy, 

my hypothesis is that NBG in HVA is propagated through V1 not directly from LGN. 

However, the existence of the anatomical (Bienkowski et al., 2019), functional connectivity 

(Table 2) and NBG pairs (Table 1. and Figure 11) between LGN and HVA, made me want 

to investigate the route. 

5.3.2 Methods 

5.3.2.1 Conditional granger causality to reveal NBG propagation from LGN to HVA 

models 
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Granger causality is a way to reveal causality between different time series signals 

by modeling auto-regressive models. (Ding et al., 2006; Stokes and Purdon, 2017) Granger 

causality is a powerful tool that could estimate causality without performing perturbation 

experiment. There are several assumptions that Granger causality makes, such the system 

that generates signal should be linear, time invariant, and stationary. (Ding et al., 2006; 

Stokes and Purdon, 2017) 

 For example, in bivariate time series X, Y, the method finds causality by 

comparing the explained variance of two models: 

(1) 𝑋𝑋𝑟𝑟 = ∑ 𝑎𝑎𝑗𝑗𝑋𝑋𝑟𝑟−𝑗𝑗  ∞
𝑗𝑗 = 1 + 𝜖𝜖𝑟𝑟 ,                               𝑐𝑐𝑎𝑎𝑒𝑒(𝜖𝜖𝑟𝑟)  =  Σ  

(2) 𝑋𝑋𝑟𝑟 = ∑ 𝑏𝑏𝑗𝑗𝑋𝑋𝑟𝑟−𝑗𝑗  ∞
𝑗𝑗 = 1 +  ∑ 𝑐𝑐𝑗𝑗𝑌𝑌𝑟𝑟−𝑗𝑗  ∞

𝑗𝑗 = 1  +  𝜂𝜂𝑟𝑟 , 𝑐𝑐𝑎𝑎𝑒𝑒(𝜂𝜂𝑟𝑟)  =  Γ  

(3) 𝐹𝐹𝑋𝑋−>𝑌𝑌  =  𝑁𝑁𝑛𝑛 Σ
Γ
  

If Σ is smaller than Γ, 𝑌𝑌𝑟𝑟−𝑗𝑗 helps explaining 𝑋𝑋𝑟𝑟. Hence, there is a causality from X to Y 

(𝐹𝐹𝑋𝑋−>𝑌𝑌  >  0).  

 Granger causality could also be analyzed in the spectral domain, which formulates 

the coherence and causality of two signals, and identify in which frequency band the 

causality occurs. (Detailed method in (Ding et al., 2006)) 

 In tri-variate granger causality, between X, Y, Z, it is possible to compute granger 

causality from X to Y given Z. (𝐹𝐹𝑋𝑋−>𝑌𝑌|𝑍𝑍), which could be analyzed in spectral domain as 

well as in time domain. (Granger-Geweke causality, detailed method in (Ding et al., 2006)) 
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5.3.3 Results 

5.3.3.1 NBG is propagated through subnetworks. 

I asked if NBG propagates through cells in visual areas globally or through subset 

of cells that themselves exhibit NBG. To answer this question, I analyzed if the probability 

of finding functional connectivity increases among identified NBG cells across visual 

thalamo-cortical areas. I assumed all identified NBG cells from visual areas are from one 

source oscillation.  

5.3.3.1.1 Probability of functional connectivity increases with narrowband gamma 

oscillation 

Interestingly, I found the probability of having functional connectivity increases 

significantly among identified NBG cells. The probability of having time-lagged-

functional-connectivity (TLFC) between cells in LGN and V1 increased more than 10x. 

(P(TLFC) = 0.04% while P(TLFC|NBG) = 0.55%, Figure 18.A, Table 3.) Surprisingly, I 

found among LGN and HVA, the probability increased more than 100x with NBG. 

(P(TLFC) = 0.01 while P(TLFC|NBG = 1.04%, Figure 18.B, Table 3.). Between other 

areas and time-synced-functional-connectivity (TSFC) showed large increase of 

probability among identified NBG cells as well. (Detailed result in Table 3, 4.)  

