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SUMMARY

Visual object tracking is one of the computer vision problems that has been researched

extensively over the past several decades. Many computer vision applications, such as

robotics, autonomous driving, and video surveillance, require the capability to track mul-

tiple objects in videos. The most popular solution approach to tracking multiple objects

follows the tracking-by-detection paradigm in which the problem of tracking is divided

into object detection and data association. In data association, track proposals are often

generated by extending the object tracks from the previous frame with new detections in

the current frame. The association algorithm then utilizes a track scorer or classifier in

evaluating track proposals in order to estimate the correspondence between the object de-

tections and object tracks.

The goal of this dissertation is to design a track scorer and classifier that accurately

evaluates track proposals that are generated during the association step. In this dissertation,

I present novel track scorers and track classifiers that make a prediction based on long-term

object motion and appearance cues and demonstrate its effectiveness in tracking by utiliz-

ing them within existing data association frameworks. First, I present an online learning

algorithm that can efficiently train a track scorer based on a long-term appearance model

for the classical Multiple Hypothesis Tracking (MHT) framework. I show that the classi-

cal MHT framework achieves competitive tracking performance even in modern tracking

settings in which strong object detector and strong appearance models are available. Sec-

ond, I present a novel Bilinear LSTM model as a deep, long-term appearance model which

is a basis for an end-to-end learned track classifier. The architectural design of Bilinear

LSTM is inspired by insights drawn from the classical recursive least squares framework. I

incorporate this track classifier into the classical MHT framework in order to demonstrate

its effectiveness in object tracking. Third, I present a novel multi-track pooling module

that enables the Bilinear LSTM-based track classifier to simultaneously consider all the

xv



objects in the scene in order to better handle appearance ambiguities between different

objects. I utilize this track classifier in a simple, greedy data association algorithm and

achieve real-time, state-of-the-art tracking performance. I evaluate the proposed methods

in this dissertation on public multi-object tracking datasets that capture challenging object

tracking scenarios in urban areas.

xvi



CHAPTER 1

INTRODUCTION

Visual object tracking is the area of research in computer vision where an algorithm is

aimed to detect and track objects of interest in video. It has a long history in computer

vision with earliest works dating back to the 80’s [1] due to its importance in understanding

dynamic objects in videos. It has many important applications in various domains such as

surveillance [2], representation learning [3, 4], scene understanding [5, 6], and autonomous

driving [7]. For example, in autonomous driving, an autonomous driving agent needs to be

able to detect and follow other nearby objects in the real world coordinate system in order

to safely navigate on the road. In a surveillance setting, object tracking can be performed

in surveillance videos to detect and follow suspicious individuals or activities in the scene.

In general, there are three types of problems within visual object tracking. Firstly,

when object classes of interest are known in advance, one can train an object detector that

identifies and localizes objects of interest in images. A visual tracking algorithm then takes

in object detections as input and assign an object ID number to each of the detections

such that the assigned object ID is consistent over time for each object. This assignment

process is also called data association, and a solution approach that solves tracking in these

two steps (i.e. detection and data association) is called a tracking-by-detection approach.

Designing effective tracking-by-detection algorithms has been the most active research area

in Multi-Object Tracking (MOT) for the past several decades [8, 9, 10, 11, 12, 13, 14, 15,

16, 17]. Secondly, when a user defines an object of interest in the first frame of video by

drawing a bounding box, a visual tracking algorithm takes in the bounding box as input and

tracks that object by detecting it in the following video frames. In this setting, the object

classes of interest are assumed to be not known in advance so a pre-trained object detector

is not available. Thus, the goal is to build and maintain a good object representation for

1



the target object which is robust to appearance changes using the appearance information

that the tracker obtains during tracking. This type of problem has been researched in the

context of single object tracking [18, 19, 20, 21]. Lastly, all moving objects within videos

regardless of the object classes are assumed to be objects of interest so a visual tracking

algorithm identifies them and track them over time [22, 23, 24]. In this dissertation, I focus

on solving the first type of visual tracking problem.

1.1 Objective

The goal of this dissertation is to develop novel discriminative track scorers and classifiers

that are trained online (i.e. during tracking) or trained offline (i.e. before tracking) to iden-

tify correct or wrong track proposals in data association. Such a track scorer or classifier

enables a data association algorithm to select a set of tracks among the track proposals

that can explain the observed scene. Figure 1.1 shows a general pipeline for tracking-

by-detection approaches. In the tracking-by-detection setting, it is assumed that an object

detector is available for objects of interest. The tracker takes the output of the detector as

input and generates track proposals by grouping the input detections into tracks over time.

These track proposals are then either ranked by a track scorer or accepted or rejected by a

track classifier. The best set of track proposals are selected by a data associaiton algorithm

such as the Multiple Hypothesis Tracking (MHT) algorithm, the Hungarian algorithm or

the greedy association algorithm. Traditionally, the track scorer or classifier were mostly

hand-engineered via feature engineering, but recent developments in deep learning have

enabled us to learn such a track scorer/classifier from the data in an end-to-end fashion [25,

26, 27]. Strong track scorers or classifiers based on deep neural networks have allowed us

to achieve better tracking performance with a simpler tracking pipeline.

Designing an effective track classifier is challenging due to the following factors. First,

object appearances change over time due to lighting changes, occlusion, and changes in

2
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Track Hypothesis Generation
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Figure 1.1. An overview of a multi-object tracking algorithm

object poses or shapes. Thus, the track scorer or classifier needs to be based on an object

appearance representation which is robust to such appearance changes while still being able

to discriminate the target object from other objects in the scene. Thus, object appearance

modeling in which such an appearance representation is built and updated over time is cru-

cial in visual object tracking. Object motion provides important cues for data association

as well since object motion is generally constrained by other objects in the scene, the envi-

ronment, and the object class. Thus, the track classifier also needs to be based on an object

motion representation that reflects realistic object movements in the scene. Thus, object

motion modeling in which such a motion representation is built and updated over time is

another key to success in designing a track scorer or classifier. In this thesis, I explore

different methods for building effective object appearance and motion models for a track

proposal scorer and classifier and demonstrate its effectiveness on public MOT datasets that

capture challenging object tracking scenarios in urban scenes.
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1.2 Contributions

In this thesis, I make the following contributions.

Chapter 3 - I present a novel incremental online learning algorithm that efficiently trains

online-learned, discriminative appearance models for the classical Multiple Hypothesis

Tracking (MHT) framework. I show that the proposed online learning algorithm is suitable

for the MHT framework due to its computational efficiency. The online-learned appear-

ance model utilizes all the object appearances in the scene over time and is thus cable of

modeling long-term appearance information. I first show that the classical MHT frame-

work still holds its effectiveness on the MOT 15 Challenege benchmark and then present a

new MHT track scoring function based on the proposed appearance model. I demonstrate

that the MHT framework with the new MHT track scoring function achieves a significant 1

performance improvement over the classical MHT framework.

Chapter 4 - I present an end-to-end learned track proposal classifier which is based on a

long-term appearance and motion model. The appearance model in the classifier is based

on a novel Bilinear Long Short-Term Memory (LSTM) model. The design of the Bilinear

LSTM is inspired by the classical recursive least square framework that I introduce in

Chapter 3 for learning long-term appearance models. The motion model in the classifier

is based on the vanilla LSTM model. I train the track classifier in an end-to-end fashion

and utilize the resulting classifier in the MHT framework. I demonstrate that the proposed

approach achieves competitive performance on near-online multiple object tracking on the

MOT benchmarks.

Chapter 5 - Unlike the appearance model presented in Chapter 3, the Bilinear LSTM-

based appearance model presented in Chapter 4 stores information about the target object

only in its memory. In Chapter 5, I present a novel multi-track pooling (MTP) module for

the Bilinear LSTM-based track classifier in order to solve the problem of simultaneously

1Significance tests are not part of the current MOT evaluation protocol, so the term ”significant” used in
this dissertation does not mean ”statistically significant.”
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considering all tracks during memory updating. The multi-track pooling module enables

the classifier to adaptively adjust its prediction based on all the objects’ appearances in the

scene in order to better handle appearance ambiguities between different objects. I also

present a new training strategy that is adapted to train the proposed multi-track pooling

module. I utilize the track classifier in a simple, greedy data association algorithm and

demonstrate real-time, state-of-the-art performance on the MOT benchmarks.

1.3 List of Publications

This dissertation is based on the following publications.

• Chanho Kim, Fuxin Li, Mazen Alotaibi, James M. Rehg. Discriminative Appear-

ance Modeling with Multi-track Pooling for Real-time Multi-object Tracking. Under

review for CVPR 2021.

• Chanho Kim, Fuxin Li, James M. Rehg. Multi-object Tracking with Neural Gating

Using Bilinear LSTM. ECCV 2018.

• Chanho Kim, Fuxin Li, Arridhana Ciptadi, James M. Rehg. Multiple Hypothesis

Tracking Revisited. ICCV 2015.
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CHAPTER 2

LITERATURE SURVEY

2.1 Classical and Graph-based Approaches

Network flow-based methods [8, 9, 10, 11] have recently become a standard approach

to visual multi-target tracking due to their computational efficiency and optimality. In

recent years, efficient inference algorithms to find the globally optimal solution [10, 9]

or approximate solutions [8] have been introduced. However, the benefits of flow-based

approaches come with a costly restriction: the cost function can only contain unary and

pairwise terms. Pairwise costs are very restrictive in representing motion and appearance.

In particular, it is difficult to represent even a linear motion model with those terms.

An alternative is to define pairwise costs between tracklets – short object tracks that

can be computed reliably [28, 29, 30, 31]. Unfortunately the availability of reliable track-

lets cannot be guaranteed, and any mistakes propagate to the final solution. In Brendel

et al. [31], data association for tracklets is solved using the Maximum Weighted Indepen-

dent Set (MWIS) method. I also adopt MWIS in Chapter 3 and 4, but follow the classical

formulation in [15] and focus on the incorporation of appearance modeling.

Collins [32] showed mathematically that the multidimensional assignment problem is

a more complete representation of the multi-target tracking problem than the network flow

formulation. Unlike network flow, there is no limitation in the form of the cost function,

even though finding an exact solution to the multidimensional assignment problem is in-

tractable.

Classical solutions to multidimensional assignment are MHT [12, 13, 14, 15] and

Markov Chain Monte Carlo (MCMC) data association [16, 17]. While MCMC provides

asymptotic guarantees, MHT has the potential to explore the solution space more thor-
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oughly, but has traditionally been hindered by the exponential growth in the number of

hypotheses and had to resort to aggressive pruning strategies, such as propagating only the

M -best hypotheses [13]. In Chapter 3, I show that this limitation can be addressed through

discriminative appearance modeling.

Andriyenko [33] proposed a discrete-continuous optimization method to jointly solve

trajectory estimation and data association. Trajectory estimation is solved by spline fitting

and data association is solved via MRF inference. These two steps are alternated until

convergence. Segal [34] proposed a related approach based on a message passing algo-

rithm. These methods are similar to MHT in the sense that they directly optimize a global

energy with no guarantees on solution quality. But in practice, MHT is more effective in

identifying high quality solutions.

There have been a significant number of prior works that exploit appearance informa-

tion to solve data association. In the network flow-based method, the pairwise terms can be

weighted by offline trained appearance templates [35] or a simple distance metric between

appearance features [10]. However, these methods have limited capability to model the

complex appearance changes of a target. In [14], a simple fixed appearance model is in-

corporated into a standard MHT framework. In contrast, I show that MHT can be extended

to include online learned discriminative appearance models for each track hypothesis in

Chapter 3.

Online discriminative appearance modeling is a standard method for addressing appear-

ance variation [36]. In tracklet association, several works [37, 38, 39, 40] train discrimi-

native appearance models of tracklets in order to design a better affinity score function.

However, these approaches still share the limitations of the tracklet approach. Other works

[41, 42] train a classifier for each target and use the classification score for greedy data

association or particle filtering. These methods only keep one online learned model for

each target, while my method trains multiple online appearance models via multiple track

hypotheses, which is more robust to model drift.
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2.2 Deep Learning-based Approaches

A deep neural network-based tracking approach has been shown to be very effective in

learning features and track scoring functions, and currently produces the best performance

on standard benchmarks. Various approaches utilizing convolutional networks [43, 44,

45] or recurrent neural networks [25, 26, 27] for handling multi-object tracking data (i.e.

sequential data) have been proposed. In multi-object tracking, the tracker maintains in

its memory the appearance and motion information for each object in the scene. In deep

learning-based approaches, the tracker utilizes deep neural networks to obtain the memory

representation for each target object. The memory is then utilized for finding matches

between tracks and detections, and is updated based on the matching results. In this section,

I review two types of deep learning-based approaches. The first type of approach focuses

on modeling each target object in isolation and thus lacks the capability to consider all the

objects in the scene simultaneously. The work in Chapter 4 belongs to this line of approach.

The second type of approach focuses on updating the target object memory representations

based on other objects in the scene by utilizing object interactions or jointly considering

other objects’ appearances during memory updating. The work in Chapter 5 is related to

this line of approach. The comparison between the proposed works and the related works

is also summarized in Table 2.1.

2.2.1 Approaches that utilize the target object only during model updating

The prior work that is closest to my work in Chapter 4 uses RNNs as a track proposal

classifier in the Markov Decision Process (MDP) framework [25]. Three different RNNs

that handle appearance, motion, and social information are trained separately for track

proposal classification and then combined for joint reasoning over multiple cues to achieve

the best performance. My method is different from this approach both in terms of the

network architecture and training sequence generation from ground truth tracks. Also, I
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present the first incorporation of deep learned track model into an MHT framework in

Chapter 4.

Other recent approaches [44, 43] adopt siamese networks that learn the matching func-

tion for a pair of images. The network is trained for the binary classification problem where

the binary output represents whether or not the image pair comes from the same object. The

matching function can be utilized in a tracking framework to replace any previous match-

ing function. Approaches in this category are limited to only modeling the information

between a pair of the detections, whereas my approach can model the interaction between

a track and a detection, thereby exploiting long-term appearance and motion information.

Milan et al. [46] presented a deep learning framework that solves the multi-object

tracking problem in an end-to-end trainable network. Unlike my approach, they attempted

to solve state estimation and data association jointly in one framework. While this was

highly innovative, an advantage of MHT is the ability to use highly optimized combinatoric

solvers.

RNN has been applied in single-object tracking [47, 48], however multi-target tracking

is a more challenging problem due to the amount of occlusion and problem of ID switches,

which is much more likely to happen in a multi-object setting.

2.2.2 Approaches that utilize all the objects in the scene during model updating

Two groups of prior works have explored the incorporation of positive and negative samples

during on-the-fly testing, and these are the closest related works to my work presented in

Chapter 5. One line of work incorporates these samples by fine-tuning a pretrained CNN

using positive examples (target object) and negative examples (background in [18], other

objects in [54]) during testing. While these approaches share my interest in utilizing scene-

specific information during tracking, the need to fine-tune during testing adds an additional

source of complexity and is a barrier to efficient online performance. In contrast, my model

automatically adjusts its prediction based on scene-specific information without the need
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Table 2.1. Comparison between the proposed approaches and the related works

Association Sequence Length Network Input Output

[25] MDP, Hungarian 6 frames LSTM
A track-detection pair and

an occupancy map Binary class

[26] Hungarian 9 frames GRU A track-detection pair Parameters of AR model

[49] A variant of MHT
Training: up to 3 seconds
Testing: up to 6 seconds Bi-directional LSTM A pair of tracks Approximated IDF1

[50] Hungarian 10 frames Relational Networks
A track-detection pair and

all detections up to the current frame Binary class

[51] ECO, Greedy 8 frames Bi-directional LSTM A track-detection pair Binary class

[52] Greedy, Post-processing
25 frames

(=12 message passing steps) GCN All detections in selected frames Binary class

[53] Hungarian
5 frames (motion)

2 frames (appearance) GCN
All tracks in the previous frame and
all detections in the current frame Binary class

Ch. 4 MHT
Training: up to 40 frames

Testing: track length
Bilinear LSTM (Appearance)

LSTM (Motion) A track-detection pair Binary class

Ch. 5 Greedy Track length
Bilinear LSTM with MTP (Appearance)

LSTM (Motion)
All tracks in the previous frame and

a detection in the current frame Binary class

for fine-tuning. The second line of work uses relational networks or graph convolutional

networks (GCNs) to incorporate the appearance of other detections in the same frame [50]

and in neighboring frames [52] when computing the appearance features of each detection.

