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SUMMARY

The objective of the research is to demonstrate energy-efficient computing on a con-

figurable platform, the Field Programmable Analog Array (FPAA), by leveraging analog

strengths, along with a framework, to enable real-time systems on hardware. By taking in-

spiration from biology, fundamental blocks of neurons and synapses are built, understand-

ing the computational advantages of such neural structures. To enable this computation and

scale up from these modules, it is important to have an infrastructure that adapts by taking

care of non-ideal effects like mismatches and variations, which commonly plague analog

implementations. Programmability, through the presence of floating gates, helps to reduce

these variations, thereby ultimately paving the path to take physical approaches to build

larger systems in a holistic manner.

xiv



CHAPTER 1

ANALOG AND NEUROMORPHIC COMPUTING ON CONFIGURABLE

SYSTEMS

1.1 Overview

Biologically inspired systems have revolutionized computing, since the concept was pio-

neered by Carver Mead, in the early 1980s. The human brain performs computation with

just 20W of power comparable with supercomputers that consume megawatts of power.

Neuromorphic computing is about translating these energy-efficient neural systems, as

well as implementing competitive techniques, by understanding and exploiting the com-

putational advantages of such structures. This can be accomplished by analog structures

that remain true to the biophysics of neurons and perform compact low-power real-time

computation.

However, in conventional analog processes, mismatch and variations may plague over-

all performance. Reconfigurability and programmability provided by floating gates helps

solve these issues. Hence, it is significant to have a platform and framework that can sup-

port the real-time implementation of energy-efficient applications on hardware.

Keeping such goals in mind, this work aims towards high impact by implementing

physical approaches of computing in configurable hardware. The analog implementations,

facilitated through dense arrays of floating gates, can not only adapt by taking care of

non-ideal effects like mismatches and variations, but also pave the path for power efficient

computation. The framework built for such hardware, with abstractable tools and algo-

rithms, enables circuit and system designers, as well as computational neuroscientists, to

understand neural systems, especially through the fundamental blocks of Hodgkin-Huxley

neurons and synapses that allow one to scale and build different topologies and larger sys-

1



tems in real-time, rather than through digital simulations. Hence, this work focuses on

implementing such circuits and systems through Field Programmable Analog Arrays.

1.2 Programmable and Configurable Analog Systems

Reconfigurable hardware has numerous advantages. In the digital domain, Field Pro-

grammable Gate Arrays (FPGAs) have been useful for prototyping and implementing a

number of applications. However, to break the energy efficiency wall, one needs robust

analog approaches. Analog computing techniques result in 1000× improvement in power

or energy efficiency, and a 100× improvement in area efficiency, compared to digital com-

putation, as Mead originally predicted [1]. Field Programmable Analog Arrays (FPAA) [2],

with their reconfigurability and programmability, enable the design and implementation of

large-scale mixed-signal systems for diverse applications in signal processing and neuro-

morphic computing. The presence of a single platform facilitating a hardware-software

codesign has been instrumental in implementing such applications [3]. Reconfigurability

is obtained by modulating the charges on the Floating Gates (FG) on the FPAA structure.

These devices are utilized as ubiquitous, small, dense, non-volatile memory structures and

to perform computation throughout the SoC FPAA.

A Floating Gate circuit is one in which the gate of a FET is electrically isolated and

is capacitively connected to the other nodes. In 1967 [4], FG transistors were first shown

as an emerging technology that could be used for non-volatile memory storage. Charge is

stored on the FG, which leads to the non-volatile behavior and it can be modulated through

electron tunneling and hot-electron injection [5].

The hot-electron injection process injects charges on the floating node, thereby reducing

the threshold voltage of the device. The process of Fowler-Nordheim tunneling is used by

subjecting the MOS capacitor to a high voltage, to remove the electrons from the node. This

voltage is increased to reduce the effective width of the barrier, which in turn increases the

threshold voltage of the device. These techniques originated from the fundamental single

2
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Figure 1.1: FPAA fabric consists of CABs, CLBs and other peripherals, fabricated on a
350nm process. The CAB components with the transistors, OTAs, FGOTAs, transmission
gates and capacitor banks, with the routing lines consisting of the FG pFETs are shown
in one CAB. The CLBs consist of eight, four input BLE lookup tables with a latch. The
DACs, MSP 430 processor and other peripherals are used as a part of the infrastructure, all
on the chip, to perform the programming of the FG elements.

transistor synapse learning device demonstrated in [6].

A concept of a CMOS FPAA for starting to look at promising neural network appli-

cations was first shown in [7]. The FPAAs developed have evolved through a number of

generations [8, 9], all leading to the current generation [2]. The SOC FPAA [2] is a re-

configurable and programmable SOC consisting of Computational Analog blocks (CABs)

and Computational Logic Blocks (CLBs), which are connected through Manhattan style

routing that are composed of Connection (C) and Switch (S) blocks. It is integrated with

a processor, ADCs, DACs and peripherals, as shown in Figure 1.1. Each CAB consists of

nFETs, pFETs, Operational Transconductance Amplifier (OTAs), FGOTAs, transmission
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gates and capacitor banks, while a CLB consists of lookup tables. There are 98 CABs

and 98 CLBs. All the measurements shown throughout this work are taken from the SOC

FPAA fabricated on a 350nm process.The routing switches, made of FG pFETs, are not

dead weight; they may be used for computation, depending on the target application. The

SoC FPAA interdigitates analog and digital computation in the same routing fabric.

Due to the presence of FGs, one can take care of mismatches and other variations that

commonly plague analog implementations. Two approaches to programming [10] FPAAs

have been followed through the various generations, namely the direct and indirect pro-

gramming methodologies. In direct programming [5], t-gates switch a FG transistor be-

tween its application and the programming circuitry associated with it. Since this switching

may decrease accuracy and speed, especially due to extra parasitics, an indirect program-

ming [11] method is used currently, where the transistors in the circuit and the programming

circuitry are different. These techniques help to eliminate most issues of threshold voltage

mismatch and alleviates the need for large transistors for analog as opposed to using small

transistors for digital operation to handle mismatch issues, especially as one scales analog

and digital designs to smaller device nodes.

The process of compilation, programming, and taking experimental measurements is

executed through an open source tool infrastructure in a Scilab/Xcos framework [12, 13].

FG programming is encapsulated in the infrastructure [14], abstracted away from the user.

These tools give the user the ability to create, model, and simulate [15] analog and mixed-

signal circuits and systems. They also allow multiple levels of abstraction [16], thereby

being accessible to system-level designers, while still enabling circuit designers the free-

dom to build at a low level. They facilitate rapid development and reduce the barrier of

entry for ultra-low power physical computing techniques for analog and neuromorphic ap-

plications.
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1.3 Neuron models commonly used for Neuromorphic Computing

The fundamental building blocks for the design and implementation of a spiking network

are neurons and synapses. A neuromorphic computing approach initially requires a bio-

logical understanding of these modules to help build them on configurable hardware. A

biological neuron consists of the soma or cell body, axon, and dendrites. The neurons

transmit the output through the axons, while the dendrites help receive the input and trans-

mit the information to the soma. The information is communicated between the neurons

(from a dendrite input to the axon output) through the synapses, enabled through the neuro-

transmitters at the gap junctions.

A key question while designing different networks in hardware is the choice of the re-

quired neuron model to be used. A number of factors need to be considered before arriving

at a decision. One should consider how well the model replicates the spiking dynamics of

a neuron, preserving neurocomputational features, and how that further leads to processing

of information in the brain. Since the ultimate objective is to achieve a hardware implemen-

tation, the efficiency and speed of computation along with the power dissipated and area

should also be kept in mind. This becomes more apparent when one instantiates multiple

copies of these neuron models in a network for useful computation.

1.3.1 Hodgkin Huxley Neuron

Hodgkin and Huxley (HH) won the Nobel prize for their work [17] on eliciting a response

from the nerve fiber of a squid axon. They experimentally demonstrated voltage against

current relationships for the ion channels, thereby proving the existence of voltage gated

channels. Hence, they deduced that variable conductances could be used to model the

dynamics. Spiking behaviour and action potentials are produced from neurons due to in-

teractions between different ions.

Voltage clamp experiments were performed, where a step voltage was applied at the

5



input and current measurements were taken from the ion channel. This data helped to

derive the types of channels responsible for the dynamics and formulate a model. From

their data [17], the spike is observed primarily due to the interaction between the sodium,

Na+ and potassium, K+ channel. Hence, studying these dynamics, HH developed a set

of equations to create a model for a neuron. The fundamental model, which is a set of

non-linear ordinary differential equations,

C
dVmem

dt
= Iin−gNa(Vmem−VNa)m

3h−gK(Vmem−VK)n
4−gLeak(Vmem−VLeak), (1.1)

dm

dt
= αm(1−m)− βmm, (1.2)

dn

dt
= αn(1− n)− βnn, (1.3)

dm

dt
= αh(1− h)− βhh, (1.4)

where C is the effective capacitance, Vmem is the membrane potential, gNa, gK and

gleak are the conductances of the sodium, potassium, and leak channels respectively, VNa,

VK and VLeak are the potentials of the sodium, potassium, and leak channels respectively;

Iin is the input current, and m, n, and h are the coefficients that signify the probability that

any gate of the ion channel is open at any moment, thereby relating Vmem to the speed of

activation and inactivation of the channels. These coefficients are further determined by the

α and β factors.

The set of equations is a complex model with a number of interdependent parameters.

Hence, it is difficult to have direct physical realizations of the model, and earlier efforts

included a number of software simulations in MATLAB and neuron simulators [18, 19].

A classical implementation of a transistor channel-based neuron was first shown in [20],
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Figure 1.2: The similarity of a biological channel with a bi-lipid cell membrane to a MOS-
FET, shown on the left hand side, is the primary motivation behind the ion-channel based
implementation [20].The band diagram has the surface potential which is analogous to the
biological nernst potential of the ions. The ion channel dynamics are realised through a set
of six transistors where the Na+ and K+ channel are modeled as a band pass and high pass
filter respectively.

exploring the similarity between a biological neuron and silicon. Figure 1.2 illustrates how

the approach is inspired by this movement of charge through the biological membrane.

This exponential distribution of carriers and their mechanisms of drift and diffusion of ions

through a bi-lipid biological membrane are similar to the movement of charge through a

transistor channel. The Nernst potentials that represent the equilibrium voltage of the Na+

and K+ channels. given by ENa and EK , are translated to voltages for the neuron circuit.

The gating dynamics to produce VNa and VK for the respective channels was first shown in

[20], where two pFETs model the Na+ and K+ channel.

The Na+ channel is responsible for the rising and falling phase of the action potential

due to its activating and inactivating mechanism. The step response of the Na+ channel

from the original data [17] shows that it has the characteristics of a bandpass filter. Its time
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constants are defined to be τm and τh. The K+ channel is responsible for returning the

depolarized state of the neuron to its resting potential. Its time constant is defined to be τn.

[20] models the Na+ and K+ channels as bandpass and highpass filters, respectively.

The K gating, with respect to how much it turned on, was quantitatively described by the

’n’ activation factor, while the ’m’ activation and ’h’ inactivation factors determined the Na

gating time constants.

1.3.2 Integrate and Fire Neuron

The integrate and fire neuron [21] is one of the simplest models for realizing a neuron

circuit. Hence, it is commonly used in a number of systems [18, 22] as well as digital

neuromorphic implementations [23]. Although this does not truly mimic the biological

neuron, it is commonly used in rate-encoded spiking neural systems, where one does not

care about preserving the computational features of a true neuron. A spike is generated as

soon as Vmem exceeds the firing threshold of the neuron; Vmem is then reset to the resting

potential, Vrest, and a refractory period is added, while the conductance is modeled to be

gleak with a stimulation current of I as shown in the equation below:

C
dVmem

dt
= I − gLeak(Vmem − Vrest). (1.5)

1.3.3 Izhikevich Neuron

The Izhikevich neuron [24] is a model that produces a wide variety of action potentials, re-

producing different spiking dynamics, including a phasic spiking where the neuron remains

inactive after producing a single spike, or tonic bursting where periodic bursts of spikes are

observed, and a mixed model where tonic spiking follows phasic spiking at the beginning

of the stimulation. This model has been widely used to reproduce spiking using software

simulators for analyzing the dynamics of populations of neurons. FPGAs have been used

to reproduce this behaviour in hardware [25, 18].
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There have been multiple approaches to emulating the spiking of neurons. A fundamen-

tal implementation of a silicon neuron circuit [26] was shown that builds from the classic

HH equations. Reference [19] built a HH neuron by implementing a library of analog op-

erators while [27] has shown a circuit based on a voltage-dependent ion channel model.

Reference [28] directly translates the equations, which may involve a larger area due to the

higher number of elements used. A neuromimetic integrated system in [29] compares bio-

logical neuron spikes with the HH model. Another approach uses gating variables inspired

by the rates of the closing and opening of ion channels in a reconfigurable chip [30]. A

comprehensive set of different circuit models and solutions to build neurons on silicon has

been discussed in [18].

1.4 Organization of the dissertation

This work aims to use the SoC FPAA to demonstrate various analog and neuromorphic

computing techniques. Chapter 2 presents experimental silicon results on the dynamics

of a transistor channel based Hodgkin-Huxley neuron, inspired by the similarity between

biology and silicon, by modeling the ion channels and their time constants. It introduces

techniques of mismatch compensation by tuning the ion channels to produce a variety of

action potential dynamics and spiking responses from different inputs.

Chapter 3 introduces our FPAA tool infrastructure, primarily the aspects of a simula-

tor modeling the fundamental components like transistors, amplifiers, and FG devices. It

demonstrates close agreement between simulated results and experimental measurements

by implementing systems such as continuous-time filters and the analog front-end of a

speech processing system. It further discusses models for simulating various analog cir-

cuits over temperature.

Chapter 4 describes a methodology for building networks on the FPAA from transistor

channel-based neurons and synapses. It elaborates on the neuronal responses obtained

through excitatory and inhibitory synapses and shows post-synaptic potentials from the

9



synaptic clefts and neurons. Further, the models are used to demonstrate neuromorphic

systems of spiking neurons and synapses.

Chapter 5 focuses on the tuning algorithm for compensating for indirect programming

mismatch, especially to set the weights on a Vector Matrix Multiplier (VMM). It discusses

the constraints during the design and implementation process, accounting for the mismatch

in devices. Further, it shows an application of this algorithm through a set of programmable

bandpass filters with the tuned VMM.

Chapter 6 discusses an analog solution of a linear system of equations and shows the

advantages of analog computing. It experimentally demonstrates these continuous-time

analog solutions through varieties of transconductance amplifier based networks for differ-

ent types of inputs, sizes and matrices. Finally, Chapter 7 discusses the issues to remember

while building complex systems and concludes the discussion by introducing the design

and layout of FG test cells in 14nm to scale to lower process nodes and build the next

generation of hardware for energy-efficient computing.
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CHAPTER 2

HODGKIN-HUXLEY NEURON AND DYNAMICS ON THE FPAA

2.1 Hodgkin-Huxley neuron on a reconfigurable platform

The pathway of neuromorphic computing [31] offers a number of opportunities to build

circuits and systems efficiently, especially due to the analogy between biology and silicon.

This work aims to present hardware results on the dynamics from a Hodgkin-Huxley (HH)

neuron adapted from our original model [32] and implemented on a System on Chip (SoC)

large-scale Field Programmable Analog Arrays (FPAA) fabricated on a 350nm CMOS pro-

cess [2].

Hodgkin and Huxley won the Nobel prize for their work [17] on eliciting a response

from the nerve fiber of a squid axon. The action potential is generated as a result of a set of

voltage-gated ion channels. This exponential distribution of carriers and their mechanisms

of drift and diffusion of ions through a bi-lipid biological membrane are similar to the

movement of charge through a transistor channel. The left panel of Figure 1 illustrates how

our approach is inspired by this movement of charge through the biological membrane and

the reproducibility of the action potentials. The right panel suggests accessibility to a wide

set of users either remotely or through a local board.

This work reproduces the spiking behavior and shows the nonlinearity of dynamics of

HH neuron by modeling voltages, ion channels, and time constants. We show a model

which is not only inspired by the physical similarity between ion channels and semicon-

ductors but which also helps clarify a few concepts on ion-channels and neurons, as shown

in Fig. 1. Rather than just simulating on a digital computer and understanding via the equa-

tions, anyone can reproduce similar results using our open-source tool infrastructure and

remote system [33] [12]. One can study and analyze the system behavior by observing the

11



Figure 2.1: High level idea behind the implementation of the Hodgkin-Huxley neuron on
the FPAA. The similarity of a biological channel with a bi-lipid cell membrane to a MOS-
FET, shown on the left hand side, is one of the primary motivations behind the ion-channel
based implementation. The band diagram has the surface potential which is analogous to
the biological nernst potential of the ions. The hardware implementation of the HH neuron
model on SoC FPAA, inspired by this concept, offers multiple opportunities. The recon-
figurability helps to replicate a variety of action potentials through our open toolset and
thereby offering greater insights to a few concepts in neuroscience through experimental
results from the hardware.

effect of tuning the ion channel parameters with ease due to a reconfigurable chip which

helps the user get better insight into the causality behind the dynamics. Hence, this chapter

demonstrates a system from the perspective of the user.

A software simulation is done by modeling a set of equations which has more than

twenty parameters [17] to tune to obtain the right behaviour. However, in our system we

mainly have three bias parameters to tune the time constants for spiking, while the other

parameters like ENa and EK , the supplies to the circuit, are constant and global, thereby

reducing the whole parameter set to obtain a spiking behaviour. Also, the bio-physical
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Figure 2.2: The graphical user interface from which the HH neuron design can be viewed
from the examples drop-down, in the open-source tool infrastructure is shown. The FGOTA
and the ramp ADC constitute the measurements setup, to amplify the membrane voltage
signal and observe the spiking behavior from the neuron clearly. The example can be
compiled and data can be measured by sending the email and remotely receiving the result
from the FPAA to observe various dynamics. One such set of behavior is zoomed out for
the clarity of the reader and shown for the membrane voltage output from the neuron.

behaviour is emulated in hardware since we are modeling the ion channels without just

curve fitting and translating the mathematical equations to hardware. Unlike an ASIC, the

reconfigurable nature allows us to obtain a multitude of dynamics for the HH neuron and

we are able to use the same chip to scale up as well as implement the functionality of neuron

models as well. The low cost and flexibility, as well eliminating the waiting for the chip to

arrive after every fabrication, helps in rapid prototyping, while the remote system enables

the user to obtain the relevant dynamics from the neuron as it is available in the examples

in the tools. It can be replicated by others in the community, with the inner details having

been abstracted away for the ease of the user, while at the same time, offering the flexibility

13



of access to an advanced user too.

This chapter elaborates on the modeling of the HH neuron and implementation of the

circuit and the varying spiking dynamics observed through the experimental measurements

obtained from the FPAA. Section 2.2 introduces the translation of our original model to the

FPAA with all its constraints and opportunities. We first observe the action potentials in

Section 2.3. Section 2.4 describes the similarity between a biological channel and transistor

channel. We discuss the criticality of getting the correct biasing points in Section 2.5

and further discuss the physics behind the ion channels in Section 2.6. Section 2.7 gives

deeper insight into different spiking dynamics across chips, while Section 2.8 concludes

the discussion.

2.2 Implementation on the FPAA

The transistor channel models are modified from the circuit in [20], utilizing the current

FPAA resources using nFETs, pFETs, Operational Transconductance Amplifiers (OTAs)

and Floating-Gate (FG) OTAs such that the circuit is contained in one CAB, thereby occu-

pying less than 1 percent of the IC. The current chips fabricated in a 350nm CMOS process

on which the measurements have been taken consist of 98 CABs.

Hodgkin-Huxley performed voltage clamp experiments, where a step voltage was given

and the current measurements were taken from the ion channel. This data helped to derive

the types of channels responsible for the dynamics and formulate a model. From their

data [17], it is seen that the spike is observed due to the interaction between primarily

the sodium, Na+ and potassium, K+ channel. Their Nernst potentials, given by ENa and

EK , are translated to voltages here, which are in terms of UT , thermal voltage, and serve

as supplies to the neuron circuit. The gating dynamics to produce VNa and VK for the

respective channels are built from the FPAA resources, where a pFET and nFET model the

Na+ and K+ channel respectively, operated in the subthreshold regime.

The Na+ channel is responsible for the rising and falling phase of the action potential
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due to its activating and inactivating mechanism. The step response of the Na+ channel

from the original data [17] shows that it has the characteristics of a bandpass filter. Its time

constants are defined to be τm and τh. The K+ channel is responsible for returning the

depolarized state of the neuron to its resting potential and its time constant is defined to be

τn.

Our classical circuit [20] modeled the Na+ and K+ channel as bandpass and highpass

filters respectively. The K gating, with respect to how much it turned on, was quantitatively

described by the ’n’ activation factor, while the ’m’ activation and ’h’ inactivation factors

determined the Na gating time constants. However, in the FPAA, due to the significant

capacitance in the routing, the FPAA gain from VK to Vmem is reduced, whereas the original

structure [20] needs a higher gain, especially around higher frequencies. This inspired us

to modify the design, for the K+ channel to be a lowpass filter, whose output to the K

gating nFET is represented by VK . An FGOTA in a follower configuration is used for this

purpose, since the FGs help set the DC offsets, while tuning the bias current at the right

place would produce the desired τn.

The Na+ channel’s output to the Na gating pFET is represented by VNa. The Na chan-

nel, a bandpass filter, can be considered to be a modified Capacitively Coupled Current

Conveyer (C4) filter [2]. An FG-pFET is used in the feedback to set the τh constant. No

extra device is required for this purpose, since the feedback is a part of the local routing

without occupying an extra area. Figure 2.3 demonstrates the concept behind the above

implementation on the FPAA. The role of the local routing, as shown through the input and

output lines to the CAB devices is focused on in Figure 2.3. The switches in the routing, the

FG-pFETs are used as programmable switch elements for computation [14]. The routing

tracks dominate the area and one transistor is similar in area to one OTA, both being three

terminal devices, inspiring the transformation of the design of the channel gating dynamics

modeled by the transistors to OTAs. Hence, a primarily transistor-based Na+ channel is

converted to an FGOTA and an FG-pFET switch on the FPAA. Due to the routing parasitic
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FPAA, a transistor or an OTA corresponds to a 3 terminal device, thereby an extra area is
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capacitive inputs contributing to a large attenuation, the highpass K+ channel translates to

a lowpass structure with the desired gain on our device.
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ditions and parameters, over a longer period of time. The effective input current is varied,
thereby changing the total current contributed at the membrane voltage node. The behavior
of Vmem changes from one spike to multiple spikes with different rates.

