
DEEP-LEARNING-ENHANCED MULTIPHYSICS FLOW
COMPUTATIONS FOR PROPULSION APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

By

Petro Junior Milan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2021

Copyright © Petro Junior Milan 2021

DEEP-LEARNING-ENHANCED MULTIPHYSICS FLOW
COMPUTATIONS FOR PROPULSION APPLICATIONS

Approved by:

Prof. Vigor Yang, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Joseph C. Oefelein
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Edmond Chow
School of Computational Science
and Engineering
Georgia Institute of Technology

Prof. Jean-Pierre Hickey
Department of Mechanical and
Mechatronics Engineering
University of Waterloo

Dr. Gina M. Magnotti
Energy Systems Division
Argonne National Laboratory

Date Approved: Nov. 17, 2021

To my parents and late grandparents

PREFACE

This dissertation was submitted to the Academic Faculty at the Georgia Institute
of Technology (GT), as partial fulfillment of the requirements for the Ph.D. degree.
The underlying work of the thesis was carried out at the School of Aerospace Engi-
neering at GT during the period August 2018 to October 2021, and at the Energy
Systems (ES) Division at the Argonne National Laboratory (ANL) during the period
January to August 2020.

At GT, the work was supervised by Prof. Vigor Yang, to whom I express my
sincere appreciation and gratitude for his continuous advice and guidance, wealth of
knowledge, and the tremendous support and opportunities he provided throughout
my doctoral study. It has been a privilege as well as an inspiring and memorable
experience to work with him. During my time in his group (“our” group, as he tells
his students), I have not only grown as a researcher but also as a person, and the
things I learned from him will stay with me for the rest of my life. I thank him for
his trust in me and for giving me the flexibility to work on research projects that
interest me. This is the first thesis in our group that deals with deep learning and its
application to computational fluid dynamics. While progress has been made, there is
still much work to be done in this area, and I hope that future students will follow
this direction of research and expand the work.

At ANL, the work was managed by Dr. Gina M. Magnotti and Dr. Roberto Torelli
from ES and by Dr. Bethany Lusch from the Argonne Leadership Computing Facility
(ALCF), whom I sincerely thank for their mentorship, as well as for many invaluable
discussions, and support and collaboration, which significantly impacted this thesis.
I learned a lot about multiphase flow modeling and simulation and diesel engine
design by working closely with Gina and Roberto, and about deep learning and high
performance computing by working closely with Bethany. Moreover, I would like to
thank Dr. Romit Maulik from ALCF for his collaboration and insightful discussions.
Also, thanks to Dr. Sibendu Som, group manager of the Multi-Physics Computational
Research Section at ES, as well as to the rest of my colleagues in the group for their
kind help and support during my internship.

Furthermore, I would like to give special thanks to Prof. Jean-Pierre Hickey from
the University of Waterloo (Canada) for giving me the opportunity to work with
him on collaborative projects, as well as for his advice and technical support, and
for many invaluable discussions throughout the period of this thesis. I also would
like to thank the committee members, Prof. Joseph Oefelein, Prof. Edmond Chow,
Prof. Jean-Pierre Hickey, and Dr. Gina M. Magnotti, for their time and invaluable
input to improve the quality of this work.

In addition, I would like to acknowledge Dr. Xingjian Wang and Dr. Yixing Li
from our group at GT for their technical support and fruitful discussions on the
simulation and modeling of liquid-propellant rocket injector flows. I also would like
to thank the rest of my colleagues and friends in the group, in particular Bichuan,
Haoxiang, Umesh, and Weiming, for interesting discussions, both regarding research
and not, and for a pleasant environment for work and study.

I would like to take the opportunity here to sincerely thank my undergraduate

iii

research advisor at Polytechnique Montreal (Canada), Prof. Huu Duc Vo, who has
been a constant source of support and advice over the years.

This work was performed using computing resources and services provided by
the Partnership for an Advanced Computing Environment (PACE) at GT, by the
Laboratory Computing Resource Center (LCRC) at ANL, and by ALCF, also at ANL.
ALCF is a U.S. Department of Energy (DOE) Office of Science User Facility supported
under Contract DE-AC02-06CH11357. I also would like to thank Convergent Science
for providing CONVERGE licenses and technical support for part of this work.

Financial support for the research carried out at GT was provided by the U.S. Air
Force Office of Scientific Research (AFOSR) under Grant No. FA9550-18-1-0216, by
the Natural Sciences and Engineering Research Council of Canada (NSERC) under
a Post-Graduate Scholarship D, and by the Aerospace Engineering Graduate Fellows
Program at GT. The research carried out at ANL was funded by the U.S. DOE under
contract LDRD Prime 2020-0094. Any subjective views or opinions that might be
expressed in this dissertation do not necessarily represent the views of the sponsoring
agencies.

This acknowledgement would be incomplete without the expression of my deepest
appreciation and gratitude to my family and close friends. I particularly thank my
grandparents, aunts, uncles, and cousins for their support and encouragement over
the years. Finally, and most importantly, thanks to my parents and my two brothers,
for their endless love, care, and support.

Petro Junior Milan
Atlanta, GA

October 23, 2021

iv

TABLE OF CONTENTS

Preface . iii

List of Tables . x

List of Figures . xv

Summary . xxiii

Abbreviations . xxiv

Mathematical Notation . xxvii

1 Introduction . 1
1.1 Context and Motivation . 1
1.2 Aim and Objectives of this Work . 5
1.3 Outline . 7

I Fundamental Background, Tools, and Techniques 10

2 Approximation Methods and Deep Learning 12
2.1 Taxonomy of Surrogate Models . 12

2.1.1 Classification based on Mathematical Structure 12
2.1.1.1 Data-Fit Models . 13
2.1.1.2 Reduced-Order Models 14
2.1.1.3 Hierarchical Models 14

2.1.2 Data-Driven vs. Physics-Informed Deep Learning 14
2.2 Neural Network Architectures . 15

2.2.1 What is Deep Learning? . 15
2.2.2 Artificial Neuron and Dense Layer 16
2.2.3 Deep Feedforward Neural Networks 17
2.2.4 Convolutional Neural Networks 18
2.2.5 Autoencoders . 20

2.2.5.1 Fully-Connected Autoencoders 21
2.2.5.2 Convolutional Neural Network Autoencoders 22

2.2.6 Advanced Models . 23
2.2.7 Importance of Nonlinear Activation Functions 24

v

2.3 Practical Considerations for Training Neural Networks 24
2.3.1 Backpropagation . 24
2.3.2 Underfitting and Overfitting 27
2.3.3 Regularization . 28

2.3.3.1 L1 and L2 Regularization Methods 28
2.3.3.2 Early Stopping . 29

2.3.4 Data Validation Techniques 30
2.3.4.1 Hold-Out Method 30
2.3.4.2 Cross-Validation . 31

2.3.5 Setup and Initialization Issues 31
2.3.5.1 Data Preprocessing 31
2.3.5.2 Parameter Initialization 32
2.3.5.3 Hyperparameter Tuning 33

2.3.6 Gradient-Based Optimization Strategies 34
2.3.7 GPU Acceleration . 37
2.3.8 Error Metrics . 38
2.3.9 Machine Learning Libraries 39

3 Computational Fluid Dynamics . 41
3.1 Governing Equations . 41
3.2 Turbulence and its Modeling . 44
3.3 Large Eddy Simulation . 45

3.3.1 Filtering Operator . 45
3.3.2 Favre-Filtered Governing Equations 47
3.3.3 Closure for SGS terms . 49

3.4 Finite-Volume Method . 50
3.4.1 Compact Forms . 50
3.4.2 Approximation of Volume and Surface Integrals 53

3.5 CFD Solvers . 54

4 Fuel Injection Phenomena and Modeling Practices 55
4.1 Engine Classification . 55
4.2 Fluid State Physics . 56
4.3 Diesel Engines . 57

4.3.1 Engine Components and Operating Cycles 57
4.3.2 Types of Diesel Engines . 58
4.3.3 Fuel Injector Nozzles . 59
4.3.4 Liquid Jet Behavior . 60

4.3.4.1 Subcritical chamber pressures 60
4.3.4.2 Supercritical chamber pressures 61

4.3.5 Cavitation in Fuel Injector Nozzles 62
4.3.6 Multiphase Modeling of Internal Nozzle Flow 64
4.3.7 Spray Modeling . 65

4.4 Injection in Liquid-Propellant Rocket Engines 66
4.4.1 Engine Components and Principle of Operation 66

vi

4.4.2 Types of Liquid-Propellant Rocket Engines and Power Cycles 66
4.4.3 Injectors . 67
4.4.4 Flow Injection Behavior and Modeling 69

II Research Projects 70

5 Accelerating the Convergence of Real-Fluid Simulations using Deep
Neural Networks . 72
5.1 Abstract . 72
5.2 Introduction and Literature Review 73
5.3 Real-Fluid Properties and Numerical Framework 77

5.3.1 Real-Fluid Properties . 77
5.3.2 Numerical Framework . 78

5.3.2.1 PMBFS (Parallel Multi-Block Flow Solver) 78
5.3.2.2 One-D ThermoCode 81

5.4 DFNN-BC Model Specification . 82
5.4.1 Overview of Deep Neural Networks 83
5.4.2 Application to Real-Fluid Properties 83
5.4.3 Boundary Information . 84
5.4.4 Canonical Example 1: Zero-Dimensional Thermodynamics . . 85
5.4.5 Canonical Example 2: Zero-Dimensional Thermodynamics . . 85
5.4.6 Integration in Flow Solvers . 89

5.5 Swirl Rocket Injector at Supercritical Conditions 91
5.5.1 Geometry and Computational Setup 91
5.5.2 Neural Network Design . 92
5.5.3 Evaluation of the Coupled DFNN-BC and LES Approach . . . 94

5.5.3.1 Instantaneous Flowfield 94
5.5.3.2 Time-Averaged Flowfield 96

5.5.4 Computational Cost . 97
5.6 Counterflow Diffusion Flame . 100

5.6.1 Computational Setup . 100
5.6.2 Neural Network Design . 100
5.6.3 Evaluation of the Integrated DFNN-BC and CFD Approach . 101
5.6.4 Computational Cost . 101

5.7 Summary . 102
List of Main Symbols . 103

6 Data-Driven Deep Learning Emulators for Parametric and Effi-
cient Prediction of Fluid Flow Problems 106
6.1 Abstract . 106
6.2 Introduction and Related Work . 107
6.3 Deep Learning Emulators . 109

6.3.1 Overview of the Emulator Models 109
6.3.2 Constituent Parts . 110

vii

6.3.2.1 Fully-Connected Autoencoder 110
6.3.2.2 Convolutional Neural Network Autoencoder 111
6.3.2.3 Regressor for Latent Space 112

6.3.3 Training and Prediction Procedures 112
6.4 One-Dimensional Viscous Burgers Equation 114

6.4.1 Full-Order Model . 114
6.4.2 Design of Experiments . 115
6.4.3 Compressed Representations 116
6.4.4 Emulated Flowfields . 121
6.4.5 Computational Cost . 125

6.5 Two-Dimensional Advection-Diffusion-Reaction Equation 125
6.5.1 Full-Order Model . 125
6.5.2 Design of Experiments . 127
6.5.3 Compressed Representations 130
6.5.4 Emulated Flowfields . 136
6.5.5 Computational Cost . 138
6.5.6 Sensitivity Analysis . 141

6.6 Summary . 144
List of Main Symbols . 144

7 Learning Spatiotemporal Injection Maps using a Data-Driven Em-
ulator for Rapid Diesel Engine Design 147
7.1 Abstract . 147
7.2 Introduction and Literature Review 148
7.3 Internal Flow Simulation and Emulation 152

7.3.1 Simulation Framework . 152
7.3.1.1 Injector Configuration and Operating Conditions . . 152
7.3.1.2 Design of Experiments 153
7.3.1.3 Computational Model Setup 155

7.3.2 Emulator Framework . 158
7.3.2.1 Autoencoder . 158
7.3.2.2 Regression Model . 159

7.3.3 Results and Discussion . 160
7.3.3.1 Mesh Analysis . 160
7.3.3.2 Internal Flow Dynamics and Sensitivity to the Input

Parameters . 160
7.3.3.3 Comparison between POD and Autoencoders 166
7.3.3.4 Compressed Representations 175
7.3.3.5 Emulated Flowfields 176
7.3.3.6 Computational Cost 179

7.4 One-Way Coupled Spray Simulation 182
7.4.1 Reacting Spray Modeling Approach 182
7.4.2 Results and Brief Discussion 183

7.5 Summary . 184
List of Main Symbols . 185

viii

III Conclusions 188

8 Summary and Future Work . 190
8.1 Summary of Results . 190
8.2 Major Contributions . 191
8.3 Recommendations for Future Work 193

A Proper Orthogonal Decomposition 197
A.1 Singular Value Decomposition . 197
A.2 Eigenvalue Decomposition . 198
A.3 Relationships Between the Two Modal Decompositions 199

B Proof of the Four Fundamental Equations of Backpropagation . . 200

C Thermodynamic Relations based on the SRK EOS 202
C.1 Mixing Rules . 202
C.2 Internal Energy, Enthalpy, Specific Heats, and Speed of Sound 202
C.3 Partial Derivatives . 203
C.4 Preconditioning Terms . 204

D Parametric Analysis for Neural Network Design for 0D Thermo-
dynamic Example . 205

E DoE Studies for A-M1 Injector Problem 207
E.1 Description of Cases from the DoE Study S60 207
E.2 Description of Cases from the DoE Study S36 209

References . 233

Vita . 234

ix

LIST OF TABLES

2.1 Frequently used activation functions. 24

2.2 Comparison of training time of autoencoders between one CPU and one
GPU using the Keras API of Tensorflow 2.4 for various problems
considered in this thesis. 38

3.1 List of CFD solvers employed in this thesis. The symbol “♮” refers to
codes written from scratch in this work. 54

4.1 Critical properties (pc, Tc and vc) and acentric factor w for the major
chemical species considered in this study. 57

5.1 Studies on approximation methods for accelerated evaluation of non-
ideal thermophysical properties in numerical simulation of real-fluid
flows. Here, ni refers to the number of inputs in the approximation
method, and N represents the number of species in the system under
consideration. 76

5.2 Parameters of cubic equations of state 77

5.3 Output variables in Steps 4–6 of Algorithm 2. 80

5.4 Output variables of Steps 3-5 of Algorithm 3. 82

5.5 Comparison of DFNN and expected solutions at interior and boundary
points. 88

5.6 MSE losses for different numbers of boundary training data points,
Nbc. Here, “Repetition” indicates the number of times for which each
boundary point of interest (i.e., pure oxidizer and pure fuel) is repeated
in the training data. 89

x

5.7 Comparison of DFNN-BC and expected solutions at interior and bound-
ary points. 89

5.8 Injector parameters. 92

5.9 Injector flow conditions. 93

5.10 Comparison of memory requirement between DFNN-BC and tabula-
tion methods. 94

5.11 Relative errors in percentage (%) for the time-averaged radial profiles
predicted by the DFNN-BC model at different axial locations in the
injector. Results are shown for different field variables. 97

5.12 Computational time distributions of kernels per pseudo-time step. . . 98

5.13 Computational time distributions of kernels per Runge-Kutta step. . 102

6.1 1D Burgers equation. Description of the 12 cases from the DoE study. 116

6.2 1D Burgers equation. Dataset sizes used for formulating and testing
the surrogates. 116

6.3 1D Burgers equation. Network structure of the FCAE. 117

6.4 1D Burgers equation. MSE values for the autoencoders. Results are
shown over the snapshots from the training, validation, and test sets
for the velocity field. 117

6.5 1D Burgers equation. Network structure of the CAE. 119

6.6 1D Burgers equation. Number of POD modes required to capture 90%,
95% and 99% of the modal energy. 120

6.7 1D Burgers equation. Comparison of MSE values between POD, FCAE
and CAE for the reconstructed velocity field. Results are shown over
the snapshots of each case from the test set. 121

6.8 1D Burgers equation. Network structure of each regressor. 122

6.9 1D Burgers equation. MSE values for each regressor. Results are shown
over the latent vectors of velocity from the training, validation, and test
sets. 122

xi

6.10 1D Burgers equation. MSE values for the emulated velocity field for
test cases. 123

6.11 1D Burgers equation. Computational time for each step of the emula-
tion process. 125

6.12 ADR equation. Dataset sizes used for formulating and testing the
surrogates. 128

6.13 ADR equation. Network structure of the FCAEs. 130

6.14 ADR equation. MSE values for the autoencoders. Results are shown
over the snapshots from the training, validation, and test sets for the
temperature and species mass fractions fields. 131

6.15 ADR equation. Network structure of the CAEs. 132

6.16 ADR equation. Comparison of MSE values between POD, FCAE and
CAE for the reconstructed temperature and species mass fractions
fields. Results are shown over the snapshots of each case from the
test set. 133

6.17 ADR equation. Network structure of each regressor. 136

6.18 ADR equation. MSE values for each regressor. Results are shown over
the latent vectors of temperature and species mass fractions from the
training, validation, and test sets. 136

6.19 ADR equation. MSE values for the emulated temperature and species
mass fractions fields for test cases. Relative errors, in percentage, are
also indicated inside the parentheses. 138

6.20 ADR equation. Computational time in CPU-secs for each step of the
emulation process For the autoencoder training step, results are also
provided in GPU-secs. 140

6.21 ADR equation. Dependence on the choice of activation function: MSE
values for the reconstructed temperature field from the CAE. 142

6.22 ADR equation. Dependence on the number of snapshots: MSE values
for the reconstructed temperature and product mass fraction fields
from the FCAE and CAE. Results are shown over the snapshots from
the test set. 142

xii

6.23 ADR equation. Dependence on the number of snapshots: MSE val-
ues for each regressor. Results are shown over the latent vectors of
temperature and product mass fraction from the test set. 143

6.24 ADR equation. Dependence on the number of snapshots: MSE values
for the emulated temperature and product mass fraction fields from
the FCAE-R and CAE-R on each case from the test set. 143

6.25 ADR equation. Dependence on the number of cases in the DoE: MSE
values for the reconstructed temperature field from the CAE. 144

7.1 Overview of numerical studies focusing on coupled approaches for the
simulation of in-nozzle flow and exterior spray. 151

7.2 Summary of the operating condition for the A-M1 injector. 154

7.3 Design space considered in this study. For each variable, the baseline,
minimum and maximum values are indicated. Also, the fuel viscosity,
µF , is specified at 323 K. 154

7.4 Description of DoE studies and corresponding results subsections. . . 155

7.5 Number of POD modes, nr,99%, required to capture 99% of the modal
energy for selected cases from the DoE study S36. 167

7.6 Hyperparameters used for the Custom-AEs. 169

7.7 MSE values for POD, Custom-AE and Univ-AE. Results are shown
over the 81 snapshots from Cases 5, 15 and 30. For POD, results are
shown using 2 modes and 8 modes. 171

7.8 Hyperparameters used for the Univ-AE. 172

7.9 MSE values for Univ-AE on the testing set T2. Results are shown over
the 81 snapshots from Cases 31a-36a. 173

7.10 Hyperparameters used for the autoencoders. 176

7.11 MSE values for each autoencoder. Results are shown over the snap-
shots from the training, validation and test sets. 177

7.12 Hyperparameters used for the regressors. 177

xiii

7.13 MSE values for each regressor. Results are shown over the time series
from the training, validation, and test sets. 177

7.14 Relative errors for the time-averaged emulated fields for test cases. . 181

7.15 Computational time in CPU-time for each step of the emulation frame-
work. Results are also indicated in GPU-time for the autoencoder
training step. 181

8.1 Summary of DL models/frameworks developed in this study. 195

D.1 Effect of the regularization parameter on the MSE loss for training and
validation data. 205

D.2 Effect of the network architecture on the R2-score for training and
validation data. 206

E.1 Description of the 60 cases from the DoE study S60. The fuel viscosity,
µF , is specified at 323 K. 208

E.2 Dataset sizes from the DoE study S60 used for formulating and testing
the emulator and its constituents (i.e., the autoencoder and regression
model). 209

E.3 Description of the 36 cases from the DoE study S36. The fuel viscosity,
µF , is specified at 323 K. 211

E.4 Dataset sizes from the DoE study S36 used for formulating and testing
the Univ-AE. 211

xiv

LIST OF FIGURES

1.1 Iso-surfaces of azimuthal velocity at values of -70 (red), -20 (yellow) and
10 (blue) m/s obtained from 3D LES for a single-element RD-170 rocket
injector fed for GOX/kerosene system operating at p = 253 bar. Each
simulation takes about 1.2 million CPU-hours per 10 ms of simulated
time and generates about 2 TB of data [7, 8]. 2

1.2 Intersection of research areas. 4

2.1 Classification of surrogate models (note that this classification is not
exhaustive). 13

2.2 Representation of an artificial neuron model . In this schematic, x ∈ R3

(reproduced from Ref. [54]). 17

2.3 Representations of: (a) neural network with one hidden layer, and
(b) DFNN with 3 hidden layers. In this schematic, x ∈ R3 and y ∈ R2

(reproduced from Ref. [54]). 18

2.4 Example of a convolution operation between a 7 × 7 × 1 input and a
3×3×1 filter with stride of 1 and no padding. The resulting output is
of size 5× 5× 1. It is noted that no activation function nor bias term
were used in this example (reproduced from Ref. [56]). 20

2.5 Example of a max pooling operation with a window of size 3 × 3 × 1
and stride of 1 applied to a layer of size 7×7×1. The resulting output
is a layer of size 5× 5× 1 (reproduced from Ref. [56]). 21

2.6 Schematic representation of an autoencoder (image modified from Ref. [60]).
In this schematic, the input is a vector of pixels representing the digit 4. 22

2.7 Schematic representation of a CAE. 23

2.8 Hierarchical division into training, validation and test sets (adapted
from Ref. [56]). 31

xv

4.1 Classification of combustion engines. Note that this classification is
not exhaustive. 55

4.2 Schematic of the four-stroke cycle in a diesel engine (adapted from
Ref. [102]). 59

4.3 Schematic of basic diesel fuel injector nozzle. The blue zones indicate
the regions through which the fuel can flow (reproduced from Ref. [103]). 60

4.4 Schematic of fuel injection system with different spray sub-processes
for: (a) subcritical chamber pressures, and (b) supercritical chamber
pressures (reproduced from Ref. [104]). 61

4.5 Schematic illustration of cavitation formation inside a nozzle orifice
(adapted from Refs. [106, 107]). 62

4.6 ORSC cycle (reproduced from Ref. [120]). 68

4.7 (a) Schematic of main combustion chamber of RD-170 rocket engine,
which is a type of ORSC engine. (b) Cross section and zoomed-in view
of a main GCLSC injector element (reproduced from Ref. [117]). . . . 68

5.1 Comparison of DFNN and expected solutions for density (ρ), specific
heat at constant pressure (cp), pressure derivative with respect to tem-
perature (AT), and viscosity (µ). Results are shown for: (a) p = 6 MPa,
and (b) 10 MPa. 86

5.2 Regression plots of selected output variables (16 out of 27). The R2-
score on validation data is indicated for each variable. The color bars
represent the local relative error in percentage. The range of the col-
orbar is set to the min/max values of the corresponding error. All
variables are expressed in SI units. 90

5.3 Flowchart summarizing the training process of DFNN-BC and its in-
tegration in a flow solver. 91

5.4 Schematic of GCLSC injector geometry [122, 124]. 93

5.5 Temporal evolution of the density field for the baseline (left) and
DFNN-BC (right) cases. 95

5.6 Snapshots of the evolved density field at t = 16 ms for the baseline
(left) and DFNN-BC (right) cases. 96

xvi

5.7 Frequency spectra of pressure fluctuations at different positions for the
baseline (solid, black lines) and DFNN-BC (dashed, blue lines). . . . 96

5.8 Time-averaged distributions of fuel mass fraction and temperature
fields for the baseline (left) and DFNN-BC (right) cases. 98

5.9 Radial distributions of time-averaged axial velocity (a), temperature
(b), fuel mass fraction (c) and density fields (d) at different axial lo-
cations (x/R0 = 18, 20 and 25) in the injector for the baseline (solid,
black lines) and DFNN-BC (dashed, blue lines) cases. 99

5.10 Computational time distribution of the different kernels in the PMBFS
solver (left). Computational time distribution of the different compo-
nents of the property kernels (right). 99

5.11 Schematic of H2/N2/O2 counterflow diffusion flame [173]. 100

5.12 Spatial profiles of density, internal energy, temperature and mass frac-
tions of selected species for the baseline (solid, black lines) and DFNN-
BC (dashed, blue lines) cases. 101

6.1 Flowchart of building the deep learning surrogate model. 109

6.2 Schematic representation of an FCAE. 110

6.3 Schematic representation of a latent space regressor. 112

6.4 1D Burgers equation. Reconstruction of velocity field by FCAE and
CAE. Results are shown at t = 0 and 2 for Re = 250, 1000 and 1750. 118

6.5 1D Burgers equation. Variation of the captured modal energy, in per-
centage, as a function of the number of retained POD modes. Results
are shown for the test cases. 120

6.6 1D Burgers equation. POD-reconstructed flowfield. Results are shown
using 2, 5, 10 and 101 POD modes at t = 0 and 2 for Re = 250, 1000
and 1750. 121

6.7 1D Burgers equation. Temporal evolution of the components of the
latent variables from FCAE for Re = 250, 1000 and 1750. Latent
variables computed by the autoencoder (solid lines) and those predicted
by the regressor (dashed lines) are compared. 123

xvii

6.8 1D Burgers equation. Temporal evolution of the components of the
latent variables from CAE for Re = 250, 1000 and 1750. Latent vari-
ables computed by the autoencoder (solid lines) and those predicted
by the regressor (dashed lines) are compared. 123

6.9 1D Burgers equation. Instantaneous snapshots of velocity field for
Re = 250 (first column), Re = 1000 (second column), and Re = 1750
(third column). Flowfields computed by the FOM and those predicted
by the FCAE-R and CAE-R emulators are compared. 124

6.10 ADR equation. Schematic setup. 127

6.11 ADR equation. Visualization of the sample points in the parameter
domain. Training and validation cases are represented in blue circle
symbols, whereas testing cases are shown using red circle symbols. . . 128

6.12 ADR equation. Instantaneous snapshots of field variables for Case 1
(µ1 = (2.3375×1012, 5.625×103)), Case 15 (µ15 = (4.41875×1012, 9.0×
103)), and Case 25 (µ25 = (6.5 × 1012, 9.0 × 103)) at t = 0.06 s from
FOM. 129

6.13 Reconstruction of temperature field (T , units K) and distribution of
absolute error based on L2-norm in POD, FCAE and CAE at t = 0.02 s
for Case 27. The MSEs on normalized data at this time instant for
POD, FCAE and CAE are 7.406×10−4, 8.613×10−6 and 4.309×10−6,
respectively. 133

6.14 Reconstruction of fuel mass fraction field (YF) and distribution of abso-
lute error based on L2-norm in POD, FCAE and CAE at t = 0.02 s for
Case 27. The MSEs on normalized data at this time instant for POD,
FCAE and CAE are 9.922 × 10−4, 2.484 × 10−5 and 1.626 × 10−6,
respectively. 134

6.15 ADR equation. CAE-reconstructed temperature field (T , units K) for
Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows). The
MSEs on normalized data at these time instances are 1.442 × 10−6,
3.838× 10−6, 3.686× 10−6, 1.737× 10−6 and 2.426× 10−6, respectively. 135

6.16 ADR equation. Temporal evolution of the components of the latent
variables from FCAE (left) and CAE (right) for Case 27 for temper-
ature and fuel mass fraction fields. Latent variables computed by the
autoencoders (solid lines) and those predicted by the regressors (dashed
lines) are compared. 137

xviii

6.17 ADR equation. Instantaneous snapshots of temperature field (T , units K)
for Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows).
Flowfields computed by FOM and those predicted by the FCAE-R
emulator are compared. The absolute error distribution based on L2-
norm is also indicated. The MSEs on normalized data at these time
instances are 2.197 × 10−3, 4.374 × 10−5, 1.702 × 10−5, 1.205 × 10−5

and 4.837× 10−5, respectively. 139

6.18 ADR equation. Instantaneous snapshots of temperature field (T , units K)
for Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows).
Flowfields computed by FOM and those predicted by the CAE-R emu-
lator are compared. The absolute error distribution based on L2-norm
is also indicated. The MSEs on normalized data at these time in-
stances are 2.707× 10−3, 3.542× 10−5, 1.643× 10−5, 2.196× 10−6 and
1.498× 10−5, respectively. 140

6.19 ADR equation. Axial profiles of the instantaneous temperature (top)
and fuel mass fraction (bottom) fields at centerline at t = 0, 0.03 and
0.06 s for Case 27. 141

6.20 ADR equation. Radial profiles of the instantaneous temperature (top)
and fuel mass fraction (bottom) fields at x ≈ 3 mm at t = 0, 0.03 and
0.06 s for Case 27. 141

7.1 Overview of the proposed emulation framework and its application to
the A-M1 injector flow. 150

7.2 3D view of the baseline A-M1 injector. Also shown are a zoomed-in
view of the orifice and the subdomain that is used for emulation. . . . 153

7.3 Visualization of the fixed embedding strategy, shown at the centerplane
of the domain for Cases 0 and 5. The corresponding needle vertical lift
is 15 µm and 386.95 µm, respectively. 158

7.4 Schematic representation of the autoencoder. 159

7.5 Schematic representation of the regression model. 160

7.6 An example of mesh generated with two strategies on Case 13. 161

7.7 Predicted mass flow rates for different mesh strategies on Case 13. . . 161

xix

7.8 Predicted mass flow rates from baseline simulation (i.e., Case 0) and
selected cases from the DoE study S36. The needle lift for each case is
also indicated. 162

7.9 (a) 3D visualization of total gas volume fraction field and streamlines
of velocity magnitude inside the orifice (top). Also shown is the compo-
sition of the gas phase at the exit of the orifice (bottom); (b) Pressure
and axial velocity distributions along the axial direction at the bottom
of the orifice. All results shown here are obtained at t = 25 µs from
Case 0. 163

7.10 (a) 3D visualization of total gas volume fraction field and streamlines
of velocity magnitude inside the orifice (top). Also shown is the compo-
sition of the gas phase at the exit of the orifice (bottom); (b) Pressure
and axial velocity distributions along the axial direction at the bottom
of the orifice. All results shown here are obtained at t = 25 µs from
Case 13. 163

7.11 Instantaneous contours of the composition of the gas phase at the exit
of the orifice at t = 25 µs for Cases 2, 5, 10, 13, 15, 20, 24, 25, 29, 30. . . 165

7.12 The sensitivities of total gas volume fraction and fuel vapor volume
fraction at the orifice exit plane to changes in the three design param-
eters are quantified using the total sensitivity index. 166

7.13 Variation of the captured modal energy, in percentage, as a function
of the number of POD modes for the total gas volume fraction field.
Results are shown for selected cases from the DoE study S36. 167

7.14 POD-based reconstruction of total gas volume fraction field for differ-
ent numbers of modes. Results are shown at t = 25 µs from: (a) Case
10, (b) Case 15. 168

7.15 Variation of the training MSE loss with the number of iterations for
Custom-AE. Results are shown for: (a) Case 5, and (b) Case 30. . . . 170

7.16 Reconstruction of total gas volume fraction field (top) and distribution
of L2-norm error (bottom) in POD and Custom-AE at t = 25 µs for
Case 5. The MSEs at this time instant for 2-mode POD, 8-mode
POD and Custom-AE are 4.890×10−3, 3.092×10−3 and 5.688×10−5,
respectively. 170

xx

7.17 Variation of the MSE loss with the number of iterations for Univ-AE.
The non-regularized training error (Train error), non-regularized vali-
dation error (Valid error), regularized training error (Reg train error)
and regularized validation error (Reg valid error) are indicated. 172

7.18 Temporal evolution of total gas volume fraction field for Case 31a from
test set T2. Flowfields computed by CFD (referred to as “Truth") and
those reconstructed by Univ-AE are compared. The MSE value and
distribution of L2-norm error are also indicated for each snapshot. . . 173

7.19 Temporal evolution of total gas volume fraction field for Case 32a from
test set T2. Flowfields computed by CFD (referred to as “Truth") and
those reconstructed by Univ-AE are compared. The MSE value and
distribution of L2-norm error are also indicated for each snapshot. . . 174

7.20 Instantaneous snapshots of α, u, v, and w for Case 52 at t = 20.25 µs.
Flowfields computed by CFD (referred to as “Truth") and those recon-
structed by AE are compared. The distribution of L2-norm error is
also indicated for each snapshot. 176

7.21 Temporal evolution of latent variables for Case 52. Latent variables
computed by the autoencoder (solid lines) and those predicted by the
regressor (dashed lines) are compared. 178

7.22 Temporal evolution of latent variables for Case 59. Latent variables
computed by the autoencoder (solid lines) and those predicted by the
regressor (dashed lines) are compared. 179

7.23 Time-averaged contours of α, u, v and w from CFD and emulator for
Case 52. The distribution of L2-norm error is also indicated for each
field variable. 180

7.24 Time-averaged contours of α, u, v and w from CFD and emulator for
Case 59. The distribution of L2-norm error is also indicated for each
field variable. 180

7.25 Computational domain and grid refinement strategy for OWC spray
simulations (adapted from Refs. [236] and [242]). 183

7.26 Comparison between the OWC simulations using the CFD generated
field data (left) and emulated field data (right) for Case 59. Results
are shown for the temperature field at time ASOI = 0.6 ms. Radii
of the Lagrangian parcels are also indicated in each plot (Courtesy of
Gina M. Magnotti). 184

xxi

D.1 Variation of the MSE loss with the number of epochs on training data
for different activation functions. 206

D.2 Comparison of the serial running time for output generation between
the brute force approach and various DFNN models. The time indi-
cated corresponds to 1,000,000 executions of each model. 206

E.1 2D projections of the sample points from the DoE study S60. Training
and validation cases are represented in blue circles, whereas testing
cases (i.e., Cases) are shown using red triangle symbols. 207

E.2 2D projections of the sample points from the DoE study S36. Training
and validation cases are represented in blue circles, whereas testing
cases (i.e., Cases) are shown using red triangle symbols. 210

xxii

SUMMARY

Numerical simulation is a critical part of research into and development of engineering
systems. Engineers often use simulation to explore design settings both analytically
and numerically before prototypes are built and tested. Even with the most advanced
high performance computing facility, however, high-fidelity numerical simulations are
extremely costly in time and resources. For example, a survey of the design parameter
space for a single-element injector for a propulsion application (such as the RD-170
rocket engine) using the large eddy simulation technique may require several tens of
millions of CPU-hours on a major computer cluster. This is because the flowfields can
only be fully characterized by resolving a multitude of strongly coupled fluid dynamic,
thermodynamic, transport, multiphase, and combustion processes. The cost is further
increased by grid resolution requirements and by the effects of turbulence and high-
pressure phenomena, which require treatment of real-fluid physics at supercritical
conditions. If such models are used for statistical analysis or design optimization, the
total computation time and resource requirements may render the work unfeasible.

Recent developments in deep learning techniques offer the possibility of significant
advances in dealing with these challenges and significant shortening of the time-to-
solution. The general scope of this thesis research is to set the foundations for new
paradigms in modeling, simulation, and design by applying deep learning techniques
to recent developments in computational science. More specifically, the research aims
at developing an integrated suite of data-driven surrogate modeling approaches and
software for large-scale simulation problems. The techniques to be put into practice
include: (1) deep neural networks for function approximation and solver acceleration,
(2) deep autoencoders for nonlinear dimensionality reduction, and (3) spatiotemporal
emulators based on multi-level neural networks for simulator approximation and rapid
exploration of design spaces.

A hierarchy of benchmark cases has been studied to generate databases to enable
and support the development and verification of the proposed approaches. Emphasis
is placed on canonical examples, as well as on engineering problems for aerospace and
automotive applications, including supercritical turbulent flows in a rocket-engine
swirl injector, and multiphase cavitating flows in a diesel engine injector.

xxiii

ABBREVIATIONS

ADR advection-diffusion-reaction
AE autoencoder
AI artificial intelligence
ALCF Argonne Leadership Computing Facility
AMR adaptive mesh refinement
API application programming interface
ASOI time after start of injection
BC bottom-center
BNN Bayesian neural network
CAE convolutional autoencoder
CDE correlated dynamic evaluation
CFD computational fluid dynamics
CFL Courant–Friedrichs–Lewy
CIM core injection method
CNN convolutional neural network
CPU central processing unit
DDM discrete droplet method
DFNN deep feedforward neural network
DL deep learning
DMD dynamic mode decomposition
DNN deep neural network
DNS direct numerical simulation
DoE design of experiments
ECN Engine Combustion Network
EE Eulerian-Eulerian
ELSA Eulerian-Lagrangian spray atomization
EOS equation of state
EVD eigenvalue decomposition
FCAE fully-connected autoencoder
FDM finite-difference method
FEM finite-element method
FLOPS floating-point operations per second
FOM full-order model
FVM finite-volume method
GAN generative adversarial network

xxiv

GCLSC gas-centered liquid-swirl coaxial
GDI gasoline direct injection
GOX gaseous oxygen
GP Gaussian process
GPU graphics processing unit
HRM homogeneous relaxation model
HMM homogeneous mixture model
HPC high performance computing
ICE internal combustion engine
ICM interface capturing method
INRIA National Institute for Research in Digital Science and

Technology
IPC instructions per cycle
IPS instructions per second
LE Lagrangian-Eulerian
LES large eddy simulation
LOX liquid oxygen
LPRE liquid-propellant rocket engines
LSTM long-short term memory
LVF liquid volume fraction
ML machine learning
MFM multi-fluid model
MPI message passing interface
MSE mean-squared error
OWC one-way coupling
PCA principal component analysis
PDE partial differential equation
POD proper orthogonal decomposition
PR Peng-Robinson
PSD power spectral density
ORSC oxidizer-rich staged-combustion
RANS Reynolds-averaged Navier-Stokes
RB reduced-basis
RK Redlich-Kwong
RNN recurrent neural network
ROI rate-of-injection
ROM reduced-order model/modeling
RNG re-normalisation group
RPE Rayleigh-Plesset equation
SciDL scientific deep learning
SCC Spray Combustion Consortium
SGS subgrid-scale
SRK Soave-Redlich-Kwong
SSE sum of squared-error
SVD singular value decomposition

xxv

TC top-center
TFM two-fluid model
TKE turbulent kinetic energy
TPU tensor processing unit
UFPV unsteady flamelet progress variable
UQ uncertainty quantification
URANS unsteady RANS
VAE variational autoencoder
VOF volume of fluid
XPI extra-high pressure injection

xxvi

MATHEMATICAL NOTATION

This section provides a concise description of the mathematical notation used through-
out this thesis. Exceptions to this, if any, will be indicated explicitly in the text. Also,
a list of symbols is provided at the end of each chapter in Part II.

Numbers and Arrays

a (or A) a scalar
a (or 𝒜𝒜𝒜) a vector
A a matrix or tensor

Examples: t is time coordinate (scalar), T is temperature (scalar), q is heat flux
vector, 𝒬𝒬𝒬 is vector of conservative variables, W is weight matrix, and Q is a three-
dimensional tensor representing the input to a convolutional autoencoder.

Individual Component Notation

ai (or 𝒜i) element i of vector a (or 𝒜𝒜𝒜)
Aij (or Aijk) element i, j (or i, j, k) of matrix A (or tensor A)

Note that not every subscript in the text necessarily refers to a component of vector,
matrix or tensor. For instance, cp is a scalar representing the specific heat at constant
pressure.

Index Notation (or Einstein’s Summation Convention)

This is a notational convention for simplifying expressions including summations of
vectors, matrices and tensors, thus achieving brevity. We will explicitly state in the
text when the index notation is used to avoid confusion with the individual component
notation described above. The “rules” of summation convention are:

1. Each index can appear at most twice in any term.

2. Repeated indices are implicitly summed over.

3. Each term must contain identical non-repeated indices.

xxvii

For example:

ai (or 𝒜i) vector a (or 𝒜𝒜𝒜)
Aij (or Aijk) matrix A (or tensor A)
δij Kronecker delta matrix, δij = 1 for i = j, and 0 otherwise
Aii

∑
iAii (trace of S, which is a scalar)

aixi
∑

i aixi (scalar product of a and x)
∂y
∂xi

∇xy (gradient of y, which is a vector)
∂2y

∂xi∂xi

∑
i
∂2y
∂x2

i
(Laplacian of y, ∆xy, which is a scalar)

∂ai
∂xi

∑
i
∂ai
∂xi

(divergence of a, ∇x · a, which is a scalar)
∂(baiaj)

∂xj

∑
j
∂((baj)a)

∂xj
(vector)

Sets and Graphs

A (or Ω) a set
R the set of real numbers
N the set of all positive integers including 0
{0, 1, . . . , n} the set of all integers between 0 and n
[a, b] the real interval including a and b
[a, b) the real interval including a but excluding b
F a graph, object or model

Functions

f : A→ B the function f with domain A and range B
f−1 inverse function
f ◦ g composition of the functions f and g
f(x;θ) a function of x parametrized by θ (sometimes we write f(x)

and omit θ to simplify the notation)
ln x natural logarithm of x
∥a∥p Lp norm of a
∥a∥ L2 norm of a
∥A∥F Frobenius norm of A

Linear Algebra Operations

AT transpose of matrix A
A⊗B element-wise (Hadamard) product of A and B

xxviii

Calculus
dy
dx

derivative of y with respect to x
∂y
∂x

partial derivative of y with respect to x
∇xy gradient of y with respect to x
∆xy Laplacian of y with respect to x
∇x · a divergence of a with respect to x∫
f(x)dx define integral over the entire domain of x∫

A f(x)dx define integral with respect to x over the set A

xxix

CHAPTER 1
INTRODUCTION

1.1 Context and Motivation

Many contemporary problems in the physical sciences and engineering require the
simulation of complex systems involving millions of degrees of freedom. Despite im-
proved numerical solvers and the availability of high performance computing (HPC)
infrastructures, high-fidelity models still remain computationally too expensive to be
used routinely by practitioners and engineers in a design or analysis setting [1, 2,
3, 4]. Of particular interest here is the prediction of fluid flow and flame dynamics
for the design of advanced chemical propulsion and power generation systems, such
as liquid-propellant rocket engines (LPREs) and diesel engines. Since these devices
operate under high pressures and extreme conditions, special care must be taken to
describe the underlying processes that dictate system behavior.

To characterize the flowfields in these devices, we need to resolve a multitude of
strongly coupled fluid dynamic, thermodynamic, transport, multiphase, and chemical
processes to satisfy the governing equations. The problem is exacerbated by the broad
range of length and time scales over which interactions occur, due to the presence
of turbulence, and by the effects of high-pressure phenomena, which require treat-
ment of real-fluid physics at supercritical conditions [5]. Direct numerical simulations
(DNSs) or large eddy simulations (LESs) with very fine grids, long execution times,
and high memory usage are required to accurately predict these flowfields. The sim-
ulations, however, can take on the order of weeks to months to complete, especially
for full-scale practical devices, such as the RD-170 rocket injector element shown in
Fig. 1.1, and even when parallelized on modern supercomputers. This combination of
challenges significantly complicates the process of model development and scientific
discovery. Further, if such methods are used in many-query scenarios such as sta-
tistical analysis or design optimization, which often involve running the simulations
repeatedly for various configurations and design parameters, the total computation
time and resources required may render the work unfeasible.

Accelerating these complex simulations is a key challenge, as it would enable a
number of useful numerical tools to enhance scientific computation and improve the
design cycle of engineering devices. Beyond the obvious advantages of expedited, or
even real-time, decision making and control, the development of numerical methods
for fast computations would also allow for the use of entirely new approaches, and
techniques that have as yet been too complex for industrial applications [6]. Crucially,
better uncertainty quantification (UQ) would become feasible if simulation costs were
decreased substantially. Variables of interest for simulation are defined based on
inputs estimated from real-world data, even though such data suffer unavoidably

1

from noise and measurement uncertainties. In certain cases, these uncertainties can
propagate through a simulation, and the probability distributions of the variables of
interest must be quantified in order to increase confidence in the prediction [6].

Figure 1.1: Iso-surfaces of azimuthal velocity at values of -70 (red), -20 (yellow) and
10 (blue) m/s obtained from 3D LES for a single-element RD-170 rocket injector fed
for GOX/kerosene system operating at p = 253 bar. Each simulation takes about
1.2 million CPU-hours per 10 ms of simulated time and generates about 2 TB of
data [7, 8].

Surrogate modeling approaches have emerged as an important avenue toward low-
ering the computational cost of a forward computation or accelerating inference in
computationally expensive problems. A surrogate model aims to provide a simpler,
and hence faster, emulation of the output of a more complex model in function of its
input. Typically, surrogates can be classified into three categories, following Refs. [9,
10]: data-fit models, reduced-order models (ROMs), and hierarchical models (though
these categories are not mutually exclusive, and a combination is often used). Here,
the first two categories are of interest.

Data-fit models are generated using interpolation or regression to approximate
the input/output relationships of a high-fidelity model. Traditionally, polynomial-
based approximation, Gaussian processes (GPs) [11], and radial basis functions have
been used extensively. These approaches treat the forward model as a black box, and
thus require careful attention to the modeling choices and hyperparameter tuning
that determine the shape of the model [9]. These models can be effective, although
their application to high-dimensional problems and large datasets has been somewhat
limited, and few studies have demonstrated their promise [12]. Unfortunately the
associated computational cost is high, especially for GP-based models, which have a
time complexity of O(n3), with n being the size of the training set [13].

Reduced-order models are commonly derived using a projection framework to
retain the essential physics and features of their corresponding full-order models

2

(FOMs). Historically, they fall largely within two categories: (1) techniques for
projecting the governing equations onto a linear subspace of the original state us-
ing Galerkin projections [14], and (2) a posteriori methods for decomposition of the
solution of interest into a linear combination of modes using the proper orthogonal
decompostion (POD) [15] and dynamic mode decomposition (DMD) [16]. There are
challenges in applying ROM to highly nonlinear flows, because a large number of
modes are required to accurately reconstruct the flowfield [17]. The development of
efficient and reliable ROM techniques for such nonlinear systems is an active area of
research.

Recent advances in deep learning (DL) techniques, and their successful applica-
tion to high-dimensional data regression and nonlinear feature fusion in image recog-
nition/reconstruction [18, 19] and natural language processing [20], have stimulated
research on DL-based surrogate modeling for high-dimensional nonlinear systems.
DL, a subfield of machine learning (ML) and artificial intelligence (AI), involves al-
gorithms that are loosely inspired by neuroscience and are referred to as deep neural
networks (DNNs). In contrast to classical surrogate modeling approaches, carefully
designed DNNs can capture complex high-dimensional nonlinearities, while avoiding
overfitting. Further, they are universal approximators of continuous functions [21,
22]. Despite their recent success, the idea of DNNs is not new; they were first pro-
posed by Walter Pitts and Warren McCulloch in the 1940s [23]. Their increased usage
and current popularity is related to: (1) advancements in computer hardware, leading
to widespread availability of graphics processing units (GPUs) and tensor processing
units (TPUs) for accelerated computation and neural-network training, (2) availabil-
ity of exceptionally large labelled datasets, (3) advances in DL theory and numerics,
including improved stochastic optimization techniques for backpropagation, such as
Adam [24] and RMSprop, with novel initialization techniques and activation func-
tions, and (4) development of user-friendly and open-source software libraries, such
as Tensorflow [25] and PyTorch [26].

Lately, DL has made its mark in fluid dynamics [27, 28]. In the context of
data assimilation and computational reduction, Omata et al. [29] and Murata et
al. [30] utilized an autoencoder (AE), a type of DNN, to extract the essential fea-
tures of free-shear flows. Maulik et al. [17] combined AEs with recurrent neural
networks (RNNs) for parametric ROMs of advection-dominated inviscid and low-
viscosity systems. These works highlight AEs’ ability to extract nonlinear modes
with lower reconstruction errors than POD, at the same level of data compression.
In the context of regression and emulation, Seong et al. [31] developed a neural net-
work to evaluate liquid holdup and pressure gradient in a horizontal pipe flow. More
recently, Xu et al. [32] developed a multi-level neural network framework for param-
eteric prediction of spatiotemporal dynamics in transient flows over a cylinder and
behind a shipstructure. These works demonstrate the ability of DNNs to capture
high-dimensional relationships in unsteady flows, but most of them have focused on
canonical and laboratory-scale problems, with predictions under a fixed design point
or with parametric variations in a single design parameter. Building on the findings
from these studies, our work presents a novel contribution to the field by extending
the applicability of DL models to large-scale, industry-relevant, fluid problems and

3

to multi-parametric studies, with a particular focus on high-pressure practical flows.
The general scope of this thesis is to explore new approaches based on deep neural

networks for the development of surrogate models that are not only fast but also
accurate, and to study the efficacy of these models in predicting the dynamics of
complex multiphysics flows. Ultimately this work will enable predictive simulations
of advanced concepts, and accelerate the design cycle for engineering devices. The
research effort has theoretical as well as numerical goals:

• Theoretical: to develop novel surrogate modeling approaches based on deep
learning for large-scale simulation problems that could impact propulsion ap-
plications as well as the broader scientific and engineering communities.

• Numerical: to create software and databases that enable the study and evalua-
tion of the approaches developed.

Figure 1.2 illustrates the placement of the present work at the intersection of four
research areas: chemical propulsion, computational fluid dynamics (CFD), DL, and
HPC.

Figure 1.2: Intersection of research areas.

4

1.2 Aim and Objectives of this Work

The scope of the current work is to develop an integrated suite of surrogate mod-
eling approaches and software to enhance predictive simulation and design of con-
temporary and future propulsion engines for automotive and aerospace applications.
The proposed work utilizes recent breakthroughs in DL and HPC to substantially
improve modeling capabilities at many levels. Techniques to be implemented in-
clude: (1) deep neural networks for function approximation and solver acceleration,
(2) deep autoencoders for nonlinear dimensionality reduction, and (3) spatiotemporal
emulators based on multi-level neural networks for rapid exploration of design spaces
and enhanced optimization. A series of benchmark cases, comprising several canon-
ical examples and two industry-relevant problems, has been identified to generate
databases that will enable and support development, verification, and validation of
the proposed algorithms. A particular focus is on applications involving high-pressure
fuel injection processes and coupled multiphysics interactions. The research aim can
be summarized as:

Research Aim
Explore and develop novel surrogate modeling approaches and software based
on deep learning to accelerate the simulation and design of thermo-fluid systems
for propulsion applications.

Several objectives are identified to achieve the overall aim. Each objective is
briefly described along with the corresponding sub-objectives, or tasks. Note that at
this stage of the document some of the tasks may not seem obvious or lack further
explanations/justifications, but further details will be given in Part II.

1. Generate databases from high-fidelity simulations for deep learning
and reduced-order model development.

Here, the objective is to perform high-fidelity computer simulations of fluid dy-
namics in high-pressure propulsion engine environments. Two model problems
with realistic geometries and operating conditions are addressed, namely (a) su-
percritical turbulent flows in a swirl rocket injector, with an operating pressure
of 253 bar (cf. Sec. 5.5), and (b) multiphase cavitating flows in a diesel engine
injector, with an injection pressure of 1,500 bar and an ambient pressure of
20 bar (cf. Sec. 7.3). Each problem is broken down into the following tasks:

• Set up design of experiment (DoE). This includes identifying input/design
parameters and their ranges, and generating a DoE table based on a given
sampling technique. While the other steps are common to both problems,
this step is applicable only to the diesel injector problem.

• Set up CFD cases. This includes selecting an injector geometry, meshing,
and selecting appropriate solver options (i.e., numerical scheme, time steps,
turbulence model, thermodynamic model, etc.).

