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SUMMARY

In the first Chapter we study a family of dissipative standard maps of the cylinder for

which the dissipation is a function of a small complex parameter of perturbation, ε. We

compute perturbative expansions formally in ε and use them to estimate the shape of the

domains of analyticity of invariant circles as functions of ε. We also give evidence that the

functions might belong to a Gevrey class. The numerical computations we perform support

conjectures on the shape of the domains of analyticity.

In the second Chapter, we consider a singular perturbation for a family of analytic sym-

plectic maps of the annulus possessing a KAM torus (this family contains the dissipative

standard map studied in Chapter 1). The perturbation introduces dissipation and contains

an adjustable parameter. We prove that the asymptotic expansions for the quasiperiodic

solutions and the adjustable parameter satisfy Gevrey estimates (proving one of the conjec-

tures given in Chapter 1). To prove this result we introduce a novel method that might be

of interest beyond the problem considered here.

Chapter 1 is based in joint work with Renato Calleja, see [1, 2]. Chapter 2 is based in

joint work with Rafael de la Llave, see [3].

xi



CHAPTER 1

COMPUTATION OF DOMAINS OF ANALYTICITY FOR THE DISSIPATIVE

STANDARD MAP IN THE LIMIT OF SMALL DISSIPATION

1.1 Introduction

We study the limit of small dissipation/expansion of a family of conformally symplectic

standard maps. Since conformally symplectic systems include Hamiltonian systems when

one adds a small friction term that is proportional to the velocity, then this kind of systems

are relevant in applications [4]. In particular, we approximate the shape of domains of

analyticity of invariant circles of a family of conformally symplectic standard maps of the

cylinder,M = S1 × R, depending on a small parameter, ε, that vanishes as the conformal

factor tends to one.

The present work addresses some rigorous results and conjectures in [5] from a numer-

ical point of view. For instance, it is remarkable that invariant circles which are attrac-

tors/repellors in the dissipative/expanding case [6], converge in the limit of small dissipa-

tion to invariant circles in the symplectic case. It was noted in [5] that the small divisors

depend on the complex parameter ε and give rise to regions where the functions parame-

terizing the circles cannot be analytic with respect to ε but miss by very little. A conjecture

in [5] states that the tori are analytic in a domain in the complex ε plane that is obtained

by taking from a ball centered at zero, a sequence of small balls with centers along smooth

curves passing through the origin. The radii of the excluded balls decreases faster that any

power of the distance of the centers of the balls to the origin, see Figure 1.1. In fact, it

was rigorously proved in [5] that this domain is a lower bound. The main objective of the

present work is to illustrate the results in one example, provide numerical evidence and

indications of new results. Our computations indicate that there are singularities which
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cluster around several points at which one does not expect the functions to be analytic.

Figure 1.1: Domain of analyticity according to [5].

A common method to compute invariant circles of a map of the cylinder fε :M→M,

is by computing a parameterization Kε : S1 →M of the invariant circle which satisfies an

invariance equation. The invariance equation is

fε ◦Kε = Kε ◦ Tω

with Tω(θ) = (θ + ω). The invariance equation states that the dynamics on the invariant

circle is conjugated to a rigid rotation of the circle by an irrational number ω. One of the

advantages of working with the dissipative standard map is that the parameterization func-

tion Kε can be written in terms of a periodic function, uε : S1 → R, as it is explained

in Section 1.2.1. The method we use to find the singularities is to approximate the conju-

gacy function uε(θ) by means of a Lindstedt series expansion in ε. The Lindstedt method

produces polynomials in ε of high order,

u≤Nε (θ) =
N∑
n=0

un(θ)εn

whose coefficients un : S1 → C are periodic functions. We then use the Lindstedt series of

the conjugacies to obtain Padé rational functions whose poles are expected to approximate
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the poles of the original function uε. Padé extrapolation methods of Lindstedt series have

been widely used by several authors [7, 8, 9, 10, 11] in the symplectic case. Since the

Padé extrapolation method is based on approximating an analytic function with a rational

function, the computation of poles is done by approximating the roots of the denominator

of the Padé approximant. The denominator is a polynomial that can be of very high degree,

and computing its roots depends heavily on numerical precision. Since the computations

are very sensitive to precision, we perform them using ≈ 103 digits which allows us to

compute singularities for values of ε that are at a distance≈ 0.3 from ε = 0 in the complex

plane. We expect that higher precision together with higher order degree series, would

allow us to compute poles that are closer to the origin. However, the method already allows

us to have an approximation of the boundary of the domain in regions at which one does

not expect the functions to be analytic, as it was predicted by the conjecture in [5], even

when the singularities are not very close to ε = 0. We also find conjectures on the rate of

growth of the terms of the Lindstedt series.

We note that the shapes of the domains that we present here are remarkably different

from what one sees in the symplectic case, see [9, 10, 11, 12]. This is partly due to the fact

that in the symplectic case the small divisors do not depend on the conformal factor b(ε)

which in our case is a function of ε.

Some explorations of the shape of the analyticity domains in the dissipative standard

map have been performed using the parameterization method in [13], that is very similar

to the one described in Section 1.3.3. In [13], it is noticed that the breakdown of invariant

tori in the conservative and the dissipative case are similar when the conformal factor b is

a constant, [14]. A different behavior in the breakdown of invariant tori involving bundle

collapse is observed in the dissipative standard map in [15]. Explorations of the shape of

the domains of analyticity in ε in the conservative case with the use of the parameterization

method appear in [16, 12].

3



1.2 Preliminaries

We consider the dissipative standard map defined on the cylinderM = S1 × R given by

fε(xn, yn) = (xn+1, yn+1) and

yn+1 = bεyn + cε + ε V ′(xn)

xn+1 = xn + yn+1 , (1.1)

where yn ∈ R, xn ∈ S1, ε ∈ R, and V ′(x) = 1
2π

sin(2πx). Here we consider the case

when the dissipative parameter, bε, is given by bε = b(ε) = 1 − ε3, and the drift param-

eter cε = c(ε) is a function that depends on the small parameter ε. Note that adding a

dissipation to the system is a very singular perturbation and could lead to the creation of

attractors/repellors without quasi periodic motions. For that reason, one has to consider

this external parameter, cε. The dissipative parameter bε coincides with the Jacobian of

the function. We note that adding an odd power of epsilon to the bε term is the physically

relevant choice. For this work, we choose to include a third power since it is the first non–

trivial odd case. We note that the Jacobian is the rate of dissipation/expansion of the map

(1.1), this rate will be dependent of the parameter ε. In particular, the case ε = 0 coincides

with the zero dissipation limit. We must emphasize that we tie the paremeter ε to the non-

linearity of the map since in this case ε = 0 also coincides with the integrable case and that

will hugely simplify our computation. In particular, by doing this we make sure that the

symplectic case, which will be the zero-th order of our series, will be trivial.

In fact, it is discussed in [5] that (1.1) is conformally symplectic. That is, if Ω = dy∧dx

is the standard symplectic form of the cylinder, the map fε satisfies that

f ∗Ω = bεΩ. (1.2)

For certain values of cε we know that maps of the form (1.2) have analytic invariant circles
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corresponding to quasi-periodic orbits with Diophantine rotation numbers, ω. The Lindst-

edt series analysis in Section 1.3.1 determines that one condition for the the mapping (1.1)

to admit an invariant circle is that cε = ωε3 + O(ε4). In the following, we discuss the

properties that the rotation number should satisfy so that one can have quasi-periodic orbits

parameterized by a function.

1.2.1 Quasi-periodic orbits

We consider a frequency ω that satisfies the Diophantine condition,

|ωq − p| ≥ ν|q|−τ , p ∈ Z, q ∈ Z \ {0} (1.3)

where ν ∈ R+ and τ ∈ R with τ ≥ 1.

Quasi periodic orbits of the dissipative standard map (1.1) are found using a parametric

representation of the variable xn ∈ S1 as

xn = θn + uε(θn), θ ∈ S1, (1.4)

where uε : S1 → R is a 1-periodic function. We assume that the variable θn varies linearly

as θn+1 = θn + ω where ω is the rotation frequency.

It follows from equation (1.1) that

xn+1 − (1 + bε)xn + bεxn−1 − cε + εV ′(xn) = 0. (1.5)

We look for quasi periodic solutions by finding uε, as in (1.4), and cε = c(ε) such that

Ecε [uε] = 0 (1.6)

5



where

Ecε [uε] ≡ uε(θ+ω)−(1+bε)uε(θ)+bεuε(θ−ω)+(1−bε)ω−cε+εV ′(θ+uε(θ)) = 0. (1.7)

It is clear that once we find a pair (uε, cε) satisfying (1.6), we can recover the embedding

of the quasi-periodic orbit by the parameterization Kε : S1 →M,

Kε(θ) =

 θ + uε(θ)

ω + uε(θ)− uε(θ − ω)

 . (1.8)

We remark that the nature of the two unknowns is different since uε(θ) is a smooth

complex 1-periodic function of θ ∈ S1 depending on the complex parameter ε and cε is a

complex number depending on ε. The conjecture in [5] states that ε is a complex parameter

whose range lays in a complex domain that is obtained by taking out from a neighborhood

of ε = 0 points inside balls with centers along smooth curves passing through the origin, see

Figure 1.1. In [5] there is also a rigorous proof that the domain described in the conjecture

is a lower bound that approximates the exact domain o analyticity.

1.3 Methods for computing solutions

We will use two different methods for finding the solution pair (uε, cε) of (1.6). The first

method is based on a Lindstedt series approximation of the solutions written as formal

power series of the small parameter ε. In our case the small parameter ε will account both

for the size of the perturbation and the distance of the conformal factor to the symplectic

case. This method produces approximate solutions in the sense that if

u≤Nε (θ) =
N∑
k=0

uk(θ)ε
k and c≤N(ε) =

N∑
k=0

ckε
k (1.9)
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are polynomials in ε, we say that (1.9) is an approximate solution of order N whenever

‖Ec≤N (ε)[u
≤N
ε ]‖ ∼ |ε|N+1, where E is the functional defined in (1.6) and ‖ · ‖ is the supre-

mum norm over all θ ∈ S1. The Lindstedt series method that we describe in Section 1.3.1

provides a way to construct an approximate solution of any given order N ∈ N.

In Section 1.3.3, we include an algorithm to find the solution (uε, cε) by means of a

Newton method. The method starts form an approximate solution pair (ua, ca) so that the

norm of Eca [ua] is small and provides a correction (v, δ) by imposing that the new solution

(ua + v, ca + δ) satisfies the functional equation Eca+δ[ua + v] up to first order in (v, δ).

This method can be shown to converge using scales of Banach spaces.

1.3.1 Lindstedt Series

The Lindstedt series method consists of performing a formal series expansion in a small

parameter ε. According to (1.6), and the fact that b(ε) = 1 − ε3, we look for a solution,

(uε, cε), of

uε(θ + ω)− (2− ε3)uε(θ) + (1− ε3)uε(θ− ω) + ε3ω − c(ε) = −εV ′(θ + uε(θ)) (1.10)

as a power series expansion. That is, we look for solutions

uε(θ) =
∞∑
k=0

uk(θ)ε
k and c(ε) =

∞∑
k=0

ckε
k, (1.11)

where each un is a function from S1 to C and each cn ∈ C. This solution can be computed

by equating powers of ε in (1.10). Taking the Taylor expansion at ε = 0

−εV ′(θ + uε(θ)) =
∞∑
k=0

Sk(θ)ε
k (1.12)

7



and substituting (1.11) into (1.10), we have that

∑∞
k=0 uk(θ+ω)εk−(2−ε3)

∑∞
k=0 uk(θ)εk+(1−ε3)

∑∞
k=0 uk(θ−ω)εk+ε3ω−

∑∞
k=0 ckε

k=
∑∞
k=0 Sk(θ)εk. (1.13)

Remark 1. When V ′(θ) = 1
2π

sin(2πθ), or a trigonometric polynomial, the Sk(θ)’s can

be computed very efficiently in terms of the ui(θ)’s. Following [17, 18] and denoting

S (θ, ε) = sin(2π(θ+ uε(θ))), C (θ, ε) = cos(2π(θ+ uε(θ))), the coefficients of the series

expansions S (θ, ε) =
∞∑
k=0

Sk(θ)ε
k and C (θ, ε) =

∞∑
k=0

Ck(θ)ε
k are given by the following

recurrence relations,

(N + 1)SN+1(θ) = 2π
N∑
m=0

(m+ 1)CN−m(θ)um+1(θ) (1.14)

(N + 1)CN+1(θ) = −2π
N∑
m=0

(m+ 1)SN−m(θ)um+1(θ).

Thus, Sk(θ) = −Sk−1(θ) for k ≥ 1 and S0 = 0, by (1.12).

Defining the operator

Lωϕ(θ) := ϕ(θ + ω)− 2ϕ(θ) + ϕ(θ − ω) (1.15)

equation (1.13) can be rewritten as

∞∑
k=1

Sk(θ)ε
k =

2∑
k=0

(Lωuk(θ)− ck) εk + (Lωu3(θ)− c3 + u0(θ)− u0(θ − ω) + ω) ε3

+
∞∑
k=4

(Lωuk(θ)− ck + uk−3(θ)− uk−3(θ − ω)) εk, (1.16)

Some properties of the operator Lω are summarized in the following Lemma. See [19]

for details about the proof.

Lemma 2. Let η : S1 → S1 a continuous function such that
∫ 1

0

η(θ)dθ = 0. If ω is

8



Diophantine as in (1.3), then there exists a solution, ϕ(θ), to the equation

Lωϕ(θ) = η(θ) (1.17)

such that
∫ 1

0

ϕ(θ)dθ = 0. In fact, the solution is given by

ϕ(θ) =
∑

`∈Z\{0}

η̂`
2(cos(2π`ω)− 1)

e2πi`θ,

where η̂` are the Fourier coefficients of η(θ).

The Lindstedt process is as follows. Matching the coefficients of the same order in

(1.16) we obtain the following relations to different orders of ε. The zero-th order term

tells us that the coefficients at order zero in ε have to be trivial. The equations are

Lωu0(θ)− c0 = 0. (1.18)

Choosing c0 = 0, then u0 ≡ 0 is the solution given by Lemma 2. This construction is

analogous to the zero-th order term in the symplectic case.

Remark 3. This method has been used in [18, 19, 7, 8, 9, 10, 11] for the symplectic case.

That is, making the same process for the standard map, (xn+1, yn+1) = (xn + yn+1, yn +

εV ′(xn)), gives the following equation to all orders εn,

Lωuk(θ) = Sk(θ) k ≥ 0. (1.19)

Moreover,
∫ 1

0

Sk(θ)dθ = 0 for all k ≥ 0. This is a consequence of the symplectic structure

and the fact that Sk(θ) depends on the previously computed u0(θ), u1(θ), . . . , uk−1(θ),

S0(θ), S1(θ), . . . , Sk−1(θ) (see Remark 1).

The first and second orders in ε are also analogous to the symplectic case. For this
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reason the first two coefficients of cε will be trivial.

Lωuk(θ)− ck = Sk(θ), k = 1, 2. (1.20)

Choosing c1 = 0 = c2 the equations are reduced to the non dissipative case and, by Remark

3, the right hand side has zero average. Therefore, we can find solutions u1(θ), u2(θ).

The third order in ε is the first one that is different from the conservative case.

Lωu3(θ)− c3 + ω = S3(θ). (1.21)

Here we notice that the drift parameter starts playing a rôle in the existence of invariant

tori. Taking c3 = ω, equation (1.21) becomes the same equation as in the symplectic case.

Since S3(θ) has zero average we find u3(θ).

The equations for orders higher than 3 are remarkably different since we have a counter

term coming from the previously computed orders. Namely,

Lωuk(θ) = Sk(θ)− uk−3(θ) + uk−3(θ − ω) + ck, k ≥ 4. (1.22)

Notice that, by construction,
∫ 1

0

uk−3(θ − ω)dθ =

∫ 1

0

uk−3(θ)dθ = 0 (see Lemma 2). Now,

taking

ck = −
∫ 1

0

Sk(θ)dθ, (1.23)

we can find uk(θ) solving (1.22) for all k ≥ 4.

We have proved the following proposition which is a particular case of part A) of The-

orem 12 in [5].

Proposition 4. For any N ∈ N, the procedure presented above allows to find an approxi-
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mate solution,

u≤Nε (θ) =
N∑
k=0

uk(θ)ε
k and c≤N(ε) =

N∑
k=0

ckε
k, (1.24)

such that

‖Ec≤N (ε)[u
≤N
ε ]‖ ≤ C|ε|N+1

where E is the functional defined in (1.6).

1.3.2 Padé extrapolation

The domain of analyticity for the solution of (1.6) can be approximated by implementing

a Padé method in which we use the approximate solutions obtained by the Lindstedt series

constructed in Section 1.3.1.

The Padé method is quite standard and is presented in several places in the literature.

Here, we follow the exposition in [20]. A Padé approximant of order [p/q] of a function

g(ε) =
∑∞

i=0 giε
i is a rational function, P (ε)/Q(ε), which agrees with g to the highest

possible order in ε.

That is,

g(ε)− P (ε)

Q(ε)
= O(εp+q+1) (1.25)

where P (ε) and Q(ε) are polynomials of degree p and q respectively, Q(0) = 1.

The existence of the polynomials P and Q can be obtained by noticing that (1.25) is

equivalent to

g(ε)Q(ε) = P (ε) +O(εp+q+1)

and, then, considering P (ε) =
∑p

i=0 Piε
i and Q(ε) =

∑q
i=0Qiε

i the coefficients of the

11



polynomials can be found by solving the following systems of equations

gi +
i∑

j=1

gi−jQj = Pi 0 ≤ i ≤ p

gi +

q∑
j=1

gi−jQj = 0 p < i ≤ p+ q. (1.26)

The second equation of (1.26) gives the Q′js, and then we can find the P ′js by substituting

in the first equation. Then, the boundary of the domain of analyticity of a function can be

approximated by the zeros of Q in the [p/q] Padé approximant.

There are a number of implementations of the Padé methods that are used in a quite

standard manner. In the present work we use the implementations included in Version

2.9.0 of GP/PARI, [21].

1.3.3 Newton’s method

In this section we summarize an iterative scheme in scales of Banach spaces that can be

very well adapted to perform numerical computations. The scheme is based in a Newton

iteration starting from approximate solutions to the equation (1.6). We briefly describe the

scheme here since details of schemes of these kind and numerical implementations have

been described already in the literature [13, 5, 15, 22], and the reader can refer to these

works for more details.

We start from an approximate solution (ua, ca) of equation (1.6). Namely, we have a

solution so that ‖Eca [ua]‖ is small enough. The approximate solution could be obtained

by several means. One possibility is starting from the integrable case (for ε close to zero)

and perfoming continuation or from a Lindstedt series expansions like the ones obtained

in Section 1.3.1. We remark that in the dissipative standard map we are studying, ε = 0

is the point where the map becomes symplectic. Since we use methods for conformally

symplectic systems we actually start the continuation from values of ε that are not equal to

zero but small.

12



The Newton algorithm consists of adding a correction (v, δ) to the approximate solution

so that supremum norm of (1.6) evaluated in the function plus the corrections, ‖Eca+δ[ua +

v]‖, is of the order of the square of the norm of (1.6) evaluated at the approximate solution,

‖Eca+δ[ua + v]‖ ≤ C‖Eca [ua]‖2.

One obtains the correction by solving the linearized equation of Eca+δ[ua + v] for (v, δ)

around the approximate solution, (ua, ca).

In this case, the equation we have to solve is

DuEca [ua]v − δ = −Eca [ua] (1.27)

which involves unbounded operators in Banach spaces (namely DuEca [ua]v) that are actu-

ally bounded if one considers that the operators map into Banach spaces of less regularity.

It is a standard observation in Nash–Moser theory [23, 24], that to set up a converging iter-

ative Newton scheme it is not necessary to find an exact inverse of the operator DuEca [ua],

but finding an exact inverse of an approximate operator will suffice.

In our case, we will not solve equation (1.27) directly but will solve a modified equation

obtained by adding a term that is quadratic in the error. We remark that since a Newton

method is a quadratic scheme solving a linear equation then adding a quadratic term also

gives a quadratic scheme that solves the same linear equation. Defining h′(θ) = 1 +

∂
∂θ
ua(θ), one obtains an approximate Newton equation by subtracting the term

vDuEca [ua]h
′, which is quadratic in the error. The modified Newton equation is,

h′DuEca [ua]v − vDuEca [ua]h
′ = −h′(Eca [ua]− δ) . (1.28)

The l.h.s. of equation (1.28), factorizes into a sequence of operators that are easier to solve

numerically, as it is noted in Lemma 5.
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This method has been used in several works [25, 26, 19]. Here we only make a reference

to the justification in [13], where the reader can refer to for details.

Let the operators D−, Db+ be defined by

D−f(θ) = f(θ − ω)− f(θ)

Db+f(θ) = f(θ + ω)− bf(θ) . (1.29)

A small remark is that (1.29) are operators that are diagonal in Fourier space. In the fol-

lowing lemma, we write the modified Newton as a sequence of operators that are either

diagonal in Real or Fourier space.