2.3 Action potential

Figure 2.4 shows the spiking behavior on Vmem in response to a step input current. The

effective input current to the cell is used as a primary parameter to study this behavior

[34]. We can see that the inter spike interval (ISI) decreases and the number of spikes in

a specific period of time increases as the input current increases across the plots [35]. A

phasic spiking is observed [24] initially for a lower current, where a single spike is observed

and Vmem rests at its resting voltage. Continuous spiking patterns are observed as the

current changes. The average firing rate is consistent but the thermal noise contributed by

the transistors in the model as well as from the measurement and instrumentation circuitry
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causes changes to the ISIs in the spiking pattern over time.

2.4 Passive Channel

A pFET is modeled as the prototype for a passive ion channel, which selectively allows

ions to cross the membrane. The flow of ions due to the difference in the concentration

in the intracellular and extracellular space [36] and the channel formation is similar to the

energy band diagram as observed with a silicon channel model. A single transistor modeled

as a biological passive channel aids us in deciding the regions of operation of the circuit

elements, thereby initiating the process of figuring out the parameters to bias the system.

The I-V relationship [15] shown in Figure 2.5, where we measure the pFET as a passive

channel, helps us take a systematic approach.

Fixing the gating potential of the pFET and the drain voltage at EK , the current flowing

18



through the transistor is observed as the source voltage is swept. It can be seen from the

current though the pFET vs Source voltage plot in Figure 2.5 that the terminal behaves

as a source and a drain node when it acts as a current source and when the transistor is

in saturation, respectively. There is a constant current when the sweeping voltage is less

than EK as the source voltage crosses the resting potential of 0.85V on EK . This can be

observed in an activating excitatory synapse when the FG-pFET’s source is at ECa which

is 4UT [36], while its drain is at the membrane voltage at a resting potential of −2.5UT and

for a peak at the gate. The passive channel concept is also relevant in the case of modeling

of dendrites [37], where the saturation region is exploited.

2.5 Biasing the Neuron

The complementary relationship between the voltage and current from a pFET modeled as

a biological channel plays a significant role in determining the bias points for the various

nodes, giving an insight into the design. The current measurements resulting from a step

voltage input through the voltage clamp helps determine the gate voltage needed to produce

the desired response from the ion channels, which in turn, is the starting point of the biasing

of the neuron. Figure 2.6 shows the concept behind the sequence in figuring out the biases

required to obtain action potentials from the neuron.

The gain from the Na+ gating channel output to the membrane voltage is around 8.

Thus, the DC of VNa can be fixed to be around 250-300mV, thereby setting the source

and drain DC voltages for the feedback FG-pFET and programming a large current for the

feedback element. For the Na gating channel pFET to be in saturation, knowing VNa and

the current through the pFET in saturation in the order of nAs, we can set ENa to be at

1V. This sets EK , since the difference between EK and ENa is around 150mV. From the

Nernst potential [36], we know EK is −3UT , while ENa is 2UT . The resting potential for

membrane voltage is 10mV above EK . From EK and the current through the K gating

nFET, we can determine VK to have a DC of around 1.25V. From these DC bias points, we
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can determine how to tune the FG OTAs and the conductances to generate a spike.

The biasing on the Na+ is critical in terms of getting the DC values, time constants, and

gain right, since that sets the rest of the biasing and time constants. A gain of -8 or -12dB

between Vmem and VNa is required for it to spike, so that one does not see just an oscillatory

response. The corners of the bandpass filter are tuned such that there is a factor of two to

four between the two bands. It is important to make sure that the feed forward time constant

due to the forward FGOTA, τm, is faster than the feedback time constant, τh, caused by the

output to the middle capacitively coupled node. The DC level affects the corner frequency

of the amplifier, since it is giving the DC point of the FG-pFET device that is creating the

feedback. Considering the channel transistors to be in saturation with the Na+ channel

20



pFET’s current being 1 percent of the K+ channel nFET, the resting potential of Vmem sits

at EK . A leak channel that represents the ion channels for chloride and other ions [17],

modeled by an FG switch in the routing, is added to pull up the Vmem to UT/2+EK , as the

Vmem is at the transition point between the linear and nonlinear conductance regions. The

time constants are set such that τn is slower than τm, biologically similar to the fact that

K+ channels respond slower than the Na+ channels.

2.6 Physics of Sodium and Potassium Channel

Figure 2.7 illustrates the Na+ and K+ channel behavior clearly. The interaction of the cur-

rents from the Na+ and K+ produce the action potential. A step input current is injected

into the node through an OTA or an FG-pFET which models a synapse. The capacitance

from the line acts as the membrane capacitance, Cmem. Figure 2.7(a) shows the responses

of the Na+ and K+ channel individually extending the concept of the voltage clamp exper-

iment, where the ionic currents were observed [17] after selectively blocking the respective

ion channels. Activating one channel at a time in the system, the bias parameters were cal-

culated through simulation [15] and from the experimental results on hardware. They were

selected such that we get a bandpass response for the Na+ channel while the K+ channel

gives a lowpass response. The transient responses to a step input in the Figure 2.7(a) give

insights into the separation of the time constants τm, τh and τn of the ion channels. From

the calculations shown in Figure 2.6, we get similar DC points by adjusting the offsets

through the FGOTAs.

Figure 2.7(b) shows a single spike. The different regions of the action potential are la-

beled in the figure. The membrane voltage initially starts at its resting voltage, about 10mV

above EK at 1. The region 2 of depolarisation, where the Na+ ions flow in, is represented

here when the Na+ gets activated and the positive feedback through the FG-pFET kicks in

and as VNa drops, Vmem rises to ENa. At 3, the K+ channel starts to affect the response

and the feedback time constant, τh, starts recovering. The Na+ channel sees the input to
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Figure 2.7: (a) The K+ and Na+ gating circuit and the experimental results for the step
response of the channels are shown. A step input of 100mV is applied. The transient
response of the K+ and Na+ channel depicts the low-pass and bandpass filter behavior
respectively. The lowpass effect is responsible for bringing the action potential back to
the resting potential. A DC level of 1.2V is achieved by tuning the offset currents in the
FGOTA and the time constant can be tuned by Iτn , the current to which the FGOTA is
biased. The DC level of the Na+ channel is observed at around 300mV. The feedback
time constant is controlled by the FG-pFET switch in the routing. (b) The device level
simulation results for an action potential to a step input of 100 mV are shown. Vmem, VK

and VNa are observed on one plot in response to a step input for a set of biases.

it decreasing, causing VNa to rise and settle to its DC of 300mV, and τh pulls Vmem to its

equilibrium at 4. At 5, the K+ and Na+ shut off, and we see the rise in Vmem as the node

charges through Cmem. The refractory period is a factor of the input current integrating

through the capacitor at the node. This spiking behavior observed is biologically similar to

the ion channel behavior with the Na+ and K+ channel conductances changing with time

due to the opening and closing of the respective ion channels, causing the depolarisation

and hyperpolarisation in the membrane voltage.

Observing the results from the transitions of VK and VNa with respect to Vmem, we can
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further understand the close coupling between the nonlinear dynamics of the ion channels,

which contributes to an action potential in Figure 2.6(b) through circuit level simulations

[15]. As the voltage on Vmem starts rising from its resting voltage to its peak, there is a fall

in VNa, with VK peaking as expected, with the rise and fall governed by the time constants.

The rise during the refractory period is controlled by Cmem.

2.7 Looking into different spiking dynamics

This section explores different dynamics, analyzing the effect of modifying time constants

to achieve different firing rates. The tuning for mismatch is also studied to obtain similar

dynamics across chips along with subjecting the system to other signals like ramp inputs

and noise.

2.7.1 Effect of modifying time constants

Figure 2.8 shows a multiplication in the frequency of the spikes as the plots progress from

(d) to (a). This adaptation in the spiking frequency is due to the change in time constants

τm, τn and τh, which are changed by tuning the bias currents Iτm and Iτn and Vref . As they

change, the time taken by the Na+ and K+ channel to respond to changes in Vmem varies,

leading to higher spiking frequency.

Iτm and Vref change the corners of the bandpass filter responsible for the Na+ channel,

while Iτn adjusts the corner of the K+ channel. We show how we can run our circuit at

different time scales in Figure 2.8. Our tools allow one to use a single Xcos design;fine-

tuning the parameters enables running at slower, faster or real-time speeds.

2.7.2 Calibrating for mismatch across chips

Mismatch in the responses between different chips or among different neurons has been

beneficially exploited in some applications [38, 39, 40, 41]. As expected, the intra-neuron

mismatch due to variation from CAB to CAB is less than from chip-to-chip, since the die
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Figure 2.8: The experimental measurements’ data from the FPAA for an action potential to
a step input of 100 mV, exhibiting different spiking frequencies. The biases are controlled
such that different rates can be obtained, scaling the Iτm , Iτn and Vref accordingly depend-
ing on the rate desired. As observed from the time scale, the spiking frequencies reduce
with the progression of the plot from (a) to (d).

to die variation is higher than on-die variation [42]. A classic neuromorphic problem is

studied here to identify if this spiking behavior is reproducible. Experimental measure-

ments were taken across three different chips. We try to minimize this mismatch since we

wish to efficiently use as many neurons as possible for computation, without using extra

resources to correct for the added variation [43]. The results with the same identical set of

parameters are shown in Figure 2.9(a). The threshold voltage mismatch caused due to the

indirect FG programming infrastructure can either be compensated by using the systematic

automated mismatch map approach [44] in our system or other techniques as shown in [45],
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Figure 2.9: The experimental measurements’ data from the FPAA for an action potential
to a step input of 100 mV, from different boards. Figure 2.9(a) shows results before tuning
for mismatch, while Figure 2.9(b) shows the measurements after tuning. The biases are
controlled such that the DC biases match along with the different frequencies and rates
from the different chips. The threshold voltage mismatches are compensated and adjusting
Iτm , Iτn and Vref aids in adjusting the respective time constants.

with translation of parameters in a network [46]. References [47, 48] have explored differ-

ent optimization algorithms to arrive at the parameter space set for the tuning the neuron

model [19]. The parameters are tuned here at the neuron level by looking at the varying

time constants specific to this circuit since our platform allows one to shift biases.
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Figure 2.10: The tuning algorithm to minimise the variation between different chips to get
similar spiking responses across boards is shown by analysing VNa, VK and then fine tuning
the FG biases on the CAB elements of the neuron model.
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Metrics Before Tuning After Tuning 

Chip Number

ISI (ms)

Spiking Frequency

Chip 1 Chip 2 Chip 3 Chip 1 Chip 2 Chip 3

CORRELATION MEASURES ACROSS CHIPS

82.37 245.7 80.32 63.65 104.199.2

12.14 4.07 12.45 15.71 9.6110.08

Figure 2.12: The table shows metrics like ISI and spiking frequency, to demonstrate num-
bers to quantitatively compare the behaviors before and after tuning for mismatch.

Figure 2.10 shows the tuning methodology for mismatch minimization between the

chips. We first start with obtaining the spiking response from a reference board by pro-

gramming the biases and time constants of each of the channels as elaborated in Section

2.5. Once the reference parameters are obtained, these are used for compiling down the

design to the respective chips. An Xcos block for debugging has been created in the library

of blocks with the pins instrumented out to measure VNa, VK and Vmem. With the reference

parameters, a check is done to observe if there is any spiking activity or not. If there are

no spikes, we do a sanity check to ensure Na+ and K+ channel behave as bandpass and

lowpass filters, respectively.
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Figure 2.11: The spiking frequency for a chip represented as filled circles is plotted as
time progresses. It is defined as the reciprocal of ISI here. It is not a constant due to the
thermal noise of the transistors in the system. The average value across time is calculated,
marked as a dotted line, to compute the spiking frequency of each chip, which is used to
quantitatively correlate the behavior between the chips.

After observing the spiking behavior on Vmem, we calculate the variation in the ISIs or
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spiking frequency to minimize its difference from the parameter chip. A sample average

spiking frequency is shown in Figure 2.11. The transient or frequency response from VNa

and VK helps us calculate the respective time constants τm, τh and τn. The FG biases on

Iτm , Vref and Iτn are then fine-tuned. To get equivalent spiking amplitudes between the

chips, ENa and EK which are the supplies given through DACs on the respective chips, are

calibrated and the DC offsets are equalised through fine tuning of the FG biases on the FG

OTAs of the Na+ and K+ channel.

Figure 2.9 shows how the rates and frequencies are thus matched across the chips,

thereby giving effectively identical behavior among all the three chips. This proves our

hypothesis that the dynamics are repeatable and reproducible among the different boards

too, due to the programmability offered by the FG devices in the FPAA. We have defined

different metrics like variations in ISI and spiking frequencies to correlate the performance

across chips in Figure 2.12.

2.7.3 Effects of Ramp and Noise inputs

Subjecting the circuit to different ramp and noisy inputs, we see different dynamics as seen

in Figure 2.13. When a ramp signal is applied at the input, there is an initial delay in the

spiking which is proportional to the time for which the ramp is active before it settles to

a steady value. Figure 2.13(b) also shows that after the first four spikes, the inter-spike

interval changes due to the delay, then we observe continuous spiking.

Random noise is input to explore the effect of noise [49, 50, 51] since it is an inherent

property of a biological system [52]. The resulting Vmem spikes even with a noisy signal.

The system is edge-triggered rather than level triggered since an action potential is observed

even at an input level lower than the threshold value. In these cases, Vmem is primarily

influenced by changes on VNa since a positive feedback loop is created between VNa and

Vmem. The bandpass filter for the Na+ channel gating destabilizes the circuit since the loop

gain is higher than one. The ′h′ variable is significant in the downward transition where the
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Figure 2.13: Response of the membrane voltage to a different set of inputs over a longer
period of time. (a) The positive feedback loop from VNa to Vmem destabilizes the system
thereby affecting the overall dynamics of the system. The ’h’ variable plays a significant
role here. (b) An initial delay in Vmem is seen corresponding to the application of the ramp
input and it continues spiking. (c) With a baseline of 0.84V and considering a threshold of
0.85V, a Gaussian noisy input generated through a random noise generator, shows that it
continues spiking with higher noise levels as soon as it sees a rise in the input signal.

feedback is out of band. The positive feedback is again analogous to that caused due to the

increase in gNa, with more influx of the Na+ ions.

2.8 Summary and Discussion of the neuron structure

FPAAs offer reconfigurabilty and programmability, which enables rapid prototyping in

hardware. It is useful for scaling up and building large-scale networks and systems for

real time applications, unlike simulations in software that may have a reduced speed. Par-

allel execution nature and the fact that each neuron occupies only one CAB element on the

SOC makes it a useful platform. The circuit also consumes only 0.79 µW of power due to

the devices being operated in the subthreshold regime. When one thinks of expanding to
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Figure 2.14: The screen-shot of the setup with the results, shows a spiking waveform mea-
sured from the ramp ADC for a set of biases. The membrane voltage signal has been
amplified up through the use of an FGOTA. The screen-shot portrays the idea that the sys-
tem can be designed and the output can be captured through the on-chip setup designed
using the open-source tool infrastructure, encapsulated in a single virtual machine.

build larger networks for real-time applications, the neurons and synapses built from CABs

and routing elements are used for computation.

Through this chapter, we attempt to bridge the gap between users in the hardware and

computational communities [53], especially by providing reusable neuron blocks [54] on

a mixed-signal platform. Figure 2.14 elaborates on our goal in presenting this work. One

just needs to pull up the Xcos structure from our openly available toolset, compile, and get

the results back from silicon through a remote system. Moreover, a simulation engine in

the toolset enables users to model and simulate the system and compare results with those

from the FPAA SoC.

A fundamental implementation of silicon neuron circuit [26] was built from the classic

HH equations. There have been other approaches [28, 29, 30, 19] that have been adapted

from this classic implementation, translating from the equations to hardware, with addi-

tional voltage-dependent ion channel based modeling [27]. A comprehensive set of differ-
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ent circuit models and solutions to build neurons on silicon has been discussed in [18].

Comparing our implementation to one in a digital setting, as has been shown in FPGAs

[55, 56, 57, 58], we can turn to a reduced neuron model, computationally a digital concept

[59] where the number of state variables is reduced to mostly two. This is due to the

ease with which two state variables can be studied for its nonlinear dynamics and one can

observe the phase plane behavior [35] to observe different bifurcations depending on the

chosen parameter. In the circuit, the four state variables can be brought down to two, by

tuning the Na+ channel, where τm moves to 0, τh tends to infinity, thereby making the Na

channel just an amplifier with a finite gain.

The concept of multiplication-accumulation (MAC) [60], a standard operation which

adds a product of two numbers to an accumulator, especially used in digital computing to

compare the performance of digital signal processors, helps to throw light on the efficiency

of the neuron models. The Integrate and Fire neuron [22] can be built from this, with the

same number of devices, though with lower number of parameters, with 1-4 MACs opti-

mized for a digital implementation, while the models like Izhikevich [24] and FitzHugh-

Nagumo model involve 30-60 MAC per sample as they are two state variable systems.

However, they may not accurately represent the behavior of neurons like the HHneuron

model, which emulates the ion channel dynamics.

Though the HHneuron model may involve a larger number of Ordinary Differential

Equations (ODEs), with numbers in the range of 1000 MACs per computational iteration

for a digital implementation, it can be implemented in our analog formulation with a few

devices and parameters unlike the full parameter set used in the HH equations, thereby re-

ducing redundancy. The bias parameters are directly relatable to observable time constants

in the dynamics. Hence, such models that truly mimic the characteristics of a biological

neuron are especially useful in applications that require the preservation of neurocomputa-

tional features and can be used to build neuromorphic systems of spiking neurons.
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CHAPTER 3

MODELING, SIMULATION AND IMPLEMENTATION OF CIRCUIT

ELEMENTS IN AN OPEN-SOURCE TOOL SET

3.1 Modeling circuit elements for the FPAA

Field Programmable Analog Arrays (FPAA) [2], with their configurability and programma-

bility, have enabled the design and implementation of large-scale mixed-signal systems,

with a diverse set of applications, including signal processing and neuromorphic comput-

ing. The need for a single platform facilitating a hardware-software codesign is critical in

implementing such applications [3], and providing flexibility.

SOC 

FPAA

Macromodeled 

Abstraction

Level=2 

 Models

Device 

(CAB)-

level 

Circuit designerSystem designer

Level=1 

 Models

Compilation

Design

Through blocks

Figure 3.1: The concept of implementing the circuit/system idea from the designer’s mind
to simulating and obtaining results from the FPAA. It is essential to have a support for
circuit design as much as a system design since the number of parameters are much higher
in system design than circuit design and is significant to realize the dynamics of the system.
This low-level circuit design is highlighted.
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A simulator based on real data from silicon with a simple platform having minimal pa-

rameters for a comprehensive analysis, built in Xcos/Scilab is shown in this chapter. The

infrastructure [12] enables one to compile the desired circuits and systems on the FPAA to

obtain silicon data and simulate them at the same time to analyze and go back and forth

between the simulation and data to obtain different dynamics, done either in a SPICE-

similar setting with the fundamental components like transistors, capacitors, amplifiers etc,

which is the primary focus of this work or build it as a system implementing the Ordi-

nary Differential Equations (ODEs) shown in [61], depending on the user’s choice, thereby

incorporating the perspectives of both the circuit and system designers.

Conventional circuit simulators like SPICE and Cadence employ models that have a

large number of parameters and switch between different levels of models like BSIM (e.g.

level=44) [62] [63] to obtain different levels of accuracy and different computation times.

However, the basic components built in our toolset are based on the EKV model, with a

minimal number of parameters.

An accurate and a relatively fast simulator is essential [64] for a circuit designer, with

the user having the flexibility to intuitively tune the parameters. The W/L ratios being fixed

for the devices on the FPAA is abstracted through parameters like threshold current for

the transistor, which is a more relevant term in this discussion; one need not hypothesize

the required W/L, which is generally a significant factor to be decided on [65] in SPICE

simulations.

Due to the availability of the remote system and open-source toolset encapsulated in a

virtual machine [12], any user can compile their required circuits and systems, send it to

a remote system that programs the design, measures the output from the given input, and

sends them the results from the FPAA back in an email [33]. A design cycle of waiting for

a period of time for the fabrication, as in the case of a custom chip, is not required here and

we can readily take data due to access to the FPAA.

Reconfigurability is obtained by programming the charges on the floating gates on the
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Figure 3.2: FPAA and tool infrastructure overview. (a) FPAA fabric consists of CABs,
CLBs and other peripherals, fabricated on a 350nm process. (b) The CAB components
consisting of nFET, pFET, OTA, FGOTA and capacitor, with the FGpFETs is shown in one
CAB. (c) The Xcos palette with the blocks simulated with modelica corresponding to each
CAB component is shown.

FPAA. Hence, it is important to have an idea of the bias currents and reference DC levels to

be used. One can design the system beforehand using the simulation models in the toolset,

set the different parameters in the system and then use the remote system to try to replicate

the results.

This chapter elucidates our circuit models and their close agreement with measurements

obtained from the FPAA. Section 3.2 introduces the concept of level=1 and level=2 mod-

els, while Section 3.3 describes the FPAA and the tool infrastructure used for obtaining

the results. We discuss the characterization of the CAB components as level=2 blocks in

Section 3.4. Section 3.5 introduces floating gate components. Validation of the level=2

blocks and building upon these form systems are further discussed in Section 3.6. Sections

3.7 and 3.8 discuss the modeling of temperature dependence of circuits using the simulator.

Section 3.9 concludes the discussion, comparing this work and a conventional simulator’s

computation time.
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3.2 Level=1 and Level=2 Models
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Figure 3.3: Level=1 and Level=2 blocks. (a) Level=1 blocks are used for emulating the
system behavior. Level=1 operates in voltage mode and serves for designing systems at a
high level. The analog front-end of a speech processing system is shown as an example
of a level=1 system. (b) Level=2 blocks are used for emulating the circuit behavior. A C4

bandpass filter is shown as an example of a level=2 circuit.

The tool infrastructure built in Scilab and Xcos [12] enables us to perform simula-

tions and take experimental measurements for compiling various circuits and systems. The

different blocks in the tools are classified as primarily level=1 and level=2 blocks. The

dataflow tool representation allows for a heterogenous mixture of coarser-grain system

concepts (Level=1) as well as fine-grain circuit blocks (Level=2).

Level=1 blocks aim to model systems, where the focus is on a macromodeled simula-

tion [66], defining the ODEs and algebraic equations for the system operating with voltage

inputs and outputs, with vectorized inputs and outputs. They are similar to a typical data

flow graph, which defines the equations of the system, as introduced in [12] and [61].