However, it is found that the probability of detecting functional connectivity 

increases with high firing rate of cells. (De La Rocha et al., 2007) Actually, I found that 

the average firing rate of identified NBG cells were significantly higher than the average 
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firing rate of all cells. Hence, I performed control analysis where I controlled for the effects 

of firing rate on detection of correlations.  

 (𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝑁𝑁,𝑁𝑁𝑁𝑁𝐿𝐿 = 13.11 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠/𝑠𝑠 (𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  =  1112),𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝑁𝑁,𝑓𝑓𝑑𝑑𝑑𝑑 = 11.00 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠/𝑠𝑠 (𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  =

 1304),𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜋𝜋,𝑁𝑁𝑁𝑁𝐿𝐿 = 14.31 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠/𝑠𝑠 (𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  =  713), 𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜋𝜋,𝑓𝑓𝑑𝑑𝑑𝑑 = 5.92 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠/

𝑠𝑠 (𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  =  16121)) 

5.3.3.1.2 Control: probability of functional connectivity given high firing rate cells 

Here, I conducted control analysis to rule out the effect of high firing rates 

contributing to high probability of functional connectivity. I sub-selected cells that are not 

identified NBG cells in LGN, V1 and HVA that had higher firing rates than the threshold, 

which matches the average firing rates with the average firing rate of NBG cells.  

 As expected, the probability of functional connectivity between high firing rates 

cells were significantly higher than probability with cells that includes low firing rate cells. 

(significance not shown, Table 3.B and Table 4.B) However, probability of functional 

connectivity with NBG cells between LGN and visuo-cortical areas, and within/between 

visuo-cortical areas were significantly higher than that of high firing rate cells. (Table 3, 4) 

I calculated the significance with binomial t-test using probability of functional 

connectivity among non-NBG and high firing rate cells as a null probability. (Detailed 

significance in Table 3.C and Table 4.C) These results suggest that the effect of NBG 

increasing functional connectivity is not only consequence of having high firing rates but 

also suggests functional connectivity between NBG cells is actually significantly denser 

than global functional connectivity. 
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Figure 18. Narrowband gamma oscillation promotes functional connectivity 
between cells (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17435, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 58) 

A. (top) Example cross-correlogram of two “narrowband gamma” cells each 
from LGN and V1. (bottom) Probability of finding time-lagged functional 
connectivity between all LGN cells and V1 cells is 0.04%. When both cells 
are identified as “narrowband gamma” cells, the probability increase to 
0.55%. (Binomial t-test p < 1e-15) 

B. (top) Example cross-correlogram of two “narrowband gamma” cells each 
from LGN and HVA. (bottom) Probability of finding time-lagged functional 
connectivity between all LGN cells and HVA cells is 0.01%. When both cells 
are identified as “narrowband gamma” cells, the probability increase to 
1.04%. (Binomial t-test p < 1e-17) 
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Table 3. Probability of time-lagged functional connectivity is increased among 
“narrowband gamma” cells (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17435, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 58) 
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Table 4. Probability of time-synced functional connectivity is increased among 
“narrowband gamma” cells (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17435, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 58) 
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5.3.3.2 Result identifying signal propagation route from LGN to HVA is obscure 

To answer how NBG propagates from LGN to HVA, I performed granger causality 

analysis on LGN, V1 and RL time series signal during spontaneous activity. I used V1 and 

RL population activity (LFP), and LGN multi-unit activity of identified NBG cells. I used 

LGN multi-unit activity instead of LFP because mouse LGN does not exhibit laminar 

structure or recurrent excitatory connections, so low frequency component of extracellular 

recording does not represent synchronized excitatory population activity. (Buzsaki et al., 

2012) 

To start with, I analysed bivariate Granger causality between two areas. Between, 

V1 and RL LFP, there was significant causality in NBG band. The causality was 

bidirectional that V1 to RL had higher causality than RL to V1. (𝐹𝐹𝑉𝑉1−>𝑅𝑅𝐿𝐿(𝑁𝑁𝑁𝑁𝑁𝑁)  =

 0.2,𝐹𝐹𝑉𝑉1−>𝑅𝑅𝐿𝐿(𝑁𝑁𝑁𝑁𝑁𝑁)  =  0.13) However, between LGN multi-unit and both V1 & RL LFP, 

I also found significant causality from cortical area to LGN. (𝐹𝐹𝑉𝑉1−>𝐿𝐿𝐿𝐿𝑁𝑁(𝑁𝑁𝑁𝑁𝑁𝑁)  =

 0.2,𝐹𝐹𝐿𝐿𝐿𝐿𝑁𝑁−>𝑉𝑉1(𝑁𝑁𝑁𝑁𝑁𝑁)  =  0.07) This result conflicts with result from existing literature 

that did optogenetic perturbation experiment and found NBG in V1 comes from LGN. 