Lemma 5. The modified Newton equation in (1.28) with Eca [u] defined in (1.6) is equiva-

lent to

Db+[−h′(θ)h′(θ − ω)D−[(h′)−1(θ)v(θ)]] = −h′(Eca [ua](θ)− δ). (1.30)

Remark 6. One notices that the operators involved in the l.h.s. of equation (1.30) only

involve differentiation, multiplication, division, shifting the arguments of functions, and

solving the difference equations with constant coefficients in (1.29). All this operations can

be implemented very efficiently using the computer. For instance if we discretize the peri-

odic functions using n uniformly distributed points and we use a Fast Fourier Transform

method, the modified Newton step equation can actually be solved inO(n log n) operations.

The factorization in equation (1.30) suggests an algorithm that is used to solve the

modified Newton equation.

Algorithm 7. i) Find two functions ϕ and ν solving the equations

Db+ϕ(θ) = −h′Eca [u] (1.31)

and

Db+ν(θ) = −h′(θ) . (1.32)
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Notice that if ϕ(θ) and ν(θ) are solutions of (1.31) and (1.32), respectively, then the

equationDb+(ϕ(θ)−δν(θ)) = −h′(θ)(Eca [u0](θ)−δ) holds for any δ ∈ C. This will

allow us to chose a complex number δ so that the average of ϕ(θ)−δν(θ)
h′(θ)h′(θ−ω)

vanishes.

ii) Choose δ ∈ C such that

∫
T

ϕ(θ)− δν(θ)

h′(θ)h′(θ − ω)
dθ = 0 .

iii) Obtain w from the solution of the constant coefficient difference equation

D−w(θ) =
ϕ(θ)− δν(θ)

−h′(θ)h′(θ − ω)
. (1.33)

Notice that after choosing a δ in step ii) so that the right hand side has zero average

we can always find a periodic function w solving (1.33) when the r.h.s. is smooth

enough.

iv) Construct v(θ) = h′(θ)w(θ) and obtain the improved solution (ũ, c̃) defined as

ũ(θ) = ua(θ) + v(θ) , c̃ = ca + δ .

The observation in remark 6 is that the operators in (1.30) are very efficiently imple-

mentable with the use of a computer either in Real or in Fourier space. This efficiency

comes from the fact that all the operations involved in the four steps of Algorithm 7 are

multiplications, additions and integrals of periodic functions that take onlyO(n) operations

in Real space; and differentiation, shifts and solving cohomology equations with constant

coefficients, that take onlyO(n) operations in Fourier space. Therefore, the most expensive

operation in the Algorithm 7 is transforming from Real to Fourier space and back. This can

be done in O(n log n) operations by means of a Fast Fourier Transform.

Remark 8. We note that the algorithm is guaranteed to converge inside the boundaries of
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the analyticity domain. Indeed, in [12] it was rigorously justified that the algorithm only

fails to converge as the continuation reaches the boundary of analyticity. Therefore, the

continuation method can also be used to asses the bounds on the domain of ε.

1.4 Numerical results

In this section we present the results of implementing the methods described in Section

1.3. All the computations in Sections 1.4.1 and 1.4.2 were done using the golden ratio,

ω =
√

5−1
2

, which satisfies (1.3), see [19].

1.4.1 Domain of analyticity

The construction of Lindstedt series in Section 1.3.1 was implemented as a numerical al-

gorithm. The statement of Proposition 4 tells us that given any N ∈ N, the outcome of the

method is the pair of polynomials of degree N in (4). The observation of Lemma 2 is that

the operator Lω defined in equation (1.15) is diagonal in Fourier Space and equation 1.17

can be solved for φ if we allow to obtain functions with less regularity than the right hand

side, η. We find the solution numerically by transforming to Fourier space and solving for

the uk’s from expressions (1.20) to (1.22). At every order of the process we obtain the ck’s

as a byproduct of imposing the condition that every order should have zero average. The

Lindstedt series expansions are used to obtain an approximate solution to the functional

equation in (1.6) at some high order.

Approximation of poles of the Lindstedt series

Here we include the poles of the Lindstedt polynomial found with the Padé method. In

Figure 1.2, we show the poles of the series approximated by means of the Padé method. It is

well known that the Padé method computations are very sensitive to precision, see [20], so

we have implemented the computations with extended precision using the software gp/Pari

[21]. We show the values of the poles in the ε complex plane, and the complex values of
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the function b(ε) = 1 − ε3. Our computations suggest that the boundary of the analyticity

domain has a more complicated structure that what was predicted in [5], compare the left

panel of Figure 1.2 with Figure 1.1. Figure 1.3 contains the comparison of the values of

the function b(ε) with the unit circle. We also include zoomed in versions of the values of

b(ε) in Figure 1.3.

Figure 1.2: Points which are simultaneously poles of Padé approximants of degree
[475,475] and [500,500]. The implementation was done with 1000 digits. Left panel: Poles
in the complex plane ε ∈ C. Right panel: Poles evaluated in the function b(ε) = 1 − ε3,
with ε ∈ C.

Newton method

We used Newton’s method and continuation to explore the monodromy of the solutions

in the domains. A rigorous result in [5] states that the solutions defined in the domain of

analyticity in ε have trivial monodromy. We verified this fact numerically by perfoming

continuation of the solutions (uε, cε) around the poles that were previously approximated

using the Padé series method described in Section 1.4.1.

We used the approximated poles as centers of circular paths in ε over which we per-

fomed continuation while solving the invariance equation (1.6) using Algorithm 7. Once

the continuation achieves a complete turn around a chosen pole, one verifies that the solu-

tion always arrives to the same starting point. This is an effect of the monodromy of the

functions being trivial.
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Figure 1.3: The poles compared to the unit circle. Left panel: Evaluation of the poles of
the series by the function b(ε) = 1− ε3. Right panels: Two zoomed in versions of the set.

We present several instances of the functions for different parameter values along a

circle winding around a pole in Figure 1.5. The path we used to surround the pole is

presented in Figure 1.4. The continuation was perfomed using FFTW3, [27], with the

libquadmath library, [28]. The radii of the continuation paths were chosen so that the path

did not come very close to the poles. Indeed, when the continuation comes close to a pole

our implementation of the Newton method becomes degenerate in the sense that one needs

to compute quotients of very small quantities. The reason is that when solving equations

(1.31) and (1.32), the divisors depending on ε, are below machine precision close to the

pole and dividing over those quantities leads to large numerical errors.

1.4.2 Growth of the coefficients of the Lindstedt expansions.

The results in Section 1.4.1 agree with the conjecture in [5] about the domain of analyticity

of the parameterization of the quasi periodic orbits. The qualitatively conjectured optimal

domain of analyticity of the parameterizations for the map (1.1) does not contain any ball
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Figure 1.4: Poles of the series and two different continuations done with the Newton algo-
rithm. The continuation is done around the pole in order to illustrate that the monodromy
is trivial.

with center at the origin nor angular sectors with width larger than π/3, so one does not

expect the Lindstedt series to converge. The shape of the domain of analyticity suggest the

Lindstedt expansions might belong to a Gevrey class.

We recall that a formal power series,
∑
fnε

n, is σ-Gevrey (at ε = 0), with respect to a

norm ‖ · ‖, if the coefficients satisfy

‖fn‖ ≤ CRnnσn. (1.34)

where σ ≥ 0. Equivalently,

1

n
log ‖fn‖ ∼ σ log(n) + log(R)

for n large enough.
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Table 1.1: Values of ε and c(ε) for different instances taken from the small circle in Figure
1.4.

Instance ε c(ε)
1 0.3202966 + i0.1460915 0.01994937− i0.06774761
2 0.3008391 + i0.1527000 0.009976542− i0.06136120
3 0.2830167 + i0.1871540 −0.01146081− i0.06221038
4 0.3122423 + i0.2245263 −0.02718298− i0.08804174
5 0.3613448 + i0.1973876 0.007928831− i0.1127768
6 0.3242691 + i0.1460201 0.02157160− i0.06953580

Figure 1.5: Real and imaginary part of different instances of a continuation by the Newton
algorithm including the initial and final functions. One observes that there is no mon-
odromy after a full turn around the pole.

Remark 9. We note that, by Stirling’s formula, inequality (1.34) is equivalent to

‖fn‖ ≤ CRn(n!)σ. (1.35)

If σ = 0 the power series would define an analytic function of ε.

We approximated several norms of the coefficients uk(θ) to have an indication of how

far the functions are from being analytic. First, we use the norm on the complex strip of

size ρ > 0, i.e., θ ∈ S1
ρ if | Im(θ)| < ρ. Let f : S1

ρ → S1
ρ be a function of S1

ρ then the norm

we use is

‖f‖ρ =
∑
`∈Z

|f̂`|2e2π|`|ρ
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where f̂` are the Fourier coefficients of f .

Since we want to check if the formal series uε(θ) =
∑
uk(θ)ε

k belongs to a Gevrey

class with the analytic norms, it is convenient to compute the following expressions as

functions of k,

Aρ(k) ≡ 1

k
log ‖uk(θ)‖ρ, (1.36)

and then approximate the constant σ. The values of Aρ(k) as in (1.36) for different values

of ρ are shown in Figure 1.6.
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Figure 1.6: Plot of Aρ(k), 1 ≤ k ≤ 500, for the frequency ω =
√

5−1
2

.

We also used Sobolev norms defined for a real number r > 0 by the L2-norm of the rth

derivative with respect to θ,

‖f‖W r = ‖∂rθf‖L2 .

The Sobolev norms can also be written in terms of Fourier coefficients as follows,

‖f‖W r =

(∑
k∈Z

(2πk)2r|f̂k|2
)1/2

.

As in the case for analytic norms we define the following expressions for the Sobolev

norms,

Hr(k) ≡ 1

k
log ‖uk(θ)‖W r . (1.37)
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We include the values of Hr(k) for the coefficients of the approximate solution and several

values of r in Figure 1.7.
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Figure 1.7: Plot of Hr(k), 1 ≤ k ≤ 500, for the frequency ω =
√

5−1
2

.

In both cases, the rate of growth of the norms ‖uk(θ)‖B with respect to k seem to

be large enough to make one think that the formal expansion belong to a Gevrey class. To

study the rates of growth more systematically we have performed numerical fits of functions

of the form log(R) + σ log(k) to the data in Figures 1.6 and 1.7. In Tables 1.2 and 1.3 we

summarized this numerical fits.

Table 1.2: Numerical fit of a function log(R) +σ log(k) to the data Aρ(k) for different val-
ues of ρ and frequency ω =

√
5−1
2

. Computations were done using 213 Fourier coefficients
and 600 digits of precision. The numerical fit was made in for 100 ≤ k ≤ 300.

eρ(k) := Aρ(k)− (log(R) + σ log(k))
R σ ‖eρ‖∞

ρ = 0.1 0.672269 0.227899 0.020793
ρ = 0.01 0.585740 0.238324 0.019491
ρ = 0.001 0.576278 0.240049 0.019325
ρ = 0.0001 0.575333 0.240225 0.019280
ρ = 0.00001 0.575239 0.240243 0.019282
ρ = 0.000001 0.575230 0.240244 0.019279
ρ = 0.0000001 0.575229 0.240244 0.019278

We note that the numbers R and σ in Table 1.2 and Table 1.3 are just the raw numbers

obtained by fitting numerically functions of the form log(R) + σ log(k) to the data Aρ(k)

and Hr(k), we are not sure how to assess the reliability of these numbers. Also, we have
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Table 1.3: Numerical fit of a function log(R) +σ log(k) to the data Hr(k) for different val-
ues of r and frequency ω =

√
5−1
2

. Computations were done using 213 Fourier coefficients
and 600 digits of precision. The numerical fit was made for 100 ≤ k ≤ 300.

er(k) := Hr(k)− (log(R) + σ log(k))
R σ ‖er‖∞

r = 1 0.685071 0.212840 0.020144
r = 2 0.816610 0.185284 0.023905
r = 3 0.974288 0.157572 0.028145
r = 4 1.163403 0.129713 0.032216
r = 5 1.390238 0.101731 0.036129
r = 6 1.662287 0.073651 0.039905

added a column with a measure of the remainder, ‖e‖∞, between the numerical fit and

the data. The measure of these remainders, which looks a little bit worrisome, seems to

come from an oscillatory behavior in the data, the structure of the remainders is studied in

Section 1.4.4.

For the sake of completeness we include a comparison between A10−7(k), H6(k) and

their respective numerical fits, see Figure 1.8. Note that even if the norms considered

in Aρ(k) and Hr(k) are in principle not compatible, the fact that Aρ(k) and Hr(k) have

similar trends seems to indicate that there is a mechanism which is captured for any norm

for the functions we study. This suggest that a more detailed study of the structure of this

functions could be interesting.

1.4.3 Results for different frequencies

We recall that the computations presented in Section 1.4.2 were done using the frequency

ω =
√

5−1
2

. In this section we present the computations also for different frequencies, of

the same Diophantine type. We present the results below.

Figure 1.9 contains a plot of Aρ(k), ρ = 10−7, for all the frequencies considered. The

plots in Figure 1.9 seems to indicate a logarithm growth for all the frequencies considered.

To study more systematically the growth of the coefficients of the Lindstedt series we have

also fitted numerically functions of the form log(a) + σ log(k), the results are summarized
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in Table 1.4. We note that all the frequencies considered belong to the same Diophatine

class D(ν, 1), where ω ∈ D(ν, τ) means that |e2πikω − 1| ≥ v|k|−τ . Figure 1.10 and Figure

1.11 contain comparisons between the quantities Aρ and their respective numerical fits.

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350

A
1
0
−

7
(k
)

k

ω = (
√
5− 1)/2

ω = (
√
3 + 1)/2
ω =
√
2

ω = (
√
7− 1)/2

ω = (
√
13− 1)/6

ω = (
√
5− 1)/6
ω =
√
3

Figure 1.9: Graph of Aρ(k) for different values of the frequencies ω, ρ = 10−7.

The numerical results presented in Sections 1.4.2 and 1.4.3 lead us to think that the

Linsdtedt series of the parameterization of quasiperiodic orbits for the dissipative standard

map (1.1) belong to a Gevrey class.
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Table 1.4: Numerical fit of a function log(R) + σ log(k) to the data Aρ(k) for different
values of the frequency ω and ρ = 10−7. Computations were done using 213 Fourier
coefficients and 600 digits of precision. The numerical fit was made in for 100 ≤ k ≤ 300.

eω(k) = Aρ(k)− log(R) + σ log(k), ρ = 10−7

R σ ‖eω‖∞
ω =

√
5−1
2

= [0, 1, 1, 1, 1, 1, 1, ...] 0.575229 0.240244 0.019278
ω =

√
3−1
2

= [0, 2, 1, 2, 1, 2, 1, ...] 0.695887 0.225349 0.047762
ω =
√

2 = [1, 2, 2, 2, 2, 2, 2, ...] 0.583365 0.247799 0.033104
ω =
√

3 = [1, 1, 2, 1, 2, 1, 2, 1, ...] 0.460186 0.307029 0.038801
ω =

√
7−1
2

= [0, 1, 4, 1, 1, 4, 1, 1, ...] 1.300597 0.112924 0.045704
ω =

√
13−1
6

= [0, 2, 3, 3, 3, 3, 3, ...] 0.582937 0.258504 0.047840
ω =

√
5−1
6

= [0, 4, 1, 5, 1, 5, 1, 5, ...] 1.235768 0.158503 0.042327
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Figure 1.10: Comparison between Aρ(k), ρ = 10−7, and its corresponding numerical fit.
Left panel: values for the frequency ω =

√
7−1
2

. Right panel: values for the frequency
ω =
√

3

Conjecture 10. Given ω ∈ D(ν, 1), the Lindstedt series, uε =
∑
ukε

k, of quasi-periodic

orbits for the map (1.1) belongs to a Gevrey class with Gevrey exponent σ ≤ 0.307. That

is, ‖un‖ρ ≤ CRnnσn with σ ≤ 0.307 and ρ ≤ 10−7.

1.4.4 Some interesting patterns

A careful inspection of Figure 1.6, Figure 1.9, Figure 1.10, and Figure 1.11 shows that the

graphs of Aρ(k) present an oscillatory behavior of period three, see Figure 1.12. These

oscillations are present for all the values of the frequencies considered.

As we mentioned before, the coefficients of the Lindstedt series are determined by solv-
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Figure 1.12: Graph of Aρ(k) for ρ = 10−7, ω =
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. The same oscillatory behavior is
also present for Hr(k).

ing equation (1.22) in which the coefficient of order k depends explicitly on the coefficient

of order k − 3. This is due to the power three of ε in the function bε. At the same time this

phenomenon is independent of the frequency ω we choose. This gives an explanation of

the appearance of an oscillating pattern observed in the inset of Figure 1.12 which appears

for all the frequencies we considered. However, the computations show that the amplitude

of the oscillations decreases as k grows and this oscillating effect fades away.

To study how the amplitude of the oscillations decreases we have centralized the os-

cillations by considering the differences between Aρ(k) and some moving averages. More
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precisely, denoting ak = Aρ(k), ρ = 10−7, we have considered the following centraliza-

tions

xk = ak −
1

5

k+2∑
j=k−2

aj, zk = ak −
1

3k

k+2∑
j=k

jaj, (1.38)

Since the oscillations have period three, the centralization xk is made by subtracting a

moving average that captures two periods of the oscillation. The results for xk are sum-

marized in Figure 1.13 and Figure 1.14. For all the centralizations considered it is quite

surprising that the amplitude of the oscillations seems to decrease as k−β , with β ≈ 1. Due

to this behavior we consider a second centralization, zk, which assumes that the oscillations

decrease as k−1. The results for zk are summarized in Figure 1.15.

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300 350 400

k

xk

2.4k−1

−1.8k−1

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300 350 400

k

xk

2.4k−1

−1.8k−1

Figure 1.13: Plots of the centralization xk. Left panel: Plot for the frequency
√

5−1
2

. Right
panel: Plot for frequency

√
3−1
2

.

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300 350 400

k

xk

2.4k−1

−1.8k−1

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300 350 400

k

xk

2.4k−1

−1.8k−1

Figure 1.14: Plots oft the centralization xk. Left panel: Plot for the frequency
√

2. Right
panel: Plot for frequency

√
3.

27



−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

50 100 150 200 250 300 350 400

k

zk
0.4k−1

−2.1k−1

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

50 100 150 200 250 300 350 400

k

zk
0.9k−1

−3.1k−1

Figure 1.15: Plots of the centralization zk. Left panel: Plot for the frequency
√

7−1
2

. Right
panel: Plot for frequency

√
5−1
6

.

The results collected in the figures above suggest that the centralizations behave like

k−βf(k) with f a periodic function. This observation motivates the following conjecture.

Conjecture 11. Let Aρ(k) = 1
k

log ‖uk‖ρ, then Aρ(k) ≈ log(R)+σ log(k)+k−βf(k) with

β ≈ 1, f(k) a periodic function of period 3, and k � 1.

1.5 Validation of the results

To validate the results described above we verified that the cohomology equation (1.22) is

satisfied at every order with a suitable error. We also verified, as shown in Proposition 4,

that the invariance equation (1.6) satisfies that log10(‖Ec≤N (ε)[u
≤N
ε ]‖∞) ∼ (N+1) log10(ε)

as long as the error is above machine precision. We recall that Ec≤N (ε)[u
≤N
ε ] means that

we evaluate the operator E, given in (1.6), in the finite expansions u≤Nε =
∑N

k=1 ukε
k and

c≤N(ε) =
∑N

k=0 ckε
k.

In Figure 1.16, we show the results of these computations.

For this work, the computations have been performed using 600 digits and 2` Fourier

coefficients, with 10 ≤ ` ≤ 13. Using this precision we have verified that the coefficients

un of the Lindstedt expansion have a relative error less than 10−300 when n ≤ 400, see

Figure 1.17. We have also checked that the functions un are trigonometric polynomials

of degree n, as predicted in [3], up to an error less than 10−200 within the same range of
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parameters. All the computations were done in pari/gp, [29].
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CHAPTER 2

GEVREY ESTIMATES FOR ASYMPTOTIC EXPANSIONS OF TORI IN

WEAKLY DISSIPATIVE SYSTEMS

2.1 Introduction

Hamiltonian systems with small dissipation appear as models of many problems of physical

interest. Notably, dissipation is a small effect in astrodynamics of planets and satellites

[30, 31] 1. In the design of many mechanical devices, eliminating friction is a design goal

which is never completely accomplished. Hamiltonian systems with friction also appear

as Euler-Lagrange equations of discounted functionals which are natural in finance and in

the receding horizon problem in control theory. In such a case the limit of zero discount

(equivalent to the limit of zero friction) is of interest. See [33, 34, 35, 36] for different

studies of the zero dissipation limit in calculus of variations and in control.

When the friction is small, it is natural to study such systems using perturbation theory.

Nevertheless, adding a small friction is a very singular perturbation, and periodic/quasi-

periodic orbits may disappear for arbitrarily small values or the perturbation. In contrast

with Hamiltonian systems that often have sets of quasi-periodic orbits of positive measure

(KAM theorem), for dissipative forced systems, there are few periodic or quasi-periodic

orbits. These quasi-periodic orbits of a fixed frequency are known to persist only if one can

adjust parameters in the system [37, 38, 39]. As discussed very clearly in [40], the number

of parameters needed is affected by the geometric properties of the systems considered.