The level=2 models aim to model the circuits and individual CAB components, through

a Modelica based Scilab framework, implementing implicit ODEs with both voltage or cur-
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rent mode. The goal of level=2 modeling would be to design, test, model, and build level=1

blocks that can be used by system designers. Each block represents a circuit element, either

an element in the CAB (e.g. transistors, OTA) or a circuit block. Every line represents a

single circuit connection providing current–voltage constraints. They primarily model the

individual CAB elements, in a SPICE-like setting.

3.3 Integration with the tool infrastructure

The level=2 models are built through a Modelica based Scilab framework to implement

EKV models. Modelica, an object oriented language to write and solve the ODEs and

model system dynamics, enables directly implementing electrical systems as physical-level

components in Xcos [67]. This modeling is similar to SPICE simulations, providing better

intuition than breaking down the ODEs of the system and modeling each operation individ-

ually and integrating to form a system. A standard Runge-Kutta-4(5) (RK-45) [68] solver

is used in our simulations, although other solvers can be used instead. The electrical blocks

have voltage and current values in their input and output ports, which are specified in the

computational function associated with the Xcos block.

A component-based approach [69] is followed here where the behavior for all the com-

ponents we use has been described in the computational function associated with that block.

During compilation, the Xcos/Scilab converts the Xcos schematic to a set of files. All the

instances are called in a netlist-like Modelica file, which describes the connections between

the nodes of all the components present in the diagram through the command called con-

nect, analogous to an electrical netlist. The other Modelica file describes the equations of

the system, obtained by following KCL and KVL at the nodes. These Modelica .mo files

are compiled to a C code that describes the flow of the simulation through the event-driven

flags, which further define the flow of operations from the initialization of the ODEs to run-

ning for the time period of the simulation defined by the period of the clock pulse generated

and applied at regular periodic intervals.
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3.4 Characterization of CAB components

The CAB components comprise nFETs, pFETs, OTAs, FGOTAs, T-gates and current mir-

rors. The EKV model [70] is used to model the transistors, based on fundamental device

physics properties. It covers subthreshold to above threshold regions accurately [71]. FG

capacitive coupling effects are also modeled, which helps in accurately simulating FG cir-

cuits and systems [5].

3.4.1 Transistors: nFET, pFET

The measurements are taken from a golden nFET and pFET, whose position is fixed on

a particular CAB on the FPAA IC, to get uniform characteristics and to use the same pa-

rameters while building other circuits and systems from these transistors. To identify what

terminal voltages need to be swept to determine the required parameters for the FETs, we

look at the simplified EKV model in the subthreshold and above threshold regions [72].

The version of the EKV model used is shown in the table in Figure 3.4(a), where Ith

is the current at threshold, VT0 is the threshold voltage, Ut is the thermal voltage, κ is the

fractional change in the surface potential, Vd is the drain voltage, Vb the bulk voltage, Vg the

gate voltage and Vs is the source voltage. The source voltage is fixed at a Vdd of 2.5 V for

the pFET and ground for the nFET while Vg and Vd are swept to determine the parameters

for the EKV model. These parameters are substituted in the simulation model to get a close

overlap with the data.

Looking at the equations in Figure 3.4, one can identify the slopes to be determined to

extract the necessary parameters. The drain current measurements against the gate voltage

sweep are performed and fit to the EKV model to determine Ith , VT0 and κ, while the drain

current measurements against the drain voltage sweep determine the σ value. These values

are then substituted in the Modelica models. Figure 3.4 shows a close overlap between the

data and the simulations.
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nFET pFET
EKV Ith ln

2(1 + e(κ(Vg−VT0)−Vs+σVd)/2UT ) Ith ln
2(1 + e(κ(Vb−Vg−VT0)−(Vb−Vs)+σ(Vb−Vd))/2UT )

− ln2(1 + e(κ(Vg−VT0)−Vd+σVs)/2UT ) − ln2(1 + e(κ(Vb−Vg−VT0)−(Vb−Vd)+σ(Vb−Vs))/2UT )

For sub VT0: Ohmic Ithe
κ(Vg−VT0)/UT

(
e−Vs/UT − e−Vd/UT

)
Ithe

κ(Vb−Vg−VT0)/UT
(
e−(Vb−Vs)/UT − e−(Vb−Vd)/UT

)
Saturation Ithe
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(κ(Vb−Vg−VT0)−(Vb−Vs)+σ(Vb−Vd))/UT
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4U2

T
((κ(Vg − VT0)− Vs)

2 − (κ(Vg − VT0)− Vd)
2) Ith
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T
(κ(Vb − Vg − VT0)− (Vb − Vs) + σ(Vb − Vd))
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Figure 3.4: Simulated and measured current as a function of Gate voltage and drain voltage
in log scale, at a Vdd of 2.5V. The measured data is represented as the fine discrete points
while the simulation is the thick continuous line. (a) The version of the EKV model for
the level=2 models of the transistors is shown. (b) The subthreshold region with a slope
of κ

UT
and the above threshold regions can be observed. The parameters obtained from the

EKV curve-fit on the gate sweep data, used for the simulation are Ith of 53.58nA, VT0 of
0.32V and κ of 0.84 for the nFET and Ith of 111.20nA, VT0 of 0.75V and κ of 0.76 for
the pFET. (c) The drain voltage is swept and the gate voltage is at 0.3V for the nFET and
source voltage is fixed at a Vdd of 2.5V for pFET, to measure the slope in the sub-threshold
region. σ extracted from the data, used for the simulation is 0.00039 and 0.0049 for nFET
and pFET respectively.
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Figure 3.5: Verifying and building circuits using level=2 models. (a) Simulated and mea-
sured Output voltage as a function of input voltage for a nFET source follower. A gain of κ
can be observed due to the capacitive coupling. The nFET is biased at a reference voltage
of 500mV. (b) Simulated and measured Output voltage as a function of input voltage for a
common source amplifier. A finite gain of κ

2σ
is observed. (c) The parameters used for the

simulation of the transistors in the amplifier are shown.

3.4.2 Building amplifiers from the transistors

Using the pFET and nFET models introduced in Subsection 3.4.1, experiments are per-

formed for a nFET source follower and a common source amplifier. In the common drain

amplifier, the current flows through the nFETs, determined by the bias voltage, Vref . The

source voltage follows the gate terminal, to which the input voltage is swept, at a gain of

κ. The variation of κ with the input voltage is seen here and the depletion capacitance is

almost a constant since the FET is in the subthreshold region. Only the gain of κ is high-

lighted in the transfer curves. The offset of κVref is not shown due to the voltage offset

from the output buffer used at the output of the experimental setup. Assuming subthreshold
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operation, large-scale analysis yields

Ithe
(κ(Vin−VT0)−Vout)/UT = Ithe

(κ(Vref−VT0))/UT , (3.1)

Vout = κ(Vin − Vref ). (3.2)

The common source amplifier has the pFET biased to 1 V, which sets the bias current

through the FETs. Again doing a large-signal analysis,

Ithpe
κ(Vdd−Vref−VT0)+σp(Vdd−Vout)/UT =

Ithne
κ(Vin−VT0)+σnVout/UT

(3.3)

Assuming identical FETs,

κ(Vdd − Vref ) + σpVdd = (σp + σn)Vout + κVin,

Vout =
−κ

σp + σn

Vin + Vconstant (3.4)

Hence, a high gain of κ/2σ is observed in the transfer curve of Vout vs Vin, as shown in

Figure 3.5.

3.4.3 OTA

Another CAB component, the OTA, has been built as a level=2 model. The schematic of

the 9 transistor differential transconductance amplifier is shown in Figure 3.6. It consists

of a pFET differential pair and a set of current mirrors. The bias current, Ibias, is set by

the FG-pFET at the top, which acts as a current source for the amplifier [73]. Considering

that the input pFET differential pair is in saturation, the Ibias is split into currents I1 and

I2 in the input differential pair branches. The derivation from the exponential relationship
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)
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Figure 3.6: Schematic of the 9 transistor OTA in the CAB, with the Ibias current split into
currents I1 and I2 in the input differential pair branches and reflected as I”2 and I”1 , due to
the output transistors.

to the tanh relation follows from1 and through intuition from the graph and its solution.

Since the drain current is dependent on the drain voltage in saturation due to the Early

effect, the effect of σ is significant, especially in the output transistors and included in the

output relation from Iout to Vout. The current is not reflected out equally from the current

mirrors due to mismatches. The VT0 and Ith differences between the individual transistors

are responsible for the voltage and current offsets, which are also included in the equations.

Different experiments are performed to study the behavior of the OTA, as shown in

Figure 3.7. It shows the OTA as an element in the CAB, which is built from the level=2

Modelica simulation models. Each parameter of the nFET and pFET like VT0, Ith and σ

can be manipulated to vary the effect of mismatches and offsets, especially from the current

mirrors. Figure 3.7(b) - Figure 3.7(d) shows the characteristics of an OTA built as a level=2

1[31], Chapter 5, pp. 68
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Figure 3.7: Simulated and measured characteristics of the OTA biased at 100nA. (a) Output
current as a function of differential input voltage. The 9 transistor OTA is built using the
level=2 modelica transistors. The tanh behavior is observed and the offset in the currents
between the positive and negative inputs can be seen due to the pFET current mirror. (b)
Output current as a function of differential input voltage for an OTA. The transconductance
can be measured from the slope which shows a tanh behavior. The current offsets from
the biased current can be seen due to the threshold mismatch in the current mirrors in the
9T OTA structure. (c) Output current as a function of output voltage. The exponential
dependency of the current is seen through an upper limit near Vdd above which the current
decreases. The finite output conductance of the OTA is observed in the finite slope in
the midrange, shown in the inset zooming into the midrange. (d) Voltage Transfer Curve,
Output voltage as a function of input voltage. The positive terminal is fixed at 500mV.

model. A close agreement can be seen between the experimental measurements and the

simulations.

While the input voltage is swept, the output voltage is kept at midrail and the ammeter

is connected in series with the output node of the OTA. As expected, we can see a tanh

behavior in the Iout curve as a function of Vin. The transconductance, gm, as a function of

Ibias is measured from the slope of the curve. The output current to which the OTA settles

at the upper and lower end is not identical due to the finite current gain from the current

mirror and is reflected as an exponential variation in the threshold voltage differences.
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Figure 3.8: Simulated and measured current as a function of Gate voltage and drain voltage
of a FGpFET, from the MITE block in log scale. (a) The FG input depending on the input
capacitances to be swept can be chosen. The capacitive coupling can be seen in the slope
and the range of currents obtained as the input voltage is swept. The source voltage is fixed
at a Vdd of 2.5V. A slope of κ

UT

C
CT

can be observed. (b) The Source voltage is fixed at a
Vdd of 2.5V. A slope of κ

UT

Cov

CT
+ σp can be observed. (c) The parameters obtained through

curve-fit from the data, which are then used for the simulations are shown.

V1 and V2 are fixed to observe the effect of Vout on Iout. The finite output conductance

is shown in the zoomed in plot and can be measured from the slope of the curve, over a

range of the output voltage. This output resistance is due to the early effect imposed by the

finite σ of the output transistors. We can see that the current drops exponentially near the

Vdd of 2.5 V, which is due to the point when the transistors transition from the saturation

region.

The voltage transfer curve of the OTA in the open loop configuration, wherein Vout is

obtained as a function of Vin, is also measured. The slope of the curve gives the gain of

the OTA, which is similar to Av = gm Rout , where gm and Rout have already been obtained

from the Iout vs Vin and Iout vs Vout curves respectively.
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3.5 Floating gate components

A FG circuit is one in which the gate of the FET is electrically isolated and capacitively

connected to the other nodes [5]. Since there is no DC path from the floating node to

any fixed voltage, it is difficult to model an FG in conventional SPICE simulators, where

it is modeled with a DC voltage at the node with a resistor. Charge is stored on the FG,

and it can be modulated through electron tunneling and hot-electron injection. The FG

programming is encapsulated in the infrastructure [14], abstracted away from the user.

3.5.1 FGpFET

The input, routing, overlap, and oxide capacitances represented by C1, Cw Cov, Cox respec-

tively form a capacitive divider at the gate terminal with CT being the total capacitance at

the gate terminal.

CT = C1 + Cw + Cov + Cox(1− κ)

Vfg =
C1

CT

Vg +
Cov

CT

Vd +
Cw

CT

Vdd

Experimental measurements and simulations are performed for the FGpFET, from the

Multiple-Input Translinear Element (MITE) block [9][11]. The effective value of κ seen is

less compared with a pFET due to the capacitive coupling as shown in the above equations.

Vfg is the effective FG voltage at the node due to the capacitive coupling from the gate

node, with a voltage offset that depends on the initial charge stored on the node. Similar to

the pFET, a gate sweep is performed to extract Ith, VT0, and κ, and a drain sweep gives the

σ value. The capacitor node to be swept can be chosen, thereby giving different capacitive

coupling ratios from the gate terminal at the input to Vfg.
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Figure 3.9: Simulated and measured characteristics for an FGOTA. (a) The voltage offset is
obtained for FGOTA built using the level=2 modelica FG transistors by setting the offsets
at the input FGpFETs. (b) Output current as a function of differential input voltage for a
level=2 FG OTA whose slope gives the transconductance and shows its tanh behavior and
the linearity. (c) The output current as a function of output voltage shows the exponential
dependency of the current, seen through an upper limit near Vdd above which the current
decreases. The finite slope, shown in the inset zooming into the midrange shows the output
conductance of the FGOTA. (d) Voltage Transfer Curve, Output voltage as a function of
input voltage. The positive terminal is fixed at 1.5 V. The voltage offsets can be seen due
to the offsets programmed at the input FGpFETs. The positive input was biased at 10nA
current and the negative input bias was increased in steps of 10 from 10nA to 60nA. (e)
The slopes of the curves show the gm and Rout of the amplifiers.
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3.5.2 FGOTA

The effective FG voltages are set by the capacitive divider at the inputs of the FGpFETS,

at the differential amplifier input terminals:

Vfgp =
C1

CT

V1 + Vfgp0

Vfgn =
C1

CT

V1 + Vfgn0

The 9T FGOTA structure in Figure 3.9(a) built from level=2 models of FGpFETs and

pFETs shows characteristics similar to that obtained from the FGOTA built as a level=2

model. In addition to the current source which can be programmed, the FGOTA has two

FGpFETs at the two inputs which can be programmed [74]. Each parameter of the three

programmable transistors in the 9T structure can be tweaked to get different linearities and

transconductances ranges.

As shown in Figure 3.9(b), the tanh behavior and the improved linearity can be ob-

served in the Iout vs Vin plot, whose slope gives the transconductance. The linear range

of the FGOTA is higher than the OTA due to the capacitive divider at the two inputs. The

drain induced barrier lowering effect (DIBL) is again responsible for the finite output con-

ductance, measured from the slope of the Iout vs Vout curve, as shown in the zoomed in

inset in Figure 3.9(c). and the sudden exponential drop in current can be seen as the output

voltage approaches Vdd.

Another advantage of the FGOTA is that it helps to set a desired voltage offset which is

programmable. The charges on the two FGpFETs at the inputs can be modulated, thereby

producing the required voltage offset. The FGpFET that acts as the current source is at a

fixed bias while the input FGpFET is tuned from 10nA to 60nA. These currents are mapped

to voltages internally in the infrastructure. This tuning is responsible for the voltage shifts

as observed in the Vout vs Vin voltage transfer curve in Figure 3.9(d).
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Figure 3.10: Simulated and measured Output Voltage as a function of input voltage for
Continuous-time Filters. (a) Step response for a first-order low-pass filter. A step input
is given to an OTA biased at 5nA, connected in a follower configuration . The extracted
capacitance value, which comprises the parasitic and routing capacitance at the output of
OTA for the required time constant is 460fF. (b) Step response for a Capacitively Coupled
Current Conveyer, C4 based bandpass filter. A step input from 1.05V to 1.45V is given to
a FGOTA biased at 50nA, with a DC input bias, Vref at 1.4V, while the feedback FGOTA
is biased at 500pA, to get the required dynamics.

3.6 Verification and Building level=1 systems using level=2 models

To further verify and validate the models, in addition to the circuits built in Subsection

3.4.2, other circuits and systems are built from the level=2 models and the experimental

measurements are compared with the simulations. The OTA is connected in a follower

configuration, to act as a first order low pass filter, which is driving a capacitive load,

considered to be the sum of the parasitic and routing capacitances at the output node of

the OTA. An FGOTA could also be used here to get a better linearity. The response of the

filter integrating the step input is close to the simulations, with the time constant, τ , being

2UTC/κIbias,

τ
dVout

dt
=

2UT

κ
tanh

κ(Vin − Vout)

2UT

,

Which when linearized,
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Figure 3.11: Simulated and measured dynamics for the analog front-end of a speech pro-
cessing system. (a) The schematic of the system consisting of a C4 bandpass filter, mini-
mum detector and LPF are shown. (b) The Xcos/Scilab diagram with the level=2 models
corresponding to each block, used for simulation is shown. (c) A chirp input between 1Hz
and 20Khz with an offset of 200mV around 1.25V is applied at the input of the system.
The C4 limits the spectral band to a set of frequencies, set by the FGOTA in the gain stage
biased at 300nA, while the feedback stage FGOTA is biased at 6nA. (d) The minimum
detector tracks the minimum points while the LPF gives out a smooth result.

τ
dVout

dt
+ Vin = Vout. (3.5)

Consider the Capacitively Coupled Current Conveyer (C4) based second-order band-

pass filter [75]. The transconductances of the FGOTAs and the feedback and load capaci-

tance set the time constants of the filter. A step input of 400mV around Vdd/2 is applied,

and again there is a close overlap between the data and the simulation results. The equations

for C4 and its level=1 modeling is shown in [12].
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Building on these components and systems, the analog front-end of a speech processing

system is shown here in Figure 3.11 [2] [76]. It consists of the C4 which selects a band of

frequencies as determined by the bias currents set by the FGOTAs in the bandpass filters.

This is fed to a minimum detector to track the amplitude at the minimum points on the

envelope of the input waveform. The time constants are set by the load capacitances and

the currents to which the FG-pFET and OTA are biased.

The bias current of the OTA in the minimum detector is tuned such that it stays in high

gain, assuming the pFETs are in subthreshold saturation. The LPF at the output filters

the ripples and smooths the minimum detector output. There is a close overlap in the C4

output, while the dynamics of the minimum detector is very close in both the data and

simulations where it closely follows the minimas. An exact fit is not obtained though, in

the middle time range, since there is a slight DC offset observed in the output. Through this

system, we have further emphasized that we can get an accurate correspondence between

the simulations and the experimental data for larger systems.

3.7 Modeling Temperature Dependence

Many of the systems that can benefit from the computational power of an FPAA need to

operate over a range of environments and temperatures. For instance, modern ubiquitous

medical health assessment systems use physiologic signals collected from ambulatory sub-

jects during daily outdoor activities [77]. Likewise, point-of-care diagnostics platforms

aiming to achieve lab-quality tests in low-resource settings operate in environments with

varying ambient temperatures [78, 79]. Furthermore, in assisted living applications, sensor

networks are used to identify and track the daily activities of elderly residents in outdoor

settings. For outdoor applications where temperature is not stable, one of the critical perfor-

mance metrics affecting the computation accuracy of the FPAA would be, therefore, robust-

ness against temperature variations. Hence, another application of this Level=2 simulator

is to analyse the temperature dependencies of different circuits and the results are com-
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pared with measurement data obtained from the FPAA. Temperature measurements were

performed using a ZPlus (Cincinnati Sub-Zero Products LLC, Sharonville, OH, USA) tem-

perature chamber. For each temperature value, 15 min is allowed to ensure that the FPAA

die reaches the desired temperature value.

Based on the EKV model, the channel current for a pMOS and an nMOS transistor are

governed by the following equations

Id = Ithnmos ln
2
(
1 + e(κ(Vg−VT0n)−(Vs)+σ(Vd))/2UT

)
− Ithnmos ln

2
(
1 + e(κ(Vg−VT0n)−(Vd)+σ(Vs))/2UT

)
Id = Ithpmos ln

2
(
1 + e(κ(VDD−Vg−VT0p)−(VDD−Vs)+σ(VDD−Vd))/2UT

)
− Ithpmos ln

2
(
1 + e(κ(VDD−Vg−VT0p)−(VDD−Vd)+σ(VDD−Vs))/2UT

)
(3.6)

where Ithnmos and Ithpmos are specific currents. These are defined at threshold voltages

given by 2µnmosCox(W/L)U2
T/κ and 2µpmosCox(W/L)U2

T/κ, respectively, σ is the drain-

induced barrier lowering coefficient; and Vd, Vs, VT0p, VT0n, and UT are the drain, source,

pMOS zero-bias threshold, nMOS zero-bias threshold, and thermal voltages, respectively.

Temperature dependence of Id in (Equation 3.6) arises from threshold voltages, Ith, and

explicit UT or KT/q . The dependence of threshold voltages on temperature could be

modeled using A1 +A2UT . Ith has dependence on temperature due to the mobility (µ) and

presence of U2
T , which could be modeled using Ithr(

T
Tr
)
a, where a = 0.5. From measured

data, shown in the Table 3.1, which shows

dIth
dT

/Ithr =
a

Tr

, (3.7)

it can be seen that a ≈ 0.6. Here, Tr is the reference temperature (298 K). The variation of

VTo is as follows
dVto

dT
= −2

κ
ln

(
ND√
NcNv

)
dUT

dT
, (3.8)

where Nc and Nv are the effective density of electrons and holes in conduction and valence

band, respectively. Their dependence on temperature is T 3/2 [80]. This is small compared

to the linear dependence to UT term. It should be noted that the model in [70] has more

parameters and is much more generalized. In the case of (3.4), the model has a reduced
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Table 3.1: Comparison of simulated and measured data: Percentage change over 60 ◦C.

Device
Parameter

Measured Simulated
Threshold Voltage Ith Threshold Voltage Ith

pFET −0.28% −1.7 mV/C −0.2% 2000 ppm/C −0.27% −1.7 mV/C −0.17% 1700 ppm/C
nFET −0.26% −1.1 mV/C −0.24% 2400 ppm/C −0.22% −0.95 mV/C −0.17% 1700 ppm/C

number of parameters, which allows for faster simulation, with the ability to closely predict

data from the FPAA.
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Figure 3.12: Id vs Vg transfer characteristics of PMOS over Temperature. EKV modeling is
used for modeling the transfer characteristics of a PMOS. Ith, current at threshold voltage,
and threshold voltage are also plotted over temperature. The simulated values are consistent
with the measured values. The Ith and threshold voltages are extracted by curve fitting onto
to the output current in both measurement and simulation to be consistent.