However, these works operate in a batch setting where the entire video is available, whereas

my approach is online. In addition, my multi-track pooling method is significantly simpler

and faster than graph convolutional networks, which require multiple iterations of message

passing.

I utilize the Bilinear LSTM architecture in Chapter 4 in developing the matching ap-

proach. I extend beyond this work in multiple ways, the primary difference being the

introduction of a novel multi-object pooling approach which utilizes appearance informa-

tion across tracks to significantly improve data association performance. I demonstrate that

this makes it feasible to use a much simpler and more cost-effective matching algorithm

following track scoring, achieving real-time multi-object tracking.

[25] also presented an LSTM-based track proposal classifier that integrates motion,

appearance, and interaction cues. The primary difference between my work and this ap-

proach is that their interaction cues are the relative locations of other tracks with respect to

the target object, whereas my model takes the appearances of other tracks in the scene into

account when making a prediction.

Among the previous works that were not based on deep learning, [55] and [6] exploited
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interactions between tracks in solving the multi-object tracking problem. [55] incorporated

a social behavior model into their tracking algorithm. The social behavior model is based

on the assumption that each person moves in such a way as to avoid collisions with other

people. [6] incorporated high-level human activity cues into their tracking algorithm by

exploiting the fact that human activities can influence how people move in the scene. In

contrast to these works, I focus on incorporating multiple appearances from all tracks into

the model, in order to make it more discriminative.
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CHAPTER 3

MULTIPLE HYPOTHESIS TRACKING REVISITED

In this chapter, I revisit the classical multiple hypotheses tracking (MHT) algorithm in a

tracking-by-detection framework. The success of MHT largely depends on the ability to

maintain a small list of potential hypotheses, which can be facilitated with the accurate

object detectors that are currently available. I demonstrate that a classical MHT imple-

mentation from the 90’s can still achieve competitive performance on standard benchmark

datasets. In order to further utilize the strength of MHT in exploiting higher-order informa-

tion, I introduce a method for training online appearance models for each track hypothesis.

I show that appearance models can be learned efficiently via a regularized least squares

framework, requiring only a few extra operations for each hypothesis branch. The work

presented in this chapter has been published as [56].

3.1 Introduction

Multiple Hypotheses Tracking (MHT) is one of the earliest successful algorithms for vi-

sual tracking. Originally proposed in 1979 by Reid [12], it builds a tree of potential track

hypotheses for each candidate target, thereby providing a systematic solution to the data

association problem. The likelihood of each track is calculated and the most likely combi-

nation of tracks is selected. Importantly, MHT is ideally suited to exploiting higher-order

information such as long-term motion and appearance models, since the entire track hy-

pothesis can be considered when computing the likelihood.

MHT has been popular in the radar target tracking community [57]. However, in visual

tracking problems, it is generally considered to be slow and memory intensive, requiring

many pruning tricks to be practical. While there was considerable interest in MHT in the vi-

sion community during the 90s, for the past 15 years it has not been a mainstream approach
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for tracking, and rarely appears as a baseline in tracking evaluations. MHT is in essence

a breadth-first search algorithm, hence its performance strongly depends on the ability to

prune branches in the search tree quickly and reliably, in order to keep the number of track

hypotheses manageable. In the early work on MHT for visual tracking [13], target detec-

tors were unreliable and motion models had limited utility, leading to high combinatoric

growth of the search space and the need for efficient pruning methods.

We argue that the MHT approach is well-suited to the current visual tracking context.

Modern advances in tracking-by-detection and the development of effective feature repre-

sentations for object appearance have created new opportunities for the MHT method. First,

we demonstrate that a modern formulation of a standard motion-based MHT approach gives

comparable performance to state-of-the-art methods on popular tracking datasets. Second,

and more importantly, we show that MHT can easily exploit high-order appearance infor-

mation which has been difficult to incorporate into other tracking frameworks based on

unary and pairwise energies. We present a novel MHT method which incorporates long-

term appearance modeling, using features from deep convolutional neural networks [58,

59]. The appearance models are trained online for each track hypothesis on all detec-

tions from the entire history of the track. We utilize online regularized least squares [60]

to achieve high efficiency. In our formulation, the computational cost of training the ap-

pearance models has little dependency on the number of hypothesis branches, making it

extremely suitable for the MHT approach.

Our experimental results demonstrate that our scoring function, which combines mo-

tion and appearance, is highly effective in pruning the hypothesis space efficiently and

accurately. Using our trained appearance model, we are able to cut the effective number of

branches in each frame to about 50% of all branches (Sec. 3.4.1). This enables us to make

less restrictive assumptions on motion and explore a larger space of hypotheses. This also

makes MHT less sensitive to parameter choices and heuristics (Fig. 3.3). Experiments on

the PETS and the recent MOT challenge illustrate the state-of-the-art performance of our
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Figure 3.1. Illustration of MHT. (a) Track hypotheses after the gating test at time k. Only
a subset of track hypotheses is visualized here for simplicity. (b) Example gating areas for
two track hypotheses with different thresholds dth. (c) The corresponding track trees. Each
tree node is associated with an observation in (a).

approach.

3.2 Multiple Hypotheses Tracking

We adopt a tracking-by-detection framework such that our observations are localized bound-

ing boxes obtained from an object detection algorithm. Let k denote the most recent frame

andMk denote the number of object detections (i.e. observations) in that frame. For a given

track, let ik denote the observation which is selected at frame k, where ik ∈ {0, 1, . . . ,Mk}.

The observation sequence i1, i2, . . . , ik then defines a track hypothesis over k frames. Note

that the dummy assignment it = 0 represents the case of a missing observation (due to oc-

clusion or a false negative).1 Let the binary variable zi1i2...ik denote whether or not a track

hypothesis is selected in the final solution. A global hypothesis is a set of track hypotheses

that are not in conflict, i.e. that do not share any measurements at any time.

A key strategy in MHT is to delay data association decisions by keeping multiple hy-

potheses active until data association ambiguities are resolved. MHT maintains multiple

track trees, and each tree represents all of the hypotheses that originate from a single obser-

vation (Fig. 3.1c). At each frame, the track trees are updated from observations and each

track in the tree is scored. The best set of non-conflicting tracks (the best global hypothesis)

1For notational convenience, observation sequences can be assumed to be padded with zeros so that all
track hypotheses can be treated as fixed length sequences, despite their varying starting and ending times.
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Figure 3.2. (a) An undirected graph for the example of Fig. 3.1 in which each track
hypothesis is a node and an edge connects two tracks that are conflicting. The observations
for each hypothesis in the last three frames are indicated. An example of the Maximum
Weighted Independent Set (MWIS) is highlighted in blue. (b) An N -scan pruning example
(N = 2). The branches in blue contain the global hypothesis at frame k. Pruning at
t = k−2 removes all branches that are far from the global hypothesis. (c) Track hypotheses
after the pruning. The trajectories in blue represent the finalized measurement associations.

can then be found by solving a maximum weighted independent set problem (Fig. 3.2a).

Afterwards, branches that deviate too much from the global hypothesis are pruned from

the trees, and the algorithm proceeds to the next frame. In the rest of this section, we will

describe the approach in more detail.

3.2.1 Track Tree Construction and Updating

A track tree encapsulates multiple hypotheses starting from a single observation. At each

frame, a new track tree is constructed for each observation, representing the possibility that

this observation corresponds to a new object entering the scene.

Previously existing track trees are also updated with observations from the current

frame. Each track hypothesis is extended by appending new observations located within its

gating area as its children, with each new observation spawning a separate branch. We also

always spawn a separate branch with a dummy observation, in order to account for missing

detection.
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3.2.2 Gating

Based on the motion estimates, a gating area is predicted for each track hypothesis which

specifies where the next observation of the track is expected to appear.

Let xl
k be the random variable that represents the likely location of the lth track at time

k. The variable xl
k is assumed to be normally distributed with mean x̂l

k and covariance Σl
k

determined by Kalman filtering. The decision whether to update a particular trajectory with

a new observation ik is made based on the Mahalanobis distance d2 between the observation

location yik and the predicted location x̂l
k:

d2 = (x̂l
k − yik)>(Σl

k)−1(x̂l
k − yik) ≤ dth. (3.1)

The distance threshold dth determines the size of the gating area (see Fig. 3.1b).

3.2.3 Track Scoring

Each track hypothesis is associated with a track score. The lth track’s score at frame k is

defined as follows:

Sl(k) = wmotS
l
mot(k) + wappS

l
app(k) (3.2)

where Sl
mot(k) and Sl

app(k) are the motion and appearance scores, and wmot and wapp are the

weights that control the contribution of the location measurement yik and the appearance

measurement Xik to the track score, respectively.

Following the original formulation [57], we use the log likelihood ratio (LLR) between

the target hypothesis and the null hypothesis as the motion score. The target hypothesis

assumes that the sequence of observations comes from the same target, and the null hy-

pothesis assumes that the sequence of observations comes from the background. Then the
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lth track’s motion score at time k is defined as:

Sl
mot(k) = ln

p(yi1:k |i1:k ⊆ Tl)

p(yi1:k |i1:k ⊆ φ)
(3.3)

where we use the notation i1:k for the sequence of observations i1, i2, ..., ik. We denote by

i1:k ⊆ Tl the target hypothesis that the observation sequence comes from the lth track and

we denote the null hypothesis by i1:k ⊆ φ. The likelihood factorizes as:

p(yi1:k |i1:k ⊆ Tl)

p(yi1:k |i1:k ⊆ φ)
=

∏k
t=1 p(yit |yi1:t−1 , i1:t ⊆ Tl)∏k

t=1 p(yit |it ⊆ φ)
(3.4)

where we assume that measurements are conditionally independent under the null hypoth-

esis.

The likelihood for each location measurement at time t under the target hypothesis is

assumed to be Gaussian. The mean x̂l
t and the covariance Σl

t are estimated by a Kalman

filter for the measurements yi1:t−1 . The likelihood under the null hypothesis is assumed to

be uniform. The factored likelihood terms at time t are then written as:

p(yit|yi1:t−1 , i1:t ⊆ Tl) = N (yit ; x̂
l
t,Σ

l
t),

p(yit |it ⊆ φ) = 1/V

(3.5)

where V is the measurement space [57, 13], which is the image area or the area of the

ground plane for 2.5D tracking.

The appearance track score is defined as:

Sl
app(k) = ln

p(Xi1:k |i1:k ⊆ Tl)

p(Xi1:k |i1:k ⊆ φ)
= ln

p(i1:k ⊆ Tl|Xi1:k)

p(i1:k ⊆ φ|Xi1:k)
(3.6)

where we obtain the posterior LLR under the assumption of equal priors. The posterior
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ratio factorizes as:

p(i1:k ⊆ Tl|Xi1:k)

p(i1:k ⊆ φ|Xi1:k)
=

∏k
t=1 p(it ⊆ Tl|i1:t−1 ⊆ Tl, Xi1:t)∏k

t=1 p(it ⊆ φ|Xit)
(3.7)

where we utilize {i1:k ⊆ Tl} =
⋃k

t=1{it ⊆ Tl} for the factorization. We assume that it ⊆ Tl

is conditionally independent of future measurements Xit+1:k
and the it ⊆ φ hypotheses are

independent given the current measurement Xit .

Each term in the factored posterior comes from the online learned classifier (Sec. 3.3) at

time t. Given prior observations i1:t−1, we define the posterior of the event that observation

it is in the lth track as:

p(it ⊆ Tl|i1:t−1 ⊆ Tl, Xi1:t) =
eF (Xit )

eF (Xit ) + e−F (Xit )
(3.8)

where F (·) is the classification score for the appearance features Xit and the classifier

weights are learned from Xi1:t−1 . We utilize the constant probability c1 for the posterior of

the background (null) hypothesis.

p(it ⊆ φ|Xit) = c1 (3.9)

The track score expresses whether a track hypothesis is more likely to be a true target

(Sl(k) > 0) or false alarm (Sl(k) < 0). The score can be computed recursively [57]:

Sl(k) = Sl(k − 1) + ∆Sl(k), (3.10)

∆Sl(k) =


ln 1−PD

1−PFA
≈ ln(1− PD), if ik = 0

wmot∆S
l
mot(k) + wapp∆S

l
app(k), otherwise

(3.11)

where PD and PFA (assumed to be very small) are the probabilities of detection and false
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alarm, respectively. ∆Sl
mot(k) and ∆Sl

app(k) are the increments of the track motion score

and the track appearance score at time k and are calculated using Eqs. (3.5), (3.8), and

(3.9) as:

∆Sl
mot(k) = ln

V

2π
− 1

2
ln |Σl

k| −
d2

2
,

∆Sl
app(k) = − ln (1 + e−2F (Xik

))− ln c1.

(3.12)

The score update continues as long as the track hypothesis is updated with detections.

A track hypothesis which is assigned dummy observations for Nmiss consecutive frames is

deleted from the hypothesis space.

3.2.4 Global Hypothesis Formation

Given the set of trees that contains all trajectory hypotheses for all targets, we want to

determine the most likely combination of object tracks at frame k. This can be formulated

as the following k-dimensional assignment problem:

max
z

M1∑
i1=0

M2∑
i2=0

· · ·
Mk∑
ik=0

si1i2...ikzi1i2...ik

subject to
M1∑
i1=0

· · ·
Mu−1∑
iu−1=0

Mu+1∑
iu+1=0

· · ·
Mk∑
ik=0

zi1i2...iu...ik = 1

for iu = 1,2, ...,Mu and u = 1, 2, ..., k

(3.13)

where we have one constraint for each observation iu, which ensures that it is assigned to

a unique track. Each track is associated with its binary variable zi1i2...ik and track score

si1i2...ik which is calculated by Eq. (4.1). Thus, the objective function in Eq. (3.13) rep-

resents the total score of the tracks in the global hypothesis. This optimization problem is

known to be NP-hard when k is greater than 2.

Following [15], the task of finding the most likely set of tracks can be formulated as a

Maximum Weighted Independent Set (MWIS) problem. This problem was shown in [15]

to be equivalent to the multidimensional assignment problem (3.13) in the context of MHT.
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An undirected graph G = (V,E) is constructed by assigning each track hypothesis Tl to

a graph vertex xl ∈ V (see Fig. 3.2a). Note that the number of track hypotheses needs to

be controlled by track pruning (Sec. 3.2.5) at every frame in order to avoid the exponential

growth of the graph size. Each vertex has a weight wl that corresponds to its track score

Sl(k). An edge (l, j) ∈ E connects two vertices xl and xj if the two tracks cannot co-exist

due to shared observations at any frame. An independent set is a set of vertices with no

edges in common. Thus, finding the maximum weight independent set is equivalent to

finding the set of compatible tracks that maximizes the total track score. This leads to the

following discrete optimization problem:

max
x

∑
l

wlxl

s.t. xl + xj ≤1, ∀(l, j) ∈ E, xl ∈ {0, 1}.
(3.14)

We utilize either an exact algorithm [61] or an approximate algorithm [62] to solve the

MWIS optimization problem, depending on its hardness (as determined by the number of

nodes and the graph density).