In recent times, for some particular types of dissipative systems – the conformally sym-

plectic systems, see Definition 12 – there is a very systematic KAM theory [41] based on

geometric arguments. The examples mentioned above (Hamiltonian systems with friction

1A problem in astrodynamics which motivate us is the spin orbit problem describing approximately the
motion of an oblate planet, subject to tidal friction, in a Keplerian orbit [32]
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proportional to the momentum and Euler-Lagrange equations of exponentially discounted

variational principles) are conformally symplectic. This theory, once we fix a frequency,

predicts the changes of parameters and the changes in the solutions needed to obtain a

quasi-periodic solution of the prescribed frequency.

The goal of this Chapter is to study the singular perturbation theories in which the small

parameter also introduces dissipation.

There are several studies of the singular perturbation theories in dissipation which are

particularly relevant for us: The paper [5] shows that if one fixes a Diophantine frequency

ω (see Definition 22), considers a Hamiltonian system – not necessarily integrable – with a

quasi-periodic solution of frequency ω, and introduces a conformally symplectic perturba-

tion (see Definition 12), then there is a (unique under a natural normalization) formal power

series expansion for the quasi-periodic solution of frequency ω and for the drift parameter.

These series are very similar to the Lindstedt series of classical mechanics. The paper [5]

also showed that the formal Lindstedt series is the asymptotic expansion of a true solu-

tion defined in a complex domain of parameters that does not include any ball around zero

(giving an indication that the power series may be divergent). The paper [1] studied numer-

ically these Lindstedt series in a concrete example and the possible domain of analyticity

of the function (using Padé as well as non-perturbative methods). The numerical studies in

[1] lead to the remarkable conjecture that, in the cases examined, the formal power series

giving the quasiperiodic solution and the forcing are Gevrey (see Definition 19).

In this thesis, for some class of analytic maps (we require that the system is conformally

symplectic and that the non-linearity is a trigonometric polynomial) we show that the con-

jecture in [1] is true and that the series obtained are indeed Gevrey. The Gevrey class can

be bounded depending only on the Diophantine condition of the frequency ω (and the order

of the friction in the dissipation), see Theorem 29.

The Gevrey class of functions has received a lot of interest recently since those func-

tions are related to many deep theorems of Dynamical Systems (KAM, Nekhoroshev).
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Similar theories (e.g. hypoellipticity) also admit Gevrey classes as natural regularity. This

Thesis goes in a different direction. Even if we start with an analytic problem – indeed

polynomial! – several objects of interest are only Gevrey. The phenomenon that analytic

problems have only Gevrey solutions has appeared in other contexts in dynamics, notably

in the study of singular perturbations [42], the regularity of attractors and fast-slow systems

[43, 44, 45]. Closer to us, in dependence on parameters of solutions of non-linear prob-

lems, [46, 47], dependence of KAM tori in the frequency [48], or in the theory of parabolic

manifolds [49, 50].

We note that showing that a perturbative expansion is Gevrey allows to obtain good

bounds of the error of a finite sum [51]. It also allows the use of resummation methods to

extract better results for the series, [52], and it gives insights on the analyticity domains.

Indeed, in the Mathematical Physics literature, there has been considerable interest in the

Gevrey nature of perturbation theories, often called factorial bounds, Borel summability,

etc. [53, 54, 55]. We hope that introducing a new method for these questions can have

interest in other motivations.

The method of proof we introduce may be of interest beyond the problem considered

here and we hope that there are other applications. We consider a Newton method in the

space of power expansions. As in KAM theory, each step of the quadratically convergent

method is estimated in a domain smaller than the domain of the previous steps. In contrast

with KAM theory, the domains where we control the results shrink very fast to a point, so

that, at the end we do not obtain any analytic function. On the other hand, by examining

carefully the process, we can obtain estimates on the coefficients of the expansions.

Our hypothesis that the non-linearity is a trigonometric polynomial ensures that the

coefficients of order N do not change after log2(N) steps of the Newton method, so that

one can use Cauchy estimates in the domain that is under control after log2(N) steps to

obtain estimates on the N th coefficient.

We hope that the hypothesis that the non-linearity is a trigonometric polynomial can be
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removed at the price of estimating the change of the coefficients in subsequent iterations,

but a proof would require a new set of estimates that – if indeed possible – would lengthen

the exposition and obscure the main ideas.

The Newton method acting on power series is patterned after the Newton method used

in [41]. This Newton method takes advantage of remarkable cancellations related to the

geometry and introduces the corrections to the torus additively (rather than making changes

of variables). The fact that the Newton method in [41] does not involve changes of variables

makes it possible to lift it to formal power series. We will present full details later.

For simplicity in the treatment, we will deal with maps since the geometric arguments

are simpler. The same arguments apply for differential equations, but they are more elabo-

rate. Besides adapting the proof of maps to the case of ODE’s, one can deduce rigorously

the results for differential equations from the results for maps by taking time-T maps. Note

that in this case, the fact that the non-linearity in the time-T map is a trig. polynomial is

difficult to express in terms of the original ODE. This is another reason why we would like

eventually to get rid of that hypothesis.

2.1.1 A preview of the main result

A model to keep in mind is the so-called dissipative standard map fε,µε : T×R −→ T×R

given by

fε,µε(x, y) = (x+ λ(ε)y + µε − εV ′(x), λ(ε)y + µε − εV ′(x)) (2.1)

In (2.1), the physical meaning of λ(ε) = 1 − εα, α ∈ N, is dissipation and µε, called the

drift parameter, has the physical meaning of a forcing. Our assumption on the non-linearity

amounts to V being a trigonometric polynomial. The model (2.1) is indeed conformally

symplectic in the sense of Definition 12 (see below). The map (2.1) is the model that was

used in the numerical experiments in [1].
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Note that for ε = 0, the map (2.1) is integrable. The integrability of the map at ε = 0

does not play any role in the theoretical results in [5], the only assumption needed in [5]

is that for ε = 0 the map is symplectic and has as an invariant torus. For the numerical

study in [1], the fact that the map for ε = 0 is integrable leads to much more efficient

algorithms. In this Thesis, we will not use explicitly the integrability for ε = 0, but this

seems to be the only case where it is possible to verify the assumption on the nonlinearity

being a trigonometric polynomial (yet another reason to try to get rid of that hypothesis).

The main result of this Thesis, Theorem 29, establishes the Gevrey character of the

formal power series expansions for the drift parameter µε and for the quasi-periodic orbit

of frequency ω of the map (2.1). The rigorous formulation of the main Theorem is given

in Section 2.3, the statements of the main results can be better understood after some pre-

liminary definitions and remarks are given (see Section 2.2). Here we give an informal

statement of our main result: Given a Diophantine frequency ω, the coefficients of the for-

mal power series expansions
∑
Knε

n and
∑
µnε

n for the quasi-periodic orbit and the drift

parameter, respectively, satisfy the following Gevrey estimates

‖Kn‖ ≤ CRnn(2τ/α)n |µn| ≤ CRnn(2τ/α)n

where τ depends on the Diophantine type of ω (see Definition 22) and α is the order of the

dissipation λ(ε) = 1− εα.

The model (2.1) can be thought as a numerical time step – using a Verlet-like method –

of the spin-orbit problem

ẋ = y

ẏ = −µy + λ+ V ′(x)

(2.2)
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2.1.2 Organization of the Chapter

The Chapter is organized as follows. In Section 2.2 we collect some standard definitions

and we also define the function spaces in which the iterative procedure takes place. Also,

in the same section we present some geometric identities which allow us to solve the lin-

earized equations of the modified Newton method. In Section 2.3 we state Theorem 29 and

Lemma 33, which are the main results of this Thesis and establish the Gevrey character of

the perturbative expansions of the quasi periodic orbits.

The proof of Theorem 29 is based on a quasi Newton method. In Section 2.4 we formu-

late the iterative step of this Newton method, while in Section 2.5 we provide estimates for

the corrections and the new error at one step of the method. Finally, in Section 2.6, using a

KAM like argument, we give estimates for any step of the Newton like procedure and, with

them, a proof of Lemma 33 is given establishing the Gevrey character of the perturbative

expansions.

2.2 Preliminaries

In this section we introduce the notations, collect some standard definitions including the

Banach spaces and their norms that enter in this Chapter. This section should be used as a

reference.

2.2.1 Symplectic properties

Let M = Td × B, B ⊆ Rd; endowed with an exact symplectic form Ω. Note that the

manifoldM is Euclidean (i.e. the tangent bundle is trivial) and we can compare vectors in

different tangent spaces. This is crucial in KAM theory.

We denote by J the matrix associated to the symplectic form Ω, i.e., in coordinates we

have Ωx(u, v) = (u, J(x)v) where (·, ·) denotes the inner product for any u, v ∈ TxM.

Note that J depends on the choice of the inner product.
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Definition 12. We say that a diffeomorphism defined on an symplectic manifold (M,Ω) is

conformally symplectic when

f ∗Ω = λΩ

for a number λ, where f ∗ denotes the standard pull back on forms.

The map (2.1) is conformally symplectic with the conformal factor λ(ε) = 1− εα and

the standard symplectic form Ω = dx ∧ dy on the cylinder T× R.

2.2.2 Banach spaces of analytic functions

Analytic functions on the torus

Given ρ > 0 we define the complex extension of the d-dimensional torus as

Tdρ =
{
z ∈ Cd/Zd | Re(zj) ∈ T, | Im(zj)| ≤ ρ

}
and denote Aρ as the vector space of analytic functions defined int(Tdρ) which can be ex-

tended continuously to the boundary of Tdρ. Aρ is endowed with the norm

‖g‖ρ = sup
θ∈Tdρ
|g(θ)|

which makes it into a Banach space.

For vector valued functions, g = (g1, g2, ..., gd), we define the norm

‖g‖ρ =
√
‖g1‖2

ρ + ‖g2‖2
ρ + ...+ ‖gd‖2

ρ

and for n1 × n2 matrix valued functions, G, we define

‖G‖ρ = sup
v∈Rn2 ,|v|=1

√√√√ n1∑
i=1

(
n2∑
j=1

‖Gij‖ρ vj
)2

.
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We will also need to work with functions of two variables. Denoting Bγ(0) ⊆ C the

open ball with center zero and radius γ in the complex plane, define

Aρ,γ=

{
K:Bγ(0)→Aρ

∣∣ K is analytic in Bγ(0) and can be extended continuously to Bγ(0)

}

endowed with the norm

‖K‖ρ,γ := sup
|ε|≤γ
‖K(ε)‖ρ .

It is well known that with the norms ‖·‖ρ,γ and ‖·‖ρ the spaces Aρ,γ and Aρ are Banach

algebras.

To discuss analyticity properties, we will need to deal with complex values of all the

arguments. For physical applications, we need mainly real variables. Hence, it will be

important that the functions we consider have the property that they yield real values for

real arguments. The functions that satisfy this property (real valued for real arguments) is

a closed (real) subspace of the above Banach spaces. All the constructions we use have the

property that when applied to real valued functions, they produce real valued functions.

Note that we can think of functions Aρ,γ as analytic functions on Bγ(0) taking values

on a space of analytic functions of the torus. This point of view is consistent with the

interpretation that we are considering families of problems and we are seeking families of

solutions.

For typographical reasons from now on we will use the following notation. Given

K ∈ Aρ,γ we denote Kε(θ) = K(θ, ε) := (K(ε))(θ).

Definition 13. Let B be a Banach space. Given an analytic function g : Bγ(0) ⊆ C −→ B,

and n ≥ 0, we say g(ε) ∼ O (|ε|n) if and only if there exists C > 0 such that

‖g(ε)‖ ≤ C|ε|n

for ε small enough. Equivalently, g(ε) ∼ O (|ε|n) if and only if g(ε) =
∑∞

k=n gkε
k for ε
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small enough and gk ∈ B.

Cauchy estimates.

We recall the classical Cauchy inequalities, see [56].

Lemma 14. For any 0 < δ ≤ ρ and for any function f ∈ Aρ we have

‖Dnf‖ρ−δ ≤ Cδ−n ‖f‖ρ ,

where Dn denotes the n-th derivative and

|f̂k| ≤ e−2π|k|ρ ‖f‖ρ

where |k| = |k1|+ |k2|+ · · ·+ |kn| and f̂ denotes the Fourier coefficient of f with index k.

As mentioned above we will be working with functions depending upon two variables.

The following are Cauchy inequalities in the second variable, ε.

Lemma 15. For any 0 < r ≤ γ and any function f ∈ Aρ,γ such that fε(θ) =
∑∞

n=0 fn(θ)εn

we have

‖fn‖ρ ≤
1

rn
‖f‖ρ,r .

Proof. By Cauchy integral formula

fn(θ) =
1

n!

dn

dεn
f(θ, ε)

∣∣∣∣
ε=0

=
1

2πi

∫
|ξ|=r

f(θ, ξ)

ξn+1
dξ =

1

2πrn

∫ 2π

0

f(θ, reiφ)

einφ
dφ,

thus, |fn(θ)| ≤ 1

rn
sup
|ε|≤r
|f(θ, ε)| and ‖fn‖ρ ≤

1

rn
‖f‖ρ,r.

Corollary 16. Assume that ∆ ∈ Aρ,γ is such that ∆ε =
∑∞

n=N+1 ∆nε
n. Let a, b ∈ N such

that N ≤ a < b ≤ ∞ and denote ∆
(a,b]
ε =

∑b
n=a+1 ∆nε

n. Then, for all 0 < r < 1 we have

∥∥∆(a,b]
∥∥
ρ,rγ
≤ ra+1

1− r ‖∆‖ρ,γ .
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Remark 17. Note that the estimate in Corollary 16 only depends on a, associated with the

order of the first term in the expansion of ∆(a,b].

2.2.3 Formal power series

General definitions

Formal power series expansions are just expressions of the form

∑
n

anε
n

where an belong to a Banach space, sometimes an are just scalars.

Formal power series are not meant to converge nor to represent a function. They can,

however be added, multiplied (using the Cauchy formula for product; note that for a fixed

degree, computing the coefficients involves only a finite sum) or substituted one into an-

other.

One can form equations among formal power series. The meaning is, of course, that

the coefficients on each side should be the same. This is extremely useful in many areas

of mathematics, notably combinatorics. See [57], [58] for more details on formal power

series.

Many perturbation expansions in physics or in applied mathematics are based precisely

into formulating the solutions of the equations of motion as formal power series and re-

quiring that the equations of motion are satisfied in the sense of power series. Notably,

the Lindstedt series were in standard use in astronomy even if they were only shown to

converge for some frequencies in [37].

Asymptotic expansions

For formal power series, a notion weaker that convergence of the series to a function is that

the series is asymptotic to a function.
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Definition 18. We say that a formal power series
∑
anε

n with coefficients an in a Banach

space X , is an asymptotic expansion to a function φ : D → X when for all N ∈ Z, there

exists CN such that for all ρ < ρ0

sup
ε∈D,|ε|≤ρ

∥∥∥∥∥
N∑
n=0

anε
n − φ(ε)

∥∥∥∥∥ ≤ CNρ
N+1

If the domain D does not include any ball centered at zero, even if the function φ is

analytic and bounded on D, this does not imply that the series converges.

Given a function φ, the associated expansions may be non unique. The Cauchy example

φ(ε) = exp(−ε−2) (2.3)

has an identically zero asymptotic expansion on a domain

Dδ = {ε : |Arg(ε)| < δ} (2.4)

when δ < π.

Note that the definition of asymptotic involves the domain D. A series may be asymp-

totic to a function in a domain but not in a larger domain. For example the zero series is

asymptotic to the the Cauchy example 2.3 in the domains Dδ as in (2.4) when δ < π, but

not when δ > π.

Gevrey formal expansions

Given a formal power series, even if it diverges, it is interesting to study how fast the

coefficients grow. The following definition captures some speed of growth that is weaker

than convergence, but which nevertheless appears naturally in many applied problems.

Definition 19. Let β, ρ > 0. We say that a power series expansion f =
∑∞

n=0 fn(θ)εn,

with fn ∈ Aρ, belongs to a Gevrey class (β, ρ) if and only if there exist constants C ≥ 0 ,
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R ≥ 0, and n0 ∈ N such that

‖fn‖ρ ≤ CRnnβn for n ≥ n0, (2.5)

and we denote f ∈ Gβρ .

Similarly, we say that a power series expansion µ =
∑∞

n=0 µnε
n, with µn ∈ Cd, belongs

to a Gevrey class β if and only if there exist constants C ≥ 0 , R ≥ 0, and n0 ∈ N such

that

|µn| ≤ CRnnβn for n ≥ n0, (2.6)

and we denote µ ∈ Gβ .

Remark 20. It is well known that (2.5) in Definition 19 is equivalent to the inequality

‖fn‖ρ ≤ CRn(n!)β for n ≥ n0

which, in turn, implies the series
∑∞

n=0
fn(θ)
(n!)β

εn converges in Aρ with positive radius of

convergence.

This remark makes a connection with the theory of Borel summability. If a series is

Gevrey, under some extra conditions, the Borel transform produces a function that is ana-

lytic in a sector and the series is asymptotic to this function. See [52], [58].

Remark 21. The class of functions that around each point have expansions satisfying Def-

inition 19 has received a lot of interest recently since those functions are related to many

deep theorems of Dynamical Systems (KAM, Nekhoroshev). Similar theories (e.g. hypoel-

lipticity) also admit Gevrey classes as natural regularity.

This thesis goes in a different direction. Even if we start with an analytic problem

– indeed polynomial! – several objects of interest are only Gevrey. The phemenon that

Analytic problems have only Gevrey solutions has appeared in other contexts in dynamics,

notably in the study of singular perturbations [42], the regularity of attractors and fast-
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slow systems [43, 44, 45]. Closer to us, in dependence on parameters of solutions of

non-linear problems, [46, 47], dependence of KAM tori in the frequency [48], or in the

theory of parabolic manifolds [49, 50].

A property from number theory

In KAM theory, some number theoretical properties of frequencies play an important role.

We will use the standard:

Definition 22. For ν, τ > 0, we say ω ∈ Rd is Diophantine of type (ν, τ) if∣∣e2πik·ω − 1
∣∣ ≥ ν|k|−τ .

We denote ω ∈ D(ν, τ).

2.2.4 Quasi-periodic orbits

A quasi-periodic sequence {xn}n∈Z of frequency ω ∈ Rd in a Euclidean manifold is a

sequence which can be expressed in terms of Fourier series.

xn =
∑
k∈Zd

e2πik·ωnx̂k = K(nω)

where K(θ) =
∑

k∈Zd e
2πik·θx̂k.

We can think of the function K as an embedding of the torus Td into phase space. If

ω does not have any resonances (i.e. k · ω 6= 0 for k ∈ Zd \ {0}, which can always be

arranged by reducing d if there is one), then {ωn}n∈Z is dense on the torus. The map K is

often called the hull function.

If xn is an orbit of a map, xn+1 = f(xn) we see that K(nω + ω) = f(K(nω)). Since

{ωn}n∈Z is dense, this is equivalent to

K(θ + ω) = f(K(θ)) ∀θ ∈ Td (2.7)

Hence, we see that the set K(Td), the image of the standard torus under the embedding K
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is invariant under f . So, it is customary to describe quasi-periodic solutions as invariant

tori.

The problem of given a map finding a quasi-periodic solution of frequency ω can be

formulated as finding an embedding K solving (2.7). The equation (2.7) will be our fun-

damental tool to characterize quasi-periodic orbits.

2.2.5 Set-up of the problem. The invariance equation

In this section, we describe informally the geometric set up and the geometric meaning of

the formulation of our problem. The precise formulation of the main result of this thesis

(Theorem 33) will be presented in Section 2.3.

We will be mainly concerned with an analytic family of maps fε,µ : M −→ M, such

that

f ∗ε,µΩ = λ(ε)Ω

where ε ∈ C is a small parameter, µ ∈ Λ ⊆ Cd is an internal parameter (the drift parame-

ter), and λ(ε) = 1− εα.

A good example to keep in mind is the dissipative standard map presented in (2.1).

Note that, for ε = 0 and for each µ, the maps f0,µ are symplectic because λ(0) = 1.

The main assumption in the main Lemma, Lemma 33, is that the map f0,µ0 has an

invariant torus in which the motion is a rotation of frequency ω which is Diophantine (see

Definition 22). Note that the drift parameter, µ, is chosen to guarantee the persistence of a

quasi periodic orbit of a given frequency ω, so we also consider µ = µε.

Following the discussion in Section 2.2.4 and, in particular (2.7), we see that finding

a quasi-periodic orbit for fε,µε is equivalent to finding families of embeddings Kε and

families of parameters µε in such a way that

fε,µε ◦Kε(θ) = Kε(θ + ω) (2.8)

43



Equation (2.8) should be interpreted as, given the family fε,µ and the frequency ω find-

ing µε, Kε. For this work, the sense in which (2.8) is meant to hold is the meaning of

formal power series (the coefficients of εn on both sides of (2.8) are identical for all n, as it

is customary in the study of Lindstedt series).

Note that the equation (2.8) is highly underdetermined. If µε, Kε is a solution, changing

θ into θ + σε, we obtain that µε, K̃ε is also a solution where K̃ε(θ) = Kε(θ + σε). This

change of variables has the physical meaning of choosing a change of origins in the torus.

2.2.6 Automatic reducibility

As it is noted in [41], a very useful property of conformally symplectic systems is that solu-

tions to equation (2.8) satisfy the so-called automatic reducibility, that is, in a neighborhood

of an invariant torus, one can find a system of coordinates in which the linearization of the

evolution has constant coefficients.