This model has been integrated as a part of the Scilab/Xcos environment [15]. Fig-

ure 3.12 shows measurement of pFET compiled on to the FPAA and simulation performed

using the EKV model. The tool incorporates the above variation in UT , threshold voltage,

and current at threshold voltage (Ith). Figure 3.12 compares these variations between the

simulated model and the measured results over a change of 60 ◦C. The measurements are

silicon data obtained from the FPAA fabricated in 350 nm technology. Scaling of floating

gates would follow similar trends as show in [81]. Simulation parameters have to adapted

as the process scales to match the data from silicon.

Using the above model for simulation, similar measurements and simulations were per-

formed for an nFET. The variation in threshold voltage and current at threshold voltage
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(Ith) for the devices are summarized in the Table 3.1. These parameters are extracted from

the transfer characteristics using a EKV curve fit program in Scilab [82] with varying UT .

The variations are shown as percentage changes in the parameters from its value at room

temperature over 60 ◦ C.

The consistency between the measurements and the model allows us to predict the first-

order behavior of circuits and systems compiled on the FPAA with temperature, thereby

enabling temperature robust circuits and system design.

3.8 Temperature Dependence of Simple Single Ended Circuits

The models developed in the previous section helps predict the behavior of circuits and

systems on the FPAA. To illustrate, a common source amplifier, shown in the Figure 3.13,

has a gain which is constant over temperature [83]. The EKV model shown in (3.4) could

be reduced to following set of equations when Isat ≪ Ith:

Id = Ithnmose
(κ(Vg−VT0n)−Vs+σnmosVd)/UT

Id = Ithpmose
(κ(VDD−Vg−VT0p)−(VDD−Vs)+σpmosVd)/UT

Equating the channel current for nMOS and pMOS we have

Ithnmose
(κ(Vbias−VT0n)+σnmosVout)/UT = Ithpmose

(κ(VDD−Vin−VT0p)+σpmos(VDD−Vout))/UT

Vout =
−κ

σnmos + σpmos

Vin + Voffset (3.9)
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Figure 3.13: Transfer function of a common source amplifier, measured and simulated
using the models developed in the previous section, with temperature. The slope, and
hence the gain of the common source amplifier, is also plotted. Slope is constant with
temperature. The transition of Vout with Vin for different temperature is also shown. The
transition changes over temperature because the threshold voltage of nMOS and pMOS
varies differently.

In (Equation 3.9), the offset Voffset is a manifestation of UT , threshold voltage dif-

ference between nFET (VT0n) and pFET (VT0p), and log( Ithnmos

Ithpmos
). Figure 3.13 shows the

transfer characteristics of a common source amplifier, measured on the FPAA and simu-

lated using the models developed before, with pFET input. As seen in Figure 3.13, the

slope of the simulation and measurement remains relatively constant. The variation in the

transition points of the transfer characteristics corresponding to different temperatures is

associated with the offset (Voffset) term that depends on UT , and also because the threshold

voltage of pFETs and nFETs vary differently over temperature.

For temperature-robust transition points and gain, the circuit could be designed to use

the same type of FET devices. The transfer characteristics of a two pFET-based common

drain is given by

Ithpmose
(κ(VDD−Vbias−VT0p)+σpmos(VDD−Vout))/UT = Ithpmose

(κ(VDD−Vin−VT0p)−(VDD−Vout))/UT

Vout =
κ

1+σpmos
Vin − κVbias

σpmos+1
+ VDD

(5)

Thus the slope of the transfer characteristics is ≈ κ, since σpmos << 1, which is invari-
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ant over temperature. Also, the Voffset term is independent of UT , threshold voltage, and

Ithpmos, hence making the transition points invariant over temperature. Figure 3.14 shows

the transfer characteristics of a common drain circuit with a pFET input. The measurement

and simulation are plotted and have similar slope, that is, the kappa of the pFET input. The

inset shows a zoom-in of the transfer characteristics measured over 60 ◦ C.
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Figure 3.14: Transfer function of a common drain amplifier, measured and simulated using
the models developed in the previous section, with temperature. The slope and the tran-
sition offset of the circuit is constant with temperature because the variation in threshold
voltage of the two pMOS devices are similar. A slope of 0.85, which is the κ of the pMOS
device, is measured from the circuit compiled on the FPAA.

The analyses of these circuits give further insight into the temperature dependence of

various circuits and signal processing systems and allows us to predict and compensate for

their behavior. Several FG-based current and voltage references [84] can be used that could

help in reducing the variability caused due to changes in temperature.

3.9 Comparison with conventional simulators

Our open-source simulator based on EKV models obtained accurate results close to the

experimental results from the FPAA. To further highlight the performance of our simulator,

experiments have been performed comparing the behavior against the conventional Ngspice

simulator, installed in the same virtual machine in the Ubuntu environment where the tool
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Table 3.2: Comparison of simulation times with a conventional Ngspice simulator.

With level=2 OTA With all level=2 36T Ngspice with EKV Ngspice with BSIM
Sin input (20Hz) over 50ms 0.721s 1.632s 3.456s 5.384s

Chirp input over 50ms 0.945s 1.893s 4.296s 6.596s
Sin input (1Khz) over 5ms 0.548s 1.526s 2.985s 3.241s
Sin input (1Khz) over 5s 105.732s 206.132s 457.938s 508.143s

infrastructure is located. The Ngspice simulator [85] [86] uses the EKV model [87] in a

500nm process while our simulator in this work uses a 350nm process.

The experiments were performed for the front-end of a speech processing system as

shown in Figure 3.11 for different set of inputs to identify the initial settling time, conver-

gence, and compilation times. Level=2 models for the OTA were used for abstracting the

9T-OTA structure, thereby giving an accurate, yet faster simulation while the netlist for the

system consisting of 36T was simulated in Ngspice with the same time resolution. Even

using a 36T structure for the system in Modelica results in a faster simulation than Ngspice.

The shorter input time span gives us an idea about the initial setup time and DC operating

point solution time while the longer input gives an estimate of the longer computation time

for larger systems in general.

A RK(45) solver is used, which determines the step size depending on the error in

the solutions, thereby giving an accurate result, which can be observed from the overlap

with the data from the FPAA in the results. We can see from the equations of the EKV

model used in this chapter that it is an analytic function with derivatives existing and being

continuous over all values. This is advantageous compared to a BSIM model with a large

number of parameters, which takes a longer time to converge since the error may be higher

due to the existence of discontinuities. Table I shows this aspect with the BSIM simulation

time being greater than the simulation with the EKV model.

Moreover, the routing capacitances can also be estimated through transient responses

by observing time constants while measuring the output relevant to the particular system.

The capacitances can be modeled in the simulations, customizing depending on the CAB
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location where the circuit elements have been placed, thus aiding in their characterization

as well.

Our toolset allows circuit as well as system designers to implement applications. The

tool directly compiles these elements into hardware, as well as simulates these circuits in

the Scilab / Xcos environment, modeling the current-voltage relationships and interactions

between blocks. They enable circuit designers to build system-level blocks. The models

closely correspond to experimental data, thereby providing techniques to verify the blocks

and their performance. Further, the application of this simulator to model circuits over

temperature highlights the utility of such a framework in studying and understanding vari-

ations.
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CHAPTER 4

IMPLEMENTATION OF SYNAPSES WITH HODGKIN HUXLEY NEURONS

4.1 Macromodeling a Neuron with Synapses on a Reconfigurable Platform

The foundation of building bio-inspired systems for real time applications is the design of

efficient neuronal and synaptic blocks. Synapses enable the neurons to communicate with

each other and allow one to implement algorithms to exploit the action potentials from

neuronal cells. The Field Programmable Analog Array (FPAA) [2] System on Chip (SoC),

a reconfigurable mixed signal hardware, is utilized in this chapter to show such bio-inspired

circuits for energy efficient computing [31]. Tunability and programmability are achieved

through the floating gate (FG) elements on the device. One could obtain different responses

based on external inputs or other interconnections on the hardware itself.

This work takes advantage of the similarity between neuroscience and silicon to model

synapses and neurons on the hardware. This block can be further expanded to build neural

networks directly on the hardware. Analog signal processing offers high energy efficiency

[59] and operates on low power as well with the analog elements operating in the sub-

threshold regime.

Figure 4.1 shows the methodology behind building a spiking neural network on the

FPAA from a fundamental set of neurons and synapses. The neurons are Hodgkin Huxley

(HH) based models emulating ion channels. The synaptic cleft connecting the pre synap-

tic and post synaptic neuron is modeled to produce a triangle like response either from an

external input or from another neuron. This ramp waveform is fed to a FG device in the

routing that emulates the synapse and then exhibits the post synaptic response. The neuron

projects to either excitatory or inhibitory synapses depending on the type of neurotrans-

mitter a neuronal cell projects at its individual synapse. The responses of the blocks are
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Figure 4.1: A network of neurons with external inputs and projecting excitatory and in-
hibitory synapses between them is shown here. These are translated to a set of macroblocks
based on biological neuronal cells. The system can be compiled on the SoC FPAA to obtain
experimental data. The ramp generator processes the external inputs that feed the synapses
and the HH neurons’ network is configured in the desired topology. Each macromodel of
the HH neuron, integrated with synapses, is built in a single Computational Analog block
(CAB). These level=1 macroblocks are vectorized thereby allowing higher levels of com-
pilation and enabling larger networks to be built on the SOC FPAA.

controlled through the FG devices to generate an excitatory or inhibitory synapse and the

synaptic strength is varied by modulating the charge on the floating gate.

The HH neuron, along with the synaptic clefts and synapses, is macromodeled and

abstracted in the library blocks to be compiled onto the FPAA hardware. They are level=1

vectorized blocks with voltage input and voltage output [15]. The toolset enables one to

build multiple neurons with synapses connecting between them by instantiating the library

blocks [16]. This aids in building multiple configurations using the same single chip, rather

than building custom chips for each configuration or application. The versatile place and

route- algorithm used in the tools allows one to position the blocks according to the required

chip topology.
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Figure 4.2: The design of the Xcos blocks, namely HH neuron block with the synapses
and the synaptic cleft model, constrained to one CAB, is shown here. The synapses are
through the FG pFET input currents, utilizing the routing FG switches. The ramp generator
models the pre synaptic cleft response to create the triangles for the inputs to the synapses.
The neuron projects to either excitatory or inhibitory synapses whose strengths and biases
are controlled through the FG devices, to generate an event output or an action potential
from the neuron. The FG elements are programmed with subthreshold currents. In case of
transistor channel based HH neuron, the gating dynamics determined by the Na+ bandpass
circuit and the K+ lowpass configuration are implemented through FG OTAs. The ramp
generator makes use of the switches in the local routing, pFET, T-gate switches and a
current mirror. The OTA detects the spike, generating an event, while the FG devices
in the pull-up and pull-down design control the rise and fall time of the triangle. All the
blocks are vectorized, implying multiple neurons can be implemented such that each neuron
goes to each of the CABs and different size networks can be created. The experimental
measurements of membrane voltage from the HH neuron model for an action potential are
shown here too.

The experimental results obtained from the synaptic responses due to the neurotrans-

mitters as well as the action potentials from the ion channel based model of HH neurons are
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close to the behavior observed from biological neurons and synapses. Section 4.2 gives an

overview of the circuit on the FPAA, while Section 4.3 and Section 4.4 describe the action

potentials produced from the neuron and the synaptic cleft as a ramp generator. Section 4.5

addresses the excitatory and inhibitory synapses with how to approach the tuning of the

parameters while Section 4.6 concludes by elaborating on building networks.

4.2 Design and Overview of the Block constrained to One CAB

Figure 4.2 illustrates the different Xcos macroblocks to build any arbitrary sized network on

the chip. Each CAB is configured as one neuron along with the synaptic cleft that generates

the ramp waveform connecting into the synapse that projects onto the post synaptic neuron.

The FG local routing fabric, consisting of FG pFET switches models the synapses and is

used for computation.

Using the available resources in one CAB of the FPAA, the design is figured out in such

a way that it replicates the biological neuronal response and minimizing area overhead.

Once the neuron is designed, the remaining available elements are optimally partitioned to

design the circuits required for modeling the synaptic behavior.

4.3 Action Potentials from the HH Neuron Model

The transistor channel neuron model [88] inspired by Hodgkin and Huxley’s work eliciting

responses from a squid axon [17] is based on the ion channels in a neuronal cell. ENa and

EK represent the biological supplies to the neuron which are equivalent to the Nernst ionic

potentials, while Cmem, denotes the membrane capacitance. The depolarisation and hyper-

polarisation in the membrane potential, Vmem happen due to the opening and closing of

Na+ and K+ ion channels and the resulting interaction between them. Their conductances

are modeled through a set of FG OTAs, nFETs, and pFETs. They are represented on the

hardware as bandpass and lowpass filter respectively. The nonlinear dynamics arising out

of their interaction gives rise to a continuous spiking response to an input fed through a FG
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pFET in the routing as shown in Figure 4.2. The spiking frequency is varied by controlling

the time constants of the Na+ and K+ channels.

4.4 Synaptic Cleft Modeling

Figure 4.2 shows the flow of signals from the input events between the pre synaptic and

post synaptic neurons through the synaptic gap, equivalent to the movement of ions in the

ion channels. A current starved inverter based structure to modulate the gate of the FG

elements was shown in [89], while [90] presented integrate and fire neurons with current

mode integrator based synapses and conductance based synapses in [30], and [91] shows

current sink based synaptic inputs.

The ramp generator can be used to process the digital input and mimic the synaptic

cleft. The action potential from the pre synaptic neuron is fed to the ramp generator. Once

the neuron spikes, it is converted to an event through an OTA that behaves as a comparator

with a threshold level. Depending on if one desires a ramp up or down first, the input is fed

to the corresponding terminal of the OTA. As the spike is rising, the T-gate switch closes

and the current mirror in the pull-down draws the current, with the rising time constant

being controlled by the FG pFET. The pull-up then activates as the event falls with a time

constant much slower than the rising time, tuned by the cascode FG pFET structure in

the routing. Since the post synaptic potential (PSP) of biological neurons decays slowly

[92, 93], the FG pFETs are biased such that it discharges slower than the rate at which it

charges. This ramp is then fed to the source of the synapse element due to the exponential

relation between the output current and source voltage of a FG pFET. If the external inputs

are digital events, these triangle ramp generators can be used for input processing as well.
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is used to get a more accurate current source.

A current source as close to ideal as possible is required so that the ramp generator

produces minimum curvature in the triangle fed to the synapse, be it inhibitory or excitatory.

Hence, a through characterization of the FG pFET is performed. The drain voltage is

swept to measure the drain current, as shown in Figure 4.3. The FG device is biased in the

subthreshold region and the current in the saturation region is observed when the source

to drain voltage is greater than 100mV, since we require it to behave as a current source.

The source voltage is fixed at 2.5V. Due to the Early effect [70], which is a factor of the

significant overlap gate to drain capacitance in the routing, the channel current depends

on the drain voltage. To minimize this deviation from an ideal current source, a cascode

structure is used in the pull-up design of the ramp generator, which reduces the effective σ,

thereby increasing the Early voltage, making it a better current source.
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Figure 4.4: The experimental measurements’ data from the FPAA for an excitatory and
inhibitory synapse and the corresponding test setups are shown. The rise and fall times
are controlled through the bias currents of the pFET and the current mirror in the ramp
generator circuit. The change in membrane potential is gained up through the FG OTA and
then buffered out to measure PSP. (a) The ramp input is fed to the source of the FG pFET
for an excitatory synapse. The EPSP measured from the synapse with a passive channel
rises up and decays slowly. (b) The ramp input is fed to the drain of the FG pFET for an
inhibitory synapse. The inhibitory synapse is slower than the excitatory one and the IPSP,
measured from the synapse with the passive membrane biased with a leak channel to draw
the current, drops to EK and then settles back at a resting potential.

4.5 Post Synaptic Responses through Excitatory and Inhibitory Synapse

As neurotransmitters are released into the synaptic cleft from the pre synaptic neuron, they

attach to the receptors of the post synaptic neuron, causing the ion channels to open, result-

ing in ions flowing in the postsynaptic neuronal cell. This causes a change in the membrane

potential [93] and an excitatory or inhibitory response is observed based on the type of ions

that flow. An excitatory synapse causes deploarization in the post synaptic Vmem, while the

inhibitory synapse reduces the Vmem.

Figure 4.4 shows the experimental results of the triangle created from the ramp gener-

ator as well as the PSPs. The synapse is modeled by the FG pFET in the routing inspired

by the single transistor learning synapse [6], while the change in membrane potential is

62



ENa

GND EK

Iin

CMem

V
τh

VNa

VK

I
τm

I
τn

GND

GND

Routing 

Device

Vmem

ENa

Iin
In

2µA

Core HH 

Model

Vmem

ENaEK

EK

Out

ENa

Core HH 

Model

Vmem

ENaEK

EK

GND

V1

GND GND

V2 V12

Triangle 

Generator
Out

HH 

Neuron 

Block

ENa

EK

ENaEK

Iin

Core HH 

Model

Vmem

Vmem
HH Transistor Channel Neuron Model

HH 

Neuron 

Block

ENa

EK

In Out

DC 

Voltage

DC 

Voltage

Ramp 

ADC
Arb 

Waveform

GND

GND

Vdd

GND

Out

GND GND

In Out

Current Mirror Block

C
u
rren

t 

M
irro

r
In

Out

D
C

 (R
) 

V
o
ltag

e

Out

Routing DC Voltage Block

Synapses + Transistor Channel Neuron Model

Synapses 

& Neuron

ENa

EK

In (V1, V2, ...) Out

Synapses 

& Neuron

n

DC 

Voltage

Digital 

Out

DC 

Voltage

n

Digital 

Input

Current 

Mirror

Out
Vdd

G
N

D

DC (R) 

Voltage

In

Triangle 

Generator
In Out

Triangle Generator Block

Vdd
G

N
D

Triangle 

Generator

FPAA Network of Synapses + Neurons

m

Figure 4.5: Blocks based on transistor channel model for neurobiological systems, enabling
compilable networks of neurons and synapses. From one core HH model circuit, one can
develop a set of parallel neuron blocks, as well as a set of parallel neuron and synapse block
in the FPAA fabric. FG switch elements model the programmable synapse elements. Tri-
angle Generator Block creates the presynaptic waveforms required for biological synapse
response. The DC voltage block in Routing (R) uses two routing elements, nominally in a
voltage follower configuration, to enable a programmed voltage source on any local CAB
routing line (and can be routed into the fabric). The nFET current mirror block (level=2)
corresponds to the nFET current mirror available in the CABs.

amplified through a FG OTA with a high gain and buffered through an OTA connected in a

source follower configuration, with all the instrumentation performed on chip.

In case of an excitatory synapse shown in Figure 4.4a, the source of the FG pFET is

modulated. The pFET is modeled as a biological passive channel, with its drain connected

to EK , while the EPSP measured from its source has a fast rising time and then decays

slowly.

The drain of the FG pFET is modulated for an inhibitory synapse in Figure 4.4b. Hence,

the ramp from the ramp generator is fed to the drain of the FG pFET and connected to a

leak channel biased by a current source, which enables the FG source to draw the current.

63



We observe an inhibitory PSP (IPSP) that drops to EK and then rises back and settles to a

resting potential. The inhibitory synapse is designed to be slower than the excitatory one,

matching biological synapses [93].

4.6 Building Networks

Figure 4.5 shows the methods of abstraction of neural blocks using the transistor channel

model definitions. Different applications result in different methods of supplying the input

current based on input voltage(s), which necessitates different blocks. All components are

chosen to embed the structure in a single CAB, macroblocking the design.

One case uses an OTA to transform a voltage input to a single, direct current input

into the neuron element(s). The membrane voltage (Vmen) is buffered to the output. The

measurement structure requires complexity similar to other circuits with an input, output,

and two DC voltage biases (Ek, ENa) for all circuit instances. EK and ENA are the same

biological supply for all neurons and therefore shared between blocks.

A second case utilizes the local routing FG transistors as synaptic elements to combine

synaptic and neuron activity. The outputs are triangle ramps which pre-compute the mod-

eled charge concentrations reaching the post-synaptic terminal. The number of synapses is

limited, in this approach, by the number of local input routing lines. The inputs require that

their initial digital events have been converted to triangle ramps. The ramp element can

integrate directly on the line capacitance, or can be buffered, depending on the resulting

synaptic current consumption. The measurement structure shows a full layer of synapti-

cally connected neurons, similar to the dynamics shown in custom ICs [43]. In the SoC

FPAA [94], one could use this block to compile a network of 92 biologically modeled

neurons, each with 12-14 synaptic inputs and 10-12 network inputs. Learning techniques

from the VMM+WTA classifier could be adapted for this network [95]. One could create

a software interface to directly utilize the PyNN [96] neural representation for simulation

or compilation. The approach would extend to other neural network applications and ap-

64



proaches in a straightforward manner.

A routing DC voltage block can be built for setting DC voltages using only the routing

fabric. These techniques enable dense setting of DC voltages. The circuit is nominally a

FG pFET voltage follower. By characterizing one element, one gets a nearly ubiquitous

voltage supply circuit that can be routed on any local line. Each CAB has local routing

to Vdd and GND lines, so this component is always available with nearly no cost. Hence,

through our open source tool infrastructure, one could consider creating networks building

upon these blocks including central pattern generators [57, 56] and Winner take all (WTA)

[89, 97, 98, 90] for different applications [99, 100, 53].

4.7 Synfire Chains

Networks like central pattern generators (CPGs) that mimic the locomotion of lampreys

can be implemented. This is inspired by Mark Tilden’s approach [101] with a coupled

oscillator structure made out of highpass filter and inverters. The starting point of such a

network is a synfire chain. The dynamics of these serially connected networks of neurons,

where the output events are controlled by the delay of each neuron, are explored here,

under the influence of different external synaptic inputs, where the spike timing is encoded

in the information transmitted. Figure 4.6 shows a set of experimental measurements of

action potentials for a coupled network and synfire chain. Two neurons are coupled to

each other through inhibitory synapses feeding into each other. The phase of spiking is

controlled through the synapses. Depending on the whether the synapses are excitatory

or inhibitory, the neurons either spike in or out of phase with each other (Figure 4.6(a)).

This behaviour can be exploited in oscillatory systems. A series of neurons are connected,

making a synfire chain. Each neuron receives excitatory synapses from the previous neuron,

while the output of the last neuron is fed back through an excitatory synapse to the first

neuron. This cascaded structure allows the neurons to fire at different time delays. The

propagation delay is seen through the action potentials from each neuron, which can be
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Figure 4.6: (a) Two neurons are coupled to each other through inhibitory synapses feeding
into each other. The phase of spiking is controlled through the synapses. The neurons spike
out of phase with each other since one neuron inhibits the other, thereby suppressing the
spike occurring at the same time interval. (b) A series of neurons are connected through
excitatory synapses, making a synfire chain. The propagation delay is seen through the
action potentials from each neuron, further tuned through the synapses.

further controlled by modulating the synaptic strengths between the neurons.