5

• Generate CFD data. This includes compiling the code, and running the
numerical simulations on a supercomputer.

• Extract spatiotemporal CFD data at subdomain of interest for model
building and/or model validation. This includes data management and
post-processing.

• Analyze the flow physics. This includes an investigation of the detailed flow
structures and mixing characteristics, and an examination of the effects of
various design attributes on the flow.

2. Develop a coupled deep-learning and physical-simulation framework
to accelerate the convergence of high-fidelity simulations.

Here, we address the following question: how can DL models be used inside tra-
ditional CFD solvers to accelerate fluid simulations on a supercomputer? To do
so, a neural network model, referred to as DFNN-BC (cf. Sec. 5.4), is developed
for function approximation and solver acceleration. As a demonstration exam-
ple, the evaluation of real-fluid properties, which is an expensive procedure in
the simulation of high-pressure supercritical flows, is considered (cf. Chapter 5).
The following tasks are identified:

• Train and validate a neural network model for real-fluid property estima-
tion. This includes building a separate real-fluid thermodynamic solver to
generate a dataset of real-fluid properties at conditions of interest, train-
ing a neural network, and exporting the network parameters from the ML
library.

• Integrate boundary information into the model to respect the convergence
constraints imposed by the higher-fidelity solution.

• Build the coupled DFNN-BC and CFD framework. This includes deploy-
ing the DFNN-BC model in a flow solver, writing a subroutine for the
forward propagation computation, and creating an interface to integrate
the DFNN-BC into the solver.

• Evaluate the proposed approach on the rocket injector problem and on
other configurations, including counterflow diffusion flames.

• Examine the computational efficiency and accuracy of the proposed ap-
proach. This includes comparing the outputs of the approach to those
of the baseline numerical simulations, code profiling, and assessing the
time and memory savings. As a reminder, the baseline simulations are
performed as part of Objective 1.

3. Develop a data-driven deep learning emulation framework for para-
metric and efficient prediction of spatiotemporal flowfields.

Here, we address the following question: how can DL models be used to acceler-
ate the time-to-design? We implement a second framework based on data-driven
spatiotemporal emulators to approximate expensive simulators (cf. Secs. 6.3

6

and 7.3.2). The framework is mainly developed for efficient survey, or explo-
ration, of the full design space. Here, the use of the governing equations dur-
ing the forward solve of the fluid flow configuration is avoided and replaced
by surrogate models. The framework is evaluated on: (a) canonical examples
(cf. Chapter 6) and (b) engineering problems (cf. Chapter 7). The following
tasks are identified:

• Train and validate an AE-based network for nonlinear dimensionality re-
duction. Here, a novel ROM is introduced to extract physics-based infor-
mation and to map high-dimensional snapshots to compressed representa-
tions in a nonlinear and universal manner. This step is required before a
regression technique can be implemented.

• Train and validate a DNN-based regressor model to learn the relationship
between the design parameters and reduced space representations.

• Build the spatiotemporal emulation framework with capabilities for pa-
rameter prediction. This involves combining the constituents from the
previous tasks into a single framework.

• Port the emulation framework to a GPU-based supercomputer. This al-
lows parallelization of the training of neural networks to handle large-scale
datasets.

• Evaluate the framework on canonical one-dimensional and two-dimensional
examples. These relatively straightforward problems enable debugging and
permit preliminary verification and demonstration of the emulator.

• Evaluate the framework on the diesel injector problem, a realistic engineer-
ing application. This includes comparing the spatiotemporal predictions of
the emulator at the injector exit to that of the high-fidelity simulations for
unseen conditions during training, and assessing computational efficiency.
Recall that the baseline simulations are performed as part of Objective 1.

1.3 Outline

The remainder of this thesis is composed of seven chapters organized into three major
parts. This modular organization is designed to accommodate a variety of readers,
especially graduate students majoring in Aerospace/Mechanical Engineering or Com-
putational Science and Engineering, as well as practitioners and engineers who are
interested in implementing some of the methods presented herein in their own software
library or platform.

Part I provides the necessary fundamental concepts and terminology, numerical
methods, and software tools that are needed to understand the core research projects.
This part is composed of three chapters, as follows:

• Chapter 2 provides a basic review of surrogate modeling approaches, including
DL and non-DL approaches. It also presents the DL models that form the major
core architectural building blocks of the frameworks developed here. Lastly, it

7

suggests some practical considerations for training neural networks on a laptop
or a supercomputer.

• Chapter 3 presents some of the basic theory and numerics of CFD relevant to
this work. This includes the governing equations of fluid motion, turbulence and
its modeling, the LES approach, and the finite-volume discretization method.
It also introduces the various CFD solvers used to run the simulations and
generate data for model development and/or model evaluation.

• Chapter 4 presents some of the basic physics and modeling practices for high-
pressure fuel injection processes in diesel engines and LPREs, the engineering
applications considered in this work.

Part II focuses on the three research projects carried out. The first is concerned
with the use of DL in traditional and legacy CFD solvers to accelerate the convergence
of fluid simulations, while the last two are concerned with the use of DL to build
data-driven spatiotemporal emulators for rapid exploration of design spaces. Each
project targets specific applications in fluid dynamics, with emphasis on practical
high-pressure flows and fuel injection processes. The applications were mainly chosen
for demonstration purposes, but the methodologies can be applied to other areas in
computational science and engineering. For each project, the research problem and
the underlying computational bottleneck are discussed, along with the successes and
limitations of previous studies as reported in the literature. This part is organized as
follows:

• Chapter 5 presents a DL-based approach for fast calculation of real-fluid thermo-
physical properties in numerical simulation of supercritical flows. The method
features a DNN with appropriate boundary information and can be coupled to
a flow solver in a robust manner. The approach is demonstrated in primitive-
and conservative-variable-based solvers and is systematically evaluated on vari-
ous problems of increasing complexity: zero-dimensional thermodynamics, one-
dimensional counterflow diffusion flames, and rocket injector flows.

• Chapter 6 presents a data-driven emulation framework based on DL techniques
for efficient prediction of parametric, multivariate, and spatiotemporal flow-
fields. The framework features deep AEs, for nonlinear dimensionality reduc-
tion, and DNNs for supervised learning of the latent space. Two versions of
this framework are proposed, based on two different autoencoders: FCAE-R
and CAE-R. The framework is evaluated on two canonical fluid problems: the
one-dimensional viscous Burgers equation and the two-dimensional advection-
diffusion-reaction (ADR) equation.

• Chapter 7 applies the FCAE-R framework to a representative engineering prob-
lem for automotive propulsion. Specifically, the emulator is used to efficiently
predict the multiphase cavitating flow at the orifice exit of a diesel injector for
a wide range of design and physical parameters. The predictions from the emu-
lator are used to initialize one-way coupled spray simulations in the combustion
chamber.

8

The last part contains only Chapter 8. In this chapter, conclusions, including an
overall summary and highlights of major contributions, as well as recommendations
for future work are provided. Supplementary materials and additional insights on
specific topics are included in appendices.

9

Part I

Fundamental Background, Tools, and
Techniques

10

11

CHAPTER 2
APPROXIMATION METHODS AND DEEP LEARNING

... all models are approximations.
Essentially, all models are wrong,
but some are useful. However, the
approximate nature of the model
must always be borne in mind ...

Georges E. P. Box, 1987

... what we want is a machine that
can learn from experience.

Alan Turing, 1947

Approximation methods are more and more commonly used in the acceleration of
computer simulations, as well as in the optimization of complex engineering systems.
The approximation method provides a surrogate model which, once developed, can
be called instead of the original expensive model for the purposes of fast computation
and optimization.

This chapter provides a review of surrogate modeling approaches and deep learn-
ing. In Sec. 2.1, a taxonomy of surrogate models is presented. In Sec. 2.2, we discuss
some of the basic models used in deep learning, such as deep feedforward neural
networks (DFNNs), convolutional neural networks (CNNs), and autoencoders. We
also briefly discuss some more advanced models. Finally, in Sec. 2.3, we provide
state-of-the-art practices for training neural networks.

2.1 Taxonomy of Surrogate Models

2.1.1 Classification based on Mathematical Structure

Surrogates can be classed broadly in three categories, based on their mathematical
structure [9, 10]: data-fit models, reduced-order models (ROMs), and hierarchical
models, as shown in Fig. 2.1. Only the first two classes are employed in the present
work, although for the sake of completeness all three are described below.

12

Figure 2.1: Classification of surrogate models (note that this classification is not
exhaustive).

2.1.1.1 Data-Fit Models

Data-fit models are generated using interpolation or regression approaches to approxi-
mate the input/output relationships of a high-fidelity model. They include polynomial
regression, GPs [11], and neural networks. Data-fit models can further be classified
into two sub-categories depending on whether the responses are scalar or functional;
these are scalar-response models and functional-response models.

In a scalar-response model, the output is a scalar or a vector of scalars. That
is, each sample element is geometrically a point. The model provides statistical
approximation of the original function f ∗ : Rnin 7→ Rnout where x ∈ Rnin is the input
and y∗ ∈ Rnout is the output.

In a functional-response model, the output is a function or a vector of functions,
also called field variable. That is, each sample element is geometrically a curve, surface
or anything else varying over a continuum. The physical continuum over which these
functions are defined is parametrized by parameters t1, t2, . . . , tn. A particular case
is when the physical continuum is defined over the time t and spatial location r.
In such a case, the output is written as y∗(t, r) ∈ Rnout , or in discretized form as
Y ∗ ∈ Rnt×ngrid×nout , where nt is the number of time snapshots, ngrid is the number of
grid points in the domain, and nout is the number of output variables (or functions).
The model provides statistical approximation of the original mapping S∗ : Rnin 7→
Rnt×ngrid×nout where x ∈ Rnin is the input and Y ∗ is the output. In other words,
the object S∗ that we are trying to approximate can be thought of as a simulator,
which refers to the computational model that explicitly solves a set of differential
equations that govern some physical processes over a defined spatial region and time
interval. The input can be a vector x defining the design or physical parameters of the
simulation, such as the Reynolds number, fluid properties, boundary conditions, etc.
The output can be the solution of the simulation, Y ∗, which is usually represented by
one or more spatiotemporal fields, such as the axial velocity field, temperature field,
etc.

In summary, a scalar-response model is used to approximate a function f ∗ whereas
a functional-response model is used to approximate a simulator S∗.

13

2.1.1.2 Reduced-Order Models

Reduced-order models retain the essential physics and features of their corresponding
FOMs. They are constructed using a projection framework or via ML and DL ap-
proaches. Many different types of ROMs have been developed over the years, and a
possible distinction is between those that are intrusive and thus require the knowledge
of the underlying FOM, such as the governing equations or the numerical solver, and
those that are purely data-driven and thus non-intrusive. In the first sub-category, one
can find the reduced-basis (RB) method [33, 34, 35, 36], POD-Galerkin approach [37,
38], and residual minimization principles [39, 40, 41]. In the second category fall
the non-intrusive RB method [42, 43, 44], snapshot-based POD (see Appendix A),
DMD [16], and autoencoders (see Sec. 2.2.5).

ROMs can also be classified as linear and nonlinear models, depending on whether
the transformation or mapping from the high-dimensional space to the latent space is
linear or nonlinear. Examples of linear ROMs include POD and DMD while examples
of nonlinear ROMs include autoencoders.

2.1.1.3 Hierarchical Models

Hierarchical models are physics-based models of lower accuracy and reduced compu-
tational cost. They are derived from higher-fidelity models using approaches such
as simplifying physics assumptions or omitted physics, coarser grids, lower-order dis-
cretization methods, and relaxed solver tolerances. This category of models also
includes multi-fidelity models [45], which are built by combining different fidelity
models.

2.1.2 Data-Driven vs. Physics-Informed Deep Learning

ML models, in particular neural networks, will be explained in detail in Sec. 2.2.
However, since the present section deals with classification of surrogate models, it
is worth distinguishing at this stage of this document between the following two
approaches to scientific DL [46, 47]:

1. Pure data-driven models, which aim to model physical systems using neural
networks that are trained to fit observed data without knowledge of the un-
derlying physics. Here, the assumption is that given enough data, the neural
network should be able to recognize or discover hidden patterns and correlations
in the data. In these models, the loss function is mainly composed of two terms:
(1) data loss, which is usually defined as the mean-squared error (MSE) or sum
of squares for error (SSE) between the ground truth solution and predicted
output by the neural network, and (2) regularization term, such as L1 and L2

regularization, used to avoid overfitting (see Sec. 2.3.3.1). If trained properly,
these models can generalize well to unseen points, or conditions, within the de-
fined design space, however, they perform poorly outside the design space (i.e.,

14

poor extrapolation). Overall, these models are useful in the large-data regime,
where a large amount of labeled data is available.

2. Physics-informed models (also referred to as physics-constrained models, or
knowledge-guided models), which aim to model physical systems by incorpo-
rating physical principles or physics-based knowledge (i.e., governing equations,
conservation principles, initial and boundary conditions, symmetries, invari-
ances, etc.) into the neural networks together with data. By exploiting physics,
the amount of data needed to get good performance can be reduced considerably
compared to that of the pure data-driven approaches, and the trained neural
network can not only generalize well but also sometimes extrapolate well. Typi-
cally, the physics are imposed on the neural network via soft or hard constraints.
Soft constraints are implemented by adding physics-based penalty terms to the
original loss function [48, 49, 50]. These terms act as a physics-based regular-
izer that penalizes the neural network if it doesn’t obey the desired physics. In
particular, for problems or tasks involving spatiotemporal emulation, the under-
lying governing equations can be embedded into the loss function of the neural
network via automatic differentiation [51], which is a technique used for differ-
entiating the output coordinates of the neural network with respect to its input
coordinates and model parameters. The hard constraints, on the other hand,
are enforced by modifying the architecture of the neural network such that the
desired physics are automatically fulfilled [52, 53]. Overall, physics-informed
models are useful in the small-data regime, where labeled data can be difficult
to get, or when the available data are sparse and noisy.

Note that in this thesis the focus is mostly on data-driven models. However, for
certain problems, knowledge-guided models have been exploited to some extent, in
particular for incorporating initial and boundary conditions into the loss function of
the involved neural network for improved prediction accuracy.

2.2 Neural Network Architectures

In this section, we present a brief overview of neural network approaches including
DFNNs, CNNs, and AEs. These approaches form the major core architectural build-
ing blocks of DL models currently used, and can also be composed modularly – a little
like a “Lego” model – to build new application-specific network architectures [54]. For
a more comprehensive review, interested readers may refer to classic textbooks such
as Goodfellow et al. [55], Aggarawal [56], and Nielsen [57].

2.2.1 What is Deep Learning?

Deep learning (DL) is an approach to artificial intelligence (AI). Specifically, it is
a subfield of machine learning (ML), a technique that enables computer systems to
improve with experience and data. DL is concerned with algorithms modeled loosely
on the human brain called deep neural networks (DNNs).

15

DL (and ML) models are capable of different types of learning, which are usually
classified as supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning utilizes labeled datasets to categorize or make predictions (known
as classification and regression, respectively); this requires some kind of human in-
tervention to label the data appropriately. In contrast, unsupervised learning utilizes
unlabeled datasets to analyze and discover hidden patterns in the data for various
tasks. This includes clustering them by any distinguishing characteristics (known as
clustering), determining the distribution of data within the input space (known as
density estimation), and transforming the data from a high-dimensional space into a
low-dimensional space (known as dimensionality reduction). Reinforcement learning
is concerned with how a model learns to become more accurate for performing an
action in an environment based on feedback in order to maximize a reward.

2.2.2 Artificial Neuron and Dense Layer

The basic entity of any neural network is a model of an artificial neuron, also
called perceptron, as shown in Fig. 2.2. Let x ∈ Rnin be an input. The functional
form of an artificial neuron is given by

y = σ(wTx+ b), (2.1)

where b ∈ R is a bias scalar, w ∈ Rnin is a weight vector, and y ∈ R is an output.
The activation function, σ, performs a linear or nonlinear transformation between the
input and output (more details about activation functions can be found in Sec. 2.2.7).
The loss function of an artificial neuron can be defined as the MSE between the actual
and predicted values,1 as follows

J(w, b) = ∥y∗ − y∥MSE

=
1

n

n∑
i=1

(y∗,(i) − y(i))2, (2.2)

where n is the training dataset size (or size of a minibatch2), and y∗,(i) and y(i) are
the true and predicted output, respectively, for the ith training example x(i). Note
that y(i) = σ(wTx(i) + b), hence the dependence of J on the parameters w and b in
Eq. (2.2).

A dense layer, also called fully-connected layer, is a layer unit composed of many
artificial neurons. Its functional form is given by

y = fdense(x;θ) = σ(Wx+ b), (2.3)

where y ∈ Rnout is an output, and θ a set of parameters consisting of a weight matrix
W ∈ Rnout×nin and a bias vector b ∈ Rnout .

1Note that other error metrics such as the SSE, can be used instead of the MSE when training
the DL models, but this is not done here.

2See Sec. 2.3.6 for a definition of minibatch.

16

Figure 2.2: Representation of an artificial neuron model . In this schematic, x ∈ R3

(reproduced from Ref. [54]).

2.2.3 Deep Feedforward Neural Networks

If all layers in a network are dense layers and interconnected in a sequential way,
the network is called a deep feedforward neural network (DFNN), or multilayer per-
ceptron (MLP). In Fig. 2.3, we show examples for a one-hidden layer architecture and
a deep architecture. The computation in the lth layer of a network, h(l) ∈ Rnl , with
nl ∈ N, takes the form

h(l) = f (l)(h(l−1);θ(l))

= σl

(
W (l)h(l−1) + b(l)

)
, (2.4)

where f ≡ fdense, h(0) = x ∈ Rnin is the input layer, h(L) = y ∈ Rnout is the output
layer, θ(l) = {W (l), b(l)} is a set of trainable parameters, and L is the total number of
layers (excluding the input layer from the count). Also, W (l) ∈ Rnl×nl−1 is a weight
matrix, where the element W (l)

mn denotes the weight of the connection from the nth
neuron in the (l − 1)th layer to the mth neuron in the lth layer, b(l) ∈ Rnl is a
bias vector, where the element b(l)m is the bias for the mth neuron in the lth layer,
and σl is an activation function applied in the lth layer. Note that the layers h(l),
l = 1, 2, . . . , L− 1, are called hidden layers.

The DFNN can be expressed using a mapping FDFNN : Rnin 7→ Rnout as:

y = FDFNN(x;θ) = f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1)(x;θ(1)), (2.5)

where ◦ is the function composition operator, and θ = {W (l), b(l); l = 1, 2, . . . , L}
is a set containing all of the trainable parameters of the neural network. The loss
function of a DFNN can be defined as the MSE between the actual and predicted
values, as follows

J(θ) = ∥y∗ − y∥MSE, (2.6)

where y∗ is the true output.

17

(a) (b)

Figure 2.3: Representations of: (a) neural network with one hidden layer, and
(b) DFNN with 3 hidden layers. In this schematic, x ∈ R3 and y ∈ R2 (repro-
duced from Ref. [54]).

2.2.4 Convolutional Neural Networks

A convolutional neural network (CNN) [58] is a specialized type of neural net-
work for processing grid-structured inputs, which have strong spatial dependencies
in local regions of the grid. Examples include one-dimensional time series data, two-
dimensional image data, and three-dimensional video data. An additional dimension
can be added to capture the different colors or field variables in the data (referred
to as the number of channels), which creates a multi-dimensional input volume (or
hypervolume). For the purpose of discussion, assume a 32 × 32 colour image like in
the CIFAR-10 dataset [59]. For each of the 32 × 32 pixels, there is a value for the
red, green, and blue colors. Hence, in this case, the CNN interprets one input sample
as a 32× 32× 3 volume where 3 is the number of channels. In the following, we will
limit our discussion to a CNN operating on two-dimensional images.

The CNN works in a similar way to a DFNN, except that it performs local oper-
ations on its layers in order to learn spatial hierarchies of features [56]. CNNs utilize
convolution and pooling layers, in addition to dense layers. The dense layers are no
different from a traditional neural network, and are often added toward the end of the
network to map the internal representations to a set of output nodes that conforms
to a given problem. Prior to the application of any dense layer, each layer in the
network preserves a three-dimensional grid structure, which has a height, width, and
depth. Here, the word “depth” refers to the number of channels in the input layer or

18

the number of feature maps/levels in the hidden layers, and should not be confused
with the depth of the network itself.

The convolution layer applies a set of nf learnable filters, also called kernels.
The filter is usually square in terms of its spatial dimension, typically much smaller
than that of the layer the filter is applied to. However, the depth of the filter is
always the same as that of the layer it is applied to. Each filter passes across the
entire input image using a certain stride s, and performs a dot product operation
between its parameters and the matching grid in the input volume. To maintain
spatial dimensions of the output the same as those from the input after a convolution
operation, layers of zeros can be added to the border of the image using a padding
process. In this case, the resulting output maintains the same height and width of
the input layer, but has a different depth equal to the number of filters used in the
process.

The functional form of a convolution layer can be symbolically written as

H(l+1) = fconv(H
(l);W , b) = σ(H(l) ⋆W ⊕ b), (2.7)

where H(l) denotes a three-dimensional input volume with a depth of dl in the lth
layer, H(l+1) is the output representing the (l+1)th layer, W (m) is the weights of the
mth three-dimensional filter applied to the lth layer, with m = 1, 2, . . . , nf, b ∈ Rnf is
the bias term in the (l+1)th layer, σ is the activation function applied in the (l+1)th
layer, and the symbols “⋆” and “⊕” denote the convolution and addition operations,
respectively. At a sliding location (i, j) and filter index m, the output H(l+1)

ijm of a
convolution layer can be expressed as

H
(l+1)
ijm = σ

(dl∑
k=1

∑
p

∑
q

H
(l)
i−p,j−q,kW

(m)
pqk + bm

)
, (2.8)

where H(l)
ijk is the input value at point (i, j, k), W (m)

pqk the weight at point (p, q, k) in the
mth filter, and bm the bias of the mth filter. It is noted that the output H(l+1) has
a depth of nf, the number of filters used in the process. An example of a convolution
operation is shown in Fig. 2.4.

The convolution layer is usually followed by a pooling layer that performs com-
pression operations with respect to the data. The pooling operation defines a non-
learnable filter (i.e., a filter without any learnable parameters) that is usually square
in size and typically much smaller than that of the layer the filter is applied to. The
filter is passed across the entire layer using a certain stride s, and produces another
layer with the same depth, but with smaller height and width. Unlike with convo-
lution operations, where all dl feature maps are used in combination with a filter to
produce a single feature value, pooling independently operates on each feature map
to produce another feature map. Hence, the pooling operation does not change the
depth of the layer.

Two types of pooling layers are usually used: max pooling and average pooling.
The max pooling layer computes the maximum element from the region of feature
map covered by the filter. Thus, the output of a max pooling layer is a feature map

19

containing the most dominant features of the previous feature map. On the other
hand, the average pooling layer computes the average of the elements present in the
region of feature map covered by the filter. Thus, average pooling gives the average
of features for each patch of the feature map. An example of a max pooling operation
is shown in Fig. 2.5.

Figure 2.4: Example of a convolution operation between a 7 × 7 × 1 input and a
3 × 3 × 1 filter with stride of 1 and no padding. The resulting output is of size
5 × 5 × 1. It is noted that no activation function nor bias term were used in this
example (reproduced from Ref. [56]).

2.2.5 Autoencoders

Autoencoders (AEs) are a type of neural network architecture developed for unsu-
pervised feature extraction. The main motivation for utilizing AEs is to perform di-
mensionality reduction. Importantly, while POD implements a linear transformation,
AEs are nonlinear. Usually, this results in better performance and lower reconstruc-
tion errors at the same level of data compression [19]. Here, we distinguish between
fully-connected autoencoders (FCAEs) and convolutional neural network autoencoders
(CAEs).

20

Figure 2.5: Example of a max pooling operation with a window of size 3× 3× 1 and
stride of 1 applied to a layer of size 7× 7× 1. The resulting output is a layer of size
5× 5× 1 (reproduced from Ref. [56]).

2.2.5.1 Fully-Connected Autoencoders

A fully-connected autoencoder [19] is a type of DFNN. In this architecture, the
input and output are approximately the same, i.e., x ≈ y, and the neural network
has a converging-diverging shape with a low-dimensional hidden layer in the middle.
It consists of two parts: an encoder Fenc and a decoder Fdec, as seen in Fig. 2.6.
The encoder is used to map a high-dimensional dataset into a low-dimensional latent
representation (also referred to as bottleneck layer, or code). The decoder is then used
to expand the dimensionality from that of the latent space back to the one of the
original data, reconstructing the dataset. Mathematically, the forward propagation
procedure in the FCAE can be described as follows

x̃ = Fdec ◦ Fenc(x;θenc,θdec)

= Fdec(z;θdec), (2.9)

where x̃ ∈ Rnin is an approximation of the input, and z ∈ Rnlatent is the latent vector,
with nlatent ≪ nin. The encoder Fenc : Rnin 7→ Rnlatent is parametrized by θenc and the
decoder Fdec : Rnlatent 7→ Rnin is parametrized by θdec. The loss function of an FCAE

21

can be defined as the MSE between the input and output:

J(θenc,θdec) = ∥x− x̃∥MSE. (2.10)

Figure 2.6: Schematic representation of an autoencoder (image modified from
Ref. [60]). In this schematic, the input is a vector of pixels representing the digit
4.

2.2.5.2 Convolutional Neural Network Autoencoders

A convolutional autoencoder [61] is a type of CNN utilizing convolution, sampling,
and dense layers for dimensionality reduction. Typically, in traditional FCAEs, the
input data is flattened to a one-dimensional vector before being processed, which
prevents direct learning of spatial coherence. Furthermore, each neuron in a layer is
connected to all neurons in the next layer, where each connection is a parameter in
the network. This can result in a very large number of trainable parameters. Instead
of using only dense layers, a CAE uses some local connectivity between neurons,
i.e., a neuron is only connected to nearby neurons in the next layer, which allows to
significantly reduce the total number of parameters in the network and to process
image data directly, thus retaining spatial information.

As a reminder, the convolution and fully-connected layers were explained in Secs.
2.2.4 and 2.2.2, respectively. The sampling layer performs compression or extension
operations with respect to the data, and is usually preceded by a convolution layer.
In this work, a max pooling operation is used for compression/downsampling, and
a resize operation based on the nearest neighbor interpolation for upsampling [55].
The CAE is composed of a CNN encoder, Genc, and a CNN decoder, Gdec, as shown
in Fig. 2.7. The forward propagation procedure in the CAE can be written as

Q̃ = Gdec ◦ Genc(Q;ϕenc,ϕdec)

= Gdec(z;ϕdec), (2.11)

22

where Q ∈ Rnx×ny×nc and Q̃ ∈ Rnx×ny×nc denote the encoder input and decoder
output, respectively, with nc the number of input channels, and z the latent space
representation. It is noted that although the same symbol z is used, the latent space
obtained from the CAE is different than that from the FCAE. The encoder Genc is
parametrized by ϕenc, and the decoder Gdec by ϕdec. The loss function of a CAE is
defined in a similar way to that of an FCAE, i.e., as the MSE between the input and
output:

J(ϕenc,ϕdec) = ∥Q− Q̃∥MSE. (2.12)

Figure 2.7: Schematic representation of a CAE.

2.2.6 Advanced Models

We would like to emphasize that there are additional models of DL networks,
which are outside the core architectures, such as the recurrent neural network (RNN)
and Bayesian neural network (BNN).

RNNs are a class of neural networks that allows previous outputs to be used as
inputs while having hidden states. RNNs are particularly useful for cases involving se-
quential data like natural language and time series. RNNs, however, have limitations.
For instance, they do not perform well when handling long-term dependencies [55,
62]. Moreover, they suffer from the gradient vanishing/exploding problem [63]. A
long short-term memory (LSTM) network is a variant of RNN that is designed to
address those limitations of RNNs, making it very useful in practice.

BNNs extend the capability of standard networks with posterior inference. Rather
than fitting a point estimate of the network weights, a BNN learns a distribution over
the weights in order to capture uncertainty and assign confidence to predictions. The
BNN is defined as p(y|x;θ): given an input x, it assigns a probability to each possible
output y using a set of parameters θ. The posterior probability p(y|x;θ) is generally
computed from Bayes rule by specifying a Gaussian density distribution for the prior
parameters and the likelihood. A particular type of BNN is a variational autoencoder
(VAE), which combines the merit of an AE and a probabilistic model, and thus allows
to quantify the amount of information lost during the compression process [64].

23

Other advanced models include generative adversarial networks (GANs) [65] and
transformers [66]. While these models have their own advantages and disadvantages,
their utilization and exploitation are outside the scope of this thesis and are left for
future work.

2.2.7 Importance of Nonlinear Activation Functions

Nonlinear activation functions are essential for introducing nonlinearity in the
neural network; without them, neural networks reduce to simple linear regression
models. The activation functions are mathematical functions attached to each neuron.
The activation takes place depending on some rule or threshold, and only the neurons
with some relevant information are activated in each layer. A list of commonly used
activation functions is provided in Table 2.1.

Table 2.1: Frequently used activation functions.

Activation function σ(x) σ′(x) Range of σ
Identity y = x 1 (−∞,∞)

Softmax softmax(xi) =
exi∑n

j=1 exj (0, 1)

Sigmoid/Logistic sigmoid(x) = 1
1+e−x σ(x)(1− σ(x)) (0, 1)

Hyperbolic tangent (tanh) tanh(x) = ex−e−x

ex+e−x 1− σ(x)2 (−1, 1)

Rectified linear unit (ReLU) ReLU(x) = max(0, x)

{
0 if x < 0

1 if x ≥ 0
[0,∞)

Exponential linear unit (ELU)

{
α(ex − 1) if x < 0

x if x ≥ 0

{
αex if x < 0

1 if x ≥ 0
(−α,∞)

Leaky ReLU

{
αx if x < 0

x if x ≥ 0

{
α if x < 0

1 if x ≥ 0
(−∞,∞)

Swish x× sigmoid(x) 1+e−x+xe−x

(1+e−x)2 [−0.278 . . . ,∞)

2.3 Practical Considerations for Training Neural Networks

In the previous section, we introduced various neural network architectures. In
this section, we explain the procedure for training neural networks using learning
algorithms. We also discuss important considerations, including backpropagation,
overfitting, regularization, hyperparameter tuning, and acceleration of model training.

2.3.1 Backpropagation

In order to train neural networks such as the ones defined in the previous section by
a gradient-based optimization algorithm, we need to be able to compute the gradient
of the loss function with respect to each network parameter. The gradient tells us

24

how a small change in that parameter will affect the loss function. The gradient
can be computed through recursive application of the chain rule of calculus; this is
referred to as backpropagation, or backprop for short. Note that the term backpropa-
gation strictly refers only to the procedure for computing the gradient, not how the
gradient is used, such as updating the network parameters through an optimization
algorithm. However, the term is often used loosely to refer to the entire optimization
algorithm [67]. In the following, we show how to compute the gradient for a DFNN.
A similar procedure can also be applied to other types of neural networks.

Consider a DFNN with L layers (excluding the input layer from the count). Let
W (l) be a weight matrix, where the element W (l)

jk denotes the weight of the connection
from the kth neuron in the (l − 1)th layer to the jth neuron in the lth layer, b(l) be
a bias vector, where the element b(l)j is the bias for the jth neuron in the lth layer,
and h(l) be the lth layer, where h(0) = x is the input layer, h(L) = y is the output
layer, and h(l) with l = 1, 2, . . . , L − 1 are the hidden layers. As previously seen in
Secs. 2.2.2 and 2.2.3, the functional form of h(l) (for l = 1, 2, . . . , L) is given by

h(l) = σ(W (l)h(l−1) + b(l)︸ ︷︷ ︸
≡a(l)

)

= σ

(∑
k

W
(l)
jk h

(l−1)
k + b

(l)
j︸ ︷︷ ︸

≡a
(l)
k

)
, (2.13)

where σ is the activation function, and a(l) ≡ W (l)h(l−1) + b(l) is an intermediate
quantity in the lth layer before the activation function is applied. Here, we assume
that the same activation function is applied to all the hidden layers and output layer.
The derivation of backpropagation is easily generalizable, however, to allow different
layers to have individual activation functions.

In backpropagation, we want to compute the quantities ∂J/∂w and ∂J/∂b with
respect to any weight w or bias b in the network, where J is the loss function. As a
reminder, J is defined here as the MSE between the input and output (cf. Sec 2.2.3),
i.e.,

J =
1

n

∑
x∈D

Jx,

(2.14)

where D is the training set (or a minibatch from the training set), n is the size of this
set, and Jx is the loss for an individual training example. Note that

∂J

∂b
(l)
j

=
1

n

∑
x∈D

∂Jx

∂b
(l)
j

, (2.15)

∂J

∂W
(l)
jk

=
1

n

∑
x∈D

∂Jx

∂W
(l)
jk

. (2.16)

Consequently, we can first compute the gradient of the loss function for individual
training examples, then take the average to obtain the gradient of the loss function
over all the training examples.

25

An important quantity in the derivation is the vector of errors δ(l) at the lth layer,
which is defined by

δ(l) ≡ ∂Jx
∂a(l)

, (2.17)

or in individual component form by

δ
(l)
j ≡

∂Jx

∂a
(l)
j

, (2.18)

where δ(l)j represents the error of neuron j in layer l.
The four fundamental equations behind backpropagation can be written as fol-

lows [57]:

The equations of backpropagation

δ(L) = (∇h(L)Jx)⊙ (σ′(a(L))), (2.19)

δ(l) = ((W (l+1))Tδ(l+1))⊙ (σ′(a(l))), (2.20)

∂Jx
∂b(l)

= δ(l), (2.21)

∂Jx

∂W
(l)
jk

= h
(l−1)
k δ

(l)
j . (2.22)

Note that Eqs. (2.19)–(2.21) are written in vector form, whereas Eq. (2.22) is
written in individual component form. We also note that a proof of these equations is
provided in Appendix B, where the chain rule is used substantially. These equations
give us a way of computing the error and the gradient of the loss function with
respect to the network parameters. In particular, Eq. (2.19) represents the error in
the output layer, δ(L). To get this quantity, we first compute the vector ∇h(L)Jx,
which in individual component form is given by ∂Jx/∂h

(L)
j , then take the Hadamard

product “⊙” with the vector σ′(a(L)), which in individual component form is given
by σ′(a

(L)
j). Equation (2.20) represents the error in the lth layer, δ(l), as a function

of the error in the next layer, δ(l+1). In this equation, we first compute the vector
(W (l+1))Tδ(l+1), which in individual component form is given by

∑
kW

(l+1)
kj δ

(l+1)
k , then

take the Hadamard product with the vector σ′(a(l)) to get δ(l). This moves the error
backward, hence the name error backpropagation.

By combining Eqs. (2.19) and (2.20), we can compute the error δ(l) for any layer
in the network. We start by using Eq. (2.19) to compute δ(L), then apply Eq. (2.20)
recursively to get δ(L−1), δ(L−2), . . . , δ(1). After this, we can substitute these errors
into Eqs. (2.21) and (2.22) to get the gradient of the loss function for a single training
example with respect to any weight and bias in the network. Finally, the gradient of
the loss function over all the training examples can be recovered by using Eqs. (2.15)
and (2.16).

26

2.3.2 Underfitting and Overfitting

An important challenge in DL is to design a learning algorithm that performs well
not only on data observed during training, but also on new and unseen data; this
ability is referred to as generalization. To assess generalization, it is important to
have a held-out test set that is different from the training set (but can come from the
same distribution) and evaluate the model’s performance on this set after training is
completed. Error measured on the data from the training set is called training error,
while error on the test set is called test error (or generalization error).

A DL model is said to perform well if the training error is small as well as the gap
between training and test errors [55]. As an aside, note that the test error is almost
always larger than the training error. However, it is possible for the test error to be
smaller than the training error, particularly if the training set contains “harder” cases
to learn or if the sampling is biased.

Alternatively, a model is said to be deficient if at least one of the conditions
above is not met. In particular, we distinguish between two cases: underfitting and
overfitting.

Underfitting (i.e., high bias and low variance) happens when the training error
is large. In this case, the neural network can neither model the training data nor
generalize well to new data. Generally, this is due to the model being too simple,
informed by too few features, and/or regularized too much. Hence, the model is
not learning enough from the training set, which results in unreliable predictions.
Underfitting can be reduced (or avoided) by:

Strategies to handle underfitting

• Increasing model complexity.

• Increasing the number of features.

• Increasing the number of epochs during training (in an attempt to get
better results).

On the other hand, overfitting (i.e., low bias and high variance) happens when the
gap between the training and test errors is large. In this case, the model performs
very well on the training set, but poorly on the test set. Generally, this is due to the
model trying to learn all trends from the training set, including secondary patterns
and noise, but not the dominant one(s). Overfitting can be reduced (or avoided) by:

27

Strategies to handle overfitting

• Decreasing model complexity.

• Increasing training data (in an attempt to capture the dominant trends).

• Using regularization methods (see Sec. 2.3.3.1).

• Stopping the training earlier (see Sec. 2.3.3.2).

• Using validation techniques (see Sec. 2.3.4).

2.3.3 Regularization

Regularization is any modification done to the learning algorithm in order to reduce
its test error (but not necessarily its training error). Regularization can be added
in different ways. One way is to add restrictions directly on the parameters in the
neural network, which corresponds to a hard constraint on the parameter values.
Another way is to add extra terms in the loss function, which corresponds to a soft
constraint on the parameter values [55]. In this latter category, a generic expression
for a regularized loss function can be written as

Jreg(θ;λreg) = Junreg(θ) + λregφ(θ), (2.23)

where Jreg is the regularized loss function, Junreg is the unregularized loss function,
λreg ≥ 0 is the regularization hyperparameter, and φ is the regularization function.

These penalties and constraints can also be designed to encode prior knowledge
in the model, such as physical principles and domain knowledge. While various reg-
ularization strategies exist, we describe hereafter only the L1 and L2 regularization
and early stopping methods.

2.3.3.1 L1 and L2 Regularization Methods

L2 regularization, also known as ridge regression, weight decay, or Tikhonov regu-
larization, consists of adding a regularizer, which is controlled by the hyperparameter
λreg to achieve a bias-variance trade-off. As it turns out, overfitting is often charac-
terized by weights with large magnitudes. Consequently, L2 regularization tries to
reduce the possibility of overfitting by keeping the values of the weights small. The
weight penalty term added to the loss function corresponds to the sum of the squared
values of the weights. This term penalizes large weight values. The L2-regularized
loss function is given by

JL2-reg(θ;λreg) = Junreg(θ) + λreg

∑
k

∥W (k)∥2F

= Junreg(θ) + λreg

∑
k

∑
i

∑
j

(W
(k)
ij)2, (2.24)

28

where W (k) is the weight matrix between the (k−1)th and kth layers in the network,
and ∥.∥F the Frobenius norm. In particular, for a DFNN with L layers (excluding
the input layer from the count), the loss function becomes

JL2-reg(θ;λreg) = ∥y∗ − y∥MSE + λreg

L∑
k=1

∥W (k)∥2F . (2.25)

It is noted that we can leave the bias parameters unregularized because they typically
require less data to fit accurately than the weight parameters. This is because the
number of biases is much smaller than the number of weights, and therefore we do not
induce too much variance by leaving the biases unregularized. Moreover, regularizing
the bias parameters can introduce a significant amount of underfitting [55].

An important question is how to choose the hyperparameter λreg. Ideally, we must
achieve a balance between model complexity and model accuracy. In particular, if
the value of λreg is too large, the model will be simple and will likely underfit because
it will not learn enough about the training data to make useful predictions. On the
other hand, if the value of λreg is too small, the model will be more complex and will
likely overfit because it will try to learn all the particularities of the training data.

Another parameter regularization method is the L1 regularization, also known
as Lasso regression. This method is similar to the L2 regularization, except that
its penalty term corresponds to the absolute values of the weights, as given by the
following expression

JL1-reg(θ;λreg) = Junreg(θ) + λreg

∑
k

∑
i

∑
j

|W (k)
ij |. (2.26)

While L2 regularization encourages the weight values to be spread out more equally
towards zero (but not exactly zero), L1 regularization encourages the weight values
to be zero. Hence, L1 regularization is useful for feature selection, especially in sparse
feature spaces (i.e., when the features contain missing values) or when the number of
features is larger than the dataset size.

2.3.3.2 Early Stopping

The early stopping method [68] is a form of regularization used to reduce over-
fitting by allowing a training session to be terminated if the number of epochs (or
iterations) exceeds a given threshold without an improvement in the validation error.
Early stopping requires a validation set.3 This method is particularly useful when
training large neural networks for which we sometimes observe that the training er-
ror decreases steadily in time, but the validation error starts to rise again [55]. In
such cases, stopping the algorithm earlier can prevent the model from learning all the
particularities of the training data, thus reducing overfitting.

3Definitions of validation set and validation error have not been provided yet at this stage of the
document. See Sec. 2.3.4 for an explanation of these terms.

29

Every time the validation error improves, we save a copy of the model parameters.
When the training algorithm is terminated, we return the network parameters that
correspond to the best validation error, rather than the parameters from the latest
epoch (or iteration).

Finally, note that early stopping can be used either alone or in conjunction with
other regularization approaches, such as those defined in Sec. 2.3.3.1.

2.3.4 Data Validation Techniques

Given a dataset, one needs to use this resource for training, tuning, and testing
the accuracy of the model [56]. Previously, we talked about how to divide the dataset
into a training set and a held-out test set, and how the test set can be used to compute
the generalization error of a model for final evaluation (after the training process has
completed). Thus, a question that arises is how to choose the portion of the data for
use in model selection and hyperparameter tuning; this portion of the data is referred
to as validation set.

It is important not to use the test set in any way during training, even when
making choices about the model hyperparameters, otherwise, we would partially be
mixing the training and test data, and the resulting accuracy would be overly opti-
mistic. Consequently, the validation data has to be constructed from the training set.
However, it has to be different as well from the data that is used for model building
(i.e., learning the weight and bias parameters) in order to reduce overfitting.

In the following, we distinguish between two data validation techniques: the hold-
out method and cross-validation.

2.3.4.1 Hold-Out Method

In this method, the dataset is split into three different parts: training set, valida-
tion set, and test set, as shown in Fig. 2.8. Usually, this is done by first splitting the
dataset into two parts: training set and test set. We then split the training data into
two subsets with some percentage split (for example, 80:20). The largest of these two
subsets is used to build and fit the model, i.e., to learn the parameters; this subset
is referred to as model-building set (also called training without validation set4). The
other subset is the validation set, used to compute the validation error during or after
training. If the validation set is used during training, we save a copy of the model
parameters every time the validation error improves. Note that the validation error
does not need to be computed at each iteration; rather, it can be computed at a
given frequency (for example, at every 10 iterations). When the learning algorithm
converges (or after it is terminated), it returns the model parameters that correspond

4Strictly speaking, the training set comprises both the model-building set and validation set (if
a validation set is used). However, by abuse of language, the model-building set is also referred to
as the training set, and we do it here as well. In this case, the intended meaning of the wording
“training set” can be determined from the context.

30

to the best validation error, for a given set of hyperparameters. On the other hand, if
the validation set is not used during training, the validation error is computed after
the learning algorithm converges (or is terminated).

During the tuning process, we need to choose the set of hyperparameters that
results in the smallest validation error rather than that corresponding to the smallest
training error. The validation error can be considered as an approximation to the
generalization error. Since the validation set is used to guide the selection of hyper-
parameters, it will underestimate the test error (though usually by a smaller amount
than the training error does) [55]. After the hyperparameter optimization process is
completed, the generalization error can be computed using the test set.

Figure 2.8: Hierarchical division into training, validation and test sets (adapted from
Ref. [56]).

2.3.4.2 Cross-Validation

Another way to guide the hyperparameter search is k-fold cross-validation. This
approach consists of splitting the dataset into k nonoverlapping subsets, also called
folds. For each of the k folds, a model is trained using k − 1 of the folds as training
data, and the resulting model is evaluated on the remaining part of the data. At each
round, a different fold is selected for testing. The test error may then be computed
by taking the average test error across the k rounds. Although k-fold cross-validation
is a popular method in ML/DL, it is not used in the current work.

2.3.5 Setup and Initialization Issues

2.3.5.1 Data Preprocessing

In many problems, the raw data may consist of variables that have different units
(e.g., Joules, Kelvin, dimensionless, etc.), scales, or distributions. Unscaled data may
result in a slow or unstable learning process, and lead to high generalization errors.
In particular, unscaled input and target variables on regression-type problems can
result in exploding gradients causing the learning process to fail. To stabilize the

31

learning process, it is recommended to preprocess the data before training the neural
networks; this is called data preprocessing, data preparation, or data scaling [55, 56].

Three types of data scaling methods are usually employed in practice, namely
normalization, standardization, and mean-centering. Consider observed data {y(i); i =
1, 2, . . . , n} for a scalar variable y ∈ R. Normalization is a rescaling of the data from
the original range such that all new values are within the range of 0 and 1. The
normalization operation sN is given by

sN(y) =
y − ymin

ymax − ymin
, (2.27)

where

ymin = min(y(i); i = 1, 2, . . . , n), (2.28a)

ymax = max(y(i); i = 1, 2, . . . , n). (2.28b)

Standardization involves rescaling the distribution of the data such that the mean
of the new values is zero and the standard deviation is one. The standardization
operation sS is given by

sS(y) =
y − µy

σy
, (2.29)

where

µy =

∑
i y

(i)

n
, (2.30a)

σy =

√∑
i(y

(i) − µy)2

n
. (2.30b)

Finally, mean-centering involves subtracting the variable’s mean from all observations
on that variable in the dataset such that the variable’s new mean is zero. The mean-
centering operation sC is given by

y′ = sC(y) = y − µy, (2.31)

where y′ can be thought of as the fluctuations. It is noted that these operations can
also be generalized to a snapshot variable y ∈ Rm, where m > 1. In this work, unless
stated otherwise, the data used to train the AEs are normalized, the data used to
train the regressors are standardized, and the data used to compute the POD modes
are mean-centered.

2.3.5.2 Parameter Initialization

In this section, we will explain how to initialize neural network parameters effec-
tively. Neural network models are trained using an optimization algorithm based on
stochastic gradient-descent that incrementally changes the network parameters (i.e.,
weights and biases) in order to minimize a loss function, with the hope of obtaining

32

a set of parameters that is capable of making accurate predictions. The optimization
algorithm is iterative by nature, and thus requires a starting point in the space of all
possible parameter values from which to begin the learning process. The initial point
can not only determine whether the algorithm converges at all, but also impact the
training cost when learning does converge.

An important consideration of parameter initialization is symmetry-breaking : if
all the parameters in the neural network are initialized to the same value, it can
be difficult (or sometimes impossible) for the parameters to differ as the model is
trained. Hence, initializing the model to small random values helps in breaking the
“symmetry” and allows different parameters to learn independently of each other. It
has also been shown that using more specific heuristics that use information such as
the number of inputs to the node and type of activation function can further enhance
the training process [55, 69].

Some modern initialization strategies for the network weights are described here-
after:

1. The Glorot normal initializer, also called Xavier normal initializer, draws each
weight from a random normal distribution with a mean of zero and a standard
deviation of σ =

√
2/(ni + no), where ni is the dimension of the input to the

layer (i.e., number of nodes in the previous layer), and no is the dimension of
the output from the layer (i.e., number of nodes in the current layer).

2. The Glorot uniform initializer, also called Xavier uniform initializer, draws
each weight from a random uniform distribution in the range [−s, s] for s =√
6/(ni + no).

3. The He normal initializer draws each weight from a random normal distribution
with a mean of zero and a standard deviation of σ =

√
2/ni.

4. The He uniform initializer draws each weight from a random uniform distribu-
tion in the range [−s, s] for s =

√
6/ni.

It is noted that the biases may be initialized to zero, as long as the asymmetry
breaking is provided by the small random numbers in the weights.

Some studies have shown that the Glorot-based methods can be more effective
when used to initialize networks that use the sigmoid or tanh activation function,
whereas the He-based strategies can be more effective when used on networks with
the ReLU activation function or its variants [69]. While this result can be used as a
design guideline, one can also treat the initialization strategy as a hyperparameter,
and eventually select the method that yields the best performance for a given problem.

2.3.5.3 Hyperparameter Tuning

Hyperparameters are pre-defined variables that determine the network structure
and how the network is trained. Examples include the number of hidden layers, the
number of neurons per hidden layer, the learning rate, the regularization coefficient,

33

the convolution filter width, the number of filters in a convolution layer, etc. The
performance of a DL model can be highly dependent on the choice of hyperparameters.
Therefore, hyperparameter tuning is a crucial part of the model training process.

For each set of hyperparameters, a learning algorithm, such as Adam (see Sec. 2.3.6),
is executed to find the network’s parameters (i.e., weights and biases) that minimize
the loss function. A training error and validation error are then computed for each
execution, and the set of hyperparameters that yields the lowest validation error (or
at least reaches acceptable level of accuracy) is selected in the final model. The
hyperparameters can be tuned manually or automatically.

Manual tuning is based on a trial-and-error approach, but one must understand the
relationship between the hyperparameters and model performance to make appropri-
ate selections. Although simple, manual tuning can be a tedious and time-consuming
task for certain problems and use-cases.

On the other hand, automatic tuning involves the use of advanced software like
DeepHyper [70], developed by the Argonne Leadership Computing Facility (ALCF),
or ModelSearch [71], developed by Google. These software helps find the optimum
set of hyperparameters in the explore search space with minimal human intervention.
Although effective, these algorithms are compute-heavy and may require a lot of
computing resources.

Note that, for all problems and use-cases considered in this work, manual tuning of
the hyperparameters was deemed sufficient to build neural networks with acceptable
levels of accuracy, and thus, automatic tuning was not used here.

2.3.6 Gradient-Based Optimization Strategies

The goal of a learning algorithm, also called optimization algorithm, is to find the
parameters θ such that the loss function J is minimized. Formally, we can write the
optimization problem as:

Optimization problem

Find θ∗ = argmin J(θ) for given dataset and hyperparameters. (2.32)

Solving Problem (2.32) analytically is usually difficult and most of the time impos-
sible, mainly because J is a highly nonlinear, nonconvex function of θ. Alternatively,
one can attempt at solving the problem numerically using an iterative, gradient-based
approach [55].

One basic approach is the method of steepest descent, also known as classical
gradient descent, in which the gradient of the loss function is used to make parameter
updates at each iteration. The model training is done in a series of epochs, where
each epoch consists of one forward pass and one backward pass over all the samples
in the training set. In the forward pass, the loss function is computed, whereas in the
backward pass, the gradient is computed. The update rule is given by

θ ← θ − ϵ∇θJ(θ), (2.33)

34

where ϵ ∈ (0, 1] is the learning rate, a positive scalar determining the size of the
step, i.e., the amount that the parameters are updated during training. For example,
if ϵ is set to 0.01, the parameters will be updated by 1% of the computed error
gradient at each epoch. The minus sign in Eq. (2.33) refers to the minimization
part of the algorithm. In fact, the gradient represents the direction in which the loss
function increases. In the algorithm, we aim to minimize the loss function, therefore
at any given point, we need to move in the direction where the function decreases the
most, i.e., in the opposite direction of the gradient, which explains the minus sign.
Although simple, this method has some big flaws. It does not always point in the best
direction of improvement because it uses steps of constant size. Moreover, the method
computes the gradient based on the entire training set (known as full-batch learning,
or simply as batch learning), which can slow down the calculations, especially when
large training sets are considered.

Calculations can be accelerated by using stochastic gradient descent (SGD), which
uses mini-batch learning. Here, the “true” gradient is no longer computed; rather, an
approximation of the true gradient is estimated using randomly selected minibatches
from the training set. The number of training samples included in each sub-epoch
parameter change is defined as the batch size. As a result, the parameters are updated
several times over the course of a single epoch. For example, if 1,000 training examples
are considered, and the batch size is 50, then it will take 20 iterations to complete
one epoch.