Lemma 23. Let fµ : M −→ M, such that, f ∗µΩ = λΩ, and K : Td −→ M such that

fµ◦K(θ) = K(θ+ω) with ω an irrational vector. IfN = (DK>DK)−1, then, the 2d×2d

matrix

M(θ) =
[
DK(θ)|J−1 ◦K(θ)DK(θ)N (θ)

]
(2.9)

satisfies

Dfµ ◦K(θ)M(θ) = M(θ + ω)

Id S(θ)

0 λ Id

 (2.10)

where Id ∈ Rd×d and S(θ) is an explicit algebraic expression involving DK, Dfµ, J ◦K,

and, N .

The proof of Lemma 23 is given in [41]. The argument is as follows, taking derivative in

equation (2.8) one has Dfµ ◦K0(θ)DK0(θ) = DK0(θ+ω) which gives the first column in

(2.10). The second column comes from the fact that the conformally symplectic property,

f ∗µΩ = λΩ, implies that the invariant torus given by equation (2.8) is Lagrangian. Then,
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using the conformally symplectic geometry the second column can be obtained.

Remark 24. As it is pointed out in [41] if K is an approximate solution of (2.8), that is,

fµ ◦K(θ)−K(θ + ω) =: E(θ) (2.11)

the relation (2.10) will hold with an error, R, that can be estimated in terms of the error,

E(θ), of the invariance equation, that is

Dfµ ◦K(θ)M(θ) = M(θ + ω)

Id S(θ)

0 λ Id

+R(θ), (2.12)

with

S(θ) ≡ P (θ + ω)>Df ◦K(θ)J−1 ◦K(θ)P (θ)−N (θ + ω)>Γ(θ + ω)N (θ + ω)λ

(2.13)

P (θ) ≡ DK(θ)N (θ),

Γ(θ) ≡ DK(θ)>J−1 ◦K(θ)DK(θ).

Moreover,

R(θ) =
[
DE(θ)

∣∣∣V (θ + ω)(B̃(θ)− λ Id) +DK(θ + ω)(S̃(θ)− S(θ))
]

(2.14)

where

V (θ) ≡ J−1 ◦K(θ)DK(θ)N (θ) (2.15)

B̃(θ)− λ Id ≡ DK(θ)>J ◦K(θ)DK(θ)S̃(θ) (2.16)

S̃(θ)− S(θ) ≡ −N (θ + ω)>Γ(θ + ω)N (θ + ω)(B̃(θ)− λ Id) (2.17)
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We note that B̃ − Id is estimated by the norm of (2.11), thus R in (2.14) can be estimated

by the norm of (2.11) as it is shown in Lemma 48. The derivation of the formulas in (2.13),

(2.14), and (2.15) can be found in [41].

Remark 25. Observe that when consideringK0, µ0 satisfying (2.8) and a perturbationKε,

µε (which could be given in terms of formal power series), equation (2.12) is also satisfied

by Kε, µε but with all the expressions depending on ε (small enough), that is,

Dfµε ◦Kε(θ)Mε(θ) = Mε(θ + ω)

Id Sε(θ)

0 λ Id

+Rε(θ).

2.3 Statement of the main result, Theorem 29

In this section we state the main result, Theorem 29, which gives the Gevrey character of

the perturbative expansions of the solutions to equation (2.8). First we introduce a normal-

ization which guarantees the uniqueness of the solutions to equation (2.8).

2.3.1 Normalization and local uniqueness

The centerpiece of this work is the invariance equation

fε,µε ◦Kε = Kε ◦ Tω (2.18)

where Tω(θ) = θ + ω. Note that if (K,µ) is a solution of the invariant equation (2.18),

then, for any σ ∈ Td, (K ◦ Tσ, µ) is also a solution of (2.18), due to the fact that K ◦ Tσ
parameterizes the same torus as K. So, in order to get uniqueness it is neccesary to impose

a normalization condition.

Definition 26. We say that a torus with embedding K is normalized with respect to K0

when ∫
Td

[
M−1

0 (θ)(K(θ)−K0(θ))
]
d
dθ = 0 (2.19)
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where the subscript d indicates that we take the first d rows of the 2d × d matrix, and M0

is constructed from K0 as in (2.9).

We also recall the following result ([41], Proposition 26) which shows that this condi-

tion can be imposed without loss of generality for solutions that are close to one another.

Proposition 27. Let K0, K be solutions of (2.18) and ||K − K0||C1 be sufficiently small

(with respect to quatities depending only on M -computed out of K0 - and f ). Then, there

exists σ ∈ Rd, such that K(σ) = K ◦ Tσ satisfies (2.19). Furthermore,

|σ| ≤ C||K −K0||C1

where the constant C can be chosen to be as close to 1 as desired by assuming that fµ,

K0, and K are twice differentiable, DK>0 DK is invertible and ||K −K0||C0 is sufficiently

small. The σ thus chosen is locally unique.

Remark 28. As it is noted in [41] the normalization (2.19) works as well when K is only

an approximate solution. Then, assuming that K0 is a solution of equation (2.18), the

normalization condition (2.19) for an approximate solution of (2.18) given as power series

expansion
∑∞

n=0Kn(θ)εn is equivalent to the conditions

∫
Td

[
M−1

0 (θ)Kn(θ)
]
d
dθ = 0 (2.20)

for all n ≥ 1.

2.3.2 Main Theorem

Here we present our main theorem, Theorem 29.

Theorem 29 (Main Theorem). Let ω ∈ D(ν, τ). Consider the map f : T × R → T × R
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given by

fε,µε(x, y) = (x+ λ(ε)y + µε − εV ′(x), λ(ε)y + µε − εV ′(x)) (2.21)

where λ(ε) = 1 − εα, α ∈ N, V (x) is a trigonometric polynomial, µε ∈ C, and ε ∈ C.

Then, there exists ρ0 > 0 such that the following holds

(A) There exist formal power series expansions K [∞]
ε =

∑∞
j=0Kjε

j and

µ
[∞]
ε =

∑∞
j=0 µjε

j satisfying fε,µ ◦ K = K(θ + ω) in the sense of formal power

series. More precisely, defining K [≤N ]
ε =

∑N
j=0Kjε

j and µ[≤N ]
ε =

∑N
j=0 µjε

j for

any N ∈ N we have

∥∥∥f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε −K [≤N ]
ε ◦ Tω

∥∥∥
ρ0
≤ CN |ε|N+1. (2.22)

where CN > 0. Moreover, if the Kj’s satisfy the normalization condition (2.20), then

the expansions K [∞]
ε , µ[∞]

ε are unique.

(B) The unique formal power series expansions, K [∞]
ε and µ[∞]

ε , satisfying (2.22) and the

normalization (2.20) are such that K [∞] ∈ G2τ/α
ρ0 and µ[∞] ∈ G2τ/α, i.e., there exists

constants L, F , N0 such that

‖Kn‖ρ0 ≤ LF nn(2τ/α)n and |µn| ≤ LF nn(2τ/α)n for any n > N0. (2.23)

The proof of Theorem 29 is an easy consequence of Lemma 33. Proposition 66, given

in the Appendix, shows the hypothesis of Lemma 33 are satisfied for maps of the form

(2.21). Lemma 33 states the same results as Theorem 29 but in a more general setting.

Remark 30. It is instructive to compare the results in Theorem 29 with the numerical

explorations of Chapter 1 (see also [1], [2]). In the case that λ(ε) = 1 − ε3 and ω is

the golden mean, Theorem 29 gives that the expansion satisfies the Gevrey bounds with
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exponent 2/3. Of course, Theorem 29 gives only an upper bound and lower exponents

could also be true. The numerical results in Chapter 1 ([1, 2]) lead to the conjecture that

the expansion
∑
Knε

n has some well defined asymptotics

‖Kn‖1/n
ρ ≈ Cnσ (2.24)

with a slightly smaller Gevery exponent, σ ≈ 0.3. The asymptotics (2.24) is compatible

with the results in Theorem 29, but suggests that the results in Theorem 29 are not optimal.

Chapter 1 also presents several other patterns in the series (refined versions of (2.24)

including oscillations of period 3, studies for other Diophantine numbers, etc.) We hope

that the method presented in this thesis can lead to studies of these phenomena, hitherto

discovered only through numerical implementation.

We think that the argument in Theorem 29 can be optimized to lower the Gevrey expo-

nent and get closer to the numerical values, but, since the method of proof is rather novel,

we decided to follow the advice “Premature optimization is the root of all evil” [17], and

present the argument in its simplest form so that it could, perhaps, be applied to other

problems.

For the sake of completeness, before stating the main Lemma we will state a Theorem

in [5] which assures the existence of formal power series expansions satisfying (2.18) up

to any order for conformally symplectic systems.

Theorem 31 ([5], Theorem 12). LetM≡ Td×B with B ⊆ Rd an open, simply connected

domain with smooth boundary;M is endowed with an analytic symplectic form Ω.

Let ω ∈ D(τ, ν) and consider a family fε,µ of conformally symplectic mappings that

satisfy

f ∗ε,µΩ = λ(ε)Ω, (2.25)

with µ ∈ Λ,Λ ⊆ Cd, λ(ε) = 1− εα, α ∈ N and ε ∈ C.
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Assume that for ε = 0 the family of maps f0,µ is symplectic and that for some value

µ0 the map f0,µ0 admits a Lagrangian invariant torus, namely we can find an analytic

embedding K0 ∈ Aρ(Td,M), for some ρ > 0, such that

f0,µ0 ◦K0 = K0 ◦ Tω. (2.26)

Furthermore, assume that the torus K0 satisfies the following hypothesis:

HND Let the following non-degeneracy condition be satisfied:

det

S0 S0(B0b)0 + Ã01

0 Ã02

 6= 0

where the d× d matrix S0 is defined as

S0(θ) ≡ N0(θ + ω)TDK0(θ + ω)Dfµ0,0 ◦K0(θ)J−1 ◦K0(θ)DK0(θ)N0(θ)

−N0(θ + ω)TDK0(θ + ω)TJ−1 ◦K0(θ + ω)DK0(θ + ω)N0(θ + ω)

withN = (DKT
0 DK0)−1, the d×d matrices Ã01, Ã02 denote the first d and the last d rows

of the 2d × d matrix Ã0 = (M0 ◦ Tω)−1 (Dµf0,µ0 ◦K0), where M0 is as in (2.9), (B0b)
0 is

the solution (with zero average) of the cohomology equation (B0b)
0−B0b ◦Tω = −(Ã02)0,

where (B0b)
0 ≡ B0b −B0b and the overline denotes the average.

Then, we have the following

(A) There exist a formal power series expansions K [∞]
ε =

∑∞
j=0Kjε

j and µ
[∞]
ε =∑∞

j=0 µjε
j satisfying (2.26) in the sense of formal power series. More precisely,

defining K [≤N ]
ε =

∑N
j=0 Kjε

j and µ[≤N ]
ε =

∑N
j=0 µjε

j for any N ∈ N and ρ > 0, we

have ∥∥∥f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε −K [≤N ]
ε ◦ Tω

∥∥∥
ρ′
≤ CN |ε|N+1. (2.27)
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for some 0 < ρ′ < ρ and CN > 0.

Moreover, if we require the Kj’s satisfy the normalization condition (2.20), then the

expansions K [∞]
ε , µ[∞]

ε are unique.

Note that Theorem 31 does not assume that the case ε = 0 is an integrable system, as it

is the case for the map (2.21) , it suffices that the case ε = 0 is a Hamiltonian system with

a KAM torus.

Remark 32. Denoting

EN
ε (θ) ≡ f

ε,µ
[≤N ]
ε
◦K [≤N ]

ε (θ)−K [≤N ]
ε (θ + ω) (2.28)

then (2.27) can be written as

∥∥EN
ε

∥∥
ρ′
≤ CN |ε|N+1. (2.29)

According to the notation introduced earlier, this means that EN
ε ∼ O

(
|ε|N+1

)
or EN

ε =∑∞
j=N+1 Ejε

j for ε small enough. We denote

E(N,2N ]
ε =

2N∑
j=N+1

Ejε
j

the truncated series.

The following lemma, Lemma 33, can be considered as an improvement of Theorem

31 in the sense that it gives Gevrey bounds for the coefficients Kj, µj of the unique (under

normalization) formal power series expansions K [∞]
ε , µ

[∞]
ε .

Lemma 33 (Main Lemma). Assume the hypothesis of Theorem 31. Assume also that for

any ε, small enough, and for any N ∈ N we have:

HTP1 Ẽ
(N,2N ]
ε,2 , ÃNε,2 are trigonometric polynomials in θ of degree at most aN , a ∈ N; where

Ẽ
(N,2N ]
ε,2 , ÃNε,2 denote the d × 1 and d × d matrices, respectively, given by taking the
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last d rows of the 2d× 1 matrix Ẽ(N,2N ]
ε =

(
M

[≤N ]
ε ◦ Tω

)−1

E
(N,2N ]
ε and the 2d× d

matrix ÃNε =
(
M

[≤N ]
ε ◦ Tω

)−1

Dµfε,µ[≤N ] ◦K [≤N ]
ε , respectively. M [≤N ]

ε is as in (2.9)

constructed from K
[≤N ]
ε .

HTP2 The d× d matrix

ẼN
Ω,ε(θ) ≡ DK [≤N ]

ε (θ + ω)>J ◦K [≤N ]
ε (θ + ω)DK [≤N ]

ε (θ + ω)

−D(fε,µ[≤N ] ◦K [≤N ]
ε (θ))>J ◦ (fε,µ[≤N ] ◦K [≤N ]

ε (θ))D(fε,µ[≤N ] ◦K [≤N ]
ε (θ)) (2.30)

is a trigonometric polynomial of degree at most aN .

Then, there exist ρ0 ≤ ρ′ such that the unique formal power series expansions, K [∞]
ε

and µ[∞]
ε , satisfying (2.27) and (2.20) are such that K [∞] ∈ G2τ/α

ρ0 and µ[∞] ∈ G2τ/α, i.e.,

there exists constants L, F , N0 such that

‖Kn‖ρ0 ≤ LF nn(2τ/α)n and |µn| ≤ LF nn(2τ/α)n for any n > N0. (2.31)

The proof of Lemma 33, given in Section 2.6.2, is done by means of a Newton like

method which acts on finite powers series expansions (K [≤N ]
ε , µ[≤N ]

ε ), this method is de-

scribed in the next section. We emphasize that this quasi Newton method takes advantage

of the conformally symplectic property (see Definitions 12) that maps like (2.21) satisfy.

We also point out that hypothesis HTP1 and HTP2 are very natural for the maps con-

sidered in Theorem 29. The verification of these hypothesis for the dissipative standard

map is described in detail in Proposition 66 of the Appendix. In the general setting in

which Lemma 33 is stated, the hypothesis HTP1 and HTP2 are needed to be able to get

estimates, in balls with center at the origin, for the solutions of the linear equations of the

quasi Newton method.
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2.3.3 Asymptotic estimates for invariance functions

The formal power series studied in this thesis are asymptotic expansions of functionsKε, µε

constructed in [5]. The functions Kε, µε are determined by the condition that they satisfy

the invariance equation (2.18) and the normalization (2.20). In this section we argue that the

same method we use to prove the Gevrey estimates also shows that the formal series defined

here are asymptotic to the functions Kε, µε with very strong estimates in the remainder, see

Theorem 34.

We emphasize that the functions Kε, µε are not constructed out of the asymptotic ex-

pansions by complex analysis methods (Borel summation, resummation of series). They

are obtained from the requirement that they satisfy the invariance equation (2.18) and the

normalization (2.20). It is an interesting open question whether some resummation of the

asymptotic expansions studied here can produce the functions Kε, µε.

The domain of definition of the functions Kε, µε is rather subtle. In [5], it is proved that

the domain of definition of Kε, µε contains a set G obtained by removing sequence of balls

that are dense on curves converging to the origin, in fact, it is rigorously showed that G is a

lower bound on the analyticity domain of the functions Kε, µε. We also point out that the

set G does not contain any ball centered at the origin. Indeed, the set G does not contain

any sector centered at the origin of width bigger than π/α, thus the width of the domain

is not enough to apply many methods of complex analysis related to Phragmén-Lindelöf

theory. In the other direction, the paper [5] contains arguments showing that for generic

perturbations one should not expect that the domain of analyticity contains the excluded

balls (if the perturbation happens to be identically zero one indeed obtains a larger domain).

The paper [1] studies numerically the maximal domain of definition of the functionsKε, µε

for the map (2.21) using a variety of methods including Pade summation and continuation

methods. Indeed [1] conjectured that the series were Gevrey and this was an important

motivation for this thesis.

The set G is determined by asking that λ(ε) satisfies a Diophantine condition with
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respect to ω, more precisely, defining

ν̃ = ν̃(λ;ω, τ) ≡ sup
k∈Zd\{0}

|e2πik·ω − λ|−1|k|−τ (2.32)

one has

G = G(A;ω, τ,N) =
{
ε ∈ C : ν̃(λ;ω, τ)|λ(ε)− 1|N+1 ≤ A

}
. (2.33)

The basic idea to prove the existence of the functions Kε, µε is as follows: The formal

power expansions produces a sequence of polynomials which satisfy the invariance equa-

tion (2.18) rather approximately in a ball. In the intersection of the ball with the set G, we

can apply the a-posteriori theorem, Theorem 14 in [5], and obtain a true solution of (2.18).

Of course, the detailed implementation requires taking into account several other issues

such as the absence of monodromy.

In this thesis, we will use a very similar technique. As as byproduct of the estimates

used in the proof of Lemma 33, we obtain that some truncations of the formal expansion

satisfy the invariance equation up to a very small error in appropriate balls. Then, in the

intersection of the balls with the set G we will be able to apply Theorem 20 in [41].

More precisely we have:

Theorem 34. Assuming the hypothesis of Lemma 33 and n ∈ (2hN0, 2
h+1N0]∩N, then for

any 0 < δ < ρ0 the asymptotic expansions in Lemma 33 satisfy

sup
ε∈G,|ε|≤γ̃h+2

∥∥∥∥∥∥
n∑
j=1

Kjε
j −Kε

∥∥∥∥∥∥
ρ0−δ

≤
(
U + V 2h(3τ+3d)rn+1r2hN0

)
(CD)hBh2r(2h−1)N0

∥∥EN0
∥∥
ρ0

(2.34)

where Ĉ and C are uniform constants and

U = Ĉν−1ν̃−1δ−2(τ+d), V = Cν−3(aN0)2τρ
−(τ+3d)
0 22τ+6d,

D = ν−6(aN0)4τρ
−(2τ+6d)
0 2−(4τ+12d), r = 2−τ/α, B = 26τ+6d, and
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γ̃h = (2−1ν)1/α(a2hN0)−τ/α.

Note that (2.34) can be understood as having super-exponentially small errors in do-

mains decreasing exponentially fast. It is also important to note that almost all constants in

(2.34) are given explicitly. The proof of Theorem 34 is given in Section 2.6.3.

2.4 Iterative step of the quasi Newton method.

The KAM procedure for the proof of Theorem 33 is based on the application of a quasi

Newton method, which is described in Section 2.4.2. Before describing this procedure we

introduce two types of cohomology equations that allow us to solve the linear equations,

and obtain estimates, of the modified Newton method. The estimates for each step of the

method will be given in Section 2.5.

2.4.1 Estimates for some cohomology equations

The iterative step described in Section 2.4.2 depends on the solution of two cohomology

equations. The first equation, (2.35), is very standard in KAM theory. The estimate given

in Lemma 35 is well known for the experts in KAM theory, we have decided to include

a proof here for the sake of completeness. The second type of cohomology equation we

consider, (2.37), it is more complicated to study due to the fact of the appearance of the

factor λ(ε) = 1 − εα. This factor introduces some restrictions in the set of parameters, ε,

for which we are able to obtain estimates.

Standard cohomology equation

The first cohology equation we deal with is the following

ϕε(θ)− ϕε(θ + ω) = ηε(θ) (2.35)
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Lemma 35 below, gives sufficient conditions to solve equation (2.35) and to obtain esti-

mates of its solutions. These estimates are very standard in KAM theory.

Lemma 35. Let ω ∈ D(ν, τ). Assume that η ∈ Aρ,r is such that
∫
Td ηε(θ)dθ = 0. Then,

we can find a unique solution of (2.35), ϕε, that satisfies
∫
Td ϕε(θ)dθ = 0. Moreover, if for

any 0 < δ ≤ ρ we have ϕ ∈ Aρ−δ,r, then

‖ϕ‖ρ−δ,r ≤ Cν−1δ−(τ+d) ‖η‖ρ,r .

With C = C(d). Furthermore, ηε ∼ O
(
|ε|k
)

implies ϕε ∼ O
(
|ε|k
)
.

Proof. Expanding in Fourier series the solution to (2.35) is given by

ϕε(θ) =
∑

k∈Zd\{0}
ηk(ε)

1−e2πik·ω e
2πik·θ. Then, using Cauchy estimates one obtains

‖ϕε‖ρ−δ ≤
∑

k∈Zd\{0}

|η̂k(ε)|
|1− e2πik·ω|

∥∥e2πik·θ∥∥
ρ−δ

≤
∑

k∈Zd\{0}

ν−1|k|τ ‖ηε‖ρ e−2π|k|ρe2π(ρ−δ)|k|

≤ Cν−1 ‖ηε‖ρ
∑
j∈N

jτ+d+1e2πδj

≤ Cν−1δ−(τ+d) ‖ηε‖ρ . (2.36)

The last line gives ϕε ∼ O
(
|ε|k
)

if ηε ∼ O
(
|ε|k
)

and taking supremum over ε the result is

proved.