3.2.5 Track Tree Pruning

Pruning is an essential step for MHT due to the exponential increase in the number of track

hypotheses over time. We adopt the standard N -scan pruning approach. First, we identify

the tree branches that contain the object tracks within the global hypothesis obtained from

Eq. (3.14). Then for each of the selected branches, we trace back to the node at frame

k − N and prune the subtrees that diverge from the selected branch at that node (see Fig.

3.2b). In other words, we consolidate the data association decisions for old observations up

to frame k−(N−1). The underlying assumption is that the ambiguities in data association

for frames 1 to k −N can be resolved after looking ahead for a window of N frames [13].

A largerN implies a larger window hence the solution can be more accurate, but makes the
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running time longer. After pruning, track trees that do not contain any track in the global

hypothesis will be deleted.

Besides N -scan pruning, we also prune track trees that have grown too large. If at any

specific time the number of branches in a track tree is more than a threshold Bth, then we

prune the track tree to retain only the top Bth branches based on its track score.

When we use MHT-DAM (see Table 3.1), the appearance model enables us to perform

additional branch pruning. This enables us to explore a larger gating area without increas-

ing the number of track hypotheses significantly. Specifically, we set ∆Sapp(t) = −∞,

preventing the tree from spawning a branch for observation it, when its appearance score

F (Xit) < c2. These are the only pruning mechanisms in our MHT implementation.

3.3 Online Appearance Modeling

Since the data association problem is ill-posed, different sets of kinematically plausible

trajectories always exist. Thus, many methods make strong assumptions on the motion

model, such as linear motion or constant velocity [34, 63, 11]. However, such motion

constraints are frequently invalid and can lead to poor solutions. For example, the camera

can move or the target of interest may also suddenly change its direction and velocity. Thus,

motion-based constraints are not very robust.

When target appearances are distinctive, taking the appearance information into account

is essential to improve the accuracy of the tracking algorithm. We adopt the multi-output

regularized least squares framework [60] for learning appearance models of targets in the

scene. As an online learning scheme, it is less susceptible to drifting than local appearance

matching, because multiple appearances from many frames are taken into account.

We first review the Multi-output Regularized Least Squares (MORLS) framework and

then explain how this framework fits into MHT.

21



3.3.1 Multi-output Regularized Least Squares

Multiple linear regressors are trained and updated simultaneously in multi-output regular-

ized least squares. At frame k, the weight vectors for the linear regressors are represented

by a d × n weight matrix Wk where d is the feature dimension and n is the number of

regressors being trained. Let Xk = [Xk,1|Xk,2|...|Xk,nk
]> be a nk × d input matrix where

nk is the number of feature vectors (i.e. detections), and Xk,i represents the appearance

features from the i-th training example at time k. Let Vk = [Vk,1|Vk,2|...|Vk,n] denote a

nk × n response matrix where Vk,i is a nk × 1 response vector for the ith regressor at time

k. When a new input matrix Xk+1 is received, the response matrix V̂k+1 for the new input

can be predicted by Xk+1Wk.

The weight matrix Wk is learned at time k. Given all the training examples (Xi,Vi)

for 1 ≤ i ≤ k, the weight matrix can be obtained as:

min
Wk

k∑
t=1

‖XiWk −Vi‖2
F + λ‖Wk‖2

F (3.15)

where ‖ · ‖F is the Frobenius norm. The optimal solution is given by the following system

of linear equations:

(Hk + λI)Wk = Ck (3.16)

where Hk =
∑k

t=1 X
>
t Xt is the covariance matrix, and Ck =

∑k
t=1 X

>
t Vt is the correla-

tion matrix.

The model is online because at any given time only Hk and Ck need to be stored and

updated. Hk and Ck can be updated recursively via:

Hk+1 = Hk + X>k+1Xk+1, (3.17)

Ck+1 = Ck + X>k+1Vk+1 (3.18)

which only requires the inputs and responses at time k + 1.
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3.3.2 Application of MORLS to MHT

We utilize each detected bounding box as a training example. Appearance features from

all detection boxes at time k form the input matrix Xk. Each tree branch (track hypothesis)

is paired with a regressor which is trained with the detections from the time when the

track tree was born to the current time k. Detections from the entire history of the track

hypothesis serve as positive examples and all other detections serve as negative examples.

The response for the positive example is 1, and the responses for the negative examples are

set to −1. Note that a classification loss function (e.g. hinge loss) will be more suitable

for this problem, but then the benefits of efficient updates and an analytic globally optimal

solution would be lost.

The online nature of the least squares framework makes it efficient to update multiple

regressors as the track tree is extended over time. Starting from one appearance model

at the root node, different appearance models will be generated as the track tree spawns

different branches. H and C in the current tree layer (corresponding to the current frame)

are copied into the next tree layer (next frame), and then updates according to Eqs. (3.17)

and (3.18) are performed for all of the tree branches in the next tree layer. Suppose we have

Hk−1 and Ck−1 and are branching into n branches at time k. Note that the update of Hk

only depends on Xk and is done once, no matter how many branches are spawned at time

k. Ck depends on both Xk and Vk. Hence, for each new tree branch i, one matrix-vector

multiplication X>k Vk,i needs to be performed. The total time complexity for computing

X>k Vk = [X>k Vk,1|X>k Vk,2|...|X>k Vk,n] is then O(dnnk) which is linear in both the number

of tree branches n and the number of detections nk.

The most time-consuming operation in training the model is updating and decomposing

H in solving Eq. (3.16). This operation is shared among all the track trees that start at the

same frame and is independent of the branches on the track trees. Thus, one can easily

spawn many branches in each track tree with minimal additional computation required for

appearance updating. This property is unique to tree-based MHT, where all the branches
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have the same ancestry. If one is training long-term appearance models using other global

methods such as [64] and [17], then such computational benefits disappear, and the appear-

ance model would need to be fully updated for each target separately, which would incur

substantial computational cost.

As for the appearance features, we utilize the convolutional neural network features

trained on the ImageNet+PASCAL VOC dataset in [59]. We follow the protocol in [59]

to extract the 4096-dimensional feature for each detection box. For better time and space

complexity, a principal component analysis (PCA) is then performed to reduce the dimen-

sionality of the features. In the experiments we take the first 256 principal components.

3.4 Experiments

In this section we first present several experiments that show the benefits of online appear-

ance modeling on MHT. We use 11 MOT Challenge [65] training sequences and 5 PETS

2009 [66] sequences for these experiments. These sequences cover different difficulty lev-

els of the tracking problem. In addition to these experimental results, we also report the

performance of our method on the MOT Challenge and PETS benchmarks for quantitative

comparison with other tracking methods.

For performance evaluation, we follow the current evaluation protocols for visual multi-

target tracking. The protocols include the multiple object tracking accuracy (MOTA) and

multiple object tracking precision (MOTP) [67]. MOTA is a score which combines false

positives, false negatives and identity switches (IDS) of the output trajectories. MOTP

measures how well the trajectories are aligned with the ground truth trajectories in terms

of the average distance between them. In addition to these metrics, the number of mostly

tracked targets (MT), mostly lost targets (ML), track fragmentations (FM), and IDS are

also reported. Detailed descriptions about these metrics can be found in [68].

Table 3.1 shows the default parameter setting for all of the experiments in this section.

In the table, our baseline method that only uses motion information is denoted as MHT. This
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(a) (b) (c)

Figure 3.3. (a) Average effective number of branches per track tree for different pruning
mechanisms. MHT-DAM uses a gating threshold dth = 12 and MHT uses a gating thresh-
old dth = 6. Even with a larger gating area, the appearance model for MHT-DAM is capable
of significantly reducing the number of branches. (b) Sensitivity analysis for N -scan pa-
rameter N . (c) Sensitivity analysis for the maximum number of branches Bth. The Blue
lines are the results from MHT-DAM and the Green lines are the results from MHT. The
first row shows the MOTA score (higher is better) and the second row shows the number of
ID switches (averaged per target, lower is better) over different pruning parameters.

is a basic version of the MHT method described in Section 3.2 using only the motion score

Smot(k). Our novel extension of MHT that incorporates online discriminative appearance

modeling is denoted as MHT-DAM.

Table 3.1. Parameter Setting

N-scan Bth Nmiss PD dth wmot, wapp c1, c2

MHT-DAM 5 100 15 0.9 12 0.1, 0.9 0.3,−0.8
MHT 5 100 15 0.9 6 1.0, 0.0

3.4.1 Pruning Effectiveness

As we explained earlier, pruning is central to the success of MHT. It is preferable to have

a discriminative score function so that more branches can be pruned early and reliably. A

measure to quantify this notion is the entropy:

H(Bk) = −
∑
v

p(Bk = v) ln p(Bk = v) (3.19)
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Table 3.2. Results from 2D MOT 2015 Challenge (accessed on 9/25/2015)

Method MOTA MOTP FAF MT ML FP FN IDS FM Hz

MHT-DAM 32.4 71.8 1.6 16.0% 43.8% 9, 064 32,060 435 826 0.7
MHT 29.2 71.7 1.7 12.1% 53.3% 9, 598 33,467 476 781 0.8

LP SSVM [69] 25.2 71.7 1.4 5.8% 53.0% 8, 369 36, 932 646 849 41.3
ELP [70] 25.0 71.2 1.3 7.5% 43.8% 7,345 37, 344 1, 396 1, 804 5.7

MotiCon [71] 23.1 70.9 1.8 4.7% 52.0% 10, 404 35, 844 1, 018 1, 061 1.4
SegTrack [72] 22.5 71.7 1.4 5.8% 63.9% 7,890 39, 020 697 737 0.2

CEM [73] 19.3 70.7 2.5 8.5% 46.5% 14, 180 34, 591 813 1, 023 1.1
RMOT [74] 18.6 69.6 2.2 5.3% 53.3% 12, 473 36, 835 684 1, 282 7.9
SMOT [75] 18.2 71.2 1.5 2.8% 54.8% 8, 780 40, 310 1, 148 2, 132 2.7
TBD [76] 15.9 70.9 2.6 6.4% 47.9% 14, 943 34, 777 1, 939 1, 963 0.7

TC ODAL [37] 15.1 70.5 2.2 3.2% 55.8% 12, 970 38, 538 637 1, 716 1.7
DP NMS [8] 14.5 70.8 2.3 6.0% 40.8% 13, 171 34, 814 4, 537 3, 090 444.8

where p(Bk = v) is the probability of selecting vth tree branch at time k for a given track

tree and defined as:

p(Bk = v) =
e∆Sv(k)∑
v e

∆Sv(k)
. (3.20)

For the normalization, we take all the branches at time k from the same target tree.

With the entropy, we can define the effective number of the branches Neff within each

track tree as:

Neff = eH(Bk). (3.21)

When all the branches in the target tree have the same probability (i.e. when the features

are not discriminative), Neff is equal to the actual number of branches, which means one

would need to explore all the possibilities. In the opposite case where a certain branch has

the probability of 1, Neff is 1 and it is only necessary to examine a single branch.

Fig. 3.3a shows the number of effective branches for different pruning mechanisms. For

this experiment, we set the default gating threshold dth to 12. The highest bar (dark red)

in each PETS sequence in Fig. 3.3a shows the average number of tree branches generated

per frame with the default gating parameter. A smaller gating area (dth = 6) (yellow

bar) only reduces the number of branches by a small amount but might prune out fast-

moving hypotheses. Combined with the Kalman filter motion model, the reduction is more
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significant (cyan bar), but the algorithm still retains more than half of the effective branches

compared to the full set with dth = 12.

Incorporating the appearance likelihood significantly reduces the effective number of

branches. In both the MOT Challenge and PETS sequences, the average effective number

of branches in a tree becomes ∼50% of the total number of branches. And this is achieved

without lowering the size of the gating area, thereby retaining fast-moving targets. This

shows that long-term appearance modeling significantly reduces the ambiguities in data

association, which makes MHT search more effective and efficient.

Analysis of Pruning Parameters. MHT was known to be sensitive to its parameter

settings [17]. In this section, we perform a sensitivity analysis of MHT with respect to

its pruning parameters and demonstrate that our appearance model helps to alleviate this

parameter dependency.

In our MHT implementation, there are two MHT pruning parameters. One is the N -

scan pruning parameter N , the other is the maximum number of tree branches Bth. We

tested MHT using 7 different values for N and 13 different values for Bth. We assessed the

number of errors in terms of the MOTA score and identity switches (IDS).

Fig. 3.3b shows the results from this analysis over different N -scan parameters. We

fix the maximum number of tree branches to 300, a large enough number so that very

few branches are pruned when N is large. The results show that motion-based MHT is

negatively affected when the N -scan parameter is small, while MHT-DAM is much less

sensitive to the parameter change. This demonstrates that appearance features are more ef-

fective than motion features in reducing the number of look-ahead frames that are required

to resolve data association ambiguities. This is intuitive, since many targets are capable of

fast movement over a short time scale, while appearance typically changes more slowly.

Fig. 3.3c illustrates the change in the MOTA and IDS scores when the maximum num-

ber of branches varies from 1 to 120. We fix the N -scan pruning parameter to 5 which

is the setting for all other experiments in this chapter. Note that appearance modeling is
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particularly helpful in preventing identity switches.

3.4.2 Benchmark Comparison

We test our method on the MOT Challenge benchmark and the PETS 2009 sequences. The

MOT benchmark contains 11 training and 11 testing sequences. Users tune their algo-

rithms on the training sequences and then submit the results on the testing sequences to the

evaluation server. This benchmark is of larger scale and includes more variations than the

PETS benchmark. Table 3.2 shows our results on the benchmark where MHT-DAM out-

performs the best previously published method by more than 7% on MOTA. In addition,

16.0% of the tracks are mostly tracked, as compared to the next competitor at 8.5%. We

also achieved the lowest number of ID switches by a large margin. This shows the robust-

ness of MHT-DAM over a large variety of videos under different conditions. Also note that

because MOT is significantly more difficult than the PETS dataset, the appearance model

becomes more important to the performance.