(Saleem et al., 2017)  

There were a lot of uncontrolled variables in the analysis, such as LGN uses multi-

unit activity, and V1 & RL uses LFP, uncertain cause of difference in result on generative 

data. Hence, the result using tri-variate Granger causality, 𝐹𝐹𝐿𝐿𝐿𝐿𝑁𝑁−>𝑅𝑅𝐿𝐿|𝑉𝑉1(𝑁𝑁𝑁𝑁𝑁𝑁) was also not 

interpretable.  
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5.3.4 Discussion 

To answer the question how does NBG propagates, I asked two sub-questions:  

1. Does NBG propagate through subnetwork or global network?  

2. In which route does NBG propagate from LGN to HVA? 

For the first question, I compared the probability of functional connectivity between every 

cell and identified cells. Due to the limitation of method, I identified only cells that exhibits 

strong NBG. Hence, it is still possible that every cell exhibits NBG. If it is the case, the 

probability of functional connectivity should not increase among NBG cells. However, I 

found the probability is significantly higher with identified NBG cells than it with every 

cell. This result gets rid of the possibility that NBG is expressed in every cell in the area. 

Hence, I conclude that NBG is expressed only subset of cells in visual thalamo-cortical 

areas, and propagate through subnetwork. 

I assumed if all identified NBG cells from visual areas are from one subnetwork. 

Hence, I treated all identified NBG cells equally. However, it is still possible that there is 

more than one subnetwork and produced the result I observed. If I was able to find cells 

within each subnetwork and did the same analysis, the effect increases probability of 

functional connectivity could be larger. However, this analysis is strongly limited by the 

number of potential functional connectivity because the odds of detecting functional 

connectivity between cells are very low, especially between areas. Hence, having multiple 

conditions on probability would make the analysis non-interpretable due to lack of 

statistical power.  



 76 

For the second question, how NBG propagate from LGN to HVA, I did not get a 

meaningful result. These could be due to multiple reasons.  

1. The inconsistency of the type of time-series signal (LFP for cortical areas, 

spike-train for LGN) in the brain could affect the result. 

2. The assumption of linear, time-invariant and stationary could be wrong. 

3. Granger causality is not an appropriate method on this problem. 

Therefore, identifying which route NBG propagate from LGN to HVA remains 

unresolved question. However, the result from previous section that the level of NBG 

power and coherence in HVA is consistent with anatomical and functional hierarchy, 

suggests that NBG in LGN goes to HVA through V1 as a more dominant pathway. If NBG 

in LGN directly propagates to HVA not through V1, I should see higher power or higher 

coherence in some HVA that is not consistent with anatomical and functional hierarchy. 
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5.4 What is the role of NBG? 

The role of neural oscillations has been mysterious for decades. (Buzsaki and 

Draguhn, 2004; Fries, 2005, 2009, 2015) There are several hypothesis about neural 

oscillation, but there is still on-going active debate on its role. The most fundamental 

discussion is if neural oscillation is a by-product of neuronal periodic synchronization 

(provoking oscillation artificially would not benefit neural information processing), or if 

nature evolved with a specific information transmission purpose. (provoking oscillation 

artificially would benefit neural information processing) (Buzsaki and Draguhn, 2004) I 

investigated potential contribution of NBG on neural processing without assuming one of 

the hypotheses.   

(Saleem et al., 2017; Storchi et al., 2017) reported that NBG in LGN is coherent 

across cells. In addition, (Storchi et al., 2017) found that coherence of the oscillation is 

more prominent during higher luminance. As done in these literatures, I also hypothesized 

the coherence among neurons is a key clue in inspecting the role of the NBG. Hence, I first 

analyze NBG coherence among identified NBG cells in LGN, and suggest two hypotheses 

based on the result of coherence and findings from previous sections. 