Remark 36. Equation (2.35) appears very often in KAM theory. When ε ∈ R, the paper

[59] contains estimates with a better exponent on δ. That is, in the same situation of Lemma

35, when ε ∈ R, one can get ‖ϕε‖ρ−δ ≤ Cνδ−τ‖ηε‖ρ.
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Parametric cohomology equation

The second cohomology equation we are interested in is an equation for ϕε : Td → C, of

the form

λ(ε)ϕε(θ)− ϕε(θ + ω) = ηε(θ) (2.37)

where ηε : Td → C and ω ∈ Rd are given, ε fixed.

Note that, as it is seen in Lemma 38, solve equation (2.37) presents a small divisors

problem. In this case the small divisors depend on the variable ε, that is, equation (2.37) is

not expected to have a solution when λ(ε) = e2πik·ω. One approach that has been used to

deal with the small divisors in equation (2.37) (see [41]) requires to remove a set from the

complex plane, ε ∈ C, where the denominators λ(ε)− e2πik·ω are small. This gives rise to

a set with a complicated structure, G ⊂ C, of parameters, ε, in which is possible to find a

solution, and estimates, of equation (2.37). One of the properties of the set G described in

[41], is that it does not contain any ball with center at the origin. This property is one of the

reasons for which we follow a different approach to deal with equation (2.37), to prove the

Gevrey estimates in Lemma 33 we rely heavily on being able to obtain estimates of (2.37)

for ε in a ball centered at the origin.

The following two Lemmas allow us to obtain estimates in balls centered at ε = 0

for the solution, ϕε, of equation (2.37) whenever ηε is a trigonometric polynomial. If the

degree of the trigonometric polynomial, ηε, is aN , Lemma 37 gives a relation between this

degree and a domain in which the solution, ϕε, of (2.37) will be analytic in ε.

Note that the requirement of hypothesis HTP1 and HTP2 in Lemma 33 is due to the

fact that the quantities given in these hypothesis will be the right hand side of equations of

the form (2.37).

Lemma 37. Let ω ∈ D(ν, τ), λ(ε) = 1−εα, α ≥ 1, and a,N ∈ N. If |ε| ≤
(
ν
2

)1/α 1
(aN)τ/α

,
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then, for |k| ≤ aN we have

∣∣λ(ε)− e2πik·ω∣∣ ≥ ν

2

1

(aN)τ

Proof.

|e2πik·ω−λ(ε)| ≥ |e2πik·ω− 1| − |1−λ(ε)| ≥ ν

|k|τ − |ε|
α ≥ ν

(aN)τ
− ν

2(aN)τ
=
ν

2

1

(aN)τ

Lemma 38. Let λ(ε) = 1− εα, α ≥ 1, ω ∈ D(ν, τ); a,N ∈ N, and define

γN =
(ν

2

)1/α 1

(aN)τ/α
.

Let η ∈ Aρ,γN such that
∫
Td ηε(θ)dθ = 0 and assume that, for any ε, ηε(θ) is a trigono-

metric polynomial of degree aN in θ. Then, for any |ε| ≤ γN equation (2.37) has a unique

solution, ϕε(θ), such that
∫
Td ϕε(θ)dθ = 0. Furthermore, if for any 0 < δ ≤ ρ we have

ϕ ∈ Aρ−δ,γN , then,

‖ϕ‖ρ−δ,γN ≤ Cν−1(aN)τδ−d ‖η‖ρ,γN .

Moreover, if ηε ∼ O
(
|ε|k
)
, then ϕε ∼ O

(
|ε|k
)
.

Proof. Expanding ηε in Fourier series as ηε(θ) =
∑

0<|k|≤aN η̂k(ε)e
2πik·θ a solution to

(2.37) is given by

ϕε(θ) =
∑

0<|k|≤aN

η̂k(ε)

λ(ε)− e2πik·ω e
2πik·θ.
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Using Lemma 37 and Cauchy estimates, one obtains that for any |ε| ≤ γN

‖ϕε‖ρ−δ ≤
∑

0<|k|≤aN

|η̂k(ε)|
|λ(ε)− e2πik·ω|

∥∥e2πik·θ∥∥
ρ−δ

≤ 2(aN)τν−1
∑

0<|k|≤aN

|η̂k(ε)|e2π|k|(ρ−δ)

≤ 2(aN)τν−1
∑

0<|k|≤aN

‖ηε‖ρ e−2π|k|ρe2π|k|(ρ−δ)

≤ 2(aN)τν−1 ‖ηε‖ρ
aN∑
j=1

jd−1e−2πjδ

≤ Cν−1(aN)τδ−d ‖ηε‖ρ (2.38)

Thus, ‖ϕ‖ρ−δ,γN ≤ Cν−1(aN)τδ−d ‖η‖ρ,γN . The last claim comes from (2.38), that is

ϕε ∼ O
(
|ε|k
)

if ηε ∼ O
(
|ε|k
)
.

2.4.2 Formulation of the quasi Newton method

Every step of the quasi Newton method starts with a solution of equation (2.18) up to order

εN . That is, assume that

K [≤N ]
ε (θ) =

N∑
n=0

Kn(θ)εn, µ[≤N ]
ε =

N∑
n=0

µnε
n

satisfy the normalization (2.20) and

f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ)−K [≤N ]
ε (θ + ω) =: EN

ε (θ)

with ∥∥EN
ε

∥∥
ρ
≤ C|ε|N+1.

Remark 39. The first step of the Newton method could start with K [≤N0], µ[≤N0], given by

Theorem 31, for some N0.
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Newton’s method consists in finding corrections ∆ε, µε to K [≤N ]
ε and µ[≤N ]

ε such that

the linear approximation of equation (2.18) associated to K [≤N ]
ε + ∆ε, µ

[≤N ]
ε + σε reduces

the error up to quadratic terms. Taking into account that

fε,µ+σ ◦ (K + ∆) = fε,µ ◦K + [Dfε,µ ◦K] ∆ + [Dµfε,µ ◦K]σ +O(‖∆‖2) +O(‖σ‖2)

the Newton equation is

[
Df

ε,µ
[≤N ]
ε
◦K [≤N ]

ε

]
∆ε −∆ε ◦ Tω +

[
Dµfε,µ[≤N ]

ε
◦K [≤N ]

ε

]
σε = −EN

ε . (2.39)

Equation (2.39) is not easy to solve due to the fact that Df
ε,µ

[≤N ]
ε
◦K [≤N ]

ε is not constant.

Following an approach similar to that in [41], we will not solve (2.39) exactly but we

will find approximate solutions that will reduce quadratically the error. The idea is to

approximate the solution of (2.39) using the geometric identities introduced in Section

2.2.6. Considering the change of variables

∆ε = M [≤N ]
ε Wε, (2.40)

where M [≤N ]
ε is as in (2.9) computed from K

[≤N ]
ε . Using (2.12) one obtains that (2.39) is

equivalent to

M [≤N ]
ε ◦ Tω


Id S

[≤N ]
ε

0 λ(ε) Id

Wε −Wε ◦ Tω

+
(
Dµfε,µ[≤N ]

ε
◦K [≤N ]

ε

)
σε = −ENε −R[≤N ]

ε Wε

(2.41)

where R[≤N ]
ε is the error (2.14) and S[≤N ]

ε is given in (2.13), both computed from K
[≤N ]
ε .

That is

M [≤N ]
ε ≡

[
DK [≤N ]

ε

∣∣ J−1 ◦K [≤N ]
ε DK [≤N ]

ε N [≤N ]
ε

]
∼ O(|ε|0) (2.42)
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S[≤N ]
ε ≡ P [≤N ]

ε

>
Df

µ
[≤N ]
ε ,ε

◦K [≤N ]
ε J−1 ◦K [≤N ]

ε P [≤N ]
ε − λ(ε)N [≤N ]

ε

>
Γ[≤N ]
ε N [≤N ]

ε ∼ O(|ε|0)

(2.43)

N [≤N ]
ε ≡

[(
DK [≤N ]

ε

)>
DK [≤N ]

ε

]−1

∼ O(|ε|0), (2.44)

P [≤N ]
ε ≡ DK [≤N ]

ε N [≤N ]
ε ,

Γ[≤N ]
ε ≡ DK [≤N ]

ε

T
J−1 ◦K [≤N ]

ε DK [≤N ]
ε (2.45)

Since we expect both Wε and R
[≤N ]
ε to be estimated by EN

ε , see (2.66) and (2.76), the

term WεR
[≤N ]
ε is quadratic in EN

ε , thus, we expect that omitting this term in (2.41) will not

change the quadratic nature of the method.

In order to be able to get estimates of solutions of cohomology equations of the form

(2.37) instead of considering the whole error EN
ε =

∑∞
j=N+1Ejε

j we only consider a trun-

cation of this series, that is, we only consider E(N,2N ]
ε =

∑2N
j=N+1 Ejε

j .

Taking the above into account our quasi Newton step consist in solving the following equa-

tion

M [≤N ]
ε ◦ Tω


Id S

[≤N ]
ε

0 λ(ε) Id

Wε −Wε ◦ Tω

+
(
Dµfε,µ[≤N ]

ε
◦K [≤N ]

ε

)
σε = −E(N,2N ]

ε

(2.46)

Remark 40. The election of the truncation E(N,2N ]
ε in (2.46) has two very important im-

plications for the proof of our result. The first one is that this will yield a new approximate

solution which reduces the error quadratically, as a function of ε. Moreover, our model

example, the dissipative standard map (2.1), will satisfy hypothesis HTP1 and HTP2 in

Lemma 33 due to the fact that the truncation is made. See appendix A.

In order to construct a solution of equation (2.46), we follow a similar approach as in

[41]. Defining

Ẽε
(N,2N ]

:=
(
M [≤N ]

ε ◦ Tω
)−1

E(N,2N ]
ε ∼ O(|ε|N+1) (2.47)
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ÃNε :=
(
M [≤N ]

ε ◦ Tω
)−1

Dµfε,µ[≤N ]
ε
◦K [≤N ]

ε ∼ O(|ε|0) (2.48)

and writing Ẽ(N,2N ]
ε ≡ (Ẽ

(N,2N ]
ε,1 , Ẽ

(N,2N ]
ε,2 )>, where Ẽ(N,2N ]

ε,1 and Ẽ(N,2N ]
ε,2 are the first and

last d rows of the 2d × 1 matrix Ẽε
(N,2N ]

. Similarly, write ÃNε = (ÃNε,1, Ã
N
ε,2)> and Wε =

(Wε,1,Wε,2)>. Then (2.46) can be written in components as

Wε,1 −Wε,1 ◦ Tω = −S[≤N ]
ε Wε,2 − Ẽ(N,2N ]

ε,1 − ÃNε,1σε (2.49)

λ(ε)Wε,2 −Wε,2 ◦ Tω = −Ẽ(N,2N ]
ε,2 − ÃNε,2σε (2.50)

DenotingWε,i as the average ofWε,i, with respect to θ, and (Wε,i)
0 = Wε,i−Wε,i, i = 1, 2;

we can divide the system above into two systems, one for the average and another one for

the no-average part, that is

0 = −S[≤N ]
ε Wε,2 − S[≤N ]

ε (Wε,2)0 − Ẽ(N,2N ]
ε,1 − ÃNε,1σε

ε3Wε,2 = −Ẽ(N,2N ]
ε,2 − ÃNε,2σε (2.51)

(Wε,1)0 − (Wε,1)0 ◦ Tω = −(S[≤N ]
ε Wε,2)0 − (Ẽ

(N,2N ]
ε,1 )0 − (ÃNε,1)0σε

λ(ε)(Wε,2)0 − (Wε,2)0 ◦ Tω = −(Ẽ
(N,2N ]
ε,2 )0 − (ÃNε,2)0σε. (2.52)

In order to uncouple systems (2.51) and (2.52) we consider (Wε,2)0 as an affine function of

σε, due to (2.52). That is,

(Wε,2)0 = (Ba,ε)
0 + (Bb,ε)

0σε (2.53)
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where (Ba,ε)
0 and (Bb,ε)

0 are defined as the solutions of

λ(ε)(Ba,ε)
0 − (Ba,ε)

0 ◦ Tω = −(Ẽ
(N,2N ]
ε,2 )0 (2.54)

λ(ε)(Bb,ε)
0 − (Bb,ε)

0 ◦ Tω = −(ÃNε,2)0. (2.55)

Due to HTP1, and applying Lemma 38, equations (2.54) and (2.55) can be solved and we

can get estimates in balls with center at ε = 0. Once that (2.54) and (2.55) are solved, and

using (2.53), system (2.51) can be written as

S[≤N ]
ε S

[≤N ]
ε (Bb,ε)0 + ÃNε,1

ε3 Id ÃNε,2


Wε,2

σε

 =

−S[≤N ]
ε (Ba,ε)0 − Ẽ(N,2N ]

ε,1

−Ẽ(N,2N ]
ε,2

 (2.56)

Remark 41. Due to HND in Theorem 31 the matrix in the left hand side of (2.56) is

invertible at ε = 0. By the continuity of the determinant, equation (2.56) can be solved for

ε small enough and the inverse is analytic in ε.

Thus, (2.53) and (2.56) yield σε ∼ O
(
|ε|N+1

)
and

Wε,2 = (Wε,2)0 + Wε,2 ∼ O
(
|ε|N+1

)
. It remains to find Wε,1, this can be done by solving

the equation

(Wε,1)0 − (Wε,1)0 ◦ Tω = −(S[≤N ]
ε Wε,2)0 − (Ẽ

(N,2N ]
ε,1 )0 − (ANε,1)0σε, (2.57)

which can be done due to Lemma 35. To fulfill the normalization condition (2.20) and

obtain uniqueness of the coefficients of the perturbative expansions, W ε,1 is chosen as

W ε,1 = −
(∫

Td

[
M−1

0 (θ)DK [≤N ]
ε

]
d
dθ

)−1 ∫
Td

[
M−1

0 (θ)
(
DK [≤N ]

ε (Wε,1)0 + V [≤N ]
ε Wε,2

)]
d
dθ

(2.58)

where V [≤N ] = J−1 ◦K [≤N ]
ε DK

[≤N ]
ε N [≤N ]

ε is the second column of the matrix M [≤N ]
ε , see

Remark 28.

Remark 42. Assuming that K [≤N ]
ε satisfies the normalization (2.20), then the new approx-
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imation K [≤N ]
ε + ∆ε will satisfy (2.20) if the correction satisfies

∫
Td
M−1

0 (θ)∆ε(θ)dθ = 0.

Since ∆ε = M
[≤N ]
ε Wε = DK

[≤N ]
ε Wε,1 + V

[≤N ]
ε Wε,2 = DK

[≤N ]
ε

(
(Wε,1)0 +Wε,1

)
+

V
[≤N ]
ε Wε,2, (2.58) follows from the fact that∫
Td

[
M−1

0 DK
[≤N ]
ε W ε,1

]
d
dθ =

∫
Td

[
M−1

0 DK
[≤N ]
ε

]
d
dθWε,1. Note that the d × d ma-

trix
∫
Td

[
M−1

0 (θ)DK
[≤N ]
ε (θ)

]
d
dθ is invertible, for ε small enough, due to the fact that

DK
[≤N ]
ε (θ) is a perturbation ofDK0(θ) and

[
M−1

0 (θ)DK0(θ)
]
d

= Id×d, becauseM0(θ) =

[DK0(θ)|V0(θ)].

This yields, Wε,1 = (Wε,1)0 +W ε,1 ∼ O
(
|ε|N+1

)
and thus

∆ε = M [≤N ]
ε Wε ∼ O

(
|ε|N+1

)
and σε ∼ O

(
|ε|N+1

)
. (2.59)

which means that ∆ε =
∑∞

n=N+1 ∆nε
n and σε =

∑∞
n=N+1 σnε

n. Finally, we take the

corrections as

∆(N,2N ]
ε ≡

2N∑
n=N+1

∆nε
n and σ(N,2N ]

ε ≡
2N∑

n=N+1

σnε
n. (2.60)

Therefore, the new approximation is chosen as

K [≤2N ]
ε := K [≤N ]

ε + ∆(N,2N ]
ε and µ[≤2N ]

ε := µ[≤N ]
ε + σ(N,2N ]

ε . (2.61)

Remark 43. Notice that, due to Lemma 38, the solutions of (2.54) and (2.55) will sat-

isfy (Ba,ε)
0 ∼ O(|ε|N+1) and (Bb,ε)

0 ∼ O(|ε|0), because (Ẽ
(N,2N ]
ε,2 )0 ∼ O(|ε|N+1) and

(ÃNε,2)0 ∼ O(|ε|0). Moreover, (2.56) implies that W ε,2 ∼ O(|ε|N+1) and σε ∼ O(|ε|N+1).

Thus,Wε,2 ∼ O(|ε|N+1) and similarlyWε,1 ∼ O
(
|ε|N+1

)
which implies ∆ε ∼ O

(
|ε|N+1

)
.
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2.4.3 Algorithm for the iterative step

The procedure described above leads Algorithm 44 for a given Diophantine vector ω and

assuming that we are given an analytic family fε,µε . Some steps in the algorithm are denoted

as p← q, meaning that the quantity q is assigned to the variable p.

Algorithm 44. Given K [≤N ]
ε : Tn →M, µ[≤N ]

ε ∈ Rd. We perform the following computa-

tions:
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(1) EN
ε ← f

ε,µ
[≤N ]
ε
◦K [≤N ]

ε −K [≤N ]
ε ◦ Tω

(2) E
(N,2N ]
ε obtained from EN

ε by truncation

(3) αε ← DK
[≤N ]
ε

(4) Nε ← [α>ε αε]
−1

(5) Vε ← J−1 ◦K [≤N ]
ε αεNε

(6) Mε ← [αε|Vε]

(7) βε ← (Mε ◦ Tω)−1

(8) Ẽ
(N,2N ]
ε ← βεE

(N,2N ]
ε

(9) Pε ← αεNε
Γε ← α>ε J

−1 ◦K [≤N ]
ε αε

Sε ← (Pε ◦ Tω)>Df
µ
[≤N ]
ε ,ε

◦K [≤N ]
ε J−1 ◦K [≤N ]

ε Pε

−λ(ε)(Nε ◦ Tω)>Γε ◦ Tω(Nε ◦ Tω)

Ãε ← βεDµfµ[≤N ]
ε
◦K [≤N ]

ε

(10) (Ba,ε)
0 solves λ(ε)(Ba,ε)

0 − (Ba,ε)
0 ◦ Tω = −(Ẽ

(N,2N ]
ε,2 )0

(Bb,ε)
0 solves λ(ε)(Bb,ε)

0 − (Bb,ε)
0 ◦ Tω = −(Ãε,2)0

(11) Find Wε,2, σε by solving Sε Sε(Bb,ε)0 + Ãε,1

ε3 Id Ãε,2


Wε,2

σε

 =

−Sε(Ba,ε)0 − Ẽ(N,2N ]
ε,1

−Ẽ(N,2N ]
ε,2


(12) (Wε,2)0 = (Ba,ε)

0 + (Bb,ε)
0σε

(13) Wε,2 = (Wε,2)0 +Wε,2 ∼ O
(
|ε|N+1

)
(14) (Wε,1)0 solves (Wε,1)0 − (Wε,1)0 ◦ Tω = −(SεWε,2)0 − (Ẽ

(N,2N ]
ε,1 )0 − (Ãε,1)0

(15) Wε,1 = −
(∫

Td
[
M−1

0 αε
]

1
dθ
)−1 ∫

Td
[
M−1

0 (αε(Wε,1)0 + VεWε,2)
]

1
dθ

(16) Wε,1 = (Wε,1)0 +Wε,1 ∼ O
(
|ε|N+1

)
(17) ∆ε ←MεWε

(18) K
[≤2N ]
ε ← K

[≤N ]
ε + ∆

(N,2N ]
ε

µ
[≤2N ]
ε ← µ

[≤N ]
ε + σ

(N,2N ]
ε

It is worth to note that all the operations in Algorithm 44 could be implemented in a
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few lines in a high level computer language.

Remark 45. Note that Algorithm 44 involves only algebraic operations, compositions,

derivatives, truncations, and solving cohomology equations. This implies that if we start

with analytic functions then the output will be an analytic function.

Remark 46. Note that at each step of the iterative procedure obtained by the quasi Newton

method the input will be polynomials of degree N in ε, K [≤N ]
ε ≡∑N

n=0Knε
n, and µ[≤N ]

ε =∑N
n=0 µnε

n. The output will be polynomials of degree 2N in ε given by

K [≤2N ]
ε := K [≤N ]

ε + ∆(N,2N ]
ε and µ[≤2N ]

ε := µ[≤N ]
ε + σ(N,2N ]

ε .

Since, by construction, ∆
(N,2N ]
ε ∼ O

(
|ε|N+1

)
and σ(N,2N ]

ε ∼ O
(
|ε|N+1

)
, the firstN coeffi-

cientsK1, K2, ..., KN of the expansion ofK [≤2N ] will be the same coefficients ofK [≤N ] and

they will not change for any of the next steps. The same also happens for the coefficients of

µ
[≤2N ]
ε . This is a crucial step for proving the main lemma, Lemma 33, since due to the fact

that the coefficient up to order N do not change after log2(N) steps of the modified Newton

method, one can use Cauchy estimates in the domains given by Lemma 38 after log2(N)

steps to obtain estimates on the N coefficient.