4.8 Winner-Take-All (WTA)

We can build upon the modularity of the neurons and synapses to design different networks

with a few neurons such as a WTA network. This scales up the macroblocked models in

the infrastructure to build a network of different output neurons that has various synaptic

inputs provided through triangle generators, which process the inputs. This allows for

direct synthesis of any network topology, mapping from the design to the switches on the

hardware.

The WTA is an example of one such spiking network. The outer ring consists of neu-
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Figure 4.7: A configuration of a ring WTA network structure with three neurons is shown.
The Neuron 1 is connected to the other two neurons through inhibitory synapse, while they
project excitatory connections to the interneuron one. Poisson inputs represented by the
solid lines are given while the circles show the output spikes. (a) A constant spiking is
observed from the inhibitory interneuron. It is configured so that a single neuron (two)
wins. (b) The strength of the inhibitory synapse is reduced and sparse inputs are given in a
configuration to observe the transition of outputs such that the other neuron wins.

rons with excitatory synapses projecting to an interneuron that feeds back an inhibitory

connection to the other neurons. As the excitatory synapse activates the interneuron, the

inhibitory synapse that it projects starts to inhibit the excitatory elements. The synapses are

programmed through the FG elements such that the desired excitatory cell wins after the

inhibition provided by the interneuron.

Figures 4.7 and 4.8 show the spiking behaviour of a 3-neuron and 4-neuron WTA re-

spectively. Each neuron in the CAB has been tuned to produce an action potential as shown

in Figure 4.8(b). The intra CAB variation is less [102], leading to reduced mismatch among

the cells, which can either be utilized [40, 46] or minimized [44] through the FG devices

themselves without using extra resources for the compensation. The frequency and shape

of the spike from the neuron has been modulated by tuning the channel time constants,

producing a shape closely mimicking an action potential from a biological neuron.
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Figure 4.8: (a) A configuration of a ring WTA network structure with four neurons is
shown. Neuron 1 is connected to the other three neurons through inhibitory synapse, while
they project excitatory connections to the interneuron one. (b) A single spike is plotted to
show the trace of an action potential of a neuron in the CAB. (c) Poisson inputs represented
by the solid lines are given while the circles show the output spikes. A constant spiking is
observed from the inhibitory interneuron with a low inhibition. It is configured so that two
neurons win for the respective inputs.

Poisson inputs applied to the outer neurons are represented by the solid lines, while the

circles show the output spikes. A constant spiking is observed from the inhibitory interneu-

ron. As the synaptic strengths change, affecting the inhibitory and excitatory connections

between the neurons, we observe different neurons winning, corresponding to their respec-

tive inputs. The winning neuron spikes correspond to the highest frequency on the input,

and suppressing the other neurons for that frequency due to the lateral inhibition. Fig-

ure 4.7 shows cases for a single winner where the increased spiking on one neuron inhibits

the other neuron. Further, Figure 4.8 shows two winning neurons corresponding to the fir-
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ing rate on the input. The inhibition is controlled by tuning the timing of the ramp on the

inhibitory synapse.

4.9 Discussion

This chapter presented a macromodeled HH neuron block integrated with excitatory or in-

hibitory synapses and synaptic clefts or ramp generators, analogous to biology, and demon-

strated results from the FPAA fabricated on a 350nm process.

A range of algorithms can be built from the compiled blocks of channel based neu-

rons and synapses, to explore different neuromorphic systems. One could build acoustic

applications based on a spiking VMM and WTA network, where the the output of the in-

terneuron goes into inhibitory synapses. This can be used to exhibit exclusive-OR behavior

while the system classifies a frequency pattern in a phrase. Furthermore, multiple dendritic

compartments can be added to the neuron, through FG pFETs in the routing fabric that

model conductances and current sources that model the inhibitory and excitatory synaptic

channels. By macroblocking it to be in a single CAB, it can communicate the inputs to

other neurons. This could be further used for applications like keyword spotting.
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CHAPTER 5

PROGRAMMABLE FILTERS WITH BUILT-IN SELF-TEST OF VECTOR

MATRIX MULTIPLIERS

5.1 Built-In Self-Test of VMM blocks

Analog mismatch dominates the performance of most applications (e.g. data converters

as in [103]); and therefore, most analog systems require some level of programmability,

as well as an algorithm to tune that programmability, for high-performance operation. As

computation moves towards more system-level capabilities, these issues become magnified.

When reaching the level of a million parameters large-scale Field Programmable Analog

Arrays (FPAA) [10], an automated form of tuning this programmability becomes essential.

Some early steps have been considered in this directions for configurable systems [104],

[105]. Some views approach the question with a belief that mismatch helps the result-

ing computation, such as in neuromorphic systems [106, 107], and either hope that belief

works or aggregate many components to remove that mismatch (e.g. [108, 109]). This

effort focuses on making a fundamental key computation, Vector-Matrix Multiplication

(VMM), directly implementable on an FPAA structure with automatic tuning capabilities

(Figure 5.1).

VMM is the fundamental operation throughout signal processing and neural operations

where one wants to weight and sum a set of inputs [110, 111]. VMM is a core block of

analog and other novel computational techniques, as seen in early neural-network mesh

networks (e.g. [112, 6]), and is central to programmable filters, signal processing, classi-

fiers, deep neural networks, and spiking networks of neurons [113, 114, 115, 116, 2, 117].

The high energy efficiency of VMM computation was first hypothesized by Mead in 1990

[1], experimentally demonstrated a decade later [118], and further experimentally verified
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Figure 5.1: A built-in self-test algorithm for a Vector-Matrix Multiplier (VMM) and re-
sulting infrastructure is implemented in a large-scale Field-Programmable Analog Array
(FPAA) for a wide range of applications. The algorithm uses the available inputs and
outputs to converge on the target weights and biases. The adaptation programs out the
threshold-voltage mismatch due to indirect programming on the FPAA, as well as tunes the
desired output voltage gain and amplitudes. Once the solution has been reached, the circuit
can be retargeted without the BIST on-chip infrastructure.

in custom and FPAA implementations (e.g. [119, 120, 121, 122]) Tuning this algorithm

greatly provides a window for tuning more complex algorithms.

This chapter focuses on a FPAA-implemented VMM Built-In Self-Test (BIST) algo-

rithm (Figure 5.1) that includes a 6x2 VMM block and the input and output infrastructure

required for using these techniques. Abstraction of these analog blocks makes this discus-

sion tractable [16]. The VMM block and tuning capabilities are experimentally demon-

strated. The following sections describe the core 6x2 VMM FPAA block (Section 5.2), the

input and output interface circuitry to the VMM (Section 5.3), the effects of the mismatch

due to the indirect programming (Section 5.4), self-tuning algorithm for the whole chain

(Section 5.5), measurements compensating for the indirect-programming mismatch along

with the analysis of the outputs of the VMM (Section 5.6) and an application using the

71



G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

Ref
V

out1

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

Ref
V

out2

6x2 VMM Block

V
1

+ V
1

- V
2

+ V
2

- V
3

+ V
3

- V
4

+ V
4

- V
5

+ V
5

- V
6

+ V
6

-

Figure 5.2: A differential 6x2 VMM including two transimpedance amplifiers to translate
the currents to voltages, is compiled on the FPAA. The FPAA Computational Analog Block
(CAB) routing lines implement the differential, four-quadrant VMM. The FG elements of
the VMM perform the 4 quadrant multiplication, with the weights being set by the FG
pFETs on the positive and negative input. The inputs V +

i and V −
i that drive the sources

of the VMM have to operate near Vdd. Six differential column lines are selected from
the CAB, with 2 row output lines that go into the CAB elements that comprise the TIA,
while the local routing elements in the fabric consisting of the FG elements make up the
VMM structure. The output levels after the TIA are adjusted primarily through the FG
OTA element at the feedback of each of the TIA, which controls the gain, offset and the
operating range.

VMM with programmable filters (Section 5.7).

5.2 6x2 VMM FPAA Block

The VMM is implemented using the Floating-Gate (FG) devices in the routing fabric of the

FPAA, effectively vector multiplying a set of input vectors with the stored weights through

that crossbar memory (Figure 5.2). We target the VMM and interfacing infrastructure on

the SoC FPAA [10, 2].

We focus our techniques on a 6x2 four-quadrant VMM block built in the routing fabric

of a single Computational Analog Block (CAB) of the SoC FPAA. A larger VMM can be

constructed by cascading multiple blocks as well as by incorporating other levels of routing

switches. Our four-quadrant operation requires two input lines for the resulting differential

input signal, resulting in six differential inputs as each CAB has 13 input signal lines. The

FG pFET-based routing fabric stores the VMM weights, which are in turn set through the
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FG programming infrastructure [14]. The VMM circuit operation is a source-input version

of an earlier 4-quadrant multiplication element [123], modified in systems with Winner-

Take-All (WTA) and VMM+WTA classifiers [124, 76].

The block has two independent output rows limited by the number of TA amplifiers in

each CAB, creating a voltage output through compiled transimpedance amplifiers. The two

transimpedance amplifiers use one FG TA element to build feedback around the one non-

FG TA. The FG TA allows for a selectable linear range, including one setting for nearly

rail-to-rail linearity (1.5V-2V on a 2.5V supply), as well as for tuning voltage offsets. The

output DC voltage is referenced to Vref as these amplifiers operate on a single Vdd (2.5V)

supply. This design conforms to the system block abstraction (level=1 definition in [15])

and is confined to a single CAB.

This VMM computation multiplies a differential-signal input vector by an array of

stored differential weights (Figure 5.2). A single FG pFET device with a programmed gate

voltage (as in Figure 5.2) can be modeled in terms of the bias current, Ibias, and changes in

source (Vs) and drain (Vd) voltages as

I = IbiasWe(∆Vs−σ∆Vd)/UT (5.1)

where W is a weighting element due to a difference in programmed charge on the FG node

(Vfg) or difference in threshold voltage (VT0), modeled as eκ(∆Vfg−∆VT0)/UT . Further, σ

models channel length modulation and/or Drain Induced Barrier Lowering (DIBL), κ is

the capacitive divider from Vfg to surface potential, and UT is the thermal voltage, kT/q.

The actual bias levels for the transistor terminals and bias current (Ibias) are essential to

the overall system setup and will be further addressed in later sections. In this case, W is

positive or zero. Assuming small changes in Vs where |∆Vs| ≤ UT , (5.1) becomes

I = IbiasW

(
1 +

∆Vs

UT

)
(5.2)

which shows a multiplication between W and ∆Vs, when σ → 0. A four-quadrant VMM

operation utilizes two devices, where a differential signal is applied to the two source volt-
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Figure 5.3: The front-end interface to drive the VMMs to produce signals close to the
supply voltage uses a FG-based CAB element (MITE block) to both increase the input
linearity as well as level-shift signals from mid-rail to voltages near Vdd. To understand
this operation, we show the characterization of this device similar to its operating conditions
with its source fixed at Vdd (2.5V). (a) Circuit block and its position in the computational
algorithm. (b) Measured drain current when sweeping both input capacitances (C1 and C2)
with the same input voltage (Vg). (c) Measured drain current when sweeping the drain
voltage (Vd) resulting in rough extraction of σeff (= 0.0149). (d) Measured drain current
when sweeping one gate input (C1) resulting in extraction of κeff . The curvature increases
as the input terminal approaches Vdd typical of a pFET drain sweep which shows that the
effect of the overlap feedback (which is constant) is small.

ages and the resulting weight is the difference of the two weights:

I+ = IbiasW
+

(
1 +

∆Vs

UT

)

I− = IbiasW−

(
1− ∆Vs

UT

)

I = I+ + I− = IbiasW0 +
Ibias
UT

∆W∆Vs, (5.3)

where W0 = W+ +W− and ∆W = W+ −W−. These formulations are consistent with

earlier VMM formulations (e.g. [123]).
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5.3 Interface circuitry to VMM

Since the VMM operates near Vdd, a set of FG devices available in the CABs (called a

Multi-Input Translinear Element, MITE, as seen in [125]) level-shifts the input voltages

and widens the input range through capacitive voltage division into the FG node. One

device is required per input line even if shared across multiple blocks. Although the source-

voltage inputs to the VMM, Va (Figure 5.2), could be biased at almost any voltage level

by the translinear principle [126], voltage levels near Vdd mean the currents required for

programming are the closest to targeted currents, enabling easier programming of these

structures. Nominally, we bias these voltages 100mV (≈ 4UT ) below Vdd, so all pFET

devices are operating in saturation. A source to substrate voltage difference of 100mV

for saturated subthreshold MOSFET operation roughly decreases the current by a factor of

50. If the programmed currents (Iprog) are subthreshold, then the target currents (Itarget),

which are smaller than the programmed currents, is a constant factor below the programmed

currents (Figure 5.4) . For higher target currents, the relationship is a nonlinear function of

the target current and pFET threshold current (Ith) as shown in the analysis below.

The equations for modeling programming difference between the target current and

programmed current and issues on Va:

Itarget = Ithe
κ(Vdd−Vg−VT0)/UT e−4

Iprog = Ith ln
2
(
1 + eκ(Vdd−Vg−VT0)/2UT

)
Iprog = Ith ln

2

(
1 + e2

√
Itarget
Ith

)
,

Iprog/Ith = e4
Itarget
Ith

1 + e2
√

Itarget
Ith

, (5.4)

Figure 5.4 illustrates indirect programming through the two pFETs. The transistor in
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Figure 5.4: Indirect programming infrastructure through the two pFET structure. The tran-
sistor in the circuit acting as the VMM device is programmed indirectly by measuring the
current of the programming transistor. The source of the VMM, Va is set at 4UT from Vdd

so that the devices are in saturation as well as to keep the programming and targeted cur-
rents close. To set the analog weights on the VMM through Itarget, we define the current
to be programmed, Iprog. The target and programmed current values for the VMM weight
matrix, factoring in the model, are shown in the table.

the circuit acting as the VMM device is programmed indirectly by measuring the current

of the programming transistor. To set the analog weight on the VMM through Itarget, we

define the current to be programmed, Iprog which is calculated from the model (5.4). The

table lists these expected targeted values for these quantities and programmed values.

A single FG pFET can enable the desired level-shifting and gain function as part of the

VMM system interface (Figure 5.3). Programming the FG charge enables level-shifting

the resulting intermediate voltage (Va) from input signals (e.g. V1) that are operating in the

middle of the power supply. The capacitive coupling to the FG node capacitively divides

the input voltage (without additive noise), enabling several 100mV swing to fit in a roughly

-UT to UT swing. The change in Vfg is equal to C1/CT times the change in the Vg1 node,

∆Vfg =
C1

CT

∆Vg1 +
C2

CT

∆Vg2,
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Figure 5.5: The VMM, M11 to Mmn, is driven by a set of FG pFET transistors, Ma1 to Man,
potentially creating a normalization typical of differential-pair or winner-take-all (WTA)
circuits. These driving FGs on the interface should act as a translator of voltage levels and
not just as current sources. This prevents the differential pair effects along the columns,
thereby not putting constraints on the possible input voltage level cases.

where C1 and C2 are the input capacitances and CT is the total capacitance at the FG

node. Sweeping either both voltages together (Figure 5.3b) or sweeping the voltages in

a parametric sweep (Figure 5.3c) shows the increased linearity for subthreshold currents.

The drain to gate overlap capacitance (Cov) can have an effect on ∆Vfg, increasing the

measured σ value, σeff = σ + Cov

CT
; the effect for this device is small (Figure 5.3d).

The FG pFET device and the resulting pFET switch elements for the VMM computa-

tion along a column appear to function like a multi-input form of a differential-pair circuit

(Figure 5.5). Although such a structure can normalize signals into a desired operating

range, the circuit could, if not properly balanced, restrict the number and types of available

weight matrices. The circuit should act more like a voltage signal translation between the

input and Va nodes, and less like a bank of current sources driving the VMM columns. One

approach requires all VMM source voltages (Va nodes) biased at the same voltage (2.4V),

effectively eliminating different differential pair effects along different columns. The first

self-test algorithm uses FG programming to tune the Va nodes to a 2.4V bias (Figure 5.6).
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Figure 5.6: Floating-gate pFET elements used to gain and level shift the VMM input signals
to the VMM source nodes. These devices are components available in SoC FPAA CABs.
(a) The FG pFET outputs are made available through a shift register for characterization and
resulting calibration. (b) The voltages at the output intermediate nodes are set such that they
are as close to Vdd as possible and the FG devices are biased to avoid a differential pair effect
on the columns. The levels are compared and the FG pFETs, M+

a1 or M−
a1 to M+

a6 or M−
a6

are programmed through hot-electron injection. (c) The voltages of the individual MITEs
are plotted after three iterations and a significant reduction in the variation is observed from
a change of 1.6V to 5mV.

A shift-register block already available in each CAB [2] along the I/O lines into the CAB

is compiled [13] to be controlled by the on-chip microprocessor. This shift register allows

scanning of the Va lines (Figure 5.6a) to be measured and the corresponding programmed
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FG elements are modified (Figure 5.6b). Hot-electron injection, one of the two program-

ming mechanisms (e.g. [14]), allows for fast (e.g. ms) programming updates that increase

the transistor bias current (decreases Vfg). Decreasing the current bias (increasing Vfg)

requires electron tunneling, resulting in erasing the entire chip and reprogramming the en-

tire infrastructure. Therefore, we want our algorithms to increase bias currents to tune any

improvements (Figure 5.6b). If the particular Va line is higher than 2.4V, then the FG el-

ements along the VMM column that are higher are programmed according to the Va line

voltage shift. If the particular Va line is lower than 2.4V, then the input FG pFET element

would be programmed according to the Va line voltage shift.

Starting from initial expected (no-variation) targets, this algorithm can program around

VT0 mismatch resulting from indirect programming. Three iterations of the scanned nodes

(Figure 5.6c) brings the variation drops in the nodes from the desired 2.4V significantly

from a range of 1.6V to 5mV. Once calibration and the built-in self test is concluded, the

scanner can be eliminated.

5.4 Effect of VMM System Mismatch

A reasonable set of parameters programmed into the FG devices with the Va nodes within a

reasonable range (within a few UT ) means that our VMM structure should be functioning as

a VMM within the bounds of some significant mismatch. Mismatch from programmed FG-

devices is VT0 mismatch between the two pFET FG transistors due to indirect programming

[127]; one FET is used for programming and one FET is used for operation. Indirect

programming techniques easily enable a widely heterogeneous set of components including

above-threshold switches [128]. This improves upon the direct programming algorithm

[10], which was employed in earlier generations of the FPAAs, since that used a single

transistor but required disconnecting from the rest of the system with transmission gates

(T-gates). Hence, the indirect programming results in fewer switches and T-gates, leading

to fewer parasitic capacitances and reduced complex interface circuitry.
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Small Signal Variable Ibias Typical

gm1 input FG transconductance 5nA 0.013/MΩ
gs2 switch source conductance 2.5nA 0.1/MΩ
gm3 FG OTA transconductance (transZ) 30nA 0.03/MΩ

(b)

Figure 5.7: Analysis of Computation and Mismatch in the VMM block. (a) Small-signal
model of the full VMM system with the infrastructure elements. (b) Summary and values
of key small-signal parameters. Typical values are given for a 6x2 VMM computation. For
these calculations, we assume a typical κ of 0.7, and C1/CT = 0.09. gm3, the transconduc-
tance of transimpedance (transZ) amplifer assumes a 1V linear range (VL).

We might find other VT0 mismatch among non-FG devices that will also affect these

components.

A tuning method needs to eliminate this mismatch, and yet, this particular mismatch

means that parameters are reasonably near their correct values. Linearized analysis tech-

niques reasonably model the mismatched signal-dependent aspects (Figure 5.7) built on

linearized conductances and transconductances. Each input FG switch element, Ma1 to

Man, is programmed with a bias current (Ibias) that is the starting point for our modeling.
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The user sets it as an input parameter in the Xcos design for the programming currents,

further setting the weights. A fraction of that bias current flows into each switch element,

M11 to Mm1, based on their weighting values, and then the resulting values are summed

together as the input into the transimpedance stage. As seen in previous cases using dif-

ferential weights (e.g. [123]), the positive and negative programmed weights are of a sim-

ilar size, rarely more than a factor of 4 from each other. For m rows and n columns, it

is reasonable to assume that each switch is biased with Ibias / m current, and each tran-

simpedance amplifier is biased with 2 n Ibias / m current. The non-FG OTA bias current is

programmed high enough for the output dynamics and has little effect on the output pre-

cision. The linearized conductances can be computed given these bias currents, including

gm1 (= κ(C1/CT )Ibias/UT ), the programmed, identical transconductances from the input

FG elements, gs2 (= Ibias/(mUT ), the normalized source conductance for the switch ele-

ments, and gm3 (= 2nIbias / mVL), the programmed, identical transconductance from the

FG OTA used by the transimpedance amplifier. VL is the linear range of FG OTA (e.g.

1V) in the transimpedance amplifier. For these programmed values, the gain from an input

voltage (e.g. V+
1 ) to the Va nodes (e.g. V+

a 1) is κ(C1/CT ), an attenuation entirely set by

capacitors.

This formulation extends to modeling device mismatch (Figure 5.7). Typical VT0 mis-

match results in a bias current that changes less than a factor of two for these components,

allowing the use of small-signal modeling. Uncompensated systems can show 5 to 50 per-

cent system deviations using subthreshold bias currents. The weights due to programmed

charge and VT0 mismatch are defined for the corresponding row and column. W+,−
a are

the weights due to mismatch for the input current-source transistors, while W+,− are the

programmed weights of the switch elements for the VMM, and W+,−
y represent the weights

due to programming and mismatch of the transimpedance amplifiers. Given these defini-
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tions, we get the lth output voltage as

Vout,l =
gs2

gm3Wy,l

n∑
k=1

(
W+

k,lV
+
a,k +W−

k,lV
−
a,k

)
, (5.5)

and the voltage for the kth middle node as

gs2V
+
a,k

m∑
g=1

W+
g,k = gm1W

+
a,kV

+
k

,

gs2V
−
a,k

m∑
g=1

W−
g,k = gm1W

−
a,kV

−
k , (5.6)

Substituting (5.6) into (5.5), we get

Vout,l =
gm1

gm3Wy,l

n∑
k=1

(
W+

k,lW
+
a,k∑m

g=1 W
+
g,k

V +
k +

W−
k,lW

−
a,k∑m

g=1W
−
g,k

V −
k

)
. (5.7)

Remembering that the inputs are differential,

V +
k = −V −

k = Vk/2, and V +
a,k = −V −

a,k = Va,k/2

. In a small signal representation, the signal weights are

∆Wk,l =
W+

k,lW
+
a,k∑m

g=1W
+
g,k

−
W−

k,lW
−
a,k∑m

g=1 W
−
g,k

, (5.8)

resulting in the target case

Vout,l =
gm1

gm3Wy,l

n∑
k=1

∆Wk,lVk. (5.9)

The output gain from input (e.g. V1 to Vout,1) is multiplied by gm1/gm3.