 

5.4.1 Is NBG phase coherent across cells in LGN? 

In this section, I analyzed coherence of NBG among identified NBG cells to check 

if I see the same thing with the Allen Institute dataset. 
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5.4.1.1 Methods 

5.4.1.1.1 Phase of oscillation in cross-correlogram 

Among cross-correlogram that shows clear oscillation, I computed the phase of the 

oscillation at 0ms lag. (Figure 19.A, B) First, I bandpass filtered the cross-correlogram to 

a band of interest. Then, I Hilbert transformed the bandpass filtered signal, to get 

instantaneous phase at 0ms lag.  

5.4.1.1.2 Phase of oscillation in cycle histogram 

I computed cycle histogram and fitted a cosine. (Figure 20.A, B, C) The fitted 

cosine has phase offset and it is used as a phase of an oscillation.  

5.4.1.2 Results 

5.4.1.2.1 Narrowband gamma phase of LGN cells using cross-correlogram shows 

two distinct clusters in NBG phase. 

Among identified NBG cells in LGN I sub-selected cells that visibly had high NBG 

power in its auto-correlogram. (𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑛𝑛  = 1,𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑  =  17.) To test coherence of NBG 

among these cells, I computed cross-correlogram between these cells and one NBG cell 

outside of the thalamus, V1 layer 4 that had prominently high NBG power.  I found there 

are two groups of cells in LGN that have different NBG phase. (Figure 19.) One cluster of 

cells had near 0 phase offset, so I named them “coherent cluster”, and the other cluster had 

near 𝜋𝜋/2  phase off, so I named them “phase OFF cluster”. ( 𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑,𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟  =

 7,𝑁𝑁𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑,𝑟𝑟ℎ𝑓𝑓𝑚𝑚𝑟𝑟 𝑟𝑟𝑓𝑓𝑓𝑓  =  10) 
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Figure 19. There is two distinct NBG phase cluster reference on V1 spiking activity 
using cross-correlation. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 1) 

A. Example cross-correlogram of cells in LGN that strongly exhibit NBG in its 
auto-correlogram (I call them “coherent cluster”, subset of “narrowband gamma” 
cells) and reference cell in V1 layer 4 that exhibits NBG in example session. All 
cross-correlograms exhibits coherent NBG. Phase acquired with Hilbert transform 
is around 0 at 0ms lag. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 7)  

B. Cross-correlogram between cells from “phase OFF cluster” and V1 reference 
cell. Phase acquired with Hilbert transform is around 𝝅𝝅/𝟐𝟐 at 0ms lag. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 10)  

C. Histogram of NBG phase of cells in LGN that strongly exhibiting NBG 
reference on reference cell inV1 layer 4. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 7) 
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5.4.1.2.2 Relative NBG phase of LGN cells using cycle histogram also shows two 

clusters clearly. 

I asked if this phase cluster is maintained relative to V1 layer 4 population activity. 

Hence, I computed cycle histogram using these cells with V1 layer 4 LFP. I found another 

clear clustering effect but on different phase offset with the previous result with cross-

correlogram. (Figure 20.) 

Hence, I questioned why there is difference in phase offset between referenced on 

single unit and population activity. To answer, I computed cycle histogram with the V1 

layer 4 cell that was used as a reference in the previous analysis. I found that this cell also 

clusters on the phase where coherent cell phase clusters. (Figure 20. C) This is consistent 

with the previous literature that showed the trough of gamma oscillation in cortical LFP 

follows after single unit spiking activities. (Hasenstaub et al., 2005) If I account this effect, 

I get consistent phase cluster with referencing to single cell in V1 layer 4. (Figure 20.D, E) 
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Figure 20. The phase clusters are clear referencing to population activity. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17, 
𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 1) 

A. (top)Example cycle histogram using spikes of an example cell from “coherent 
cluster” in LGN and V1 layer 4 LFP. (bottom) Normalized cycle histograms 
using spikes of all cells from “coherent cluster” in LGN. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 7) 

B. Same as A but with cells from “phase OFF cluster”. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 10) 

C. Same as A but with the reference cell inV1 layer 4 from the previous analysis. 
(same cell from Figure 19). 

D. (left) Histogram of NBG phase using cycle histogram. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 17) (right) 
Histogram shifted by the phase of the reference cell in V1 layer 4 shown in C. 