Remark 47. To iterate the modified Newton method in Algorithm 44 it is needed that the

new error E2N
ε obtained using the new approximations K [≤2N ]

ε = K
[≤N ]
ε + ∆

(N,2N ]
ε and

µ
[≤2N ]
ε = µ

[≤N ]
ε + σ

(N,2N ]
ε satisfies E2N

ε ∼ O
(
|ε|2N+1

)
. This is a consequence of the fact

that the new error is quadratic in the original error, as an expansion on ε, and this is

verified in Lemma 56.

2.5 Estimates for the iterative step.

In this section we present the estimates for the corrections given by the Newton step de-

scribed in Section 2.4, these estimates are obtained by following the steps in Algorithm
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44. Throughout this section we consider maps in the spaces Aρ,γ . In the following we will

be dealing with equations of the form (2.37) which, accordingly with Lemma 38, can be

solved if

ε ≤ γN :=
(ν

2

)1/α 1

(aN)τ/α
. (2.62)

where aN is the degree of the trigonometric polynomial in the right hand side of (2.37).

2.5.1 Estimate for the reducibility error.

The following Lemma provides an estimate for the error in the approximate reducibility

given by R[≤N ]
ε as in (2.14) computed from K

[≤N ]
ε . The estimates are obtained by studying

qualitatively the geometric identities introduced in Section 2.2.6 and taking into account

the uniformity on the variable ε.

Lemma 48. Let N ∈ N, ω ∈ D(ν, τ) and fε,µ : M → M be a family of analytic

conformally symplectic maps, with f ∗ε,µΩ = λ(ε)Ω, µ ∈ Λ ⊆ Cd. Let K [≤N ] ∈ Aρ,γN
such that K [≤N ]

ε : Td →M is an embedding for any |ε| ≤ γN . Assume also that, for any

|ε| ≤ γN ,

i) K [≤N ]
ε

(
Tdρ
)
⊂ Domain(f

ε,µ
[≤N ]
ε

) and that there exist ξ ≥ 0 such that

dist
(
K [≤N ]
ε

(
Tdρ
)
, ∂Domain(f

ε,µ
[≤N ]
ε

)
)
≥ ξ > 0

dist
(
µ[≤N ]
ε , ∂Λ

)
≥ ξ > 0

ii) The approximate invariance equation holds

f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε −K [≤N ]
ε ◦ Tω = EN

ε ∼ O
(
|ε|N+1

)
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iii)

ν−1(aN)τδ−(d+1)
∥∥EN

∥∥
ρ,γN
� 1 (2.63)

iv) HTP2 The d× d matrix

EN
Ω,ε(θ) ≡ DK [≤N ]

ε (θ + ω)>J ◦K [≤N ]
ε (θ + ω)DK [≤N ]

ε (θ + ω)

−D(f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ))>J ◦ (f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ))D(f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ)) (2.64)

is a trigonometric polynomial of degree less than aN .

Then

R[≤N ]
ε ∼ O(|ε|N+1) (2.65)

and for any 0 < δ ≤ ρ we have

∥∥R[≤N ]
∥∥
ρ−δ,γN

≤ Cν−1(aN)τδ−(d+1)
∥∥EN

∥∥
ρ,γN

(2.66)

where C = C(d,
∥∥DK [≤N ]

∥∥
ρ,γN

,
∥∥N [≤N ]

∥∥
ρ,γN

,
∥∥J ◦K [≤N ]

∥∥
ρ,γN

).

Proof. Writing R[≤N ]
ε in terms of K [≤N ]

ε as in (2.14) yields

R
[≤N ]
ε (θ)=

[
DENε (θ)

∣∣ V [≤N ]
ε (θ+ω)(Bε(θ)−λ(ε) Id)+DK

[≤N ]
ε (θ+ω)

(
S̃ε(θ)−S[≤N ]

ε (θ)
)]

with

V [≤N ]
ε (θ) ≡ J−1 ◦K [≤N ]

ε (θ)DK [≤N ]
ε (θ)N [≤N ]

ε (θ) (2.67)

Bε(θ)− λ(ε) Id ≡ −EN
L,ε(θ + ω)S[≤N ]

ε (θ) (2.68)

S̃ε(θ)− S[≤N ]
ε (θ) ≡ −N [≤N ]

ε (θ + ω)>Γ[≤N ]
ε (θ + ω)N [≤N ]

ε (θ + ω) (Bε(θ)− λ(ε) Id)

(2.69)

69



where

EN
L,ε(θ) ≡ DK [≤N ]

ε (θ)>J ◦K [≤N ]
ε (θ)DK [≤N ]

ε (θ) (2.70)

is the pull back (K
[≤N ]
ε )∗Ω written in coordinates and Γ

[≤N ]
ε as in (2.45). We recall that J

is the matrix associated to the symplectic form, see Section 2.2. It is easy to estimate the

first column of R[≤N ]
ε using Cauchy estimates, that is

∥∥DEN
ε

∥∥
ρ−δ ≤ Cδ−1

∥∥EN
ε

∥∥
ρ

To obtain estimates for the second column of R[≤N ]
ε , due to (2.68) and (2.69), it is

enough to get estimates of EN
L . The estimate for EN

L is obtained using that f ∗ε,µΩ =

λ(ε)Ω. Note that EN
Ω,ε = (K

[≤N ]
ε ◦ Tω)∗Ω− (f

ε,µ
[≤N ]
ε
◦K [≤N ]

ε )∗Ω in coordinates and, since

(f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε )∗Ω = λ(K
[≤N ]
ε )∗Ω, we have that EN

L satisfies the equality

EN
L,ε ◦ Tω − λ(ε)EN

L,ε = EN
Ω,ε. (2.71)

Then, by Lemma 38 and HTP2 we obtain

∥∥EN
L

∥∥
ρ−δ,γN

≤ Cν−1(aN)τδ−d
∥∥EN

Ω

∥∥
ρ−δ/2,γN

. (2.72)

To get estimates for EN
Ω , we follow [41]. If h and g are smooth maps with range inM,

the matrix corresponding to h∗Ω− g∗Ω is

Dh>J◦hDh−Dg>J◦gDg=(Dh>−Dg>)J◦hDh−Dg>(J◦h−J◦g)Dh+Dg>J◦g(Dh−Dg)

Using this formula with g = f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε , h = K
[≤N ]
ε ◦ Tω and Cauchy estimates one

obtains ∥∥EN
Ω,ε

∥∥
ρ−δ/2 ≤ Cδ−1

∥∥EN
ε

∥∥
ρ

(2.73)
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which yields EN
L,ε, E

N
Ω,ε ∼ O

(
|ε|N+1

)
and, then, R[≤N ]

ε ∼ O
(
|ε|N+1

)
and

∥∥R[≤N ]
∥∥
ρ−δ,γN

≤ Cν−1(aN)τδ−(d+1)
∥∥EN

∥∥
ρ,γN

. (2.74)

Note that when the matrix J is constant both HTP2 and the computations above are signif-

icantly simpler than in the general case.

Remark 49. We emphasize that, if K0 satisfies K0 ◦Tω− f0,µ0 ◦K0 = 0 then DK0(θ)>J ◦

K0DK0(θ) = 0 and K0(Td) is a Lagrangian manifold, see [41]. This implies that the

spaces Range(DK0(θ)) and Range(J−1◦K0(θ)DK0(θ)) are transversal and this condition

makes M0(θ) a linear isomorphism. Note that if EN
L in (2.70) represents the error of the

lagrangian character of K [≤N ]
ε , then, if EN

L is small enough the spaces Range(DK
[≤N ]
ε (θ))

and Range(J−1◦K [≤N ]
ε (θ)DK

[≤N ]
ε (θ)) will be transversal and the matrixM [≤N ]

ε will define

a linear isomorphism. This transversality will be obtained if (2.63) is satisfied and it is

given by (2.72) and (2.73).

2.5.2 Estimates for the corrections

In this sections we obtain estimates for the corrections ∆(N,2N ] and σ(N,2N ], this estimates

are obtained by following the steps in Algorithm 44. First, Lemma 50, we obtain estimates

for the corrections ∆ε, σε and then, using Cauchy estimates, we obtain estimates for the

truncations ∆(N,2N ], σ(N,2N ] , Corollary 51.

Consider C ⊆ Cd/Zd × Cd the complexification ofM = Td ×B.

Lemma 50. Let a ∈ N, 0 < ρ < 1, and δ such that 0 < 2δ < ρ. Assume that for any

ε ∈ C, such that |ε| < γN , f
ε,µ

[≤N ]
ε

: C → C is an analytic conformally symplectic map

with f ∗
ε,µ

[≤N ]
ε

Ω = λ(ε)Ω. Assume also that K [≤N ] ∈ Aρ,γN is such that K [≤N ]
ε : Tdρ →

Cd/Zd × Cd is an embedding. Assume also that for any |ε| < γN we have the following:
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i) K [≤N ]
ε

(
Tdρ
)
⊂ Domain(fε,µ[≤N ]) and that there exist ξ ≥ 0 such that

dist
(
K [≤N ]
ε

(
Tdρ
)
, ∂Domain(fε,µ[≤N ])

)
≥ ξ > 0

dist
(
µ[≤N ]
ε , ∂Λ

)
≥ ξ

ii) HND. The following non-degeneracy condition holds:

det

S[≤N ]
ε S

[≤N ]
ε (Bb,ε)0 + ÃNε,1

ε3 Id ÃNε,2

 6= 0

iii) HTP1 For any N ∈ N, the matrices (Ẽ
(N,2N ]
ε,2 )0 and (ÃNε,2)0 defined in (2.47) and

(2.48), are trigonometric polynomials of degree less or equal than aN .

Then, for any 0 < r < 1 we have

Wε ∼ O
(
|ε|N+1

)
, σε ∼ O

(
|ε|N+1

)
(2.75)

‖W‖ρ−δ,rγN ≤ Cν−3(aN)2τδ−(τ+3d) r
N+1

1− r
∥∥EN

∥∥
ρ,γN

(2.76)

and

sup
|ε|≤rγN

|σε| ≤ Cν−1(aN)τδ−d
rN+1

1− r
∥∥EN

∥∥
ρ,γN

(2.77)

whereC = C(d,
∥∥DK [≤N ]

∥∥
ρ,γN

,
∥∥M [≤N ]

∥∥
ρ,γN

,
∥∥(M [≤N ])−1

∥∥
ρ,γN

,
∥∥N [≤N ]

∥∥
ρ,γN

, T N) and

T N is defined in (2.81).

Proof. Given that (Ẽ
(N,2N ]
ε,2 )0 and (ÃNε,2)0 are trigonometric polynomials, by Lemma 38,
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(2.54), and (2.55); Ba and Bb satisfy the following estimates

‖Ba‖ρ−δ,rγN ≤ Cν−1(aN)τδ−d
∥∥∥Ẽ(N,2N ]

2

∥∥∥
ρ,rγN

≤ Cν−1(aN)τδ−d
∥∥E(N,2N ]

∥∥
ρ,rγN

(2.78)

and similarly

‖Bb‖ρ−δ,rγN ≤ Cν−1(aN)τδ−d
∥∥AN∥∥

ρ,rγN
. (2.79)

Taking into account thatW2 = (W2)0 +W2 and (W2)0 = (Ba)
0 +σ(Bb)

0, to have estimates

for W2 we need estimates for W2 and σ. Now, according to (2.56) we have

Wε,2

σε

 =

S[≤N ]
ε S

[≤N ]
ε (Bb,ε)0 + ÃNε,1

ε3 Id ÃNε,2


−1−S[≤N ]

ε (Ba,ε)0 − Ẽ(N,2N ]
ε,1

−Ẽ(N,2N ]
ε,2

 , (2.80)

denoting

T Nε :=

∥∥∥∥∥∥∥
S[≤N ]

ε S
[≤N ]
ε (Bb,ε)0 + ÃNε,1

ε3 Id ÃNε,2


−1∥∥∥∥∥∥∥ and T N = sup

|ε|≤rγN
T Nε (2.81)

from (2.80) we have

|σε|,
∣∣Wε,2

∣∣ ≤ T Nε (∣∣∣S[≤N ]
ε (Ba,ε)0 + Ẽ

(N,2N ]
ε,1

∣∣∣+
∣∣∣Ẽ(N,2N ]

ε,2

∣∣∣) ∼ O (|ε|N+1
)

(2.82)

which yields σε ∼ O
(
|ε|N+1

)
and Wε,2 ∼ O

(
|ε|N+1

)
because (Ba,ε)

0 ∼ O
(
|ε|N+1

)
and

Ẽ
(N,2N ]
ε ∼ O

(
|ε|N+1

)
.

Thus

|σε|, |Wε,2| ≤ T Nε
(∣∣∣S[≤N ]

ε (Ba,ε)0

∣∣∣+
∣∣∣Ẽ(N,2N ]

ε,1

∣∣∣+
∣∣∣Ẽ(N,2N ]

ε,2

∣∣∣)
≤ CT N

(∥∥S[≤N ]
ε

∥∥
ρ

∥∥(Ba,ε)
0
∥∥
ρ−δ +

∥∥∥Ẽ(N,2N ]
ε,1

∥∥∥
ρ

+
∥∥∥Ẽ(N,2N ]

ε,2

∥∥∥
ρ

)
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for any 0 < δ < ρ. Thus, using (2.47) and (2.78) we obtain

sup
|ε|≤rγN

∣∣Wε,2

∣∣ ≤ Cν−1(aN)τδ−d
∥∥E(N,2N ]

∥∥
ρ,rγN

(2.83)

sup
|ε|≤rγN

|σε| ≤ Cν−1(aN)τδ−d
∥∥E(N,2N ]

∥∥
ρ,rγN

. (2.84)

For (W2)0 = (Ba)
0 + σ(Bb)

0 we have

∥∥(W2)0
∥∥
ρ−δ,rγN

≤
∥∥(Ba)

0
∥∥
ρ−δ,rγN

+ sup
|ε|≤rγN

|σ|
∥∥(Bb)

0
∥∥
ρ−δ,rγN

≤Cν−1(aN)τ δ−d‖E(N,2N ]‖
ρ,rγN

+Cν−2(aN)2τ δ−2d‖AN‖
ρ,rγN
‖E(N,2N ]‖

ρ,rγN
,

≤ Cν−2(aN)2τδ−2d
∥∥E(N,2N ]

∥∥
ρ,rγN

.

(2.85)

Thus, combining (2.83) and (2.85) we get

‖W2‖ρ−δ,rγN ≤ Cν−2(aN)2τδ−2d
∥∥E(N,2N ]

∥∥
ρ,rγN

(2.86)

The estimates for (W1)0 come from (2.57) and Lemma 35, i.e.,

∥∥(W1)0
∥∥
ρ−2δ,rγN

≤Cν−1δ−(τ+d)

[
‖S[≤N ]‖

ρ−δ,rγN
‖W2‖ρ−δ,rγN+‖Ẽ(N,2N ]‖

ρ−δ,rγN
+sup|ε|≤rγN |σε|‖ÃN‖ρ−δ,rγN

]

≤Cν−1δ−(τ+d)
[∥∥S[≤N ]

∥∥
ρ,rγN

ν−2(aN)2τδ−2d
∥∥E(N,2N ]

∥∥
ρ,rγN

+
∥∥∥(M [≤N ]

)−1
∥∥∥
ρ,rγN

∥∥E(N,2N ]
∥∥
ρ,rγN

+
∥∥AN∥∥

ρ,rγN
ν−1(aN)τρ−d

∥∥E(N,2N ]
∥∥
ρ,rγN

]

that is, ∥∥(W1)0
∥∥
ρ−2δ,rγN

≤ Cν−3(aN)2τδ−(τ+3d)
∥∥E(N,2N ]

∥∥
ρ,rγN

. (2.87)
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Finally, the estimate for W1 comes from (2.58), that is

sup
|ε|≤rγN

∣∣Wε,1

∣∣ ≤ C
(
‖(W1)0‖ρ−δ,rγN + ‖W2‖ρ−δ,rγN

)
≤ Cν−3(aN)2τδ−(τ+3d)

∥∥E(N,2N ]
∥∥
ρ,rγN

. (2.88)

Putting together (2.86), (2.87), (2.88), and using the Cauchy estimates in Corollary 16

yields the claimed estimate for W .

Corollary 51. Assuming the hypothesis of Lemma 48 and Lemma 50, for any 0 < δ < ρ

and 0 < r < 1 we have

∥∥∆(N,2N ]
∥∥
ρ−δ,rγN

≤ Cν−3(aN)2τδ−(τ+3d) rN+1

(1− r1/2)2

∥∥EN
∥∥
ρ,γN

(2.89)

sup
|ε|≤rγN

∣∣σ(N,2N ]
ε

∣∣ ≤ Cν−1(aN)τδ−d
rN+1

(1− r1/2)2

∥∥EN
∥∥
ρ,γN

(2.90)

Moreover,

∥∥∆(2N,∞]
∥∥
ρ−δ,rγN

≤ Cν−3(aN)2τδ−(τ+3d) r
3
2
N+1

(1− r1/2)2

∥∥EN
∥∥
ρ,γN

(2.91)

sup
|ε|≤rγN

∣∣σ(2N,∞]
ε

∣∣ ≤ Cν−1(aN)τδ−d
r

3
2
N+1

(1− r1/2)2

∥∥EN
∥∥
ρ,γN

(2.92)

Proof. Using the Cauchy estimates as in Corollary 16 and the estimates in Lemma 50 one

obtains

∥∥∆(2N,∞]
∥∥
ρ−δ,r2γN

≤ r2N+1

(1− r) ‖∆‖ρ−δ,rγN

≤ C
r2N+1

1− r ν
−3(aN)2τδ−(τ+3d) r

N+1

1− r
∥∥EN

∥∥
ρ,γN

= C
r3N+2

(1− r)2
ν−3(aN)2τδ−(τ+3d)

∥∥EN
∥∥
ρ,γN
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and

sup
|ε|≤r2γN

∣∣σ(2N,∞]
ε

∣∣ ≤ r2N+1

1− r sup
|ε|≤rγN

|σε|

≤ r2N+1

1− r Cν
−1(aN)τδ−d

rN+1

1− r
∥∥EN

∥∥
ρ,γN

= Cν−1(aN)τδ−d
r3N+2

(1− r)2

∥∥EN
∥∥
ρ,γN

The other estimates are obtained similarly.

2.5.3 Non-linear estimates for the quasi-Newton method.

The quasi-Newton procedure in Algorithm 44 can also be described using a convenient

operator notation. Defining the error functional

E [Kε, µε] = fε,µε ◦Kε −Kε ◦ Tω (2.93)

and assuming ∆ and σ are small enough, the Taylor expansion of E [K + ∆, µ+σ] is given

by

E [K + ∆, µ+ σ] = E [K,µ] +D1E [K,µ]∆ +D2E [K,µ]σ +R[∆, σ;K,µ] (2.94)

where the Frechet derivatives are given by

D1E [Kε, µε]∆ε = (Dfε,µε ◦Kε) ∆ε −∆ε ◦ Tω (2.95)

D2E [Kε, µε]σε = (Dµfε,µε ◦Kε)σε (2.96)

andR is the remainder of the Taylor expansion. Note that E [K
[≤N ]
ε , µ

[≤N ]
ε ] = EN

ε , with this

notation the classic Newton method would consist in finding a correction (∆
(N,2N ]
ε , µ

(N,2N ]
ε )

76



such that

E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆(N,2N ]
ε +D2E [K [≤N ]

ε , µ[≤N ]
ε ]σ(N,2N ]

ε = 0. (2.97)

As it was explained before, in Section 2.4.2, the corrections we construct with Algorithm

44 do not satisfy (2.97) but they solve an approximate equation (2.46). The following

Lemmas give estimates for the error functional evaluated in the corrected unknowns. First,

Lemma 54, we give estimates for the error E [K [≤N ] +∆, µ[≤N ] +σ] and then, using Cauchy

estimates, we obtain the estimates for the error evaluated in the truncated corrections,

E [K [≤N ] + ∆(N,2N ], µ[≤N ] + σ(N,2N ]], Proposition 56.

Remark 52. We emphasize that to be able to compute E [K + ∆, µ + σ] we need both ∆

and σ to be small enough, so the compositions in (2.93) are well defined. In particular

∆ and σ need to satisfy ‖∆‖, |σ| ≤ ξ and we need to choose the domain loss. In Section

2.6, Lemma 60, we give smallness conditions on the initial error which will guarantee that

the compositions will be defined at any step of the iteration. This is very standard in KAM

theory.