The small-signal analysis does not show the effect of the biasing levels, which include

the output bias current level. A straightforward analysis shows that the output bias current

weights, W0, would be,

∆W0,k,l =
W+

k,lW
+
a,k∑m

g=1W
+
g,k

+
W−

k,lW
−
a,k∑m

g=1W
−
g,k

, (5.10)

leading to an output bias current of Ibias
∑n

k=1 ∆W0,k,l. Offsets can be programmed out by
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Figure 5.8: TIA circuit that includes a tunable OTA for tuning the amplitude gain, and a
bias current to remove additional bias current arising from the multiplication operations,
is added to the main block. We see that the constant weight values along a row are much
larger than the signal values.

the FG programmed current source (Figure 5.8), as these current levels tend to be signifi-

cantly larger than the input signal current levels. The DC bias current is removed through

an nFET current mirror with transistors Moff1 and Moff2 using the FG device, Moffs, to

set that current. This approach allows tuning the output gain by decreasing gm3.

5.5 Built-in Self Test for the Full Chain

Given a set of signal inputs, known desired outputs (Figure 5.10), and calibrated Va nodes

(Figure 5.6), the resulting weights and offsets could be calibrated. The previous mathemati-

cal framework for the VMM weights (5.8) as well as output current offsets (5.10) illustrates

sufficient flexibility for this calibration. Multiple adaptive algorithms could converge to a

solution.

This section discusses an automatic algorithm to tune calibration mismatch enabled

through the non-volatile VMM structure (Figure 5.9). The goal of a calibration algorithm

is to identify and allow for quick on-chip adaptation by only increasing values (e.g. only
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Figure 5.9: Block diagram of the data measurement for performing the VMM self-test
operation . This approach inputs the identity and the negative of the identity matrix, scaled
to the full-scaled range into the VMM block to correct the indirect threshold mismatch in
the VMM and TIA bias currents. One could equally take an arbitrary set of vectors and
perform a Least Mean Squares, LMS solution on that data using this flow.

hot-electron injection). The algorithm chooses an initial set of inputs that modulates each

input component by its largest positive and negative differential input that are related to the

input linear range (VLin = CTUT/(κC1)) around the required input offset voltage. This

input is effectively the normalized +1 and -1 inputs (x) for the normalized input. The

resulting normalized outputs (y = W x) of the VMM are the positive and negative values

of the effective VMM weights (Figure 5.9). The differential signal outputs directly show

the output offset voltage (Vref2) and the output linear range (VL,out). The Va nodes are

monitored so the algorithm can tune DC levels to stay near 2.4V.

A normalized weight vector of all one values illustrates the calibration algorithm (Fig-

ure 5.9), where the positive weight could be 1.5 and the negative weight could be 0.5 (W0

= 2). The positive switch elements would be programmed to 100nA and 40nA resulting in

targeted values of 3.75nA and 1.25nA. The bias currents for the positive columns would be

7nA and the negative columns would be 2.5nA. The resulting output signal for the positive

and negative input would be an output current alternating between 33.25nA and 35.75nA.

One would want to program the bias current structure to 34.5nA, resulting in an output
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Table 5.1: Measured Output for Va averaged over ten trials

Active Input
Pair

V +
a1

(V)
V −
a1

(V)
V +
a2

(V)
V −
a2

(V)
V +
a3

(V)
V −
a3

(V)
V +
a4

(V)
V −
a4

(V)
V +
a5

(V)
V −
a5

(V)
V +
a6

(V)
V −
a6

(V)
V +
1 ,V −

1 2.39 2.42 2.42 2.41 2.41 2.41 2.40 2.41 2.41 2.40 2.39 2.40
V +
2 ,V −

2 2.40 2.39 2.37 2.42 2.39 2.41 2.40 2.41 2.38 2.39 2.40 2.39
V +
3 ,V −

3 2.39 2.40 2.40 2.40 2.37 2.43 2.38 2.41 2.38 2.41 2.37 2.40
V +
4 ,V −

4 2.38 2.40 2.38 2.39 2.39 2.42 2.39 2.42 2.39 2.40 2.40 2.40
V +
5 ,V −

5 2.37 2.41 2.37 2.40 2.38 2.41 2.39 2.41 2.39 2.42 2.40 2.43
V +
6 ,V −

6 2.40 2.40 2.40 2.40 2.40 2.42 2.38 2.42 2.38 2.41 2.38 2.42

current modulating between -1.25nA to 1.25nA. Biasing the 1V linear range TIA at 2.5nA

would result in a 1V peak to peak output signal. These values expected after the devices

are calibrated, and these are the values to initially program as the starting guess for this

normalization; the corrections would be incorporation of the VT0 mismatch and could be

directly used for programming new VMM values.

Table 5.1 shows the statistics of the measured voltages from the intermediate nodes at

Va following the self-test algorithm described in Figure 5.9. The voltages corresponding

to the positive and negative components of the identity matrix is applied to the input FG

switch elements that correspond to the positive and negative weights, one pair at a time,

while the rest of the input elements are fed the 0 input. This pattern is fed to all 12 inputs,

with +1 and -1 alternating through the positive/negative pairs. The intermediate nodes,

Va, in the system are measured through a shift register connected in the loop to make sure

that they are near 2.4V. The shift from 2.4V is higher in some trials since the parasitic

capacitances may shift between the program and run modes. Also, the error rates could

be due to the accuracy of the 14-bit ADC used for the measurements while programming.

The residual mismatch in such cases could be further tuned out by fast injection on those

switches, till the nodes hit the target 2.4V as close as possible. The average over the trials

show that the signals remain bounded near 2.4V during the course of the computation. This

helps to make sure that the programmed weights on the VMM are as close to the targeted

weights as possible.
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weights 

Tune MITE 

bias level 
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Figure 5.10: The algorithm flow for the full system, to set the weights of the VMM. It
calculates the variation change with respect to the different inputs applied and then measure
the intermediate nodes. This process is repeated for all inputs. After an initialization of the
parameters, the source inputs to the VMM and system outputs are measured and compared
and the VMM weights or the input FG biases are fine tuned accordingly depending on the
variation.

5.6 Outputs of the VMM

The algorithm for the entire system chain is shown in Figure 5.10. Once the input elements

are biased and the weights of the VMM are calibrated accordingly, the gain and the DC

level and the operating range at the VMM outputs can be controlled through the TIA. The

output values are moved through the injection on the output TIA structure. The output

gain can be increased by decreasing the transconductance of the FG OTA as seen in (5.9)

or reducing the bias current of the FG OTA. The offset charge between the positive and

negative terminals of the differential TA is used to center the output waveform. The current

mirror structure also helps to control the remaining bias current that is subtracted at the

output node, thereby controlling the DC levels at the output rows. This current source is

programmed to a low current initially and then injected incrementally until the desired
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Figure 5.11: 1Hz differential sine waves are applied to the six pairs of taps. The gain and
the DC level at the output is set such that it is not near the rails and distortion is as low as
possible. The frequency analysis of the 1Hz signal is shown, where the output voltage levels
are regressed to observe the Vrms magnitudes and show the primary amplitude (180mV) and
second harmonic (21mV).

response is obtained. The feedforward OTA is programmed to a high value while the

feedback FG OTA sets the gain and operating range at the output.

A set of sinusoidal waves are applied to the system to characterise the VMM in addition

to the step reponses. Figure 5.11 shows the transient sinusoidal responses of the VMM with

the application of 1Hz differential sine waves to the six pairs of taps. The output voltage

is scaled such that the distortion is minimum. As all the signals are added on the taps

with the weights, it can be considered as the case for distortion where the noise is at its

lowest. The noise current at the output is a factor of the sum of weights and output bias

current for a particular output voltage swing. The VMM can be considered as a matched

filter where the largest response is always to the matched signal, as the SNR depends on

the operating conditions. The frequency analysis of the 1Hz signal is shown in Figure 5.11,

where the output voltage levels are regressed to observe the Vrms magnitudes and show the

primary amplitude (180mV) and other harmonics. The noise component has a number of

bias currents being added together as a single value at the input is being modulated. The
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Figure 5.12: (a) The level of the outputs of the VMM row 1 and 2 after the TIA is shown,
in response to a step input. A full-swing output is shown at the VMM outputs setting the
FG OTA at TIA to maximum gain. A higher gain is further obtained by decreasing the bias
on the FG OTA of the TIA. (b) The gain and offset can be tuned by changing the bias on
the FG OTA at the feedback of the TIA. As the feedback bias current is increased, the gain
drops on the output signal.

noise power increases with the number of taps and the output conductance can be tuned

through the TIA, depending on how large one wants to scale the output voltage and tune

for the distortion.

Figure 5.12(a) shows the full-swing outputs at the VMM, setting the gain to the maxi-

mum at the FG OTA of the TIA. Figure 5.12(b) shows the different DC levels at the outputs,

which could be centered by tuning the offset bias current that is subtracted or by modulating

the FG charge at the input terminals of the feedback FG OTA. From the rail to rail outputs,

it is apparent that it is possible to get such a level of gain, providing a base level from where

one could tune the outputs depending on the desired output gain and operating range, by

a fine injection on the output. Hence, the user can choose a range of output conductances

through the TIA and tune it accordingly.
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5.7 Programmable Filters with VMMs

This VMM tuning algorithm could be used in a number of applications. We show a signal

processing application using the calibrated VMM structure in a larger system. A bank

of bandpass filters are connected to the VMM to experimentally demonstrate the pro-

grammable filters.

In case of these tunable filters, the input data would be from a microphone or similar

sensor feeding into a bunch of filters, while the outputs would be measured from the VMM

block. This system, similar to custom programmable filter efforts [113], is typical of audio

MP3 encoders [129], where sub-band coding is achieved through bandpass filters [130] that

decompose incoming bands into a set of frequencies, while the VMM helps to choose a

particular set of responses. A weighted sum [131] is experimentally demonstrated, through

a combination of filters and multipliers.

Figure 5.13(a) shows a system where two pairs of six filters are connected to the positive

and negative inputs of the differential VMM. The system uses six bandpass filters with

differential input and output signals, setting up the VMM for the two resulting bandpass

filter functions. The capacitively coupled current conveyer (C4) based bandpass filters [75]

are tuned such that the pairs of six taps produce identical responses, with each set tuned

to produce exponentially spaced center frequencies between 1Hz and 100KHz, as shown

in Figure 5.13(b). The respective corner frequencies are set by the transconductances on

the feedback and feedforward FG OTA of the C4 (Figure 5.13(a)). They have been biased

such that the filters themselves produce similar outputs in terms of gain and quality factors,

while producing responses that are uniformly spaced from each other.

The transfer function of the C4 is

Vout

Vin

=

s2C1C2 − sGm2C1

s2(CpCT − C2
2) + s(Gm1Cp +Gm2C2 −Gm1C2) +Gm1Gm2

.

(5.11)
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Figure 5.13: Application of a self-tested VMM structure. (a) Block diagram for a pro-
grammable filter utilizing the calibrated weight values is shown. The differential 6x2 VMM
is connected to two pairs of a bank of six filters each. The system outputs for different filter
functions are scanned out and read from the two VMM outputs. The schematic of a C4

bandpass filter with two FG OTAs whose transconductances control the cut-off frequen-
cies, is shown. (b) The output of the set of twelve filters are shown here. Each set of six
bands are fed to the corresponding six differential inputs of the VMM. The individual filter
responses from the bank of C4 bandpass filters, are tuned such that both of them have the
same set of bands and cut-off frequencies.

where C1, CL, C2 and CW are the input, load, feedback and routing capacitances respec-

tively while Cp = C2 + CL and CT = C1 + C2 + CW . Gm1 and Gm2 are the transconduc-

tances that set the lower and upper frequencies respectively.

Table 5.2 compares the measured and expected center frequencies of the two pairs of

filter banks. They have been tuned such that the measured values are close to the expected
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Table 5.2: Comparison of measured and expected center frequencies of the filter banks

Filter
Tap

Measured Expected Error (%)
Bank

1
Bank

2
Bank
1,2

Bank
1

Bank
2

1 4.92Hz 4.66Hz 6.78Hz 27.4 31.2
2 19.23Hz 18.46Hz 21.23Hz 9.4 13.0
3 42.29Hz 35.93Hz 38.76Hz 9.1 7.3
4 109.69Hz 104.72Hz 105.16Hz 4.3 0.4
5 486.25Hz 471.38Hz 475.22Hz 2.3 0.8
6 1.49kHz 1.42kHz 1.46kHz 2.1 2.7
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Figure 5.14: Step responses from the system structure with the filters and VMM corre-
sponding to two outputs for a weight matrix, are plotted to study the transient behaviour.
The rising and decaying on the transient waveform is characteristic of a bandpass filter be-
havior. The measured rise and fall times from the step response match the expected cut-off
frequencies for the system. It is apparent from the time scale that it passes the middle and
higher set of bands. The feedback FG OTA on the TIA is used to set the DC level on the
output rows and center the waveform with a reasonable gain.

ones from the bandpass filters. The error rates deviating from the expected values are

defined in the table. The transconductances of the feedforward and feedback FG OTA on

the filters aid in tuning the lower and higher corner frequencies, thereby controlling the

center frequencies and their deviations from the expected analytical values.

The weights of the VMM have been tuned as discussed in Section 5.5. It is essential to

have a calibrated VMM in such larger systems. Fortunately, the resulting infrastructure can

be removed after calibrating the device once. Since the dynamic operation range of this
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VMM has been extended, the frequency responses from the C4 can be directly multiplied

through the VMM to obtain desirable filter behaviours. Further, the BIST strategy enables

one to set the correct biases on the positive and negative coefficients of the VMM weight

matrix. These weighted outputs are further summed to generate a single response. The

differential weights can be tuned such that either a particular single response or a weighted

combination of filters is chosen. Each of the output rows of the differential VMM can be

biased to produce two different sets of programmable functions, that ultimately select a

desired set of corners in the system frequency response.

Initially, the VMM is tuned such that it passes one band from the system wherein all six

bands come through the system with single outputs sequentially. The weights correspond-

ing to the active bands are set to the desired factor while the weights for the inactive bands

are set to a low bias level so that the single band is output.

Figure 5.15 shows the specific case of a pair of the six center frequencies being active,

one at a time. These have a tighter response with a higher quality factor as well as gain,

since the negative weights resulted in a sharper drop in the response. A pair of bands has

been analysed and their corresponding center frequencies and quality factors have been

marked. The first and middle bands are active on the output rows. This test case serves as

a starting point to figure out the coefficients required for grouping different bands.

Different combination of weights can be chosen to produce a number of cases for the

overall system response. Table 5.3 lists these coefficients for the VMM weight matrix for

all the system responses. These weight matrices were chosen to pass a particular set of

bands and the tuning of the coefficients was done through the calibration algorithm. Along

with frequency responses, the system behaviour has been studied experimentally through

transient measurements as well. Figure 5.14 shows the system responses corresponding

to the second weight matrix shown in Table 5.3, where the step inputs are applied to the

system. The response to a step input is plotted and the rise and fall times over a period of

6ms is noted. This is characteristic of bandpass filter behavior and matches the expected
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Figure 5.15: The system response is shown where the VMM is tuned such that it passes
one band from the system. One could choose one band from all the six bands between 1Hz
and 10KHz, that come through the system with single outputs effectively. The weights
corresponding to the active bands are scaled and set while the weights for the inactive
bands are set low so that a single band case comes out of the system. This case is shown
where a pair of the 6 center frequencies are active at a time, namely the first and middle
band, by choosing the corresponding VMM weights and the system outputs are measured.
These pair of bands are analysed and plotted. These have a tighter response with a higher
quality factor. The gain and their corresponding center frequencies and quality factors have
been marked.

cutoff frequencies for the system. It is apparent from the time scale that it passes the middle

and higher set of bands through the system. The upswing and downswing corresponding

to the application of the step shows the effect of the positive and negative weights on the

VMM. The feedback FG OTA on the TIA is used to set the DC level on the output rows

and center the waveform with a reasonable gain. Each parameter can be individually tuned

to obtain different gains and DC levels, as shown in the plots.

Frequency responses corresponding to these weight matrices are plotted as well. Fig-

ure 5.16 shows these cases, tuning for a variety of weights. An adjacent pair of bands are

passed through the system on the two outputs, for the first and second weight matrix. A

mixture of a lower, middle and upper frequency pairs are chosen for the responses from
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Table 5.3: Coefficients of the VMM weight matrix for the programmed filter responses

Coefficients
First VMM

weight matrix
(nA)

Second VMM
weight matrix

(nA)

Third VMM
weight matrix

(nA)
W+

1,1, W+
2,1 130,0.15 0.15,0.15 125,0.15

W−
1,1, W

−
2,1 70,0.15 0.15,0.15 75,0.15

W+
1,2, W

+
2,2 120,0.15 125,0.15 135,0.15

W−
1,2, W

−
2,2 75,0.15 75,0.15 70,0.15

W+
1,3, W

+
2,3 0.15,125 120,0.15 100,0.15

W−
1,3, W

−
2,3 0.15,75 80,0.15 40,0.15

W+
1,4, W

+
2,4 0.15,150 0.15,105 0.15,0.15

W−
1,4, W

−
2,4 0.15,50 0.15,45 0.15,0.15

W+
1,5, W

+
2,5 0.15,125 0.15,120 0.15,120

W−
1,5, W

−
2,5 0.15,75 0.15,80 0.15,80

W+
1,6, W

+
2,6 0.15,0.15 0.15,0.15 0.15,150

W−
1,6, W

−
2,6 0.15,0.15 0.15,0.15 0.15,50

both the output rows in the two experiments. The VMM weights corresponding to the ac-

tive pair is chosen while the other bands are inactive by tuning them to a low current so that

these bands are not seen in the final response.

The third weight matrix shows another experiment where three sets of bands are active

at a time on one output while the other complementary bands are active on the second out-

put of the VMM. The triplet bands case is shown, to observe the first and last set of bands

separately from the system, complementing each other. The distinctive responses plotted

show the range of frequencies for the twelve bandpass filters and the coefficients for the

weight matrix have been targeted such that the lower corner on the second row matches the

upper frequency bound on the first row output. Table 5.4 quantitatively compares the cor-

ner frequencies for the bandpass response, namely lower fl and upper fh frequencies of the

system of the filters with the VMM, for the different weight matrices with and without the

calibration algorithm. In an untuned system, the VMM weights have been initialised with-

out compensating for the mismatch from the indirect programming. Further, the translinear

FG pFETs that drive the VMM are not tuned. This causes the sources of the VMM to
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Figure 5.16: The system responses for the cases where a pair of consecutive bands are
passed is shown on the two outputs for the first two VMM weight matrices. The VMM
weights corresponding to the active pair is chosen while the other bands are made inactive
by tuning them to a low current. The lower and middle set of bands are shown from the
system for the first VMM weight matrix. The middle and higher set of frequency pairs
are passed through in this response corresponding to the second VMM weight matrix. The
system response is shown for a third VMM weight matrix, where three sets of bands are
active at a time on one output while the other complementary bands are active on the second
output of the VMM. Hence, the triplet bands case is experimentally measured, where one
can observe the first and last set of bands separately from the system.

not be set close to Vdd, which further results in the deviation from the desired responses.

Without the tuning, there are undesired deep drops between the bands in the response as

well as unwanted ripples with different gains, producing a more distorted signal. Hence,

the calibration not only aids in multiplying with the desired factor through the VMM, but
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Table 5.4: Parameters of the system with and without calibration for the VMM weight
matrices

Weight
Matrix

One

Output 1 Output 2
fl

(Hz)
fh

(Hz)
fl

(Hz)
fh
(Hz)

Untuned 3.1 2.1k 10.5 1.9k
Tuned 5.5 32.6 86.0 1.3k
Target 4.9 36.2 90 1.4k

Weight
Matrix
Two

Output 1 Output 2
fl

(Hz)
fh

(Hz)
fl

(Hz)
fh
(Hz)

Untuned 11.2 4.6k 9.7 10.1k
Tuned 30.0 314.4 314.4 1.5k
Target 36.2 325 325 1.6k

it also helps in passing the desired set of bands to the outputs.

Experimental measurements from the system have been shown to demonstrate a variety

of bands related to the weighted sum of the filter responses. The BIST algorithm on the

VMM aided in converging on a set of weights to find the coefficients and apply the correc-

tion for the targets, after setting the bands of the filters at the desired region. The weights

can be targeted to produce a response with a higher or lower quality factor, to obtain narrow

or wideband filters. Further, the system parameters enable the user to set the gain for each

band and the bandwidth, as well as scale the amplitudes, to achieve interesting patterns.

Applications such as programmable filters require highly linear vector-matrix multi-

plication, whereas linearity and calibration might not be as significant a concern in other

applications such as for classifiers with VMM+WTA [124]. BIST is advantageous where

one really needs a linear, tuned circuit. Such architectures can be used in place of digital

signal processors to filter inputs from sensors and produce multiple programmable func-

tions, all on a single platform that embeds the tuning of parameters along with the desired

computation aspects.

5.8 Discussion

The algorithm proposed in this work is applied and tested via implementation on a re-

configurable mixed-signal platform. The internal biases for the system can be set through

the on-chip supplies and Digital to Analog Converters (DACs), while the outputs can be

recorded either through the Analog to Digital converters (ADCs) compiled on-chip or IO
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pads.

A built-in self-test algorithm has been shown for a differential 6x2 VMM to adapt the

weights. The tuning process extends the dynamic range to translate the wide-swing input

voltages to the required ranges for the source-driven inputs of the differential VMM. The

process converges on the target coefficients for the weight matrix through fast injection,

taking care of the threshold voltage mismatch due to indirect programming. After the

initial programming duration during the first run for the entire system of switches, the

iterative tuning is faster (in the order of ms) since the algorithm performs fast injection on

the switch. The gain and operating range of the outputs can also be set.

The VMM has been used in a system with bandpass filters to show a variety of pro-

grammable filter dynamics, which could be tuned depending on the application. The band-

pass filters could receive the input data from sensors, with the system outputs measured

from the VMM block, for an efficient end-to-end computation. The variation over temper-

ature can be compensated by using an FG based bootstrap reference circuit which biases

the FG transistors [84, 132]. All the core circuits on the FPAA are referenced to ground or

Vdd. Hence, the supply voltage variations are minimised due to the system being relative

to the supplies. Typically, precision voltage references [84, 133] can be used as well to

control the variation in power supply.