E. Same figure from Figure 19. C. 
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5.4.1.2.3 Phase cluster is maintained throughout the recording. 

I checked if this NBG relative phase is maintained across the recording. I split 

the spike-train to hundred segments of 100s spike-trains and computed NBG phase 

using cross-correlogram. (Figure 21.) I confirmed that NBG relative phase is 

maintained across recordings while BBG relative phase is not. 

Figure 21. The phase cluster is maintained throughout the recording (example with 
one cell in one recording) 

A. (left) Bandpass filtered (NBG) cross-correlograms between one cell from 
“coherent cluster” in LGN and the reference cell inV1 layer 4 of 100s of 
hundred segments. (right) Histogram of NBG phase at 0ms lag of 
correlogram calculated with Hilbert transform. The phase at 0ms is coherent 
among segments. 

B. Same as A, but bandpass filter to BBG. The phase is not coherent among 
segments. 
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5.4.1.2.4 The phase of narrowband gamma oscillation of LGN cell indicates ON/OFF 

preference. 

In the previous result with one example recording, I found that there are two groups 

of cells that 𝜋𝜋/2 phase off of NBG phase relative to V1 layer 4, both for single unit spiking 

activity and population activity. Here, I tested if this NBG phase cluster denotes different 

visual preference.  

 Surprisingly, neurons in each of the two preferred phase clusters also have different 

visual responses. “Coherent cluster” responds to positive contrast full-field flash stimulus, 

(ON preference) and “Phase off cluster” responds to negative contrast full-field flash 

stimulus. (OFF preference). (Data not shown). 

I asked if this would be maintained property across different mice. I clustered the 

identified NBG cells in LGN by its responsive properties to full-field flash stimulus: 

transient ON/OFF preference cells and ambiguous cells. (Figure 22. A, B.  𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟  =

 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑛𝑛𝑚𝑚  =  14, 𝑁𝑁𝑂𝑂𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓  =  167,  𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂 𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓  =  96) 

 Then, I computed NBG phase of these cells relative to a single highest NBG power 

ON preference cell in LGN (previously “coherent cluster”). Remarkably, ON/OFF 

preference cells had again  𝜋𝜋/2 phase offset between them, visibly gaussian distributed. 

(Figure 22. C). Also, I was able to see clear clustering reference to V1 layer 4 LFP. (Figure 

22.D)  
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Figure 22. ON/OFF preference cells in LGN locks to different narrowband gamma 
oscillation phase. (𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,  𝑶𝑶𝑵𝑵 𝒑𝒑𝒓𝒓𝒄𝒄𝒑𝒑 = 167, 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,  𝑶𝑶𝑶𝑶𝑶𝑶 𝒑𝒑𝒓𝒓𝒄𝒄𝒑𝒑 = 96, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 14) 

A. Average stimulus response of response of ON preference cells (red) and OFF 
preference cells (blue) to white full field flash. Color code is maintained 
within Figure 22. 

B. Average stimulus response of response of ON/OFF preference cells to black 
full field flash.  

C. NBG phase of ON preference cells (red) and OFF preference cells (blue) 
relative to one ON preference cell in LGN identified with pairwise cross- 
correlogram. Two clusters are clearly separated. 

D. Same as A but reference to V1 layer 4 LFP identified with cycle histogram. 
Two clusters are also clearly separated. 
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5.4.1.2.5 Phase cluster is maintained to downstream higher visual areas 

The benefit of using cycle histogram to get NBG phase is that I could use LFP of 

different areas as a reference. I computed NBG phase of identified ON/OFF preference 

NBG cells in LGN reference to different visuo-cortical LFP. 

Interestingly, the phase cluster was maintained to downstream higher visual areas. 