Table 3.3 demonstrates the performance of MHT and MHT-DAM on the PETS se-

quences compared to one of the state-of-the-art tracking algorithms [64]. For a fair com-

parison, the detection inputs, ground truth annotations, and evaluation script provided by

[64] were used. Our basic MHT implementation already achieves a better or compara-

ble result in comparison to [64] for most PETS sequences and metrics. Cox’s method is

also surprisingly close in performance to [64] with ∼6% lower MOTA on average with

the exception of the S2L2 sequence where it is ∼20% lower. However, considering that

Cox’s MHT implementation was done almost 20 years ago, and that it can run in real time

due to the efficient implementation (40 FPS on average for PETS), the results from Cox’s

method are impressive. After adding appearance modeling to MHT, our algorithm MHT-

DAM makes fewer ID switches and has higher MOTA and MOTP scores in comparison to

previous methods.
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3.5 Conclusion

Multiple Hypothesis Tracking solves the multidimensional assignment problem through

an efficient breadth-first search process centered around the construction and pruning of

hypothesis trees. Although it has been a workhorse method for multi-target tracking in

general, it has largely fallen out-of-favor for visual tracking. Recent advances in object de-

tection have provided an opportunity to rehabilitate the MHT method. Our results demon-

strate that a modern formulation of a standard MHT approach can achieve comparable

performance to several state-of-the-art methods on reference datasets. Moreover, an imple-

mentation of MHT by Cox [13] from the 1990’s comes surprisingly close to state-of-the-art

performance on 4 out of 5 PETS sequences. We have further demonstrated that the MHT

framework can be extended to include on-line learned appearance models, resulting in sub-

stantial performance gains. The software and evaluation results are available from our

project website.2

2http://cpl.cc.gatech.edu/projects/MHT/
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Table 3.3. Tracking Results on the PETS benchmark

Sequence Method MOTA MOTP MT ML FM IDS

MHT-DAM 92.6% 79.1% 18 0 12 13
S2L1 MHT 92.3% 78.8% 18 0 15 17

Cox’s MHT [13] 84.1% 77.5% 17 0 65 45
Milan [64] 90.3% 74.3% 18 0 15 22

MHT-DAM 59.2% 61.4% 10 2 162 120
S2L2 MHT 57.2% 58.7% 7 1 150 134

Cox’s MHT [13] 38.0% 58.8% 3 8 273 154
Milan [64] 58.1% 59.8% 11 1 153 167

MHT-DAM 38.5% 70.8% 9 22 9 8
S2L3 MHT 40.8% 67.3% 10 21 19 18

Cox’s MHT [13] 34.8% 66.1% 6 22 65 35
Milan [64] 39.8% 65.0% 8 19 22 27

MHT-DAM 62.1% 70.3% 21 9 14 11
S1L1-2 MHT 61.6% 68.0% 22 12 23 31

Cox’s MHT [13] 52.0% 66.5% 17 14 52 41
Milan [64] 60.0% 61.9% 21 11 19 22

MHT-DAM 25.4% 62.2% 3 24 30 25
S1L2-1 MHT 24.0% 58.4% 5 23 29 33

Cox’s MHT [13] 22.6% 57.4% 2 23 57 34
Milan [64] 29.6% 58.8% 2 21 34 42
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CHAPTER 4

BILINEAR LSTM

In recent deep online and near-online multi-object tracking approaches, a difficulty has

been to incorporate long-term appearance models to efficiently score object tracks under

severe occlusion and multiple missing detections. In this chapter, I propose a novel re-

current network model, the Bilinear LSTM, in order to improve the learning of long-term

appearance models via a recurrent network. Based on intuitions drawn from recursive

least squares, Bilinear LSTM stores building blocks of a linear predictor in its memory,

which is then coupled with the input in a multiplicative manner, instead of the additive

coupling in conventional LSTM approaches. Such coupling resembles an online learned

classifier/regressor at each time step, which I have found to improve performance in using

LSTM for appearance modeling. I also propose novel data augmentation approaches to

efficiently train recurrent models that score object tracks on both appearance and motion. I

train an LSTM that can score object tracks based on both appearance and motion and utilize

it in the MHT framework. In experiments, I show that with the Bilinear LSTM model, the

MHT framework achieves competitive performance on near-online multiple object track-

ing on the MOT 2016 and MOT 2017 benchmarks. The work presented in this chapter has

been published as [77].

4.1 Introduction

With the improvement in deep learning based detectors [78, 79] and the stimulation of

the MOT challenges [80], tracking-by-detection approaches for multi-object tracking have

improved significantly in the past few years. Multi-object tracking approaches can be clas-

sified into three types depending on the number of lookahead frames: online methods that

generate tracking results immediately after processing an input frame [46, 25, 81], near-
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online methods that look ahead a fixed number of frames before consolidating the decisions

[82], and batch methods that consider the entire sequence before generating the decisions

[83, 45]. For tracking multiple people, a recent state-of-the-art batch approach [45] relies

upon person re-identification techniques which leverage a deep CNN network that can rec-

ognize a person that has left the scene and re-entered. Such an approach is able to thread

together long tracks in which a person is not visible for dozens of frames, whereas the

margin for missing frames in online and near-online approaches is usually much shorter.

A key challenge in online and near-online tracking is the development of deep appear-

ance models that can automatically adapt to the diverse appearance changes of targets over

multiple video frames. A few approaches based on Recurrent Neural Networks (RNNs)

[46, 25] have been proposed in the context of multi-object tracking. [46] focuses on build-

ing a non-linear motion model and a data association solver using RNNs. [25] successfully

adopted Long Short-Term Memory (LSTM) [84] to integrate appearance, motion, and in-

teraction cues, but Figure 7. (b) in [25] reports results for sequences (tracks) of maximum

length 10. In practice, object tracks are much longer than 10 frames, and it is unclear

whether the method is equally effective for longer tracks.

Our own experience, coupled with the reported literature, suggests that it is difficult to

use LSTMs to model object appearance over long sequences. It is therefore worthwhile to

investigate the fundamental issues in utilizing LSTM for tracking, such as what is being

stored in their internal memory and what factors result in them being either able or un-

able to learn good appearance models. Leveraging intuition from classical recursive least

squares regression, we propose a new type of LSTM that is suitable for learning sequential

appearance models. Whereas in a conventional LSTM, the memory and the input have a

linear relationship, in our Bilinear LSTM, the LSTM memory serves as the building blocks

of a predictor (classifier/regressor), which leads to the output being based on a multiplica-

tive relationship between the memory and the input appearance. Based on this novel LSTM

formulation, we are able to build a recurrent network for scoring object tracks that com-
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bines long-term appearance and motion information. This new track scorer is then utilized

in conjunction with an established near-online multi-object tracking approach, multiple hy-

pothesis tracking, which reasons over multiple track proposals (hypotheses). Our approach

combines the benefits of deep feature learning with the practical utility of a near-online

tracker.

Our second contribution is a training methodology for generating sequential training

examples from multi-object tracking datasets that accounts for the cases where detections

could be noisy or missing for many frames. We have developed systematic data augmen-

tation methods that allow our near-online approach to take advantage of long training se-

quences and survive scenarios with detection noise and dozens of frames of consecutive

missing detections.

With these two improvements, we are able to generate state-of-the-art multi-target

tracking results for near-online approaches in the MOT challenge. In the future, our pro-

posed Bilinear LSTM could be used in other scenarios where a long-term online predictor

is needed.

4.2 Overview of MHT

In tracking-by-detection, multi-object tracking is solved through data association, which

generates a set of tracks by assigning a track label to each detection. MHT solves the data

association problem by explicitly generating multiple track proposals and then selecting

the most promising ones. Let Tl(t) = {dl1, dl2, ... , dlt−1, d
l
t} denote the lth track proposal at

frame t and let dlt be a detection selected by the lth track proposal at frame t. The selected

detection dlt can be either an actual detection generated by an object detector or a dummy

detection that represents a missing detection.

The track proposals for each object are stored in a track tree in which each tree node

corresponds to one detection. For example, the root node represents the first detection

of the object and the child nodes represent the detections in subsequent frames (i.e. tree
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nodes at the same depth represent detections in the same frame). Thus, multiple paths from

the root to the leaf nodes correspond to multiple track proposals for a single object. The

proposals are scored, and the task of finding the best set of proposals can be formulated

as a Maximum Weighted Independent Set (MWIS) problem [15], with the score for each

proposal being the weight of it. Once the best set of proposals is found, proposal pruning

is performed. Only the surviving proposals are kept and updated in the next frame. More

details about MHT can be found in chapter 3.

4.2.1 Gating in MHT

In MHT, track proposals are updated by extending existing track proposals with new detec-

tions. In order to keep the number of proposals manageable, exisiting track proposals are

not updated with all of the new detections, but rather with a few selected detections. The

selection process is called gating. Previous gating approaches rely on hand-designed track

score functions [15, 85, 13]. Typically, the proposal score S(Tl(t)) is defined recursively

as:

S(Tl(t)) = S(Tl(t− 1)) + ∆S(Tl(t)) (4.1)

Gating is done by thresholding the score increment ∆S(Tl(t)). New track proposals

with score increments below a certain threshold are pruned instantly. Usually the proposal

score includes an appearance term, which could be learned by recursive least squares, as

well as a motion term which could be learned with Kalman filtering.

4.2.2 Recursive Least Squares as an Appearance Model

An important advantage of our MHT-DAM approach introduced in chapter 3 is the use

of long-term appearance models that leverage all prior appearance samples from a given

track and train a discriminative model to predict whether each bounding box belongs to

each given track. Because we would like to be able to perform a similar task in our LSTM
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framework, we briefly review the recursive least squares appearance model. Given all the nt

detections at frame t, one can extract appearance features (e.g. CNN fully-connected layer)

for them and store them in an nt × d matrix Xt, where d is the feature dimensionality.

Then, suppose that we are tracking k object tracks, an output vector can be created for each

track as, e.g. the spatial overlap between the bounding box of each detection and each track

(represented by one detection in the frame), with the set of output vectors denoted as an

nt×k matrix Yt. Then a regressor for each target can be found by least squares regression:

min
W

T∑
t=1

‖XtW −Yt‖2
F + λ‖W‖2

F (4.2)

where ‖ · ‖2
F is a squared Frobenius norm and λ is the regularization parameter. As is

well-known, the solution can be written as:

W =

(
T∑
t=1

X>t Xt + λI

)−1( T∑
t=1

X>t Yt

)
(4.3)

where I is the identity matrix. Notably, one can store Qt =
∑t

i=1

(
X>i Xi

)
and Ct =∑t

i=1

(
X>i Yi

)
and update them online at frame t+1, by adding X>t+1Xt+1 and X>t+1Yt+1 to

Qt and Ct respectively, while maintaining the optimality of the solution for W. Moreover,

the computation of W is only linear in the number of tracks k. The resulting model can

train on all the positive examples (past detections in each track) and negative examples

(past detections in other tracks not overlapping with a given track) and generate a regressor

with good discriminative power. The computational efficiency of this approach and its

optimality are the two keys to the success of the MHT-DAM framework.

4.3 RNN as a Gating Network

We use the term gating network to denote a neural network that performs gating. We

utilize recurrent neural networks (RNNs) for training gating networks since track proposals

constitute sequential data whose data size is not fixed. In this work, we adopt Long Short-
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Term Memory (LSTM) as a recurrent layer due to its success in modeling long sequences

on various tasks [86].

We formulate the problem of gating as a sequence labeling problem. The gating net-

work takes track proposals as inputs and performs gating by generating a binary output

for every detection in the track proposal. In this section, we describe network inputs and

outputs and its utilization within the MHT framework. More details about the network

architecture can be found in Sec. 5.5.

Input. Track proposals contain both motion and appearance information. We use the

bounding box coordinates (x, y, w, h) over time as motion inputs to the network. The coor-

dinates are normalized with respect to the frame resolution ( x
width ,

y
height ,

w
width ,

h
height) to make

the range of the input values fixed regardless of the frame resolution. We also calculate

sample mean and standard deviation from track proposals (see Sec. 4.4 for more details on

how to generate track proposals from multi-object tracking datasets) and perform another

normalization in order to make the input data zero-centered and normalized across different

dimensions.

We use object images cropped to detection bounding boxes as appearance inputs to

the network. RGB cropped images are first converted to convolutional features by Con-

volutional Neural Networks (CNN) before the gating networks process them. We use the

ImageNet pretrained ResNet-50 [87] as our CNN.

Output. Given a current detection, the network makes a binary decision about whether

or not it belongs to the proposal based on its compatibility with the appearance and motion

of the other detections assigned to the proposal. Thus, the gating networks solve a binary

classification task using cross-entropy loss. Note that we have multiple binary labels for

each track sequence since gating is done on every frame.

Track Scorer in MHT. We use the softmax probability p of the positive output (i.e.

current detection belongs to the same object in the proposal) for calculating the score incre-

ment ∆S(Tl(t)) as shown in Eq.(4.4). A higher score increment implies a higher matching
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quality between the track proposal Tl(t− 1) and the detection dlt.

∆S(Tl(t)) = p(dlt ∈ Tl(t− 1)|Tl(t− 1)) (4.4)

This is a simple aggregation scheme that combines the per-frame predictions from the

gating network in order to score tracks. Our assumption is that proposals that generate

higher per-frame matching scores are more likely to be correct than proposals with lower

per-frame matching scores. New track proposals with score increment below a threshold

are pruned instantly by gating. In MHT, every track proposal in the track trees has a unique

detection sequence, which is represented as a unique LSTM memory state in the gating

network. The memory state for surviving proposals is stored for further gating and scoring

in the next frame. The weights of the gating network are shared across all track proposals.

4.3.1 Bilinear LSTM

(b) (c)

LSTM

Track up to 𝒕 − 𝟏

LSTM

Track up to 𝒕 − 𝟏

ResNet 50

Detection at 𝒕

Reshape

Matrix-vector multiplication

(a)

ResNet 50 ResNet 50

Detection at 𝒕

ResNet 50

Concatenation

LSTM

Track up to 𝒕

ResNet 50

Figure 4.1. Motion gating network and appearance gating network are trained separately
before training the full model. We evaluate multiple network architectures for each module.
(a) The Bilinear LSTM network with a multiplicative relationship between the memory and
the input CNN features. The LSTM memory is reshaped into a matrix and multiplied with
the input appearance feature vector; (b) Input appearance is concatenated with the LSTM
memory output before a fully-connected layer; (c) A conventional LSTM architecture.

Our experience suggests that conventional LSTMs are far more effective at modeling

motion than appearance. This led us to ask, “what information about object appearance

is being stored in the internal memory of a standard LSTM, and what would be an ideal
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memory representation for this task?”.

Conventional LSTMs utilizes the following update rule:

ct = ft ◦ ct−1 + it ◦ gt, ht = ot ◦ tanh(ct)

ft = σ(Wf [ht−1,xt]), it = σ(Wi[ht−1,xt]),

gt = σ(Wg[ht−1,xt]), ot = tanh(Wo[ht−1,xt]) (4.5)

where ◦ represents the Hadamard product. xt is the current input. ft, it, and ot are the

forget gate, the input gate, and the output gate. ct and ht are the cell state and the hidden

state that are repeatedly updated throughout the sequence. gt is the new update values for

the cell state.

When building an appearance model for multi-object tracking (i.e. data association), xt

represents the current appearance of an object candidate. For LSTM to solve the tracking

task, one intuition is that ht may represent some information about the acceptance/rejection

of an object candidate. ct can roughly be thought of as representing a stored template of

the object appearance, and then the output gate ot compares the previous stored appearance

ct−1 and the new appearance xt in order to decide the current output ht. Experiments in [25]

where LSTM performance seems to saturate with a sequence length of 2−4 frames, seems

to suggest that the aforementioned intuition might be partially correct.

However, the main appeal of a long-term appearance model in previous work is the

capability of using a classifier/regressor that learns from all the previous appearances of

the object as shown in the previous chapter. Such a model trained from multiple different

appearances could generalize better than one or a few stored templates and could poten-

tially interpolate and extrapolate among different previous appearances of the model. An

example would be the recursive least squares model in Eq. (4.2). But if we imagine the W

in Eq. (4.2) as the memory output ht, it seems that a multiplicative form x>W as in Eq.

(4.2) is difficult to obtain from the additive forms in Eq. (4.5), no matter from ot, ct or ht.
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Thus, we would like to propose a new LSTM that can realize the multiplicative between

the memory ht and the input x. We note that the solution of recursive least squares is

dependent on the matrix Qt =
∑t

i=1 X
>
i Xi that is updated at each time linearly. It is

difficult for LSTM to store a positive-definite matrix as memory, but a common approach to

simplify such a positive-definite matrix is to use a low-rank approximation, e.g. assuming

Q−1
t =

∑r
i=1 qtiq

>
ti . With this assumption and considering Eq. (4.3), the regressor output

becomes:

w>x = C>t Q
−1
t x =

r∑
i=1

C>t qtiq
>
tix (4.6)

Note that when there is only 1 track, Ct is of the dimensionality d × 1, and hence

µi = C>t qi is a scalar. We have:

w>x =
r∑

i=1

µiq
>
tix (4.7)

Here µi is dependent on both y and q, hence without loss of generality it could be a stan-

dalone variable that is separately estimated. With this derivation, it seems that the approach

to emulate a linear regressor is to have several vectors hti to be learnable and gradually

changing with time (in other words, serve as the memory in the LSTM), and a layer of

learnable µi on top of a multiplicative relationship between hti and x.