Although SGD is faster than steepest descent, the algorithm can sometimes be
slow, especially when navigating through areas of high curvature or facing noisy
gradients. This can be addressed by adding a momentum term [72] in the algorithm
to dampen the oscillations in the search; this is referred to as SGD with momentum.
Rather than using only the gradient of the current iteration to guide the search,
the momentum method also accumulates the gradients of previous iterations (more
specifically, an exponentially decaying moving average of past gradients) to determine
the direction to go. The update rule at each sub-epoch becomes

v ← αv − ϵ∇θJminibatch(θ) (2.34a)
θ ← θ + v, (2.34b)

where v is the velocity variable representing the momentum (in physics, momentum
is mass times velocity, but a unit mass is assumed in the learning algorithm, hence
v plays the role of momentum here), α ∈ [0, 1) is the momentum hyperparameter
representing the percentage of the gradient retained at every iteration, and Jminibatch

is the loss function calculated over a minibatch. Equation (2.34a) has two parts. The
first term represents the gradients retained from previous iterations, while the second
represents the gradient from the current iteration.

In the methods described above, the same learning rate is applied to all parameter
updates, which can sometimes be problematic, especially for non-stationary problems
with very noisy or sparse gradients. To address this issue, adaptive learning rate
algorithms can be used in which the learning rates of all network parameters are
individually adapted [55]. Popular methods in this category include AdaGrad [73],

35

RMSProp, and Adam [74]. In particular, in Adam, two variables s and r are used
to adapt the learning rate for each network parameter. The variable s corresponds
to an estimate of the first-order statistical moment of the gradient, which represents
a moving average of the gradients (i.e., the momentum term), while the variable r
corresponds to an estimate of the (uncentered) second-order statistical moment of
the gradient, which represents a moving average of the squared gradients, both with
exponential weighting. Moreover, bias corrections are included in the estimates of
both of these moments to account for their initialization at the origin. A pseudo-code
for the Adam approach is given in Algorithm 1.

Algorithm 1: The Adam algorithm
Input: Global learning rate ϵ (also called initial learning rate, default: 0.001)
Input: Exponential decay rates for moment estimates, β1 and β2 in [0, 1) (default: 0.9 and
0.999, respectively)

Input: Constant δ used for numerical stability (default: 10−7)
Input: Initial parameters θ (obtained by applying some parameter initialization strategy,
cf. Sec. 2.3.5.2)

Initialize first and second moment variables: s = 0, r = 0
Initialize time step: t = 0
while stopping criterion not met do

Sample a minibatch of n examples from the training set
Compute gradient: g ← 1

n∇θ

∑
i J(f(x

(i);θ),y(i))
Update time step: t← t+ 1
Update biased first moment estimate: s← β1s+ (1− β1)g
Update biased second moment estimate: r ← β2r + (1− β2)g ⊙ g
Correct bias in first moment: ŝ← s

1−βt
1

Correct bias in second moment: r̂ ← r
1−βt

2

Compute update: ∆θ = −ϵ ŝ√
r̂+δ

(operations carried element-wise)
Update network parameters: θ ← θ +∆θ

end while
Return θ

Adam is generally regarded as an algorithm that performs fairly robustly [55].
For this reason, Adam is used as the learning algorithm in all problems and use-cases
considered in this work.

36

2.3.7 GPU Acceleration

Graphic processing units were originally developed to accelerate the rendering of
3D graphics5 by performing many matrix multiplications in parallel. Over time, they
have evolved significantly, enhancing their capabilities. This allowed programmers to
use the power of GPUs to dramatically accelerate additional workloads in many other
fields including high performance scientific computing and ML.

Neural network implementations require many intensive computations involving
vector, matrix, and tensor operations, as seen in Secs 2.2 and 2.3. For example, in a
DFNN, each forward propagation involves many matrix-vector multiplications, and
in a CNN, each forward propagation involves many convolutions. Further, a dimen-
sion that corresponds to the number of samples in the training set (or minibatch)
is generally added to the involved arrays, making the operations be between multi-
dimensional tensors. Similarly, in backpropagation, matrix (or tensor) multiplication
occurs frequently to propagate the errors backward. As a result, GPUs are well-suited
to parallelize DL applications.

Widely used DL frameworks such as PyTorch and TensorFlow (see Sec. 2.3.9) rely
on GPU-accelerated libraries such as cuDNN [75] and TensorRT [76] to deliver high-
performance model training and inference. Fortunately for the users, these libraries
provide an abstraction of low-level GPU performance tuning and a programming
interface that is easy to use with relatively limited rewriting of code. Hence, the
changes required to convert a neural network code from its CPU version to a GPU
version are often small [56].

The main difference between CPU and GPU is that a CPU is designed to handle
a wide variety of tasks quickly, ranging from arithmetic and logical operations to
running databases, but is limited in the concurrency of tasks that can be executed.
On the other hand, a GPU is best suited for repetitive and highly parallel, but
small, computing tasks. That is because a CPU consists of just a few cores (usually
between two and eight) with high clock speed6 and lots of cache memory7 optimized
for sequential serial processing, while a GPU uses thousands of smaller, but weaker,
cores with high memory bandwidth8 to achieve high level of parallelism.

The speedup that can be gained by training a neural network on a GPU architec-
ture is dependent on many factors, including hardware, number of GPUs, number of
parameters in the neural network, type of neural network, ML/DL library, etc. Ta-

53D rendering is the process of converting three-dimensional models into two-dimensional images
on a computer. This is used in many graphics applications, such as computer games.

6Clock speed is a measure of how many clock cycles a computing unit can perform per second.
Note this is different from the number of instructions per second (IPS) and floating-point operations
per second (FLOPS), which refer to how many tasks a computing unit can conduct per second. IPS
and FLOPS can be derived by multiplying the number of instructions per cycle (IPC) with the clock
speed.

7Cache memory is a temporary storage area that a computing unit can transfer data to and from
easily; the data stored in a cache often corresponds to intermediate results.

8Memory bandwidth refers to the amount of data that can be transferred to and from memory
per unit time.

37

ble 2.2 shows the speedups in training fully-connected and convolutional autoencoders
using an NVIDIA Tesla K80 GPU (from the Cooley cluster at ALCF) over an Intel
Core i7-10700T CPU @ 2.00 GHz (from a laptop) with the Keras API of Tensorflow
2.4 for various problems considered in this thesis. These problems will be analyzed
in greater detail in Chapters 6 and 7, but here we only report the speedups for the
purpose of discussion. From this table, we can observe that the training is faster on
the CPU when the neural network size is small, as in the one-dimensional Burgers
equation. However, for larger neural network sizes, such as those in the ADR equation
and A-M1 injector flow problems, a training speedup of up to five times is achieved
using the GPU over the CPU. This highlights the effectiveness of GPUs in enhancing
large-scale DL applications.

Table 2.2: Comparison of training time of autoencoders between one CPU and one
GPU using the Keras API of Tensorflow 2.4 for various problems considered in
this thesis.

Problem (type of neural network) Nb. epochs Nb. params CPU-secs GPU-secs Speedup
1D Burgers (FCAE) 1,000 39,140 78 272 0.29
1D Burgers (CAE) 1,000 5,014 236 603 0.39

ADR equation (FCAE) 1,000 1,854,702 1,130 626 1.81
ADR equation (CAE) 1,000 28,855 4,986 990 5.04

A-M1 injector flow (FCAE) 2,200 3,589,872 7,412 2,135 3.47

2.3.8 Error Metrics

Various error metrics are used in this work to analyze and evaluate the outputs of
neural networks, especially those involving vector or tensor quantities. Let q ∈ Rm be
the true quantity and q̃ ∈ Rm the predicted quantity. The variable q can represent,
for example, a multivariate output of a DFNN in a regression problem, or a variable
field (or snapshot) of an AE in a dimensionality reduction problem.

A mean-squared error 9 (MSE) is defined as:

MSE(q, q̃) =
1

m

m∑
j=1

(qj − q̃j)2, (2.35)

where qj and q̃j are the jth component of q and q̃, respectively.
The error based on the L2-norm is defined as

L2 = ∥q − q̃∥2 =

√√√√ m∑
j=1

(qj − q̃j)2. (2.36)

9Note that Eq. (2.35) represents the MSE for an individual sample. To get the averaged loss
over all samples in the set, or minibatch, we can write: J = 1

n
1
m

∑n
i=1

∑m
j=1(q

(i)
j − q̃

(i)
j)2, where q

(i)
j

and q̃
(i)
j are the jth component of q(i) and q̃(i), respectively, for the ith sample, and n is the total

number of samples.

38

It reduces to absolute value when we plot the L2 error distribution across spatial
locations for a snapshot:

√
(qj − q̃j)2 = |qj − q̃j| for all j = 1, . . . ,m.

The relative error based on the L2-norm is defined as:

ϵrel =
∥q − q̃∥2
∥q∥2

=

√∑m
j=1(qj − q̃j)2√∑m

j=1 q
2
j

. (2.37)

The relative error provides an easily interpretable measure of the relative quality of the
emulator. Multiplying the relative error by 100% results in a percentage error. Please
note that the expressions above can be easily generalized to a matrix Q ∈ Rm1×m2 .

2.3.9 Machine Learning Libraries

All the neural network models and training algorithms discussed in this chapter are
supported by numerous free and open-source ML and DL frameworks and libraries,
such as TensorFlow [25] and Keras [77], both developed by Google, PyTorch [26],
developed by Facebook, and Scikit-learn [78], developed jointly by Google and
INRIA. Some of these libraries allow us to take advantage of GPUs for more efficient
training. In the following, a brief description is provided for each library.

TensorFlow10 and PyTorch are both low-level ML and DL libraries, giving the
user a lot of freedom and control to write custom neural network models. This
flexibility, however, brings complexity to the code, often requiring the models to be
implemented from scratch, which results in a large number of lines of code. Fur-
ther, this often requires a deep understanding of DL concepts for model building and
fitting. In general, the two frameworks provide comparable performance speed and
accuracy. While they both operate on tensors, the main differences between them
are in the way in which variables are assigned and the computational graphs are
run [79]. Specifically, Tensorflow uses static computational graphs while PyTorch
uses dynamic computational graphs.11

Keras is a high-level application programming interface (API) built on top of
Tensorflow, which makes it a wrapper for DL purposes. It abstracts away many im-
plementation details, making the code simpler and more concise than in TensorFlow
and PyTorch, at the cost of limited flexibility and customization as well as slower
performance. It is highly modular; neural network models are designed by connect-
ing configurable building blocks together. Keras follows best practices to reduce the
cognitive load for the user.

10Certain references in literature describe TensorFlow as a framework supporting both low-level
and high-level APIs. Here, however, when we talk about TensorFlow, we are referring to its low-level
implementation and distinguishing it from its high-level Keras API.

11In TensorFlow 1.x, we first have to define the graph, then execute it. Once the graph is defined,
generally it cannot be changed during runtime. In PyTorch, however, we can change the structure
of the graph during runtime, for example, by adding or removing nodes dynamically. Note that this
difference can be overcome in newer versions of TensorFlow which provide a way of implementing
dynamic graphs through a library called TensorFlow Fold.

39

Scikit-learn is a general ML library built on top of NumPy [80], the fundamental
package for scientific computing in Python. It contains a great variety of utilities for
general pre- and post-processing of data which can be useful in the development of
DL models.

40

CHAPTER 3
COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics (CFD) is the analysis of systems involving fluid
flow, heat transfer, and associated phenomena such as phase change and chemical
reactions, by means of numerical simulations on computers, or supercomputers. CFD
plays an essential role in modeling and simulating many physical and engineering phe-
nomena, such as weather, aerodynamics, and flows inside propulsion engines. Fluid
flows are well described by a system of governing equations derived from basic con-
servation principles and laws, but solving these equations analytically is devilishly
hard and in many cases impossible, which is why we resort to numerical approaches.
In these approaches, the differential, or integral, equations are discretized and con-
verted into algebraic equations, which are solved at only discrete points, or cells, in
the domain. Various techniques are available for this conversion, including the finite-
difference method (FDM), finite-volume method (FVM), and finite-element method
(FEM).

In this chapter, we introduce some of the basic theoretical and numerical concepts
of CFD. The underlying governing equations of fluid motion are presented in Sec. 3.1.
Turbulence and its modeling are briefly discussed in Sec. 3.2. The LES approach,
which is employed in the present work for modeling turbulent flows, is described in
Sec. 3.3. Finally, FVM, which is used in the present work to discretize the equations,
is explained in Sec. 3.4.

3.1 Governing Equations

The dynamics of fluid flow are governed by equations that describe the conser-
vation of mass, momentum, and energy. Additional equations can also be used de-
pending on the problem under consideration to describe turbulence transport and
the transport of species as well as of scalars and passives. In this chapter, the set
of equations governing an unsteady, viscous, single-phase, multi-species, compressible
flow are presented.1 The basic conservation principles and laws used to derive these
equations are only briefly summarized here, but more detailed derivations can be
found in classic textbooks such as White [81] and Anderson [82].

The equations presented below are written in differential form using the index
notation (also known as Einstein’s summation convention) in a Cartesian coordinate
system.

1Multiphase flows are also considered in this thesis. To keep the discussion simple, the equations
are presented for a single-phase flow in this chapter. The necessary modifications needed to adapt
these equations to multiphase flows will be discussed later in this thesis.

41

Conservation of Mass: The Continuity Equation

Consider an infinitesimally small element moving with the flow with the same fluid
particles inside it (i.e., an infinitesimal control mass2). Applying the fundamental
physical principle of mass conservation, which states that mass cannot be created or
destroyed, means that the time rate of change of the mass of the element is zero. The
resulting differential equation is

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (3.1)

where t and xi are independent variables representing the time and spatial coordi-
nates, respectively, ρ is the density, and ui is the velocity in the direction xi.

Conservation of Momentum: The Momentum Equations

Applying Newton’s second law to the moving fluid element states that the net force
acting on the element equals its mass times its acceleration. In the present work,
body forces are neglected. Consequently, the forces result from the pressure p and
viscous stress tensor τ .3 The resulting differential equations4 can be expressed as

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

. (3.2)

For a Newtonian fluid, applying Stokes’ hypothesis gives a simple expression for the
viscous shear stress as a function of the velocity gradient. We get

τij = 2µ(Sij −
1

3
Skkδij), (3.3)

where µ is the dynamic viscosity and δij denotes the Kronecker delta. Sij is the
strain-rate tensor expressed as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.4)

Conservation of Energy: The Energy Equation

Applying the fundamental physical principle of energy conservation, which is basically
the first law of thermodynamics, to the moving fluid element states that the rate of

2The governing equations can also be derived by applying basic conservation principles and laws
to an infinitesimally small element fixed in space (i.e., a control volume). The final set of equations
is equivalent to that obtained from the control mass model [82].

3In addition to pressure and viscous shear stress, surface tension (which is also a surface force)
will be considered in the governing equations in Sec. 7.3.1.3 for modeling the multiphase flow inside
the diesel injector nozzle.

4In theoretical fluid dynamics, the momentum equations are called the Navier-Stokes equations.
In CFD, however, the system of equations comprising the continuity, momentum, and energy equa-
tions (species transport equations can also be included) is referred to as the Navier-Stokes equations
or extended Navier-Stokes equations.

42

change of energy inside the element equals the sum of net flux of heat into the element
and rate of work done on the element due to the involved forces. The resulting
differential equation can be expressed as

∂(ρet)

∂t
+
∂[(ρet + p)ui]

∂xi
= − ∂qi

∂xi
+
∂(uiτij)

∂xj
, (3.5)

where et is the mixture total energy per unit mass (also called mixture specific total
energy) and q denotes the heat flux vector. The specific total energy et is defined as
the sum of mixture specific internal energy and kinetic energy, given by

et = e+
ujuj
2
. (3.6)

The specific internal energy e can be expressed as a function of the mixture specific
enthalpy h, pressure p, and density ρ, as follows

e = h− p

ρ
. (3.7)

The mixture specific enthalpy h can be determined from the mixture concentration
and partial-mass enthalpies hn5

h =
N∑

n=1

Ynhn, (3.8)

where N is the total number of species in the system, and Yn is the mass fraction of
the nth species.

Neglecting Dufour and Soret effects, the heat flux can be written as the sum of
conductive fluxes, following Fourier’s law, and enthalpy fluxes due to species diffusion,
as follows

qj = −λ
∂T

∂xj
+ ρ

N∑
n=1

hnYn𝒱n,j, (3.9)

where λ is the heat conductivity, T is the temperature, and 𝒱n,j is the diffusion
velocity of the nth species in the direction xj, which can be obtained from Fick’s law.

Species Transport Equations

The species transport equations describe the rate of change of the species mass frac-
tions in the flow and can be expressed as

∂(ρYn)

∂t
+
∂(ρYnuj)

∂xj
= −∂(ρYn𝒱n,j)

∂xj
+ ẇn, for n = 1, 2, . . . , N, (3.10)

5The partial-mass enthalpy of the nth species is defined as: hn =

(
∂mh
∂mn

)
T,p,mj ̸=n

, where m is

the mixture mass and mj the mass of the jth species. For ideal gases, the partial-mass enthalpy of
a species is equal to its specific enthalpy. For non-ideal fluids, however, the two quantities are, in
general, different from each other.

43

where ẇn is the mass production rate of the nth species. Note that for non-reacting
flows ẇn is zero whereas for reaction flows ẇn can be determined from the Arrhenius
equation combined with suitable reaction mechanisms [83].

In addition to the equations presented above, it is necessary to use an equation
of state (EOS) to establish relationships between fluid properties to close the sys-
tem of equations. Examples of EOS include the ideal-gas EOS and real-fluid EOS
(see Sec. 5.3.1). The choice of EOS is dependent on the fluid, or mixture, as well as
on the physical conditions under consideration. Finally, we also need expressions to
compute transport properties including the heat conductivity, viscosity, and diffusion
coefficients.

3.2 Turbulence and its Modeling

Most flows in engineering practice are characterized by high Reynolds numbers,
and thus are turbulent. In turbulent flow, the fluid motion undergoes irregular fluc-
tuations, or mixing, in contrast to laminar flow, in which the fluid travels smoothly
and in regular paths. Although turbulence has been studied for more than a hundred
years, since Osborne Reynolds’ experiments at the end of the 19th century, it is still a
major challenge in fluid mechanics due to its strong nonlinear behavior [84]. In fact,
it is regarded by many as the last unsolved problem of classical physics.6

In the turbulent regime, the governing equations become highly nonlinear, which
complicates our ability to analyze and simulate fluid flows. The nonlinearity creates
a wide and continuous range of flow features and scales, characterized by very large
energy-containing eddies and very small dissipative eddies. The range of scales in-
creases with the Reynolds number. As a result, at very high Reynolds numbers, the
range of temporal and spatial scales becomes so large that the simultaneous represen-
tation of both large and small eddies makes for an intractable computational problem,
even with today’s computational resources and infrastructures.

The complexity of the flow description can be reduced to alleviate this compu-
tational burden. This can be done by either averaging or filtering the governing
equations such that only the primary features, representing the large-scale motion
of the flow, are resolved in detail. These operations, however, introduce additional
terms, known as unclosed terms, into the equations, making the number of unknowns
larger than the number of equations. Closure modeling becomes essential. The three
basic methodologies that are widely used in turbulence simulation and research are:

1. Direct numerical simulation (DNS), which is the most straightforward approach.
In DNS, the governing equations are discretized with enough resolution to re-
solve all scales of turbulent motion. It does not need the use of a turbulence or

6According to an almost certainly apocryphal story, applied mathematician Horace Lamb once
said regarding the difficulty of explaining and studying turbulence in fluids: “I am an old man now,
and when I die and go to Heaven there are two matters on which I hope enlightenment. One is
quantum electro-dynamics and the other is turbulence of fluids. And about the former, I am really
rather optimistic.” [85].

44

closure model, thus giving highly accurate solution. DNS has been a very useful
technique to gain insight into detailed dynamics of turbulent flows [86]. DNS
also provides data for turbulence and turbulent combustion model development
and validation. However, to resolve all scales of motion in a three-dimensional
setting, the grid size has to be proportional to Re9/4L , with ReL the Reynolds
number associated with the characteristic length of the flow [87], and thus DNS
is limited to relatively small Reynolds number flows and is generally infeasible
for industrial applications.

2. Reynolds-averaged Navier-Stokes (RANS) simulation, in which only statistical
quantities, i.e., the ensemble or time-averaged mean quantities, are predicted.
The effect of all the scales of motion is modeled (except for Unsteady-RANS,
or URANS for short, in which coherent motions are partially resolved [88]).
Even though RANS is inherently less expensive and has moderate success in in-
dustrial applications, it suffers from one principal shortcoming that the model
must account for a very wide range of scales. Based on Kolmogorov’s hypothesis,
at sufficiently high Reynolds number, the small-scale motions are statistically
isotropic and tend to be universal to model [87]. The large-scale motions, how-
ever, are strongly dependent on the boundary conditions of the flow, thus it is
not possible to develop a universal model for all turbulent flows [84].

3. Large eddy simulation (LES), which is a trade-off between the accuracy and
computational cost of DNS and RANS; it is more accurate than RANS, but
requires less computation time and fewer resources than DNS. In LES, energy-
containing large-scale motions that are larger than a prescribed filter width
are fully resolved while the effect of small-scale motions is modeled. Since the
small-scale motions are more isotropic and universal, they can be modeled in
a universal manner with much less ad-hoc adjustments in model coefficients
compared with the turbulence models for RANS simulations.

Based on the above, LES seems promising to solve turbulent flow problems, espe-
cially for practical applications, and thus is used in this work to achieve turbulence
closure.

3.3 Large Eddy Simulation

3.3.1 Filtering Operator

In LES, large-scale motions, which carry most of the kinetic energy are fully resolved,
while small-scale motions, which are more universal and easier to model, are modeled
with subgrid-scale (SGS) models. To separe the large-scale motions from the small-
scale ones, a high-pass filtering operation in the physical domain, which is also a
low-pass filtering operation in the wavenumber domain, is performed explicitly or

45

implicitly. The filtered (or resolved) part f(x, t) of a spatiotemporal variable f(x, t)
is defined by the relation7

f(x, t) =

∫ +∞

−∞
f(x′, t)G(x− x′)dx′, (3.11)

where G is the filter kernel (also called convolution kernel), which determines the size
and structure of the small scales. A filter has to satisfy a certain number of properties,
such as conservation of constants, linearity, and commutation with derivation [88].
We can also write

f = f + f ′, (3.12)

where f ′ is the sub-filtered portion of f .
Different kernels can be used to perform the desired scale separation, and a thor-

ough discussion on this topic can be found in classic textbooks such as Pope [87],
Sagaut [88], and Garnier et al. [89]. In the present work, the filter kernel corresponds
to a Box (or top-hat) filter. For one spatial dimension in physical space, it is given
by

G(x− x′) =

{
1
∆

if |x− x′| < ∆
2

0 otherwise
, (3.13)

where ∆ is the filter width (also called cutoff scale). For filtering in three spatial di-
mensions, the convolution kernel is obtained by tensorial extension of one-dimensional
kernels, as follows

G(x− x′) =
3∏

i=1

Gi(xi − x′i), (3.14)

In Eq. (3.14), one can use either a different value of the filter width ∆i in each direction
xi, or the same characteristic filter width ∆ in all the directions.

For stretched non-uniform grids, there may be some advantage in varying the
filter cutoff scale to adapt the structure of the solution better instead of setting it
to a constant value. As a result, the filter width is usually taken equal to be of
the same order as the local grid size.8 In three-dimensional computations with grid
cells of different length ∆x, width ∆y, and height ∆z9, the cutoff scale is often
taken to be the cube root of the local grid cell volume, i.e., ∆(x) = 3

√
∆x∆y∆z. In

this formulation, any Box-filtered quantity is simply its spatial average in the local
computational volume (or cell) CV(x), with ∆V (x) denoting the volume of the cell,
i.e.

f(x, t) =
1

∆V (x)

∫
CV(x)

f(x′, t)dx′. (3.15)

7The relation in Eq. (3.11) corresponds to spatial filtering. It is possible to extend this equation
to include temporal filtering as well. However, this is not done here because most LES studies are
based on spatial filtering [88, 89].

8Under this consideration, the commutation of filtering with derivation is no longer strictly valid.
The commutation error, however, is usually neglected for moderately stretched grids, or can be
accounted for by the SGS models.

9Note that, for stretched grids, the grid sizes ∆x, ∆y, and ∆z are usually not constant and vary
with the position x.

46

In compressible flows, it is advantageous to apply Favre-averaged filtering (or, for
short, Favre filtering) to the different variables. Favre filtering is a density-weighted
approach which simplifies the filtered compressible governing equations by greatly
reducing the number of unknowns or SGS terms and can be defined as

f̃ =
ρf

ρ
. (3.16)

Any variable f can be decomposed into a Favre-averaged filtered (or resolved) com-
ponent f̃ and a sub-filtered (or unresolved) component f ′′, as follows

f = f̃ + f ′′. (3.17)

The □̃ operator is linear but does not commute with the derivative operators in space
and time, unlike the □ operator. Consequently, special care must be taken while
deriving the LES governing equations.

3.3.2 Favre-Filtered Governing Equations

Filtering the conservation equations of mass, momentum, energy, and species for
a single-phase, compressible, multi-species flow results in the following set of LES
equations, which are written using index notation in a Cartesian coordinate system.
These are the equations that will be resolved in the numerical simulations. A detailed
derivation of these equations can be found in classic textbooks such as Garnier et
al. [89].

LES governing equations

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0, (3.18a)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= − ∂p

∂xi
+
∂(τ ij − τ sgsij)

∂xj
, (3.18b)

∂(ρẽt)

∂t
+
∂[(ρẽt + p)ũi]

∂xi
=

∂

∂xi
(−qi + ũjτ ij − φsgs

i + σsgs
i), (3.18c)

∂(ρỸn)

∂t
+
∂(ρỸnũi)

∂xi
=

∂

∂xi
(−ρỸn𝒱n,i − ϕsgs

n,i + θsgs
n,i) + ẇn, for n = 1, 2, . . . , N.

(3.18d)

The filtered viscous stress matrix τ ij in Eq. (3.18b) and the filtered heat-flux
vector qi in Eq. (3.18c) are approximated as

τ ij = 2µ

(
S̃ij −

1

3
Skkδij

)
, (3.19)

47

qi = −λ
∂T̃

∂xi
+ ρ

N∑
n=1

h̃kỸn𝒱n,i. (3.20)

Here, S̃ij is the resolved strain-rate, given as S̃ij = (∂ũi/∂xj +∂ũj/∂xi)/2, and 𝒱n,i is
the filtered diffusion velocity for the nth species, which can be obtained from Fick’s
law applied to the resolved variables.

All the subgrid-scale terms, denoted with the superscript “sgs”, are unclosed, and
thus, require specific modeling. These terms are:10

τ sgsij = ρuiuj − ρũiũj, (3.21a)
σsgs
i = (ujτij − ũjτ ij), (3.21b)

φsgs
i = ρetui − ρẽtui + (pui − p̄ũi), (3.21c)

ϕsgs
n,i = ρYnui − ρỸnui, for n = 1, 2, . . . , N, (3.21d)

θsgsn,i = ρYn𝒱n,i − ρỸn𝒱n,i, for n = 1, 2, . . . , N. (3.21e)

The subgrid momentum flux term τ sgsij (also called subgrid stress term), subgrid energy
flux term φsgs

i , and subgrid species flux term ϕsgs
n,i result from filtering the correspond-

ing convective terms. The subgrid viscous work term σsgs
i comes from correlations

of the velocity field with the viscous stress tensor, and the subgrid species diffusive
flux term θsgsn,i comes from correlations of the species mass fractions with the diffusion
velocities. The filtered species mass production rate ẇn is also unclosed.

In addition to the conservation equations, the equation of state must also be
filtered. Filtering the equation of state gives us

p = ρR̃Z̃T̃ + T sgs, (3.22)

where Z̃ is the resolved compressibility factor, and T sgs is a subgrid term defined as
T sgs = (ρRZT − ρT̃ Z̃T̃), which is typically neglected. The mixture gas constant R̃
can be computed as

R̃ =
N∑

n=1

Ỹn
Ru

Wn

, (3.23)

where Ru is the universal gas constant.
Finally, the filtered specific total energy ẽt can be approximated as

ẽt = h̃− p

ρ
+
ũiũi
2

+ ksgs, (3.24)

where ksgs is the subgrid kinetic energy, defined as ksgs = (ũiui − ũiũi)/2.
10Note that certain references in literature write Eqs. (3.21a)–(3.21e) in a different, but equivalent,

form. For example, Eq. (3.21a) can be written as τ sgs
ij = ρũiuj − ρũiũj .

48

3.3.3 Closure for SGS terms

The unresolved SGS terms described in the previous section need to be modeled
appropriately to represent the influence of the small-scale turbulent motions onto
the large-scale structures. As mentioned previously, a major advantage of the LES
technique is that the small-scale motions have a universal character. Therefore, the
modeling of the unresolved terms is rather simple compared to the RANS approach.
Mathematically, closure modeling reduces the number of unknowns in the system by
expressing the unresolved terms as a function of the resolved variables such that the
number of unknowns becomes equal to the number of equations in the system. In
other words, this allows obtaining a well-posed problem.

Many of the SGS closure models employed in literature are based on an eddy-
viscosity type model [87]. Examples of these models are the algebraic Smagorinsky
model [90], dynamic Smagorinsky model [90], and one-equation model [87]. In these
models, the SGS stress tensor τ sgs

ij is related to the resolved strain-rate tensor S̃ij in
analogy to the laminar Stokes’ hypothesis. For compressible flows, the SGS stress
tensor is modeled as

τ sgsij = −2ρ̄νt(S̃ij −
1

3
S̃kkδij) +

2

3
ρ̄ksgsδij, (3.25)

where νt is the turbulent eddy viscosity. While the laminar dynamic viscosity ν is
a fluid property, νt is a flow property. Other SGS models that do not use turbulent
viscosity to model the subgrid stress matrix in the momentum equation include the
dynamic structure model [91].

In the following, the algebraic Smagorinsky model, which is employed in Chapter 5,
is briefly explained.

Algebraic Smagorinsky Model

In this model, the eddy viscosity νt and subgrid kinetic energy ksgs are obtained
algebraically to avoid solving additional transport equations [90]. This model is based
on the equilibrium hypothesis, which assumes that the small-scale motions, which have
shorter time scales than the large energy-carrying eddies, can adjust more rapidly to
perturbations and recover equilibrium nearly instantaneously. Under this assumption,
νt and ksgs are modelled as

νt = CR(∆D
2)

√
2S̃ijS̃ij, (3.26)

ksgs = CI(∆D
2)S̃ijS̃ij, (3.27)

where CR and CI are dimensionless quantities representing the compressible Smagorin-
sky constants, and ∆ is the filter width presented earlier. The Van-Driest damping
function D is used to take into account the inhomogeneities near the wall [92] and is
expressed as

D = 1− exp
(
−
(
y+

25

))
, (3.28)

49

where y+ = yuτ/ν with uτ the friction velocity.
Substituting Eqs. (3.26) and (3.27) into Eq. (3.25), we can obtain an expression

for τ sgs
ij as a function of the resolved variables.

The subgrid energy flux term φsgs
j is modeled based on the gradient transport

assumption, as follows

φsgs
j = −ρ νt

Prt

(
∂h̃

∂xj
+ ũi

∂ũi
∂xj

+
1

2

∂ksgs

∂xj

)
, (3.29)

where Prt represents the turbulent Prandtl number, which is set to a standard value
of 1.0 in the present study. The SGS viscous work term σsgs

ij is neglected due to its
small contribution to the total energy equation [84].

The convective species flux terms is typically modelled as

ϕsgs
n,i = −ρ

νt
Sct

∂Ỹn
∂xi

, (3.30)

where Sct is the turbulent Schmidt number. The SGS species diffusive flux term θsgs
n,j

is usually neglected [93].

3.4 Finite-Volume Method

The filtered governing equations are solved numerically by means of a finite-volume
method [94, 95]. The computational domain is subdivided into a finite number of
small control volumes (also called computational cells) via a suitable grid. Each
control volume is assigned a computational node corresponding to its center, and is
enclosed by the control volume boundaries (also called control surfaces, or cell faces).
An advantage of this method over other numerical approaches, such as the finite-
difference method, is that it is easily formulated to allow for complex meshes and
geometries. Furthermore, because the flux leaving a computational cell is identical to
that entering the adjacent cell, the method is conservative.

In the following, we consider a structured grid (or a block-structured grid) such
that each cell in three-dimensional is a hexahedron with six faces and eight corner
points. For maintenance of conservation, the control volumes do not overlap; each
cell face is unique to the two control volumes which lie on either side of it.

3.4.1 Compact Forms

The system of filtered governing equations (3.18a)–(3.18d) can be written in a com-
pact form suited for CFD, as follows:

∂𝒬𝒬𝒬
∂t

+
∂(ℰℰℰ−ℰℰℰv)

∂x
+
∂(ℱℱℱ−ℱℱℱv)

∂y
+
∂(𝒢𝒢𝒢−𝒢𝒢𝒢v)

∂z
=ℋℋℋ, (3.31)

where 𝒬𝒬𝒬 is the vector of conservative variables, which is given by Eq. (3.34), ℰℰℰ, ℱℱℱ
and 𝒢𝒢𝒢 are the vectors of inviscid fluxes associated with the operators ∂/∂x, ∂/∂y,

50

and ∂/∂z, respectively, and ℰℰℰv, ℱℱℱv and 𝒢𝒢𝒢v are the vectors of viscous/turbulent fluxes
associated with the operators ∂/∂x, ∂/∂y, and ∂/∂z, respectively, and ℋℋℋ is the source
term vector, which is given by Eq. (3.35). We can also write the equations in a more
compact form, as follows:

∂𝒬𝒬𝒬
∂t

+∇ · (F − Fv) =ℋℋℋ, (3.32)

where F is the matrix of inviscid fluxes, and Fv is the matrix of viscous/turbulent
fluxes. They are defined as

F =
(
ℰℰℰ | ℱℱℱ | 𝒢𝒢𝒢

)
, (3.33a)

Fv =
(
ℰℰℰv | ℱℱℱv | 𝒢𝒢𝒢v

)
. (3.33b)

Explicit expressions for F and Fv are given by Eqs. (3.36) and (3.37), respectively,
from which we can also obtain expressions for the vectors ℰℰℰ, ℱℱℱ, 𝒢𝒢𝒢, ℰℰℰv, ℱℱℱv and 𝒢𝒢𝒢v.
In these expressions, the variables ũ, ṽ and w̃ denote the components of the resolved
velocity vector.

51

𝒬𝒬𝒬 =

ρ
ρũ
ρṽ
ρw̃
ρẽt
ρỸn

 . (3.34)

ℋℋℋ =

0
0
0
0
0
ẇn

 . (3.35)

F =

ρũ ρṽ ρw̃
ρũ2 + p ρũṽ ρũw̃
ρũṽ ρṽ2 + p ρṽw̃
ρũw̃ ρṽw̃ ρw̃2 + p

(ρẽt + p)ũ (ρẽt + p)ṽ (ρẽt + p)w̃

ρũỸn ρṽỸn ρw̃Ỹn

 . (3.36)

Fv =

0 0 0
τxx − τ sgs

xx τxy − τ sgs
xy τxz − τ sgs

xz

τxy − τ sgs
xy τ yy − τ sgs

yy τ yz − τ sgs
yz

τxz − τ sgs
xz τ yz − τ sgs

yz τ zz − τ sgs
zz

ũτxx + ṽτxy + w̃τxz − qx − φsgs
x + σsgs

x ũτxy + ṽτ yy + w̃τ yz − qy − φsgs
y + σsgs

y ũτxz + ṽτ yz + w̃τ zz − qz − φsgs
z + σsgs

z

−ρ𝒱n,xỸk − ϕsgs
n,x + θsgs

n,x −ρ𝒱n,yỸk − ϕsgs
n,y + θsgs

n,y −ρ𝒱n,zỸk − ϕsgs
n,z + θsgs

n,z

 .
(3.37)

52

3.4.2 Approximation of Volume and Surface Integrals

Equation (3.32) is integrated over a computational cell CV enclosed by the surface S
in the physical domain, as follows∫

CV

∂𝒬𝒬𝒬
∂t
dV +

∫
CV

[∇ · (F − Fv)]dV =

∫
CV

ℋℋℋdV = 0. (3.38)

Using the Gauss divergence theorem, we get∫
CV

∂𝒬𝒬𝒬
∂t
dV +

∫
S

[(F − Fv) · n]dS =

∫
CV

ℋℋℋdV, (3.39)

where n is the outward unit vector normal to infinitesimal surface element dS.
In Eq. (3.39), the volume integrals can be conveniently evaluated using the flow

values at the cell center (i, j, k). Thus, we can write the time derivative and source
terms as ∫

CV

∂𝒬𝒬𝒬
∂t
dV ≈ ∂𝒬𝒬𝒬

∂t

∣∣∣∣
i,j,k

∆V, (3.40a)∫
CV

ℋℋℋdV ≈ℋℋℋ|i,j,k∆V, (3.40b)

where ∆V is the volume of the cell.
Equation (3.39) also contains a surface integral term representing the fluxes; this

term requires careful treatment. The net flux through the cell boundary is the sum
of integrals over all the cell faces (six faces in 3D), which gives∫

S

[(F − Fv) · n]dS =
∑

all cell faces

∫
Sl

[(F − Fv) · nl]dS, (3.41)

where l is an index looping over all the cell faces (i.e., l = 1, 2, . . . , 6 in 3D).
In the right-hand side of Eq. (3.41), each surface integral can be evaluated using

the mid-point rule, i.e., the integral is approximated as a product of the integrand
at the cell-face center (which is itself an approximation to the mean value over the
surface) and the cell-face area, which gives∑

all cell faces

∫
Sl

[(F − Fv) · nl]dS =
∑

all cell faces

[(F − Fv) · nl]∆Sl, (3.42)

where ∆Sl is the area of cell face l, and nl is the unit vector normal to cell face l.
Substituting back into Eq. (3.39), we obtain

∂𝒬𝒬𝒬
∂t

∣∣∣∣
i,j,k

∆V +
∑

all cell faces

[(F − Fv) · nl]∆Sf =ℋℋℋ|i,j,k∆V. (3.43)

In the finite-volume method, all information is available at the center of each computa-
tional cell (once the equations are solved numerically). However, cell-faced quantities

53

are needed by the flux terms in Eq. (3.43) and therefore, some form of interpolation
or approximation is needed to evaluate flow variables at the cell faces as a function of
cell-centered quantities. The accuracy of the interpolation or approximation controls
the overall spatial accuracy of the numerical integration scheme. Further, depending
on the manner in which the flux terms are evaluated, a wide variety of central and
upwind difference schemes can be used. In addition to these terms, we need expres-
sions for the geometric quantities nl, ∆Sf , and ∆V in order to solve Eq. (3.43), which
can be non-trivial, especially for complex grids. Regarding time integration, it can be
performed using a multi-stage or multi-step time-stepping method. A local time step
can also be used to accelerate convergence. Other important considerations for CFD
include initial and boundary conditions, numerical stability, code parallelization, ar-
tificial dissipation, etc. These are not discussed here for the sake of brevity. For more
details, the reader is referred to the Ph.D. theses of Zong [96] and Huo [97], or to the
Converge manual [98].

3.5 CFD Solvers

Various CFD codes were employed in this thesis to generate databases for DL model
development and validation, as shown in Table 3.1. The discussion above focused
mainly on single-phase compressible flows. Differences and specific considerations for
each solver are provided in its corresponding section in Part II.

Table 3.1: List of CFD solvers employed in this thesis. The symbol “♮” refers to codes
written from scratch in this work.

Code Type Case Numerics Sec.
PMBFS In-house GCLSC rocket injector flow FVM 5.3.2.1

CONVERGE Commercial A-M1 diesel injector flow FVM 7.3.1.3
One-D ThermoCode In-house Quasi-1D counterflow diffusion flame FVM 5.3.2.2

♮ – 1D Burgers equation FDM 6.4.1
♮ – 2D ADR equation FDM 6.5.1

54

CHAPTER 4
FUEL INJECTION PHENOMENA AND MODELING PRACTICES

Injection, mixing, and combustion under high pressures are very common in many
high-performance propulsion and power generation systems. In general, such extreme
physical conditions allow to extract the maximum amount of energy from the fuel
and convert it to thrust or mechanical power. Examples of engines operating under
high pressures are diesel engines, gas turbines, and liquid-propellant rocket engines
(LPREs). Here, we focus on diesel engines and LPREs.

This chapter is organized as follows. Section 4.1 provides a classification of com-
bustion engines. Section 4.2 describes the different states of matter for fluids. Finally,
Secs. 4.3 and 4.4 present some of the basic physics and engineering concepts related
to and modeling approaches for injection and mixing in diesel engines and LPREs,
respectively.

4.1 Engine Classification

Figure 4.1: Classification of combustion engines. Note that this classification is not
exhaustive.

Diesel engines and rocket engines are a type of internal combustion engines (ICEs),
in which thurst or mechanical power is produced from the heat released by burning
or oxidizing the fuel inside the engine. This is different from external combustion
engines, such as steam engines, which derive its heat from fuel consumed outside the
engine. ICEs can be divided into two groups [99]:

1. Continuous combustion engines, which are characterized by a steady1 flow of
1Here, the word “steady” does not necessarily mean steady-state. Instead, it is a flow of fuel and

oxidizer that is continuously supplied to the combustion chamber rather than periodically or in a
cyclic manner. In practice, this flow can be quasi-steady or unsteady.

55

fuel and oxidizer into the engine and a stable flame. There are mainly two types
of continuous combustion engines. These engines differ in how the oxidizer is
obtained:

(a) Gas turbines, in which oxygen is obtained from the surrounding air to burn
the fuel.

(b) LPREs, in which the oxygen is carried by the vehicle itself to burn the
fuel.

2. Reciprocating combustion engines, which are characterized by periodic injection
and ignition of fuel and air. There are mainly two kinds of reciprocating com-
bustion engines currently in production. These engines differ in how the fuel is
supplied and ignited:

(a) Gasoline engines (also called petrol engines, or spark-ignition engines), in
which fuel is mixed with air, compressed by a piston and then ignited by
sparks from a spark plug, causing combustion.

(b) Diesel engines (also called compression-ignition engines), in which the
air alone is compressed first, and then the fuel is sprayed through a fuel
injector nozzle into the hot compressed air causing it to ignite. Since only
air is compressed in this type of engine, the air temperature in the cylinder
increases to such a high degree that atomized diesel fuel injected into the
combustion chamber evaporates and ignites spontaneously. Diesel engines
have better fuel efficiency than gasoline engines, however, they produce
more noise and vibrations, as well as higher levels of soot and nitrogen
compounds.

4.2 Fluid State Physics

Depending on the local value of pressure and temperature, a fluid can exist in
different states:

1. Liquid, when the pressure is high and temperature is low. At this condition,
from a microscopic view, the fluid particles are close to each other and do
not agitate much. The intermolecular attractions are important and particles
tend to form temporary clusters. Thermodynamically, state variables can be
related using an incompressible EOS (if the density is constant) or a barotropic
compressible EOS (if the density is changing).

2. Ideal gas, when the temperature is high and pressure is low. At this condition,
the fluid particles are very far from each other and in a state of random thermal
motion. The intermolecular forces have an insignificant effect on the motion of
the individual particles. Thermodynamically, state variables are related via the
ideal gas EOS.

56

3. Supercritical, when both the temperature and pressure exceed the critical point.
Because surface tension and enthalpy of vaporization, which indicate the liquid-
gas boundary, approach zero, there is no longer the possibility of a two-phase
region, but instead a single-phase exists. At this condition, fluid properties pos-
sess liquid-like density, gas-like diffusivity, and pressure-dependent solubility.
In addition, isothermal compressibility and specific heat increase significantly,
and fluid properties and their gradients vary continuously. The departure from
ideal gas behavior becomes even more significant when the fluid state approaches
the critical condition. In the vicinity of the critical point, the thermophysical
properties of fluids exhibit anomalous variations and are very sensitive to both
temperature and pressure, a phenomenon commonly referred to as near critical
enhancement. Those phenomena, coupled with intense turbulence and chem-
ical reaction, have significant impact on the dynamics of a given combustion
system. Thermodynamically, state variables can no longer be described using
the ideal gas EOS. Instead, a real-fluid EOS must be used to account for the
thermodynamic nonidealities and transport anomalies. As we will see later in
Chapter 5, the evaluation of the state equations is an expensive procedure in
the simulation of supercritical flows, especially when the system is composed of
many chemical species.

The critical properties of the major chemical species considered in this thesis are
given in Table 4.1, where pc, Tc, and vc are critical values of pressure, temperature,
and molar specific volume, respectively, and w is the acentric factor.

Table 4.1: Critical properties (pc, Tc and vc) and acentric factor w for the major
chemical species considered in this study.

Species pc [bar] Tc [K] vc [cm3/mole] ω
Oxygen (O2) 50.43 154.58 73.37 0.025

n-decane (C10H22) 21.1 617.7 624 0.49
n-propylbenzene (C9H12) 32 638.35 440 0.345

n-propylcyclohexane (C9H18) 28 639 472.5 0.258
n-dodecane (C12H26) 18.1 658.2 754 0.574

Hydrogen (H2) 12.97 33.25 65 -0.216
Water (H2O) 220.64 647.14 55.95 -0.344
Nitrogen (N2) 33.98 126.2 90.10 0.037

4.3 Diesel Engines

4.3.1 Engine Components and Operating Cycles

A diesel engine is composed of several components, including a fuel system, air intake
system, exhaust system, lubricating system, and cooling system. In particular, the

57

fuel system comprises the fuel-injection system and combustion chamber. The fuel-
injection system is mainly composed of the fuel tank, delivery pipe, filter, injection
pump, and injector nozzle, while the combustion chamber is mainly composed of
the cylinder, piston, crankshaft, and connecting rod. For more details on the engine
components, the reader is referred to Heywood [100].

Most diesel engines operate using a four-stroke cycle,2 where the piston moves
back and forth four times in a cylinder per power cycle, or equivalently the crankshaft
rotates two times during the cycle [100, 101], as shown schematically in Fig. 4.2. The
four strokes are:

1. An intake stroke, which starts with the piston at position top-center (TC) and
ends with the piston at position bottom-center (BC). In this stroke, a fresh
mixture is introduced into the cylinder through the intake valve, which opens
shortly before the stroke starts and closes after it ends.

2. A compression stroke, where the piston moves upward to compress the mixture
in preparation for ignition. The compression ratios are usually in the range 14:1
to 22:1 in a diesel engine (or in the range 8:1 to 12:1 in a gasoline engine). Both
the intake and exhaust valves are closed during this stroke.

3. A power stroke (also called expansion stroke), which represents the start of the
second revolution of the crankshaft, which has already completed a full 360o
revolution. While the piston is at TC, combustion is initiated by heat generated
by high compression in a diesel engine (or by a spark plug in a gasoline engine),
forcefully returning the piston to BC. This stroke converts the heat released by
combustion into mechanical work to turn the crankshaft.

4. An exhaust stroke, where the piston returns from BC to TC while the exhaust
valve is open to expel the burned gases outside the cylinder. Just after the
piston reaches TC, the exhaust valve closes and the cycle starts again.

4.3.2 Types of Diesel Engines

We can distinguish two types of diesel engines:

1. Direct-injection engines, in which the fuel is injected directly into the main
combustion chamber.

2. Indirect-injection engines, in which the fuel is injected into the prechamber
followed by the main combustion chamber.

Here, the focus is on direct-injection engines.
2Note, however, that engines used in small propulsion applications, such as dirk bikes and out-

board motors, usually work by completing a power cycle with only two strokes of the piston (or one
revolution of the crankshaft).

58

Figure 4.2: Schematic of the four-stroke cycle in a diesel engine (adapted from
Ref. [102]).

4.3.3 Fuel Injector Nozzles

The fuel injector nozzle is an integral part of the diesel engine. It consists of a
spring-loaded needle valve whose function is to open and close at the correct moment
to inject the fuel into the cylinder of the engine with a large pressure differential across
the nozzle orifice. The cylinder pressure at injection is typically in the range 20 to
100 bar, while fuel injection pressure is in the range 200 to 1,700 bar, depending on
the engine size. These large pressure differences across the injector nozzle are needed
to increase the velocity of the injected liquid fuel jet as it enters the chamber to
enhance atomization, thus enabling rapid evaporation and improving fuel-air mixing
and combustion [100].

Injector nozzles are threaded or clamped into the cylinder head, one for each
cylinder (see Fig. 4.2). They are composed of several parts, as shown in Fig. 4.3.
These include:

1. An injector body, which is the shell of all other parts of the injector nozzle.
The inner portion of the injector body embeds an accurately designed passage
through which the fuel is introduced from the fuel pump (not shown in Fig. 4.3)
into the nozzle.

2. A needle valve, which controls the fuel rate into the cylinder chamber. When
the needle is open, the fuel flows down through the fuel passage in the injector
body toward the nozzle orifice(s). When injection is not occurring, the needle is
closed and forced against the valve seat (usually by a spring) to prevent dribbles
from the nozzle that can cause undesirable effects such as increase in unburned
hydrocarbon emissions. The needle vertical displacement along the nozzle axis
is called needle lift.

59

3. A sac volume, which is a small cavity in the bottom of the injector nozzle. It
is important to keep the amount of fuel left in the sac as small as possible to
avoid any fuel flowing into the cylinder after injection is over.

4. One or more orifices (also called holes) through which the fuel is injected into
the cylinder of the engine.

Figure 4.3: Schematic of basic diesel fuel injector nozzle. The blue zones indicate the
regions through which the fuel can flow (reproduced from Ref. [103]).

4.3.4 Liquid Jet Behavior

There are two distinctly different sets of processes the liquid jet exhibits as it exits
the nozzle, depending on the chamber pressure, as illustrated in Fig. 4.4.

4.3.4.1 Subcritical chamber pressures

At subcritical cylinder pressures, the classical situation exists where a well-defined
interface separates the injected liquid from ambient gases due to the presence of sur-
face tension. As the jet exits the nozzle, it will start to break up, as shown in
Fig. 4.4(a). The first breakup of the liquid is called primary breakup, which re-
sults in large ligaments and droplets. The primary breakup is governed by the flow
conditions of the liquid inside the injector nozzle, such as turbulence and cavita-
tion (cf. Sec. 4.3.5). After the primary breakup, the droplets will experience another
breakup, referred to as secondary breakup, caused by the difference in velocity between
the droplets and surrounding gas. As a result, the droplets become smaller in size.
Droplets within the spray may also change in size due to interactions with one another
via collisions. Collision can lead to either further breakup of droplets into smaller
ones or coalescence to form larger droplets. In the dense spray region, particularly
near the nozzle, collisions occur more frequently due to the relatively short distances
between the droplets. Further downstream as the spray becomes more dilute, i.e.,

60

(a) (b)

Figure 4.4: Schematic of fuel injection system with different spray sub-processes for:
(a) subcritical chamber pressures, and (b) supercritical chamber pressures (repro-
duced from Ref. [104]).

in the dilute spray region, the occurrence of collisions becomes less probable [105].
Important parameters that quantify the fuel spray behavior are the spray cone angle,
breakup length, spray tip penetration, and droplet size distribution [100].