The sensitivity of two clusters decreased with more downstream areas according to the 

anatomical and functional hierarchy. (Figure 23.A (Harris et al., 2019;Siegle et al., 2019) 

) The effect primarily comes from the distance of the mean of the cluster than standard 

deviation of the gaussian fit. (Figure 23.B) As expected from the result about NBG power 

and coherence across different HVA, PM did not exhibit any clusters while other areas 

showed clustering effect. 
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Figure 23. Phase cluster is maintained to downstream higher visual areas. 
(𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,  𝑶𝑶𝑵𝑵 𝒑𝒑𝒓𝒓𝒄𝒄𝒑𝒑 = 167, 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,  𝑶𝑶𝑶𝑶𝑶𝑶 𝒑𝒑𝒓𝒓𝒄𝒄𝒑𝒑 = 96, 𝑵𝑵𝒎𝒎𝒓𝒓𝒎𝒎𝒎𝒎𝒄𝒄 = 𝑵𝑵𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓= 14) 

A. Sensitivity (d prime, defined below the figure.) of two gaussian fit on NBG 
phase cluster of ON/OFF preference cells reference to different visual areas. 
(see Figure 22.D for an example) Sensitivity is the highest at the most 
upstream area, and lowest at the most downstream area which is consistent 
with functional hierarchy. (One exception with AL)  

B. Standard deviation of gaussian fit on narrowband gamma phase cluster of 
ON preference cells (red) and OFF preference cells (blue) reference to 
different visual areas.  
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5.4.2 Discussion 

The result of the coherence in spiking activity shows that the phase of neuronal 

spiking relative to NBG forms two distinct neuron clusters that also have different ON/OFF 

preferences. This NBG phase cluster is not only limited in LGN and V1 but also propagates 

to higher order visual areas in mice. 

This result is different from what has been shown in previous literatures about 

NBG, which shows one coherent NBG cluster among LGN cells exhibiting NBG. (Saleem 

et al., 2017; Storchi et al., 2017) I suspect two reasons for the different result. First, the 

number of isolated neurons in LGN is significantly larger with the Allen Institute dataset 

than with datasets used in previous literature. Second, the authors of these previous studies 

computed the phase relative to the multi-unit spike-train while I computed phase relative 

to ON preference single-unit spike train. Even though single-unit is usually less general 

than multi-unit, in this case with two distinct neuronal clusters, phase referencing on single-

unit from one specific cluster would have less bias.  

A discovery from the previous section that NBG propagates through subnetwork 

assumes one source oscillation. In contrary, the finding of two distinct neuronal clusters in 

LGN suggests that there are at least two coherent oscillations is present in LGN and reach 

to the cortex. I did not analyse how the functional connectivity changes between two 

neuronal clusters due to the lack of the statistical power with small number of single units.  

I performed supplementary analysis to clarify the source of the neuronal cluster by  

analysing a public dataset containing single units from the optic tract. (Schröder et al., 

2020) I found NBG from 9 single units out of 24 total units (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 = 6) in the optic 
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tract. I verified that NBG in these units disappears with complete darkness which is 

consistent with the features of NBG previously found by literatures. (Saleem et al., 2017; 

Storchi et al., 2017) However, there was no NBG phase offset between ON/OFF preference 

cells. Due to the lack of the statistical power with 24 units I am not able to conclude, but I 

suspect that NBG phase offset between the neuronal clusters in LGN is generated in LGN, 

not inherited from the retina. 

I did not find single unit neuronal clusters with NBG phase offset in V1. I anticipate 

this is primarily because ON/OFF preference single units that has NBG phase offset from 

thalamus merge at V1. On the other hand, the phase cluster is maintained in the population 

activity of V1 and downstream higher visual areas. This implies that the two phases of 

NBGs affect information processing in HVAs as well as in the thalamus. 

 

5.4.3 Suggested hypotheses 

With the finding of two distinct neuronal clusters in LGN, and previous findings 

made in this Chapter, I suggest two hypotheses on the role of NBGs in the visual systems: 

first, communication through coherence, and second, NBG as a computationally efficient 

way to encode luminance.  

It is found from (Saleem et al., 2017) that the source of NBG in the cortex is LGN. 