In this spirit, we propose the Bilinear LSTM (bLSTM) which utilizes the following

forward pass that enables the multiplicative interaction between the input and the memory:

ht−1 = [h>t−1,1|h>t−1,2|...|h>t−1,r]
> = ot−1 ◦ tanh(ct−1)

Hreshaped
t−1 = [ht−1,1|ht−1,2|...|ht−1,r]

>, mt = f(Hreshaped
t−1 xt) (4.8)

where f(·) is a non-linear activation function and mt is the new hidden state for bLSTM.
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xt denotes the features from a box at frame t. Basically, we utilize a long vector as the

LSTM memory which contains the concatenation of all the ht−1,is. When it comes to the

time to multiply ht−1,i with xt, the rd dimensional vector ht−1 is reshaped into the r × d

matrix Hreshaped
t−1 so that we could utilize matrix-vector multiplication between ht−1 and xt.

The new hidden state mt can then be used as input to other fully-connected layers (re-

sembling the µi in eq. (4.7)) to generate the final prediction. Note that in online recursive

least squares µi should be trained for each tracked object separately, however in our net-

work the fully-connected layers after bLSTM are trained globally and fixed during testing

time. Implementing a dynamic µi which is dependent on each object track did not result in

significant improvement in performance. We believe that since the system is trained end-

to-end, the LSTM updates of h should be able to encompass the potential changes in µi,

hence we can keep the fully-connected layers fixed without additional issues.

Intuitively, by saving a matrix-valued memory that resembles a low-rank decomposition

of the matrix, at least r templates (as well as combinations of the r templates) can be used

for the prediction. Hence bLSTM can store longer-term appearance models than traditional

LSTMs and improve on maintaining track identity over many frames.

We have three types of gating networks based on the network input: Motion, Appear-

ance, and Motion + Appearance. We test three different architectures in Fig. 4.1 for the

motion gating and appearance gating networks. We select the best architecture for each

type of input among the three and combine them for motion+appearance gating networks.

Experimental results that we used for selecting the architecture are included in Sec. 4.5.3.

Motion Gating. For motion gating, the vanila version of LSTM eq. (4.5) works the

best. Thus, we adopt LSTM as a sequence labeler where LSTM reads motion input re-

cursively and store the sequence information in its hidden state. The FC layers are built

on top of the hidden state to produce the final output. Architectures that we used for the

comparison are shown in Table 4.1.

Appearance Gating. We propose to use Bilinear LSTM as appearance gating network
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where LSTM’s hidden state becomes a weight vector for the appearance model of the cur-

rent object. Details about the network architecture and other two baseline architectures are

shown in Table 4.2.

Table 4.1. Different experimented architectures for motion gating. (a) Bilinear LSTM (b)
LSTM as a feature extractor for the previous track (c) Vanila LSTM (LSTM as a sequence
labeler)

Soft-max

Matrix-vector Multiplication-tanh 4

Reshape 4× 64 Reshape 64× 1

LSTM 256

FC-relu 64 FC-relu 64

Input at t− 1 4 Input at t 4

(a)

Soft-max

FC-tanh 64

Concatenation 64 + 64

LSTM 64

FC-relu 64 FC-relu 64

Input at t− 1 4 Input at t 4

(b)

Soft-max

FC-tanh 8

LSTM 64

FC-relu 64

Input at t 4

(c)

Table 4.2. Different experimented architectures for appearance gating: (a) Bilinear LSTM
(b) LSTM as a feature extractor for the previous track (c) Vanila LSTM

Soft-max

Matrix-vector Multiplication-relu 8

Reshape 8× 256 Reshape 256× 1

LSTM 2048

FC-relu 256 FC-relu 256

ResNet-50 2048 ResNet50 2048

Input at t− 1 128× 64× 3 Input at t 128× 64× 3

(a)

Soft-max

FC-relu 512

Concatenation 2048 + 256

LSTM 2048

FC-relu 256 FC-relu 256

ResNet-50 2048 ResNet50 2048

Input at t− 1 128× 64× 3 Input at t 128× 64× 3

(b)

Soft-max

FC-relu 512

LSTM 2048

FC-relu 256

ResNet-50 2048

Input at t 128× 64× 3

(c)

Motion + Appearance Gating. In order to enable a joint reasoning over both motion

and appearance for object tracking, we construct a motion+gating network based on our

analysis of different baseline architectures. We use Bilinear LSTM to process appearance

data and vanila LSTM to process motion data. Then motion and appearance representa-

tions (i.e. outputs before soft-max) from both gating networks are concatenated after L2

normalization is applied to each representation separately. Prediction layers are built upon

the concatenated features. We first train motion gating and appearance gating networks

separately. Then we load all the pretrained layers before the concatenation layer from both

gating networks and fine-tune them jointly.
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4.3.2 Handling Missing Detections

In tracking-by-detection, it is important to handle missing detections while keeping the

correct track identity over time. In traditional Kalman filter-based motion tracking, the

diagonal of the noise covariance matrix keeps increasing over time in the case of missing

detections, resulting in accepting more detections from gating with a gradually larger gating

area.

In the case of recurrent gating networks, the occurrences of missing detections should

also modulate the gating network. For instance, one can imagine a gating network applying

a stricter gating policy when all the detections are available for the current object than the

case where detections are missing in recent frames. In order to encode such information

inside the LSTM hidden states, we propose to input to the recurrent network all-zero input

vectors in the case of missing detections. By doing so, the LSTM internal (both cell and

hidden) states will be updated solely based on its previous states, which is different from

normal LSTM updates where both the input data and the previous state are utilized. The

gating network does not need to make any prediction for the missing detection but only

need to update the LSTM internal memory. In Sec. 4.5.3, we show the effectivenss of such

explicit missing detection handling for the motion gating networks.

4.4 Generating Training Sequences

Artificial track proposals are generated from ground truth track annotations as training data

for training our LSTM network. First, we randomly pick one ground truth track annotation

from which we sample track proposals. The starting frame and the ending frame are ran-

domly selected. Due to the memory limit of GPUs, we select them in a way that the length

of the track proposal does not exceed Nmax. Let N be the selected length (2 ≤ N ≤ Nmax)

of the proposal. Then we collect first N − 1 bounding boxes of the selected object and

pick the last N th detection from a different object. Positive labels are assigned for the first
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Training Sequence Examples

T1 T2 T5T3 T4

T1 T2 T5

T1 T2 T5T3 T4

Ground Truth Track

T2 T5T3 T4 T1 T2 T3

T1 T5T4

T2 T3 T4 T5

T5T1

Figure 4.2. Training sequences are generated from the public MOT dataset. Each training
sequence has detections from the same object throughout the track and one detection from
different object at the end. Training sequences are generated in the manner that they reflect
actual track proposals that MHT generates during tracking.

N − 1 detections representing the correct object and a negative label is assigned for the

N th detection representing a different object. Thus, each proposal is associated with a bi-

nary label vector where only the last element is a negative label as presented in Fig. 4.2.

The maximum length Nmax needs to be large enough so that the network learns the gating

mechanism regardless of its input length. We show experimental results with differentNmax

values in Sec. 4.5.3.

Data Augmentation. If ground truth tracks are used without any augmentation to gen-

erate track proposals, each track proposal will consist of bounding boxes perfectly aligned

with the object in consecutive frames, which may poorly represent actual track proposals

consisting of noisy detections. Thus, it is important to perform proper data augmentation

so that the track proposals reflect actual detection noise. There are two types of detection

errors which need to be considered: localization error and missing detections.

In order to reflect the localization noise, we jitter the bounding boxes in the training

track proposals using a noise model estimated from the training data. For estimating this

noise model, given a set of detections and ground truth annotations, we first assign each de-

tection to its closest ground truth bounding box, and then calculate localization error from

each detection to its assigned ground truth bounding box. We then fit a normal distribution
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to these localization errors for all true positive detections. Since the MOT Challenge Bench-

mark [80] provides three public detectors (DPM [88], FRCNN [89], SDP [79]) which have

different accuracy and noise levels, we estimate a different normal distribution for each

public detector. Thus, before the training data generator samples random localization er-

rors for the proposal, it first chooses a normal distribution based on the detector. Then for

each bounding box in each track proposal, a different localization error is sampled from the

estimated normal distribution.

In order to simulate missing detections, for 50% of the tracks, we randomly pick a

missing detection rate pmiss(0.0 ∼ 0.5) and drop the bounding boxes in the track proposal

according to the selected missing rate except for the first bounding box (current object)

and the last bounding box (differerent object). Example track proposals with this missing

detection augmentation are shown in Fig. 4.1. The other 50% of the tracks are retained

without missing detections.

4.5 Experiments

We report all our experimental results on the validation set except for the final benchmark

result which was evaluated on MOT 16/17 test sequences.

4.5.1 Training Data

In order to generate track proposals, we use MOT17 (MOT16) and MOT15 sequences

[80, 90] and a few other tracking sequences [7, 91, 92] where pedestrian annoatations are

available. All the training, validation, and testing sequences are shown in Table 4.3. In

addition to the MOT sequences, we also use two public person re-identification datasets,

Market1501 [93] and CUHK03 [94], in order to pre-train the appearance gating networks.
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Table 4.3. Training/Val/Test Splits

Training Set Validation Set Test Set
MOT17 - {02, 04, 05, 11, 13}, MOT17 - {09, 10} MOT17 - {01, 03, 06, 07, 08, 12, 14}

MOT15 - {PETS09-S2L1, ETH - {Sunnyday, Bahnhof},
TUD - {Campus, Stadtmitte}, KITTI-{17, 13}},

ETH - {Jelmoli, Seq01}, KITTI - {16, 19},
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

4.5.2 Pre-training on Person Re-identification

In the person re-identification task, a pair of images is given to the learner and the learner

decides whether two images come from the same person or not. One can treat the pair of

two images as a track proposal with a temporal length 2. Such training examples can be also

generated from multi-object tracking dataset. Thus, we utilize a person re-identification

dataset in addition to the training set shown in Table 4.3 to pre-train our appearance gating

network for person re-identification. Similar pre-training was also done in [25, 45]. Table

4.5 shows the effect of pre-training for person re-identification on the performance of gating

networks.

4.5.3 Ablation Study

We conduct an ablation study for different network architectures and training settings on

our validation sequences (MOT17-09 and MOT17-10). The MOT17 Benchmark provides

three different public detectors. We used the Faster R-CNN detector for the experimental

results in this section.

Metrics. Among many different tracking metrics, we choose the Multiple Object

Tracking Accuracy (MOTA) [67], identity switches (IDS), and IDF1 [95] for this study.

MOTA is calculated by object detection mistakes (false positive and false negative) and

tracking mistakes (identity switches). MOTA is often dominated by object detection mis-

takes since the number of false positive/negative is typically much higher than IDS. IDS

counts the number of track ID changes for all the objects. IDF1 is a tracking metric which

measures how often objects are correctly identified by the same track ID.
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Table 4.4. Ablation Study for Appearance Gating Networks. Baseline1 and Baseline2
are the networks shown in Table 4.2 (b) and (c) resepectively. (Left) State dim. = 2048,
Nmax = 40 (Middle) LSTM: Bilinear, Nmax = 40, (Right) LSTM: Bilinear, State dim. =
2048

LSTM MOTA IDF1 IDS

Bilinear 52.33 59.07 233
Baseline1 50.43 51.28 412
Baseline2 50.97 51.49 462

State dim. MOTA IDF1 IDS

512 52.14 56.66 283
1024 52.36 55.85 222
2048 52.33 59.07 233

Nmax MOTA IDF1 IDS

10 51.96 54.36 271
20 52.27 58.38 228
40 52.33 59.07 233
80 52.32 57.21 239

160 52.41 55.19 222

Table 4.5. Pre-training vs Random initialization (Left) LSTM:Bilinear, State dim. = 2048,
Nmax = 40 (Right) LSTM: Baseline2 (Motion) + Bilinear (Appearance), State dim. =
64 (Motion), 2048 (Appearance), Nmax = 40

Input type MOTA IDF1 IDS

(A) Random 52.00 57.46 268
(A) Pre-training 52.33 59.07 233

Pre-training MOTA IDF1 IDS

(M)+(A) Random 50.31 50.39 499
(M)+(A) Pre-training 52.63 58.08 197

Network Architectures. We test the three deep architectures shown in Fig. 4.1 for

MHT gating. The results in Table 4.4 are generated by MHT with different appearance

gating networks. The left table in Table 4.4 shows the tracking performance of different

deep architectures as gating networks. Bilinear LSTM works best as the appearance gating

network. In terms of the network sizes (LSTM state dimensions), 2048 state dimension is

a good choice for Bilinear LSTM as an appearance gating network.

Training Settings. We also try differerent training settings such as different maximum

sequence lengths, missing detection augmentations, and network pre-training. The results

are included in Table 4.4, 4.5, and 4.6. We used the (M)+(A) model (in Table 4.6 (Middle))

which balances well between IDF1 and IDS as our final model for the comparison with

MHT and the MOT benchmark in Sec. 4.5.4.

We used the Adam optimizer [96] for training motion gating networks and set the initial

learning rate to 0.01 with the batch size of 64. We used the stochastic gradient optimizer

for training appearance and motion+appearance gating networks and set the initial learning

rate to 0.005 with the batch size of 16. In all cases, we let the learning rate decrease every
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Table 4.6. (Left) Missing Detection Augmentation On/Off. Nmax = 40. We update LSTM
states with zero input vectors (as described in Sec. 4.3.2) for the models which are trained
with the missing detection augmentation. The results in this table show that such LSTM
state update is beneficial for the motion gating network, but not for the appearance gat-
ing network. Thus, we utilize the missing detection handling only for the motion gat-
ing network and the motion part in the motion+appearance gating network. (Middle and
Right) Different input types with different maximum lengths of training sequences (Mid-
dle) Nmax = 40 (Right) Nmax = 80.

Missing Det. MOTA IDF1 IDS

(M) Yes 52.47 50.22 229
(M) No 52.58 47.71 203

(A) Yes 52.29 41.37 244
(A) No 52.33 59.07 233

Input type MOTA IDF1 IDS

Motion (M) 52.47 50.22 229
Appearance (A) 52.33 59.07 233

(M) + (A) 52.63 58.08 197

Input type MOTA IDF1 IDS

Motion (M) 52.30 51.14 255
Appearance (A) 52.32 57.21 239

(M) + (A) 52.69 54.63 208

Table 4.7. Comparison with MHT-DAM on our val split (MOT17-09 and MOT17-10).
Nmax = 80. Tracks are interpolated through smoothing. (Left) DPM (Middle) Faster R-
CNN (Right) SDP.

Method MOTA IDF1 IDS

MHT-DAM 47.6 48.2 72
Ours 43.8 52.9 91

Method MOTA IDF1 IDS

MHT-DAM 53.7 54.8 136
Ours 54.8 60.5 140

Method MOTA IDF1 IDS

MHT-DAM 69.4 62.7 128
Ours 69.7 68.6 137

5000 iterations by exponential decay with the decay rate 0.9 until we observe a decrease in

performance on the validation set.

4.5.4 MOT Challenge Benchmark

In this section, we report the performance comparison with MHT-DAM and our tracking

results on the MOT Challenge 17/16 Benchmark.

Comparison with MHT-DAM. In order to see whether our trained models work well

with MHT, we first compare the tracking performance with MHT-DAM presented in chap-

ter 3 on the validation split. Unlike bLSTM, MHT-DAM does not benefit from any off-line

training using multi-object tracking datasets. It rather builds appearance models for multi-

ple objects in an online manner. Table 4.7 shows the comparison in results. Our new MHT

with bLSTM works well when Faster RCNN and SDP provide input detections. However,

for the case of DPM, MOTA score is lower compared to MHT-DAM, although our new

method still shows stronger performance on IDF1. We believe that this is because DPM
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produces quite noisy detections while we use ground truth tracks to generate training se-

quences for our model. Thus, there could be still some gap between our training data (even

after the data augmentation) and track proposals constructed from DPM.