The high air temperature in the engine cylinder causes the small droplets to evap-
orate, producing vapor which mixes with the air to form a combustible mixture which
ignites spontaneously due to elevated pressures and temperatures; these mechanisms
are referred to as droplet evaporation, fuel-air mixing, and ignition, respectively. Dur-
ing this process, pollutants can be formed as well because of non-ideal processes
occurring simultaneously, such as incomplete combustion of diesel fuel, reactions be-
tween mixture components under high temperature and pressure, and combustion of
engine lubricating oil. Common pollutants include unburned hydrocarbons, carbon
monoxide, nitrogen oxides, and particulate matter.

4.3.4.2 Supercritical chamber pressures

At supercritical chamber pressures, the situation becomes quite different. Under these
conditions, a distinct gas-liquid interface does not exist, as previously explained in
Sec. 4.2. Instead, the injected liquid jet undergoes a transcritical change of state as

61

interfacial fluid temperatures rise above the critical temperature of the local mixture.
For this situation, effects of surface tension and two-phase flow become diminished.
The lack of these intermolecular forces promotes diffusion-dominated mixing processes
prior to atomization and the respective jet vaporizes, forming a continuous fluid in the
presence of exceedingly large thermophysical gradients in a manner that is markedly
different from the classical situation explained above.

4.3.5 Cavitation in Fuel Injector Nozzles

Figure 4.5: Schematic illustration of cavitation formation inside a nozzle orifice
(adapted from Refs. [106, 107]).

Cavitation is the process in which the vapor phase of a liquid is generated due to
a drop in the pressure at a given temperature. Cavitation is different from boiling,
which is driven by an increase in the liquid temperature at a given pressure.

Cavitation occurs frequently in fuel injector nozzles. As the fuel flows from the
sac region to the orifice, its velocity changes due to losses associated with the area
constriction and sharp edges at the orifice inlet. As a result, the fuel velocity increases
while the static pressure decreases. In addition to this, the boundary layer tends to
separate from the orifice wall, leading to a recirculating flow region near the orifice
inlet. At certain locations in the nozzle orifice, when the pressure of the liquid becomes
smaller than the saturation pressure (at a given temperature), cavitation is produced
and vapor bubbles are formed inside the orifice, as shown schematically in Fig. 4.5.

Typically, four regimes of cavitation are identified based on the cavitation distri-
bution inside the nozzle [107, 106]: (1) no cavitation, in which cavitation bubbles are
not formed inside the nozzle orifice, (2) cavitation inception, in which the cavitation
zone appears at the orifice inlet, (3) developing cavitation, in which the cavitation
zone appears at the orifice inlet and extends further downstream, and (4) supercav-
itation, in which the cavitation zone extends from the inlet up to or close to the
nozzle exit. To characterize the global extent of cavitation, a cavitation number Ca

62

is introduced, as follows
Ca =

p1 − psat

p1 − p2
, (4.1)

where p1 is the injection (or upstream) pressure, p2 is the ambient (or back) pressure,
and psat is the saturation pressure (or vapor pressure) of the fluid. In general, a
large value of the cavitation number suggests non-cavitating flow while a small Ca
corresponds to strong cavitating flow [106].

Another important quantity for cavitating flows is the nozzle discharge coefficient
Cd, which represents the hydraulic resistance that the nozzle orifice imposes upon the
flow. This parameter is useful for determining the irrecoverable losses through the
nozzle orifice. In particular, when Cd is reduced, the orifice flow efficiency is reduced
as well. Cd can be defined as

Cd =
ṁ

ṁideal
, (4.2)

where ṁ is the actual mass flow rate through the nozzle, and ṁideal is the ideal mass
flow rate which can be obtained using the Bernouilli equation. Different expressions
for Cd are available in literature. An important aspect of their formulation concerns
the presence or absence of cavitation in the orifice [107, 106]. For a non-cavitating
flow, Cd is a function of the Reynolds number Re and geometric information l/d,
where l is the orifice length and d the orifice diameter, i.e., Cd = f(Re, l/d). In
general, for the flow in a straight nozzle, as Re increases, Cd increases as well. On the
other hand, for a cavitating flow, Cd is determined using both the cavitation number
Ca and geometric information, i.e., Cd = f(Ca, l/d). In general, for a cavitating flow
in a straight nozzle, as Ca decreases, the level of cavitation becomes stronger, and
Cd decreases as well.

Cavitation (if occurred) has both desirable and undesirable effects [106]. For
subcritical chamber pressures, when the produced bubbles exit the nozzle orifice to-
ward the surrounding air, they will explode, enhancing the spray breakup process.
This results in finer droplets and accelerates the fuel evaporation and fuel-air mixing.
Therefore, cavitation can promote liquid atomization, as well as reduce drag, which
is beneficial for fuel injector nozzles. For supercritical chamber pressures, cavitation
can also enhance the behavior of the developing jet leading to improved evapora-
tion and fuel-air mixing. The undesirable effects are usually associated with surface
erosion, excessive noise generation, and hydrodynamic losses. The collapse of cavi-
tation bubbles can be violent and damage machinery, which can shorten the life and
performance of the injectors. Moreover, cavitation can lead to a reduction in the
discharge coefficient, thereby decreasing the flow efficiency. The effect of cavitation
can be summarized as follows:

63

Effect of cavitation in fuel injector nozzles

• Desirable effects : enhancement of the liquid atomization process, and
drag reduction.

• Undesirable effects : surface erosion, noise generation, and reduction in
the discharge coefficient.

As a conclusion, it is evident from this section that an in-depth analysis of in-
nozzle cavitation and its impact on the developing liquid jet in the cylinder chamber
is vital for diesel engine research and design.

4.3.6 Multiphase Modeling of Internal Nozzle Flow

In this section, we examine basic numerical approaches for modeling the internal
flow through the injector nozzle. As mentioned previously, cavitation can occur inside
the nozzle, and therefore, the internal flow has to be modelled as a multiphase flow.
The adjective multiphase refers to situations where several different phases3 (or com-
ponents) – solids, liquids, and gases – are flowing simultaneously. For a cavitating
flow, the system is composed of at least two phases:4 the vapor bubbles and the liquid
fuel. The numerical approaches include:

1. Volume of fluid (VOF) model [108, 109], in which the phases are assumed to
be separated by a distinct interface. Here, we only have one set of conservation
equations, and for each phase considered in the model, a variable is introduced
as the volume fraction of the phase in the computational cell (the volume frac-
tions of all phases sum up to unity in each cell). The interface is tracked via
reconstruction schemes based on the information of the volume fractions of the
phases. To accurately predict the interface between the phases, the VOF model
must resolve all involved length and time scales in the system.

2. Multi-fluid model (MFM) [110, 109], in which the phases are treated as inter-
penetrating continua. The conservation equations for mass, momentum, and
energy are phase-averaged within each computational cell, resulting in a sepa-
rate set of conservation equations for each phase. The interaction between the
phases is included through source/sink terms. A limiting case is the two-fluid
model (TFM) where only two phases are considered (for example, liquid and
vapor).

3. Homogeneous mixture model (HMM) [111, 112], in which the phases are assumed
to be homogeneously mixed and in local equilibrium, whereby all components

3In thermodynamics, a phase refers to a chemically and physically uniform quantity of matter
that can be separated mechanically from a non-homogeneous mixture. It may consist of a single
substance or a mixture of subtances.

4Some fuels contain a certain amount of noncondensable gas. Consequently, when cavitation
occurs, the system becomes composed of three phases: liquid fuel, noncondensable gas, and fuel
vapor.

64

are assumed to have the same pressure, temperature, and velocity within a
given computational cell. Here, we only have one set of conservation equations,
and each phase is treated as a species. Hence, this approach treats the mul-
tiphase flow in a similar way to a single-phase, multi-species flow. Cavitation
is considered by adding the mass transfer between the liquid and vapor to the
source/sink terms of the conservation equations.

Note that these models can be framed in any turbulence approach, i.e., RANS,
URANS, and LES. For example, in the RANS-HMM, the conservation equations are
solved using the Reynolds-averaged Navier-Stokes technique whereas, in the LES-
HMM, the conservation equations are solved using the large eddy simulation tech-
nique, and so forth.

Although the VOF and MFM models can provide very accurate results given
sufficient grid resolution, they are computationally very expensive. The HMM can
be seen as a compromise between speed and accuracy and thus is employed in this
thesis (see Sec. 7.3.1.3).

4.3.7 Spray Modeling

The majority of spray process modeling methodologies fall into the following three
categories:

1. Eulerian–Eulerian (EE) approach, in which both the liquid (or dispersed) and
gas (or continuous) phases are treated using an Eulerian description. Examples
of methods in this category include the VOF, MFM, and HMM presented in
Sec. 4.3.6. With regard to sprays, these methods are suitable for the calculation
of flows with higher droplet concentrations, such as the dense spray in the near-
nozzle field.

2. Lagrangian-Eulerian (LE) approach (also referred to as discrete droplet method
(DDM)) [113], in which Eulerian gas phase equations are solved along with
Lagrangian evolution equations for the dispersed phase. This approach injects
parcel droplets at the nozzle exit and follows its migration and evolution in the
carrier gaseous flow, with several sub-models to capture the physics of spray
breakup, droplet drag, collision, coalescence, evaporation, etc. This approach
is better suited for the simulation of the dilute spray in the far-nozzle field.

3. Hybrid approach [114], which is based on hybridizing between the EE and LE
methods. A transition criterion is usually defined to switch from EE to LE
methods in the same simulation. This approach is very useful for accurate
description of dense-to-dilute spray flows.

65

4.4 Injection in Liquid-Propellant Rocket Engines

Injection in liquid rocket engines have been studied extensively from a physical
and numerical viewpoint by many researchers in the field, and particularly by previous
members of our lab, and thus this discussion is kept brief. For a detailed treatment of
this topic, readers are referred to classic textbooks such as Sutton and Biblarz [115]
and Turner [116], or to the theses of Zong [96], Huo [97], and Lioi [117].

4.4.1 Engine Components and Principle of Operation

Liquid-propellant systems have self-contained liquid propellants. Most of these en-
gines use bipropellant systems, i.e., those in which a fuel and an oxidizer are tanked
separately and then transferred into the combustion chamber (also called thrust cham-
ber) through a propellant feed system to mix and burn. The feed system comprises
pipes, turbopumps, and fuel and oxidizer manifolds and injectors. The turbopumps
raise the pressure above the operating pressure of the combustion chamber, and the
propellants are then injected into the chamber in a manner that assures atomization
and rapid mixing. Ignition is accomplished either by means of a pyrotechnic igniter or
spontaneously, depending on the propellant composition. The hot exhaust produced
by combustion is then passed through a supersonic nozzle5 to accelerate the flow and
produce thrust. Liquid-propellant engines have certain advantages over solid systems,
in which the propellants are already mixed together and packed into a solid cylinder.
These include higher exhaust velocity and specific impulse and better control of op-
erating level in flight (i.e., throttleability). However, they tend to be more complex
because of the pumps and storage tanks [115, 118].

4.4.2 Types of Liquid-Propellant Rocket Engines and Power Cycles

Liquid rocket engines may broadly be categorized according to the power cycle they
employ do drive their propellant turbopump assembly. Three types of engine cycles
are in common use [119]:

1. Expander cycle, in which no combustion takes place before the propellants enter
the combustion chamber. The fuel is heated and expands as it is circulated
around the outside of the combustion chamber.

2. Gas-generator cycle, in which a portion of the propellants is burned before
entering the main combustion chamber and used to drive the turbopump before
being exhausted into the diverging portion of the exit nozzle. This allows for
higher pressure head to drive the pump system relative to the expander cycle.

5In rocket engines, a supersonic nozzle is a converging-diverging nozzle geometry located at the
aft of the combustion chamber and is used to convert the thermal energy of the exhaust gas into
kinetic energy to generate thrust. Note this is different from the fuel injector nozzle in diesel engines
which is used to inject the fuel into the cylinder chamber.

66

3. Staged-combustion cycle, in which a larger portion of the propellants is com-
busted in one or more preburners before being passed through the turbine.
This may be done in either oxidizer- or fuel-rich mode. The turbine exhaust
is then delivered to the main combustion chamber where it is burned with the
remaining portion of the propellants. Staged combustion engines have many
advantages over systems employing the other two cycles, in particular lower
gas temperatures entering the turbine, and higher chamber pressures. High
pressures generally result in better overall efficiency and specific thrust of the
engine. Furthermore, staged combustion engines exhibit little to no soot for-
mation. However, they are typically heavier and more complex to design than
the other systems.

Oxidizer-Rich Staged-Combustion Cycle

A particular type of the staged-combustion cycle is the oxidizer-rich staged-combustion
(ORSC) cycle, shown schematically in Fig. 4.6. Here, all of the oxidizer and a portion
of the fuel are fed through the preburner, generating oxidizer-rich gas. After being
run through a turbine to power the pumps, the gas is injected into the combustion
chamber and burned with the remaining fuel. A well known-example of ORSC en-
gine is the Russian RD-170 LOX/kerosene, shown schematically in Fig. 4.7(a). This
engine will be used as a case study in Chapter 5.

4.4.3 Injectors

Propellant injectors and oxidizer manifolds are critical parts of the engine design;
they take the propellants and mix them so that they can quickly burn in the pre-
burners or combustion chambers. Typically, injectors are composed of hundreds of
injector elements, each consists of a number of small holes or ports through which jets
of fuel and oxidizer are injected. A good injector design seeks optimized atomization,
mixing, and combustion of the propellants while meeting design requirements and
minimizing combustion instabilities. Different types of rocket injectors exist, includ-
ing jet, swirl, coaxial, and gas-centered liquid-swirl coaxial (GCLSC) injectors. Here,
the focus is on GGLSC injectors.

GCLSC Injectors

GCLSC injectors have been extensively used as main combustion chamber injectors
in many ORSC rocket engines, including the NK-33, RD-170, and RD-180 engines.
In this type of injector, high-temperature gaseous oxygen (originating from the pre-
burner) is axially injected into the oxidizing-gas passage, and low-temperature liquid
fuel (originating from the fuel pump) is tangentially delivered into the fuel annulus,
as sketched in Fig. 4.7(b). GCLSC injectors offer excellent mixing efficiency and
stability behaviors, as well as relatively simple configurations.

67

Figure 4.6: ORSC cycle (reproduced from Ref. [120]).

(a) (b)

Figure 4.7: (a) Schematic of main combustion chamber of RD-170 rocket engine,
which is a type of ORSC engine. (b) Cross section and zoomed-in view of a main
GCLSC injector element (reproduced from Ref. [117]).

68

4.4.4 Flow Injection Behavior and Modeling

Typically, the operating pressures in ORSC rocket engines exceed the thermo-
dynamic critical points of the fluids involved. Liquid propellants initially injected
at a subcritical temperature may heat up and experience a thermodynamic phase
transition into the supercritical regime. Many distinctive behaviors occur during the
transition and differ from the phenomena encountered at subcritical conditions, such
as diminishing of surface tension and absence of droplet formation and a two-phase
interface. As a result, single-phase-like, diffusion-dominated mixing takes place be-
tween dense and light fluids in the presence of large property gradients in a similar
fashion to the situation depicted in Fig. 4.4(b). For this situation, the governing equa-
tions for a single-phase, compressible, multicomponent flow with a real-fluid EOS can
be used to model the underlying flow [121, 122, 123, 124, 8].

69

Part II

Research Projects

70

71

CHAPTER 5
ACCELERATING THE CONVERGENCE OF REAL-FLUID

SIMULATIONS USING DEEP NEURAL NETWORKS

This chapter addresses all items of Objectives 1(a) and 2 (cf. Sec. 1.2). Here, it is
shown that using deep learning inside traditional CFD solvers for modeling complex
fluid flows and related phenomena can improve the speed of the simulations. The
approach is demonstrated on problems involving high-pressure supercritical fluid flows
relevant to aerospace propulsion applications. It is robust, and results in considerable
computational speedups, and it can be extended to many areas of computationally-
intensive science and engineering. Please note that Chapters 2 and 3 as well as
Secs. 4.1, 4.2, and 4.4 are prerequisite to this chapter.

The material presented here is adapted from:

• [125] P. J. Milan, J.-P. Hickey, X. Wang, and V. Yang, “Deep-learning accel-
erated calculation of real-fluid properties in numerical simulation of complex
flowfields,” Journal of Computational Physics, Vol. 444, pp. 1-25, 2021.

• [126] P. J. Milan, X. Wang, J.-P. Hickey, Y. Li, and V. Yang, “Accelerating
numerical simulations of supercritical fluid flows using deep neural networks,”
AIAA 2020-1157, pp. 1-12, 2020.

5.1 Abstract

A DL-based approach is developed for efficient evaluation of thermophysical proper-
ties in numerical simulations of complex real-fluid flows. The work enables a signif-
icant improvement of computational efficiency by replacing direct calculation of the
equation of state with a deep feedforward neural network with appropriate boundary
information (DFNN-BC). The proposed method can be coupled to a flow solver in
a robust manner. Depending on the numerical formulation of the flow solver, the
neural network takes in either the primitive or conservative variables, including the
chemical composition of the system, and calculates all relevant fluid properties for
the subsequent routines in the solver. Two test problems are employed to validate
the proposed methodology. The first uses a preconditioning scheme with dual-time
integration for the simulation of swirl injector flow dynamics under supercritical con-
ditions. The second uses a conservative-variable-based formulation for the simulation
of laminar counterflow diffusion flames for cryogenic combustion. A parametric anal-
ysis is performed to optimize the numbers of hidden layers and neurons per hidden
layer. The computational accuracy, efficiency, and memory requirements of the neural
network are examined. The DFNN-BC model accelerates the evaluation of real-fluid
properties by a factor of 2.43 and 3.7 for the two test problems, respectively, and
the overall flowfield simulation by 1.5 and 2.3, respectively. In addition, the memory

72

usage is reduced by up to five orders of magnitude in comparison with the table look-
up method. The findings from this work exemplify how high-performance scientific
computing can leverage advances in DL to accelerate expensive simulations without
compromising accuracy.

5.2 Introduction and Literature Review

Many natural phenomena and engineering applications involve fluid flows at con-
ditions well above their thermodynamic critical points; we refer to these flows as
supercritical flows (cf. Sec. 4.2). The peculiar behavior of real fluids such as ther-
modynamic non-idealities and transport anomalies must be taken into account [127],
and a generalized EOS valid for the entire thermodynamic fluid regime should be
used. Such highly nonlinear EOS is computationally expensive, especially for prob-
lems involving multiple species and multiscale physics. For example, in a LES of a
supercritical reacting jet in a cross flow using the Peng-Robinson (PR) [128] EOS
and a finite-rate kinetic mechanisms of 5 species, the time required for evaluating
real-fluid properties accounts for about 50% of the total computation time [129].
Likewise, in a LES of a supercritical reacting mixing layer using the Soave-Redlich-
Kwong (SRK) [130] EOS and a flamelet model with 7 species, about 55% of the total
computation time [131] is spent on the evaluation of fluid properties.

To render such computations more efficient, thermodynamic tabulation has of-
ten been used, see for example Refs. [132, 133, 134, 123]. Fluid properties are
pre-computed and stored in a look-up table. They are then retrieved through in-
terpolation during the flow calculation. This method is effective for a small number
of chemical species, as shown in the studies of supercritical turbulent mixing lay-
ers with 2 species by Wang et al. [123]. As the compositional complexity of the
problem increases, however, the dimensionality of the resulting manifold grows dra-
matically. The look-up table may occupy a significant portion of the memory and
may even saturate the system, thereby slowing down the calculation. In addition, the
search and retrieval of data from the table become costly. For example, for a multi-
dimensional table of discretization of (nZ , nZ̃′′2 , nC , nh) = (200, 100, 50, 20), where
Z, Z̃ ′′2, C, and h stand for mixture fraction, variance of mixture fraction, progress
variable, and enthalpy, respectively, the evaluation of 15 tabulated variables takes
about 2.4 GB of memory [135]. The situation is particularly of concern for homo-
geneous, parallel, computer codes running on distributed memory architectures with
a message-passing interface (MPI), where each core needs to independently access
the lookup table. Attempts have been made to reduce the associated memory foot-
print, including locally-adaptive tabulation [136, 137], unstructured tabulation [138],
and the correlated dynamic evaluation (CDE) method [131, 123], as reported in Ta-
ble 5.1. These efforts, however, still face the inevitable “curse of dimensionality” as
more species are considered in the system (especially when the number of chemical
species is greater than three, or equivalently when the dimensionality of the table, or
manifold, is larger than four), which makes them completely unsuitable for practical
problems [131, 135]. An important question is thus: how to efficiently represent the

73

multi-dimensional manifolds necessary to capture the salient features associated with
real-fluid thermodynamics and transport?

Deep learning, a subfield of ML and AI, is concerned with the design of algorithms
that are modeled loosely on the human brain. The heart of this discipline lies in the
deep neural network, where the term “deep” refers to a network architecture that
contains many hidden layers. In recent years, DL has been successfully applied in a
variety of fields for image classification, speech recognition, and language translation,
rendering many technological breakthroughs with broader impact.

The ability of DNN to learn complex patterns has also been leveraged in the fluid
dynamics and combustion fields. The challenges, however, are different from those
tackled in other applications [27, 4]. Turbulent flows are characterized by complex,
multi-scale, spatiotemporal phenomena with stochastic-like signatures, but the un-
derlying dynamics obey a well-defined set of governing equations. The motivation for
the use of DL in the studies of fluid mechanics and combustion centers around two
important goals: (1) improved physical predictive modelling of the flow, or (2) re-
duction of algorithmic or computational expense. DL is more commonly employed
to improve physical modeling. For example, Ling et al. [139] employed a DFNN with
many hidden layers to model the anisotropic Reynolds stress tensor in RANS. Lapeyre
et al. [140] implemented a CNN to predict the subgrid-scale wrinkling of a flame in
LES. Nikolaou et al. [141] used a CNN for subgrid-scale modeling in LES of turbulent
reacting flows in a deconvolution context. These works use ML algorithms as a means
of pattern identification in order to replace the conventional modeling strategies.

Efforts have also been made to use ML as a means of complexity reduction, with
the objective of improving the computational efficiency of existing numerical algo-
rithms. In this regard, we note the seminal work by Ihme [142], along with the more
recent contributions by Shadram et al. [143], Owoyele et al. [144], and Bhalla et
al. [135], in which memory-intensive, multi-dimensional, flamelet look-up tables were
replaced with memory-efficient neural networks. In addition, Xing et al. [145] devel-
oped an artificial neural network to replace the chemical percolation devolatilization
model for accelerated prediction of coal devolatilization kinetics. In this latter cate-
gory, the ML algorithms focus on improving the computational efficiency of existing
algorithms while relying on conventional modelling paradigms.

All of the aformentioned examples demonstrate, in one way or another, that DNN
has the ability to learn and approximate nonlinear mathematical functions, and to
handle interpolation of points not observed during the training procedure. The tech-
nique thus offers the possibility of addressing the “curse of dimensionality” from which
conventional low-order techniques like tabulation suffer. The present study attempts
to develop a DNN-based framework for efficient evaluation of real-fluid properties in
simulations of supercritical flows. To the author’s knowledge, this work is the first of
its kind.

A neural network model, referred to as DFNN-BC, is developed to achieve the
desired accuracy when incorporating boundary information (i.e., the flow behavior
along the boundaries of the domain). The model can be coupled to a flow solver in a
robust manner. The proposed methodology is implemented and tested in two model
problems with different numerical formulations: (1) two-dimensional turbulent mixing

74

of gaseous oxygen and liquid kerosene in a rocket injector using a primitive-variable-
based formulation, and (2) a quasi-one-dimensional counterflow diffusion flame for
cryogenic hydrogen combustion using a conservative-variable-based formulation. We
thus cover two widely-used methods for the simulation of fluid flows at supercritical
conditions.

The paper is organized as follows. Section 5.3 describes the equations of state and
property evaluation schemes for real fluids, along with the two different numerical
codes employed in the simulations. Section 5.4 deals with the DFNN-BC model and
its integration into the flow solvers. Sections 5.5 and 5.6 discuss the results for the
two model problems, namely, the rocket injector and the counterflow diffusion flame.
In these sections, the accuracy, efficiency, and memory requirements of DFNN-BC
are discussed and analyzed in comparison to baseline simulations with no property
acceleration. Finally, key findings and concluding remarks are made in Sec. 5.7.

75

Table 5.1: Studies on approximation methods for accelerated evaluation of non-ideal thermophysical properties in numerical
simulation of real-fluid flows. Here, ni refers to the number of inputs in the approximation method, and N represents the
number of species in the system under consideration.

Approximation method Problem description EOS/Database ni(N) Reference Year
Curve/suface fitting Hypersonic 3D corner, NASA CEA 2(1) Coirier [146] 1990

hypersonic gap-seal
Look-up table Transonic impeller, GE-NP/NIST 2(1) Boncinelli et al. [132] 2004

multi-stage turbine
Look-up table Turbulent boundary layer REFPROP 2(1) Kawai et al. [147] 2015
Look-up table Turbulent mixing layer SRK 2 Wang et al. [123] 2018
Look-up table Reacting mixing layer SRK 3(8) Milan et al. [131] 2019

Consistent look-up table Transonic turbine, FluidProp 2(1) Pini et al. [134] 2015
supersonic nozzle

AMR look-up table Subsonic 1D nozzle, REFPROP 2(1) Xia et al. [136] 2007
hypersonic 2D nozzle

AMR look-up table Subsonic 2D nozzle, NIST 2(1) Liu et al. [137] 2014
2D heat transfer

Unstructured look-up table Supersonic 2D nozzle, FluidProp 2(1) Rubino et al. [138] 2018
transonic 2D turbine,
supersonic 3D turbine

CDE Turbulent mixing layer SRK 2 Wang et al. [123] 2018
CDE Reacting mixing layer SRK 3(7) Milan et al. [131] 2019

76

5.3 Real-Fluid Properties and Numerical Framework

5.3.1 Real-Fluid Properties

A real-fluid EOS is needed to account for the intermolecular forces and volumetric
effects in the fluid [127]. A generic two-parameter cubic EOS [127, 130] can be written
as

p =
RuT
W
ρ
− b
− aα

(W
ρ
)2 + σW

ρ
+ ϵ

= ρ

(
Ru

W

)
ZT, (5.1)

where p is the pressure, T the temperature, ρ the density, Z the compressibility factor,
and Ru the universal gas constant. The molecular weight of the mixture, W , is given
by

W =

(N∑
i=1

Yi
Wi

)−1

, (5.2)

where Wi and Yi are the molecular weight and mass fraction of the ith species, respec-
tively, and N the total number of species. The parameters σ and ϵ define the specific
EOS of concern. Two different state equations are used in this study: the SRK [130],
and PR [128] EOSs. Their respective parameters are given in Table 5.2. The dif-
ference between these two EOSs is minor; SRK is more accurate when the reduced
temperature is smaller than unity, since its parameters are obtained by curve-fitting
of vapor pressure data, whereas PR is more accurate when the reduced temperature
is greater than unity. The coefficients aα and b, which account for intermolecular
forces and volume of molecules, depend primarily on the critical properties and bi-
nary interaction parameters.

Table 5.2: Parameters of cubic equations of state

Parameter SRK PR
σ b 2b
ϵ 0 −b2

Additional thermodynamic quantities, such as internal energy, enthalpy, specific
heats, and speed of sound, are computed using departure functions that are derived
from the selected EOS. The mixing rules and the formulation of the departure func-
tions using SRK EOS are presented in Appendix C.1 and Appendix C.2, respectively.
For the real-fluid implementation based on PR EOS, the interested reader can consult
Refs. [148, 149]. The critical properties of the major chemical species considered in
this study are given in Table 4.1.

The extended corresponding-states principle [127, 150] is used to estimate the
transport properties of a multicomponent mixture over a broad range of fluid states.

77

Chung et al.’s method [151, 152] is used to evaluate the dynamic viscosity µ and
thermal conductivity λ. Fuller et al.’s empirical correlation [153], combined with
Takahashi’s high-pressure correction [154], is used to compute the binary mass diffu-
sion coefficients Djk. For mixtures with more than two species, we adopt a mixture-
averaged treatment of the diffusion coefficients [155], as follows

Dk =
1− Yk∑N

j ̸=k χj/Djk

, (5.3)

where χk and Dk are the mole fraction and mixture diffusion coefficient of the kth
species, respectively. Detailed derivation of these variables is given in Refs. [97, 156,
157].

5.3.2 Numerical Framework

Two different CFD codes are employed in this study. The first one, referred to as
PMBFS, uses a primitive-variable-based formulation combined with the SRK EOS. The
second, One-D ThermoCode, uses a conservative-variable-based formulation with the
PR EOS.

5.3.2.1 PMBFS (Parallel Multi-Block Flow Solver)

PMBFS [123, 158] treats the Favre-filtered form of the conservation equations of
mass, momentum, total energy, and species for a compressible multi-species flow
(cf. Sec. 3.3.2). Turbulence closure is achieved by means of the LES technique (cf.
Sec. 3.2) based on the algebraic Smagorinsky model (cf. Sec. 3.3), which resolves
large-scale motions while modelling small-scale contributions to the flow evolution.
A preconditioned dual-time stepping strategy [158, 159, 160] is employed to circum-
vent numerical stiffness resulting from eigenvalue disparity, especially in the low Mach
number regime. Within each physical time step, the pseudo-time derivative is inte-
grated until local convergence is achieved. The physical solution for the next time
step is then attained. The governing equations with preconditioning take the following
form

T
∂𝒫𝒫𝒫
∂τ

+
∂𝒬𝒬𝒬
∂t

+∇ · (F − Fv) = 𝒮𝒮𝒮, (5.4)

where t is the physical time, τ is the pseudo-time, 𝒮𝒮𝒮 is the source term (set to zero
here since a non-reacting flow is considered in this section), F and Fv are the matrices
of inviscid and viscous/turbulent fluxes, respectively, given by Eqs. (3.36) and (3.37),
and 𝒫𝒫𝒫 and 𝒬𝒬𝒬 are the vectors of primitive and conservative variables, respectively,
given by

𝒫𝒫𝒫 =
[
pg u v w T Yn

]T
, (5.5)

𝒬𝒬𝒬 =
[
ρ ρu ρv ρw ρet ρYn

]T
, (5.6)

78

where u =
[
u v w

]T is the velocity vector, et the mass-specific total energy (et =
e + 1/2 u · u), and pg the gauge pressure. It is noted that the operators denoting
the low-pass filtered and Favre-filtered quantities, commonly represented by the sym-
bols □ and □̃, respectively (cf. Sec. 3.3), are not used here for the simplification of
mathematical notation.

T is the preconditioning matrix for the pseudo-time derivative and can be ex-
pressed as [158, 159]:

T =

ξ 0 0 0 −AT

Aρ
−AYj

Aρ

ξu ρ 0 0 −AT

Aρ
u −AYj

Aρ
u

ξv 0 ρ 0 −AT

Aρ
v −AYj

Aρ
v

ξw 0 0 ρ −AT

Aρ
w −AYj

Aρ
w

ξht +
T
ρ

(
∂ρ
∂T

)
p,Yk

ρu ρv ρw ρcp + ht

(
∂ρ
∂T

)
p,Yk

ρBYj
− AYj

et

Aρ

ξYi 0 0 0 −AT

Aρ
Yi ρ(1− δN−1,j)−

AYj

Aρ
Yi

,

(5.7)
where ξ is the parameter that re-scales the eigenvalues, ht the mass-specific total
enthalpy (ht = h + u · u/2), and δ the Kronecker delta matrix. The parameters
AT , Aρ, AYk

, and BYk
are defined as follows:

AT =

(
∂p

∂T

)
ρk

, (5.8)

Aρ =

(
∂p

∂ρ

)
T,Yk

, (5.9)

AYk
= ρ

[(
∂p

∂ρk

)
T,ρj ̸=k

−
(
∂p

∂ρN

)
T,ρk ̸=N

]
, (5.10)

BYk
= (ĕk − ĕN)−

(N∑
k=1

Ykĕk − e
)(

∂ρ

∂p

)
T,Yk

×
[(

∂p

∂ρk

)
T,ρj ̸=k

−
(
∂p

∂ρN

)
T,ρj, ̸=N

]
,

(5.11)

where ĕk is the partial-density internal energy for the kth species, given by

ĕk =

(
∂ρe

∂ρk

)
T,ρj ̸=k

. (5.12)

Details for the calculation of the partial derivatives and preconditioning terms are
provided in Appendix C.3 and Appendix C.4, respectively. Finally, the system is
closed with the SRK EOS, where density is obtained analytically from the primitive
variables by solving a cubic equation [161]:

ρ = f(p, T, Yk). (5.13)

79

A major bottleneck in the computation of thermophysical variables results from the
double summation operator over the number of chemical species, as evidenced in the
mixing rules and their partial derivatives (see Eqs. (C.1), (C.15) and (C.18)). The
cost of solving the EOS in primitive-variable-based solvers is O(N2). Thus, if the
number of chemical species in the mixture is doubled, the cost will be quadrupled.

The system of governing equations is discretized using a finite-volume methodol-
ogy in generalized curvilinear coordinates (cf. Sec. 3.4). Temporal discretization in
physical time is achieved by means of an implicit second-order backward difference
scheme, and the inner-loop pseudo-time term is integrated with an explicit three-step
Runge-Kutta scheme. Spatial discretization is obtained using a fourth-order central
difference scheme. Fourth-order matrix dissipation [162] is implemented to enhance
numerical stability in regions of large gradients. Finally, a multi-block domain de-
composition technique associated with the MPI standard library [163] in Fortran 90
is applied to achieve parallel computation. The algorithmic flowchart corresponding
to this implementation is provided in Algorithm 2. In this flowchart, the superscripts
n and m represent indices for the physical-time and pseudo-time steps, respectively.
The total number of pseudo-time steps, M , is typically set to 20-40. The output
variables in Steps 4–6 of Algorithm 2 are provided in Table 5.3. These variables are
considered as the output layer when building the DFNN-BC model and coupling it
to the PMBFS solver.

Algorithm 2: Time marching in physical time from tn to tn+1 in PMBFS
for τm, where m = 1,M do

for each stage of the Runge-Kutta scheme do
Step 1: Face reconstruction and flux computation at τm

Step 2: Compute preconditioner Tm and Jacobians Jm

Step 3: Update primitive variables 𝒫𝒫𝒫m+1

Step 4: Compute ρm+1 analytically
Step 5: Compute other thermodynamic quantities and partial derivatives at τm+1

Step 6: Compute transport quantities at τm+1

Step 7: Compute turbulence closures at τm+1

end for
end for
𝒫𝒫𝒫n+1 ←𝒫𝒫𝒫M+1

Table 5.3: Output variables in Steps 4–6 of Algorithm 2.

Step # Output variables
4 Z, ρ
5 W , e, hk, h, cv, cp, γ, a, AT , Aρ, AYk

, BYk

6 µ, λ, Dk

80

5.3.2.2 One-D ThermoCode

The One-D ThermoCode is a generalizable, compressible flow solver with a highly
modular thermodynamic implementation [164]. This code was built as a high-order
flow solver intended for fundamental studies of complex thermodynamics based on
the complete conservation equations. A flamelet model is included as a limiting case.
In the present study of counterflow diffusion flames, a quasi-one-dimensional mapping
about the axis of symmetry (x-axis) is made by polynomial expansion and symmetry
implementation. The resulting governing equations take the form below [164, 165]:

∂ρ

∂t
+
∂ρu

∂x
+ 2ρV = 0, (5.14)

∂ρu

∂t
+
∂ρuu

∂x
+
∂p0
∂x

+ 2ρuV =
∂

∂x

[
4

3
µ

(
∂u

∂x
− V

)]
+ 2µ

∂V

∂x
, (5.15)

∂ρV

∂t
+
∂ρuV

∂x
+ 3ρV 2 = −2p2 +

∂

∂x

[
µ
∂V

∂x

]
, (5.16)

∂ρht
∂t
− ∂p0

∂t
+
∂ρuht
∂x

+ 2ρhtV =
∂

∂x

[
λ
∂T

∂x

]
−
∑
k

∂ρYkVk,xhk
∂x

+
∂

∂x

[
4

3
µ

(
∂u

∂x
− V

)
u

]
+ 2µ

∂V

∂x
u− 4

3
µ

(
∂u

∂x
− V

)
V, (5.17)

∂ρYk
∂t

+
∂ρuYk
∂x

+
∂ρVk,xYk
∂x

+ 2ρV Yk = ω̇k, (5.18)

where u and V are the axial and radial velocity components, respectively, and ω̇k the
mass production rate of the kth species. The pressure expansion preserves the second-
order term, thereby leading to the terms p0 and p2 in the above equations. The total
enthalpy, ht, corresponds to the sum of the enthalpy and kinetic energy. The code
is coupled to an extended version of the Cantera package [166] for the computation
of heat release (for reacting flow) and real-fluid thermophysical properties. The PR
EOS is used here. The conservative formulation of the governing equations requires
an iterative solver such as the Newton-Raphson method for solving for temperature
for a given mixture:

T = f(ρ, e, Yk). (5.19)

The procedure differs from primitive-variable-based solvers, in which no sub-iterations
are needed to retrieve thermophysical properties. Here, for each iteration, thermo-
dynamic departure functions and intermediary variables need to be calculated over
the entire mixture composition space. Consequently, the time complexity associated
with the direct evaluation of the EOS in conservative-variable-based solvers can be
even higher than O(N2).

The theoretical model is numerically treated with a finite-volume formulation. A
four-step Runge-Kutta scheme is employed for temporal discretization, along with

81

high-order flux reconstruction technique at the cell interfaces. The flux at the inter-
faces is computed based on the averaged flux of two alternatively biased polynomial
interpolations. Such dual flux calculation provides additional numerical dissipation
through flux averaging. The flux reconstruction allows for an efficient interface par-
allelization of the code with a high spatial resolution of complex thermodynamics.
The code is written in Python 2.7 and can be run either with only one core, or in
parallel using the mpi4py library. The flowchart for the numerical implementation is
provided in Algorithm 3. The output variables in Steps 3–5 of Algorithm 3 are listed
in Table 5.4. These variables are considered as the output layer when incorporating
the neural network into the One-D ThermoCode.

Algorithm 3: Time marching in physical time from tn to tn+1 in One-D
ThermoCode

for each stage of the Runge-Kutta scheme do
Step 1: Face reconstruction and flux reconstruction at tn;
Step 2: Update conservative variables 𝒬𝒬𝒬n+1;
Step 3: Iteratively solve for Tn+1 given ρn+1, en+1 and Y n+1

k :
Sub-step 3.1: Set j = 0 and assume an initial value Tn+1

j = Tn;
Sub-step 3.2: Compute intermediary thermodynamic departure functions;
Sub-step 3.3: Compute en+1

j knowing Tn+1
j , ρn+1 and Y n+1

k ;
Sub-step 3.3: Compute departure from target value de = en+1

j − en+1 ;
Sub-step 3.4: Correct estimate of Tn+1

j+1 ;
Sub-step 3.5: Continue to step 3.2 until convergence ;

Step 4: Compute all other thermodynamic quantities and partial derivatives at tn+1

knowing Tn+1;
Step 5: Compute transport quantities at tn+1;

end for

Table 5.4: Output variables of Steps 3-5 of Algorithm 3.

Step # Output variables
3 T
4 p, W , h, hk, a
5 µ, λ, Dk

5.4 DFNN-BC Model Specification

We first give a brief overview of deep neural networks, then present a model
specification for DFNN-BC. Two canonical test cases are presented to demonstrate
the improved predictive performance of the proposed method over standard DFNN
models. Finally, the integration of DFNN-BC in the flow solvers is explained.

82

5.4.1 Overview of Deep Neural Networks

In the present study, a DFNN is used to approximate real-fluid thermodynamic
and transport properties for accelerated calculation of supercritical flows. The goal
of a DFNN is to approximate some function y∗ = f ∗(x) that maps an input x ∈ Rnin

to an output y∗ ∈ Rnout . A DFNN defines an application y = f(x;θ) and learns
the value of the parameters θ in such a way as to make f as close as possible to
f ∗ (cf. Sec. 2.2.3). The model is associated with a direct acyclic graph that consists
of an input layer with nin neurons, followed by a certain number of hidden layers, and
finally, an output layer with nout neurons, as shown schematically in Fig. 2.3(b). The
number of neurons per hidden layer in all the hidden layers is denoted byℋℋℋ ∈ NLhidden ,
where ℋj is the number of neurons in the jth hidden layer, with Lhidden the number
of hidden layers.

The forward propagation step of the neural network is given by Eqs. (2.4) and (2.5).
After the input data is fed into the network, each hidden layer processes it, and then
passes the result to the following layer. The set of parameters, θ, containing all the
weights and biases of the model – they are a priori unknown – can be expressed as
θ = {W (l), b(l); l = 1, 2, . . . , L}, where L is the total number of layers (excluding the
input layer from the count), i.e., L = Lhidden + 1. Those parameters are adapted
during the training process to minimize an objective function J . The latter is taken
as the MSE loss between the actual and predicted values, as given by Eq. (2.6). To
reduce or completely avoid overfitting and make sure that the model performs well
not just on the training data but also on unseen inputs, L2 regularization is used;
it is controlled by the parameter λreg, which is chosen ahead of time to achieve a
bias-variance trade-off (cf. Sec. 2.3.3.1). The Adam optimization algorithm (cf. Algo-
rithm 1), which is a stochastic, first-order, gradient-based approach with an adaptive
learning rate, is used to obtain the parameters of the network. The learning rate
is initialized with the standard value of λlr = 0.001 throughout this chapter. The
performance of a trained network is assessed by computing the MSE (or R2-score1)
on a validation dataset, which contains samples kept unseen during training. We
note that in this chapter the validation set is used after training, i.e., for each trained
model, the validation error is computed after the learning algorithm is terminated
(cf. Sec. 2.3.4.1). While it is possible to automate the process of finding the right
neural architecture and tuning the hyperparameters, this is not done in the current
study. Rather, a manual search is performed based on the trial-and-error method
(cf. Sec. 2.3.5.3).

5.4.2 Application to Real-Fluid Properties

In this study, the training database consists of thermodynamic and transport prop-
erties that span the thermophysical region of interest. It is generated using an EOS

1The R2-score, which is defined by R2 ≡ 1 −
∑

i(y
∗
i −yi)

2∑
i(y

∗
i −y)2 for exact data y∗i , predicted values yi

and mean y, is a statistical measure that gives information about how well the model predictions
approximate the exact data points. It is between zero (poor predictive accuracy) and one (excellent).

83

(see Sec. 5.3). An important question is how to select the variables in both the input
and output layers to build the correspondence between the flowfield and the DFNN.
The state postulate indicates that only two independent intensive properties, along
with the chemical composition, are required to determine the thermodynamic state
(that is, a unique description of all thermophysical properties) of a multicomponent
mixture in thermal and mechanical equilibrium [167]. For a mixture of N species,
N + 1 independent variables are needed.

Since the DFNN model is to be coupled to a CFD solver, the selection of the
independent variables will depend on the formulation of the solver itself. For solvers
with a primitive-variable-based formulation like PMBFS, a natural choice is the group
of primitive variables, {T, p, Yk; k = 1, 2, . . . , N −1}. For solvers with a conservative-
variable-based formulation like One-D ThermoCode, the group of conservative vari-
ables, {ρ, e,Yk; k = 1, 2, . . . , N − 1}, is taken as the input layer of the DFNN. The
selection of variables in the output layer is also solver-dependent. For example, if en-
thalpy and specific heats are needed in the calculations, then they should be included
in the output layer, and so forth.

After the database is generated, it is split into two sets – training and validation –
with an 80:20 split.2 The data in each set are standardized using the mean and
standard deviation of the set to stabilize the learning process and remove any bias (cf.
Eq. (2.29)), particularly when the variables have different units (e.g, Joules, Kelvin,
dimensionless, etc.). For example, in a combustion problem such as the one in Sec. 5.6,
the mass fractions are in the range of 0-1 whereas the temperature is in the range of
120-3,500 K. The weights of the neural network are initialized to small random values
(cf. Sec. 2.3.5.2) and updated, at each epoch, via the Adam optimization algorithm
in response to the MSE estimates on the training dataset. The design and training
of DFNN are accomplished using PyTorch and scikit-learn (cf. Sec. 2.3.9).

5.4.3 Boundary Information

Boundary information on f ∗ is usually available from governing physical laws
or domain expertise. We consider here Dirichlet boundary conditions for specifying
values of f ∗ along certain boundaries of the domain. To encode such boundary in-
formation as prior information in the DFNN-BC model, each of the boundary points
of interest is repeated multiple times in the training data. Two loss functions are
defined, denoted by Jbc and Jint, to compute the errors on the boundary and interior
points, respectively [48, 168]. They are given by

Jbc =
1

Nbc

Nbc∑
j=1

(f ∗(x(j))− f(x(j)))2, (5.20)

2Note that a test set was not considered in the a priori analysis. Evaluation of generalization
of the neural network is carried out in the a posteriori analysis (i.e., when the neural network is
implemented in CFD).

84

Jint =
1

Nint

Nint∑
j=1

(f ∗(x(j))− f(x(j)))2, (5.21)

where Nbc stands for the number of boundary points (including repetitions) in the
training data and Nint the number of interior points. In the present work, Nint is
taken to be a large number ∼ O(105-106), while Nbc is a small number ∼ O(102-103).
These loss functions are monitored during the model training process to ensure high
accuracy throughout the entire input domain.

In the following, the DFNN-BC model is evaluated offline (or a priori) through
two canonical examples in zero-dimensional (i.e., with no moving fluid). In each of
these examples, the system is chosen for the numerical applications based on the
PMBFS primitive-variable-based algorithm.

5.4.4 Canonical Example 1: Zero-Dimensional Thermodynamics

The neural network is first evaluated through a canonical example consisting of
a single species in zero-dimensional. Pure oxygen is considered with temperature
between 100 K and 400 K at two different pressures (6 MPa and 10 MPa). Both
pressures are supercritical pressures, with the first condition closest to the critical
pressure of oxygen (pc = 5.43 MPa).

Two neural networks are designed, one for each pressure condition. The input
layer of each neural network is designed with one channel, being the temperature.
The output layer corresponds to the vector of variables in Table 5.3, referring to
Algorithm 2, which results in a total of 12 variables for a single-species system. The
training data is generated from the equations described in Sec. 5.3 with a uniform
sampling over the manifold of interest. The total number of training points (before
splitting the dataset) is Ntrain = 300, and thus the temperature axis is discretized
with a step of approximately 1 K.

A standard DFNN is built following the methodology explained in Sec. 5.4.1. An
architecture comprising 3 hidden layers and 9 neurons per layer is selected by manual
search with the following hyperparameters: λreg = 0.001 and σ = ReLU (in all the
hidden layers). The R2-scores on validation data are 0.998 and 0.999 for the two
neural networks. Figures 5.1 compares the predictions from the neural networks to
the ground truth solutions for selected variables. As seen from this figure, the neural
network predictions are in excellent agreement with the reference solutions, even for
the variable cp which presents the strongest nonlinearity, especially at p = 6 MPa. We
note that the boundary points did not need to be repeated here due to the simplicity
of the example, unlike in the next example.

5.4.5 Canonical Example 2: Zero-Dimensional Thermodynamics

In this section, the model is evaluated through another, but more complicated,
canonical example in zero-dimensional. A kerosene-oxygen mixture composed of four

85

(a) p = 6 MPa. (b) p = 10 MPa.

Figure 5.1: Comparison of DFNN and expected solutions for density (ρ), specific heat
at constant pressure (cp), pressure derivative with respect to temperature (AT), and
viscosity (µ). Results are shown for: (a) p = 6 MPa, and (b) 10 MPa.

species is considered: O2, C10H22, C9H12, and C9H18, and lies in the p-T -Yi manifold
where T ranges between 492.2 K and 687.7 K, YO2 between 0 and 1, YC10H22 between
0 and 0.7674, and YC9H12 between 0 and 0.1314. The pressure is assumed to be
constant and is set to 253 bar. These physical states correspond to the operating
conditions of the rocket injector discussed in Sec. 5.5. The input layer of the neural
network is designed with the following four channels: T, YO2 , YC10H22 , and YC9H12 . The
mass fraction of the 4th species, YC9H18 , can be obtained by mass conservation (i.e.,∑

i Yi = 1), and thus is not included in the input layer. The output layer corresponds
to the vector of variables in Table 5.3, referring to Algorithm 2. The total number of

86

these variables is 27. The training data is generated from the equations described in
Sec. 5.3 with a uniform sampling over the manifold of interest. The total number of
training points (before splitting the dataset) is Ntrain = 329, 300.

A standard DFNN is built following the methodology explained in Section 5.4.1.
While the numbers of neurons in the input and output layers are fixed, and are
usually determined by the problem under consideration, the appropriate numbers of
hidden layers and neurons per hidden layer are more difficult to find, especially for a
system with multiple species. By manual search, we found that a network architecture
comprising 4 hidden layers and 9 neurons per hidden layer, i.e., ℋℋℋ =

[
9 9 9 9

]T ,
along with hyperparameters λreg = 0.001 and σ = ReLU (in all the hidden layers),
is suitable for estimating the thermophysical properties with greatly reduced cost.
The R2-scores on training and validation data are 0.988 and 0.987, respectively. The
parametric analysis for guiding the design process and justifying the chosen neural
network is reported in Appendix D.

Table 5.5 compares the prediction of the chosen DFNN to the expected solution
for two different inputs. The first one (p = 253 bar, T = 525.17 K, YO2 = 0.47,
YC10H22 = 0.41, YC9H12 = 0.069) is an interior point in the p-T -Yi manifold, while the
second one (p = 253 bar, T = 687.7 K, YO2 = 1.0, YC10H22 = 0, YC9H12 = 0) is a
boundary point. The DFNN solution agrees well with the prediction for the interior
point, with a relative error less than 5.5% for all the thermophysical variables. For
the boundary point, the DFNN prediction indicates larger errors. For example, the
density and internal energy have relative errors of -35.61% and 36.4%, respectively.
Implementation in CFD of DNN models with such large errors at the boundaries will
pose serious numerical challenges.

To alleviate the situation, the DFNN-BC model is implemented to provide accu-
rate predictions at the boundaries, as explained in Sec. 5.4.3. Two boundary points
are particularly of interest in the study of the rocket injector case in Sec. 5.5. The
first corresponds to pure oxidizer (p = 253 bar, T = 687.7 K, YO2 = 1.0, YC10H22 = 0,
YC9H12 = 0), and the second to pure fuel (p = 253 bar, T = 492.2 K, YO2 = 0.0,
YC10H22 = 0.74, YC9H12 = 0.15). A sensitivity analysis is performed to determine the
number of times for which each boundary point needs to be repeated in the training
data. The resulting MSE losses, Jbc and Jint, are reported in Table 5.6 for differ-
ent numbers of boundary training data, Nbc. The network architecture is fixed at
4 hidden layers and 9 neurons per hidden layer, and the number of interior training
data points at Nint = 329, 298. The prediction accuracy for the boundaries substan-
tially increases with increasing Nbc from 2 to 10,002, as evidenced by the decrease in
Jbc. The associated Jint increases by a small amount; the prediction accuracy for the
interior points is not compromised much. For larger values of Nbc (i.e., 20,002 and
30,002), Jint increases considerably, suggesting that the predictions of the neural net-
work become biased as more boundary points are introduced into the training data.
Therefore, the case Nbc = 10, 002 where each of the two boundary points is repeated
5,001 times is selected.

Table 5.7 compares the prediction of the chosen DFNN-BC to the expected solu-
tion for the two different inputs listed in Table 5.5. The DFNN-BC model consider-

87

Table 5.5: Comparison of DFNN and expected solutions at interior and boundary
points.