On the other hand, I found that the hierarchy of NBG coherence and power in the visual 

cortex is consistent with the anatomical (Harris et al., 2019) and functional hierarchy 

(Siegle et al., 2019) that was identified with anatomical tracer experiments and stimulus 
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response properties. These two findings imply that NBG propagates from LGN to visuo-

cortical areas along the same pathway that a stimulus propagates. In other words, the 

subnetwork that NBG propagates is likely to be a subset of general stimulus propagation 

pathway. Hence, I hypothesize that NBG has a role in sensory processing, either by 

modulating stimulus response or by carrying sensory information. 

5.4.3.1 Hypothesis 1: Communication through coherence 

Communication through coherence is a major hypothesis that explains the role of the 

neural oscillation in the brain. (Fries, 2005, 2015) This hypothesis suggests that the neural 

oscillation synchronizes the excitability of multiple brain areas to help process sensory 

information. My first hypothesis of the role of NBG is that the NBG synchronizes 

excitability of retinal-thalamo-cortical pathway and provides a “window of opportunity” 

for visual information to be propagated.  

To verify this hypothesis, I suggest two analyses: first, to investigate if NBG phase 

affects stimulus response. (Cardin et al., 2009; Siegle et al., 2014) Second, to investigate if 

synchronized excitability of NBG between visual areas reflects stimulus response latency 

difference between visual areas (i.e. if NBG phase delay is consistent with stimulus 

response latency difference between visual areas). 

 

 

 



 90 

5.4.3.2 Hypothesis 2: Narrowband gamma oscillation encodes luminance in the early 

visual system 

The findings made in this thesis imply that NBG propagates from LGN to visuo-

cortical areas along the pathway that a stimulus propagates, which permits the possibility 

of NBG as a modulator of sensory processing, and itself as a form of visual information.  

Other discoveries in this thesis also give clues about the role between the two 

suggested hypotheses. The result of NBG propagation through subnetworks eliminates the 

possibility of NBG as a global modulator of visual processing in visual areas. Rather, it 

modulates specific part of the visual information processing, or itself is a form of visual 

information.  

NBG power increases with the luminance and irradiance. (Saleem et al., 2017; 

Storchi et al., 2017) Particularly, NBG amplitude in LGN coherent spiking activity 

revealed with Hilbert transform could recover local chirp stimuli (black and white 

luminance reversals), but if coherent spiking activity was perturbed with the shuffled trials, 

the recovery was less clear. (Storchi et al., 2017) This suggests NBG has the ability to 

encode luminance information. 

In addition to the findings that NBG is coherent among single cells in LGN made 

from (Storchi et al., 2017), I found that ON/OFF preference cells lock to different phases 

of NBG. Moreover, the phase difference between two clusters is near 𝜋𝜋
2
 (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟= 14), 

which makes the oscillation of two types of cells orthogonal.  
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(Storchi et al., 2017) suggested that luminance information is encoded by 

instantaneous amplitude of NBG computed with the Hilbert transform. However, the 

Hilbert transform is non-causal computation and requires long memory, which is not 

biologically plausible. If there are two orthogonal oscillations, the brain does not need to 

compute instantaneous amplitude with the Hilbert transform. Hence, with the finding that 

the oscillations of ON/OFF clusters are orthogonal to one another, I suggest that NBG is a 

method for encoding luminance information in the early visual systems in a 

computationally simple and efficient way.  
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CHAPTER 6. CONCLUSION 

This thesis contains a two-stage research project: first, validating the reliability of 

large-scale neural data analysis through benchmarking two commonly used spike-sorting 

algorithms, and developing an intrinsic signal imaging (ISI) analysis pipeline that identifies 

visuo-cortical areas non-invasively. Second, these reliable methods were used in the 

investigation of coherent neural oscillation in multiple visual brain areas with publicly 

available large-scale dataset of simultaneous recordings of multiple visual areas – the Allen 

Institute visual coding dataset. (Siegle et al., 2019)  

Large scale electrophysiology presents unprecedented opportunities in 

investigating how networks and systems of neurons process information. However, 

problems with spike-sorting remain unresolved, so researchers who use extracellular 

electrophysiology should always be careful when interpreting spiking data.  