Lemma 53. Assume 0 < r < 1 and 0 < δ ≤ ρ. Then, under the hypothesis of Lemma 48

and Lemma 50 one has

E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆ε +D2E [K [≤N ]
ε , µ[≤N ]

ε ]σε ∼ O
(
|ε|2N+1

)
(2.98)

and

∥∥ E [K [≤N ], µ[≤N ]] +D1E [K [≤N ], µ[≤N ]]∆ +D2E [K [≤N ], µ[≤N ]]σ
∥∥
ρ−δ,rγN

≤ r2N+1

1− r
∥∥EN

∥∥
ρ,γN

+ Cν−4(aN)3τδ−(τ+4d+1) r
N+1

1− r
∥∥EN

∥∥2

ρ,γN

(2.99)
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Proof. Note that with the operator notation introduced at the beginning of this section we

have E(K [≤N ], µ[≤N ]) = EN . Using (2.12) and taking into account that ∆ε = M
[≤N ]
ε Wε

and that Wε satisfies (2.46) we have

E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆ε +D2E [K [≤N ]
ε , µ[≤N ]

ε ]σε

= EN
ε +

(
Dfε,µ[≤N ] ◦K [≤N ]

ε

)
∆ε −∆ε ◦ Tω +

(
Dµfε,µ[≤N ] ◦K [≤N ]

ε

)
σε (2.100)

−R[≤N ]
ε

(
M [≤N ]

ε

)−1
∆ε +R[≤N ]

ε

(
M [≤N ]

ε

)−1
∆ε

= EN
ε +M [≤N ]

ε ◦ Tω

Id S
[≤N ]
ε

0 λ(ε) Id

(M [≤N ]
ε

)−1
∆ε −∆ε ◦ Tω (2.101)

+
(
Dµfε,µ[≤N ] ◦K [≤N ]

ε

)
σε +R[≤N ]

ε

(
M [≤N ]

ε

)−1
∆ε

= EN
ε − E(N,2N ]

ε +R[≤N ]
ε Wε (2.102)

= E(2N,∞]
ε +R[≤N ]

ε Wε ∼ O
(
|ε|2N+1

)
where E(2N,∞]

ε =
∑∞

n=2N+1Enε
n. Note that the order of ε in the last line follows from the

definition of E(2N,∞], (2.65), and (2.75).

Then, using the Cauchy estimates of Corollary 16, Lemma 48, and Lemma 50 one

obtains

∥∥E [K [≤N ], µ[≤N ]] +D1E [K [≤N ], µ[≤N ]]∆ +D2E [K [≤N ], µ[≤N ]]σ
∥∥
ρ−δ,rγN

≤
∥∥E(2N,∞]

∥∥
ρ−δ,rγN

+
∥∥R[≤N ]

∥∥
ρ−δ,rγN

‖W‖ρ−δ,rγN

≤ r2N+1

1− r
∥∥EN

∥∥
ρ,γN

+ Cν−4(aN)3τδ−(τ+4d+1) r
N+1

1− r
∥∥EN

∥∥2

ρ,γN

Lemma 54. Assume 0 < r < 1 and 0 < δ ≤ ρ. Then, under the hypothesis of Lemma 50

and Lemma 48 we have

E(K [≤N ]
ε + ∆ε, µ

[≤N ]
ε + σε) ∼ O

(
|ε|2N+1

)
(2.103)
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and

∥∥∥E [K [≤N ] + ∆, µ[≤N ] + σ]
∥∥∥
ρ−δ,rγN

≤ r2N+1

1− r
∥∥EN∥∥

ρ,γN
+Cν−6(aN)4τδ−(2τ+6d) r

N+1

1− r
∥∥EN∥∥2

ρ,γN

(2.104)

where C = C
(∥∥DK [≤N ]

∥∥
ρ,γN

,
∥∥D2fµ[≤N ] ◦K [≤N ]

∥∥
ρ,γN

,
∥∥D2

µfµ[≤N ] ◦K [≤N ]
∥∥
ρ,γN

)
.

Proof. Note thatR[K
[≤N ]
ε , µ

[≤N ]
ε ,∆ε, σε] in (2.94) can be estimated using Taylor estimates

for the remainder, that is

‖Rε‖ρ ≤ C
(
‖∆ε‖2

ρ + |σε|2
)

(2.105)

where C is a constant depending on the norms of the second derivatives of fε,µ evaluated

at K [≤N ]
ε and µ[≤N ]

ε .

Since fε,µ is assumed to be analytic it is natural to expect the quantities∥∥D2fµ[≤N ] ◦K [≤N ]
∥∥
ρ,γN

,
∥∥D2

µfµ[≤N ] ◦K [≤N ]
∥∥
ρ,γN

to be close to
∥∥D2fµ[≤N0] ◦K [≤N0]

∥∥
ρ0,γN0

,∥∥D2
µfµ[≤N0] ◦K [≤N0]

∥∥
ρ0,γN0

, at the first step of the iterations. For now, we assume that C

is uniform constant. In Section 2.6, Lemma 60, we give sufficient conditions on the initial

error of the iteration that imply that C can be taken as an uniform constant during all the

iterations.

Note that (2.105) yields Rε ∼ O
(
|ε|2N+2

)
. This, together with (2.98), gives (2.103).

Moreover, taking sup with respect to ε one obtains

‖R‖ρ−δ,rγN ≤ C

(
‖∆‖2

ρ−δ,rγN + sup
|ε|≤rγN

|σ|2
)

≤ C

(∥∥M [≤N ]
∥∥2

ρ,γN
‖W‖ρ−δ,rγN + sup

|ε|≤rγN
|σ|2
)

≤ C

(
ν−6(aN)4τ δ−(2τ+6d) r2N+2

(1−r)2 ‖EN‖ρ,rγN +ν−2(aN)2τ δ−2d r2N+N

(1−r)2 ‖EN‖ρ,rγN
)

≤ Cν−6(aN)4τδ−(2τ+6d) r2N+2

(1− r)2

∥∥EN
∥∥2

ρ,rγN

where in the third line we use the inequalities in Lemma 50. Finally, this inequality, Lemma

53, and (2.94) give the result.
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Note that the estimates above are done for the analytic functions ∆ and σ. It is only left

to get the respective estimates for the truncations ∆(N,2N ] and σ(N,2N ], which are an easy

consequence of the Cauchy inequalities and are given in the following propositions.

Proposition 55. Assuming the hypothesis of Lemma 48 and Lemma 50, for any 0 < δ < ρ

and 0 < r < 1 we have

E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆(N,2N ]
ε +D2E [K [≤N ]

ε , µ[≤N ]
ε ]σ(N,2N ]

ε ∼ O
(
|ε|2N+1

)
(2.106)

and

∥∥E [K [≤N ], µ[≤N ]] +D1E [K [≤N ], µ[≤N ]]∆(N,2N ] +D2E [K [≤N ], µ[≤N ]]σ(N,2N ]
∥∥
ρ−δ,rγN

≤ Cν−3(aN)2τ δ−(τ+3d) r
3
2N+1

(1−r1/2)2
‖EN‖

ρ,γN
+Cν−4(aN)3τ δ−(τ+4d+1) rN+1

1−r ‖EN‖2ρ,γN (2.107)

Proof. Recalling the notation ∆
(a,∞]
ε ≡∑∞n=a+1 ∆n(θ)εn we have that

∆(N,2N ] + ∆(2N,∞] = ∆. Also remember that EN = E [K [≤N ], µ[≤N ]], then, using the

linearity of the Frechet derivatives one obtains

E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆(N,2N ]
ε +D2E [K [≤N ]

ε , µ[≤N ]
ε ]σ(N,2N ]

ε

= E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆ε +D2E [K [≤N ]
ε , µ[≤N ]

ε ]σε

−D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆(2N,∞]
ε −D2E [K [≤N ]

ε , µ[≤N ]
ε ]σ(2N,∞]

ε

= E [K [≤N ]
ε , µ[≤N ]

ε ] +D1E [K [≤N ]
ε , µ[≤N ]

ε ]∆ε +D2E [K [≤N ]
ε , µ[≤N ]

ε ]σε

−
(
Dfε,µ[≤N ] ◦K [≤N ]

ε

)
∆(2N,∞]
ε + ∆(2N,∞]

ε ◦ Tω −
(
Dµfε,µ[≤N ] ◦K [≤N ]

ε

)
σ(2N,∞]
ε

which implies (2.106). Moreover, using the relation above and the estimates in Lemma 53
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and Lemma 51 one gets

∥∥E [K [≤N ], µ[≤N ]] +D1E [K [≤N ], µ[≤N ]]∆(N,2N ] +D2E [K [≤N ], µ[≤N ]]σ(N,2N ]
∥∥
ρ−δ,rγN

≤
∥∥E [K [≤N ], µ[≤N ]] +D1E [K [≤N ], µ[≤N ]]∆ +D2E [K [≤N ], µ[≤N ]]σ

∥∥
ρ−δ,rγN

+ C(
∥∥∆(2N,∞]

∥∥
ρ−δ,rγN

+ sup
|ε|≤rγN

∣∣σ(2N,∞]
ε

∣∣)
≤ r2N+1

1− r
∥∥EN

∥∥
ρ,γN

+ Cν−4(aN)3τδ−(τ+4d+1) r
N+1

1− r
∥∥EN

∥∥2

ρ,γN

+Cν−3(aN)2τ δ−(τ+3d) r
3
2N+1

(1−r1/2)2
‖EN‖

ρ,γN
+Cν−1(aN)τρ−d r

3
2N+1

(1−r1/2)2
‖EN‖

ρ,γN

≤Cν−3(aN)2τ δ−(τ+3d) r
3
2N+1

(1−r1/2)2
‖EN‖

ρ,γN
+Cν−4(aN)3τ δ−(τ+4d+1) rN+1

1−r ‖EN‖2ρ,γN

Proposition 56. Assuming the hypothesis of Lemma 48 and Lemma 50, for any 0 < δ < ρ

and 0 < r < 1 we have

E
[
K [≤N ]
ε + ∆(N,2N ]

ε , µ[≤N ]
ε + σ(N,2N ]

ε

]
∼ O

(
|ε|2N+1

)
(2.108)

and

∥∥E [K [≤N ] + ∆(N,2N ], µ[≤N ] + σ(N,2N ]]
∥∥
ρ−δ,rγN

(2.109)

≤ Cν−3(aN)2τ δ−(τ+3d) r
3
2N+1

(1−r1/2)2
‖EN‖

ρ,γN
+Cν−6(aN)4τ δ−(2τ+6d) rN+1

(1−r1/2)4
‖EN‖2

ρ,γN

where C = C(d,
∥∥M [≤N ]

∥∥
ρ,γN

,
∥∥∥(M [≤N ]

)−1
∥∥∥
ρ,γN

,
∥∥N [≤N ]

∥∥
ρ,γN

,
∥∥DK [≤N ]

∥∥
ρ,γN

,T ), the

constant C also depends on the norms of the first and second derivatives of fε,µ evaluated

at K [≤N ]
ε and µ[≤N ]

ε .

Proof. The expansion (2.108) follows from using the same argument as in the proof of
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Lemma 54. We also have

∥∥R [K [≤N ], µ[≤N ],∆(N,2N ], σ(N,2N ]
]∥∥

ρ−δ,rγN

≤ C

(∥∥∆(N,2N ]
∥∥2

ρ−δ,rγN
+ sup
|ε|≤rγN

∣∣σ(N,2N ]
ε

∣∣2)

≤ C

(
ν−6(aN)4τ δ−(2τ+6d) r2N+2

(1−r1/2)4
‖EN‖2

ρ−δ,rγN
+ν−2(aN)2τρ−2d r2N+2

(1−r1/2)4
‖EN‖2

ρ−δ,rγN

)
.

Combining this estimate with (2.107) in Lemma 55 one gets (2.109).

2.6 Iteration of the quasi-Newton method.

We start this section giving the choice of parameters which quantify the loss of regularity

at any step of the quasi Newton method. Lemma 60 will guarantee that the Newton method

is well defined at any step. We note that we have loss of domain in both the variable on the

torus, θ, and the variable of the perturbation, ε. In contrast with the regular KAM theory

we end up losing much more domain in ε, so that at the end we do not have any ε domain.

2.6.1 The iterative procedure.

We denote by h ∈ N the number of steps of the quasi Newton method. We consider

δh :=
ρ0

2h+2
and ρh+1 := ρh − δh ≥

ρ0

2
for h ≥ 1, (2.110)

where ρh denotes the radius of analyticity in the variable θ at step h, that is, at step h we

will be considering functions in the space Aρh . Note that ρ0 = ρ′ can be the one given

in Theorem 31. Since at any step we double the number of coefficients of the Lindstedt

expansions, we have,

Nh := 2hN0 (2.111)
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and

γ̃h := γNh =
(ν

2

)1/α 1

(aNh)τ/α
=
(ν

2

)1/α 1

(a2hN0)τ/α
(2.112)

where α ∈ N is the exponent in λ(ε) = 1− εα, a ∈ N, and N0 ∈ N is a fixed constant to be

chosen later. Note that γ̃h is the radius of the domain of analyticity in the variable ε at step

h, that is, at step h we will be considering functions in the space Aρh,γ̃h . Also note that

γ̃h+1 = 2−τ/αγ̃h. (2.113)

Denoting K0 := K [≤N0] and µ0 := µ[≤N0], for h ≥ 1 we have

Kh := K [≤N0] +∆(N0,N1] + · · ·+∆(Nh−1,Nh] µh := µ[≤N0] +σ(N0,N1] + · · ·+σ(Nh−1,Nh].

(2.114)

Furthermore, denoting

∆h := ∆(Nh,Nh+1] and σh := σ(Nh,Nh+1] for h ≥ 0 (2.115)

we have that, for h ≥ 0

Kh+1 = Kh + ∆h and µh+1 = µh + σh. (2.116)

Finally, denote also

eh := ‖E [Kh, µh]‖ρh,γ̃h =
∥∥ENh

∥∥
ρh,γ̃h

(2.117)

dh := ‖∆h‖ρh+1,γ̃h+1
(2.118)

vh := ‖D∆h‖ρh+1,γ̃h+1
(2.119)

sh := sup
|ε|≤γ̃h+1

|σh(ε)|. (2.120)

Remark 57. We emphasize the dependence of γ̃h in Nh, note that γ̃h → 0 as Nh → ∞
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(h → ∞). This implies that this quasi Newton method will not converge in any Banach

space Aρh,γ̃h , because the domains in ε shrink to 0, however, at each step we get estimates

in balls with positive radius, γ̃h. An analysis of these bounds will provide us with estimates

of the coefficients of the expansion. Note also that to start with e0 � 1 we require N0

sufficiently large in the formal power series in Theorem 31.

Note that with this new notation the estimates in Corollary 51 can be written as

dh ≤ Ĉhν
−3(aNh)

2τδ
−(τ+3d)
h

(
1

2τ/α

)Nh
eh (2.121)

vh ≤ Ĉhν
−3(aNh)

2τδ
−(τ+3d+1)
h

(
1

2τ/α

)Nh
eh (2.122)

sh ≤ Ĉhν
−1(aNh)

τδ−dh

(
1

2τ/α

)Nh
eh (2.123)

where Ĉh is an explicit constant depending in a polynomial manner on ‖Mh‖ρh,γ̃h ,∥∥M−1
h

∥∥
ρh,γ̃h

, ‖Nh‖ρh,γ̃h , ‖DKh‖ρh,γ̃h , and Th. Moreover, the non linear estimate (2.109)

given in Proposition 56 implies

eh+1 ≤ C̃hν
−6(aNh)

4τδ
−(2τ+6d)
h

(
1

2τ/α

)Nh (
eh + e2

h

)
(2.124)

where C̃h is a constant which also depends explicitly on ‖Mh‖ρh,γ̃h ,
∥∥M−1

h

∥∥
ρh,γ̃h

, ‖Nh‖ρh,γ̃h ,

‖DKh‖ρh,γ̃h , and Th.

Remark 58. In the following we will denote C a constant depending on ν, τ, d, ξ, ρ0, |J−1|;

and that is a polynomial in ‖M0‖ρ0,γ̃0 ,
∥∥M−1

0

∥∥
ρ0,γ̃0

, ‖N0‖ρ0,γ̃0 , ‖DK0‖ρ0,γ̃0 , and T0. We will

also denote

Ch = max
(
Ĉh, C̃h

)
.

In Lemma 60 , we give smallness conditions so that Ch ≤ C for every h ≥ 0. Since we

are working with expansions near to (K [≤N0], µ[≤N0]) it is natural to expect that the quan-

tities ‖Mh‖ρh,γ̃h ,
∥∥M−1

h

∥∥
ρh,γ̃h

, ‖Nh‖ρh,γ̃h , ‖DKh‖ρh,γ̃h , and Th will be close to ‖M0‖ρ0,γ̃0 ,

84



∥∥M−1
0

∥∥
ρ0,γ̃0

, ‖N0‖ρ0,γ̃0 , ‖DK0‖ρ0,γ̃0 , and T0, respectively. For now, we assume that C is

large enough, for instance C > 2C0. Here Mh = M [≤Nh], Nh = N [≤Nh], and Th = T Nh

as in (2.42), (2.44), and (2.81).

Considering this uniform constant C on (2.124), and takingN0 sufficiently large, yields

eh < 1 for any h > 0, and inequality (2.124) implies

eh+1 ≤ Cν−6(aNh)
4τδ
−(2τ+6d)
h

(
1

2τ/α

)Nh
eh. (2.125)

Remark 59. Due to Remark 58 and the definitions of δh, ρh, Nh, and γ̃h; the inequality

(2.125) can be rewritten as

eh+1 ≤ Cν−6(aN0)4τρ
−(2τ+6d)
0 2−(4τ+12d)

(
2h
)6τ+6d

(
1

2τ/α

)2hN0

eh

or

eh+1 ≤ CDBhr2hN0eh (2.126)

where

D = ν−6(aN0)4τρ
−(2τ+6d)
0 2−(4τ+12d), r = 2−τ/α and B = 26τ+6d.

Lemma 60. Assuming that 23(τ+3d)+1CDBrN0 ≤ 1
2
, BrN0 < 1, N2τ

0 e0 � 1, and

Cν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2e0 � 1.

Then, for all integers h ≥ 0 the following properties hold:

(p1;h)

‖Kh −K0‖ρh,γ̃h ≤ `KN
2τ
0 e0 < ξ

sup
|ε|≤γ̃h+1

|µh − µ0| ≤ `µN
τ
0 e0 < ξ
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with `K ≡ Cν−3a2τρ
−(τ+3d)
0 22τ+6d and `µ ≡ Cν−1aτ2dρ−d0

(p2;h)

eh ≤ (CD)hBh2r(2h−1)N0e0

(p3;h)

Ch ≤ C

Remark 61. Note that by (2.29) we have e0 ∼ O(N
−(τ/α)N0

0 ), due to the fact that we

estimate e0 in a ball with radius γ̃0 ∼ O(N
−τ/α
0 ). So the assumptions on the smallness of

N0e0 are satisfied.

Proof. Note that (p1; 0), (p2; 0), and (p3; 0) are trivial.

Let us now prove (p1, H + 1), (p2, H + 1), and (p3, H + 1) assuming they are true for

h = 1, 2, ..., H . Noticing that 2j ≤ 2j+1 − 1, for any j ≥ 0, and assuming that N0 is large
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enough such that 23(d+τ)CDBrN0 ≤ 1
2

and BrN0 < 1, we have

‖KH+1 −K0‖ρH+1,γ̃H+1
=
∥∥∆(N0,N1] + ...+ ∆(NH ,NH+1]

∥∥
ρH+1,γ̃H+1

≤
H∑
j=0

dj ≤
H∑
j=0

Ĉjν
−3(aNj)

2τδ
−(τ+3d)
j rNjej

≤
H∑
j=0

Cν−3(a2jN0)2τρ
−(τ+3d)
0 22τ+6d2(τ+3d)jr2jN0ej

≤ Cν−3(aN0)2τρ
−(τ+3d)
0 22τ+6d

H∑
j=0

23(d+τ)jr2jN0

(
(CD)jBj2r(2j−1)N0e0

)
≤ Cν−3(aN0)2τρ

−(τ+3d)
0 22τ+6d

H∑
j=0

23(d+τ)j(CD)jBj2r(2j+1−1)N0e0

≤ Cν−3(aN0)2τρ
−(τ+3d)
0 22τ+6d

H∑
j=0

23(d+τ)j(CD)jBj2r2jN0e0

≤ Cν−3(aN0)2τρ
−(τ+3d)
0 22τ+6de0

H∑
j=0

(
23(d+τ)CDBrN0

)j
≤ Cν−3(aN0)2τρ

−(τ+3d)
0 22τ+6de0

≤ `KN
2τ
0 e0
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Similarly,

sup
|ε|≤γ̃H+1

|µH+1 − µ0| = sup
|ε|≤γ̃H+1

∣∣σ(N0,N1] + ...+ σ(NH ,NH+1]
∣∣

≤
H∑
j=0

sj ≤
H∑
j=0

Ĉjν
−1(aNj)

τδ−dj rNjej

≤
H∑
j=0

Cν−1(a2jN0)τρ−d0 2(j+2)dr2jN0

(
(CD)jBj2r(2j−1)N0e0

)
≤ Cν−1(aN0)τρ−d0 22d

H∑
j=0

(2τ+d)j(CD)jBj2r(2j+1−1)N0e0

≤ Cν−1(aN0)τρ−d0 22d

H∑
j=0

(2τ+d)j(CD)jBj2r2jN0e0

≤ Cν−1(aN0)τρ−d0 22de0

H∑
j=0

(
2τ+dCDBrN0

)j
≤ Cν−1(aN0)τ2dρ−d0 e0

≤ `µN
τ
0 e0.

Thus, taking N0 large enough, which makes e0 small, we get `KN2τ
0 e0 < ξ and `µN τ

0 e0 <

ξ.