Test 1: Interior point
Inputs Expected solution DFNN solution Relative error, %

p = 253 bar ρ = 299.41 kg/m3 ρ = 299.58 kg/m3 0.058
T = 525.17 K e = −642, 620.0 J/kg e = −647, 062.77 J/kg 0.69
YO2 = 0.47 cp = 2, 011.72 J/kg-K cp = 1, 998.1 J/kg-K -0.68

YC10H22
= 0.41 a = 382.17 m/s a = 389.57 m/s 1.94

YC9H12
= 0.069 AT = 91, 447.34 Pa.K AT = 93, 939.46 Pa.K 2.73

Aρ = 115, 170.26 Aρ = 120, 176.59 4.35
µ = 3.016× 10−5 Pa.s µ = 3.047× 10−5 Pa.s 1.02

λ = 7.0597× 10−2 W/m-K λ = 7.087× 10−2 W/m-K 0.39
DC9H12 = 2.062× 10−8 m2/s DC9H12 = 1.950× 10−8 m2/s -5.41

Test 2: Boundary point
Inputs Expected solution DFNN solution Relative error, %

p = 253 bar ρ = 130.73 kg/m3 ρ = 84.18 kg/m3 -35.61
T = 687.7 K e = 188, 442.5 J/kg e = 256, 998.65 J/kg 36.4
YO2

= 1.0 cp = 1, 074.43 J/kg-K cp = 1, 011.78 J/kg-K -5.83
YC10H22

= 0 a = 535.98 m/s a = 512.35 m/s -4.41
YC9H12

= 0 AT = 38, 779.59 Pa.K AT = 21, 831.41 Pa.K -43.70
Aρ = 210, 363.05 Aρ = 199, 132.66 -5.33

µ = 4.036× 10−5 Pa.s µ = 3.344× 10−5 Pa.s -17.14
λ = 6.217× 10−2 W/m-K λ = 6.415× 10−2 W/m-K 3.20

DC9H12
= 1.192× 10−7 m2/s DC9H12

= 9.830× 10−8 m2/s -17.56

ably improves the prediction accuracy for the boundaries over the conventional DFNN
model; all thermophysical variables are estimated with a relative error smaller than
5.5%. In addition, the predictions for the interior points are not compromised much.
Figure 5.2 shows the regression plots for selected output variables with the DFNN-BC
predictions on the y-axis and the expected solution on the x-axis. Also indicated is
the R2-score on validation data for each variable. The scatter points are colored by
the local relative error, where overprediction is indicated by a positive value of the er-
ror and underprediction by a negative value. Overall, the R2-score for each variable is
above 0.93. The predictions of DFNN-BC agree well with the expected solution. It is
noted that, although the manual search process yielded a high-performing neural net-
work, as indicated by the high R2-scores, it is possible that the optimal architecture
and set of hyperparameters have not yet been found. Consequently, there are ways
to further improve the accuracy of the predictions if needed. For instance, through
the use of automated tools, such as DeepHyper [70], a more comprehensive search
can be conducted to further optimize the neural network. Moreover, while a single
neural network was used herein to approximate all the thermophysical variables, an
alternative method would be to design separate/customized neural networks for each
variable or group of correlated variables. The implementation and exploitation of
these techniques, however, are left for a future study.

88

Table 5.6: MSE losses for different numbers of boundary training data points, Nbc.
Here, “Repetition” indicates the number of times for which each boundary point of
interest (i.e., pure oxidizer and pure fuel) is repeated in the training data.

Repetition Nbc Ntrain Jint Jbc
(2× Repetition) (Nint +Nbc) (Eq. 5.21) (Eq. 5.20)

1 2 329,300 0.0125 0.377
1,001 2,002 331,300 0.0130 0.366
5,001 10,002 339,300 0.0178 0.365
10,001 20,002 349,300 0.0258 0.336
15,001 30,002 359,300 0.0324 0.327

Table 5.7: Comparison of DFNN-BC and expected solutions at interior and boundary
points.

Test 1: Interior point
Inputs Expected solution DFNN-BC solution Relative error, %

p = 253 bar ρ = 299.41 kg/m3 ρ = 304.51 kg/m3 1.71
T = 525.17 K e = −642, 620.0 J/kg e = −642, 148.47 J/kg -0.07
YO2 = 0.47 cp = 2, 011.72 J/kg-K cp = 1, 990.50 J/kg-K -1.05

YC10H22 = 0.41 a = 382.17 m/s a = 391.04 m/s 2.32
YC9H12

= 0.069 AT = 91, 447.34 Pa.K AT = 938, 68.34 Pa.K 2.65
Aρ = 115, 170.26 Aρ = 117, 885.60 2.36

µ = 3.016× 10−5 Pa.s µ = 3.04× 10−5 Pa.s 0.84
λ = 7.060× 10−2 W/m-K λ = 7.05× 10−2 W/m-K -0.13

DC9H12 = 2.062× 10−8 m2/s DC9H12 = 2.084× 10−8 m2/s 1.06
Test 2: Boundary point

Input Expected solution DFNN-BC solution Relative error, %
p = 253 bar ρ = 130.73 kg/m3 ρ = 132.53 kg/m3 1.38
T = 687.7 K e = 188, 442.53 J/kg e = 198, 509.77 J/kg 5.34
YO2

= 1.0 cp = 1, 074.43 J/kg-K cp = 1, 088.35 J/kg-K 1.30
YC10H22

= 0 a = 535.98 m/s a = 532.60 m/s -0.63
YC9H12

= 0 AT = 38, 779.59 Pa.K AT = 37, 964.82 Pa.K -2.1
Aρ = 210, 363.05 Aρ = 203, 204.20 -3.40

µ = 4.036× 10−5 Pa.s µ = 3.929× 10−5 Pa.s 1.02
λ = 6.217× 10−2 W/m-K λ = 6.179× 10−2 W/m-K -0.61

DC9H12
= 1.192× 10−7 m2/s DC9H12

= 1.172× 10−7 m2/s -1.71

5.4.6 Integration in Flow Solvers

After a plausible network topology is determined to meet the desired performance,
the DFNN-BC model is implemented in the time integration loop of a flow solver.
The procedure is as follows. At each time step and at each cell of the numerical grid,
the flow variables are marched forward in time and subsequently provided as inputs
to the DFNN-BC, which, in turn, will update the thermophysical variables of inter-
est, as shown in Algorithm 4. The parameters of the network, θ, are obtained from

89

Figure 5.2: Regression plots of selected output variables (16 out of 27). The R2-score
on validation data is indicated for each variable. The color bars represent the local
relative error in percentage. The range of the colorbar is set to the min/max values
of the corresponding error. All variables are expressed in SI units.

PyTorch (after an offline training is completed) and imported into the flow solver.
In the present study, we replace Steps 4-6 of Algorithm 2 in PMBFS, or Steps 3-5 of
Algorithm 3 in One-D ThermoCode, by a single call to the subroutine in Algorithm 4.
The entire process is summarized in Fig. 5.3.

90

Algorithm 4: Evaluation of real-fluid properties using DFNN-BC
Input: Flow variables x, parameters of neural network θ = {W (i), b(i); i = 1, 2, ..., L}
Output: Thermodynamic and transport properties y
Standardize x ;
z ← x ;
for i = 1 to L do

z ← ReLU(W (i)z + b(i))
end for
y ← z ;
De-standardize y ;
Return y ;

Figure 5.3: Flowchart summarizing the training process of DFNN-BC and its inte-
gration in a flow solver.

5.5 Swirl Rocket Injector at Supercritical Conditions

5.5.1 Geometry and Computational Setup

A GCLSC injector (cf. Sec. 4.4.3) is considered in this section. It consists of four
regions: the center cylindrical tube (also referred to as the GOX post), coaxial fuel
annulus, recess region, and taper region, as shown schematically in Fig. 5.4. The
geometric parameters of this injector are provided in Table 5.8. Gaseous oxygen
(GOX) is injected axially into the center tube at a mass flow rate of ṁo = 1.33 kg/s
and temperature of Tin,o = 687.7 K, while liquid kerosene is tangentially introduced
into the coaxial annulus at a mass flow rate of ṁf = 0.477 kg/s and temperature of
Tin,f = 492.2 K through a slit located at ∆l = 2.0 mm downstream of the annulus
head. The injection pressure is set to 253 bar (supercritical condition), and thus the
mixture can be treated as a single-phase flow (cf. Secs. 4.2 and 4.4.4). The Reynolds

91

number, Re, is about 2.50×105 based on the GOX flow condition and post thickness.
Table 5.9 summarizes the injection operating conditions.

The computational domain consists of the injector interior (20 Ro in the axial
direction) and a downstream zone (30 Ro and 8 Ro in the axial and radial direc-
tions, respectively). Calculations based on a cylindrical sector of the injector with an
azimuthal span of three degrees are carried out. Periodic boundary conditions are ap-
plied in the azimuthal direction. Although such simplification leads to the exclusion
of the vortex-stretching/tilting mechanisms responsible for turbulent energy transfer
from large to small eddies, as well as azimuthal wave dynamics, many salient features
of flow and mixing dynamics can still be captured by simulations based on a sector
configuration [8]. Closure for the subgrid-scale terms is attained using the algebraic
eddy viscosity model [87]. The grid contains a total of about 2.3× 105 finite-volume
cells, which are partitioned as follows: 448 × 128 in the GOX post, 122 × 48 in the
fuel passage, 320 × 224 in the mixing cup, and 320 × 320 in the downstream zone.
A grid convergence study for this configuration was performed in Ref. [122]. The
smallest grid size of 5 µm is comparable with the Taylor scale (10.88 µm) within
the injector, and allows for the resolution of the turbulent kinetic energy (TKE) in
the subinertial range according to the Kolmogorov-Obukhov theory. An acoustically
non-reflecting boundary condition [169] is implemented at the GOX and kerosene
entrances. The downstream boundary of the computational domain is treated with
sponge layers [170] in both the axial and radial directions to eliminate unphysical wave
reflections. Adiabatic and no-slip boundary conditions are enforced at all solid walls.
A three-component surrogate (n-decane/n-propylbenzene/n-propylcyclohexane with
74/15/11% by volume) for kerosene is used. Details on the computational setup can
be found in Refs. [122, 124].

The numerical simulation, which is performed using the PMBFS solver, is initiated
by delivering the GOX through the center cylindrical tube. Liquid kerosene is injected
into the coaxial annulus after 8.0 ms of physical time, when the GOX flow has reached
its stationary state. The time t0 = 0 refers hereafter to the instant when the fuel
injection commences.

Table 5.8: Injector parameters.

δ [mm] h [mm] Ro [mm] Rf [mm] ∆l [mm] L1 [mm] L2 [mm] Ls [mm] Lr [mm] α
0.60 0.745 5.62 7.03 2.0 93 113.1 7.5 8.5 42o

5.5.2 Neural Network Design

The multicomponent mixture and the physical condition for the rocket injector
problem are identical to those in the canonical example (cf. Sec. 5.4.5). The same
DFNN-BC model thus is used in both cases. It should be noted, however, that a
separate neural network is required if the problem involves different mixtures and/or

92

Figure 5.4: Schematic of GCLSC injector geometry [122, 124].

Table 5.9: Injector flow conditions.

Oxidizer Fuel
Fluid GOX Liquid kerosene

Mass flow rate (kg/s) 1.33 0.477
Temperature 687.7 492.2
Pressure (bar) 253 253

physical conditions. The neural network implemented herein consists of 4 hidden lay-
ers and 9 neurons per hidden layer. The input layer is designed with four channels,
T, YO2 , YC10H22 , and YC9H12 , since the pressure variation in the injector is minimal [122,
124]. The output layer corresponds to the vector of variables in Table 5.3 (see Al-
gorithm 2). A total of 27 variables are considered. The preconditioning variables
AY4 and BY4 remain zero, and are omitted from the output layer. The number of
boundary data points is set to Nbc = 10, 002 based on the offline training result (cf.
Sec. 5.4.5). The R2-scores of the selected model are 0.982 and 0.980 on training and
validation data, respectively. Table 5.10 compares the memory required to export the
model parameters of DFNN-BC (from PyTorch) versus that required to export from
look-up tables into data files for subsequent implementation in the flow solver. The
look-up tables, which are five-dimensional here, consume a lot of memory, and a small
refinement in the table content would significantly increase the memory footprint. For
example, a table with a discretization of 50×30×20×20× (4+27) occupies 240 MB
whereas one with a discretization of 75× 50× 40× 40× (4+ 27) consumes 2.415 GB.
This is the “curse of dimensionality”. On the other hand, the memory occupied by

93

the DFNN-BC parameters is minimal, about four to five orders of magnitude smaller
than its tabulation counterpart. This is a significant advantage of neural networks,
which can considerably reduce the memory usage.

Table 5.10: Comparison of memory requirement between DFNN-BC and tabulation
methods.

Model Architecture Memory [MB]
DFNN-BC nin = 4, ℋℋℋ =

[
9 9 9 9

]T
, nout = 27 5.6× 10−2

Look-up table 50× 30× 20× 20× (4 + 27) 2.40× 102

Look-up table 75× 50× 40× 40× (4 + 27) 2.415× 103

5.5.3 Evaluation of the Coupled DFNN-BC and LES Approach

Two separate simulations are carried out with identical numerical setup except for the
evaluation of real-fluid properties: Case 1 – Baseline, where properties are computed
using the brute force equations described in Sec. 5.3; Case 2 – DFNN-BC, where prop-
erties are computed using the DFNN-BC model. The comparison between the two
cases is conducted in terms of both instantaneous and time-averaging flow features.

5.5.3.1 Instantaneous Flowfield

Figure 5.5 shows the evolution of the density field in the mixing cup region between t =
0 (kerosene injection) and t = 1.0 ms. Qualitatively, the results for the two cases are
very similar. Kerosene mixes quickly with the GOX flow while entrained downstream.
The resultant structures for the two cases appear to be similar; but, their exact
positions are not. In addition, finer scales are observed at the exit of the fuel annulus
in the baseline simulation compared to the DFNN-BC case. These phenomena may be
attributed to the numerical errors introduced by approximating real-fluid properties in
a neural network. The errors propagate from the state equations to the conservation
equations and cause the damping of the flow motions. Nevertheless, most of the
salient features of the flowfield are well captured by the DFNN-BC model. Figure 5.6
shows snapshots of the density field at t = 16 ms. First, the wall shear layers from
the GOX post and fuel annulus interact and merge together to form a new shear
layer convecting downstream, a situation known as the axial shear-layer instability.
In the meantime, the liquid film fluctuates in the axial direction. At the exit of the
recess region, kerosene is largely entrained into the GOX stream. Both cases show
the formation of a recirculation zone caused by the adverse pressure gradient in the
taper region.

Figure 5.7 shows the power spectral density (PSD) of pressure fluctuations for the
two cases. The PSD is calculated as follows:

PSD(f) =
2× |DTFT(p(t))|

Np

, (5.22)

94

where DTFT is the discrete-time Fourier transform operator, f the frequency, and
Np the number of samples in the pressure signal. Also shown in Fig. 5.7 is the
instantaneous density field of the baseline case.

Probe 1 is located within the GOX post, where the acoustic oscillation is primarily
longitudinal. The frequencies of the dominant modes of pressure fluctuations are
about 2.8 and 3.2 kHz for the baseline and DFNN-BC, respectively. Probe 2 is located
in the kerosene stream. The measured frequency spectrum is similar to that of Probe
1. Probe 3 is located at the beginning of the taper region where intensive mixing
happens. The dominant pressure modes at this location have frequencies of about
10.8 and 10.9 kHz for baseline and DFNN-BC, respectively. As the mixture moves
downstream and spreads outwards, the pressure oscillations become much smaller, as
indicated by the signal at Probe 4. Overall, the DFNN-BC model captures well the
dynamics of the flow. In addition, it is observed from Fig. 5.7 that the maximum
pressure fluctuation is less than 1 bar, about 0.4% of the operating pressure in the
injector (253 bar). This justifies why pressure was not included in the input layer of
the neural network.

Figure 5.5: Temporal evolution of the density field for the baseline (left) and DFNN-
BC (right) cases.

95

Figure 5.6: Snapshots of the evolved density field at t = 16 ms for the baseline (left)
and DFNN-BC (right) cases.

Figure 5.7: Frequency spectra of pressure fluctuations at different positions for the
baseline (solid, black lines) and DFNN-BC (dashed, blue lines).

5.5.3.2 Time-Averaged Flowfield

Figure 5.8 shows the distributions of the time-averaged mixture fraction and tem-
perature for the baseline and DFNN-BC cases. Averaging for a period of 10 ms was
performed after the flowfield had reached a quasi-stationary state at t = 5.0 ms. Good
agreement is achieved between the two cases. The propellant mixing is well predicted
by the DFNN-BC model. The isoline of YF = 0.85 (fuel dominant) starts at the exit
of the fuel annulus and disappears slightly downstream at the entrance of the taper

96

region. The central GOX stream, enclosed by the isoline of YF = 0.05, flows all the
way to the downstream region. The mixing effectiveness, indicated by the isoline of
YF = 0.25 (close to the stoichiometric mixture ratio), ends at x/R0 = 27 for the base-
line case, compared to x/R0 = 27.4 for the DFNN-BC case. The spatial evolution
of the three temperature isolines (T = 550 K, 610 K, and 670 K) also suggests the
accuracy of the prediction by the DFNN-BC model.

Further analysis is conducted in terms of radial profiles of the time-averaged quan-
tities. Figure 5.9 shows the distributions of the axial velocity, temperature, mix-
ture fraction, and density at three different axial positions in the injector, x/R0 =
18, 20, and 25, corresponding to the recess, taper, and downstream regions, respec-
tively. Very good agreement is observed among the profiles. Some minor discrepan-
cies, however, are noted, in particular at x/R0 = 20, where a local geometric change
induces strong flow distortions, and at x/R0 = 25, where the peaks in the temperature
and density profiles are underestimated by the DFNN-BC model. For completeness,
the relative errors for the time-averaged radial profiles predicted by the DFNN-BC
model at different axial locations are summarized in Table 5.11. The relative error
based on the L2-norm, ϵrel, is defined as:

ϵrel =
∥q∗ − q∥2
∥q∗∥2

=

√∑
i(q

∗
i − qi)2√∑
i q

∗2
i

, (5.23)

where q∗ is a vector representing the true profile and q is a vector representing
the profile predicted by the coupled DFNN-BC and CFD approach. Overall, the
prediction errors are less than 1% for T , less than 6% for u and ρ, and less than 9%
for YF.

Table 5.11: Relative errors in percentage (%) for the time-averaged radial profiles
predicted by the DFNN-BC model at different axial locations in the injector. Results
are shown for different field variables.

Variable x/R0 = 18 x/R0 = 20 x/R0 = 25
u 1.51 5.13 5.95
T 0.82 0.87 0.70
YF 8.85 6.19 8.59
ρ 5.45 4.13 2.32

5.5.4 Computational Cost

The assessment of computational cost was performed locally on a Linux cluster with
the following specifications per node: 128 GB of memory and 64 cores of AMD
Opteron 6276 and 6279 CPU. Each simulation is carried out using a total of 469
cores. The cost of 1 ms of physical time is about 2,300 CPU-hours for the base-
line case. Figure 5.10(left) shows the time distribution of the different kernels of the
PMBFS solver for one pseudo-time step. Here, only the computational time is taken

97

Figure 5.8: Time-averaged distributions of fuel mass fraction and temperature fields
for the baseline (left) and DFNN-BC (right) cases.

into account; the communication time in the MPI process is not included. The total
computational time for one pseudo-time step in the baseline case is about 0.142 s wall
time. The distribution is as follows: 39.2% for fluxes and other basic routines like
update of flow variables (Steps 1 and 3 of Algorithm 2), 2.5% for the Jacobian and
preconditioning matrix (Step 2), 56.3% for real-fluid properties (Steps 4-6), and 2.0%
for turbulence closures (Step 6). The evaluation of real-fluid properties clearly domi-
nates the use of computational time. Figure 5.10(right) shows the time distribution
of the different components of the property kernels: 16.2% for the compressibility
and density (Step 4), 77.2% for the remaining thermodynamic quantities and their
derivatives (Step 5), and 6.7% for transport properties (Step 6). Step 5 poses a
severe limitation to the computational efficiency of the PMBFS solver. Table 5.12 com-
pares the computational times between the baseline and DFNN-BC cases. Significant
improvement is achieved in the efficiency of property evaluation using the neural net-
work. The speedup is 2.43 times. The time saving for the entire simulation is 1.5
times.

Table 5.12: Computational time distributions of kernels per pseudo-time step.

Total time (s) Properties (s) Remaining routines (s)
Baseline 0.142 0.080 0.062

DFNN-BC 0.095 0.033 0.062

98

(a) (b)

(c) (d)

Figure 5.9: Radial distributions of time-averaged axial velocity (a), temperature (b),
fuel mass fraction (c) and density fields (d) at different axial locations (x/R0 =
18, 20 and 25) in the injector for the baseline (solid, black lines) and DFNN-BC
(dashed, blue lines) cases.

Figure 5.10: Computational time distribution of the different kernels in the PMBFS
solver (left). Computational time distribution of the different components of the
property kernels (right).

99

5.6 Counterflow Diffusion Flame

5.6.1 Computational Setup

Counterflow diffusion flames have been extensively studied over the last several
decades [171, 172, 173, 174]. In this section, we consider a counterflow diffusion flame
for cryogenic hydrogen combustion with an oxygen/nitrogen mixture (0.5N2/0.5O2

by mole fraction) at high pressures, as shown schematically in Fig. 5.11. This test
case is significantly different from the rocket injector problem discussed in Sec. 5.5.
The flow is quasi-one-dimensional, laminar, and reacting. Calculations are carried
out using the One-D ThermoCode conservative-variable-based algorithm, described in
Sec. 5.3.2.2. The separation distance between the fuel and oxidizer is L = 0.01 m.
Their inlet velocities are uf = 2.742 m/s and uo = −0.258 m/s, respectively, and
the inlet temperatures Tf = 295 K and To = 140 K, respectively. This gives a strain
rate ϵ = 300 s−1. The operating pressure is p = 7 MPa (70 bar). The high-pressure
H2/N2/O2 chemical-reaction mechanism developed by Burke et al. [175] is employed.
It contains 9 species (H, H2, O, OH, H2O, O2, N2, HO2, and H2O2) and 27 reactions.
The numerical grid contains 992 cells, and the CFL number is set to 1.2 for numerical
stability, leading to a time step about 5.6× 10−10 s.

Figure 5.11: Schematic of H2/N2/O2 counterflow diffusion flame [173].

5.6.2 Neural Network Design

The input layer contains the list of conservative variables, (ρ, e, Yk; k = 1, 2 . . . , N−1),
from which the thermophysical properties are retrieved as prescribed by Algorithm 3.
While the total number of species is N = 9, the mass fractions of HO2 and H2O2

are much smaller compared to the other species, and therefore, their effect can be
neglected. The input layer thus consists of the following eight nodes: ρ, e, YH, YH2 , YO,
YOH, YH2O, YO2 , with the following ranges for training: ρ ∈ [4.254, 642.114] kg/m3,
e ∈ [−3031.692,−19.682] kJ/kg, YH ∈ [0, 0.00104], YH2 ∈ [0, 1], YO ∈ [0, 0.00867],
YOH ∈ [0, 0.05430], YH2O ∈ [0, 0.51272], and YO2 ∈ [0, 0.53320]. The mass fraction
of nitrogen, YN2 , can be obtained by mass conservation (i.e.,

∑
i Yi = 1) and is not

100

included in the input layer. The output layer consists of all the variables listed in
Table 5.4, referring to Algorithm 3. The total number of these variables is 21. The
same methodology described in Sec. 5.4.5 is employed to design the DFNN-BC model
except that the EOS is different (the PR EOS). A DFNN-BC comprising of 2 hidden
layers and 25 neurons per layer is chosen by manual tuning. The R2-scores for the
training and validation data are 0.953 and 0.952, respectively.

5.6.3 Evaluation of the Integrated DFNN-BC and CFD Approach

Two separate simulations are carried out with identical numerical setup except for the
evaluation of real-fluid properties: Case 1 – Baseline, where properties are computed
using the brute force equations described in Sec. 5.3; Case 2 – DFNN-BC, where
properties are computed using the DFNN-BC model. Figure 5.12 shows the spatial
profiles of density, internal energy, temperature, and mass fractions of selected species
for both the baseline and DFNN-BC cases. Excellent agreement is observed between
the two cases. The maximum flame temperature is about 3,460 K for the DFNN-BC
case compared to 3,450 K for the baseline case. This corresponds to a relative error of
0.3%. The flame structure is also well predicted by the DFNN-BC case, as evidenced
by the distributions of species’ mass fractions.

Figure 5.12: Spatial profiles of density, internal energy, temperature and mass frac-
tions of selected species for the baseline (solid, black lines) and DFNN-BC (dashed,
blue lines) cases.

5.6.4 Computational Cost

The computational cost was assessed on a Linux laptop that has the following specifi-
cations: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz. Each simulation was carried

101

out using 2 cores. Table 5.13 compares the computational time distribution of dif-
ferent kernels between the baseline and DFNN-BC cases. Significant improvement
is achieved in the efficiency of property evaluation using the neural network. The
speedup is about 3.7 times, while that for the entire simulation is 2.3.

Total time (s) Properties (s) Remaining routines (s)
Baseline 0.159 0.123 0.036

DFNN-BC 0.069 0.033 0.036

Table 5.13: Computational time distributions of kernels per Runge-Kutta step.

5.7 Summary

The development of numerical methods for efficient evaluation of EOS has been
identified as an important step for effective and accurate simulations of supercritical
fluid flows. In this chapter, a neural network model, referred to as DFNN-BC, was
proposed to replace the computationally expensive solution of the EOS. It allows for
fast calculations of real-fluid thermophysical properties at conditions of interest. The
DFNN-BC features a deep feedforward neural network that has provably improved
prediction accuracy when incorporating boundary information into the model. The
scheme can be coupled to a CFD solver in a robust manner. Such improvement was
obtained by repeating each boundary point multiple times in the training data and
monitoring two loss functions during the model training process, one for the interior
points and the other for the boundary points, to ensure high accuracy throughout
the entire input domain.

The method was evaluated with two model problems for supercritical fluid flows.
The first treated LES of supercritical turbulent mixing in a GCLSC injector using a
primitive-variable-based formulation and the SRK EOS. A kerosene/oxygen mixture
composed of 4 species was considered. A neural network with 4 hidden layers and 9
neurons per hidden layer was designed to approximate the thermophysical variables,
with temperature and chemical composition used as channels in the input layer. The
R2-score of the selected neural network was 0.98. The calculated result from the
integrated DFNN-BC and LES approach compared well to the baseline simulation.
The prediction errors of time-averaged data were less than 1% for temperature, less
than 6% for axial velocity and density, and less than 9% for fuel mass fraction.

The second problem treated quasi-one-dimensional simulations of laminar coun-
terflow diffusion flames for cryogenic combustion using a conservative-variable-based
formulation and the PR EOS. A hydrogen/oxygen/nitrogen mixture composed of
7 major species was considered. A neural network with 2 hidden layers and 25 neurons
per hidden layer was developed to achieve the desired approximation, with density,
internal energy and chemical composition taken as channels in the input layer. The
R2-score of the selected neural network was 0.952 on validation data. The numerical
prediction obtained using the integrated DFNN-BC and CFD approach showed very

102

good agreement with the baseline simulation. The maximum flame temperature was
predicted with a relative error of 0.3%.

In addition to the a priori and a posteriori analyses, a time complexity analysis
was conducted. Results showed that the DFNN-BC model accelerated the evaluation
of real-fluid properties by a factor of 2.43 and 3.7 for the two test cases, respectively,
and the overall flow simulation by 1.5 and 2.3, respectively. Further, the memory
usage was reduced by up to five orders of magnitude in comparison with the table
look-up method.

List of Main Symbols

Latin Symbols

a speed of sound
aα, b variables accounting for intermolecular forces and volume

of the molecules
AT , Aρ, AYk

, BYk
preconditioning related terms

b bias vector
cp specific heat at constant pressure
cv specific heat at constant volume
C progress variable
Djk binary mass diffusion coefficient between the jth and kth species
Dk mixture diffusion coefficient of the kth species
e mass-specific internal energy of the mixture
et mass-specific total energy of the mixture
f generic function, frequency
F matrix of inviscid fluxes
Fv matrix of viscous/turbulent fluxes
h mass-specific enthalpy of the mixture
hk partial-mass enthalpy of the kth species
ht mass-specific total enthalpy of the mixture
J loss function
J Jacobian matrix
l number of hidden layers
L total number of layers (excluding input layer from the count)
Lhidden number of hidden layers
ṁ mass flow rate
M total number of pseudo-time steps
ni number of input parameters to the table or manifold
nin size of input layer
nout size of output layer
N number of species, number of samples
p pressure
pg gauge pressure
r radial coordinate

103

R0 injector interior radius
Re Reynolds number
Ru universal gas constant
t physical time
T temperature
T preconditioning matrix
u axial component of velocity
u velocity vector
v, V transverse component of velocity
w velocity component in the z direction
ẇ mass production rate
W molecular weight of the mixture
Wk molecular weight of the kth species
W weight matrix
x, y spatial Cartesian coordinates
x input layer of neural network
y output layer of neural network
Yk mass fraction of the kth species
Z compressibility factor, mixture fraction
Z̃ ′′2 variance of mixture fraction

Calligraphic Symbols

ℋℋℋ vector of neurons per layer in all the hidden layers
𝒫𝒫𝒫 vector of primitive variables
𝒬𝒬𝒬 vector of conservative variables
𝒮𝒮𝒮 vector of source terms
𝒱𝒱𝒱 k diffusion velocity vector of the kth species

Greek Symbols

γ specific heat ratio
δ Kronecker delta matrix
ϵ parameter defining the specific EOS
ϵrel relative error
ξ parameter that re-scales the eigenvalues
θ parameters of neural network
λ heat conductivity
λlr initial value for learning rate
λreg control parameter for L2 regularization
µ dynamic viscosity
ρ density of the mixture
ρk density of the kth species

104

σ parameter defining the specific EOS, activation function
τ pseudo-time
χk mole fraction of the kth specis

Subscripts

bc boundary points in the thermophysical domain
c critical values
f,F fuel
in inlet
int interior points in the thermophysical domain
o oxidizer
train training set

Superscripts

sgs subgrid-scale
□∗ ground truth variable
□̆ partial-density variable

105

CHAPTER 6
DATA-DRIVEN DEEP LEARNING EMULATORS FOR

PARAMETRIC AND EFFICIENT PREDICTION OF FLUID FLOW
PROBLEMS

In the previous chapter, deep learning was used to replace only certain subroutines
in the CFD solver, and thus acted as a software accelerator for numerical simula-
tions. This made possible a considerably faster coupled deep-learning and physical-
simulation framework, while maintaining high-fidelity results. The flow equations,
however, were still marched forward in time during the simulation, which limited the
maximum possible speedup.

In this chapter, another area of scientific deep learning, data-driven surrogate
modeling, is explored in order to address Objective 3(a) of this thesis (cf. Sec. 1.2).
Here, basically, deep learning is used to replace the full CFD solver. Such an approach
can enable significant simulation speedups and accelerate the process of design space
exploration and optimization in many-query studies. Here, the theoretical and nu-
merical formulations of the proposed deep learning spatiotemporal surrogates are laid
down. The models are analyzed in detail on representative canonical problems (mod-
els are applied to an engineering problem in Chapter 7). Lastly, please note that this
chapter builds directly on Chapter 2.

Some of the material presented here is adapted from:

• P. J. Milan et al., “Data-driven deep learning surrogates for spatiotemporal
emulation of fluid systems” (manuscript in preparation).

• [176] P. J. Milan, G.M. Magnotti, and V. Yang, “Data-driven deep learning
surrogates for parametric prediction of reacting flows,” ILASS-Americas 2021,
Paper ID 49, pp. 1-13, 2021.

6.1 Abstract

Surrogate modeling has become a popular approach to efficient design optimization
and UQ of highly dimensional flowfields. Even with the progress that has been
achieved to date, however, successful application of surrogate models to multiscale
multiphysics flows remains a challenge. The major issues can be attributed to the
wide range of spatiotemporal scales, strongly coupled thermophysical processes, and
complex geometries. The present work develops a novel data-driven surrogate frame-
work based on deep learning techniques for efficient prediction of spatiotemporal flow
dynamics. Specifically, we first train an emulator model from training data generated
from a full-order model (FOM). The emulator features a fully-connected autoencoder
(FCAE), for nonlinear dimensionality reduction of the flowfields, and a regression-
based neural network (R) for supervised learning of the latent space representations.

106

The proposed emulator is compared with classical surrogate modeling approaches.
Subsequently, we also implement a variant of this framework in which the FCAE is re-
placed by a convolutional autoencoder (CAE) that can retain spatial coherence of the
input data by means of convolution layers. The two emulators, referred to as FCAE-R
and CAE-R, respectively, are validated in two nonlinear fluid flow problems. The first
is the one-dimensional viscous Burgers equation representative of the advection of a
shock profile. The second is the two-dimensional advection-diffusion-reaction (ADR)
equation representative of the evolution of a premixed hydrogen flame. In each prob-
lem, the emulators are examined for their computational efficiency and their ability
to predict the flow features for unseen parameter instances in the design space.

6.2 Introduction and Related Work

Numerical simulations of multiscale multiphysics flows described by systems of nonlin-
ear partial differential equations (PDEs) provide considerable insight into underlying
processes for fundamental and applied sciences. The numerical solutions to these
PDEs often depend on a set of input parameters, which comprises physical condi-
tions, fluid properties, and geometrical parameters, and such PDEs are referred to as
parametrized PDEs. In many scenarios, such as sensitivity analysis and design opti-
mization, high-fidelity solutions of parametrized PDEs need to be computed for many
different points in the parameter domain. A single run of a high-fidelity simulation,
however, often requires very fine spatiotemporal grids, long running times, and high
memory usage, to adequately characterize the flowfields. Consequently, performing
several executions of a high-fidelity simulation to explore the full parameter domain
can be computationally infeasible, especially for large-scale engineering and industrial
problems.

To alleviate this situation, surrogate modeling approaches have been proposed to
replace expensive computer simulations. The common goal of these approaches is to
build a fast-running, yet accurate, surrogate model that can be called instead of the
original high-fidelity model to predict approximate solutions for new input parameter
instances. In general, such models are developed via data-driven techniques in four
major steps: (1) extract snapshots from high-fidelity simulations conducted at des-
ignated sampling points in a given parameter domain, or design space, using a DoE
method, (2) compress the high-dimensional snapshots to reduced representations us-
ing a ROM technique, (3) fit a regression model to learn the relationship between the
input parameters and the reduced data, and (4) integrate the previous modules into a
unified framework along with a reconstruction algorithm to allow for new predictions.
Traditionally, Step 2 has relied on POD, DMD, or Galerkin projections (or a variant
of these methods) while Step 3 has relied on GPs or polynomial-based approxima-
tions [177, 178, 179, 180, 181, 182]. Although these methods can be effective at times,
they have many drawbacks. POD, DMD, and Galerkin projections, for instance, are
linear methods; they are challenging to apply to ROM for highly nonlinear flows, be-
cause a large number of modes is required to accurately reconstruct the flowfield [17].
GPs and polynomial-based curve/surface fitting require certain prior assumptions,
which may limit the representation capacity of the model and give rise to robustness

107

issues [13]. Another drawback is the associated computational cost, especially for
GP-based models, which have a time complicity of O(n3), with n being the size of
the training set [13]. The development of efficient and reliable surrogate models for
such nonlinear systems is an active area of research.

In recent years, deep learning has been widely applied in various fields of science
and technology due to its ability to account for nonlinear relationships within the
data [55, 183]. Autoencoders, a type of DNN, can be used for dimensionality re-
duction. In their seminal work, Hinton and Salakhutdinov [19] used a multi-layer
autoencoder to extract codes, i.e., compressed representations, for all of the hand-
written digits in the MNIST training set [184], and showed that the autoencoder
can produce higher-quality reconstructions than PCA. Similar results were also ob-
tained in the more recent contribution by Almotiri et al.[185], who have used parallel
processing to reduce the training time considerably. In the context of fluid prob-
lems, Omata et al. [29] and Murata et al. [30] utilized a CAE to extract the essential
features of free-shear flows. Maulik et al. [17] combined CAEs with RNNs for para-
metric ROMs of one-dimensional and two-dimensional advection-dominated inviscid
systems. Agostini et al. [186] combined the autoencoder network with a clustering
algorithm to provide a probabilistic low-dimensional dynamical model applied to un-
steady flow around a cylinder. These works highlight that autoencoders are able to
extract nonlinear modes with lower reconstruction errors at the same level of data
compression than those of POD; however, most of these studies used the autoencoders
in a standalone manner under a fixed design point, or with parametric variations in
a single input parameter.

Building on these promising results, a new data-driven surrogate framework that
is entirely based on deep learning techniques is proposed in this chapter to efficiently
emulate complex spatiotemporal flows in a multi-parametric setting, as shown in
Fig. 6.1. The surrogate model is trained using a database drawn from numerical
simulations for a set of sampling points. An FCAE is then built to compress the
representation of the flowfield data. Following the autoencoder, a regression-based
neural network (R) is used to learn the encoded reduced-space representations for
flowfield reconstruction at new design settings. We also propose a variant of this
framework where a CAE is used in lieu of the FCAE to retain the spatial coherence
of the flowfield data by means of convolution layers, while keeping the regression
method unchanged. CAEs have shown tremendous success in compressing large-scale
image data for computer vision applications [187, 61], and thus are promising tools
to further enhance surrogate modeling capability.

The surrogate models considered in this study are investigated in two nonlinear
problems: the one-dimensional viscous Burgers equations, and the two-dimensional
numerical simulation of a hydrogen-air premixed flame governed by the ADR equa-
tion. These representative problems allow us to carefully assess the performance of
the models in simplified settings before moving to more complex engineering flows in
the next chapter.

The rest of the chapter is structured as follows. Section 6.3 introduces the various
data-driven strategies, including the proposed FCAE-R and CAE-R frameworks.
Section 6.4 is concerned with the application of the surrogates to the one-dimensional

108

Figure 6.1: Flowchart of building the deep learning surrogate model.

viscous Burgers equation, while Sec. 6.5 is concerned with the application to the two-
dimensional ADR equation. In each problem, the FOM formulation, including the
governing equations, computational setup, and DoE, and the results are presented.
Finally, the conclusions are reported in Sec. 6.6.

6.3 Deep Learning Emulators

A high-level overview is first presented for the two deep learning surrogates that
are developed in this chapter. Descriptions are then provided for the deep learning
architectures for the autoencoders and regressors. Finally, the algorithm for the
prediction phase is explained.

6.3.1 Overview of the Emulator Models

Let S be a surrogate that approximates the FOM, i.e., S ≈ FOM, and w be a vec-
tor comprised of the spatiotemporal field variables of interest, i.e., temperature and
velocity components. Two variants of S are developed hereafter, namely (1) FCAE-
R, and (2) CAE-R. In both models, sequences of snapshots at several known design
points are used as training data, and the sequence of snapshots at a new parameter
in the same time interval is predicted. In the prediction phase, the input is a new pa-
rameter µ′, and the output is wpred(x, t;µ

′), which is an approximation to w(x, t;µ′)
obtained from the FOM.

Each model comprises two levels of neural networks to approximate the spatiotem-
poral flow in the physical problem under consideration, as shown in Fig. 6.1. In the

109

Figure 6.2: Schematic representation of an FCAE.

first level, an autoencoder is used to perform spatial compression of the sequence of
high-dimensional snapshots into a sequence of latent vectors. In FCAE-R, the autoen-
coder has a fully-connected neural network architecture, whereas in CAE-R, it has a
convolutional neural network architecture. Differences between the FCAE and CAE
are discussed in more details in Secs. 6.3.2.1 and 6.3.2.2. Following the autoencoder,
a regressor R is used in the second level to learn the relationship between the design
parameters and latent space from the training data, and to predict the sequence of
latent vectors for a new parameter µ′. Lastly, the flowfield in physical space is re-
constructed from the latent vectors using the decoder function of the autoencoder.
Both surrogate models are implemented using the Keras API in TensorFlow 2.4
(cf. Sec. 2.3.9).

6.3.2 Constituent Parts

6.3.2.1 Fully-Connected Autoencoder

The encoder is comprised of an input layer as well as multiple hidden layers
with activation functions, while the decoder is defined as the mirror image of the
encoder. The nonlinearity of the activation functions has been noted as a key at-
tribute of autoencoders in extracting nonlinear features with low reconstruction er-
rors (cf. Secs. 2.2.5 and 2.2.7). The forward propagation procedure in the autoencoder
was previously described in Sec. 2.2.5.1, and is repeated here for clarity:

q̃ = Fdec ◦ Fenc(q)

= Fdec(z), (6.1)

where q ∈ Rnin and q̃ ∈ Rnin denote the encoder input and decoder output, respec-
tively, and z ∈ Rnlatent is the latent vector, with nin and nlatent being the dimensions
of the input layer and latent vector, respectively. The loss function is taken as the
regularized MSE between the input and output. Please note the following:

110

• FCAEs can be applied to any type of data (structured or unstructured, regular
or irregular) since the snapshots are flattened to one-dimensional vectors before
being processed by the network.

• In this study, we will train one FCAE per field variable, and consequently nin

will correspond to the number of grid points ngrid in the subdomain of interest
for emulation. Alternatively, we could have also stacked the field variables into
a single vector, and in that case, nin would have been equal to ngrid × nvar,
where nvar is the number of field variables. However, such an approach can
result in large vector sizes and complicate the process of model fitting and
hyperparameter search, and thus it was not pursued here.

6.3.2.2 Convolutional Neural Network Autoencoder

A CAE is a type of CNN utilizing convolution, sampling, and dense layers for di-
mensionality reduction (cf. Sec. 2.2.5.2). Typically, in traditional FCAEs, the input
data is flattened to a one-dimensional vector before being processed, which prevents
direct learning of spatial coherence. Furthermore, each neuron in a layer is connected
to all neurons in the next layer, where each connection is a parameter in the net-
work [54]. This can result in a very large number of trainable parameters. Instead of
using only dense layers, a CAE uses some local connectivity between neurons, i.e., a
neuron is only connected to nearby neurons in the next layer, which allows to signifi-
cantly reduce the total number of parameters in the network and process image data
directly, thus retaining spatial information.

The CAE is composed of a CNN encoder, Genc, and a CNN decoder, Gdec, as shown
in Fig. 2.7. The forward propagation procedure in the CAE was previously described
in Sec. 2.2.5.2, and is repeated here for clarity:

Q̃ = Gdec ◦ Genc(Q)

= Gdec(z), (6.2)

where Q ∈ Rnx×ny×nc and Q̃ ∈ Rnx×ny×nc denote the encoder input and decoder
output, respectively, and z the latent space representation. The loss function is
taken as the MSE between the input and output. Please note the following:

• Although the same symbol z is used, the latent space obtained from the CAE
is different than that from the FCAE.

• Classical CAEs (such as the ones used here) can only be applied to structured
data defined on rectangular domains with uniform grid spacing. The formula-
tion, however, can be modified to allow for treatment of non-uniform grids and
irregular domains, but this is left as future work.

• In this study, we will train one CAE per field variable, and consequently nc will
bet set to 1 in each autoencoder. Alternatively, we could have also trained one
CAE for all the field variables (and set nc to nvar), however, this was not done
here with the intent to be consistent with the FCAE.

111

6.3.2.3 Regressor for Latent Space

A regressor, R, is constructed to learn the relationship between the set of selected
input parameters, µ, and the temporal evolution of low-dimensional flowfield, z(t),
generated by the autoencoder; this is done for both the FCAE and CAE. Formally,
the regressor R can be written as:

R : (µ, t) ∈ Rnµ × R 7→ z ∈ Rnlatent . (6.3)

In this study, R is modeled as a fully-connected neural network, as shown schemati-
cally in Fig. 6.3. The regularized MSE error is used as the loss function, JR, to train
the model, i.e.,

JR(ϕ) = ||ztrue − zpred||MSE + ζreg
∑
k

||W (k)
R ||

2
F , (6.4)

where ztrue is the true latent vector, zpred is the latent vector predicted by R, and
ϕ = {W (1)

R , b
(1)
R ,W

(2)
R , b

(2)
R , . . . } contains the parameters of the regression model. ζreg

is the L2-regularization hyperparameter.

Figure 6.3: Schematic representation of a latent space regressor.

6.3.3 Training and Prediction Procedures

For each emulator framework and field variable of interest, an autoencoder and
a regressor are trained following the methodology explained in Sec. 2.3; the models
with the minimum validation errors are selected as the final models. To stabilize the
learning process, data preprocessing operations are used (cf. Sec. 2.3.5.1). Specifically,
the data is normalized in the range 0-1 for the autoencoders,1 and is standardized for
the regressors.

1Note if the data is already in the range 0-1, or close to it, for example, 0-0.5, there is no need
to normalize the data.

112

After training, the flowfield for new design parameters µ′ can be predicted. The
procedure proceeds as follow. The trained regressors are used first to predict the
corresponding time sequence of latent vectors, i.e., zpred(t;µ

′) = R(µ′, t). This se-
quence is then passed to the trained decoders to obtain the emulated flowfield in
physical space. For the FCAE-R emulator, the decoding function Fdec(z

FCAE
pred (t;µ′))

gives a one-dimensional vector qpred(t;µ
′) ∈ Rnin , whereas for the CAE-R emulator,

the decoding function Gdec(z
CAE
pred (t;µ

′)) gives a tensor Qpred(t;µ
′) ∈ Rnx×ny×nc . Data

scaling/unscaling operations are applied appropiately at each step. The pseudo-codes
for the training and prediction procedures are given in Algorithms 5–7.

Algorithm 5: Autoencoder training
Load CFD/true flowfield data (e.g., temperature field)
Normalize the data (cf. Sec. 2.3.5.1), and save the normalization parameters (i.e., min and
max values)

Shuffle and split the data into training, validation, and test sets using the hold-out
method (cf. Sec. 2.3.4.1)

Set the number of epochs nepoch and the batch size nbatch
Set the other hyperparameters (i.e., network architecture, nlatent, λreg, λlr, weight/bias
initializer, activation function, early stopping criterion, etc.)

Set up the autoencoder network (i.e., create the network layers and model, and define the
loss function)

for each epoch index i do
Generate data batches of size nbatch from the training set
Train autoencoder by feeding these data batches to minimize the loss function
Jminibatch using the Adam optimizer (cf. Algorithm 1)

Compute the error on the validation set Jvalid
if Jvalid is improved then

Save autoencoder model
end if

end for
Return autoencoder model with smallest Jvalid

113

Algorithm 6: Regressor training
Load latent space data obtained from the autoencoder, and more specifically, from the
encoder function (this data is considered here as the true data)

Standardize the data (cf. Sec. 2.3.5.1), and save the standardization parameters (i.e., mean
and standard deviation values)

Shuffle and split the data into training, validation, and test sets using the hold-out
method (cf. Sec. 2.3.4.1) (cases in the test set for regressor are same as those for
autoencoder)

Set the number of epochs nepoch and the batch size nbatch
Set the other hyperparameters (i.e., network architecture, λreg, λlr, weight/bias initializer,
activation function, early stopping criterion, etc.)

Set up the regressor network (i.e., create the network layers and model, and define the loss
function)

for each epoch index i do
Generate data batches of size nbatch from the training set
Train regressor by feeding these data batches to minimize the loss function Jminibatch
using the Adam optimizer (cf. Algorithm 1)

Compute the error on the validation set Jvalid
if Jvalid is improved then

Save regressor model
end if

end for
Return regressor model with smallest Jvalid

Algorithm 7: FCAE-R (or CAE-R) emulator prediction
Input: New design parameters µ′

Input: Trained regression model R with corresponding scaling parameters
Input: Trained decoder model Fdec (or Gdec) with corresponding scaling parameters
Standardize design parameters: µ̂′ ← sS(µ

′)
for each snapshot/time index i do

Standardize time variable: t̂(i) ← sS(t
(i))

Predict standardized latent space: ẑ(i) ← R(µ̂′, t̂(i))
De-standardize latent space: z(i) ← s−1

S (ẑ(i))
Reconstruct normalized flowfield in physical space: q̂(i) ← Fdec(z

(i)) (or
Q̂(i) ← Gdec(z

(i)))
De-normalize flowfield in physical space: q(i) ← s−1

N (q̂(i)) (or Q(i) ← s−1
N (Q̂(i)))

end for
Return all the q(i) (or all the Q(i))

In the following, we introduce the two representative problems that are used to
assess the proposed surrogate frameworks.

6.4 One-Dimensional Viscous Burgers Equation

6.4.1 Full-Order Model

114

The first problem is given by the one-dimensional viscous Burgers equation. This
equation can generate discontinuous solutions representative of a moving shock profile
even if initial conditions are smooth provided that the underlying Reynolds number
is large enough. Hence, this equation is generally considered a benchmark prob-
lem for preliminary evaluation of numerical methods for analysis of fluid flows as
it possesses characteristics of general nonlinear multi-dimensional advection-diffusion
problems [17, 188]. The governing equation in a spatial domain Ω = [0, L], where
L = 1, over the time interval [0, tend], tend = 2, is

∂u

∂t
= −u∂u

∂x
+

1

Re

∂2u

∂x2
, (6.5)

where Re = ν−1 is the Reynolds number, with ν the viscosity.
The parametric solution can be written as

u : Ω× [0, tend]× D 7→ R, (x, t;µ) 7→ u, (6.6)

where µ ∈ D ⊂ Rnµ is the vector of input parameters, D the parameter domain, and
nµ the number of input parameters. Here, µ ≡ Re and nµ = 1.

The domain boundary is divided into two points, with periodic boundary condi-
tions at each point, i.e.,

u(0, t) = u(L, t) = 0. (6.7)

At t = 0, the following condition is assumed

u(x, 0) =
x

1 +
√

1
t∗
exp(Rex

2

4
)
, (6.8)

where t∗ = exp(Re/8) is a characteristic time. An analytical solution exists and is
given by

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp
(
Re x2

4t+4

) . (6.9)

The domain is discretized using nx = 128 equidistant grid points and nt = 101 time
snapshots per case, and the analytical solution is computed at each of these points to
generate the FOM data. The FOM computations take on average 0.004 s per DoE
case.

6.4.2 Design of Experiments

As mentioned in Sec. 6.4.1, one input parameter is considered in this problem, namely,
the Reynolds number Re. The parameter domain is taken as

D = [50, 2250]. (6.10)

When the Reynolds number is low, the system has a diffusion-dominated behavior,
however, when the Reynolds number is large, it has a convection-dominated behavior.

115

Within the defined design space, 12 representative samples are identified. These
samples are described in Table 6.1. Out of the 12 samples, 3 cases (Cases 3, 6 and 10)
were randomly selected and set aside for testing to ensure that the emulator generalize
well to unseen data. The remaining data (i.e., 9 cases) were used for training and
validation of the neural networks, with a random split of 80%-20%. The datasets are
shown in Table 6.2, where nset indicates the total number of snapshots in each set.

Table 6.1: 1D Burgers equation. Description of the 12 cases from the DoE study.

Case Re
1 50
2 200
3 250
4 500
5 750
6 900
7 1000
8 1250
9 1500

10 1750
11 2000
12 2250

Table 6.2: 1D Burgers equation. Dataset sizes used for formulating and testing the
surrogates.

Set Description nset
Training 80% of the snapshots from Cases 1,2,4,5,7-9,11-12 727

Validation 20% of the snapshots from Cases 1,2,4,5,7-9,11-12 182
Test All of the snapshots from Cases 3,6,10 303

6.4.3 Compressed Representations

Autoencoder Results

Using Algorithm 5, an FCAE and a CAE are learned for the velocity field of the
one-dimensional Burgers equation problem considered in Sec. 6.4.1. The data is in
the range 0-0.5 and is kept unscaled (i.e., it is not normalized nor standardized).
The network architectures and hyperparameters are tuned manually following the
methodology explained in Sec. 2.3.5.3; for each autoencoder, we train multiple model
instances and choose the one with the lowest validation error.