MOT16/17 Challenge Benchmarks. We used the same model and setting as shown

in Table 4.7 as our final method for evaluating on the MOT test sequences. The results are

included in Table 4.8. we grouped previous methods that are closely related to our method

separately in order to see the performance difference among these methods. The left table

is the MOT 17 Challenge result where DPM, Faster RCNN, and SDP were used as public

detectors. The right table is the MOT 16 Challenge result where only DPM was used as

a public detector. As we described in the comparison with MHT-DAM above, our model

does not seem to perform well when DPM provides input detections to the tracker. Thus,

our tracker achieved more favorable performance on MOT 17 than on MOT 16 compared

to other state-of-the-art trackers.

Table 4.8. Results from MOT 2017/2016 Challenge (accessed on 7/26/2018)

Method MOTA IDF1 IDS Hz

JCC [97] 51.2 54.5 1,802 1.8
MOTDT17* [98] 50.9 52.7 2,474 18.3

PHD-GSDL17 [99] 48.0 49.6 3,998 6.7
FWT* [100] 51.3 47.6 2,648 0.2

MHT Methods

EDMT17* [101] 50.0 51.3 2,264 0.6
MHT-DAM 50.7 47.2 2,314 0.9

MHT-bLSTM* 47.5 51.9 2,069 1.9

* indicates the use of additional training data

Method MOTA IDF1 IDS Hz

NOMT [82] 46.4 53.3 359 2.6
MCjoint [97] 47.1 52.3 370 0.6
LMP* [45] 48.8 51.3 481 0.5

STAM16 [102] 46.0 50.0 473 0.2
RAR16pub [26] 45.9 48.8 648 0.9
NLLMPa [103] 47.6 47.3 629 8.3

JMC [83] 46.3 46.3 657 0.8
LINF1 [104] 41.0 45.7 430 4.2

CDA-DDALv2* [105] 43.9 45.1 676 0.5

MHT and LSTM-based Methods

EDMT* [101] 45.3 47.9 639 1.8
AMIR* [25] 47.2 46.3 774 1.0
MHT-DAM 45.8 46.1 590 0.8

MHT-bLSTM* 42.1 47.8 735 1.8
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4.6 Conclusion

In this chapter, we proposed using an LSTM network to score track proposals in a near-

online multiple hypothesis tracking framework. In order to properly take into account

multiple past appearances, we proposed a Bilinear LSTM algorithm that slices the LSTM

memory into several vectors and uses a matrix vector multiplication between the memory

output and the appearance input to simulate a discriminatively trained predictor model.

Such an algorithm is shown to be better than traditional LSTM in modeling the appearance

of each track, especially in terms of maintaining track identities. Jointly using appearance

and motion LSTM gating networks in an MHT framework, we have achieved state-of-the-

art performances in the MOT challenges for near-online methods. We believe the proposed

Bilinear LSTM is general and could be applicable in many other problems that require

learning an online sequential discriminative model using an end-to-end approach and will

explore those as future work.
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CHAPTER 5

BILINEAR LSTM WITH MULTI-TRACK POOLING

The Bilinear LSTM model presented in Chapter 4 models each target in isolation and lack

the ability to use all the targets in the scene to jointly update the memory. This can be

problematic when there are similar looking objects in the scene. In this chapter, I solve

the problem of simultaneously considering all tracks during memory updating, with only

a small spatial overhead, via a novel multi-track pooling module. I additionally propose

a training strategy adapted to multi-track pooling which generates hard tracking episodes

online. I show that the combination of these innovations results in a strong discriminative

appearance model, enabling the use of greedy data association to achieve online tracking

performance. My experiments demonstrate real-time, state-of-the-art performance on pub-

lic multi-object tracking (MOT) datasets.

5.1 Introduction

In the typical tracking-by-detection setting of multi-object tracking, a trained target detec-

tor is assumed to exist, and the goal of the tracking algorithm is to solve the data asso-

ciation problem: associating detections from different frames into tracks. The standard

approach involves building an appearance model and a motion model for each target being

tracked. The appearance model stores features from past appearances, which are compared

against detections in each new frame, and the motion model predicts where the target will

be located in the next frame. Because of the ambiguity in appearance, in the past, many

high-performance trackers utilized sophisticated data association schemes that relied on ev-

idence from multiple frames to determine the correct track. This has included frames from

the future, sometimes with a significant look-ahead. These choices result in a tracker which

is not capable of real-time online performance, i.e. it cannot generate a result without delay
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Figure 5.1. Existing recurrent neural network-based track classifiers used only matched de-
tections for updating its appearance memory during tracking. This does not consider other
objects in the scene (i.e. negative examples), which may have similar appearances. We
propose to improve the predicted likelihood of such a classifier by augmenting its mem-
ory with appearance information about other tracks in the scene with multi-track pooling,
leveraging the appearance information from the full set of tracks in the scene. The result-
ing classifier learns to adapt its prediction based on the information from other tracks in the
scene.

after processing a new frame in the video. This is unfortunate, because real-time online

tracking is critically important for numerous practical applications in AI. For example, in

robotics applications such as autonomous driving, online processing is critical to support

real-time decision-making.

Simple online tracking solutions based on matching appearance features between adja-

cent frames do not yield good performance. A better strategy is to use multiple frames to

build up a memory [25, 26] which has the ability to store multiple appearances and match

them to new detections automatically. However, when matching the current detection and

object tracks, most current approaches look at tracks one at a time without considering

them jointly. This approach does not have sufficient discriminative power to address the

ambiguities arising when several similar targets move adjacent to each other in the video,

e.g. multiple men in black suits. In this situation, either more subtle features need to be

utilized for target discrimination, or the likelihood of the matching needs to be decreased

to accommodate this uncertainty. This in turn requires the matching approach to utilize the

appearance information from other nearby tracks in making a determination. The pairwise

appearance models used in prior tracking methods lack the ability to make this comparison.

This chapter introduces a novel approach to appearance modeling that takes all of the
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tracked objects into account when matching detections. Suppose each track has a stored

online memory about all of its past appearances, we propose a novel multi-track pooling

module which stores a max-pooled version of the memory from all other tracks. This ex-

tension allows the appearance model to take into account online negative examples coming

from other objects within the same video (see Fig. 5.1). We show that multi-track pooling

greatly enhances the discriminative power of the appearance model for track scoring and

improves overall performance.

We leverage the additional discriminative power of our matching approach to achieve

online tracking performance by means of a simple, greedy data association method: Each

track is matched with the detection that has the highest likelihood of belonging to the track.

Such an association strategy is extremely efficient, resulting in fast performance. In this

work we test the hypothesis that our discriminative appearance and motion modeling can

enable this simple data association mechanism to achieve strong tracking performance.

Our online tracking framework additionally incorporates four components from recent

tracking works. First, we utilize the Bilinear LSTM framework in Chapter 4 as the basis

for our matching approach, due to its effective memory construction. Second, we incor-

porate training strategies that handle long tracks using truncated backpropagation through

time [106], in contrast to our work in Chpater 4 and the prior work [25] in which the models

were trained with short tracks. Third, we extend object tracks to frames without detections

using a motion model, thereby compensating for missing detections. Fourth, we trained a

bounding box coordinate corrector to correct bounding box coordinates, which is especially

helpful for the extended tracks.

In summary, this chapter makes the following contributions:

1. A novel multi-track pooling module which enables a track classifier to take online

negative examples into account during testing and thus adjust its prediction adap-

tively depending on the objects in the scene.

2. A training strategy that is adapted to train the proposed track pooling module by
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utilizing within-batch dependencies among tracks and that enables long sequence

training with the original full tracks instead of short, random tracks used in Chapter

4.

3. A real-time, online multi-object tracking algorithm that achieves state-of-the-art per-

formance on standard tracking benchmarks.

5.2 Track Proposal Classifier

Tracking-by-detection approaches in multi-object tracking evaluate multiple track propos-

als [82, 45, 25] when finding correspondences between tracks and detections. Track pro-

posals are typically constructed by extending existing tracks from the previous frame with

new detections in the current frame. Let us denote Tl(t) as the lth track at time t. Let s(l)

be the starting frame of the lth track and dlt be the detection selected by the lth track at time

t. We then write the lth track at time t as Tl(t) = {dls(l), dls(l)+1, ... , d
l
t−1, d

l
t}. Recurrent

networks are trained to output the following conditional probability:

f(dt, Tl(t− 1); θ) = p(dt ∈ Tl(t)|Tl(t− 1)) (5.1)

where f(·) and θ represent a neural network and its learnable parameters respectively. The

inputs to the neural network are the detection-track pair (dt, Tl(t− 1)).

5.2.1 Bilinear LSTM

Vanilla LSTM equations are defined as follows [84]:

ft = σ(Wf [ht−1;xt]), it = σ(Wi[ht−1;xt]),

gt = σ(Wg[ht−1;xt]), ot = tanh(Wo[ht−1;xt]),

ct = ft ◦ ct−1 + it ◦ gt, ht = ot ◦ tanh(ct) (5.2)
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where [; ] denotes concatenation of 2 column vectors. In the sequence labeling problem,

ht stores the information about the sequence and is fed into additional fully-connected or

convolutional layers to generate the output. The input xt and the LSTM memory ht−1 are

combined by additive interactions in the above equations.

There are two issues with this formulation. First, the matching operation is usually more

easily represented by multiplicative relationships instead of additive, an intuitive example

being the inner product as a correlation metric. Second, it is difficult to store and clearly

distinguish multiple different appearances in the same LSTM memory vector, but a track

exhibiting multiple different appearances in different frames is very common in multi-target

tracking. Bilinear LSTM solves these issues by introducing a new memory representation

based on the multiplicative interaction between the input and the LSTM memory:

ht−1 = [h>t−1,1,h
>
t−1,2, ...,h

>
t−1,r]

>

Hreshaped
t−1 = [ht−1,1,ht−1,2, ...,ht−1,r]

>

mt = g(Hreshaped
t−1 xt) (5.3)

where g(·) is a non-linear activation function. A long vector ht−1 from LSTM is reshaped

into a matrix Hreshaped
t−1 before it being multiplied to the input xt. Hence, multiple memory

vectors can be matched with the feature from the detection with an inner product. The new

memory mt is then used as input to the final layers to generate the output instead of ht.

Note that the way that the LSTM memory ht−1 interacts with the input xt is changed in

Bilinear LSTM, while standard LSTM memory updates shown in Eq. (5.2) are used since

the memory vector ht−1 is retained as in Eq. (5.3).

Bilinear LSTM bears some resemblance to the popular transformer model [107] in nat-

ural language processing in that both utilize a multiplicative relationship between the se-

quence and a new token, but they have some important differences. In a transformer model,

the inner product is taken between the key of a new token with all previous tokens in the
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sequence. This makes them very memory-inefficient and unsuitable for online operations

that span hundreds of frames in multi-object tracking. In Bilinear LSTM, the memory size

is fixed, and the memory is updated automatically using the LSTM updating rule. This has

the effect of automatically grouping similar appearances into the same row of the memory

Hreshaped
t−1 in Eq. (5.3), so that the memory size does not grow linearly with respect to the

sequence length. Hence, we believe that Bilinear LSTM is a suitable choice for online

tracking in which multiple appearances for each track need to be stored.

5.2.2 Application to Multi-object Tracking

When Bilinear LSTM is used in multi-object tracking, each track Tl(t − 1) will have its

own LSTM memory hl
t−1 which is stored during the tracking process. All new detections

at frame t go through a CNN to generate their corresponding xt, which are then used to

compare with hl
t−1 for all the tracks. When each detection has been scored with each

track, the detections will be assigned to the existing tracks by either greedy assignment,

or multiple hypothesis tracking (MHT) assignment. Finally, the features from the assigned

bounding box are used as xl
t to update the track memory with Eq. (5.2). The updated

memory hl
t−1 will be stored and then the same process will be repeated in the next frame.

All tracks share the same LSTM network as their appearances will be dynamically updated

in the memory, hence there is no re-training needed for any new object.

5.2.3 Multi-Track Pooling Module

A limitation of the work in Chapter 4 and the previous work [25] is that only past appear-

ances of the same track were considered, as only matched detections were inputted as xl
t

to update the LSTM memory at time t. However, during tracking, different targets can

have similar appearances. For example, in pedestrian tracking, there could always be many

people wearing similar white shirt and black pants, or black suits and black pants. These

people need to be distinguished via more detailed features, such as shoes, objects in hand,
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Figure 5.2. Bilinear LSTM and the proposed improvements by multi-track pooling mod-
ule. Bilinear LSTM stores multiple memory vectors for each track (in blue) so that a new
detection xt can be matched with multiple templates via inner products. In this work, we
improve on it by concatenating the memory with multiple stored memory vectors from
other simultaneously tracked targets (in red) to serve as negative examples, so that the tem-
plate matching process can take into account more subtle differences between the positive
track and negative tracks (best viewed in color).

etc. Thus, simple appearance matching may not be discriminative enough.

We propose to extend the track scoring process to consider all the tracked objects, other

than only the current object of concern. Instead of simply growing the memory to store

more templates, which can hit a memory bottleneck, we jointly consider all the objects

that have been tracked. Tracked objects are usually the ones most easily confused with the

target (if a detection does not come from a track, then its appearance is likely significantly

different from any tracked objects (e.g. pedestrians)). Hence, taking the appearance in-

formation about these objects into consideration could greatly improve the discriminative

power of the tracker for each target (see Fig. 5.2).

In order to consider other tracked objects as well, we propose to modify Eq. (5.1) to:

f(dt, T1:M(t− 1); θ) = p(dt ∈ Tl(t)|T1:M(t− 1)) (5.4)

where T1:M(t− 1) = {T1(t− 1), T2(t− 1), ..., TM(t− 1)} represents the existing tracks in

the previous frame. In this chapter, we denote M as the number of tracks in the previous
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frame t − 1 and denote N as the number of detections in the current frame t. [25] also

trained recurrent neural networks to output this kind of conditional probability by using

track interaction cues, but their interaction cues were the most recent locations of other

tracks, not appearances of other tracks.

In Bilinear LSTM, each track in the previous frame is associated with a unique LSTM

memory hl
t−1. When new detections xt arrive in the current frame, we compute mt in Eq.

(5.3) between each of the M existing tracks and each of the N new detections. We denote

m+
t as the matching between hl

t−1 computed using the target track (i.e. the current object

of concern) and xt (as computed by Eq. (5.3)). For the other M − 1 tracks in the scene, we

denote M−
t as a matrix in which each row represents mt computed by a non-target object

track (i.e. other objects in the scene) and the new detection (xt):

M−
t = [m−t,1,m

−
t,2, ...,m

−
t,M−1]> (5.5)

where m−t,i represents the matching between the i-th non-target object track and the new

detection.

Here the main difficulty is that we have one positive track and an indefinite number of

negative tracks. We propose to compress M−1 mts using max pooling in order to obtain a

fixed size memory representation m−t regardless of the number of the tracks in the previous

frame:

m−t (j) = max
i

M−
t (i, j) (5.6)

where m−t (j) represents the j-th element in m−t , and M−
t (i, j) represents an element lo-

cated in the i-th row and j-th column of M−
t . Thus, the j-th element in m−t is computed

by taking the maximum of the j-th column of M−
t .

Since the Bilinear LSTM memory stores correlation responses between multiple tem-

plates and the input, applying max pooling to M−
t allows us to detect high correlation

57



Table 5.1. Proposed Network Architecture for Track Proposal Classifier. The right two
columns represent the multi-track pooling module where (M − 1) other tracks are pro-
cessed.