Since (p1;H + 1) is true, we use the estimate (2.126) given in Remark 59, which is a

consequence of the nonlinear estimates given in Lemma 56, that is

eh+1 = ‖E(Kh + ∆h, µh + σh)‖ρh+1,γ̃h+1
≤ CDBhr2hN0eh (2.127)

where D, B, and r are as in Remark 59. This yields,
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eh+1 ≤ CDBhr2hN0eh

≤ CDBhr2hN0

(
(CD)hBh2r(2h−1)N0e0

)
≤ (CD)h+1Bh2+hr(2h+1−1)N0e0

≤ (CD)h+1B(h+1)2r(2h+1−1)N0e0

which yields (p2, H + 1). In order to prove (p3;H + 1) note that

‖Nh −N0‖ρh,γ̃h ≤ C ‖DKh −DK0‖ρh,γ̃h (2.128)

‖Mh −M0‖ρh,γ̃h ≤ C ‖DKh −DK0‖ρh,γ̃h (2.129)∥∥M−1
h −M−1

0

∥∥
ρh,γ̃h

≤ C ‖DKh −DK0‖ρh,γ̃h (2.130)

|Th − T0| ≤ C ‖DKh −DK0‖ρh,γ̃h (2.131)

where C is a uniform constant. The above inequalities come from the fact that Mh, Nh,

and Th are algebraic expressions of DKh, Df·,µh , and Dµf·,µh; see (2.42), (2.44), (2.43),

(2.81). Then,
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‖DKH+1 −DK0‖ρH+1,γ̃H+1
=
∥∥D∆(N0,N1] + ...+D∆(NH ,NH+1]

∥∥
ρH+1,γ̃H+1

≤
H∑
j=0

dj ≤
H∑
j=0

Ĉjν
−3(aNj)

2τδ
−(τ+3d+1)
j rNjej

≤
H∑
j=0

Cν−3(a2jN0)2τρ
−(τ+3d+1)
0 22τ+6d+22(τ+3d+1)jr2jN0ej

≤ Cν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2

H∑
j=0

2(3d+3τ+1)jr2jN0

(
(CD)jBj2r(2j−1)N0e0

)
≤ Cν−3(aN0)2τρ

−(τ+3d+1)
0 22τ+6d+2

H∑
j=0

2(3d+3τ+1)j(CD)jBj2r(2j+1−1)N0e0

≤ Cν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2

H∑
j=0

2(3d+3τ+1)j(CD)jBj2r2jN0e0

≤ Cν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2e0

H∑
j=0

(
23d+3τ+1CDBrN0

)j
≤ Cν−3(aN0)2τρ

−(τ+3d+1)
0 22τ+6d+2e0

where the sum is bounded as in the previous estimates. Taking e0 small enough, such that

CCν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2e0 � 1, we are able to verify (p3;H+1) because CH+1

is an algebraic expression of MH , NH , and TH ; and taking C ≥ 2C0, for example.

2.6.2 Proof of main Lemma

For the proof of the main Lemma, Lemma 33 , we inherit all the notation introduced

throughout this section.

Proof. Note that Theorem 31 assures the existence of the Lindstedt series satisfying (2.6.2).

That is, given K0 ∈ Aρ and µ0 ∈ Λ ⊆ C satisfying f0,µ0 ◦K0 = K0 ◦ Tω and HND, there
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exists ρ0 < ρ and power expansions K [≤N ]
ε and µ[≤N ]

ε such that

∥∥∥f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε −K [≤N ]
ε ◦ Tω

∥∥∥
ρ′
≤ CN |ε|N+1

for any N ≥ 0. This expansion is unique under the normalization condition (2.20).

If K [≤N ]
ε and µ[≤N ]

ε satisfy hypothesis HTP1 and HTP2 then, we can choose N0 such

that K [≤N0] and µ[≤N0] satisfy the hypothesis of Lemmas 48 and 50. Also, N0 needs to be

large enough such that 23(τ+3d)+1CDBrN0 ≤ 1
2
, BrN0 < 1, `KN2τ

0 e0 < ξ, `µN τ
0 e0 < ξ

and

CCν−3(aN0)2τρ
−(τ+3d+1)
0 22τ+6d+2e0 � 1,

then Lemma 60 can be applied and this allows us to iterate the quasi Newton method

described in Algorithm 44. That is, we can construct the unique formal power series as

follows

K [≤N0]
ε + ∆(N0,2N0]

ε + ∆(2N0,22N0]
ε + · · ·+ ∆(2hN0,2h+1N0]

ε + · · ·

µ[≤N0]
ε + µ(N0,2N0]

ε + µ(2N0,22N0]
ε + · · ·+ µ(2hN0,2h+1N0]

ε + · · ·

Note that by definition of γ̃h we will have γ̃h = rhγ̃0 , where r = 2−τ/α and γ̃0 =

2−1/αν1/α(aN0)−τ/α, see (2.113). Before giving the detailed computations, note that γ̃h ∼

(2hN0)−τ/α and if n ∈
(
2hN0, 2

h+1N0

]
∩ N then

(γ̃h)
−n ∼ (2hN0)C(τ/α)2hN0 ∼ nC(τ/α)n.

Using this together with Cauchy estimates is expected to yield the Gevrey estimates. More

precisely, if n ∈
(
2hN0, 2

h+1N0

]
∩ N, using Cauchy estimates, (2.121), and (p2;h) we
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have

‖Kn‖ ρ0
2
≤ (γ̃h+1)−n ‖∆h‖ ρ0

2
,γ̃h+1

≤ (γ̃h+1)−n ‖∆h‖ρh+1,γ̃h+1

≤ (rh+1γ̃0)−ndh

≤ (rh+1γ̃0)−2h+1N0Ĉhν
−3(aNh)

2τδ
−(τ+3d)
h rNheh

≤ (rh+1γ̃0)−2h+1N0Cν−3(a2hN0)
2τ
ρ
−(τ+3d)
0 2(2τ+6d)2(τ+3d)hr2

hN0 (CD)hBh
2
r(2

h−1)N0e0

≤ Cν−3ρ
−(τ+3d)
0 2(2τ+6d)(aN0)2τ e0(23τ+3dCD)hBh

2
(γ̃0)−2h+1N0r(−(h+1)2h+1+2h+1−1)N0

≤ Cν−3ρ
−(τ+3d)
0 2(2τ+6d)(aN0)2τ e0(23τ+3dCD)hBh

2
(21/αν−1/α(aN0)τ/α)2

h+1N0r−(h2h+1+1)N0

≤ L̂
(
23τ+3dCDB22/αν−2/αa2τ/α

)2hN0
(N

2τ/α
0 )2hN0(2τ/α)(h2h+1+1)N0

≤ L̂2(τ/α)N0F 2hN0(N
2τ/α
0 )2hN0(22τ/α)h2hN0

≤ LF 2hN0(2hN0)(2τ/α)2hN0

≤ LF nn(2τ/α)n

where L̂ = Cν−3ρ
−(τ+3d)
0 22τ+6d(aN0)2τe0, F = 23τ+3d+2/αCDBν−2/αa2τ/α, and L =

L̂(2τ/α)N0 . The estimates for µn are obtained in a similar way.

2.6.3 Proof of Theorem 34

Proof. Inheriting the notation from Lemma 60, consider N0 sufficiently large such that the

a-posteriori theorem, Theorem 14 in [5], can be applied. That is, N0 such that

sup
ε∈G,|ε|≤γ̃0

∥∥EN0
ε

∥∥
ρ
≤ Ĉ (νν̃(λ;ω, τ))2 δ−4(τ+δ). (2.132)
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where ν̃(λ;ω, τ) is defined in (2.32). Then, following the discussion in Section (2.3.3) and

applying the a-posteriori theorem, Theorem 14 in [5], one obtains

sup
ε∈G,|ε|≤γ̃h+2

∥∥∥K [≤2hN0]
ε −Kε

∥∥∥
ρ0−δ
≤ Ĉν−1ν̃(λ;ω, τ)−1δ−2(τ+d) sup

ε∈G,|ε|≤γ̃h+2

∥∥∥E2hN0
ε

∥∥∥
ρ0

where G is defined in (2.33).

Now, considering n ∈ (2hN0, 2
h+1N0] ∩ N one has

sup
ε∈G,|ε|≤γ̃h+2

∥∥K [≤n]
ε −Kε

∥∥
ρ0−δ
≤ sup

ε∈G,|ε|≤γ̃h+2

∥∥∥K [≤2h+1N0]
ε −∆(n,2h+1N0]

ε −Kε

∥∥∥
ρ0−δ

≤ sup
ε∈G,|ε|≤γ̃h+2

∥∥∥∥K[≤2h+1N0]
ε −Kε

∥∥∥∥
ρ0−δ

+supε∈G,|ε|≤γ̃h+2

∥∥∥∆(n,2h+1N0]
∥∥∥
ρ0−δ

≤ Ĉν−1ν̃−1δ−2(τ+d) sup
ε∈G,|ε|≤γ̃h+2

∥∥∥E2hN0
ε

∥∥∥
ρ0

+ sup
ε∈G,|ε|≤γ̃h+2

∥∥∥∆(n,2h+1N0]
ε

∥∥∥
ρ0−δ

≤ Ĉν−1ν̃−1δ−2(τ+d)
∥∥∥E2hN0

ε

∥∥∥
ρ,γ̃h+2

+
∥∥∥∆(n,2h+1N0]

ε

∥∥∥
ρ0−δ,γ̃h+2

≤ Ĉν−1ν̃−1δ−2(τ+d)
∥∥∥E2hN0

ε

∥∥∥
ρ0,γ̃h

+
rn+1

1− r
∥∥∥∆(2hN0,2h+1N0]

ε

∥∥∥
ρ0−δ,γ̃h+1

≤ Ĉν−1ν̃−1δ−2(τ+d)eh + rn+1dh

≤ Ĉν−1ν̃−1δ−2(τ+d)eh + rn+1Cν−3(aNh)
2τδ
−(τ+3d)
h rNheh

≤
(
U+Cν−3(aN0)2τρ

−(τ+3d)
0 22τ+6d2h(3τ+3d)rn+1r2

hN0

)
(CD)hBh

2
r(2

h−1)N0e0

≤
(
U + V 2h(3τ+3d)rn+1r2hN0

)
(CD)hBh2r(2h−1)N0e0

where U = Ĉν−1ν̃−1δ−2(τ+d) and V = Cν−3(aN0)2τρ
−(τ+3d)
0 22τ+6d

93



Appendices



APPENDIX A

EXPLICIT COMPUTATION FOR THE DISSIPATIVE STANDARD MAP

A.1 Verifying trigonometric polynomial hypothesis, HTP1 and HTP2, for the dissi-

pative standard map

Consider the dissipative standard map fε,µε : T× R→ T× R given by

fε,µε(x, y) = (x+ λ(ε)y + µε − εV (x), λ(ε)y + µε − εV (x)) . (A.1)

Where V (x) is a trigonometric polynomial. In this section we verify that maps like (A.1)

satisfy HTP1 and HTP2 of Lemma 33. For the sake of simplicity in the exposition we

do it for the case λ(ε) = 1 − ε3. The general case for α ∈ N is done by very similar

computations, fixing the value of α = 3 allows an easy analysis of the Lindstedt series.

Note that one has f ∗ε,µΩ = λ(ε)Ω for the symplectic form Ω(x,y) = dx ∧ dy, so it is

conformally symplectic. One can write the map as

xn+1 = xn + yn+1

yn+1 = λ(ε)yn + µε − εV (xn)

equivalently

xn+1 − (1 + λ(ε))xn + λ(ε)xn−1 − µε + εV (xn) = 0. (A.2)

Considering a parametric representation of the variable xn ∈ T as xn = θn + uε(θn),

θn ∈ T; where uε : T → R is a 1-periodic function and assuming that θn varies linearly,
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i.e., θn+1 = θn + ω, then, (A.2) becomes

uε(θ+ω)−(1+λ(ε))uε(θ)+λ(ε)uε(θ−ω)+(1−λ(ε))ω−µε+εV (θ+uε(θ)) = 0 (A.3)

If uε satisfies (A.3) it is easy to check that Kε : T→ T× R, given by

Kε(θ) =

 θ + uε(θ)

ω + uε(θ)− uε(θ − ω)

 ,

satisfies fε,µε ◦Kε(θ) = K(θ + ω). Therefore, the problem of finding Lindstedt series for

quasiperiodic orbits for the map fε,µε is equivalent to find asymptotic power series to a

solution, (uε, µε), of (A.3).

Using λ(ε) = 1− ε3, equation (A.3) becomes

uε(θ + ω)− (2− ε3)uε(θ) + (1− ε3)uε(θ− ω) + ε3ω − µε + εV (θ + uε(θ)) = 0. (A.4)

Introducing the operator

Lωu(θ) = u(θ + ω)− 2u(θ) + u(θ − ω),

and expanding in power series on ε, i.e., uε(θ) =
∑∞

n=0 un(θ)εn and µε =
∑∞

n=0 µnε
n

equation (A.4) becomes

2∑
k=0

(Lωuk(θ)− µk) εk − (Lωu3(θ)− µ3 + u0(θ)− u0(θ − ω)− ω) ε3

+
∞∑
k=4

(Lωuk(θ)− µk + uk−3(θ)− uk−3(θ − ω)) εk = −
∞∑
k=1

Sk−1(θ)εk (A.5)

Remark 62. When V (θ) is a trigonometric polynomial, the coefficients Sn can be com-
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puted as follows. Note that Vk(θ) = f̂ke
2πikθ satisfies the relation

d

dε
Vk(θ + uε(θ)) = 2πik

d

dε
uε(θ)Vk(θ + uε(θ)). (A.6)

Thus, considering

Vk(θ + uε(θ)) =
∞∑
n=0

Skn(θ)εn

and (A.6) the coefficients Skn satisfy the following relation

(n+ 1)Skn+1 =
n∑
`=0

2πik(`+ 1)u`+1S
k
n−`, (A.7)

and Sk0 (θ) = f̂ke
2πikθ. Furthermore, if V (θ) =

∑
|k|≤a f̂ke

2πkθ =
∑
|k|≤a Vk(θ) is a

trigonometric polynomial of degree a, considering

V (θ + uε(θ)) =
∞∑
n=0

Sn(θ)εn,

the coefficients Sn(θ) are given by

Sn(θ) =
∑
|k|≤a

Skn(θ)

where Skn is given by (A.7).

Remark 63. Note that if η is a trigonometric polynomial and ϕ is a solution of the equation

Lωϕ = η then, ϕ is a trigonometric polynomial of the same degree as η. This is due to the

fact that the Fourier coefficients of ϕ satisfy ϕ̂k = 1
2(cos(2πk·ω)−1)

η̂k. Note that the equation

Lωϕ = η has a solution if
∫
T η(θ)dθ = 0, and this solution is unique if we impose the

normalization
∫
T ϕ(θ)dθ = 0.

Proposition 64. If V (θ), in (A.1), is a trigonometric polynomial of degree a, then un(θ) is

a trigonometric polynomial of degree an. Furthermore, Sn−1(θ) is a trigonometric poly-
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nomial of degree an.

Proof. Equating the terms of same order in equation (A.5) one gets that for order zero

µ0 = 0 and u0(θ) ≡ 0. For order 1 we have,

Lωu1(θ)− µ1 = −S0(θ).

So, taking µ1 = 0, u1 becomes a trigonometric polynomial of degree a, because S0(θ) =

V (θ). Now, for order 2 we have

Lωu2(θ)− µ2 = −S1(θ),

if µ2 = 0 the right hand side is S1(θ) =
∑
|k|≤a S

k
1 (θ) = 2πiu1(θ)

∑
|k|≤a kS

k
0 (θ) which

is a trigonometric polynomial of degree 2a, thus u2 is a trig polynomial of degree 2a. For

order three we have

Lωu3(θ)− µ3 + ω = −S2(θ),

here we take µ3 = ω and u3 is a trig polynomial of degree 3a because

S2(θ) =
∑
|k|≤a

Sk2 (θ) = πiu1(θ)
∑
|k|≤a

kSk1 (θ) + 2πiu2(θ)
∑
|k|≤a

kSk0 (θ)

is of degree 3a; then u3(θ) is of degree 3a. Finally, for n ≥ 4, assume the claim is valid for

any m < n then, the equation of order n is

Lωun(θ) = µn − un−3(θ) + un−3(θ − ω)− Sn−1(θ).

So, taking µn =
∫
T Sn−1(θ)dθ, un can be found and has degree an since,

Sn−1 =
∑
|k|≤n S

k
n−1 and each Skn−1 has degree an due to (A.7). Note un−3 has degree

(n− 3)a.

Corollary 65. If V (θ), in (A.1), is a trigonometric polynomial of degree a, then for any

98



fixed ε the sum
N∑
n=0

un(θ)εn is a trig polynomial of degree aN in θ.

Note that in this case

K [≤N ]
ε (θ) =

 θ +
∑N

n=0 un(θ)εn

ω +
∑N

n=0(un(θ)− un(θ − ω))εn

 , (A.8)

and using equation (A.5) we have

EN
ε (θ) := fε,µ[≤N ] ◦K [≤N ]

ε (θ)−K [≤N ]
ε (θ + ω) =

∞∑
n=N+1

Sn−1(θ)

Sn−1(θ)

 εn

and therefore, for any fixed ε, E(N,2N ]
ε (θ) is a trigonometric polynomial of degree 2aN .

Moreover, in this case the matrix

M
[≤N ]
ε (θ) =

[
DK

[≤N ]
ε (θ)|J−1 ◦K [≤N ]

ε (θ)DK
[≤N ]
ε (θ)N [≤N ]

ε (θ)
]

is given by

M [≤N ]
ε (θ) =

 1 +
∑N

k=0 u
′
k(θ)ε

k N [≤N ]
ε (θ)

∑N
k=0(u′k(θ − ω)− u′k(θ))εk∑N

k=0(u′k(θ)− u′k(θ − ω))εk N [≤N ]
ε (θ)(1 +

∑N
k=0 u

′
k(θ)ε

k)



where N [≤N ]
ε (θ) =

(
(1 +

∑N
k=0 u

′
k(θ)ε

k)2 + (
∑N

k=0(u′k(θ)− u′k(θ − ω))εk)2
)−1

. So,

(
M [≤N ]

ε ◦ Tω
)−1

=

 (
N [≤N ]
ε ◦Tω

)
(1+

∑N
k=0 u

′
k(θ+ω)εk)

(
N [≤N ]
ε ◦Tω

)∑N
k=0(u′k(θ+ω)−u′k(θ))εk∑N

k=0(u′k(θ)− u′k(θ + ω))εk 1 +
∑N

k=0 u
′
k(θ)ε

k


which implies that Ẽ(N,2N ]

ε,2 is a trigonometric polynomial of degree 3aN . Remember that

Ẽ
(N,2N ]
ε,2 is the second row of the vector Ẽ(N,2N ]

ε =
(
M

[≤N ]
ε ◦ Tω

)−1

E
(N,2N ]
ε . Note that

J =

 0 1

−1 0

.
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Furthermore, we haveDµfε,µ[≤N ]
ε

(x, y) =

1

1

, then the second row, ÃNε,2, of the vector

ÃNε =
(
M

[≤N ]
ε ◦ Tω

)−1

Dµfε,µ[≤N ]
ε
◦K [≤N ]

ε is a trigonometric polynomial of degree aN .

The following proposition summarizes the computations presented above and assures

that hypothesis HTP1 and HTP2 of the main Lemma 33 are satisfied for the dissipative

standard map.

Proposition 66. For any N ∈ N, if V (θ) in (A.1) is a trigonometric polynomial of degree

a, then Ẽ(N,2N ]
ε,2 is a trigonometric polynomial of degree 3aN , ÃNε,2 is a trig polynomial of

degree aN , and

ẼN
Ω,ε(θ) ≡ DK [≤N ]

ε (θ + ω)>J ◦K [≤N ]
ε (θ + ω)DK [≤N ]

ε (θ + ω)

−D(f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ))>J ◦ (f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ))D(f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε (θ)) (A.9)

is a trigonometric polynomial of degree 2aN .

Proof. It is only left to prove the last claim. Note that ẼN
Ω,ε(θ) is the expression in coordi-

nates of (K
[≤N ]
ε ◦ Tω)

∗
Ω−(fε,µ[≤N ] ◦K [≤N ])∗Ω. Now, using the fact that fε,µ is conformally

symplectic we have (f
ε,µ

[≤N ]
ε
◦K [≤N ]

ε )∗Ω = K
[≤N ]
ε

∗
f ∗
ε,µ

[≤N ]
ε

Ω = λ(ε)K
[≤N ]
ε

∗
Ω, which means

that, in coordinates

ẼN
Ω,ε(θ, ε) = DK [≤N ]

ε (θ + ω)>J ◦K [≤N ]
ε (θ + ω)DK [≤N ]

ε (θ + ω)

− λ(ε)DK [≤N ]
ε (θ)>J ◦K [≤N ]

ε (θ)DK [≤N ]
ε (θ) (A.10)

which is a polynomial of degree 2aN due to the fact that J is a constant matrix and

DK [≤N ]
ε (θ) =

 1 +
∑N

n=0 u
′
n(θ)εn∑N

n=0(u′n(θ)− u′n(θ − ω))εn


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is a trigonometric polynomial of degree aN .

A.1.1 Uniqueness

Note that for ε = 0, M0 = I . Also note that the coefficients of the expansion (A.8) are

given by

Kn(θ) =

 un(θ)

un(θ)− un(θ − ω)

 for n ≥ 1.

Therefore, the normalization condition

∫
T

[
M−1

0 Kn(θ)
]

1
dθ = 0

in this case has the form ∫
T
un(θ)dθ = 0,

which is satisfied by the construction of the u′ns. Thus, the expansion given in (A.8) is the

only one which satisfies the normalization condition.
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