The selected FCAE from the manual search contains 10 dense layers, as shown in
Table 6.3. This results in 39,140 trainable parameters. The autoencoder is trained by
using a standard MSE loss with the following hyperparameters: a maximum number

116

of epochs of 1,000, a batch size of 10, a learning rate of 1×10−3 for the Adam optimizer,
a L2 regularization factor of 1×10−5, and a latent vector of size 2 (nlatent = 2). ReLU
activation function is applied to all the layers except the input layer, 5th and 10th
dense layers. We note that although 1,000 epochs are chosen for training the FCAE,
an early stopping criterion (cf. Sec. 2.3.3.2) is employed to prevent overfitting. MSE
values of 1.021×10−4, 1.092×10−4, and 1.038×10−4 are achieved for the reconstructed
fields on training, validation, and test data, respectively, as reported in Table 6.4.

Table 6.3: 1D Burgers equation. Network structure of the FCAE.

Layer Output shape Activation
Input 128 –

1st Dense 100 ReLU
2nd Dense 50 ReLU
3rd Dense 25 ReLU
4th Dense 10 ReLU
5th Dense 2 –
6th Dense 10 ReLU
7th Dense 25 ReLU
8th Dense 50 ReLU
9th Dense 100 ReLU

10th Dense 128 –

Table 6.4: 1D Burgers equation. MSE values for the autoencoders. Results are shown
over the snapshots from the training, validation, and test sets for the velocity field.

Data set ũFCAE ũCAE

Training set 1.021× 10−4 7.157× 10−5

Validation set 1.092× 10−4 7.945× 10−5

Test set 1.038× 10−4 6.945× 10−5

The architecture of the selected CAE is detailed in Table 6.5. As velocity is the
only variable that is encoded in this problem, a one-dimensional CAE is used with
only one channel (nc = 1). The encoder contains six pairs of convolution and max
pooling layers to reduce the dimensionality of the input field to a size of two degrees of
freedom in the latent space (nlatent = 2). We note that the same level of compression
is employed for the CAE and FCAE to provide a similar basis of comparison for
accuracy. The decoder of the CAE contains six pairs of convolution and upsampling
layers, and finally a single convolution layer to return to the dimensionality of the
full-order field. Each convolution layer employs a 3×3 kernel filter, and utilizes a zero-
padding at the edges of the domain to preserve the original input size. Each of the
max pooling and upsampling layers uses a 2×2 window to achieve downsampling and
upsampling, respectively. The stride length is set to 1 (s = 1). The CAE is trained by
using a standard MSE loss with the following hyperparameters: a maximum number

117

of epochs of 1,000, a batch size of 10, a learning rate of 1×10−3 for the Adam optimizer,
and the ReLU activation function. No L2 regularization was used. Although the CAE
contains more layers than the FCAE, it has only 5,014 trainable parameters, which
helps in reducing model complexity and preventing overfitting. This is because all
of the convolution, max pooling, and upsampling layers in the CAE perform local
operations over nearby neurons instead of full operations over all the neurons. The
MSE values for the CAE are reported in Table 6.4. Very low MSE values are observed
on the validation and test datasets, which indicate that the CAE performs in the
desired manner and doesn’t overfit. Moreover, it is observed that the CAE achieves
lower MSE values on the training, validation, and test sets compared to the FCAE;
this is attributed to the capability of CAE to retain the spatial coherence of the
flowfield data.

Figure 6.4 shows the reconstructed velocity field by FCAE and CAE for Re = 250,
1000 and 1750 at t = 0 and 2 s. It is observed that the reconstructed flowfields by
both models are in good agreement with the original data for all the cases, although
some oscillations are noticeable, particularly near and after the discontinuity zone
in FCAE. It is also evident from this plot that the CAE reduces the oscillations
considerably, and thus performs better than FCAE.

(a) Re = 250, t = 0 (b) Re = 1000, t = 0 (c) Re = 1750, t = 0

(d) Re = 250, t = 2 (e) Re = 1000, t = 2 (f) Re = 1750, t = 2

Figure 6.4: 1D Burgers equation. Reconstruction of velocity field by FCAE and CAE.
Results are shown at t = 0 and 2 for Re = 250, 1000 and 1750.

Comparison with POD

To further illustrate the performance of the autoencoders, in particular, their ability
to perform nonlinear dimensionality reduction, we report hereafter results using the

118

Table 6.5: 1D Burgers equation. Network structure of the CAE.

Layer Output shape Activation
Input (128,1) –

1st Conv1D (128,25) ReLU
1st MaxPooling1D (64,25) –

2nd Conv1D (64,15) ReLU
2nd MaxPooling1D (32,15) –

3rd Conv1D (32,10) ReLU
3rd MaxPooling1D (16,10) –

4th Conv1D (16,5) ReLU
4th MaxPooling1D (8,5) –

5th Conv1D (8,2) ReLU
5th MaxPooling1D (4,2) –

6th Conv1D (4,1) ReLU
6th MaxPooling1D (2,1) –

7th Conv1D (2,1) ReLU
1th UpSampling1D (4,1) –

8th Conv1D (4,5) ReLU
2nd UpSampling1D (8,5) –

9th Conv1D (8,10) ReLU
3rd UpSampling1D (16,10) –

10th Conv1D (16,15) ReLU
4th UpSampling1D (32,15) –

11th Conv1D (32,20) ReLU
5th UpSampling1D (64,20) –

12th Conv1D (64,25) ReLU
6th UpSampling1D (128,25) –

13th Conv1D (128,1) –

linear POD technique and compare them with those of the autoencoders.
POD is a classical linear model reduction technique that extracts dominant en-

ergetic structures from the FOM. The method extracts a set of basis functions from
the data, and uses a subset of leading basis functions to construct approximations
of the field variables of interest. In the following, we apply the EVD-based POD
to each FOM case separately. More details about this approach can be found in
Appendix A.2.

Figure 6.5 shows the percentage of the captured energy from POD, calculated
using Eq. (A.13), for Cases 3, 6 and 10 and reveals the amount of information omitted
by the POD representation for any particular number of modes. From this figure, it
is observed that the growth rates of the energy distributions are different among the
cases. To quantify these differences, the numbers of POD modes required to recover
90, 95 and 99% of the modal energy are identified; these variables are denoted by
nr,90%, nr,95% and nr,99%, respectively. Table 6.6 shows that the values of these variables
are different among the cases. It is also observed that cases with higher Reynolds
numbers require a higher number of modes for accurate reconstruction. For example,
Case 10, which corresponds to Re = 1750, requires 16 modes to recover 99% of the

119

energy, while Case 3, which corresponds to Re = 250, requires only 5 modes to recover
the same amount of energy. This is because a discontinuity exists at higher Reynolds
numbers, making the flow nonlinear.

The ability of POD to reproduce the original FOM solution is visualized in Fig. 6.6,
where the POD-based reconstructions of velocity field for different number of modes
are shown at t = 0 and 2 for Re = 250, 1000 and 1750. In each case, results using
between 2-101 modes are reported. From this figure, we see that the POD method
exhibits strong oscillations, particularly when the number of retained modes is small,
such as 2 and 5 modes (and even 10 modes, for Re = 1000 and 1750), and that
the accuracy of the reconstructions is improved as the number of retained modes is
increased. It is also evident from this plot that the magnitude of the oscillations for
POD with 2 modes are much larger than that of the FCAE and CAE with a latent
space of size 2. (cf. Fig. 6.4).

Finally, a quantitative comparison of the reconstruction accuracy between POD,
FCAE and CAE is reported in Table 6.7. Overall, this comparison highlights the
limitation of the POD technique when applied to nonlinear problems and demon-
strates the superior performance of the AE-based methods to efficiently compress the
flowfields at the same level of data compression.

Figure 6.5: 1D Burgers equation. Variation of the captured modal energy, in percent-
age, as a function of the number of retained POD modes. Results are shown for the
test cases.

Table 6.6: 1D Burgers equation. Number of POD modes required to capture 90%,
95% and 99% of the modal energy.

Case nr,90% nr,95% nr,99%

Re = 250 2 3 5
Re = 1000 4 6 11
Re = 1750 5 8 16

120

(a) Re = 250, t = 0 (b) Re = 1000, t = 0 (c) Re = 1750, t = 0

(d) Re = 250, t = 2 (e) Re = 1000, t = 2 (f) Re = 1750, t = 2

Figure 6.6: 1D Burgers equation. POD-reconstructed flowfield. Results are shown
using 2, 5, 10 and 101 POD modes at t = 0 and 2 for Re = 250, 1000 and 1750.

Table 6.7: 1D Burgers equation. Comparison of MSE values between POD, FCAE
and CAE for the reconstructed velocity field. Results are shown over the snapshots
of each case from the test set.

Re = 250 Re = 1000 Re = 1750
ũPOD (2 modes) 3.511× 10−4 1.264× 10−3 1.579× 10−3

ũPOD (nr,90% modes) 3.511× 10−4 4.985× 10−4 5.632× 10−4

ũPOD (nr,95% modes) 1.229× 10−4 2.340× 10−4 2.743× 10−4

ũPOD (nr,99% modes) 1.565× 10−5 4.459× 10−5 6.066× 10−5

ũFCAE (nlatent = 2) 1.119× 10−4 4.341× 10−5 1.560× 10−4

ũCAE (nlatent = 2) 3.145× 10−5 6.412× 10−5 1.128× 10−4

6.4.4 Emulated Flowfields

The latent spaces obtained by the FCAE and CAE on the training and validation
data are used to train the regressors. For each autoencoder, a regressor with five
dense layers is designed to learn the mapping from the input parameter Re and
time instant t to the corresponding sequence of latent variables z(t;Re), following
Algorithm 6. The input and output data are standardized to stabilize the learning
process. The detailed architecture of the selected regressors from the manual search
is given in Table 6.8. The number of epochs is set to 1,500, the batch size to 25, the
learning rate for the Adam optimizer to 1 × 10−3, and the L2 regularization factor

121

to 8 × 10−4. This results in 1,048 trainable parameters. A comparison of the MSE
losses on training, validation, and test sets is reported in Table 6.9 for each regressor.
Evaluation of the MSE losses indicates satisfactory training performance without
evidence of overfitting.

Table 6.8: 1D Burgers equation. Network structure of each regressor.

Layer Output shape Activation
Input 2 –

1st Dense 9 ReLU
2nd Dense 32 ReLU
3rd Dense 16 ReLU
4th Dense 9 ReLU
5th Dense 2 –

Table 6.9: 1D Burgers equation. MSE values for each regressor. Results are shown
over the latent vectors of velocity from the training, validation, and test sets.

Data set zFCAE
u zCAE

u

Training set 1.120× 10−3 2.328× 10−3

Validation set 1.684× 10−3 2.574× 10−3

Test set 1.454× 10−3 2.702× 10−3

For a new input parameter Re′, the trained regressors are used to predict the
corresponding time sequence of latent vectors, i.e., zpred(t;Re

′) = R(Re′, t). This
sequence is then passed to the trained decoders to obtain the emulated flowfield in
physical space (cf. Algorithm 7). For the FCAE-R emulator, the decoding function
Fdec(z

FCAE
pred (t;Re′)) gives a one-dimensional vector qpred(t;Re

′) ∈ Rnin . Similarly,
for the CAE-R emulator, the decoding function Gdec(z

CAE
pred (t;Re

′)) also gives a one-
dimensional vector since the problem under consideration is one-dimensional.

The temporal evolution of the components of the latent vectors from the FCAE
and CAE is shown in solid lines in Figs. 6.7 and 6.8, respectively, for Re = 250, 1000
and 1750, which belong to the test set and were not seen during the training of the
neural networks. The latent space representations obtained from the FCAE and CAE
exhibit different behavior. The time-series predictions for the trained regressors are
shown in dashed lines in these figures. The regressors are observed to predict the
order and evolution of the latent space components accurately, indicating that the
sequential behavior has been learned.

Figure 6.9 shows snapshots of the emulated velocity field at various time instances
for Re = 250, 1000 and 1750 from the FCAE-R and CAE-R frameworks. Qualita-
tively, the emulated flowfields from both frameworks show very good agreement with
the FOM, although minor differences are observed, particularly around the disconti-
nuity.

122

(a) Re = 250 (b) Re = 1000 (c) Re = 1750

Figure 6.7: 1D Burgers equation. Temporal evolution of the components of the latent
variables from FCAE for Re = 250, 1000 and 1750. Latent variables computed by
the autoencoder (solid lines) and those predicted by the regressor (dashed lines) are
compared.

(a) Re = 250 (b) Re = 1000 (c) Re = 1750

Figure 6.8: 1D Burgers equation. Temporal evolution of the components of the latent
variables from CAE for Re = 250, 1000 and 1750. Latent variables computed by
the autoencoder (solid lines) and those predicted by the regressor (dashed lines) are
compared.

For the sake of completeness, the MSE values over the snapshots of each case
from the test set are shown in Table 6.10. Overall, the emulation errors for both
surrogate models are very small (below 1.7× 10−4), with the CAE-R providing slight
improvement in the global MSEs. This demonstrates the accuracy of both frameworks
in capturing the salient features of the spatiotemporal flowfields.

Table 6.10: 1D Burgers equation. MSE values for the emulated velocity field for test
cases.

Test case uFCAE-R
pred uCAE-R

pred
Re = 250 1.222× 10−4 7.057× 10−5

Re = 1000 4.877× 10−5 7.165× 10−5

Re = 1750 1.641× 10−4 1.267× 10−4

123

Figure 6.9: 1D Burgers equation. Instantaneous snapshots of velocity field for Re =
250 (first column), Re = 1000 (second column), and Re = 1750 (third column).
Flowfields computed by the FOM and those predicted by the FCAE-R and CAE-R
emulators are compared.

124

6.4.5 Computational Cost

Table 6.11 summarizes the computational time required for each step of the emulation
process for both frameworks, with timing performed on a Linux desktop that has the
following specifications: Intel(R) Core(TM) i7-10700T CPU @ 2.00 GHz. The prepro-
cessing step, which consists of extracting the snapshots from the FOM in preparation
for the training phase, has negligible time for the one-dimensional Burgers equation
problem and thus is not considered here. The training step, which consists of train-
ing one autoencoder and one regressor, requires in total about 78 and 283 s for the
FCAE-R and CAE-R, respectively. After the training is completed, the inference
time is approximately 0.85 and 0.87 s for the FCAE-R and CAE-R, respectively, to
predict the velocity field for a new design point.

In comparison, the FOM computations take on average 0.004 s per DoE case.
We note that, exclusively in this problem, the computation time of the FOM is
negligible just because an analytical solution exists. This will not be the case, however,
for problems involving more complex physics and/or geometries and for which an
analytical solution is not available, such as the ADR equation (cf. Sec. 6.5) and A-
M1 injector flow (cf. Chapter 7). In such problems, numerical discretization and time
integration are required, and computations can take minutes, days, or even weeks, to
complete, depending on the involved complexity and available computing resources.
It is in these scenarios that emulators are most useful.

Although this problem is relatively simple, it was used here as a use-case for eval-
uating the accuracy and efficacy of the emulator in representing nonlinear flowfields,
such as the advection of a shock profile, before moving to more computationally
expensive problems in the next section.

Table 6.11: 1D Burgers equation. Computational time for each step of the emulation
process.

Step Time (FCAE-R) Time (CAE-R)
Preprocessing negligible negligible

Autoencoder training 78 CPU-secs 236 CPU-secs
Regressor training 46 CPU-secs 47 CPU-secs

Flow prediction 0.85 CPU-secs 0.87 CPU-secs

6.5 Two-Dimensional Advection-Diffusion-Reaction Equation

6.5.1 Full-Order Model

The second problem is given by an advective-diffusive-reactive system modeled on
the premixed combustion of a hydrogen-air mixture at constant and uniform pressure,

125

in a constant, divergence-free velocity field, and with constant, equal and uniform
molecular diffusivities for all temperature and species [189]. This problem has been
used considerably in literature as a use-case to support development and verification
of various surrogate and reduced-order modeling approaches [189, 190, 191]. The one-
step reaction mechanism is: 2H2 + O2 → 2H2O. The nonlinear governing equation
system in a spatial domain Ω = [0, Lx]× [0, Ly], where Lx = 18 mm and Ly = 9 mm,
over the time interval [0, tend], tend = 0.06 s, is

∂w

∂t︸︷︷︸
unsteady

= −v · ∇xw︸ ︷︷ ︸
advection

+κ∆xw︸ ︷︷ ︸
diffusion

+ q︸︷︷︸
reaction

, (6.11)

where t denotes the time coordinate, x =
[
x y

]T the spatial coordinates, ∇x the
gradient operator with respect to x, ∆x the Laplacian operator with respect to x, v
the velocity vector, q the reaction source term, and κ the diffusivities. The parametric
solution

w : Ω× [0, tend]× D 7→ R4, (x, t;µ) 7→

T
YF
YO
YP

 (6.12)

represents the thermo-chemical composition vector consisting of the temperature
T (x, t;µ) and the mass fractions of the hydrogen fuel, oxygen, and water product,
i.e., YF (x, t;µ), YO(x, t;µ), and YP (x, t;µ), respectively, where µ ∈ D ⊂ Rnµ is the
vector of input parameters, D the parameter domain, and nµ the number of input
parameters.

The reaction source term q(w(x, t;µ);µ) ∈ R4 is of Arrhenius type and modeled
as in Cuenot and Poinsot [192] as

qT = QqP

qi = −νi
(
Wi

ρ

)(
ρYF
WF

)νF
(
ρYO
WO

)νO

Aexp
(
− Ea

RT

)
, (6.13)

for i = F,O, P . Here, (νF , νO, νP) = (2, 1,−2) denotes the stoichiometric coeffi-
cients, (WF ,WO,WP) = (2.016, 31.9, 18) the molecular weights with units g·mol−1,
ρ = 1.39 × 10−3 g·cm−3 the density mixture, R = 8.314 J·mol−1·K−1 the universal
gas constant, and Q = 9800 K the heat of the reaction. The design parameters cor-
respond to µ = (A,Ea), where A is the pre-exponential factor, and Ea the activation
energy. These two parameters affect the reaction rate and the flame temperature of
the system [193]. The velocity field is set to v = (50, 0)T with units cm·s−1, and the
molecular diffusivities to κ = 2 cm2·s−1. Although quantitative information regard-
ing the flame cannot be obtained using this simplified model problem, it contains
the essential physics (advection, diffusion, and reaction phenomena) associated with
complicated reacting flow problems, and thus serves as a benchmark problem for
surrogate and reduced-order model development [189].

The domain boundary is divided into six segments, as shown schematically in
Fig. 6.10. On the inflow boundary Γ2, we impose Dirichlet boundary conditions

126

T = 950 K for temperature and (YF , YO, YP) = (0.0282, 0.2259, 0) for the chemical
composition. On the boundaries Γ1 and Γ3, we impose Dirichlet boundary conditions
T = 300 K for temperature and (YF , YO, YP) = (0, 0, 0) for the chemical composition.
On the boundaries Γ4,Γ5 and Γ6, we impose homogeneous Neumann conditions on
the temperature and mass fractions, i.e., ∇T = 0 and ∇Yi = 0 for i = F,O, P . At
t = 0, the domain is considered empty and the temperature is set to 300 K, i.e.,
w0 = (300, 0, 0, 0)T .

Equation (6.11) is solved using the finite-difference method [194] on a nx × ny

uniform grid, with nx = 64 and ny = 32. Spatial and temporal discretization are
achieved with second-order and first-order accuracy, respectively. The time step is
set to ∆t = 5 × 10−5 s, which implies 1,200 iterations to solve the problem. A
total of nt = 121 snapshots is acquired between t = 0–0.06 s. The corresponding
computational cost is 52 CPU-secs per simulation.

Figure 6.10: ADR equation. Schematic setup.

6.5.2 Design of Experiments

As mentioned in Sec. 6.5.1, two input parameters are considered in this work, namely,
the pre-exponential factor A and the activation energy Ea, thus nµ = 2. The param-
eter domain is taken as

D = [2.3375× 1012, 6.2× 1012]× [5.625× 103, 9× 103]. (6.14)

Within the defined design space, 25 representative samples are identified using a
uniform sampling of D on a 5× 5 grid, as visualized in Fig. 6.11. These samples (i.e.,
Cases 1-25) are used for training and validation of the surrogates, with a random
split of 80%-20%. Three cases (i.e., Cases 26–28) are randomly generated and set
aside for testing to ensure that the surrogates generalize well to unseen data. These
cases correspond to µ26 = (2.5 × 1012, 6.75 × 103), µ27 = (6.0 × 1012, 8.0 × 103) and
µ28 = (4.1 × 1012, 7.51 × 103), respectively. Hence, 28 cases are considered in total
(i.e., nc = 28). The datasets are shown in Table 6.12, where nset indicates the total
number of snapshots in each set. Figure 6.12 reports the FOM solutions for Cases 1,
15 and 25 at t = 0.06 s.

127

Figure 6.11: ADR equation. Visualization of the sample points in the parameter
domain. Training and validation cases are represented in blue circle symbols, whereas
testing cases are shown using red circle symbols.

Table 6.12: ADR equation. Dataset sizes used for formulating and testing the surro-
gates.

Set Description nset
Training 80% of the snapshots from Cases 1-25 2,420

Validation 20% of the snapshots from Cases 1-25 605
Test All of the snapshots from Cases 26–28 363

128

(a) Case 1 (b) Case 15 (c) Case 25

Figure 6.12: ADR equation. Instantaneous snapshots of field variables for Case 1
(µ1 = (2.3375× 1012, 5.625× 103)), Case 15 (µ15 = (4.41875× 1012, 9.0× 103)), and
Case 25 (µ25 = (6.5× 1012, 9.0× 103)) at t = 0.06 s from FOM.

129

6.5.3 Compressed Representations

Autoencoder Results

Using Algorithm 5, an FCAE and a CAE are learned for each field variable of interest,
namely the temperature, T , and mass fractions of fuel and product, YF and YP .
The mass fraction of the oxidizer, YO, can be obtained by mass conservation (i.e.,∑

i Yi = 1), and thus is not processed by the ROM and emulation frameworks. The
data is normalized in the range 0-1. The network architectures and hyperparameters
are tuned manually.

For each field variable, the selected FCAE contains 12 dense layers, as shown
in Table 6.13. This results in 1,854,702 trainable parameters. The autoencoders
are trained by using a standard MSE loss with the following hyperparameters: a
maximum number of epochs of 1,000, a batch size of 24, a learning rate of 3 × 10−4

for the Adam optimizer, a L2 regularization factor of 5 × 10−6, and a latent vector
of size 4 (nlatent = 4). ReLU activation function is applied to all the layers except
the input layer, 6th and 12th dense layers. We note that, although 1,000 epochs
are chosen for training the FCAEs, an early stopping criterion is employed to prevent
overfitting. Table 6.14 reports the MSE values for each autoencoder. Low MSE values
are observed on the validation and test datasets for each field variable. For example,
MSE values of 1.340 × 10−5 and 7.867 × 10−6 are achieved for the reconstructed
temperature field on validation and test data, respectively. This indicates that the
autoencoders perform in the desired manner and do not overfit.

Table 6.13: ADR equation. Network structure of the FCAEs.

Layer Output shape Activation
Input 2048 –

1st Dense 400 ReLU
2nd Dense 200 ReLU
3rd Dense 100 ReLU
4th Dense 50 ReLU
5th Dense 25 ReLU
6th Dense 4 –
7th Dense 25 ReLU
8th Dense 50 ReLU
9th Dense 100 ReLU

10th Dense 200 ReLU
11th Dense 400 ReLU
12th Dense 2048 –

The architecture of the selected CAEs is detailed in Table 6.15. Similar to the
FCAE, a separate CAE is designed for each field variable of interest, and hence, each
CAE is built with only one channel (nc = 1). The encoder contains four pairs of

130

Table 6.14: ADR equation. MSE values for the autoencoders. Results are shown over
the snapshots from the training, validation, and test sets for the temperature and
species mass fractions fields.

FCAE
Training set Validation set Test set

T̃ 1.268× 10−5 1.340× 10−5 7.867× 10−6

ỸF 2.263× 10−5 2.407× 10−5 2.454× 10−5

ỸP 1.998× 10−5 2.154× 10−5 8.563× 10−6

CAE
Training set Validation set Test set

T̃ 4.472× 10−6 4.675× 10−6 3.077× 10−6

ỸF 6.279× 10−6 6.139× 10−6 1.721× 10−5

ỸP 6.419× 10−6 6.765× 10−6 3.676× 10−6

convolution and max pooling layers followed by three dense layers to reduce the di-
mensionality of the input field to a size of four degrees of freedom in the latent space
(nlatent = 4). It is noted that the same level of compression is employed for the CAE
and FCAE to provide a similar basis of comparison for accuracy. The decoder of the
CAE contains three dense layers, followed by four pairs of convolution and upsam-
pling layers, and finally a single convolution layer to return to the dimensionality of
the full-order field. Each convolution layer employs a 3× 3 kernel filter, and utilizes
a zero-padding at the edges of the domain to preserve the original input size. Each of
the max pooling and upsampling layers uses a 2×2 window to achieve downsampling
and upsampling, respectively. The stride length is set to 1 (s = 1). The CAEs are
trained by using a standard MSE loss with the following hyperparameters: a maxi-
mum number of epochs of 1,000, a batch size of 24, a learning rate of 3× 10−4 for the
Adam optimizer, and the ReLU activation function. No L2 regularization was used.
Although the CAE contains more layers than the FCAE, it has only 28,855 trainable
parameters, which helps in reducing model complexity and preventing overfitting.
This is because all of the convolution, max pooling, and upsampling layers in the
CAE perform local operations over nearby neurons instead of full operations over all
the neurons. The MSE values for the CAEs are reported in Table 6.14. Very low MSE
values are observed on the validation and test datasets for each field variable, which
indicate that the CAEs perform in the desired manner and do not overfit. Moreover,
it is observed that the CAEs achieve lower MSE values on the training, validation,
and test sets for all of the field variables compared to the FCAEs.

Comparison with POD

To further illustrate the performance of the autoencoders, the reconstructed fields are
compared with those from EVD-based POD (cf. Appendix A.2). The performance of
POD, FCAE, and CAE is evaluated by using equal levels of data compression. The
reconstructed temperature and fuel mass fraction fields for POD using four modes are

131

Table 6.15: ADR equation. Network structure of the CAEs.

Layer Output shape Activation
Input (64,32,1) –

1st Conv2D (64,32,30) ReLU
1st MaxPooling2D (32,16,30) –

2nd Conv2D (32,16,20) ReLU
2nd MaxPooling2D (16,8,20) –

3rd Conv2D (16,8,15) ReLU
3rd MaxPooling2D (8,4,15) –

4th Conv2D (8,4,10) ReLU
4th MaxPooling2D (4,2,10) –

Flatten 80 –
1st Dense 40 ReLU
2nd Dense 20 ReLU
3rd Dense 4 –
4th Dense 20 ReLU
5th Dense 40 ReLU
6th Dense 80 ReLU

Reshape (4,2,10) –
5th Conv2D (4,2,10) ReLU

1st UpSampling2D (8,4,10) –
6th Conv2D (8,4,15) ReLU

2nd UpSampling2D (16,8,15) –
7th Conv2D (16,8,20) ReLU

3nd UpSampling2D (32,16,20) –
8th Conv2D (32,16,30) ReLU

4th UpSampling2D (64,32,30) –
9th Conv2D (64,32,1) –

compared against those from FCAE and CAE with latent space dimensions of four,
as shown in Figs. 6.13 and 6.14 for Case 27 at t = 0.02 s. The L2 error distribution
is also reported for each ROM technique to visualize the local errors between the
reconstructed and FOM-computed fields. Overall, the flowfield reconstructed by the
CAE yielded the lowest L2 errors. POD exhibits discernible oscillations throughout
the domain, whereas both the CAE and FCAE show excellent agreement with the
FOM. These observations also hold for the other test cases, as indicated quantitatively
in Table 6.16. This comparison highlights the merit of using deep autoencoders
over traditional techniques, such as POD, for nonlinear dimensionality reduction. It
also demonstrates that using an autoencoder with a convolutional neural network
architecture instead of a fully-connected one can help further improve the accuracy
of the reconstructions.

Finally, the temporal evolution of the temperature field computed by the FOM
and that reconstructed by the CAE for Case 27 is shown in Fig. 6.15. It is clearly
observed that the reconstructed flowfield is in good agreement with the original data
at all the snapshots.

132

Table 6.16: ADR equation. Comparison of MSE values between POD, FCAE and
CAE for the reconstructed temperature and species mass fractions fields. Results are
shown over the snapshots of each case from the test set.

POD
Case 26 Case 27 Case 28

T̃ 4.476× 10−4 4.827× 10−4 4.658× 10−4

ỸF 1.224× 10−3 1.604× 10−3 1.426× 10−3

ỸP 4.755× 10−4 5.081× 10−4 4.931× 10−4

FCAE
Case 26 Case 27 Case 28

T̃ 7.694× 10−6 9.648× 10−6 6.258× 10−6

ỸF 2.315× 10−5 2.856× 10−5 2.190× 10−5

ỸP 7.748× 10−6 1.072× 10−5 7.216× 10−6

CAE
Case 26 Case 27 Case 28

T̃ 3.810× 10−6 3.141× 10−6 2.279× 10−6

ỸF 1.868× 10−5 1.665× 10−5 1.630× 10−5

ỸP 3.635× 10−6 4.579× 10−6 2.813× 10−6

Figure 6.13: Reconstruction of temperature field (T , units K) and distribution of
absolute error based on L2-norm in POD, FCAE and CAE at t = 0.02 s for Case
27. The MSEs on normalized data at this time instant for POD, FCAE and CAE are
7.406× 10−4, 8.613× 10−6 and 4.309× 10−6, respectively.

133

Figure 6.14: Reconstruction of fuel mass fraction field (YF) and distribution of ab-
solute error based on L2-norm in POD, FCAE and CAE at t = 0.02 s for Case 27.
The MSEs on normalized data at this time instant for POD, FCAE and CAE are
9.922× 10−4, 2.484× 10−5 and 1.626× 10−6, respectively.

134

Figure 6.15: ADR equation. CAE-reconstructed temperature field (T , units K) for
Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows). The MSEs on
normalized data at these time instances are 1.442× 10−6, 3.838× 10−6, 3.686× 10−6,
1.737× 10−6 and 2.426× 10−6, respectively.

135

6.5.4 Emulated Flowfields

The latent spaces obtained by the FCAE and CAE on the training and validation
data are used to train the regressors. For each autoencoder, a regressor with five dense
layers is designed to learn the mapping from the design parameters µ and time instant
t to the corresponding sequence of latent variables z(t;µ), following Algorithm 6. The
input and output data are standardized to stabilize the learning process. The detailed
architecture of the regressors is given in Table 6.17. The number of epochs is set to
1,500, the batch size to 25, the learning rate for the Adam optimizer to 1× 10−3, and
the L2 regularization factor to 8 × 10−4. This results in 1,077 trainable parameters.
A comparison of the MSE losses on training, validation, and test sets is reported in
Table 6.18 for each regressor. Evaluation of the MSE losses indicates satisfactory
training performance without evidence of overfitting.

Table 6.17: ADR equation. Network structure of each regressor.

Layer Output shape Activation
Input 3 –

1st Dense 9 ReLU
2nd Dense 32 ReLU
3rd Dense 16 ReLU
4th Dense 9 ReLU
5th Dense 4 –

Table 6.18: ADR equation. MSE values for each regressor. Results are shown over the
latent vectors of temperature and species mass fractions from the training, validation,
and test sets.

FCAE
Training set Validation set Test set

zT 6.711× 10−4 8.271× 10−4 4.302× 10−4

zYF
1.069× 10−3 1.464× 10−3 6.955× 10−4

zYP
1.033× 10−3 1.014× 10−3 4.670× 10−4

CAE
Training set Validation set Test set

zT 2.377× 10−3 2.097× 10−3 1.926× 10−3

zYF
2.565× 10−3 2.299× 10−3 2.203× 10−3

zYP
2.245× 10−3 2.431× 10−3 1.309× 10−3

For a new design parameter µ′, the trained regressors are used to predict the
corresponding time sequence of latent vectors, i.e., zpred(t;µ

′) = R(µ′, t). This se-
quence is then passed to the trained decoders to obtain the emulated flowfield in
physical space (cf. Algorithm 7). For the FCAE-R emulator, the decoding func-
tion Fdec(z

FCAE
pred (t;µ′)) gives a one-dimensional vector qpred(t;µ

′) ∈ Rnin , whereas

136

for the CAE-R emulator, the decoding function Gdec(z
CAE
pred (t;µ

′)) gives a tensor
Qpred(t;µ

′) ∈ Rnx×ny×nc .
The temporal evolutions of the components of the latent vectors for the variables

T and YF are shown in solid lines in Fig. 6.16 for Case 27, which belongs to the test
set and was not seen during the training of the neural networks. The latent space
representations obtained from the FCAE and CAE exhibit different behavior. The
time-series predictions for the trained regressors are shown in dashed lines in the
same figure. The regressors are observed to predict the order and evolution of the
latent space components accurately, indicating that the sequential behavior has been
learned.

Figure 6.16: ADR equation. Temporal evolution of the components of the latent
variables from FCAE (left) and CAE (right) for Case 27 for temperature and fuel
mass fraction fields. Latent variables computed by the autoencoders (solid lines) and
those predicted by the regressors (dashed lines) are compared.

Figures 6.17 and 6.18 show snapshots of the emulated temperature fields at various
time instances for Case 27 from FCAE-R and CAE-R, respectively. The absolute er-
ror distribution based on L2-norm is also indicated for each snapshot. Qualitatively,
the emulated flowfields from both frameworks show very good agreement with the
FOM, although some differences are observed, particularly at t = 0. One possible
explanation is that the training database does not contain as many snapshots of the

137

flame in early times as when the flame is more developed. This could be further im-
proved by adding more snapshots at the desired time indices in the training database,
or by incorporating the initial conditions into the models in the form of physics-based
constraints, however, this is left as future work.

Axial and radial profiles of instantaneous emulated temperature and fuel mass
fraction fields at various time instances for Case 27 are shown in Figs 6.19 and 6.20,
respectively. The same observations can be made from these figures as those from
Figs. 6.17 and 6.18.

For the sake of completeness, the MSE and L2 relative error values over the snap-
shots of each case from the test set are shown in Table 6.19. Overall, the emulation
errors for both surrogate models are very small (MSEs below 1.4× 10−4, and relative
errors below 0.76%), with the CAE-R providing slight improvement in the global
errors. This demonstrates the accuracy of both frameworks in capturing the salient
features of the flowfields over a wide range of parameters in the design space.

Table 6.19: ADR equation. MSE values for the emulated temperature and species
mass fractions fields for test cases. Relative errors, in percentage, are also indicated
inside the parentheses.

FCAE-R
Case 26 Case 27 Case 28

Tpred 9.020× 10−5 (0.335%) 1.332× 10−4 (0.402%) 8.789× 10−5 (0.250%)
YF,pred 2.044× 10−4 (0.600%) 1.089× 10−4 (0.667%) 1.052× 10−4 (0.365%)
YP,pred 9.452× 10−5 (0.753%) 1.918× 10−4 (0.633%) 8.140× 10−5 (0.272%)

CAE-R
Case 26 Case 27 Case 28

Tpred 5.262× 10−5 (0.403%) 8.077× 10−5 (0.224%) 8.160× 10−5 (0.194%)
YF,pred 1.735× 10−4 (0.336%) 1.005× 10−4 (0.428%) 9.449× 10−5 (0.228%)
YP,pred 6.734× 10−5 (0.317%) 5.125× 10−5 (0.408%) 5.106× 10−5 (0.237%)

6.5.5 Computational Cost

Table 6.20 summarizes the computational time required for each step of the emulation
process for both frameworks, with timing performed on a Linux desktop that has
the following specifications: Intel(R) Core(TM) i7-10700T CPU @ 2.00GHz. The
preprocessing step, which consists of extracting the snapshots from the FOM, requires
about 0.1 s (0.004 s for each of the 25 cases used for training/validation). For each
emulation framework and for each of the three field variables (i.e., T , YF and YP),
one autoencoder and one regressor are trained. Thus, in each framework, the training
step consists of designing three autoencoders and three regressors. This gives a total
training time of 3,675 and 15,279 s for the FCAE-R and CAE-R, respectively. After
training is completed, the total inference time to predict the flowfield for a new design
point is approximately 3.6 and 4.5 s for the FCAE-R and CAE-R, respectively. In
comparison, the FOM simulations take on average 52 s per case. Thus, if only the

138

Figure 6.17: ADR equation. Instantaneous snapshots of temperature field (T , units K)
for Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows). Flowfields
computed by FOM and those predicted by the FCAE-R emulator are compared.
The absolute error distribution based on L2-norm is also indicated. The MSEs on
normalized data at these time instances are 2.197× 10−3, 4.374× 10−5, 1.702× 10−5,
1.205× 10−5 and 4.837× 10−5, respectively.

inference time is considered, an overall speedup of 14 and 12 times is achieved by
the the FCAE-R and CAE-R, respectively. The speedup factor can be expected to
increase further with the complexity of the FOM (see, for example, the emulation
speedup in the A-M1 injector problem in Sec. 7.3.3.6). This highlights the potential
of data-driven methods to lower the computational cost of numerical simulations for
design purposes.

139

Figure 6.18: ADR equation. Instantaneous snapshots of temperature field (T , units K)
for Case 27 at t = 0, 0.015, 0.03, 0.045 and 0.06 s (first – fifth rows). Flowfields com-
puted by FOM and those predicted by the CAE-R emulator are compared. The
absolute error distribution based on L2-norm is also indicated. The MSEs on nor-
malized data at these time instances are 2.707 × 10−3, 3.542 × 10−5, 1.643 × 10−5,
2.196× 10−6 and 1.498× 10−5, respectively.

Table 6.20: ADR equation. Computational time in CPU-secs for each step of the
emulation process For the autoencoder training step, results are also provided in
GPU-secs.

Step Time (FCAE-R) Time (CAE-R)
Preprocessing 0.1 CPU-secs 0.1 CPU-secs

Autoencoder training 3× 1, 130 CPU-secs 3× 4, 986 CPU-secs
(3× 626 GPU-secs) (3× 990 GPU-secs)

Regressor training 3× 95 CPU-secs 3× 107 CPU-secs
Flow prediction 3× 1.2 CPU-secs 3× 1.5 CPU-secs

140

Figure 6.19: ADR equation. Axial profiles of the instantaneous temperature (top)
and fuel mass fraction (bottom) fields at centerline at t = 0, 0.03 and 0.06 s for
Case 27.

Figure 6.20: ADR equation. Radial profiles of the instantaneous temperature (top)
and fuel mass fraction (bottom) fields at x ≈ 3 mm at t = 0, 0.03 and 0.06 s for
Case 27.

6.5.6 Sensitivity Analysis

In the following, a sensitivity analysis is performed to evaluate the influence of certain
hyperparameters and design choices, such as the type of activation function, number
of snapshots, and number of cases in the DoE, on the performance of the emulators.

Dependence on the Type of Activation Function

The dependence on the type of activation function is investigated and reported in
Table 6.21. Results are demonstrated for the reconstructed temperature field from

141

the CAE. Here, we examine the sigmoid, tanh, ReLU (baseline), ELU, and Swish
activation functions. From this table, it is observed that the errors are largest with
the sigmoid function (1.226 × 10−3), while they are relatively lower with the tanh,
ReLU, ELU, and Swish functions (below 3.4× 10−6), with ELU and Swish providing
slightly more accurate predictions than the others. As an aside, we note that during
the hyperparameter tuning phase, which was carried in Secs. 6.5.3 and 6.5.4, only
sigmoid, tanh, and ReLU were initially evaluated, and thus ReLU was selected in the
final emulator models since it provided the best accuracy among these three functions,
as reported in Table 6.21. The assessment of the ELU and Swish functions, however,
was done at a much later stage in the project, mainly for the purpose of sensitivity
analysis. Thus, for this reason, they were not selected in the final emulator models
despite that they provided slightly better results than the ReLU function.

Table 6.21: ADR equation. Dependence on the choice of activation function: MSE
values for the reconstructed temperature field from the CAE.

sigmoid tanh ReLU (baseline) ELU Swish
Test error on T̃ 1.226× 10−3 3.304× 10−6 3.077× 10−6 2.263× 10−6 1.600× 10−6

Dependence on the Number of Snapshots

The dependence on the number of snapshots extracted from each FOM case, nt,
in the autoencoders, regressors and emulators is investigated and reported in Ta-
bles 6.22, 6.23 and 6.24, respectively. Results are demonstrated for the temperature
and product mass fraction fields. Here, we examine nt = 121 (baseline), 241 and 601.
From these tables, we can see that, overall, the accuracy in the reconstructions and
predictions is increased with increasing nt. Note that this outcome is expected since
deep learning models are data-hungry models.

Table 6.22: ADR equation. Dependence on the number of snapshots: MSE values for
the reconstructed temperature and product mass fraction fields from the FCAE and
CAE. Results are shown over the snapshots from the test set.

FCAE
nt = 121 (baseline) nt = 241 nt = 601

Test error on T̃ 7.867× 10−6 6.508× 10−6 5.585× 10−6

Test error on ỸP 8.563× 10−6 5.935× 10−6 5.183× 10−6

CAE
nt = 121 (baseline) nt = 241 nt = 601

Test error on T̃ 3.077× 10−6 1.739× 10−6 6.412× 10−7

Test error on ỸP 3.676× 10−6 1.269× 10−6 6.643× 10−7

142

Table 6.23: ADR equation. Dependence on the number of snapshots: MSE values for
each regressor. Results are shown over the latent vectors of temperature and product
mass fraction from the test set.

FCAE
nt = 121 (baseline) nt = 241 nt = 601

Test error on zT 4.302× 10−4 3.515× 10−4 4.044× 10−5

Test error on zYP
4.670× 10−4 3.432× 10−4 8.362× 10−5

CAE
nt = 121 (baseline) nt = 241 nt = 601

Test error on zT 1.926× 10−3 6.631× 10−4 4.975× 10−4

Test error on zYP
1.309× 10−3 2.386× 10−4 3.119× 10−4

Table 6.24: ADR equation. Dependence on the number of snapshots: MSE values for
the emulated temperature and product mass fraction fields from the FCAE-R and
CAE-R on each case from the test set.

FCAE-R
nt = 121 (baseline) nt = 241 nt = 601

Tpred (Case 26) 9.020× 10−5 8.563× 10−5 1.156× 10−5

Tpred (Case 27) 1.332× 10−4 7.920× 10−5 1.470× 10−5

Tpred (Case 28) 8.789× 10−5 6.764× 10−5 1.025× 10−5

YP,pred (Case 26) 9.452× 10−5 9.060× 10−5 2.228× 10−5

YP,pred (Case 27) 1.918× 10−4 1.092× 10−4 1.401× 10−5

YP,pred (Case 28) 8.140× 10−5 5.692× 10−5 1.511× 10−5

CAE-R
nt = 121 (baseline) nt = 241 nt = 601

Tpred (Case 26) 5.262× 10−5 1.298× 10−5 1.039× 10−5

Tpred (Case 27) 8.077× 10−5 1.661× 10−5 9.240× 10−6

Tpred (Case 28) 8.160× 10−5 1.150× 10−5 9.077× 10−6

YP,pred (Case 26) 6.734× 10−5 1.575× 10−5 9.726× 10−6

YP,pred (Case 27) 5.125× 10−5 1.110× 10−5 6.979× 10−6

YP,pred (Case 28) 5.106× 10−5 9.937× 10−6 5.982× 10−6

Dependence on the Number of Cases in the DoE

The dependence on the number of cases in the DoE, nc, is investigated and reported
in Table 6.25. Results are demonstrated for the reconstructed temperature field from
the CAE. Here, we examine nc = 12, 28 (baseline), and 67. From these tables, it is
observed that, overall, the accuracy in the reconstructions is increased with increasing
nc. Similar to the above, this outcome is also expected since deep learning models
are data-hungry models.

143

Table 6.25: ADR equation. Dependence on the number of cases in the DoE: MSE
values for the reconstructed temperature field from the CAE.

nc = 12 nc = 28 (basline) nc = 67

Test error on T̃ 5.999× 10−6 3.077× 10−6 1.736× 10−6

6.6 Summary

The aim of this study was to develop data-driven DL-based surrogate modeling
approaches to enable efficient prediction and parametric estimation of spatiotemporal
flow dynamics. Two surrogate frameworks were constructed for this purpose. The
first, referred to as FCAE-R, featured an FCAE, for nonlinear dimensionality re-
duction of the flowfields, and a regression-based neural network (R) for supervised
learning of the latent space representations This model is suitable for any type of
data (structured/unstructured, regular/irregular). The second, referred to as CAE-
R, was obtained by replacing the FCAE with a CAE to retain the spatial coherence
of the input data while maintaining the same deep-learning-based regression method.
This model is generally suitable for structured image data. In both cases, the surro-
gate model was constructed from a full-order model of spatiotemporal distribution of
field variables of interest, for which a design of experiments on the input space was
explored by evaluating changes in selected design and physical parameters.

The proposed frameworks were evaluated with two nonlinear model problems, the
one-dimensional viscous Burgers equation, parametrized using the Reynolds num-
ber, and the two-dimensional ADR equation, parametrized using the pre-exponential
factor and activation energy.

In each problem, a standalone assessment of the ROM strategies revealed that for
the same level of data compression, the FCAE and CAE provided better reconstruc-
tion accuracy than the classical POD, with the CAE achieving the smallest errors.
Furthermore, it was demonstrated that the spatiotemporal flowfields at new design
points were well predicted by both surrogate frameworks. The two emulators had
comparable prediction accuracy, with the CAE-R providing slight improvement in
the global MSEs. In comparison to using the FOM to simulate the next design point
of interest, the FCAE-R and CAE-R showed a speedup of up to 14 and 12 times,
respectively (in the ADR problem).

List of Main Symbols

Latin Symbols

A pre-exponential factor
b bias vector
Ea activation energy

144

J loss function
L, Lx, Ly domain length
nin size of input layer of FCAE
nepoch number of epochs
nbatch batch size
nlatent size of latent space
nset number of elements in the set
nµ number of design/physical parameters
nc number of channels in CAE, number of cases in DoE
nx number of points along x direction
ny number points along y direction
nt number of snapshots extracted from each FOM case
nvar number of field variables
ngrid number of grid points in the subdomain of interest
nr number of retained POD modes
nr,x% number of POD modes required to recover x% of modal energy
q FCAE input, reaction source term vector
q̃ FCAE output
Q heat of reaction
Q CAE input
Q̃ CAE output
R universal gas constant
Re Reynolds number
s stride length in CAE
sN normalization operator
sS standardization operator
t physical time
tend final time
T temperature
u axial velocity
v velocity vector
w vector field, thermo-chemical composition vector
W weight matrix
Wi molecular weight of the ith species
x spatial coordinate vector
x, y spatial coordinates
Yi mass fraction of the ith species
z latent vector

Calligraphic Symbols

Fenc, Fdec encoder function of FCAE, decoder function of FCAE
Genc, Gdec encoder function of CAE, decoder function of CAE
R regressor

145

S simulator

Greek and Blackboard Bold Symbols

Ω spatial domain
Γ1-Γ6 boundary conditions
µ vector of design/physical parameters
ϕ parameters of regressor
λreg, ζreg control parameter for L2 regularization
λlr initial learning rate
ν viscosity
νi stioichiometric coefficient of the ith species
κ diffusivities
ρ density
D parameter domain

Subscripts

dec decoder
enc encoder
F fuel
O oxidizer
P product
pred predicted variable
true true variable
valid validation

Superscripts

□̃ reconstructed variable
□̂ normalized or standardized variable
□′ new value of variable

146

CHAPTER 7
LEARNING SPATIOTEMPORAL INJECTION MAPS USING A

DATA-DRIVEN EMULATOR FOR RAPID DIESEL ENGINE DESIGN

In the previous chapter, a deep learning spatiotemporal emulation framework was
introduced and investigated on canonical fluid flow problems. In this chapter, the
emulator is applied to a representative engineering problem relevant to automotive
propulsion, in order to address Objectives 1(b) and 3(b) (cf. Sec. 1.2). The selected
example is specific to a diesel engine problem, but the general emulation approach
can be taken as a model, and other industry-relevant problems could be addressed
following a similar paradigm. Please note that this chapter depends on Chapters 2
and 3 as well as Secs. 4.1, 4.2, and 4.3.

7.1 Abstract

Fuel injector design has a substantial influence on the spray characteristics and fuel-air
mixing in the combustion chamber, thus affecting the performance and emissions of
direct-injection engines. To date, physics-based numerical approaches that link injec-
tor and spray dynamics, such as the Eulerian-Lagrangian Spray Atomization (ELSA)
method and the two-stage one-way coupling (OWC) method, have shown great suc-
cess in evaluating the complex interplay among injector geometry, fuel properties, and
operating conditions in the determination of injector efficacy and spray development.
However, such simulation approaches are too computationally expensive to be used
routinely by industry for injector design, mainly due to the fine temporal and spatial
resolution required to resolve wall-bounded flow within the injector. This chapter
proposes a data-driven emulation framework that can learn and quickly predict spa-
tiotemporal injection maps at the nozzle orifice exit, thus providing a computationally
tractable link between internal nozzle flow and external spray and combustion devel-
opment, and enabling rapid exploration of the desired design space. The emulation
framework encompasses autoencoders for nonlinear dimensionality reduction and deep
neural networks for regression and predictive modeling. As a demonstration case, the
turbulent multiphase flow development in the side-oriented single-hole A-M1 diesel
injector is considered. The accuracy of the prediction of flow features at the orifice
exit of the injector is assessed, and the efficiency of the proposed emulator is evalu-
ated. The emulator is also tested by evaluating the resulting spray and combustion
characteristics from OWC spray simulations that employ the emulator-predicted in-
jection maps as inflow boundary conditions, instead of the CFD-generated injection
maps. The findings from this work will provide an efficient pathway to accelerate the
design and development of next-generation advanced combustion engines.

147

7.2 Introduction and Literature Review

Critical to the quest for next-generation propulsion and power generation systems
that will meet ever-tighter emissions and environmental regulations, high-fidelity CFD
simulations of multiphase and reacting flows are in general computationally expensive,
due to the broad spectrum of length and time scales that must be resolved. The cost of
these calculations can easily become prohibitive in the case of design-oriented studies,
for which a large number of parametric variations is needed to survey the full design
space. A novel design methodology is thus needed.

Within the context of direct-injection diesel engine simulations, which are the
focus of the present work, several approaches have been developed to represent the
high-pressure fuel injection process and allow for coupling with established spray
and combustion models, as shown in Table 7.1. These approaches need to account,
in one way or another, for a wide range of physics phenomena, including in-nozzle
cavitation, liquid fuel atomization, dispersion, evaporation, fuel-air mixing, ignition,
and reaction (see Secs. 4.3.4 and 4.3.5 for a basic review of these physio-chemical
processes). The presence of such a wide range of physics and the highly nonlinear
interaction of turbulence with other processes makes numerical predictions of the flow
dynamics within such systems extremely challenging.

In the Eulerian-Lagrangian Spray Atomization (ELSA) approach [195], the inter-
nal nozzle flow and near-nozzle region are dynamically coupled and modeled using an
Eulerian framework. Based on a specified criterion, such as interfacial surface area,
the representation of the spray is then transitioned to Lagrangian parcels. Examples
of studies employing this approach can be found in Refs. [196, 197]. Although this
framework allows for accurate coupling between the injector dynamics and the ensu-
ing spray, the computational expense of this approach limits its application to engine
simulations. In particular, the modeling of the internal flow development generally
results in timesteps that are two orders of magnitude smaller than those commonly
used in direct-injection engine simulations (O(1 ns) vs. O(0.1 µs)).