Soft-max 2
FC 2
Concatenation (mall

t ) 16
Matrix-vector Multiplication-relu (m+

t ) 8 Max-pooling (m−t ) 8
Matrix-vector Multiplication-relu (M−

t ) (M − 1)× 8
Reshape 8× 256 Reshape 256× 1 Reshape (M − 1)× 8× 256 Reshape 256× 1
LSTM 2048 LSTM (M − 1)× 2048
FC-relu 256 FC-relu 256 FC-relu (M − 1)× 256 FC-relu 256
ResNet-50 2048 ResNet50 2048 ResNet-50 (M − 1)× 2048 ResNet50 2048
x+
t−1 128× 64× 3 xt 128× 64× 3 x−t−1,i (M − 1)× 128× 64× 3 xt 128× 64× 3

responses generated by non-target object tracks for the detection which is currently consid-

ered. Thus, values in m−t can show whether any of the non-target object tracks has a similar

appearance to that of the current detection. We obtain the final memory representation for

a track classifier by concatenating m+
t and m−t as:

mall
t = [

(
m+

t

)
;
(
m−t
)
] (5.7)

The network runs a fully-connected layer after mall
t followed by softmax, that outputs the

binary decision that determines whether the new detection belongs to the target track (m+
t ).

Table 5.1 shows the proposed network architecture. In practice we compute the Bilinear

LSTM memories for all the tracks and then construct M−
t by simply stacking the precom-

puted memory vectors into a matrix, which can be done efficiently. We adopt ResNet 50

[87] as our convolutional neural network and use Bilinear LSTM proposed in Chapter 4 as

our recurrent network. In addition to the proposed appearance model, we adopt the motion

model presented in Chapter 4 as the learned motion model. It is a binary classifier based on

a traditional LSTM that receives the bounding box coordinates as input. We combined the

appearance model and motion model to form a joint model that utilizes both appearance

and motion cues. We used this joint model to generate the results in Table 5.11, 5.12, and

5.13. More details about the joint model’s network architecture can be found in Sec. 5.5.
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5.3 Training

In this section, we describe the training strategy for the proposed neural network architec-

ture by sampling mini-batches so that tracks within the mini-batch are correlated, in order

for the multi-track pooling module to train effectively. We explain the method that gener-

ates our training data consisting of both actual multi-object tracking episodes and random

tracking episodes from public multi-object tracking datasets [90, 80] and then present our

choice of loss function.

5.3.1 Actual Tracking Episodes as Training Data

We generate actual tracking episodes by processing ground truth track labels sequentially

and generating track proposals every frame in an online manner. Specifically, when we

have M tracks in the previous frame and N detections in the current frame, we generate

MN track-detection pairs in the current frame by considering all possible pairs between

the existing tracks and the new detections. Each proposal is associated with a binary label

where positive label indicates a match and negative represents that the track and detection

belong to different objects. We use these MN track proposals as a mini-batch for each

training iteration and repeat this process until we process all the frames in video. Then we

move on to the next training video. This process is repeated over all training videos during

training.

Truncated backpropagation through time. As we process training videos sequen-

tially, tracks become too long to fit into GPU memory. One way to avoid this is to split

tracks into shorter ones, which is similar to the training data used in Chapter 4 and [25] for

recurrent models. However, this is sub-optimal because a recurrent model would only be

able to learn temporal structures with an extent limited by the maximum sequence length

that the model sees during training.

In order to address this issue, we adopt truncated backpropagation through time (BPTT)
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[106]. In truncated BPTT, the maximum number of time steps where the loss is backpropa-

gated is limited by a fixed-size time window. However, entire sequences are processed by a

recurrent model through multiple training iterations by a moving time window. Since long

sequences are processed through multiple training iterations, the recurrent memories that

store the sequence information need to be shared across the training iterations. This allows

the model to access the temporal context beyond the temporal extent which is determined

by the size of the time window. By training a recurrent model with the original long tracks,

the model has a better chance to learn how to exploit long-term information when solving

the track proposal classification problem.

5.3.2 Random Tracking Episodes as Training Data

We also use short random track proposals, which is similar to the training data used in

Chapter 4 and [25], as our additional training data. We generate short random track pro-

posals as follows. At each training iteration, we first pick a video where we generate tracks

and randomly select the start frame and end frame for obtaining track proposals. We take

all the tracks that exist in the end frame. Denote Nmax as the maximum number of tracks

that we use to construct random track proposals. If the number of the tracks in the end

frame is greater than Nmax, we randomly pick Nmax tracks among them. In order for each

mini-batch to have tracks of different lengths, we randomly clip the selected tracks such

that each track in the batch start in different frames.

We take N detections from the selected tracks in the end frame and take M tracks

from the previous frame to form track proposals (M < N when new tracks are born in the

selected end frame. Otherwise, M = N ). We generateMN track proposals by considering

all possible matchings between these two. Thus, M track proposals are associated with a

positive label (same object), and MN −M proposals are associated with a negative label.
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5.3.3 Loss Function

For each mini-batch, there are MN track proposals, each of which incurs a loss value.

Thus, our cross-entropy loss is written as:

L(t) =
1

MN

M∑
i=1

N∑
j=1

αij(t)Lij(t) (5.8)

where t represents a frame number in video, and αij is a weighting factor. The cross-

entropy loss term for each training example Lij(t) is defined as:

Lij(t) =
− log p(djt ∈ Ti(t)|T1:M(t− 1)), ifyij(t) = 1

− log(1− p(djt ∈ Ti(t)|T1:M(t− 1))), otherwise

(5.9)

where djt represents a jth detection in t, and yij(t) is a ground truth binary label represent-

ing whether djt belongs to a track Ti(t) or not. For the weighting factor αij(t), we adopted

the weighting factor of Focal loss [108] to address the class imbalance of our training data

(i.e. there are much more negative examples than positive examples). The weighting factor

is then written as:

αij(t) =
β+(1− p(djt ∈ Ti(t)|T1:M(t− 1)))2, if yij(t) = 1

β−(p(djt ∈ Ti(t)|T1:M(t− 1)))2, otherwise

(5.10)

where β+ and β− are class-specific constant weights which are found empirically as sug-

gested in [108]. For positive labels, we used β+ = 4, and, for negative labels (i.e. djt /∈

Ti(t)), we used β− = 1.
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5.4 Tracking Algorithm

In this work, we chose to use the greedy association because it is the fastest association

algorithm, and our training setting simulates such a greedy association algorithm (i.e. the

loss value was calculated for each track independently and then averaged across all tracks

in a mini-batch). The greedy data association algorithm runs in O(MN) time. A more

complicated scheme would require additional computational complexity (e.g. the Hungar-

ian algorithm runs in O(MN2)) and would require more careful parameter tuning for the

tracker.

5.4.1 Greedy Data Association

Our greedy data-association works as follows. It initializes new tracks with the detections

in the first frame. The tracker generates and stores the LSTM memory ht−1 for each of

the tracks. When new detections xt arrive in the next frame, we compute the association

likelihood for every possible track-detection pair using the track proposal classifier. We set

the threshold for the association likelihood to 0.5. The data association problem is then

solved in a greedy manner starting from the highest matching likelihood. The tracks are

updated with the newly assigned detections, and new tracks are born from the detections

which are not associated with any of the existing tracks. The tracker updates the LSTM

memory from ht−1 to ht for every track according to the data association result. This

process is repeated until all the video frames are processed.

We adopt a simple track termination strategy which terminates tracks if they have more

missing detections than actual detections or the number of consecutive missing detections

becomes larger than a thresholdNmiss. The terminated tracks will not be used in the data as-

sociation process anymore and will not be used for computing non-target object memories

either.
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5.4.2 Track Extension and Bounding Box Correction

In online tracking, we attempt to extend a track by generating additional detections. When

there is no detection in a predicted target location in the current frame, we generate a new

detection bounding box using the location predicted by a Kalman filter and then use our

track proposal classifier to decide whether or not the newly generated detection belongs

to the current target. Since we rely on motion cues when generating these additional de-

tections, the bounding box coordinates of the newly generated detections might not be

accurate. Thus, we train a bounding box coordinate corrector which predicts the correct

bounding box coordinates based on the CNN features, which is similar to the bounding

box regression module presented in [109]. More details are included in Sec. 5.5.

5.5 Additional Architecture Details

In this section, we present the network architectures used in all of our experiments.

5.5.1 Track Proposal Classifier

Table 5.4 shows the network architecture for our joint appearance and motion model with

the proposed multi-track pooling module. We used this network to test the proposed ap-

proach on the MOT Challenge Benchmarks in Table 5.11, 5.12, and 5.13. Table 5.5 shows

the appearance baseline model used in Table 5.7, 5.8, 5.9, and 5.10.

5.5.2 Track Proposal Classifier Input

For the appearance models, an object image (i.e. object detector output) is used as in-

put. We first resize the object image to 64 × 128 (width, height) and then subtract the

ImageNet mean from the image. For the motion model, a location (top left corner) and

scale (width, height) of a detection bounding box is used as input. The motion model

input is thus represented by a 4-dimensional vector (xtopleft, ytopleft, w, h). We normalize
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Table 5.2. Split 1

Training Set
MOT17 - {02, 04, 05, 09, 10, 11, 13}
MOT15 - {PETS09-S2L1, ETH - (Sunnyday, Bahnhof),

TUD - (Campus, Stadtmitte), KITTI-(13, 17)},
ETH - (Jelmoli, Seq01), KITTI - (16, 19),
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

Validation Set
MOT 19 Challenge - {01, 02, 03, 05}

Test Set
MOT17 - {01, 03, 06, 07, 08, 12, 14}

Table 5.3. Split 2

Training Set
MOT15 - {PETS09-S2L1, ETH - (Sunnyday, Bahnhof),

TUD - (Campus, Stadtmitte), KITTI-(13, 17)},
ETH - (Jelmoli, Seq01), KITTI - (16, 19),
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

Validation Set
MOT17 - {02, 04, 05, 09, 10, 11, 13}

Test Set
MOT17 - {01, 03, 06, 07, 08, 12, 14}

the input vector using the image size so the final form of input for the motion model is

( xtopleft

image width ,
ytopleft

image height ,
w

image width ,
h

image height).

5.5.3 Bounding Box Coordinate Corrector

Following the bounding box regressor presented in [109], we regress four scalars that cor-

rects the location and scale of the original bounding box from a cropped image. We also

have an additional prediction head that classifies false positive detections using the same

input image. The network architecture that we used for the box corrector is shown in Table

5.6. We utilized the same CNN as the one used in a track proposal classifier. Specifically,

once the track classifier was trained, we froze all the CNN weights and then trained the

additional linear layers in the two prediction heads from scratch. We used raw DPM detec-

tions provided by the MOT16 Challenge organizers as training data to train this module.
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Table 5.4. The appearance + motion model used to generate the results in Table 5.11, 5.12,
and 5.13. The number of non-target object tracks used in the multi-track pooling module is
represented by M − 1.

Soft-max 2
FC 2
FC-relu 24
Concatenation 24

2× FC-relu 16 2× FC-relu 8
Concatenation (mall

t ) 16
Matrix-vector Multiplication-relu (m+

t ) 8 Max-pooling (m−t ) 8
Matrix-vector Multiplication-relu (M−

t ) (M − 1)× 8
Reshape 8× 256 Reshape 256× 1 Reshape (M − 1)× 8× 256 Reshape 256× 1
LSTM 2048 LSTM (M − 1)× 2048 FC-relu 8
FC-relu 256 FC-relu 256 FC-relu (M − 1)× 256 FC-relu 256 LSTM 64
ResNet-50 2048 ResNet50 2048 ResNet-50 (M − 1)× 2048 ResNet50 2048 FC-relu 64
x+
t−1 128× 64× 3 xt 128× 64× 3 x−t−1,i (M − 1)× 128× 64× 3 xt 128× 64× 3 xlocation, scale

t 4

Table 5.5. The baseline appearance model that we compared with our proposed appearance
model.

Soft-max 2
FC 2

Matrix-vector Multiplication-relu (mt) 8
Reshape 8× 256 Reshape 256× 1
LSTM 2048
FC-relu 256 FC-relu 256
ResNet-50 2048 ResNet50 2048
xt−1 128× 64× 3 xt 128× 64× 3

Table 5.6. Bounding Box Coordinate Corrector. ResNet-50 is shared with the appearance
model.

FC 4 Soft-max 2
2× FC-relu 512 2× FC-relu 512
Reshape 16384
ResNet-50 (Block4) 4× 2× 2048
x+
t−1 128× 64× 3

5.6 Additional Training Details

In this section, we describe details about the training settings that we used for our experi-

ments.

5.6.1 Dataset

Table 5.2 and 5.3 shows the training, validation, and test sets that we used in this chapter.
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5.6.2 Training Setting - Appearance Model

We used the SGD optimizer with the initial learning rate of 0.005 for Bilinear LSTM and

the initial learning rate of 0.0005 for ResNet 50 (pre-trained on ImageNet). We trained

the model with the initial learning rate for the first 4 epochs (∼ 120k iterations), and then

reduced the learning rate with the decay factor of 0.1 for the next 4 epochs and reduced it

one more time for the last 4 epochs (∼ 360k iterations in total).

For the actual tracking episodes, we used truncated BPTT with a temporal window size

of 10. We used all the ground truth tracks in the current frame as our training data so the

mini-batch size in this case was equal to the number of ground truth tracks in the current

frame.

For the random tracking episodes, we used 40 frames as the maximum frame gap in the

randomly selected start and end frame. Thus, each mini-batch could contain a track whose

length is up to 40. Due to the limited GPU memory, the number of tracks for random

tracking episodes was limited by Nmax. We used Nmax = 8 in our experiments.

5.6.3 Training Setting - Motion Model

We used the Adam optimizer [96] with the initial learning rate of 0.001. We trained the

motion model with the initial learning rate for the first 4 epochs (∼ 120k iterations), and

then reduced the learning rate with a decay factor of 0.1 for the next 2 epochs and reduced

it one more time for the last 6 epochs (∼ 360k iterations in total).

5.6.4 Training Setting - Appearance and Motion Model

We first trained the appearance and motion models separately as described above before

jointly training the model presented in Table 5.4. Thus, new layers (i.e. top five rows in

Table 5.4) were trained from scratch, and the rest of the layers (except for ResNet 50 in

which all the weights were frozen) was fine-tuned from the pre-trained models. We used

the SGD optimizer with the initial learning rate of 0.005 for the new layers and 0.0005
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for the pre-trained layers. We trained the model with the initial learning rate for the first 2

epochs (∼ 60k iterations), and then reduced the learning rate with the decay factor of 0.1

for the next 2 epochs (∼ 120k iterations in total).

When we trained the joint model, we realized that the appearance features can be

stronger than the motion features in the beginning of the training. As a result, our resulting

model heavily relied on the appearance features, often ignoring the motion features. In

order to make our model balance between these two types of features, we placed a dropout

layer on the appearance features right before the concatenation layer (i.e. top 6th row on

the appearance side in Table 5.4). In the beginning of the training, we randomly dropped

appearance features and then gradually decreased the drop rate as the training proceeded.

This trick prevented the joint model from relying too much on the appearance cues in the

early training stage. In our experiments, we used 0.9 as the drop rate for the first ∼19k

iterations, 0.6 for the next ∼10k iterations, 0.3 for the next ∼9k iterations, and 0.0 for the

rest of the training.

5.6.5 Online Hard Example Mining

We found that online hard example mining can improve the model performance. We trained

all the model with all the training examples for the first two epochs (∼60k iterations). We

trained the models for the remaining epochs with top k hard examples (i.e. k examples that

incurred high loss values) in the mini-batch. We used k = 30 in our experiments. Note that

the actual tracking episodes that we generated as our training data enabled effective online

hard example mining since each mini-batch contained all possible matchings between the

tracks and the new detections in the selected frame.

5.6.6 Missing Detection Augmentation

We randomly drop the bounding boxes in the tracks for missing detection augmentation.

For each track in each mini-batch, we randomly choose the missing detection rate from a
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probability between 0.1 and 0.9. After selecting the missing detection rate, we randomly

drop the bounding boxes in the selected track according to the selected rate.