In the first chapter of this thesis, I tried to the best of my ability to understand and 

relay the constraints of the spike-sorting algorithms I use, and that are commonly used in 

the field. I verified that the fundamental difference in mechanisms in detecting and 

classifying spikes influences the analysis of scientific questions. The difference in 

detectability of spikes in high firing backgrounds, with many spatio-temporally 

overlapping spikes, caused different interpretation of single-unit receptive field statistics 

and statistical detectability in short latency functional connectivity.  

In the second chapter of this thesis, I developed an analysis pipeline of an intrinsic 

signal imaging (ISI) system. ISI reveals a functional map of the brain non-invasively. As 
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the fields progress to investigate more complex mechanisms of the brain, experiments have 

become more complex and costly, which requires training mice to a behavioural task for 

weeks and simultaneous recording multiple brain areas. Hence, it is necessary to reliably 

localize the functional brain area, which ISI provides. 

I developed an analysis pipeline that identifies the retinotopic map and reveals 

higher order visual cortical areas (HVAs) of the mouse visual cortex using Fourier analysis. 

Also, I created the algorithm that aligns two frames of the same object taken with different 

wavelength: red and green or in a different recording day. This algorithm could be used to 

align a computed functional map to a visible indicator on the brain, and to merge functional 

maps from multiple recording days to make a higher quality functional map. 

The Fourier analysis method I used (Kalatsky and Stryker, 2003) approximates the 

response tuning function of each pixel of brain area to a cosine. I suggest that using a higher 

order approximation of the response tuning function would result in more accurate and 

efficient analysis methods.  

NBGs have never been measured in the visual cortex of mice beyond V1. This is 

primarily due to the smaller signal, compare to V1 and LGN, but also due to the lack of 

simultaneous recording ability and appropriate analysis techniques. I used publicly 

available large-scale neural recording dataset and I applied validated methods to answer 

questions about the oscillation.  

I made several novel discoveries about NBG. First, I found the presence of NBG 

over multiple visual areas, and the existence of hierarchy in the coherence and the power 
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of NBG, consistent with functional hierarchy. This suggests that NBG propagates feed-

forwardly from LGN to visuo-cortical areas along the pathway that a stimulus propagates.  

Second, NBG forms two distinct neuron clusters in the coherence of spiking activity 

that gives an orthogonal phase relative to one another, and also have different ON/OFF 

preferences. This NBG phase cluster is not only present in LGN and V1 but also propagates 

to mouse higher order visual areas (HVAs) through subnetworks, which suggests a local 

function of NBG in visual processing with two distinct oscillations. 

With these discoveries, I suggest two hypotheses: first, that NBG synchronizes the 

excitability of multiple visual areas to modulate visual processing; and second, that NBG 

encodes luminance information transmitted from the retina to higher order visual areas in 

a computationally plausible way. (HVAs) Both of these hypotheses assume that NBG has 

a role in visual processing and that it can influence visual perception. It is known that NBG 

promotes detection of visual stimuli (Speed et al., 2019), but how it promotes is still 

unresolved. The Allen dataset used here lacks behavioural output of an animal which limits 

the ability to analyse how NBG affects visual perception. However, the findings made in 

this thesis suggest keys to how NBG affects visual perception.  

Moreover, if NBG exists in different species is another important question to be 

classified. Similar narrowband oscillation within the gamma range was also found in LGN 

of anesthetized cat that is propagated from the retina. (Koepsell et al., 2009) To the best of 

my knowledge, NBG have not studied in non-human primates and humans. Identifying if 

NBG is a specie specific feature, or a general feature of mammal is a remaining important 

question. 
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With the development of experimental techniques and behavioural methodology, 

the capacity of these experiments is growing rapidly. It is possible to train a transgenic 

animal to a behavioural task for weeks and months, and simultaneously record multiple 

brain areas while optogenetically perturbing brain areas. (Siegle et al., 2014) This gives 

exciting opportunity for experimenters to answer interesting questions that could not been 

answered beforehand.  

However, analysing and interpreting this complex experimental data is also 

becoming increasingly more difficult. Small bias and error in analysis can lead to 

misleading conclusions, due to both difficulty in controlling many variables as well as 

neuronal variability that we have not identified yet, which I learned throughout master’s 

thesis project. Hence, I suggest that it is essential to carefully select reliable analysis 

methods with sufficient validation before applying to experimental datasets. 
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