An alternative to the ELSA approach for representing the fuel injection process is
the two-stage static coupling approach, also referred to as one-way coupling (OWC). In
this approach, internal flow simulations are first performed to calculate key quantities
at the nozzle orifice exit(s), namely, injected mass, velocity, turbulence levels, and
liquid volume fraction. These spatiotemporal distributions are then used to initialize
LE simulation of the ensuing spray. The initial size and velocity distribution of the
spray droplets (or parcels) in the LE simulation can be set directly from information
based on the flowfields at the nozzle orifice exit, as in Refs. [198, 199, 200, 201,
202, 203, 204]; this initialization technique is referred to as the blob-injection method.
Alternatively, the droplets can be released on the liquid core surface instead of in
the orifice cross section, for a more detailed treatment of the atomization and drop
break-up processes within the dense spray near the nozzle. In this case, the initial size
of the parcel droplets is not set equal to the orifice diameter, as is usual in the blob-
injection method. Instead, the droplets begin with smaller diameters as determined
from a primary breakup model [205]. The model defines an auxiliary grid onto which
nozzle flow data obtained by the internal flow simulation are projected to compute

148

the initial droplet size and velocity distributions at the liquid core surface, as well
as other quantities such as the initial spray angle needed for the initialization of the
droplet parcels within the LE simulation; this initialization technique is referred to as
the core injection method (CIM), or Lagrangian parcel method. Examples of studies
employing the OWC approach in conjunction with CIM can be found in Refs. [206,
207]. Overall, although OWC enables a framework to couple the injector dynamics
with the ensuing spray using timesteps that are compatible with engine simulations
(O(0.1 µs)), the internal flow simulations remain the computational bottleneck in this
framework.

Another methodology for representing the fuel injection event is the rate-of-
injection (ROI) approach, in which the LE simulation is initialized with a fuel in-
jection model based on a one-dimensional representation of the injection conditions
at the nozzle orifice exit(s). With this approach, it is assumed that pure liquid fuel is
injected with a spatially constant profile of velocity, temperature, and mass across the
orifice exit, thus neglecting in-nozzle cavitation as well as the spatial variation of flow
properties across the orifice exit. The injection model can be obtained either from
experiments, as in Refs. [208, 200], or from numerical simulations, as in Ref. [202].
Although this approach is well suited for representing highly turbulent and pure liq-
uid injection, its applicability for injection conditions featuring cavitation and flash
boiling is limited.

The above-mentioned currently available simulation tools are either too computa-
tionally expensive or overly simplistic. There remains a critical need for an efficient
end-to-end simulation framework that can couple injector dynamics with the resul-
tant spray and combustion characteristics. In particular, to facilitate engine design
studies, the time-to-solution will need to be accelerated by orders of magnitude, and
one approach is the use of data-driven emulation. The present work presents a novel
data-driven approach in which deep learning surrogates are leveraged to predict the
flowfields with high accuracy at a fraction of the cost of full-scale CFD simulations.
The predicted flowfields at the injector exit are then used to initialize the injection
conditions for the LE spray simulations, providing a computationally tractable link
between the internal flow and external spray and combustion development. To the
author’s knowledge, this work is a first of its kind within the contexts of OWC sim-
ulations and data-enabled engine design.

The proposed emulation framework consists of three steps, as schematically illus-
trated in Fig. 7.1. In the first step, a spatiotemporal training database of the internal
nozzle flow is generated from high-fidelity CFD simulations spanning a design space
of interest. For highly resolved CFD simulations, the resulting database would be
too large to be used directly for regression; reduced-order modeling is a critical step
to enable emulation. As a first step, therefore, autoencoders are applied to compress
the data and extract dominant features at the injector exit for physics-based data
assimilation. The main appeal of autoencoders lies in their ability to model complex
nonlinear relationships at the same level of data compression than those of classical
ROM techniques such as POD. In the second step, a regression model based on neural
networks is employed to learn the relationship between the selected design param-
eters and the reduced-space representations. In the third and last step, these tools

149

are integrated into a unified emulator model along with a reconstruction algorithm to
predict the flowfields for new design settings. The predicted flowfields are then used
to initialize the LE spray simulations using the OWC approach.

Figure 7.1: Overview of the proposed emulation framework and its application to the
A-M1 injector flow.

This rest of this chapter is divided into two parts. The first part, Sec. 7.3, is
concerned with internal nozzle flow simulation and emulation, and is structured as
follows. Section 7.3.1 describes the simulation framework, in which the injector spec-
ifications, operating conditions, CFD setup, and sampled points obtained by the
design of experiments are detailed. Section 7.3.2 introduces the proposed emulation
framework. Section 7.3.3 presents the simulation and emulation results. Sec. 7.4 is
concerned with one-way coupled spray simulation, and is structured as follows. Sec-
tion 7.4.1 presents the spray modeling approach, including the spray initialization
strategy and OWC method. Section 7.4.2 presents the results from the OWC spray
simulation predictions. Finally, key findings and concluding remarks are summarized
in Sec. 7.5.

150

Table 7.1: Overview of numerical studies focusing on coupled approaches for the simulation of in-nozzle flow and exterior spray.

One-stage fully-coupled approach
Numerical model for nozzle and spray regions Injector nozzle type Reference Year

TFM (with RPE model for cavitation) 1-hole Chalmers diesel Berg et al. [206] 2005
LES-VOF + Lagrangian particle model (without cavitation model) 6-orifice swirl gas-turbine Kim et al. [209] 2014

RANS-HMM (with HRM for cavitation) 1-hole ECN Spray-A Xue et al. [208] 2015
RANS-HMM (with HRM for cavitation) 1-hole ECN Spray-A Bravo et al. [210] 2015

ELSA approach
Numerical model for nozzle and spray regions Injector nozzle type Reference Year

URANS-ELSA (without cavitation model) 8-hole ECN Spray-G GDI Saha et al. [196] 2018
RANS/LES-ELSA (without cavitation model) 1-hole ECN Spray-A Anez et al. [197] 2019

LES-ICM-ELSA (without cavitation model) 1-hole ECN Spray-A Anez et al. [197] 2019
Two-stage OWC approach

In-nozzle flow model Cavitation model Spray model Injector nozzle type Reference Year
TFM RPE LE (with CIM) 1-hole Chalmers diesel Berg et al. [206] 2005

RANS-HMM – LE 6-hole mini-sac GDI Som et al. [198] 2010
RANS-MFM RPE LE Mini-sac diesel Battistoni et al. [199] 2012

TFM RPE LE (with CIM) 5-hole diesel Wang et al. [207] 2014
URANS/RANS-VOF – LE 1-hole ECN Spray-A Quan et al. [201] 2016
URANS/RANS-VOF HRM LE 1-hole ECN Spray-H Quan et al. [201] 2016

URANS-HMM HRM LE 8-hole ECN Spray-G GDI Saha et al. [200] 2017
RANS-HMM HRM LE 8-hole XPI diesel Travers et al. [202] 2019

HMM Schnerr-Sauer LE 1-hole HJ-SIP lubricator Ravendran et al. [203] 2019
URANS-HMM HRM LE 8-hole ECN Spray-G GDI Nocivelli et al. [204] 2020

ROI approach
Source for boundary data at nozzle exit Spray model Injector nozzle type Reference Year

Experiment LE 1-hole ECN Spray-A Xue et al. [208] 2015
Experiment LE 8-hole ECN Spray-G GDI Saha et al. [200] 2017

CFD simulation LE 8-hole XPI diesel Travers et al. [202] 2019

151

7.3 Internal Flow Simulation and Emulation

This section is concerned with internal flow simulation and emulation. The ma-
terial presented here is adapted from:

• [211] P. J. Milan, R. Torelli, B. Lusch, and G. M. Magnotti, “Data-driven model
reduction of multiphase flow in a single-hole automotive injector,” Atomization
and Sprays, Vol. 30, pp. 401-429, 2020.

• [212] P. J. Milan, S. Mondal, R. Torelli, B. Lusch, R. Maulik, and G. M. Mag-
notti, “Data-driven modeling of large-eddy simulations for fuel injector design,”
AIAA 2021-1016, pp.1-15, 2021.

7.3.1 Simulation Framework

To generate data for training, evaluation and testing of the emulator framework,
the commercially available CFD code CONVERGE v3.0 [98] was employed to perform
internal flow simulations to generate spatiotemporal distributions of key flowfield
variables at the orifice exit of the injector. Details regarding the simulated conditions
and modeling approaches are provided in the following sections.

7.3.1.1 Injector Configuration and Operating Conditions

Turbulent multiphase flow simulations were performed for pressurized liquid n-dodecane
fuel in the A-M1 injector, which is a side-oriented single-hole injector geometry, in
order to link fuel properties, operating conditions, and geometrical parameters with
the injection conditions at the orifice exit. An illustration of the injector is provided
in Fig. 7.2, which is comprised of an injector body (shown in gray), needle (blue), sac
(green), and orifice (red) geometry comparable to those of the Engine Combustion
Network (ECN) Spray C injector [213, 214] and the Spray Combustion Consortium
(SCC) M1 injector [215, 216] (see Sec. 4.3.3 for a description of these components and
their functions). The computational domain consists of the lower end of the injector
internal volume as well as an outer cylindrical chamber. The dimensions of the outer
chamber (not shown in Fig. 7.2), i.e., diameter of 4 mm and length of 10 mm, were se-
lected to prevent wall effects from affecting the initial spray development. According
to the nominal specifications, the injector orifice is oriented at an angle of 73◦ with
respect to the needle axis and is characterized by a sharp inlet radius of curvature to
promote cavitation inception. The orifice is 1.0 mm long and its diameter is 170 µm.
A plane located at about 46 µm upstream from the orifice exit’s cross section is se-
lected as the subdomain of interest for emulation to characterize the thermodynamic
and fluid mechanic conditions at the outlet of the injector, as shown in Fig. 7.2. The
subdomain sampling at this location results in a slice containing 4,214 grid points.
For the baseline case, a fixed needle lift of 15 µm is used.

152

The injection condition and fuel properties studied in this work are summarized
in Table 7.2 and are similar to the baseline cold condition from the ECN. Liquid n-
dodecane at a temperature of 323 K is injected with a fuel pressure of 1,500 bar into
a nitrogen-filled chamber whose pressure is of 20 bar; this corresponds to a cavitation
number of 1.014 (see Sec. 4.3.5 for the definition of the cavitation number). Dissolved
gas in the fuel is represented using a trace amount of non-condensable gas (N2), based
on recommendations from Battistoni et al. [217]. For the baseline configuration, the
mass fraction of non-condensable gas is set to 2 × 10−5, which is consistent with
previous numerical studies [218, 219]. All cases studied in this work assume that the
injector sac and orifice are completely filled with fuel at the start of the simulation
independent of the needle location. Because the flow profiles in the injector are
evaluated at quasi-steady state, it is reasonable to assume that the initial conditions
do not affect the velocity and species predictions at the location of interest for this
work.

Figure 7.2: 3D view of the baseline A-M1 injector. Also shown are a zoomed-in view
of the orifice and the subdomain that is used for emulation.

7.3.1.2 Design of Experiments

A DoE was defined using JMP [220], a commercially available statistical analysis soft-
ware package. A DoE approach allows for the efficient selection of numerical simula-
tions required to explore a range of design parameters that are known to affect the
injector exit conditions. In this work, three design parameters were selected, namely
needle lift, dynamic viscosity of the liquid-phase fuel, and level of non-condensable
gas in the fuel. The baseline condition (referred to as “Case 0”) and range of design
parameters considered in this study are detailed in Table 7.3. The minimum needle
lift is defined on the basis of computational constraints required to adequately resolve

153

Table 7.2: Summary of the operating condition for the A-M1 injector.

Parameter Values
Fuel n-dodecane

Injection pressure [bar] 1500
Ambient pressure [bar] 20

Fuel temperature [K] 323
Saturation Pressure [Pa] 133.3

Bulk Modulus [GPa] 1.475
Reference fuel density [kg/m3] 727.4

Reference pressure [Pa] 100,000

the flow, while the maximum needle lift is informed from typical needle motion pro-
files from similar heavy-duty injectors [221]. The range of dynamic viscosity values
is informed by fuel property space evaluated in the DoE from Ref. [222], which con-
sidered 13 different fuels including alcohols, alkanes, and methyl esters. The range
of non-condensable gas concentrations was based on consideration of de-gassed fuel
(YN2 = 1e-07) [217] and solubility limits of the same 13 different hydrocarbon fuels
at a standard temperature and pressure condition [223]. Within the defined design
space, 60 representative samples were identified using a variant of the Latin hyper-
cube sampling (LHS) [224]. These samples are highlighted in Fig. E.1 and described
in Table E.1 in Appendix E.1. The 60 samples were generated in two phases.1 In the
first phase, 36 CFD simulations were completed; we refer to this as DoE study “S36.”
In the second phase, the remaining 24 CFD simulations were completed, bringing the
total number of available samples to 60; we refer to this as DoE study “S60.” Thus,
in Sec. 7.3.3, the first part of the results was obtained using DoE Study S36, and the
second part of the results was obtained using DoE Study S60. Table 7.4 links the two
studies to the relevant descriptions, results, and publications.

Table 7.3: Design space considered in this study. For each variable, the baseline,
minimum and maximum values are indicated. Also, the fuel viscosity, µF , is specified
at 323 K.

Design Variable Baseline Min. Max.
Needle lift [µm] 15 15 400

µF [N-s/m2] 9.418e-04 2.88e-04 1.51e-03
YN2 [-] 2e-05 1e-07 1e-03

1The data were generated in two phases strictly for time management reasons.

154

Table 7.4: Description of DoE studies and corresponding results subsections.

Nb. of cases Description Results subsections Publication
DoE study S36 36 Appendix E.2 Secs. 7.3.3.1, 7.3.3.2 and 7.3.3.3 [211]
DoE study S60 60 Appendix E.1 Secs. 7.3.3.4, 7.3.3.5 and 7.3.3.6 [212]

7.3.1.3 Computational Model Setup

A complete model description and model validation exercises can be found in
Refs. [221, 225, 226, 222], but the salient details are summarized here. The cavitating
flow within the injector is treated as a compressible, homogeneous, multiphase mix-
ture comprised of four-components and two-phases, specifically liquid and vapor fuel,
non-condensable gas, and ambient gas. In the single-fluid HMM (cf. Sec. 4.3.6), it is
assumed the phases are strongly coupled and in local equilibrium, whereby all com-
ponents are assumed to have the same pressure, temperature, and velocity within
a given computational cell. The homogeneous mixture assumption is a valid one
provided sufficient spatial resolution is employed.

The transient simulation methodology for the multiphase mixture is based on the
solution of the filtered form of the Navier-Stokes equations for the LES technique,
which allows the resolution of large-scale turbulent eddies while modeling the small-
scale contributions to the turbulent flow (cf. Sec. 3.3). The governing equations solved
in this problem include the continuity and momentum equations (written using index
notation):

∂ρ

∂t
+
∂ρui
∂xi

= 0, (7.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj
−
∂τ sgs

ij

∂xj
+ ftens,i, (7.2)

where ρ is the mixture density, p the pressure, ui the mixture velocity, τij the mixture
viscous stress tensor, τ sgs

ij the subgrid turbulent stress tensor, and ftens,i the surface
tensor force. Due to the adiabatic assumption used to model the flow development,
solution of the mixture energy equation is omitted. Turbulence closure is achieved
using the one-equation dynamic structure model [91] to characterize the effects of
subgrid-scale motion. It is noted that the operators denoting the low-pass filtered and
Favre-filtered quantities, commonly represented by the symbols □ and □̃, respectively
(cf. Sec. 3.3), are not used here for the simplification of mathematical notation.

Within the mixture modeling approach, α is used to represent the total void
fraction field. It can assume different values, as follows:

• α = 0: the cell is filled with pure liquid

• α = 1: the cell is filled with pure gas (i.e., fuel vapor, non-condensable gas,
ambient gas, or a mixture of the three)

155

• 0 < α < 0: the cell is filled with both liquid and gas species

Using a pseudo-density concept, ρ is calculated using volume-weighted averaging

ρ = αρg + (1− α)ρl, (7.3)

where ρg and ρl are the total gas- and liquid-phase densities in the cell, respectively.
The gas phase is described by the Redlich-Kwong (RK) EOS [227], while the liq-
uid phase is treated as a compressible barotropic fluid. Using the vapor transport
method, α is determined indirectly using a transport equation for each species mass
fraction, Yn,

∂ρYn
∂t

+
∂ρYnuj
∂xj

= −∂𝒱n,j

∂xj
−
∂𝒱 sgs

n,j

∂xj
+ Sn, (7.4)

where 𝒱𝒱𝒱n is the laminar diffusion velocity modeled using Fick’s law, 𝒱𝒱𝒱 sgs
n is the sub-

grid scale turbulent diffusion velocity, and Sn is the source term for the nth species
due to phase-change, modeled using the homogeneous relaxation model (HRM) [228]
described below. α is then calculated using the mass fractions for the gas- and liquid-
phase components

α =
mg/ρg

mg/ρg +ml/ρl
, (7.5)

where mg is the total gas mass fraction (i.e., fuel vapor, non-condensable gas, and
ambient gas) and ml is the total liquid mass fraction.

Although the presence of non-condensable gas is included in this model, no ad-
ditional models are included to represent the adsorption and absorption of N2. As
a result, the mass transfer source term in the N2 species transport equation is set
to zero. The mass exchange between the liquid and vapor phases of the fuel species
due to cavitation and condensation is modeled using HRM [228], where a first-order
rate equation is assumed for the evolution of the instantaneous non-equilibrium mass
fraction of fuel vapor, Yv, towards its equilibrium value, Y v, over a given time scale.
The model is given by

dYv

dt
=
Y v − Yv

θ
, (7.6)

θ = θ0α
−0.54ψ−1.76, (7.7)

where θ is the relaxation time scale, θ0 is a coefficient set to 3.84× 10−7, and ψ is the
nondimensional pressure ratio. The latter is given by

ψ =
psat − p
pc − psat

, (7.8)

where psat and pc are the saturation and critical pressures, respectively. The equi-
librium vapor quantity Y v is determined by relating the mixture specific enthalpy,
h, to the saturated liquid enthalpy, hf, and heat of vaporization, L, at the mixture
temperature, T

Y v =
h− hf(T)

L(T)
. (7.9)

156

The source term for the fuel vapor in Eq. (7.4) can be calculated as

Sv =
dYv

dt
ρ(Yv + Yl). (7.10)

Although the liquid-gas interface is not tracked in the mixture modeling approach,
surface tension effects on the flow can be retained using the continuum surface force
model developed by Brackbill et al. [229]. In this approach, surface tension is in-
terpreted as a continuous, three-dimensional force in regions where strong gradients
and curvature in α-field exist. To compute the volume force ftens,i, curvature κ is
calculated from local gradients in the pseudo-surface normal ni

ni =
∂α
∂xi∣∣∣∣ ∂α∂xi

∣∣∣∣ , (7.11)

where κ is defined in terms of the divergence of ni

κ = −∂ni

∂xi
. (7.12)

ftens,i can then be obtained as follows

ftens,i = σκ
∂α̃

∂xi
, (7.13)

where α̃ is a modified void fraction field that approaches α in the limit of infinitesi-
mally small interface thickness [229], and σ is the surface tension coefficient.

Spatial and temporal discretizations are achieved with second-order and first-order
accuracy, respectively. A variable time-step algorithm is employed with a maximum
Courant-Friedrichs-Lewy (CFL) number of 0.25, which results in time steps on the
order of 1 ns. Unstructured meshes are generated using the fixed embedding strat-
egy [98]. The mesh size distribution in the domain for the baseline configuration
(i.e., Case 0) and Case 5 from the DoE study (see Table E.1) is shown in Fig. 7.3.
A minimum mesh size of 5 µm is applied at the boundaries of the orifice body and in
the needle seat area at very low needle lifts to improve the accuracy of the solution
in such small gaps. For larger needle lifts such as Case 5, the mesh size criteria are
relaxed in other regions of the domain (but kept unchanged in the orifice, sac and
outer chamber) to reduce the overall mesh count. The total cell count is about 5.4
and 6.6 million for Cases 0 and 5, respectively. A grid-convergence study is performed
to minimize numerical uncertainty (see Sec. 7.3.3.1). Each case takes between 1,400
and 2,000 CPU-hours per 10 µs of simulated injection time, depending on the cell
count. A total of nt = 81 snapshots is acquired starting from t = 20 µs, after the
flow reaches its quasi-steady state, and spanning a period of 20 µs. The predicted
output data require about 120 GB of storage per simulation.

157

(a) Case 0 (b) Case 5

Figure 7.3: Visualization of the fixed embedding strategy, shown at the centerplane
of the domain for Cases 0 and 5. The corresponding needle vertical lift is 15 µm and
386.95 µm, respectively.

7.3.2 Emulator Framework

The emulator framework comprises two levels of neural networks to approximate
the spatiotemporal exit conditions of the A-M1 injector. In the first level, an au-
toencoder network is used to perform a spatial compression of the sequence of high-
dimensional snapshots into a sequence of latent vectors. Following the autoencoder,
a regressor is used in the second level to learn the relationship between the design
parameters and latent space. The emulation framework is implemented in Python
3.7 using TensorFlow (cf. Sec. 2.3.9).

7.3.2.1 Autoencoder

An autoencoder is used to compress the representation of the flowfield data generated
from the internal flow simulations. It consists of two parts: an encoder Fenc and a
decoder Fdec, as shown in Fig. 7.4. The encoder is used to map the high-dimensional
flowfield into a low-dimensional latent space. The decoder is then used to expand
the dimensionality of the latent space back to that of the original data, thereby
reconstructing the dataset. Since the mesh in the injector geometry is unstructured
(cf. Sec. 7.3.1.3), a fully-connected autoencoder architecture2 (cf. Sec. 2.2.5.1) is
employed in the current chapter rather than a convolutional autoencoder.

As a reminder, the nonlinearity of the activation functions has been noted as a
key attribute of autoencoders in extracting nonlinear features with low reconstruc-
tion errors (cf. Secs. 2.2.5 and 2.2.7). In this study, ReLU is applied as the activation
function to create the nonlinear mappings between the inputs and outputs. Mathe-
matically, the forward propagation procedure in the autoencoder is given by Eq. (2.9).

The autoencoder is trained using the Adam optimizer (cf. Algorithm 1) in order
to minimize JAE, the loss function. JAE is defined as the regularized MSE between

2Note that in this chapter we will mostly refer to FCAE as AE.

158

Figure 7.4: Schematic representation of the autoencoder.

the input and the output:

JAE(θ) = ||q − q̃||MSE + λreg

∑
k

||W (k)
AE ||

2
F , (7.14)

where q ∈ Rnin and q̃ ∈ Rnin denote the encoder input and decoder output, respec-
tively, with nin being the dimension of the input layer. Here, nin = 4, 214 corresponds
to the number of grid points in the subdomain of interest, as shown in Fig. 7.2. Also,
θ = {W (1)

AE , b
(1)
AE,W

(2)
AE , b

(2)
AE, . . . } contains all of the parameters of the autoencoder

(weight matrices and bias vectors). λreg is the L2-regularization hyperparameter,
which is used to prevent overfitting.

7.3.2.2 Regression Model

A regressor, R, is constructed to learn the relationship between the set of selected
design parameters, p, and the temporal evolution of low-dimensional flowfields gen-
erated by the autoencoder, z(t), as schematically represented in Fig. 7.5. In the
current study, p consists of three components (i.e., np = 3), namely needle lift, liquid
fuel dynamic viscosity, and amount of non-condensable gas in the fuel. Formally, the
regressor R can be written as:

R : (p, t) ∈ Rnp × R 7→ z ∈ Rnlatent . (7.15)

In this study, R is modeled as a DFNN (cf. Sec. 2.2.3). The regularized MSE is used
as the loss function, JR, to train the model, i.e.,

JR(ϕ) = ||ztrue − zpred||MSE + ζreg
∑
k

||W (k)
R ||

2
F , (7.16)

where ztrue is the true latent vector, zpred is the latent vector predicted by R, and
ϕ = {W (1)

R , b
(1)
R ,W

(2)
R , b

(2)
R , . . . } contains the parameters of the regression model. ζreg

is the L2-regularization hyperparameter.

159

Figure 7.5: Schematic representation of the regression model.

7.3.3 Results and Discussion

7.3.3.1 Mesh Analysis

Four minimum mesh sizes inside the orifice (20, 10, 5, and 3 µm) were evaluated
on one of the CFD cases, which is characterized by a needle lift approximately half
the way between maximum and minimum lifts. To this purpose, Case 13 was selected
to evaluate the influence of minimum grid size on the CFD predictions. Several grid
resolutions were evaluated by imposing different levels of refinement3 on base mesh
sizes of 640, 320, 160, and 96 µm, respectively. The total cell count is about 0.3, 1.3,
6.5 and 22.4 million, respectively. Figure 7.6 shows an example of the meshes obtained
with two strategies, using 10 µm (left) and 5 µm (right) as the minimum mesh size
inside the orifice. Figure 7.7 reports the predicted mass flow rates. The results
indicate that a minimum mesh size of 5 µm was sufficient to ensure reliable predictions
of mass flow rate. Similar results also hold for other simulated design points that are
not shown here for the sake of brevity. In consideration of computational accuracy
and efficiency, the intermediate grid with a minimum mesh size of 5 µm was thus
selected for the remainder of this study.

7.3.3.2 Internal Flow Dynamics and Sensitivity to the Input Parameters

In this section, the flow structures and cavitation characteristics of the A-M1
injector are presented. Also, the effects of selected design parameters, namely needle

3The CFD code CONVERGE [98] uses the input parameter grid_scale (which denotes the level
of refinement) to change the base grid according to the following formula: scaled_grid =
base_grid/2grid_scale. For example, for a base grid of 320 µm and a refinement level of 5 at the
boundaries of the wall of the orifice body, the corresponding scaled grid is 10 µm, and so forth.

160

(a) (b)

Figure 7.6: An example of mesh generated with two strategies on Case 13.

Figure 7.7: Predicted mass flow rates for different mesh strategies on Case 13.

lift, liquid fuel dynamic viscosity, and level of non-condensable gas, on the predicted
flowfield at the injector exit is assessed. This will be done using results from the
baseline simulation and selected cases from the DoE study S36.

Figure 7.8 shows the predicted mass flow rates from the baseline simulation and
selected cases from the DoE study S36; results from Cases 0, 5, 10, 15, 20, 25 and
30 are reported here. A sharp increase in the predicted mass flow rate is observed
in all of the cases during the initial stage. This is likely due to the initialization of
the sac and orifice volumes, which results in a higher prediction of fuel mass delivery
during the early injection transient compared to the quasi-steady-state value, which
is reached after approximately 15 µs. This behavior is consistent with previous work
on a similar injector [221]. For the baseline simulation, the mass flow rate is about
5.76 g/s whereas for the other cases with higher needle lifts, the mass flow rate is
larger at approximately 6.5-7.0 g/s.

The flow profile at the injector exit during the quasi-steady state period (20−40 µs)
is then characterized. Figure 7.9(a) shows the instantaneous flow streamlines and the
total gas volume fraction field inside the orifice, as well as the composition of the gas
phase at the exit of the orifice for Case 0 at t = 25 µs. The streamlines, colored by
velocity magnitude, highlight the acceleration of the flow from the sac volume into
the orifice. Due to losses associated with the area constriction at the orifice inlet, the
local pressure decreases, as can be seen from the axial distribution along the bottom

161

Figure 7.8: Predicted mass flow rates from baseline simulation (i.e., Case 0) and
selected cases from the DoE study S36. The needle lift for each case is also indicated.

of the orifice in Fig. 7.9(b). When local pressure values lower than the saturation
pressure of the fuel (psat = 133.3 Pa) are established, fuel vapor generation due to
cavitation is predicted. Pressure recovery is then observed toward the exit of the
orifice where the local pressure matches the ambient one (pamb = 20 bar). For this
case, the gas-phase composition is predicted to be composed of both fuel vapor and
non-condensable gas (N2) at the orifice exit.

Figure 7.10 shows the same analysis as Fig. 7.9 but for Case 13, which is character-
ized by a larger needle lift (152.034 µm), higher fuel viscosity (µF = 1.324× 10−3 N-
s/m2) and higher concentration of non-condensable gas (YN2 = 3.729× 10−4). Com-
pared to the Case 0 predictions, the flow velocities within the orifice from Case 13
are found to be larger because of the higher needle lift. Additionally, the gas phase
structure at the orifice exit in Case 13 is mostly composed of non-condensable gas.
This phenomenon, commonly referred to as pseudo-cavitation [230, 231], is due to
the local expansion of non-condensable gas. This is supported by Fig. 7.10(b) which
shows that the local pressure at the bottom of the orifice exceeds the fuel satura-
tion pressure along most of the orifice length. The relative decrease in cavitation
formation with increased fuel viscosity and non-condensable gas concentration are
consistent with previous findings from the literature [222, 232, 230]. In general, in-
creased liquid viscosity causes a reduction of the magnitude of the velocity gradients
near the wall, which results in lower local viscous losses and more contained pressure
drops, therefore resulting in reduced cavitation intensity. Additionally, although in-
creased levels of non-condensable gas did not sensibly change the predicted total void
fraction distribution (i.e., the sum of fuel vapor and N2), Battistoni et al. [230] found
that increased non-condensable gas concentrations tend to suppress cavitation and
formation of fuel vapor due to the competing effect associated with the expansion of
these two species.

Figure 7.11 shows the composition of the gas phase at the exit of the orifice at
t = 25 µs for selected cases from the DoE study S36. In particular, the total gas
volume fraction distribution is decomposed into the contributions from fuel vapor,

162

(a) (b)

Figure 7.9: (a) 3D visualization of total gas volume fraction field and streamlines of
velocity magnitude inside the orifice (top). Also shown is the composition of the gas
phase at the exit of the orifice (bottom); (b) Pressure and axial velocity distributions
along the axial direction at the bottom of the orifice. All results shown here are
obtained at t = 25 µs from Case 0.

(a) (b)

Figure 7.10: (a) 3D visualization of total gas volume fraction field and streamlines of
velocity magnitude inside the orifice (top). Also shown is the composition of the gas
phase at the exit of the orifice (bottom); (b) Pressure and axial velocity distributions
along the axial direction at the bottom of the orifice. All results shown here are
obtained at t = 25 µs from Case 13.

163

non-condensable gas, and ambient gas to differentiate cavitation from the expansion
of non-condensable gas. For all of the cases, no ambient gas is observed at the
orifice exit plane at this time instant, indicating that gas ingestion is not predicted.
Asymmetric flow features caused by the sharp inlet radius of curvature [221, 233]
as well as differing intensities of cavitation and non-condensable gas expansion are
observed across all of the cases. For example, Case 2, which represents a de-gassed
condition, features the highest fuel vapor volume fraction. However, because all design
parameters are simultaneously varied across all of the cases shown in Fig. 7.11, it is
challenging to draw definitive conclusions about the relative influence of each design
parameter on the orifice exit flowfield.

To characterize the impact of the selected design parameters on the flowfield char-
acteristics shown in Fig. 7.11, variance-based sensitivity analysis [234] was performed.
In this analysis, the instantaneous total gas-phase volume fraction and fuel-vapor vol-
ume fraction values were calculated at the orifice exit plane for each CFD case and
selected as the response metrics. The total effect indices were then calculated, which
quantify the effect of a given design parameter, and its interactions with other design
parameters, on the variance observed in the response. A comparison of the total
effect indices is illustrated in Fig. 7.12. The sensitivity analysis reveals that the fuel
vapor volume fraction at the orifice exit is most highly influenced by the level of
non-condensable gas in the fuel, where higher levels of non-condensable gas result in
decreased levels of fuel vapor volume. In contrast, the needle lift position was found
to be the dominant parameter for the total vapor volume fraction, where lower needle
lifts resulted in higher levels of vapor generation that persisted until the orifice exit.
For both fuel vapor and total gas volume fractions, the liquid fuel dynamic viscosity
was found to be the least influential parameter. Although previous work in the lit-
erature has noted a strong negative correlation between liquid fuel dynamic viscosity
and cavitation [222, 232, 235], it is important to note that these studies focused on
cavitation inception. In contrast, the findings from the sensitivity analysis highlight
that the persistence of gas-phase structures in the orifice is most strongly related to
level of non-condensable gas in the fuel and needle lift position.

164

Figure 7.11: Instantaneous contours of the composition of the gas phase at the exit
of the orifice at t = 25 µs for Cases 2, 5, 10, 13, 15, 20, 24, 25, 29, 30.

165

Figure 7.12: The sensitivities of total gas volume fraction and fuel vapor volume frac-
tion at the orifice exit plane to changes in the three design parameters are quantified
using the total sensitivity index.

7.3.3.3 Comparison between POD and Autoencoders

As previously mentioned, ROM is a critical step in developing accurate and effi-
cient emulators for datasets featuring high dimensionality. Using the predicted flow-
fields across the evaluated design space, two ROM techniques, namely POD and au-
toencoders, are evaluated and compared in their ability to accurately and efficiently
represent the flowfield in a reduced dimensional space. These findings are discussed
in this section. We note that, here, the analysis is performed using the cases from
the DoE study S36. We also note that, exclusively in this section, the autoencoders
are implemented using TensorFlow 1.14 (cf. Sec. 2.3.9).

POD Results

The POD characteristics are first investigated to assess the ability of the POD modes
to represent the original dataset, as well as to identify possible limitations of this
technique. As previously mentioned, the subdomain of interest for ROM is located
near the exit of the orifice (see Fig. 7.2). Figure 7.13 shows the percentage of the
captured energy obtained from POD for Cases 5, 10, 15, 20, 25 and 30. As previously
noted, the captured modal energy from POD was calculated using Eq. (A.13). While,
by definition, the whole energy is captured when the complete set of modes (81 here)
is included, the growth rates of the energy distributions are found to be different
among the cases. To quantify these differences, the number of POD modes required
to recover 99% of the modal energy is identified; this variable is denoted by nr,99%.
Table 7.5 shows that nr,99% is different among all of the cases. For instance, Case 5
requires 47 modes to recover 99% of the energy while Case 30 requires 31 modes. This
suggests the occurrence of different flow dynamics among all of the cases. In general,
it is observed that cases with more “energetic” flows and finer scale features require
a higher number of modes for accurate reconstruction. For example, Case 5 exhibits
finer flow structures compared to the other cases (see Fig. 7.11) and requires the

166

largest number of modes to capture 99% of the modal energy, as noted in Table 7.5.
Additionally, it is observed that conditions characterized by similar predicted flow
structures at the injector exit (e.g., Cases 10 and 15) require similar nr,99% values.

Figure 7.13: Variation of the captured modal energy, in percentage, as a function of
the number of POD modes for the total gas volume fraction field. Results are shown
for selected cases from the DoE study S36.

The ability of POD to reproduce the original CFD solution is visualized in Fig. 7.14,
where the POD-based reconstructions of total gas volume fraction fields for different
numbers of modes are shown at t = 25 µs for Cases 10 and 15. In each case, results
using between 1-8 modes and nr,99% modes are reported. It is important to note that
nr,99% is equal to 42 in Case 10 and to 40 in Case 15. In general, the accuracy of the
POD reconstruction is observed to increase with the number of retained modes. In
addition, the relatively large number of modes needed to capture the flow structures
in detail is an indication of the slow convergence of POD representations toward the
actual solution. This result highlights the challenge of applying POD as an efficient
ROM technique for nonlinear problems.

Table 7.5: Number of POD modes, nr,99%, required to capture 99% of the modal
energy for selected cases from the DoE study S36.

Case nr,99%

5 47
10 42
15 40
20 37
25 39
30 31

Custom-AE Results

Next, the ability of autoencoders to perform efficient model reduction is evaluated
and compared against that of POD. The training dataset was obtained by extracting

167

(a) (b)

Figure 7.14: POD-based reconstruction of total gas volume fraction field for different
numbers of modes. Results are shown at t = 25 µs from: (a) Case 10, (b) Case 15.

the total gas volume fraction fields at the exit of the orifice (see Fig. 7.2). Similar
to the methodology for POD, a total of 81 snapshots was extracted from each CFD
simulation, sampled at regular time intervals between t = 20 and 40 µs of simulated
injection time. Each snapshot was flattened to a one-dimensional vector of size nin

(here, nin = 4, 214 corresponds to the number of grid points at the orifice exit)
and provided as input to the autoencoder. It is worth mentioning that the design
parameters were not explicitly provided as input to the model. Each weight matrix
was randomly initialized using the He normal initializer (cf. Sec. 2.3.5.2). Each bias
vector was initialized to 0. The autoencoder was trained on an NVIDIA Tesla K80
GPU (cf. Sec. 2.3.7). The optimized network architecture and hyperparameters were
obtained by means of manual tuning, and the autoencoder with the minimum error
was selected as the final model. In this part of the study, two autoencoder-based
ROMs were developed. A customized autoencoder (shortened to “Custom-AE” for the
sake of brevity) was formulated for each CFD case by training on the 81 snapshots
from the simulated injection period. The training of each Custom-AE results in
specialized set of autoencoder weights and biases. The results from the Custom-AE
allow for direct comparison with POD for each case. For the second ROM, a universal
autoencoder (shortened to “Univ-AE”) was formulated by training the model with
snapshots from various CFD cases throughout the three-dimensional design space.
The merits of the two autoencoder-based ROMs will be discussed hereafter.

For each Custom-AE, 81 snapshots from the simulated injection period were used

168

as training data, and the neural network that yielded the lowest training loss while
balancing the size of the latent space vector was selected as the final model. Through
manual exploration, the selected autoencoder configuration contains 8 hidden layers
(4 encoder layers and 4 decoder layers) with the following hyperparameters: a batch
size of 10, a learning rate of 1× 10−3 for the Adam optimizer, and a latent vector of
size 2, yielding a compression ratio (i.e., ratio of the size of the input layer to that
of the code) of 2,106.5. L2 regularization was not used in this case. The number of
neurons per hidden layer in the encoder and decoder is ℋℋℋenc =

[
200 50 25 10

]T
and ℋℋℋdec =

[
10 25 50 200

]T , respectively, where ℋj is the number of neurons
in the jth hidden layer. This results in a total of 1,713,025 trainable parameters.
The hyperparameters used for this configuration are summarized in Table 7.6. The
variation of MSE loss with the number of iterations4 is shown in Fig. 7.15, where
representative results are reported using the Custom-AEs for Cases 5 and 30. MSE
values of 6.830 × 10−4 and 4.805 × 10−4 are achieved for the reconstructed fields for
Cases 5 and 30, respectively. The low MSE values indicate that the Custom-AEs
accurately represent the predicted flowfield at the exit of the injector orifice. The
training time of each of the Custom-AEs on the GPU is about 3 min.

Table 7.6: Hyperparameters used for the Custom-AEs.

Parameter Value
Number of epochs 4,000

Batch size 10
Number of hidden layers 8

ℋℋℋenc
[
200 50 25 10

]T
ℋℋℋdec

[
10 25 50 200

]T
nlatent 2

Optimizer for network Adam
Learning rate 1× 10−3

L2 regularization 0
Activation function ReLU

To further illustrate the performance of the Custom-AEs, the reconstructed total
gas volume fraction fields are compared with those from POD. For POD, the recon-
structed field is shown by using 2 modes and 8 modes. As shown in Fig. 7.16 for
Case 5 at t = 25 µs, the reconstructed fields from both ROM methods show reason-
able agreement with the CFD solution. The L2 error is also reported for each ROM
technique to visualize the local errors between the reconstructed and CFD-predicted
flowfields. Overall, the flowfield reconstructed by the Custom-AE yielded the lowest
L2 errors and provided a more accurate reconstruction than POD. Similar results
were found for the other snapshots as well. To assess the overall behavior, Table 7.7

4Note the difference between the number of epochs and iterations. An epoch is one forward pass
and one backward pass of all of the training examples whereas each iteration is on one batch. As
an example, if 1,000 training examples are considered, and the batch size is 50, then it will take 20
iterations to complete 1 epoch.

169

(a) (b)

Figure 7.15: Variation of the training MSE loss with the number of iterations for
Custom-AE. Results are shown for: (a) Case 5, and (b) Case 30.

reports the MSE values for selected cases, calculated across the 81 snapshots for each
CFD case. It is clear from this table that the Custom-AE approach provides bet-
ter reconstruction accuracy than POD with 2 modes. Furthermore, despite a latent
space of size 2, the Custom-AE outperforms the POD with 8 modes as well. This
comparison highlights the merit of using well-trained autoencoders as a ROM tech-
nique. However, we note that to choose between ROMs to apply on future data, we
should collect more snapshots and compare the accuracy of the ROMs on this held
out data that was not used in the modeling process. Therefore, next, we split the data
into training, validation, and test datasets using a variant of the hold-out method (cf.
Sec. 2.3.4.1).

Figure 7.16: Reconstruction of total gas volume fraction field (top) and distribution of
L2-norm error (bottom) in POD and Custom-AE at t = 25 µs for Case 5. The MSEs
at this time instant for 2-mode POD, 8-mode POD and Custom-AE are 4.890×10−3,
3.092× 10−3 and 5.688× 10−5, respectively.

170

Table 7.7: MSE values for POD, Custom-AE and Univ-AE. Results are shown over
the 81 snapshots from Cases 5, 15 and 30. For POD, results are shown using 2 modes
and 8 modes.

Case POD (nr = 2) POD (nr = 8) Custom-AE Univ-AE
5 3.719× 10−3 1.705× 10−3 6.830× 10−4 1.996× 10−3

15 3.706× 10−3 1.280× 10−3 4.603× 10−4 1.689× 10−3

30 3.357× 10−3 9.324× 10−4 4.805× 10−4 1.266× 10−3

Univ-AE Results

The previous paragraph demonstrated the ability of Custom-AEs to more accurately
compress the instantaneous and ensemble-averaged flowfields than POD. However,
similar to POD, the Custom-AE was applied to each CFD case separately, which
resulted in different reconstruction functions (i.e., decoder weightings) across the
selected design parameters. In the context of emulation, where changes in design
parameters are related to a predicted flowfield, the optimal ROM method is one that
provides a consistent or universal reconstruction function throughout the design space.
Therefore, the Univ-AE was developed to extend the applicability of autoencoders as
an efficient ROM within an emulation framework.

For the Univ-AE, all of the snapshots from Cases 1-30 and 31a–36a were used to
formulate and test the autoencoder. The snapshots were divided into 4 sets, as shown
in Table E.4. First, the snapshots from Cases 1-30 were collected and randomly split
into three separate groups, where 70% of the snapshots was used for training, 20%
for validation, and 10% for testing. These groups are referred to as training set,
validation set, and test set T1, respectively. Then, a fourth group was considered,
referred to as test set T2, using all of the snapshots from Cases 31a-36a.

L2 regularization (cf. Sec. 2.3.3.1) and an early stopping criterion (cf. Sec. 2.3.3.2)
were employed to prevent overfitting. The early stopping criterion was set at 5,000 it-
erations while the maximum number of epochs was set to 2,200. This means that if
training exceeded 5,000 iterations without an improvement in the accuracy, the ses-
sion would be terminated, and a different set of hyperparameters would be explored.
The best model which provided the lowest validation loss in the training process was
selected and used for model evaluation.

The selected Univ-AE from the manual search contains 10 hidden layers (5 encoder
layers and 5 decoder layers) with the following hyperparameters: a batch size of 25,
a learning rate of 2× 10−5 for the Adam optimizer, a L2 regularizer of 7× 10−6, and
a latent vector of size 8, yielding a compression ratio of 526.625. The number of neu-
rons per hidden layer in the encoder and decoder is ℋℋℋenc =

[
400 200 100 50 25

]T
and ℋℋℋdec =

[
25 50 100 200 400

]T , respectively, which results in 3,589,071 train-
able parameters. The dataset sizes and hyperparameters used for the Univ-AE are
summarized in Tables E.4 and 7.8, respectively. The variation of MSE loss with the
number of iterations is shown in Fig. 7.17. The curve shows good convergence and

171

no evidence of overfitting is observed. MSE values of 1.3 × 10−3 and 1.528 × 10−3

are achieved for the reconstructed fields on training data and validation data, respec-
tively. The training time of the Univ-AE on the GPU is about 20 min, i.e., roughly
7 times slower than each of the Custom-AEs. This is expected since the Univ-AE
consists of a larger neural network and contains more trainable parameters than the
customized autoencoders. However, this representative time is almost two orders of
magnitude smaller than the time required to generate the training data using the
CFD simulations.

Table 7.8: Hyperparameters used for the Univ-AE.

Parameter Value
Number of epochs 2,200

Batch size 25
Number of hidden layers 10

ℋℋℋenc
[
400 200 100 50 25

]T
ℋℋℋdec

[
25 50 100 200 400

]T
nlatent 8

Optimizer for network Adam
Learning rate 2× 10−5

L2 regularization 7× 10−6

Activation function ReLU

Figure 7.17: Variation of the MSE loss with the number of iterations for Univ-AE. The
non-regularized training error (Train error), non-regularized validation error (Valid
error), regularized training error (Reg train error) and regularized validation error
(Reg valid error) are indicated.

A first validation of the Univ-AE is performed through quantitative assessment
on the testing set T1, which contains snapshots that the autoencoder has not seen
previously. A low MSE value of 1.579 × 10−3 is observed on this dataset, indicating
that the autoencoder performs in the desired manner and doesn’t overfit. Addition-
ally, this result indicates that the Univ-AE performs well in terms of interpolation
and generalizability on new snapshots. To better address the generalizability of the
model and show that flowfields at unknown operating points can still be reproduced

172

by Univ-AE, the autoencoder is then assessed on the testing set T2, containing snap-
shots from new values of the design parameters not explored during training. Low
MSE values (i.e., smaller than 2.6× 10−3) are observed on the cases from the second
test set, as shown in Table 7.9, indicating that the model can also generalize well to
new operating conditions.

Table 7.9: MSE values for Univ-AE on the testing set T2. Results are shown over the
81 snapshots from Cases 31a-36a.

Case Univ-AE
31a 9.020× 10−4

32a 2.506× 10−3

33a 8.840× 10−4

34a 1.364× 10−3

35a 1.537× 10−3

36a 1.357× 10−3

Figures 7.18 and 7.19 show the temporal evolution of the flowfields computed by
CFD and those reconstructed by the Univ-AE for Cases 31a and 32a, respectively. In
these figures, instantaneous distributions of the total void fraction are shown between
t = 25 and 40 µs. It is clearly observed that the reconstructed flowfields are in good
agreement with the original data at all of the time steps.

Figure 7.18: Temporal evolution of total gas volume fraction field for Case 31a from
test set T2. Flowfields computed by CFD (referred to as “Truth") and those recon-
structed by Univ-AE are compared. The MSE value and distribution of L2-norm
error are also indicated for each snapshot.

173

Figure 7.19: Temporal evolution of total gas volume fraction field for Case 32a from
test set T2. Flowfields computed by CFD (referred to as “Truth") and those recon-
structed by Univ-AE are compared. The MSE value and distribution of L2-norm
error are also indicated for each snapshot.

For completeness, Table 7.7 reports a comparison of the accuracy of the Univ-AE
method relative to POD and Custom-AE. Overall, the reconstructed flowfields by the
Univ-AE are on par with those from 8-mode POD in terms of accuracy. Although the
Univ-AE framework yields slightly higher MSE values than POD, our experience to
date has shown that training with more data will improve the accuracy of the Univ-
AE. If it is determined that a higher level of accuracy is needed from the Univ-AE
to produce adequate emulation results, then future work will focus on this additional
training campaign. Additionally, although the manual search process yielded a high-
performing ROM, as indicated by the low MSE values, it is possible that the optimal
architecture and set of hyperparameters has not yet been found. Through the use
of automated tools, such as DeepHyper [70], a more comprehensive search can be
conducted to further optimize the Univ-AE.

In summary, the use of an Univ-AE enables accurate nonlinear data reduction for
the CFD-predicted multiphase flow development within a diesel-relevant fuel injector,
while simultaneously providing a universal reconstruction method across the entire
design space of interest. The compressed representations obtained by the Univ-AE
affords the opportunity to systematically build an efficient emulator model to relate
changes in design parameters to the resultant injector exit flow conditions, and thus
the Univ-AE is selected hereafter as the model for dimensionality reduction.

174

7.3.3.4 Compressed Representations

In the previous section, a comparison between POD and autoencoders on the
void fraction field revealed that the Univ-AE model is an accurate and efficient ROM
technique that is well suited for emulation. In this section, the Univ-AE model is
applied to all the field variables of interest, namely the three velocity components,
u, v and w, in addition to the total void fraction α. We note that in this section
and remaining sections of this chapter, the process of model building and evaluation
is performed using the DoE study S60. Also, the neural networks are implemented
using the Keras API of TensorFlow 2.45 (cf. Sec.2.3.9), and the Univ-AE model will
be referred to as AE for short.

The snapshots from the 60 cases in the DoE study S60 were divided into three
sets using the hold-out method (cf. Sec. 2.3.4.1), as shown in Table E.2. First, out of
the 60 cases, 5 cases (Cases 32, 44, 51, 52, 59) were randomly selected and set aside for
testing to ensure that the emulator, including its constituents (i.e. the autoencoder
and regression model), generalize well to unseen data. The remaining data (i.e., 55
cases) were used for training and validation of the neural networks, with a random
split of 80%-20%.

A separate autoencoder is designed for each field variable using Algorithm 5. The
variables, except for α, are normalized in the range 0-1 (cf. Sec. 2.3.5.1). The net-
work architecture and hyperparameters6 are tuned manually following the methodol-
ogy in Sec. 2.3.5.3, and the selected hyperparameters are summarized in Table 7.10.
Each autoencoder contains 10 hidden layers (5 encoder layers and 5 decoder layers)
with the following hyperparameters: a batch size of 25, a learning rate of 1 × 10−4

for the Adam optimizer, an L2 regularization factor of 7 × 10−6, and a latent vec-
tor of size 8. The number of neurons per hidden layer in the encoder and decoder
is ℋℋℋenc =

[
400 200 100 50 25

]T and ℋℋℋdec =
[
25 50 100 200 400

]T , respec-
tively. Table 7.11 reports the MSE values for each autoencoder. Low MSE values are
observed on the validation and test datasets, which indicate that the autoencoders
perform in the desired manner and do not overfit.

The ability of the autoencoders to reconstruct the original CFD solution is vi-
sualized in Fig. 7.20, where the AE-based reconstructions of instantaneous α, u, v,
and w fields are shown for Case 52, which belongs to the test set. Similar results are
also obtained for the other test cases (not shown here). Overall, the reconstructed
fields of all variables are in good agreement with the original data, although some
noticeable differences are observed for the v-velocity component field. One possible
explanation is that this flow variable exhibits higher spatial variation in comparison

5We note that by the time this phase of the project started, ALCF had upgraded Tensorflow
to version 2.x on their clusters and the previous versions were no longer supported; that is why we
switched to this version of TensorFlow (and Keras) so that we can continue training our neural
neural networks on the GPUs.

6The architecture of the autoencoders in this section was kept the same as that of the Univ-
AE model in Sec. 7.3.3.3, however, some of the hyparameters such as the learning rate and L2

regularization were modified to better learn the data from the DoE table S60.

175

to the other quantities studied in this work, which would present a challenge for the
same architecture to be used for each field variable.

(a) α [-] (b) u [m/s] (c) v [m/s] (d) w [m/s]

Figure 7.20: Instantaneous snapshots of α, u, v, and w for Case 52 at t = 20.25 µs.
Flowfields computed by CFD (referred to as “Truth") and those reconstructed by AE
are compared. The distribution of L2-norm error is also indicated for each snapshot.

7.3.3.5 Emulated Flowfields

The latent space obtained by the AEs on the training and validation data are used

Table 7.10: Hyperparameters used for the autoencoders.