5.6.7 Noisy Track Augmentation

In addition to using the ground truth tracks as the training data, we also generate tracks

from noisy object detections. Given ground truth tracks and noisy detections, one can

assign correct track IDs to noisy detections by finding an assignment that maximizes the

Intersection over Union score (IoU) between ground truth tracks and object detections. The

MOT Challenge Benchmark provides public object detections from three detectors (DPM

[88], FRCNN [79], SDP [89]). Thus, we generate three additional sets of noisy tracks con-

structed from these public detections. Note that the track-detection assignments are optimal

although the resulting tracks are noisier than the original ground truth tracks. Localization

and missing detection errors caused by the object detector are embedded naturally in such

tracks, which can potentially help the track classifier to generalize better in testing when in

noisy detections are used as input to the tracker.

5.7 Experiments

We tested the proposed method on the MOT 16 and MOT 17 (Multiple Object Tracking)

Challenge Benchmark [80]. We train on the MOT 17 training sequences, as well as addi-

tional public training sequences including 7 MOT 15 training sequences [90] which were

not included in MOT 17 training/testing sequences to our training data. In contrast to sev-

eral recent work [45, 25], we did not utilize the Person Re-identification datasets [94, 93]

to pretrain our CNN.

For our ablation study, we used two validation sets. The first one is the MOT 19 Chal-

lenge training sequences [110] which have 2,390 annotated object tracks. In contrast to the

MOT 17 sequences, this new challenge dataset provides heavily crowded scenes captured

in new environments, which makes it good for validating the proposed appearance model.
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Note that this dataset was only used for our ablation study and thus was not used to train our

model in Table 5.11, 5.12, and 5.13. The second validation set is the MOT 17 Challenge

training sequences which have 512 annotated object tracks. When the second validation

set is used, we used the MOT 15 training sequences as our training data. See Sec. for the

video sequence names used in the training, validation, and test sets.

We used the standard MOT metrics such as IDF1 [95], IDS, MOTA [67], Mostly

Tracked (MT), Mostly Lost (ML), and Fragmentation (Frag) [80] for performance com-

parison in our experiments.

5.7.1 Ablation Study

In the ablation study, we show the effectiveness of the proposed multi-track pooling mod-

ule by comparing its performance to the original Bilinear LSTM. Firstly, we tested their

performance without using any motion cues during tracking. Secondly, we used motion

cues during tracking by adopting a simple motion gating strategy that allows detections

that are close to the current track to be considered as a possible matching.

Data Association. We ran the greedy data association algorithm described in the pre-

vious section with the following hyperparameter setting: 0.5 as the association threshold

and Nmiss = 60. In the ablation study, we did not interpolate missing detections in the final

tracks using our track extension module in order to make the MOTA scores close across

different methods. This allowed us to compare other tracking metrics in a fairer setting.

Comparison with Bilinear LSTM. We examined the effect of the proposed multi-track

pooling module on the tracking performance. For this ablation study to be fair, both Bi-

linear LSTM and our method were trained on the same training set with the same training

setup described in Sec. . Table 5.7 and 5.8 show the tracking results when no motion cues

were used during tracking. In this case, the appearance model needed to do the heavy lift-

ing. Table 5.9 and 5.10 show the tracking results when a simple motion gating strategy was

applied. Bilinear LSTM with the multi-track pooling module consistently outperformed
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Table 5.7. Performance comparison on MOT 19 train sequences (val1) when motion gating
is not used.

Method MOTA IDF1 IDS MT ML Frag

B-LSTM 44.8 31.3 15,367 12.6 27.0 38,182
Ours 44.9 35.0 11,940 12.7 27.5 37,017

Table 5.8. Performance comparison on MOT 17 train sequences (val2) when motion gating
is not used.

Method MOTA IDF1 IDS MT ML Frag

B-LSTM 49.1 52.5 1,112 21.1 31.9 1,066
Ours 49.4 53.9 809 21.1 31.5 1,070

Table 5.9. Performance comparison on MOT 19 train sequences (val1) when the simple
motion gating strategy is used.

Method MOTA IDF1 IDS MT ML Frag

B-LSTM 45.1 39.6 9,137 12.6 27.6 36,379
Ours 45.0 40.5 7,873 12.6 28.1 35,169

Table 5.10. Performance comparison on MOT 17 train sequences (val2) when the simple
motion gating strategy is used.

Method MOTA IDF1 IDS MT ML Frag

B-LSTM 49.3 56.7 847 21.1 32.1 1,038
Ours 49.6 56.8 616 21.1 32.1 1,040

the original Bilinear LSTM on IDF1, IDS and Fragmentations, showing its effectiveness in

multi-object tracking on both of our validation sets.

5.7.2 MOT Challenges

We evaluated both the online and near-online versions of our tracker for the MOT 17/16

Benchmarks. In the online version, we utilized the track extension module described in

the previous section to recover missing detections (except for the tracker in Table 5.11 in

which we turned off both the extension module and the bounding box corrector). In the

near-online version, we performed local track smoothing instead for recovering missing

detections. For the second case, we denote the method as near-online in Table 5.12 and
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Table 5.11. MOT 17 Challenge (with trackers that utilized public detections + Tracktor
[113]).

Note that we used bold for the best number and blue color for the second-best number.

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

GSM-Tracktor [112] online 57.8 56.4 1,485 22.2 34.5 2,763 14,379 230,174 8.7
Tracktor++v2 [113] online 55.1 56.3 1,987 21.1 35.3 3,763 8,866 235,449 1.5

TrctrD17 [111] online 53.8 53.7 1,947 19.4 36.6 4,792 11,731 247,447 4.9
Tracktor++ [113] online 52.3 53.5 2,072 19.5 36.6 4,611 12,201 248,047 1.5

Ours online 60.4 55.9 1,188 20.5 36.7 4,187 8,653 238,853 24.8

5.13 since local track smoothing requires lookahead frames.

Recent approaches [111, 112] utilized Tracktor [113] to first refine public detections,

which resulted in higher scores due to more accurate detections. In order to compare with

these recent approaches, we also used public detections processed by Tracktor as input

to our tracker and presented the comparison in Table 5.11 separately. It can be seen that

our approach significantly improves the IDF1 score and identity switches over other online

tracktor-based approaches, besides being at least 3 times faster than the nearest competitor.

Note that this does not include the processing time spent by Tracktor.

In Table 5.12 and 5.13, we did not utilize Tracktor and compared our results with other

online and near-online trackers which did not utilize Tracktor. Again our greedy tracker is

the fastest among the top performing trackers and our performance is comparable with the

best trackers. Considering its simplicity and speed, we believe our method demonstrates

strong state-of-the-art performance on the MOT Challenge.

In near-online trackers, we significantly improve over our baseline MHT-bLSTM on

both IDF1 (by 7.5%) and MOTA (by 12.8%), obtaining the best performance in near-online

tracking. We also have the smallest amount of identity switches and fragmentations and the

most objects that are mostly tracked in MOT 17. Note that these are obtained with a greedy

data association algorithm and only local smoothing is added on top of the online tracker

performance, hence the speed is even faster than the online version since local smoothing

removed more false positives.
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Table 5.12. MOT 17 Challenge (Published online and near-online methods using public
detections).

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

STRN-MOT17 [50] online 56.0 50.9 2,397 18.9 33.8 9,363 25,295 249,365 13.8
DMAN [51] online 55.7 48.2 2,194 19.3 38.3 5,378 26,218 263,608 0.3

MOTDT17 [98] online 52.7 50.9 2,474 17.5 35.7 5,317 24,069 250,768 18.3
AM-ADM17 [114] online 52.1 48.1 2,214 13.4 39.7 5,027 25,061 265,495 5.7

HAM-SADF17 [115] online 51.1 48.3 1,871 17.1 41.7 3,020 20,967 269,038 5.0
PHD-GSDL17 [99] online 49.6 48.0 3,998 17.1 35.6 8,886 23,199 265,954 6.7

FAMNet [116] online 48.7 52.0 3,072 19.1 33.4 5,318 14,138 253,616 0.0
Ours online 54.9 51.5 2,563 20.5 35.5 7,745 29,623 241,618 20.1

MHT-bLSTM [77] near-online 51.9 47.5 2,069 18.2 41.7 3,124 25,981 268,042 1.9
EDMT17 [101] near-online 51.3 50.0 2,264 21.6 36.3 3,260 32,279 247,297 0.6
MHT-DAM [56] near-online 47.2 50.7 2,314 20.8 36.9 2,865 22,875 252,889 0.9

Ours near-online 55.8 53.6 1,845 23.4 34.5 2,299 23,669 236,226 22.7

Table 5.13. MOT 16 Challenge (Published online and near-online methods using public
detections).

Method Type IDF1 MOTA IDS MT ML Frag FP FN Hz

STRN-MOT16 [50] online 53.9 48.5 747 17.0 34.9 2,919 9,038 84,178 13.5
DMAN [51] online 54.8 46.1 532 17.4 42.7 1,616 7,909 89,874 0.3
MOTDT [98] online 50.9 47.6 792 15.2 38.3 1,858 9,253 85,431 20.6

STAM16 [102] online 50.0 46.0 473 14.6 43.6 1,422 6,895 91,117 0.2
RAR16pub [26] online 48.8 45.9 648 13.2 41.9 1,992 6,871 91,173 0.9

KCF16 [117] online 47.2 48.8 648 15.8 38.1 1,116 5,875 86,567 0.1
AMIR [25] online 46.3 47.2 774 14.0 41.6 1,675 2,681 92,856 1.0

Ours online 53.5 48.3 733 17.0 38.7 2,349 9,799 83,712 21.0

NOMT [82] near-online 53.3 46.4 359 18.3 41.4 504 9,753 87,565 2.6
EDMT [101] near-online 47.9 45.3 639 17.0 39.9 946 11,122 87,890 1.8

MHT-bLSTM [77] near-online 47.8 42.1 753 14.9 44.4 1,156 11,637 93,172 1.8
MHT-DAM [56] near-online 46.1 45.8 590 16.2 43.2 781 6,412 91,758 0.8

Ours near-online 52.5 49.9 579 19.7 38.6 674 7,111 83,676 23.8

5.8 Conclusion

In this chapter, we introduce a novel multi-track pooling module that enables joint updating

of appearance models using all tracks, thereby improving matching reliability when targets

are similar in appearance. We propose a novel training strategy for track pooling that

utilizes within-batch dependencies among tracks and supports training over long sequences.

The resulting tracker is based on a Bilinear LSTM architecture and performs greedy data

association. With this simple approach, it achieves real-time tracking performance with an
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accuracy equivalent to state-of-the-art trackers that are significantly slower.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Data association is one of the key problems in the tracking-by-detection paradigm. De-

signing an effective track scorer or classifier that can accurately rank track proposals in

data association is very important because the quality of the tracking output is largely de-

termined by the data association result in the tracking-by-detection approaches. Tradition-

ally, designing such a track classifier involved developing hand-crafted features and tuning

model hyperparameters that control contributions of different types of the features manu-

ally. Recent developments in deep learning have enabled the track classifier to be learned

in an end-to-end fashion, mostly removing the manual feature engineering and making the

resulting track classifier more effective. The improvements in track classifiers have also

made the entire tracking-by-detection pipeline much faster and simpler by removing the

need for running complicated association algorithms in most cases which often come with

a large number of parameters to be tuned.

6.1 Limitations

The proposed approaches in this dissertation have the following limitations. First, it is as-

sumed that there exists only one detection bounding box for each object in a frame. Thus,

if there were multiple object detection bounding boxes for a single object in a frame, the

proposed methods would associate only one of them with the track from the previous frame

and initiate new tracks using the other detections that are not associated with the existing

tracks, even though these bounding boxes still represent the same object. The additional

tracks generated by these duplicate bounding boxes often end up being short, which can be

removed via post-processing. However, if the detector outputs multiple bounding boxes for

a single object consistently over time, the proposed tracker is likely to generate multiple
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tracks for a single object, which will be counted as false positive tracks during evaluation.

This issue was addressed via post-processing in the proposed approaches in this disser-

tation, but there are existing multi-object tracking frameworks that can handle this issue

effectively [118, 45, 119]. Second, in object tracking, tracking models are often fine-tuned

with online training examples which are collected on the fly [18, 54, 27] in order to make

the appearance models generalize better on test sequences. The work presented in Chap-

ter 5 also utilizes online track examples to improve the appearance model’s discriminative

power on test sequences, but the appearance model learns how to generate its memory by

jointly considering online track examples during offline training. While our work has an

advantage in terms of speed (i.e. no additional training time during testing), the works

that utilize online learning for deep neural networks [18, 54, 27] may have an advantage

in terms of learning more discriminative appearance features via fine-tuning pre-trained

CNNs.

6.2 Future Work

6.2.1 Unifying Object Detection and Tracking

Most top-performing tracking-by-detection approaches [52, 50, 27] do not utilize an end-

to-end trainable architecture that takes raw video as input and generates tracks directly from

the input video. Instead, the object detector is run first, and then the tracker takes the output

from the detector as input and generates the object tracks by grouping the input detections

into tracks. This makes the performance of most MOT methods heavily dependent on the

object detector performance. Also, this makes the process of generating object tracks in

video more complicated than necessary by requiring the users to run two different models

separately which are developed independent from each other. Unifying object detector

and tracker makes the entire multi-object tracking pipeline much more streamlined and

faster. Also, it can potentially lead to higher detection recall rates as well. Specifically,

once the object is detected in the first frame, the tracking prediction head can be utilized
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to detect the same object in subsequent frames by tracking it. Two recent works [120,

113] have pioneered in this direction by having a shared backbone network that extracts

features from input images for both detection and tracking. The features from the shared

backbone network are then sent to separate prediction heads that generate detection and

tracking outputs respectively. In these prior works, simple tracking models that encode the

most recent locations or appearances of the tracks were used. Thus, unifying an object

detection model with more complicated tracking models that effectively reason long-term

motion and appearance cues can be the next step. It would also be interesting to examine

the interactions between the detection model and the tracking model when they are jointly

trained in order to see if the joint training improves the performance on both tasks, or

vice-versa.

6.2.2 Multi-object Tracking (MOT) Loss Functions

Computing important MOT evaluation metrics such as MOTA [67] and IDF1 [95] involve

non-differentiable operations, so one cannot train a tracking model with a loss function

that maximizes the model’s performance for these MOT metrics. Thus, tracking mod-

els are trained with proxy losses such as a binary classification loss, regression loss, and

triplet loss which are not directly related to the MOT evaluation metrics. Thus, designing a

new loss function by approximating important MOT evaluation metrics using differentiable

operations can address the mismatch between the loss function and evaluation metrics in

multi-object tracking. Two recent works [111, 49] proposed new loss functions that are

differentiable proxies for MOTA, MOTP [111], and IDF1 [49] and showed that minimiz-

ing these new loss functions leads to better performance on the target metrics. However,

[49] also showed that optimizing for one metric can decrease the models’ performance on

other MOT metrics. Thus, designing new MOT loss functions that can balance well across

multiple MOT evaluation metrics can be an interesting, future research direction.
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6.2.3 Sequence Model for MOT

In multi-object tracking, LSTM-based architectures have been a popular choice for pro-

cessing object tracks for track scoring and classification [49, 27, 25, 46]. Due to its re-

current memory update, LSTM provides an efficient memory architecture for online and

near-online trackers (i.e. the model processes only one detection in each frame). Recently,

the Transformer [107] has become the most popular sequence model in the field of natural

language processing, replacing the previous popular models such as LSTM and GRU in

many language tasks. One downside of the Transformer in the context of MOT is that its

memory size grows linearly with respect to the length of the input sequence. This makes

the original Transformer formulation unsuitable for fast, online tracking in which the model

needs to process object tracks that span hundreds of frames. Thus, exploring possible mod-

ifications in the Transformer in order to make its memory size more manageable while

maintaining its representational power for its application in MOT can be an interesting, fu-

ture research direction. This will make a Transformer-based model more suitable for online

MOT applications.
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