Due to the programmability on the FPAA, the floating gates directly enable eliminat-

ing mismatch due to threshold voltage or transistor widths and lengths. Other process

variations can be tuned out after fabrication. It is critical to handle mismatch issues and

variations in an analog system to obtain the desired performance and make sure that they

do not become a bottleneck, to take advantage of the energy efficiency aspects of having

used such systems. The self-test technique addresses this crucial question of automatically

tuning the parameters for a fundamental in-memory computing block. Thereby, this algo-

rithm could be further generalized to other analog devices and platforms as well, extending

this idea to handle the mismatch for complex, large-scale systems.
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CHAPTER 6

CONTINUOUS-TIME, CONFIGURABLE ANALOG LINEAR SYSTEM

SOLUTIONS WITH TRANSCONDUCTANCE AMPLIFIERS

6.1 Framing Analog Solutions of Linear Equations

The solution of linear equations is a fundamental digital computation technique (Figure 6.1),

that is considered difficult using analog computation [134]:

Ax = b, (6.1)

where A is the input matrix, b is the input vector, and x is the solution vector. The classic

digital solution uses Gaussian elimination. This computation shows all of the strength of

digital processing, including the pivots, to get the maximum accuracy for the decomposition

[135]. Numerical tools such as MATLAB are dedicated to these ubiquitous operations.

Computing benchmarks are based on solving linear equations (e.g. LINPACK [136]). Since

digital computers are well suited to solving (6.1), a problem is considered analytically

solved when reduced to solving (6.1)[134].

If programmable analog techniques competitively solve (6.1) experimentally, analog

techniques can span a large range of numerical analysis techniques [134, 137], enabled

through analog algorithmic techniques[138]. Since a direct analog equivalent to Gaussian

elimination involves numerous discrete steps and memory manipulations (e.g. pivots) that

require the storage of high-resolution intermediate values, this effort considers a different

approach to solving (6.1). This Ordinary Differential Equations (ODE) converges to the

solution of (6.1):

τ
dx

dt
+Ax = b, (6.2)
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Figure 6.1: Digital and analog linear equation solution techniques include both direct (e.g.
Gaussian elimination, L U decomposition) and iterative techniques. Analog techniques can
utilize iterative techniques by using differential equations that converge to the solution. Re-
sistive circuits with linear dependent and independent sources can be directly transformed
and then solved by a set of linear equations; this work reverses that perspective to solve
linear equations by transforming these equations to a circuit that converges to the linear
equation solution. This transformation requires using a set of Transconductance Ampli-
fiers (TA) as voltage-controlled current sources, enabling direct implementation in a pro-
grammable and configurable platform (e.g. FPAA), thereby enabling the solution of a wide
range of matrices.

where τ is the network time constant. One discretization is

x[n] = x[n− 1] + ϵ (b−Ax[n]) , (6.3)

where ϵ is a function of τ and the time step. Sometimes, iterative digital techniques in some

cases require fewer operations than digital Gaussian elimination, particularly for sparse

matrix solutions as well as for embedded computations (e.g. [139]). Equation 6.2 and 6.3

converge for positive eigenvalues of A; one can find related iterative equations for other A

[135].

This work focuses on analog solutions to (6.1) using (6.2). Reconfigurable and pro-

grammable Transconductance Amplifiers (TA) implement (6.2), and provide a platform

for analyzing the analog numerics. An SoC Field-Programmable Analog Array (FPAA)

[2] provides the experimental demonstration platform; these approaches could be imple-

mented in earlier FPAA devices (e.g. [140]) or custom silicon. Engineering students are

taught that static resistive circuits with independent and dependent voltage- and current-
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sources are directly formulated and solved as a system of matrix equations like (6.1). This

work experimentally demonstrates and characterizes the other side of this statement that

configurable TA configurations solve (6.1) through (6.2) for any stable A (Figure 6.1). A

resistor-only network is limited in the possible A matrix, while resistors with op-amps may

have stability, mismatch, or parasitic concerns in physical implementations [141, 142, 143,

144, 145]. These approaches encompass early theoretical discussions of analog computing

for solving (6.1) [146, 147], as well as theoretical discussions using multiple-output TA-

based recurrent neural networks for solving (6.1) [148, 149]. Electronic circuits are used

to illustrate solutions (e.g. Hopfield networks [150, 151]), simulating linear solutions for a

reduced class of problems [152, 153, 152], and considering specialized cases (e.g. elliptic

Partial Differential Equations (PDE) [154, 155].)

If an analog linear equation solver is built, one would want this computation to have at

least a fraction of the typical 1000× improvement in computational energy efficiency (e.g.

[1]) compared to digital techniques (e.g. [156]), as well as typical area efficiencies. Vector-

Matrix Multiplication (VMM) shows these efficiencies compared with digital computation

[157, 158]. This chapter will discuss the potential energy efficiencies as well as algorithmic

complexities.

This work moves to unify analog solutions of linear systems into a low-energy, compil-

able approach, including discussing its wider numerical analysis and resulting circuit tech-

niques. The discussion moves towards transconductance-based (Figure 6.2), and resistive-

based iterative methods for solving linear equations (Section 6.2), describing the relevant

FPAA implementation details (Section 6.3), as well as demonstrating analog solutions of

representative linear systems (Section 6.4). The resulting analog linear equation solution

circuits are effectively analog filters or control systems, and we discuss the connection to

these approaches (Section 6.5). Finally, the discussion moves towards analyzing computa-

tional efficiencies of linear equation solvers and concludes the discussion in Sections 6.6

and 6.7.
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Figure 6.2: Potential continuous-time circuit architectures to solve systems of linear equa-
tions. Shaded areas show the input b and output x regions. Connection dots show con-
nections at connecting wire intersections. A T would be a connection. (a) Linear equation
solution built from resistors and current sources. The programmable resistors and current
sources can be implemented with programmable transistors. (b) Linear equation solution
built from Transconductance Amplifiers (TA). The constraint matrix of voltage-controlled
current sources is set by individual conductances and the corresponding bias currents.

6.2 Physical ODE Solutions of Linear Equations

Analog linear equation solutions could be implemented using resistive coupling between

nodes (Figure 6.2a), and/or transconductance amplifier coupling between nodes (Figure 6.2b).
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FPAAs efficiently implement resistive and transconductance networks, including exploiting

routing fabric elements [2, 159].

A linear system built of resistors creates a diagonally dominant system with negative

non-diagonal coefficients. Undergraduate engineering students would recognize that low-

frequency circuits of resistors and supplies are modeled by linear system of equations. A

generic resistor network for solving a system of linear equations (Figure 6.2a) is modeled

as

Il = −
m∑
k ̸=l

Gl,kVk + Vl

m∑
k=1

Gl,k + C
dVl

dt
, (6.4)

where Gk,l is the inter-node conductance, Gk,k is the node conductance, and k, l represent

the matrix indices of A that are of size m. This stable ODE converges to the solution.

Physical computation uses continuous variables as representations. These variables are

often scaled, including the units, to abstract the computation from physical values. For ex-

ample, users solving linear systems often prefer representing their problem as a normalized

variable, x, that varies from 0 to 1, rather than keeping track of an arbitrary range of cur-

rents (e.g. 14.6nA and 31.7nA). Knowing the abstraction, tools should remove these low

level details from the user. Normalizing these variables converts the physical equations to

mathematical equations. The smallest of the diagonal sums,
∑m

k=1Gl,k, typically normal-

izes the resulting equations. The time constant τ is set by a capacitance, C, over a value

proportional to the conductances. The relationships connect (6.4) to (6.2):

al,k ∝ −Gl,k k ̸= l

,

ak,k ∝
m∑
k=1

Gl,k, bk ∝ Ik. (6.5)

Input currents are signed, and the output voltages are signed values around some bias point.

All diagonal values will be greater than 1; all off-diagonal values will be negative.

Transconductance amplifiers (TA) achieve a larger A range compared to resistive el-
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ements by using voltage-controlled current sources and not just resistor elements. A TA

operating in its linearized region is expressed as

Iout = G(V + − V −), (6.6)

where G is the circuit’s transconductance parameter. When the 9-transistor TA (as in [31])

in the SoC FPAA [2] is programmed in the typical case with a subthreshold bias cur-

rent (Ibias), the resulting transconductance, and coupling between nodes (k,l), would be

Gk,l =
κIbias
UT

. where κ is the capacitive division between gate and surface potential for a

MOSFET (e.g. [31]), and UT is the thermal voltage, kT/q (≈25mV at T=300K). Similarly,

an expression for G can be derived for different bias current regions (e.g. above-threshold

bias currents) with smaller increases in G for further increases in Ibias. An on-chip ampli-

fier, such as the TA in on-chip custom [31] and configurable [2, 10] designs, becomes a

voltage or transconductance amplifier depending on the resulting circuit operation as they

are often unbuffered designs. The SoC FPAA has 196 non-FG input TAs and 196 FG input

TAs [2]. As the SoC FPAA TA bias current sources are set with an internal FG element,

these TAs do not have a fourth terminal (e.g. [31]) to set the bias current.

Linearized TAs operating with subthreshold or near-threshold currents are governed by

CL
dVout

dt
+

κIbias
2UT

(Vout − Vref + Voff1)

=
κIbias2
2UT

(Vin(t)− Vref + Voff2), (6.7)

including the TA input voltage offsets (Voff1, Voff2). For a large input voltage where the

TA becomes a current source,

CL
dVout

dt
+

κIbias
2UT

(Vout − Vref + Voff1) = Ibias2. (6.8)

The steady state solutions for the linearized and current source cases are

Vout = Vref − Voff1 +
Ibias2
Ibias

Voff2
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Figure 6.3: Analog linear equation solution in the SoC FPAA [2]. (a) High-level tool
(Scilab) blocks for the Floating-Gate (FG) and non-FG TA based linear equation solution.
(b) A representative block diagram setup for computing and measuring a linear equation
solution, where each line represents a parameterized bus of inputs or outputs. This diagram
shows a 4x4 A as used in later experimental examples. (c) Arrays of FG and non-FG TAs
in SoC FPAA Computational Analog Blocks (CAB) perform the linear equation solutions.

and

Vout = Vref − Voff1 +
2UT

κ

Ibias2
Ibias

, (6.9)

respectively.

A generic TA network for (6.2) (Figure 6.2b) for the l-th row with subthreshold Ibias is

modeled as

C
dVl

dt
= Il −

m∑
k=1

Gl,kVk (6.10)

The normalizations connect (6.10) to (6.2):

al,k ∝ Gl,k, bk ∝ Ik (6.11)
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One could have a different τ per row due to different conductance modeling and capaci-

tances, potentially tuned to optimize convergence. Current sources set the b inputs. Positive

current sources would go to Vdd, and negative current sources would go to GND. The ODE

solution of these networks requires positive eigenvalues for A; related techniques can trans-

form the resulting matrix for the solution of general A (e.g. [153]). Often, quantities are

built around a single bias current, Ibias, which abstracts the resulting currents (typically one

of the programmed current values), resulting in τ = CUT

κIref
. The current scaling is a question

of computation speed. Each output row could be scaled accordingly, setting each row’s

resulting τ and normalizing the row values as required. Each row in (6.2) could have a

different τ .

Physical linear equation solutions, transforming a linear system into an ODE problem,

should involve problems that start as a series of linear equations. It is inefficient to take an

ODE or PDE, transform it into a linear system, and then to transform it to a linear ODE

circuit for the solution. As ODE / PDE applications are efficiently solved by direct imple-

mentation [134, 159], we focus on the physical solution of linear systems that originates

from different applications.

6.3 Configurable Analog Linear Equation Solver

The TA-based analog linear equation solution is experimentally demonstrated in an SoC

FPAA [2]. The SoC FPAA is enabled by a significant infrastructure and tool base; an ex-

tensive overview of FPAA devices is written elsewhere [10]. The SoC FPAA operates with

analog supplies at 2.5V and ground. This computation is encapsulated in a linear equation

block (Figure 6.3a), abstracting the analog TA computation [16] that can be targeted to an

FPAA IC, as well as a macromodel simulated in a full system level simulation (level=1),

in an open-source toolset in Scilab [12]. The block parametrizes the number of inputs (b)

and outputs (x) and the resulting matrix (A). This discussion presents experimental circuit

measurements and simulations
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Figure 6.4: Comparison of non-FG TA and FG TA for solving Ax = b. The FG TA results
in higher voltage signals and SNR, as well as larger τ by the ratio of total capacitance (CT )
to the input coupling capacitance (C1).

This linear block becomes part of the experimental on-chip test setup (Figure 6.3b)

that includes providing the b input as well as multiplexing each value of the output vector

x. TAs in the Computational Analog Blocks (CAB) have a 9 transistor circuit topology

(Figure 6.3c) [2, 31]. The A matrix is set by the conductances of the individual TAs, that

in turn are set by Floating-Gate (FG) bias currents set by the pFET bias current. The TA

has nearly rail-to-rail output range, although the upper range is limited by the pFET current

source remaining saturated. Typical operation occurs for signals around a 1V to 1.25V

reference (Vref ). A TA is used to convert the input voltage (b) signal to a current. The

reference voltage(s) can be controlled by Digital-to-Analog Converters (DAC) compiled

on the FPAA [2]. The sign of each A matrix element determines the TA input sign, where

positive values are input in the - input and the reference to the + input, while negative values

are input in the + input and the reference to the - input. The measured outputs, x(t), are

scanned and buffered out.

The choice of FG or non-FG TA depends on the required linearity and convergence

(Figure 6.4). FG TA has higher linearity with a slower time constant for a given bias cur-
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shows two cases of the input vector (b), one case (same inputs) for b = [ 300nA 300nA
300nA 300nA], and a second case (different inputs) for b = [50nA 75nA 100nA 125nA].
These results are compared for an equivalent, more detailed level=2 [15] simulation model,
and the results compare closely with experimental measurements.

rent, while a non-FG TA has a lower linear range and provides a faster convergence for

a given bias current. There have been other discussions in the literature about a range of

programmable current bias TA [160], the effect of FG capacitance coupling on core circuit

parameters [161], built-in self-test algorithms [162], and application of these structures in

nonlinear dynamics [163] and education [164]. We summarize these core results to facili-

tate our linear-equation solutions (Figure 6.4). The non-FG TA is more energy efficient for

a given bias current. The FG TA is easier to instrument using 1V signals rather than 50-

100mV signals. The key parameter that scales these results is the ratio of total capacitance

(CT ) to the input coupling capacitance (C1). The experimental measurements will illustrate
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Figure 6.6: Setting up Ax = b using TA elements. (a) Effective circuit for solving Ax = b
for a diagonal matrix A, that corresponds to a first-order TA circuit with tunable gain
based on the ratio of the bias currents. (b) Effective matrix programmed for this diagonal
computation (1µA as the 1 elements and 10nA as the 0 elements), where the off diagonal
elements programmed to 1% or less of the diagonal elements (1µA compared to 10nA).
Effectively, the off diagonal elements can be ignored in these measurements. (c) Analysis
for the convergence of A matrix after applying a 40mV b input through the TA current
sources. The time constant was extracted to be roughly 47µs for each component. It is
nearly identical for all the four curves, thereby getting similar convergences.

the properties of these two TA approaches (Figure 6.4) corresponding to these two blocks

(Figure 6.3a). Using the FPAA routing fabric results in efficient resistive networks [2, 159],

although they typically result in lower SNR and signal amplitudes than TAs.

The system model (level=1) for this TA based equation solver, where voltages are ref-

erenced to Vref , and where the inputs use a similar FG-based TA, would be

dVl

dt
=

Ib,l
C

tanh (Vx,l/VL)−
1

C

m∑
k=1

IA,l,k tanh (Vk/VL) , (6.12)

where Ib,l are the bias currents for the input FG TAs (b), Vx,l are the input voltages (b),

IA,l,k are the bias currents for the matrix TAs (A), VL is the linear range of the TA, and we

assume a nominal value of C (e.g. 1pF) until compilation provides better data that gives a

better estimate, including the circuit place and route. This model is implemented for the
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Figure 6.7: Measured convergence x for A matrix with 200nA and 100nA as the diagonal
and off-diagonal elements, respectively. For a 40mV b input applied as current sources, the
x(t) solution is plotted and is within the linear range of the TAs. The time constant (61µs)
from curve-fitting the log(·) of the step responses; as expected, there are three identical
eigenvalues for this matrix. One of the components along the larger eigenvalue (by a factor
of 5) converges 5 times faster in 12µs.

FG TA block, and can be directly modified for the non-FG block. One can show results

from this abstracted simulation model (from (Equation 6.12)), and compare it to a more

detailed transistor level simulation [15] and experimental measurements (Figure 6.5).

6.4 Linear Equation Experimental Dynamics

Experimental measurements from a 4x4 A matrix illustrate the linear equation solver (Fig-

ure 6.3b) dynamics. The compiled 4x4 linear solver requires 16 TAs to implement the

4x4 A matrix, and 4 TAs to implement the b matrix. The b vectors are inputs fed to the

gate input of the TA structure, step functions from a zero point ( = fixed potential or current

switched off) to a desired input for b. The matrix solution outputs, x(t) , show the dynamics

when new inputs are applied.

An identity matrix for A illustrates the solution circuit dynamics (Figure 6.6). The

circuit model (Figure 6.2, non-FG TAs) simplifies to a group of two-TA components for a

diagonal A (Figure 6.6). The time constant is directly related to the diagonal TA bias current
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Figure 6.8: Measured solutions for a FG TA based linear equation solution circuit. Each
case shows the measured results and the log trajectory (or error) towards the steady state.
(a) Solution of diagonal matrix with 100nA diagonal elements. (b) Solution of 200nA
diagonal elements and 100nA off-diagonal elements (c) Solution of 110nA programmed
diagonal elements and programmed 100nA elements. Some mismatch resulting from indi-
rect programming was not compensated, so the elements had some random variation.

and the FPAA routing capacitive load, showing unprogrammed mismatches. In general,

we can normalize each row, effectively changing the time constant, but not affecting the

final steady-state solution. Linearized TAs operating with subthreshold or near-threshold

currents are described by

CL
dVout

dt
+

κIbias
2UT

(Vout − Vref + Voff1)

=
κIbias2
2UT

(Vin(t)− Vref + Voff2), (6.13)

where we include the input voltage offsets of the TAs (Voff1, Voff2). If the input TA has a

large input voltage where that TA becomes a current source,

CL
dVout

dt
+

κIbias
2UT

(Vout − Vref + Voff1) = Ibias2. (6.14)
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Steady state solution for linearized and current source cases are

Vout = Vref − Voff1 +
Ibias2
Ibias

Voff2

and

Vout = Vref − Voff1 +
2UT

κ

Ibias2
Ibias

, (6.15)

respectively. The voltage offsets could be tuned out by using FG-TA elements. If the A

elements are operating in their linear region, one can define zero at any particular offset

because if the outputs (x) are measured around an offset vector (x0) due to an offset (b0)

in the input (b), then one can simply normalize the output around the starting zero point

because we are solving a linear system, A(x− x0) = b− b0.

Analyzing (6.2) illustrates the circuit dynamics that can be experimentally verified. A

can be written as

A = EΛE−1, (6.16)

where Λ is a diagonal matrix of eigenvalues, and E are the corresponding rows of normal-

ized (power = 1) eigenvectors corresponding to the particular eigenvector. This relationship

simplifies to A = EΛET for symmetric A. Transforming the solution x into a projection

along the eigenvector basis, x = Ey for (6.1), we project along the eigenvector basis to get

τ
dy

dt
+Λy = E−1b = b̂,

τ

λk

dyk
dt

+ yk =
b̂k
λk

, (6.17)

where yk is the kth component of y, and λk is the kth eigenvalue of A. The matrix requires

positive λk values, although through transformations in A and b, one could achieve positive

values ( A is positive definite). Depending on the projection of b on the eigenvector basis,

the solution could have the effect of one or all of the eigenvectors. The time constants

are scaled by λk, so the largest eigenvalue component will converge first, and the smallest
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Figure 6.9: Dynamics for a compiled 8x8 A matrix with the diagonal elements programmed
to 200nA and the off-diagonal elements programmed to 100nA. (a) Starting from an initial
value, each of the eight nodes converges to their final value. (b) Several of the outputs
directly converge to their steady state solution (Out1, 3, 6, 7, 8), although they might have
different time constants depending on the convergence of other nodes. (c) Some of the
outputs may overshoot or have a damped oscillation into their steady-state solution (e.g.
Out2 vs. Out5).

eigenvalue component converges last; it is often the component most noticed in the system

dynamics. As the value of τ could be normalized along each row, one could compensate

for the slower response of the smaller λk values, although these changes will be projected

onto the eigenvector basis.

Programming different A matrices can illustrate these dynamics (Figure 6.7). The dy-

namics are studied by plotting the matrix solution outputs, x(t) which are the steady-state

responses. The effective time constant from the three eigenvalues is 61µs, obtained through

curve-fitting the exponential curves from the step responses. Since one of the eigenvalues

is larger by a factor of 5, it converges 5 times faster, in 12µs.

The FG TA implementation enables further investigation of the linear solution dynam-

ics given the larger signal amplitudes and SNR. The larger signal amplitudes from the

FG TA devices enable observation of the multiple time constants (Figure 6.8), particu-

larly when we choose matrices with less symmetry and identical eigenvalues (Figure 6.8c).

Scaling the currents of the A matrix also scales the convergence time (Figure 6.8a versus
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Figure 6.8b). The larger eigenvalue spread results in a larger spread in the resulting time

constants (Figure 6.8d). This case is an example in our FPAA graphical tools.

The core block can compile solutions to larger A matrices, including 8x8 (e.g. Fig-

ure 6.9), where the largest square matrix on an SoC FPAA would be 14 x 14 resulting from

the 196 FG TAs and/or 196 non-FG TAs. A trajectory may converge to the solution through

an oscillatory path (e.g. imaginary roots, elliptic paths), depending on the rows of A, where

a particular variable might overshoot or spiral into the solution (e.g. Figure 6.9). One could

imagine building TA with other elements, including routing elements, to increase the matrix

size. Fewer elements are needed for a sparse matrix, where one only needs one particular

element per value in the A matrix.

6.5 Analog Linear Solutions as Linear Filtering

A different look at (6.2) through the TA circuit configurations (Figure 6.2b) illustrates that

this linear equation solver sets up a linear filter between the inputs b and outputs x. The

4x4 equation solver in Figure 6.8b) shows a low-pass frequency response when applying a

sinusoid to one of the b inputs (Figure 6.10a), as well as a low-pass chirp signal response

(Figure 6.10b). This second-order low-pass response from the higher-frequency attenuation

is consistent with the step-response dynamics (Figure 6.8).

The solution of linear equations transforms into filter design and approaches used in

control system implementations. One might be able to employ this transformation to opti-

mize for a filter transfer function using a full A relaxing other parameter constraints, often

expressed as requirements for high resonance and/or minimizing energy requirements. Gm-

C filter cascades of first-order and second-order filter components match directly to the lin-

ear equation solver with TA components (Figure 6.2b). Second-order filter sections, which

are cascaded for many filters, are equivalent to a linear equation solver. These circuits il-

lustrate wave-propagating behavior where the delay would linearly scale with the number

of components, consistent with cascades of TA elements, including unity gain devices or
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Figure 6.10: Linear equation solver characterized as a linear filter for a 4x4 FG TA con-
figuration. The A matrix was the same as in Figure 6.8b. (a) Frequency response from
input (b) to the output (x) vectors. (b) The output response of a linear equation solver for a
chirp input (b), shows an expected response of a second-order low-pass filter as in (a). The
chirp input sweeps from 1Hz to 20kHz over a time duration of 10ms as a 20mV sinusoidal
offset around 1.25V. The output response shows the attenuation of the higher frequencies
corresponding to a first-order low-pass filter.

cochlear models (e.g. [31]).

6.6 Computational Efficiencies of Linear Equation Solvers

This discussion focuses on the architectural tradeoffs and efficiencies for analog solutions

of (6.2) as well as some digital alternatives. If the application comes from a directly solv-

able physical system (e.g. PDE computations), one would use those more natural tech-
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Table 6.1: Computational Efficiency for m = 16, VL = 1V, and Vdd = 2.5V

Freq Power Comp Eff SNR
(f) / node MMAC(/s)/µW (power)

Ibias ∝ Ibias
2πCVL

2m2VddIbias
1

2πCVLVdd

2VLCm
q

1nA 800Hz 1.28µW 0.32 78dB
100nA 80kHz 128µW 0.32 78dB

niques for that application. Both analog and digital techniques have similar tradeoffs for

sparse computation, particularly with configurable analog capabilities [10].

Gaussian elimination can be represented as decomposing A into a Lower diagonal ma-

trix (L), and an Upper diagonal matrix (U). This technique can be useful when solutions

for multiple inputs (b) are required. Analog techniques directly solve these two matrices,

linearly propagating each of the results in a similar fashion to a digital solution for L and U,

retaining the typical improvement for an analog system over a digital system (e.g. [158]).

This analog operation could be transformed to a Vector-Matrix Multiplication (VMM).

One might digitally decompose a single A into L and U and further download them into

the analog solver for continuous analog processing.

The computational efficiencies between digital and analog solvers is shown, in a sim-

ilar way to VMM comparisons [157]. Since each TA effectively computes a Multiply-

ACcumulate (MAC) operation in addition to ODE integration, we compare the MAC oper-

ations at a given frequency. Table 6.1 shows this model assuming an average Ibias over the

m values on a row or column, and C is the single element total capacitance (C = 200fF).

Analog techniques to solving linear equations do have computational energy efficiency

improvements compared with digital techniques, although not quite the 1000× advantages

over digital computation in this configurable platform. The TAs in this configurable frame-

work have higher capacitance than other algorithms, such as VMM computations [158].

A scaled down FPAA device, an optimized FPAA device, or a custom IC implementa-

tion would result in substantially smaller capacitances and similar VMM efficiencies. In

a custom solution, a TA could be built using a single FG device. One would have similar
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Figure 6.11: Linear equation solution comparison (n × n matrix) between analog versus
digital approaches at 350nm CMOS and projected 40nm CMOS both in area and in average
power consumption. The area improvement between analog approaches at 350nm and at
projected 40nm CMOS is 167× the digital approach in the same process, while the power
also scales correspondingly.

VMM crossbar computational efficiencies, preserving the 1000× factor for analog compu-

tation compared to the digital efficiency wall of 40MMAC(/s)/mW (16bit registers) [156],

to obtain similar numerical results for analog computations [134].

These analyses allow a comparison between a custom analog and a custom digital solu-

tion at 350nm CMOS, as we have measured components in this process as well as extrapo-

late for 40nm CMOS [165], showing roughly a 100× area improvement and 350× energy

efficiency improvement (Figure 6.11).

Many linear equation formulations are transformations of linear sets of ODEs or PDEs,

transforming the two dimensional space into a one-dimensional vector, enabling these so-

lutions for digital computation. Solving this linear set of equations, either in whole or in

blocks, by analog circuits seems highly inefficient, although such viewpoints are some-

times considered (e.g. [154, 155]). The physics behind solving linear systems may be

useful for other ODE solutions, and these techniques should be used for those ODE appli-
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cations where applicable.

6.7 Summary and Discussion

The chapter discussed solving systems of linear equations using analog computation, trans-

forming the linear system solution to a set of ODEs. The technique is related to iterative

digital methods for solving linear equations. These approaches extend the energy efficient

properties of analog computing initially shown for vector-matrix multiplication to solutions

of linear systems, where the vector-matrix multiplication happens through arrays of TAs.

The dynamics and convergences are studied for different matrices, through experimen-

tal measurements of the matrix output solutions from hardware. Analog solutions of lin-

ear systems typically is among the most challenging algorithm for analog computation.

Hence, finding analog algorithmic solutions for linear systems opens up an entire range of

high-performance analog computing. This approach allows for the solution of any positive

definite A matrix through the use of TA devices, and not limited as in resistive coupling

networks.

These techniques could be extended towards building a canonical nonlinear function

solver by mixing different types of transconductance amplifiers (e.g. built on an FPAA).

Different TA circuits result in different even and odd nonlinearities, allowing the direct im-

plementation of second and third-order normal forms within a similar architectural frame-

work. Considering such nonlinearities expands solution spaces to include oscillatory sys-

tems. This capability would further enable compilation and synthesis of nonlinear ODEs

in experimental hardware, as well as a framework for further theoretical development of

applications with nonlinear functions.
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CHAPTER 7

DISCUSSION AND CONCLUDING REMARKS

The objective of the research is to demonstrate energy-efficient computation on a config-

urable platform, an FPAA, by leveraging analog strengths, along with our development of

a framework, to enable real-time systems on hardware. This work demonstrates the de-

sign of fundamental blocks like Hodgkin Huxley neurons and synapses, for building up

synfire chains and WTA circuits. To enable this computation and scale up from these mod-

ules, methods to address component variations have been demonstrated through our frame-

work. Other applications such as the solution of linear systems of equations have also been

demonstrated on hardware. By leveraging the strengths of silicon, these techniques provide

several opportunities towards building energy-efficient systems.

7.1 Research Summary

Chapter 2 presented experimental silicon results on the dynamics of a Hodgkin-Huxley

neuron, inspired by the similarity between biology and silicon, by modeling ion channels

and their time constants. Further, action potential dynamics consisting of spiking responses

from different inputs and with different parameters was shown.

Chapter 3 described a simulator to model fundamental components like the transistors,

amplifiers and FG devices based on the EKV model. Systems including continuous-time

filters and the analog front-end of a speech processing system have been built from these

basic components to demonstrate a close agreement between the simulated results and the

experimental measurements. Further, it also introduced models for simulating various ana-

log circuits at different temperatures.

Chapter 4 described neuronal responses through excitatory and inhibitory synapses to

observe post synaptic potentials from transistor channel neuron models. Further, the mod-
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els have been used to build spiking networks such as synfire chains and WTA functions.

Chapter 5 focused on the tuning algorithm for setting the weights on VMM as well as

to producing levels of voltage near the power supply rails to the source-driven VMMs, by

application of a wide range of input levels. Constraints during the design and implemen-

tation process, accounting for device mismatch were discussed. Further, an application of

this algorithm was demonstrated through a set of programmable bandpass filters with the

tuned VMM.

Chapter 6 addressed a programmable linear equation solver. A set of differential equa-

tions using transconductance devices directly translated from circuit theory converges to

the linear equation solution. These energy-efficient analog techniques are experimentally

demonstrated through a set of TA based networks.

7.2 List of Contributions

• Macromodeling and design of a level=2 simulator: I designed a simulator to

model circuit level elements, primarily CAB components and FG devices, and fur-

ther, showed a close overlap between the simulated results and experimental data for

the front-end of a speech processing system. This work was published in the JAICSP

journal [15] and the ISCAS conference [166, 167].

• Modeling temperature dependence for level=2 models: The EKV models and sim-

ulator I developed were used to characterize behaviour over a range of temperatures.

This was done in collaboration with Sahil Shah and Hakan Toreyin and the work

resulted in publications in TVLSI [84] and JLPEA [132] journals.

• Abstraction of analog systems: The design of library blocks and abstraction of

elements in the tool infrastructure were collaboratively done with Sahil Shah and

Sihwan Kim. This work was published in the JLPEA journal [16] and WOSET

workshop [168].
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• Hodgkin Huxley neuron on FPAA: I designed a transistor channel based HH neuron

model, adapted from the classical structure [20] and implemented in one CAB on the

FPAA. I demonstrated the replicability of the spiking of HH Neurons through exper-

imental measurements across three chips. This work was published in the TBIOCAS

[88] journal and the ISCAS conference [102].

• Programmable filters and built-in self-test for VMM: I conducted experiments on

chip for a BIST algorithm for a 6x2 VMM, along with the MITE interface circuitry.

I used this algorithm to demonstrate a set of programmable filters with a VMM. This

work was published in the ISCAS conference [169].

• Analog solutions of linear systems of equations: I did experimental measurements

for different transconductance amplifier-based networks with various matrices and

inputs to solve a linear system of equations on chip. This work was published in the

ISCAS conference [170] and the TCAS-I journal [171].

• Implementation of synapses with neurons: I designed synaptic clefts through ramp

generators to produce post-synaptic potentials for excitatory and inhibitory synapses.

I built upon this neuron and synapse model to build spiking networks. This work was

published in ISCAS [172].

• RASP 3.1: The design and fabrication of the next generation of the FPAAs in 130nm

was done in collaboration with Sahil Shah and Sihwan Kim. Experimental measure-

ments and testing has not been done.

• Design and layout of FG test structures in 14nm: The design and layout of the FG

test cells was done in a 14nm FinFET process to characterise FG cells in a scaled

down process as well as develop a standard cell library of blocks. Experimental

measurements and testing has not been done.
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Figure 7.1: A current sweep experiment is performed for a pFET across the 14 CABs. To
understand the variation across CABs, we show the characterization of this device sweeping
the gate voltage. (a) The Circuit block for the experiment is shown. The gate voltage is
swept and the drain voltage is at Vdd for the pFET in each CAB. The drain current is
measured. (b) The drain current limit and it’s variation is plotted corresponding to the
current when gate voltage is 0V. (c) κ and Io are extracted from the slope and the variation
is plotted across CABs.

7.3 Issues to notice through experimental observations

A number of methods to compensate for variations has been discussed in prior chapters.

Further experiments have been performed to analyse issues concerning variations as we

build on our modules to form more complex systems. We can exploit programmability to

compensate for these issues.

The resistive drop due to the routing across different CABs was measured to analyse

the conductance of the switches as well as to ensure that the local supply voltage to each

CAB is not shifting. A current sweep experiment is performed for a pFET across the 14

CABs. The variation of the drain current against the gate voltage is shown in Figure 7.1(a).

A shift register is used to scan the drains to be measured. For the high current limit curve

in Figure 7.1(b), the maximum current is decreasing with the position of the transistor

on the CAB. This is because the conductance of the switches or pFETs are limiting the

transistor curve, likely moving the effective drain voltage higher towards Vdd. The response

is monotonic as expected with a constant increase in switches. Threshold voltage mismatch

can be observed from the Io extrapolated in Figure 7.1(c) as well as a small variation in κ

121



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

Input Voltage (V)

G
ai

n
 (

d
V

o
u

t /
 d

V
in

 )

10MOhm

1MOhm

110KOhm

11KOhm

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Input Voltage (V)

M
ea

su
re

d
 O

u
tp

u
t 

V
o

lt
ag

e 
(V

)

10MOhm

1MOhm

110KOhm

11KOhm

Figure 7.2: The conductance of switches is analysed and the transfer of function of output
voltage against input voltage is plotted with different load resistances. The slope of the
output voltage against the input voltage is plotted to analyse the gains and the resistance is
observed as a function of the input voltage.

mismatch. From this experiment, the local Vdd seems to be roughly the same for all curves,

thereby not changing drastically across the CABs.

Another significant experiment is performed to study the conductance of switches; out-

put voltage is plotted against input voltage in Figure 7.2 for different load resistances. The

resulting resistance has been measured for ten switches. The slope of the gains are fairly

reasonable beyond 1V as expected. For input voltages around 500mV, the gain is greater

than 1 in some cases for the set of passive elements of switches that are effectively making

a voltage divider with the respective load resistances.

From the experiments, it is apparent that one must be cautious while taking measure-
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ments near the power supply Vdd or ground. The choice of buffers or shift registers should

also be considered when one observes offsets while measuring in different CABs. Hence,

it remains a key requirement to tune the analog cells on the fabric with systematic charac-

terization and calibration procedures. This will reduce the errors in analog computation as

well as make sure that mismatch does not become a limiting factor. Further, these ques-

tions of mismatch bottlenecks become more important as we start scaling down for better

performance metrics.

7.4 Scaling, Design and Layout of Floating-Gate Test Structures in 14nm

Previous approaches show FG functionality and characterization that is consistent from

2µm through 40nm CMOS (e.g. [165]). Scaling FG devices enables building dense, com-

pact systems as well as offering higher frequency response and energy efficiency. It is

important to test and characterize the FG devices at 14nm to study scalability as well as

take steps towards developing a programmable standard cell library [173]. These standard

cells will enable automation of the analog IC layout process. Programmable analog IC au-

tomation can drastically decrease time, cost, and design uncertainty similar to the impact

of digital IC automation. Hence, this discussion shows a set of test structures and resulting

tests that fully characterize FG devices for typical FG programming approaches (e.g. [44])

as well as lay the foundation for a standard cell library in 14nm.

The focus is developing working structures that give clear insight on developing dense

14nm FG structures, as well as enable characterization of FG electron tunneling and hot-

electron injection [44]. We have used MOSFETs with the larger insulator devices, devices

often used for external I/O interfaces. Each FG is a continuous poly Si with no contacts.

One approach to achieving such a cell is having a single strip of vertical polysilicon going

through each of the devices (Figure 7.3). All of the characterization nFETs and pFETs

are the same size, where the constraints come from layout and not physics. Test structures

are designed assuming pFET injection, with corresponding structures to test nFET injec-

123



Figure 7.3: Visualizing 14nm layout of a FG pFET test device. Continuous FG is de-
veloped by continuous polysilicon or connecting layer. Input capacitor is designed to be
significantly larger than the tunneling capacitor. Hence, the tunneling capacitor has a two
fin thick insulator. The actual cell is rotated by 90 degrees so the polysillicon gate is a
vertical bar.

tion. Further, multiple transistors are located on a FG node to measure the injection circuit

concepts, as well as place nFET devices in places that could enable injection when testing

for these options. Understanding and characterizing the capacitors to couple into the FG

node fully describes the potential FG devices. In this 14nm process, MOS capacitors built

from MOSFET transistors with n+ junction and an n-substrate and non-selected polysilicon

contact layer to polysilicon are the two potential polysilicon capacitors. The first capacitor

potentially has non-linear MOS capacitance effects where the second capacitor is a linear

capacitor. The MOS capacitors, whether nFET or pFET based structures, are designed to

be on separate strips that intersect the FG polysilicon line. The core test structure includes

these different capacitance options ( Figure 7.3), to test building dense structures.

The tunneling junction capacitor is a pFET-based MOS capacitor with the source, drain,

and well terminals tied together. The spacing of this device would need additional spacing

to ensure no breakdowns, due to the larger voltage used to induce electron tunneling. Since

the tunneling capacitor is smaller than the input capacitor, it has a two finger thick insulator
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Figure 7.4: Top level structure for experimentally measuring the 14nm test cells. The test
structures include instrumented pFET and nFET transistors for hot-electron injection, a
single pFET device for impact-ionization characterization, and an instrumented test struc-
ture with a high-gain transistor amplifier to integrate FG currents. All transistors use thick
insulator options to potentially enable long-term lifetimes. The top level has been designed
to have 30 pins.

while the input capacitor has four or eight fingers.

The core structure includes an instrumented FG device, as well as a device with the FG

also connected directly to the gate of an integrating amplifier structure ( Figure 7.5). The

high-gain transistor amplifier integrates the FG currents, enabling a direct measurement of

FG currents in a static structure without requiring an ammeter. The vertical gate contin-
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Figure 7.5: Design of the transconductance amplifier for the instrumented FG structure.
The transconductance amplifier is designed with transistors with longer L to enable ampli-
fier gain. For the integrating amplifier, an additional capacitor is connected between the
FG node and the amplifier output node for a direct measurement of FG currents without
requiring an ammeter.

ues through to the nFET of the one input differential pair. One would have an additional

capacitor between the FG node and the amplifier output node that does not contact the

polysilicon node. The amplifier structure fixes the FG node while measuring low currents

through a current integrator structure. The instrumented amplifier is a 9-transistor differ-

ential transconductance amplifier (TA). The nFET differential pair has one input from the

floating gate, and as a result, they have longer transistor lengths to ensure sufficient gain.

The topology can be modified depending on the particular process constraints (e.g. thresh-

old voltage mismatch issues). Each transistor tends to utilize large insulator devices as the

characterization voltages are higher than standard CMOS values for the process. Further,

the characterization cell has been designed with different capacitors built out of nFETs and

pFETs for the tunneling junction. The FG characterization structure is implemented in a

single 30pin slice that is embedded in a larger test structure ( Figure 7.4). GND is the

one pin shared with the outside structure. The FG characterization power supply, Vinj , is

a separate Vdd pin. Often, this Vdd voltage must be higher than typical CMOS Vdd to be

enough for channel current, impact-ionization current, and hot-electron injection current

characterization, often pushing devices near or beyond breakdown levels of other CMOS
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Figure 7.6: The layouts of all the primary FG cells are shown. (a) A basic 2x1 9-transistor
TA with signal bias and non-FG inputs is shown. (b) A non-FG 2x1 TA block with no FG
inputs and FG bias at the current source is shown. (c) A 2x1 TA block with low coupling
and high-linearity FG inputs is shown. (d) The core FG characterization structure with dif-
ferent capacitors and the instrumentation amplifier is shown, with pins terminated out for
characterization. (e) A 2x2 FG switch cell has been designed to analyse the crossbar struc-
ture. The FG elements have some I/O pins used to directly characterize sample crossbar
elements externally.

structures. The high-gain transistor amplifier is the only circuit to use Vdd other than the

protection diodes on the I/O pins. The layout structure conforms to the regular polysilicon

grid even when including the amplifier components ( Figure 7.5). We have a tunneling

junction pin that requires significantly higher voltages and different protection structures.

Two tunneling junction pins are reserved for the nFET-based MOS capacitors and the nwell

based capacitors. All the tunneling lines are shared between the characterization structure

and other devices. The substrate and well contacts are provided in the area outside of the

cells. The signal multiplexers and decoders have been designed to provide the gate select

signals to the FG cells as well as read the outputs from the TAs and crossbar cells in the

test structure.
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Table 7.1: The different cells designed in 14nm CMOS and their cell sizes.

Cell type Cell name Cell Variations
Cell
Pitch
(µm)

Cell
Size
(µm)

Transconductance
Amplifiers (TA)

2x1NonFG TA
2TA, FG bias,
no FG inputs,
MOScaps

7.247 1.161

2x1FG TA
2TA, FG bias,
no FG inputs,
MOScaps

11.807 1.161

2x1NonFG TA nwell
2TA, FG bias,
no FG inputs,
nwell-caps

7.247 1.161

2x1FG TA nwell
2TA, FG bias,
no FG inputs,
nwell-caps

11.807 1.161

2TA vbias
2TA, signal bias,
no FG inputs 4.372 1.161

FG switch
fgswc2x2 MOScap

2x2 cell,
MOScaps 5.622 1.12

fgswc2x2 nwell
2x2 cell,
nwell-caps 5.622 1.12

FG Characterization Fgchar
Characterization,
different caps 10.195 0.717

The schematics and layouts have been designed in the non-planar bulk 14nm FinFET

process ( Figure 7.6). All the FG cells have been designed with different variations on

the capacitors. There are primarily two types, consisting of MOS capacitors or nwell ca-

pacitors. A basic 2x1 9-transistor TA with signal bias and non-FG inputs is shown in

Figure 7.6(a). Figure 7.6(b) shows a non-FG 2x1 TA block with no FG inputs while the

2x1 TA block with low coupling and high-linearity FG inputs is shown in Figure 7.6(c),

where both have FG biases at the current source to the TA. Figure 7.6(d) shows the core

FG characterization structure with different capacitors and the instrumentation amplifier,

with pins terminated out for characterization. A 2x2 FG switch cell has been designed to

analyse the crossbar structure (Figure 7.6(e)). The FG elements have some I/O pins used

to directly characterize sample crossbar elements externally.

The objective is to build a standard cell library of core FG cells in the 14nm CMOS

FinFET process; their cell pitches and sizes are shown in Table 7.1. An initial design with
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the standard layout rules has been done for a first set of measurements. Tight SRAM rules

would significantly decrease the pitch and width dimensions (2×) for the 14nm cells, and

an SOI based process would eliminate the well spacing between devices.

A resistive structure made from polysilicon is used to protect a tunneling junction, espe-

cially during packaging, and to minimize the resulting device current for instrumentation.

The source and drain terminals are protected through reverse-bias diode protection to Vdd

and GND, which would include MOS capacitors (other than the tunneling capacitor) and

other capacitor structures. We have also laid out one pFET with its well terminal brought

out to a pin in this group, to directly measure the impact ionization current from the device

and correlate with hot electron injection properties. On the top level, the chip is integrated

with the IO pads in a ring-like structure, and all the other pins from the chip are connected

to ESD structures on the external IO pads, which would then be either wire-bonded or flip

chipped onto a PCB.

The design of FG cells in 14nm, thus, initiates efforts to experimentally test and char-

acterize the FG structures at scaled down IC technology nodes, to understand device prop-

erties, and provide opportunities to build dense arrays of configurable FG based systems.

They act as a fundamental group of core blocks for a standard cell analog library in 14nm,

to enable IC automation at lower technology nodes as well.

Looking forward, the work presented in this dissertation launches one into a space, of-

fering diverse opportunities for energy-efficient computing. The analog and neuromorphic

systems facilitate the creation of the next generation of systems that will enable low-power

embedded computing.
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