Parameter Value
Number of epochs 2,200

Batch size 25
Number of hidden layers 10

ℋℋℋenc
[
400 200 100 50 25

]T
ℋℋℋdec

[
25 50 100 200 400

]T
nlatent 8

Optimizer for network Adam
Learning rate 1× 10−4

L2 regularization 7× 10−6

Activation function ReLU

176

Table 7.11: MSE values for each autoencoder. Results are shown over the snapshots
from the training, validation and test sets.

Data set α u v w
Training set 1.342e-03 4.125e-03 3.989e-03 3.319e-03

Validation set 1.475e-03 4.716e-03 4.593e-03 3.752e-03
Test set 1.498e-03 4.682e-03 4.703e-03 3.713e-03

to train the regressors. For each field variable, a regressor with four hidden layers is
designed using Algorithm 6 to learn the mapping between the design parameters, p,
and the sequence of latent variables, z(t). The input and output data are standardized
to stabilize the learning process (cf. Sec. 2.3.5.1). The detailed architecture of the four
regressors is given in Table 7.12. The number of epochs is set to 2,000, the batch size
to 25, the learning rate for the Adam optimizer to 1×10−3, and the L2 regularization
factor to 8 × 10−4. A comparison of the MSE losses on training, validation, and
test sets is reported in Table 7.13 for each regressor. Evaluation of the MSE losses
indicates satisfactory training performance without evidence of overfitting.

Table 7.12: Hyperparameters used for the regressors.

Parameter Value
Number of epochs 2,000

Batch size 25
Number of hidden layers 4

ℋℋℋ [9, 32, 16, 9]
Optimizer for network Adam

Learning rate 1× 10−3

L2 regularization 8× 10−4

Activation function ReLU

Table 7.13: MSE values for each regressor. Results are shown over the time series
from the training, validation, and test sets.

Data set α u v w
Training set 3.483e-01 2.139e-01 4.828e-01 1.507e-01

Validation set 3.748e-01 2.518e-01 4.934e-01 1.581e-01
Test set 3.471e-01 2.500e-01 4.981e-01 1.791e-01

For a new design parameter p′, the trained regressors are used to predict the
corresponding time sequence of latent vectors, i.e., zpred(t;p

′) = R(p′, t). This
sequence is then passed to the trained decoders to obtain the emulated flowfield
qpred(t;p

′) = Fdec(zpred(t;p
′)) (cf. Algorithm 7). The temporal evolution of the com-

ponents of the latent vectors is shown in solid lines in Figs. 7.21 and 7.22 for Cases 52

177

and 59, respectively, which belong to the test set and were not seen during the train-
ing of the neural networks. For the latent space representing the total void fraction
and the v-velocity component, temporal fluctuations in the components are observed
about a fixed average, whereas the latent space in the u- and w-velocity components
exhibit temporal fluctuations about a moving average. The time-series predictions for
the trained regressors are shown in dashed lines in Figs. 7.21 and 7.22. The regressors
are observed to predict the trend and order of the latent space components accurately,
indicating that the mean behavior has been learned. However, the magnitude of the
temporal fluctuations is not well captured, suggesting that further effort is needed
to improve these predictions. Some of the ideas under consideration for future work
are the use of more data for training, and the use of more advanced architectures,
like LSTM (cf. Sec. 2.2.6), which have shown good success in capturing temporal
dependencies for modeling sequential data.

Figure 7.21: Temporal evolution of latent variables for Case 52. Latent variables com-
puted by the autoencoder (solid lines) and those predicted by the regressor (dashed
lines) are compared.

Figures 7.23 and 7.24 show time-averaged snapshots of the simulated and emulated
flowfields for Cases 52 and 59, respectively. In Case 52, a three-pronged structure
in α is predicted along the bottom of the orifice exit, which has been found to be
caused by the local expansion of non-condensable gas and its interaction with the flow

178

Figure 7.22: Temporal evolution of latent variables for Case 59. Latent variables com-
puted by the autoencoder (solid lines) and those predicted by the regressor (dashed
lines) are compared.

vortices [211]. On the other hand, in Case 59, a dome-like structure in α is predicted
along the bottom of the orifice exit. These characteristics are well captured by the
emulator. Good agreement is also observed between the simulated and emulated
predictions for the other field variables.

For the sake of completeness, the relative errors ϵrel for the time-averaged emulated
fields are shown in Table 7.14. Overall, the emulation errors are less than 2% for the u
and w fields, less than 8% for the α field, and less than 27% for the v field. As we will
see in Sec. 7.4.2, despite the relatively large errors obtained for the v field, its effect on
the ensuing spray and combustion simulations seems to be minimal. If higher accuracy
emulators are needed, a more exhaustive network architecture and hyperparameter
search could be conducted in the future using automated optimization frameworks,
such as DeepHyper.

7.3.3.6 Computational Cost

Table 7.15 summarizes the computational time required for each step of the emula-
tion process, with timing performed on a Linux laptop that has the following specifica-
tions: Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz7. The preprocessing step, which

7Note that in Table 2.2 in Sec. 2.3.7 the CPU-time was assessed using an Intel Core i7-10700T

179

(a) α [-] (b) u [m/s] (c) v [m/s] (d) w [m/s]

Figure 7.23: Time-averaged contours of α, u, v and w from CFD and emulator for
Case 52. The distribution of L2-norm error is also indicated for each field variable.

(a) α [-] (b) u [m/s] (c) v [m/s] (d) w [m/s]

Figure 7.24: Time-averaged contours of α, u, v and w from CFD and emulator for
Case 59. The distribution of L2-norm error is also indicated for each field variable.

CPU @ 2.00 GHz, while here (i.e., in Table 7.15) the CPU-time was computed using an Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz; that is why there is a difference in the reported autoencoder
training time for the A-M1 injector between the two tables (7,412 CPU-secs vs. 1 CPU-hour, or
3,600 CPU-secs.)

180

Table 7.14: Relative errors for the time-averaged emulated fields for test cases.

Test Case α u v w
Case 32 0.075 0.011 0.266 0.009
Case 44 0.039 0.011 0.210 0.009
Case 51 0.049 0.018 0.216 0.013
Case 52 0.069 0.013 0.177 0.019
Case 59 0.053 0.011 0.210 0.008

includes file conversion and extraction of the snapshots from CFD, requires about 165
CPU-hours (3 hours for each of the 55 cases used for training/validation). For each
of the four field variables (i.e., α, u, v and w), one autoencoder and one regressor are
trained, requiring 1 CPU-hour and 0.0375 CPU-hours, respectively. Hence, in total,
the cost of the training step is 4.15 CPU-hours. After the training is completed, the
inference time is approximately 8 seconds (2 seconds per variable, and we have four
variables) for the emulator to predict the flowfield for a new design point. In compar-
ison to CFD simulations, which on average take 6,000 CPU-hours per case, an overall
speedup of 35 times is achieved in predicting the injection conditions using the emula-
tion framework. We note that the speedup is estimated to be 2.7 million times if only
the inference time is considered. In the current implementation, the data preprocess-
ing step takes up a substantial portion of the total emulation cost. By streamlining
this process, it is estimated that the preprocessing cost can be reduced to a total of
one hour for all 55 cases. With this in mind, the expected speedup (including time
for data preprocessing and model training) is estimated to be 1,165 times faster than
running a new CFD case. This clearly shows the transformational potential of the
emulation framework to enable efficient exploration of the design space.

Table 7.15: Computational time in CPU-time for each step of the emulation frame-
work. Results are also indicated in GPU-time for the autoencoder training step.

Step Time
Preprocessing 165 CPU-hours.

Autoencoder training 4× 1 CPU-hours
(4× 35.6 GPU-mins)

Regressor training 4× 0.0375 CPU-hours
Flow prediction 4× 2 CPU-secs.

181

7.4 One-Way Coupled Spray Simulation

The previous section demonstrated that overall the emulator was able to suc-
cessfully predict the injection conditions at the orifice exit of the injector for design
points that were unseen during training, despite some flow prediction discrepancies,
particularly in the v-velocity field. In this section, we evaluate the performance of
the emulator and the significance of these discrepancies in the context of the OWC
spray modeling approach. This section is organized as follows. Sec. 7.4.1 describes
the LE framework, including the spray initialization strategy and OWC approach.
The OWC spray simulation results are presented in Sec. 7.4.2.

The material presented here is excerpted and adapted from the following publica-
tion. Only work conducted as part of the present study is included here: [236] S. Mon-
dal, R. Torelli, B. Lusch, P. J. Milan, and G. M. Magnotti, “Accelerating the gener-
ation of static coupling injection maps using a data-driven emulator,” SAE Int. J.
Advances & Curr. Prac. in Mobility, Vol. 3, pp.1408-1424, 2021.

7.4.1 Reacting Spray Modeling Approach

The pressure in the constant-volume cylinder chamber is 20 bar (subcritical con-
dition), and thus the classical situation of jet atomization exists where a well defined
interface separates the injected liquid from the ambient gas (cf. Sec. 4.3.4.1). To
model the spray development process leading to combustion in the chamber, the LE
framework is used (cf. Sec. 4.3.7). A schematic of the computational domain is shown
in Fig. 7.25. The dispersed liquid phase is handled using a Lagrangian approach based
on the blob injection method [237]. Primary and secondary atomization processes
are modeled using the Kelvin-Helmholtz Rayleigh-Taylor spray breakup theory [238],
and evaporation is accounted for using the Frossling correlation [239]. The continuous
gas phase is handled using an Eulerian finite volume approach within the URANS
framework. To achieve turbulence closure, the rapid distortion RNG k-ϵ turbulence
model [238] is used.

The liquid spray is initialized using the OWC approach in CONVERGE [98]. In this
approach, information is obtained from the internal flow simulation, or, alternatively,
from the emulator framework, in the form of spatiotemporal injection maps at the
orifice exit of the injector. The map files include position coordinates, liquid volume
fraction,8 velocity components, turbulence, and temperature information. At a given
cell, parcels are injected only if the liquid volume fraction (LVF) is higher than 0.1 [98].
A constant TKE of 3,000 m2/s2 is assumed for all the OWC simulations following
the work of Nocivelli et al. [204]. The temperature of the injected spray parcels is
almost uniform due to the constant internal energy assumption for the internal flow
simulation. More details on the parcel initialization strategy and OWC approach can
be found in Refs. [98, 236, 204].

8The liquid volume fraction αl is simply equal to αl = 1− α.

182

An unsteady flamelet progress variable (UFPV) approach [240] is employed to
capture autoignition and combustion for a turbulent non-premixed flame. In this
model, the transient flame evolution is represented by mixture fraction and its vari-
ance, reaction progress variable, and scalar dissipation rate, and the flame structure
is obtained from the unsteady flamelet equations. To model the chemical kinetics, a
detailed chemical mechanism for n-dodecane comprised of 2,755 species and 11,117
reactions [241] is used.

Fixed embedding and adaptive mesh refinement (AMR) based on local gradients
in temperature, velocity, and fuel mass fraction is employed with a base grid size of
2 mm to achieve a minimum cell size of 250 µm. This resulted in a peak cell count
of 940,000. An example of the grid refinement strategy for the OWC simulations
is shown in Fig. 7.25. Each case takes about 20 CPU-hours per 10 µs of simulated
time. As an aside, this cost is much lower than that of the internal flow simulation,
which on average takes 1,500 CPU-hours for the same duration of simulated time, as
previously reported in Secs. 7.3.1.3 and 7.3.3.6.

Figure 7.25: Computational domain and grid refinement strategy for OWC spray
simulations (adapted from Refs. [236] and [242]).

7.4.2 Results and Brief Discussion

The ability of the emulator to link the internal flow development with the external
spray is assessed by comparing the reacting spray predictions from simulations using
the CFD-predicted and emulated injection maps. For each of the test cases, two
OWC spray simulations are performed with the same computational setup except for
the source of the injection map files: (1) map files obtained from the internal flow
simulation, and (2) map files obtained from the emulator framework.

A qualitative comparison of the spray and combustion characteristics is shown
in Fig. 7.26 for Case 59. The results show close agreement between the two OWC
simulations; the droplet size distribution as well as the overall flame structure are
very similar. This also shows that the errors in the emulated v-velocity field have
minimal impact on the ensuing spray and combustion characteristics. More detailed

183

results including quantitative comparisons of liquid and vapor penetration, peak heat
release rate, and peak temperature between the two simulations can be found in
Mondal et al. [236]. These quantitative results confirm the observations made from
the qualitative analysis, however, they were not included here for brevity.

Figure 7.26: Comparison between the OWC simulations using the CFD generated
field data (left) and emulated field data (right) for Case 59. Results are shown for
the temperature field at time ASOI = 0.6 ms. Radii of the Lagrangian parcels are
also indicated in each plot (Courtesy of Gina M. Magnotti).

7.5 Summary

The work presented in this chapter had three aims: (1) characterize the internal
flow dynamics in the diesel-relevant A-M1 injector nozzle using high-fidelity simula-
tions, (2) develop a data-driven emulation framework based on deep learning tech-
niques to enable efficient, parametric, multiphase flow predictions in the injector, and
(3) use the emulator-predicted flowfields at the injector exit to initialize external spray
and combustion simulations using a static coupling approach. The main results and
contributions can be summarized as follows:

• Large eddy simulations were employed to study the impact of selected design
parameters, namely needle lift, liquid fuel dynamic viscosity, and level of non-
condensable gas in the fuel, on the distribution and composition of gas-phase
flow structures at the orifice exit of the A-M1 injector. Due to the sharp in-
let radius of curvature, cavitation formation was predicted for all cases. How-
ever, various different gas-phase flow structures were predicted across the design
space. Using variance-based sensitivity analysis, it was found that the fuel va-
por volume fraction at the orifice exit was most strongly influenced by the level
of non-condensable gas in the fuel, whereas the total vapor volume fraction was
most highly influenced by needle lift. Although liquid fuel viscosity is known
to influence cavitation inception, viscosity was found to have the least influence
on the extent of the gas-phase flow structures within the orifice.

• The large amount of data generated via the LESs, which spanned the multi-
dimensional design space of interest, was then used to define a spatiotemporal

184

training database characterizing the flowfield at the exit of the injector. ROMs
were then formulated to allow for design parameters to be related to the CFD-
predicted injector exit conditions. Results using POD were compared with those
of two autoencoder-based methods, a customized autoencoder (“Custom-AE”)
that yielded a different reconstruction function for each CFD case, and a univer-
sal autoencoder (“Univ-AE”) that yielded a single and consistent reconstruction
function across the design space of interest. All ROMs were able to provide
accurate reconstructions of the exit flow conditions, as indicated by MSE values
below 4×10−3. Across all of the cases studied, it was found that POD required
a larger number of modes to accurately reconstruct the total gas-phase volume
distribution relative to the autoencoder-based methods. Additionally, for the
same level of data compression, the Custom-AEs provided better reconstruction
accuracy than POD, while the Univ-AE provided comparable reconstruction ac-
curacy. These findings indicate that the Univ-AE developed in this work is an
accurate and efficient ROM technique that is well suited for use in emulation.

• An emulator framework was then designed to approximate the spatiotemporal
exit conditions of the A-M1 diesel injector over the design space of interest.
The emulator featured autoencoders, for dimensionality reduction, and deep
neural networks for supervised regression of the latent space representations.
The time-averaged flowfields at design points unseen during training were well
predicted by the emulator for most variables (emulation errors less than 2% for
u,w, and less than 8% for α) except for the v-component field (emulation errors
less than 27%). In comparison to using CFD to simulate the next design point
of interest, the emulator showed a speedup of 35 times (or 2.7 million times,
if only inference time is considered) in predicting the injection conditions and
allowing for rapid exploration of the design space.

• Finally, the predicted flowfields from the emulator were used to initialize exter-
nal spray and combustion simulations using the OWC approach. The results
showed very good agreement with baseline spray simulations that employ CFD-
generated injection maps.

Overall, these results are promising and demonstrate that the proposed framework
is an efficient means of improving the efficiency and accuracy of end-to-end simulation
tools for use in engine design and analysis.

List of Main Symbols

Latin Symbols

b bias vector
Ca cavitation number, area contraction coefficient
ftens surface tension force
h mass-specific enthalpy of the mixture
hf saturated liquid enthalpy

185

J loss function
L heat of vaporization
mg total gas mass fraction
ml total liquid mass fraction
n pseudo-surface normal vector
nin size of input layer of autoencoder, number of grid points at

orifice exit
nlatent size of latent space
nt number of temporal snapshots acquired from each CFD case
nr number of retained POD modes
nr,99% number of POD modes required to recover 99% of modal energy
np number of design/physical parameters
p pressure
p vector of design/physical parameters
pc critical pressure
psat saturation pressure
pamb ambient pressure
q autoencoder input, field variable
q̃ autoencoder output, reconstructed field variable
Sn source term for the nth species
Sv source term for the fuel vapor
t physical time
T temperature
u mixture velocity vector
W weight matrix
x spatial coordinate vector
x, y spatial coordinates
Yl mass fraction of the liquid phase
Yn mass fraction of the nth species
YN2 level of non-condensable gas in the fuel
Yv mass fraction of the fuel vapor
Y v equilibrium value for mass fraction of the fuel vapor
z latent vector

Calligraphic Symbols

Fenc, Fdec encoder function, decoder function
ℋℋℋ vector of neurons per layer in all the hidden layers
R regressor
𝒱𝒱𝒱n diffusion velocity vector for the nth species

Greek and Blackboard Bold Symbols

186

ψ non-dimensional pressure ratio
α total void fraction field
α modified total void fraction field
µF dynamic viscosity of liquid fuel
ρ density
ρg gas-phase density
ρl liquid-phase density
τ mixture viscous stress tensor
κ curvature
σ surface tension coefficient
λreg, ζreg control parameter for L2 regularization
θ relaxation time scale
θ,ϕ parameters of autoencoder and regressor
T1, T2 test sets

Subscripts

dec decoder
enc encoder
pred predicted variable
true true variable

Superscripts

sgs subgrid-scale
□̃ reconstructed variable
□′ new value of variable

187

Part III

Conclusions

188

189

CHAPTER 8
SUMMARY AND FUTURE WORK

8.1 Summary of Results

This research effort focused on developing deep-learning (DL)-based surrogate mod-
eling approaches and software to accelerate the simulation and design of complex
thermo-fluid systems. Particular emphasis was placed on high-pressure practical flows
for automotive and aerospace chemical propulsion, as well as on high-dimensional
problems involving multiple input parameters. A detailed list of objectives and tasks
was presented in Sec. 1.2, and a summary of DL models/frameworks developed is
presented in Table 8.1. Some of the highlights of the key results are presented below:

• Accelerating real-fluid simulations with deep learning : a DL methodology was
proposed for fast calculation of real-fluid thermophysical properties in numer-
ical simulation of supercritical flows. The method featured a deep feedfor-
ward neural network with appropriate boundary information, referred to as
DFNN-BC, which can be coupled to a flow solver in a robust manner. The ap-
proach was demonstrated in primitive- and conservative-variable-based solvers
and was evaluated on several problems of increasing complexity, involving up to
seven (major) chemical species. The approach reduced the computation time of
real-fluid properties by a factor of up to 3.7 and the overall simulation time by a
factor of up to 2.3. Memory usage was reduced by up to five orders of magnitude
in comparison with the table look-up method. The results and formulations are
presented in Chapter 5.

• Data-driven surrogate modeling for spatiotemporal emulation with deep learn-
ing : a data-driven DL-based surrogate modeling framework was developed to
enable efficient prediction and parametric estimation of spatiotemporal flow
dynamics. The framework featured autoencoders, for nonlinear dimensionality
reduction, and neural-network-based regressors (R) for supervised learning of
the latent space. Two versions of this framework were proposed, for the two
different autoencoders: (1) FCAE-R, with a fully-connected autoencoder that
can be applied to all types of data (structured/unstructured, regular/irregular),
and (2) CAE-R, with a convolutional autoencoder that can retain spatial co-
herence of the input data to improve the prediction accuracy. With the current
formulation, the latter is suited only for data on structured rectangular domains
with uniform grids. The proposed emulators were evaluated on two canonical,
parametric problems with up to two input parameters and compared with tra-
ditional surrogate modeling approaches. The emulators showed a speedup of up
to 14 times over the full-order model in predicting the flowfields for new input
parameter instances. The results and formulations are presented in Chapter 6.

190

• Data-driven spatiotemporal emulation for rapid engine design with deep learn-
ing : an emulation framework was developed to enable efficient multiphase flow
predictions in fuel injectors with realistic geometries and operating conditions
for rapid exploration of design spaces. In particular, the emulator was de-
signed to approximate the spatiotemporal conditions at the exit of a diesel in-
jector (on unstructured grids) for a wide range of design parameters, operating
conditions, and fuel properties. These parameters were explored by evaluat-
ing changes in three input parameters, namely needle lift, fuel viscosity, and
level of non-condensable gas in the fuel. The emulator featured fully-connected
autoencoders for nonlinear dimensionality reduction and neural-network-based
regressors for supervised regression of the latent space. The time-averaged flow-
fields at new design points were well predicted for most variables. In comparison
to using high-fidelity simulations to simulate the next design point of interest,
the emulator showed a speedup of up to 2.7 million times in predicting the in-
jection conditions. The predicted flowfields from the emulator were also used
to initialize external spray simulations using a static coupling approach, and
showed very good agreement with the baseline simulations. The results and
formulations are presented in Chapter 7.

8.2 Major Contributions

This thesis has made contributions to the fields of scientific deep learning (SciDL),
computational fluid dynamics (CFD), and chemical propulsion. The main contribu-
tions can be grouped into two categories:

Contributions on the database and software side:

• Generation of a unique spatiotemporal database from CFD simulations com-
prising several canonical and engineering problems for DL and reduced-order
model (ROM) development.
Significance and potential impact : the generated database can be used to sup-
port future model upgrade and development. It can also serve as use-cases to
compare between different surrogate modeling strategies in the future.

• Formulation of a coupled DL and physical-simulation framework for accelerat-
ing the execution of high-fidelity CFD simulations on supercomputers.
Significance and potential impact : the proposed DL model can act as an add-on
to allow scientists and engineers to reduce the time-to-results of complex and
expensive simulations without compromising accuracy, and can be extended to
many areas of computationally-intensive science and engineering, such as turbu-
lent combustion (including flamelet modeling), climate science, and molecular
dynamics, to name a few. While the model has been demonstrated herein on
distributed, homogeneous architectures, it can also be implemented on heteroge-
neous CPU-GPU architectures and will offer options (GPUs and DL) to offload
expensive subroutines and kernels to further reduce the simulation time.

191

• Formulation of a novel data-driven emulation framework using autoencoders
and neural-network-based regressors for rapid exploration of multi-parametric
design spaces.
Significance and potential impact : the developed surrogate framework (with
both of its variants) can predict high-dimensional flowfields with relatively high
accuracy and at the fraction of the cost of full-scale CFD simulations for unseen
parameter instances in the design space. The model can also be used to perform
surrogate-based design optimization to support selection of optimal design pa-
rameters to satisfy the design requirements of interest. Further, the model can
be applied to a broad of range of engineering systems and will support future
engineering innovation and design.

Contributions on the physics and application side:

• First demonstration of deep neural networks (DNNs) as a supervised machine
learning (ML) technique for accelerating the evaluation of real-fluid thermo-
physical properties in simulation of supercritical flows.
Significance and potential impact : the development of efficient methods for the
evaluation of real-fluid properties has attracted significant interest over the past
three decades (see Table 5.1). Most (if not all) methods previously developed,
however, still face the inevitable “curse of dimensionality.” The DFNN-BC
model presented herein, however, can overcome this limitation and can be ap-
plied to real-fluid mixtures with multiple species, thus enabling high-fidelity
simulations of complex multiscale multiphysics flows (such as supercritical flows
in a rocket-engine swirl injector) at reduced cost.

• Sensitivity analysis of the predicted injection conditions at the orifice exit of the
newly proposed A-M1 injector from the Spray Combustion Consortium (SCC).
From the present study, it was found that the fuel vapor volume fraction at the
orifice exit was most strongly influenced by the level of non-condensable gas in
the fuel, while the total vapor volume fraction was most highly influenced by
the needle lift.
Significance and potential impact : these results not only enhance the basic
understanding of injector physics, but also establish a quantitative basis to
identify and prioritize the key design parameters and flow variables that exert
dominant influence on injector behavior at different conditions.

• First demonstration of data-driven DL emulators as an ML framework to help
eliminate computational bottlenecks in automotive engine design.
Significance and potential impact : by relating design/physical parameters to
the spatiotemporal flowfields at the exit of the injector orifice, the proposed
framework allows for efficient coupling between injector and spray simulations
and significantly accelerates the time-to-design of advanced internal combustion
engines. The emulation framework can also be applied to different engineering
applications where efficient and accurate predictions of complex spatiotemporal
fields are desired.

192

8.3 Recommendations for Future Work

Several areas of improvement to the current models are suggested for future research:

• ROM-DNN-based tabulation: the DFNN-BC model developed as part of this
study for the evaluation of real-fluid properties consisted of a single neural
network and was applied to mixtures involving up to seven chemical species.
For some applications, such as turbulent combustion, however, the system can
comprise tens, or sometimes even hundreds, of species. In this scenario, the
training database of properties can consume tens (or hundreds) of GB and
could overwhelm a single neural network. A very large neural network trained
on a powerful AI accelerator could be envisioned – see the last bullet point
below. Alternatively, multiple neural networks could be implemented, with one
network used for each variable or group of correlated variables, to achieve the
desired approximations. A ROM (such as an autoencoder) could be employed
to reduce the dimensionality of the database, and then a DNN fit using the
reduced data (hence, the name ROM-DNN), in a fashion similar to that in
FCAE-R and CAE-R.

• Physics-informed surrogate modeling : the emulators developed here were mostly
data-driven and thus required considerable training data in order to make accu-
rate predictions, especially for practical problems. An emerging approach that
is gaining popularity in SciDL is physics-informed neural networks (PINNs) (cf.
Sec. 2.1.2). In this approach, the governing equations are enforced through a
loss function, which allows preservation of the desired physics and reduction of
the amount of labelled data needed for training. Other promising approaches
that could reduce the training database size, or the number of expensive sim-
ulation calls, include: (1) transfer learning, which is an ML technique where
a pre-trained model developed for a problem is reused partly or wholly as the
starting point for a model on a different but similar (often more complex) prob-
lem [55, 243], and (2) active learning, which is a supervised learning approach
in which the algorithm actively chooses the input training points in regions with
high gradients or in the vicinity of the global optimum [244]. These approaches
are still in early stages of research and are worth investigating in the future.

• Multi-block surrogate modeling : rather than constructing a single surrogate for
the entire emulation domain of interest (as in FCAE-R and CAE-R), it is pos-
sible to construct separate surrogates for the different subdomains/components
characterizing the original model, but this requires the development of appro-
priate methods to enforce compatibility at the interface of subdomains, which
can be non-trivial. Such an approach can make surrogate models amenable to
very large scale and decomposable systems [245, 246]. Another interesting di-
rection is the development of geometry-adaptive convolutional neural networks
and geometry-adaptive convolutional autoencoders [247] to overcome the limi-
tations of classical CNNs and CAEs in processing data on irregular domains
(i.e., domains not necessarily rectangular and with non-uniform grids). Such an

193

approach can permit leveraging of the parameter-sharing feature in CNNs and
CAEs (which is enabled by the filter-based convolution operations) on complex
geometries. Ultimately, multi-block and geometry-adaptive methodologies can
be combined to create powerful surrogates with broad applicability.

• Probabilistic DL emulation: the emulator frameworks developed here were all
non-probabilistic and provided only point estimates of the results. It would
be beneficial to upgrade these frameworks with posterior inference in order to
capture uncertainty and assign confidence to predictions. One way to achieve
this would be to replace the autoencoders with variational autoencoders and the
neural-network-based regressors with probabilistic neural networks (cf. Sec. 2.2.6).

• Usage of purpose-built artificial intelligence (AI) accelerators for DL training
and inference: AI accelerators are specialized hardware, or processors, dedi-
cated to accelerating ML/DL computations. They are often designed to improve
throughput, reduce latency, and deliver more computational, memory, and com-
munication bandwidth, and can thus support dataflow-oriented workloads, such
as AI and high performance computing (HPC), at dramatically faster speeds
and scalability, as compared with multi-core CPUs and GPUs and multithread-
ing. In particular, with the availability of such technology, ever-larger neural
networks and surrogate/approximation models with tens of billions1 of parame-
ters can now be trained efficiently to tackle some of the world’s most challenging
problems in science and engineering.

• Mathematics of surrogate modeling : despite the empirical success of data-driven
(and physics-informed) DL surrogate modeling approaches, little is known about
their theoretical convergence guarantees and, although not evident, especially
for nonlinear problems, this is an area for future exploration.

• Recommendations for method selection: while DL offers promising approaches
to many previously intractable problems, and to as yet unidentified challenges,
other approaches to surrogate modeling will of course be required as the field
advances. These will include traditional statistical and curve-fitting methods,
and also hybrid models, like those of Refs. [248, 249]. To this end, a research
effort is needed to provide clear, considered recommendations and guidelines for
the selection and application of methods.

1This number of parameters will certainly increase in the next few years as the AI technology
continues to evolve.

194

Table 8.1: Summary of DL models/frameworks developed in this study.

Problem Accelerate the simulation and design of complex thermo-fluid systems with deep neural networks
DL tasks/capabilities Regression with scalar responses Regression with spatiotemporal responses

Models/frameworks • DFNN-BC (Sec. 5.4)
• DFNN-BC/CFD coupling (Sec. 5.4)

• FCAE-R (Secs. 6.3 and 7.3.2)
• CAE-R (Sec. 6.3)

Canonical cases • 0D real-fluid thermodynamics (Secs. 5.4.4 and 5.4.5)
• Quasi-1D counterflow diffusion flames (Sec. 5.6)

• 1D Burgers equation (Sec. 6.4)
• 2D ADR equation (Sec. 6.5)

Engineering cases • GCLSC rocket injector flow (Sec. 5.5) • A-M1 diesel injector flow (Chapter 7)

Generic goals • Function approximation
• Solver acceleration

• Simulator approximation
• Rapid exploration of design spaces
• Enhanced optimization
• Efficient one-way coupling and end-to-end simulations

195

Appendices

196

APPENDIX A
PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) (also known as principal component anal-
ysis (PCA), or Karhunen-Loéve procedure) is a linear model reduction technique that
extracts dominant energetic structures from the calculated flowfield. Detailed expla-
nations of the POD technique can be found in Refs. [15, 250, 251], but a brief summary
is provided here.

Let f(x, t) be a flow variable (e.g., velocity components, temperature) at spatial
coordinate x ∈ Ω and time t ≥ 0, and f ′(x, t) = f(x, t) − f(x) the fluctuations,
where f is the time-averaged mean of f . POD decomposes f ′(x, t) into separable
spatial and temporal components

f ′(x, t) =
∞∑
i=1

βi(t)ϕi(x), (A.1)

where βi(t) and ϕi(x) represent the time-varying coefficient and spatial function
(mode shape) of the ith mode, respectively. These quantities can be computed nu-
merically using the method of snapshots owing to the advantages of its computational
efficiency. In particular, two approaches can be employed: the first is based on a sin-
gular value decomposition (SVD) of the data matrix, while the second is based on an
eigenvalue decomposition (EVD) of the correlation matrix.

A.1 Singular Value Decomposition

In this section, the SVD-based POD technique [15, 250, 251, 252] is explained.
Let f ∗,i ∈ Rm be the ith snapshot in time (for a total of n snapshots) of the discretized
solution of f , where m is the number of spatial points in the subdomain of interest.
The POD procedure starts with decomposing f ∗,i into its mean, f ∗ ∈ Rm, and
fluctuating components, f̂ i ∈ Rm, as defined below

f ∗,i = f ∗ + f̂ i, (A.2a)

f ∗ =
1

n

n∑
i=1

f ∗,i. (A.2b)

The snapshot matrix, also called data matrix, is then built from the collection of n
snapshots

S =
[
f̂ 1 | f̂ 2 | . . . | f̂n

]
∈ Rm×n. (A.3)

197

For clarity, we can also write S as

S =

f̂(x1, t1) f̂(x1, t2) . . . f̂(x1, tn)

f̂(x2, t1) f̂(x2, t2) . . . f̂(x2, tn)
...

...
f̂(xm, t1) f̂(xm, t2) . . . f̂(xm, tn)

 . (A.4)

We then compute the reduced SVD (also called economy-sized SVD) of S, with rS
denoting the rank of S

S = UΣV T , (A.5)

where U ∈ Rm×rS and V ∈ Rn×rS are orthogonal matrices, i.e., UTU = V TV = IrS
with IrS the identity matrix, and Σ ∈ RrS×rS is a diagonal matrix that contains the
non-negative singular values, σi, arranged in descending order. The singular values
can be interpreted as the weight of contribution of each energetic mode in the POD
reconstruction. The change with time of the modes is represented by V whereas their
spatial distribution is represented by U . To determine the dominant modes needed
to represent the flow data, the first r ≤ rS singular values are selected such as they
capture a certain percentage e of the total energy (for instance, e can be set to 0.99):∑r

i=1 σ
2
i∑rS

i=1 σ
2
i

= e. (A.6)

Finally, the flow can be reconstructed using the reduced number of modes, as follows

S ≈ ŨΣ̃Ṽ T , (A.7)

where Ũ ∈ Rm×r, Σ̃ ∈ Rr×r, and Ṽ ∈ Rn×r are subparts of U , Σ and V , respectively.

A.2 Eigenvalue Decomposition

In this section, the EVD-based POD technique [15, 250, 251, 188] is explained.
We first build the snapshot matrix S (cf. Eq. (A.3)). The POD basis functions
(representing the spatial distributions of the modes) can then be extracted by solving
the eigenvalue problem for the correlation matrix C = STS ∈ Rn×n. The eigenvalue
problem can be written in the following form

CΞ = ΛΞ, (A.8)

where Λ = diag{λ1, λ2, ..., λn} ∈ Rn×n is the diagonal matrix of eigenvalues in de-
scending order (λ1 ≥ λ2 ≥ . . . λn), and Ξ ∈ Rn×n is the eigenvector matrix. It is
noted that the number of non-zero eigenvalues of C is rC ≤ n, where rC is the rank
of C. The POD basis matrix can then be defined as

Φ = SΞ ∈ Rm×n. (A.9)

198

The POD bases must be normalized so that they are orthonormal. To this end, the
orthogonal POD basis matrix, Φ′ ∈ Rm×n, is defined as

Φ′
ij =

1

∥Φj∥
Φij =

1√
λj

Φij, (A.10)

where the second equality is true if the eigendecomposition subroutine returns nor-
malized eigenvectors. For the purposes of efficient dimensionality reduction, a reduced
basis, Ψ ∈ Rm×r, is built by choosing the first r columns of Φ′, where r < n. The
coefficients of this reduced basis (representing the time-varying coefficients of the
retained modes) can be extracted as

A = ΨTS ∈ Rr×n. (A.11)

The POD approximation, S̃ ≈ S, is then obtained via

S̃ =
[
f̃ 1 | f̃ 2 | . . . | f̃n

]
= ΨA ∈ Rm×n, (A.12)

where f̃ i ∈ Rm is the POD approximation to f̂ i. The captured modal energy, e, can
be defined as

e =

∑r
i=1 λi∑n
i=1 λi

, (A.13)

which indicates that as r is increased, more energy is retained, and consequently, the
reconstruction accuracy is increased. Generally, r is chosen as the number of modes
needed to ensure that 99% of the modal energy is captured (i.e., e ≈ 0.99).

A.3 Relationships Between the Two Modal Decompositions

Mathematically, the SVD- and EVD-based PODs are closely related. One can show
that the rank of the correlation matrix C is the same as that of the corresponding
snapshot matrix S, i.e., rC = rS. Furthermore, the eigenvalues λi of C are equal to
the square of the singular values σi of S, i.e., λi = σ2

i [251]. On this note, that is why
we use σ2

i in the definition of the captured modal energy e in Eq. (A.6), as opposed
to only λi in Eq. (A.13).

199

APPENDIX B
PROOF OF THE FOUR FUNDAMENTAL EQUATIONS OF

BACKPROPAGATION

Proof of Eq. (2.19). Starting from the definition (2.18) of the error δ(L)j in the output
layer, we have

δ
(L)
j =

∂Jx

∂a
(L)
j

=
∑
k

∂Jx

∂h
(L)
k

∂h
(L)
k

∂a
(L)
j

(chain rule)

=
∂Jx

∂h
(L)
j

∂h
(L)
j

∂a
(L)
j

(because a(L)j doesn’t affect h(L)k for j ̸= k)

=
∂Jx

∂h
(L)
j

σ′(a
(L)
j) (recall that h(L)j = σ(a

(L)
j), (B.1)

which is just Eq. (2.19), in component form. □

Proof of Eq. (2.20). Starting from the definition (2.18) of the error δ(l)j at a layer
l ∈ {1, 2, . . . , L− 1}, we have

δ
(l)
j =

∂Jx

∂a
(l)
j

=
∑
k

∂Jx

∂a
(l+1)
k

∂a
(l+1)
k

∂a
(l)
j

(chain rule)

=
∑
k

∂a
(l+1)
k

∂a
(l)
j

δ
(l+1)
k (use the definition of δ(l+1)

k). (B.2)

To evaluate the first term on the last line, note that

a
(l+1)
k =

∑
j

W
(l+1)
kj h

(l)
j + b

(l+1)
k

=
∑
j

W
(l+1)
kj σ(a

(l)
j) + b

(l+1)
k . (B.3)

Taking the derivative, we obtain

∂a
(l+1)
k

∂a
(l)
j

= W
(l+1)
kj σ′(a

(l)
j). (B.4)

200

Substituting back into Eq. (B.2), we obtain

δ
(l)
j =

∑
k

W
(l+1)
kj δ

(l+1)
k σ′(a

(l)
j), (B.5)

which is just Eq. (2.20), in component form. □

Proof of Eq. (2.21). Starting from the left-hand side of the equation, we have

∂Jx

∂b
(l)
j

=
∑
k

∂Jx

∂a
(l)
k

∂a
(l)
k

∂b
(l)
j

(chain rule)

=
∂Jx

∂a
(l)
j

∂a
(l)
j

∂b
(l)
j

(because b(l)j doesn’t affect a(l)k for j ̸= k)

= δ
(l)
j × 1

= δ
(l)
j , (B.6)

which is just Eq. (2.21), in component form. □

Proof of Eq. (2.22). Starting from the left-hand side of the equation, we have

∂Jx

∂w
(l)
jk

=
∑
m

∂Jx

∂a
(l)
m

∂a
(l)
m

∂w
(l)
jk

(chain rule)

=
∂Jx

∂a
(l)
j

∂a
(l)
j

∂W
(l)
jk

(because W (l)
jk doesn’t affect a(l)m for j ̸= m)

= δ
(l)
j

∂a
(l)
j

∂W
(l)
jk

(use the definition of δ(l)j)

= δ
(l)
j h

(l−1)
k (because a(l)j =

∑
k′

W
(l)
jk′h

(l−1)
k′ + b

(l)
j), (B.7)

which is just Eq. (2.22). □

201

APPENDIX C
THERMODYNAMIC RELATIONS BASED ON THE SRK EOS

C.1 Mixing Rules

The parameters αa and b are derived from the extended corresponding-states princi-
ple [150], and are evaluated as follows

αa =
N∑
i=1

N∑
j=1

χiχjαijaij, (C.1)

b =
N∑
i=1

χibi, (C.2)

where χi is the mole fraction of the ith species. The cross parameter αijaij is given
by

αijaij =
√
αiαjaiaj(1− κij), (C.3)

where κij is the binary interaction coefficient that accounts for molecular energy and
volumetric effects, and is set to zero here. The terms ai, bi and αi can be determined
from the following relationships [253, 152]

ai = 0.42747
R2

uT
2
c,i

pc,i
, (C.4)

bi = 0.08664
RuTc,i

pc,i
, (C.5)

αi =

(
1 + Si(1−

√
Tr,i)

)2

, (C.6)

where Tr,i is the reduced temperature, and Si is a function of the acentric factor wi.
These terms are given by

Tr,i =
T

Tc,i
, (C.7)

Si = 0.48508 + 1.5517wi − 0.15613w2
i . (C.8)

C.2 Internal Energy, Enthalpy, Specific Heats, and Speed of Sound

The mass-specific internal energy e is obtained from sum of the low-pressure ideal-
gas value and a departure function that accounts for the deviation from the ideal-gas
behavior. The departure function can be obtained using fundamental thermodynamic
relationships like the Gibbs equation and Maxwell’s relations [167], which gives

e(T, p, Yi) = e0 +

∫ ρ

ρ0

(
p

ρ2
− T

ρ2
AT

)
dρ, (C.9)

202

where the subscript 0 indicates the ideal-gas state, and the integral term represents
the departure function. Equation (C.9) can be integrated analytically using a specific
EOS (here, SRK EOS) to give

e = e0 +
T 2

bW

(
∂(aα/T)

∂T

)
Yi

ln
(
1 +

bρ

W

)
, (C.10)

where an expression for (∂(aα)/∂T)Yi
is given in Appendix C.3. The mass-specific

enthalpy h is obtained through the caloric equation of state

ρh = ρe+ p. (C.11)

The mass-specific heat capacity at constant volume cv is obtained using

cv = cv,0 +
T

bW

(
∂2(aα)

∂T 2

)
Yi

ln
(
1 +

bρ

W

)
, (C.12)

where an expression for (∂2(aα)/∂T 2)Yi
is given in Appendix C.3. The mass-specific

heat capacity at constant pressure cp can be obtained from cv as follows [167]

cp = cv +

T
ρ2
A2

T

Aρ

. (C.13)

The speed of sound a is evaluated as

a2 =

(
∂p

∂ρ

)
s,Yi

= γAρ, (C.14)

where s is the entropy of the mixture and γ is the ratio of specific heats (γ = cp/cv).
Expressions for AT and Aρ are given in Appendix C.3.

C.3 Partial Derivatives

The parameter aα in the mixing rules (see Eq. (C.1)) is function of temperature and
chemical composition. Its first derivative with respect to temperature is given by(

∂(aα)

∂T

)
Yi

=
N∑
i=1

N∑
j=1

χiχj
√
aiaj

d(
√
αiαj)

dT
, (C.15)

where

d(
√
αiαj)

dT
=

1

2

(
αi

αj

)0.5
dαj

dT
+

1

2

(
αj

αi

)0.5
dαi

dT
, (C.16)

dαi

dT
= − Si√

TTc,i

[
1 + Si

(
1−

√
T

Tc,i

)]
. (C.17)

203

The second derivative of aα with respect to temperature is evaluated as(
∂2(aα)

∂T 2

)
Yi

=
N∑
i=1

N∑
j=1

χiχj
√
aiaj

d2(
√
αiαj)

dT 2
, (C.18)

where

d2(
√
αiαj)

dT 2
=

1

2

(
1

αiαj

)0.5
dαi

dT

dαj

dT
− 1

4

(
αi

α3
j

)0.5(
dαj

dT

)2

− 1

4

(
αj

α3
i

)0.5(
dαi

dT

)2

+
1

2

(
αi

αj

)0.5
d2αj

dT 2
+

1

2

(
αj

αi

)0.5
d2αi

dT 2
, (C.19)

d2αi

dT 2
=

1

2

S2
i

TTc,i
+

1

2

Si√
T 3Tc,i

[
1 + Si

(
1−

√
T

T c,i

)]
. (C.20)

The parameter αijaij depends on temperature only, and its first derivative is given
by

d(αijaij)

dT
=
√
aiaj

d(
√
αiαj)

dT
. (C.21)

The partial derivatives AT and Aρ are given by

AT =
ρRu

W − bρ
− 1

W

(
∂(aα)

∂T

)
Yi

ρ2

(W + bρ)
, (C.22)

Aρ =
WRuT

(W − bρ)2
− aα

W

ρ(2W + bρ)

(W + bρ)2
. (C.23)

C.4 Preconditioning Terms

The partial derivative (∂p/∂ρi)T,ρj ̸=i
that appears in the preconditioning terms AYk

and BYk
(see Eqs. (5.10) and (5.11)) can be expressed as(

∂p

∂ρi

)
T,ρj ̸=i

=
WRuT

Wi(W − bρ)2
(W + ρ(bi − b))−

2ρ
∑

j χjaijαij

Wi(W + bρ)

+
aαρ2bi

Wi(W + bρ)2
. (C.24)

The partial-density internal energy of the ith species, ĕi, which appears in the term
BYk

(see Eq. (5.11)), can be evaluated by substituting Eq. (C.10) into Eq. (5.12), as
follows

ĕi = ei,0 +
2

bWi

[∑
j

χj

(
T
d(aijαij)

dT
− aijαij

)]
ln
(
1 +

bρ

W

)
+

bi
bWi

[
T

(
∂(aα)

∂T

)
Yj

− aα
][

ρ

W + bρ
− 1

b
ln
(
1 +

bρ

W

)]
. (C.25)

204

APPENDIX D
PARAMETRIC ANALYSIS FOR NEURAL NETWORK DESIGN FOR

0D THERMODYNAMIC EXAMPLE

A parametric analysis was conducted to select the network topology and hyperpa-
rameters of the DFNN model in the canonical example in Sec. 5.4.5. The effect of
the regularization parameter, λreg, on the MSE loss for training and validation data
is quantified in Table D.1. Three values of λreg are reported: 0 – no regularization;
0.001 – small regularization; 0.005 – large regularization. For the case λreg = 0, a
relatively small MSE is observed on the training data, but at the expense of a larger
MSE on the validation data. This is indicative of overfitting. Adding regularization
significantly improves the prediction accuracy on the validation data as seen for the
case λreg = 0.001, while compromising little on the training prediction accuracy, as
is evident from the small increase in MSE. However, for large values of λreg such as
in the third case, a strong bias may be induced and worsen the prediction accuracy.
Consequently, λreg = 0.001 was chosen in this study.

Table D.1: Effect of the regularization parameter on the MSE loss for training and
validation data.

λreg = 0 λreg = 0.001 λreg = 0.005
MSE training 0.0120 0.0125 0.0490

MSE validation 0.0140 0.0128 0.0491

The variation of MSE loss with the number of epochs for different activation
functions is shown in Fig. D.1. The tanh and ReLU functions outperform the sigmoid
function. The performance of the tanh and ReLU functions are comparable, with the
ReLU function providing slightly more accurate predictions. For this reason, the
ReLU function was chosen in this work.

Four different architectures with varying numbers of hidden layers and neurons
per hidden layer were compared, as seen in Table D.2. Going from one hidden layer
(DFNN1) to two (DFNN2) increases the R2-score, and consequently, the accuracy of
the model. Similarly, going from two hidden layers to four (DFNN3) also improves
the R2-score. In addition, increasing the number of neurons per hidden layer helps
in general to achieve better accuracy, as evidenced by the higher R2-score of DFNN4
compared to that of DFNN3. Some caution is suggested, however, in considering
this trend, as a more complicated model could eventually lead to overfitting. While
DFNN4 seems the best choice in terms of accuracy, a look into the running times of
all the neural networks reveals that DFNN4 is very time-consuming (see Fig. D.2).
It is 10 times slower than the brute force approach. On the other hand, DFNN3
can provide a speedup of 2.4 times in property evaluation, and therefore, is the best
compromise between speed and accuracy.

205

Figure D.1: Variation of the MSE loss with the number of epochs on training data
for different activation functions.

Table D.2: Effect of the network architecture on the R2-score for training and vali-
dation data.

DFNN1 DFNN2 DFNN3 DFNN4
Architecture, ℋℋℋ

[
9
]T [

9 9
]T [

9 9 9 9
]T [

100 100 100 9
]T

R2-score training 0.980 0.985 0.988 0.993
R2-score validation 0.978 0.984 0.987 0.992

Figure D.2: Comparison of the serial running time for output generation between the
brute force approach and various DFNN models. The time indicated corresponds to
1,000,000 executions of each model.

206

APPENDIX E
DOE STUDIES FOR A-M1 INJECTOR PROBLEM

E.1 Description of Cases from the DoE Study S60

In the DoE study “S60”, 60 representative samples were identified using a variant of
the LHS [224]. These samples are highlighted in Fig. E.1 and described in Table E.1.
Out of the 60 samples (or CFD simulations), 5 cases (Cases 32, 44, 51, 52, 59) were
randomly selected and set aside for testing to ensure that the emulator, including its
constituents (i.e. the autoencoder and regression model), generalize well to unseen
data. The remaining data (i.e., 55 cases) were used for training and validation of
the neural networks, with a random split of 80%-20%. The datasets are shown in
Table E.2.

Figure E.1: 2D projections of the sample points from the DoE study S60. Training
and validation cases are represented in blue circles, whereas testing cases (i.e., Cases)
are shown using red triangle symbols.

207

Table E.1: Description of the 60 cases from the DoE study S60. The fuel viscosity, µF , is specified at 323 K.

Case Needle lift [µm] µF [N-s/m2] YN2 [-]
1 93.31 1.158e-03 2.374e-04
2 80.26 5.158e-04 1.000e-07
3 112.88 4.537e-04 9.661e-04
4 230.34 7.229e-04 8.475e-04
5 386.95 4.951e-04 7.797e-04
6 184.66 1.220e-03 7.119e-04
7 41.10 1.427e-03 2.882e-04
8 243.39 1.199e-03 6.102e-04
9 360.85 1.510e-03 8.644e-04

10 276.02 7.644e-04 4.577e-04
11 308.64 1.179e-03 2.713e-04
12 295.59 9.094e-04 8.814e-04
13 152.03 1.324e-03 3.729e-04
14 86.78 8.679e-04 1.865e-04
15 178.13 3.087e-04 1.357e-04
16 282.54 4.744e-04 3.390e-04
17 217.28 9.508e-04 2.543e-04
18 119.40 3.708e-04 6.272e-04
19 236.86 1.489e-03 3.052e-04
20 256.44 1.282e-03 8.136e-04
21 262.96 5.365e-04 7.458e-04
22 54.15 3.501e-04 2.204e-04
23 132.45 1.096e-03 6.441e-04
24 289.06 1.406e-03 5.094e-05
25 47.62 7.022e-04 9.492e-04
26 321.69 2.880e-04 5.424e-04
27 328.22 1.469e-03 5.085e-04
28 191.18 1.241e-03 1.526e-04
29 106.35 1.448e-03 6.949e-04
30 28.05 7.437e-04 3.399e-05

Case Needle lift [µm] µF [N-s/m2] YN2 [-]
31 249.92 1.054e-03 1.597e-07
32 178.14 1.386e-03 3.353e-04
33 302.12 4.744e-04 1.264e-05
34 99.83 1.096e-03 2.653e-06
35 217.29 8.679e-04 8.895e-07
36 373.90 1.179e-03 8.227e-05
37 171.61 1.075e-03 2.360e-05
38 334.75 4.330e-04 1.796e-04
39 276.02 1.137e-03 6.021e-05
40 341.27 8.886e-04 1.366e-07
41 34.58 9.715e-04 6.769e-06
42 21.53 8.265e-04 2.982e-07
43 132.46 1.241e-03 1.040e-06
44 315.17 1.303e-03 1.867e-07
45 321.69 1.013e-03 1.477e-05
46 152.03 3.087e-04 1.215e-06
47 119.41 1.427e-03 1.169e-07
48 269.49 1.448e-03 1.941e-06
49 86.78 3.916e-04 3.769e-05
50 360.85 2.880e-04 2.759e-05
51 106.36 5.780e-04 7.609e-07
52 112.88 3.501e-04 8.555e-04
53 354.32 5.365e-04 3.486e-07
54 210.76 6.815e-04 3.919e-04
55 308.64 8.472e-04 3.101e-06
56 230.34 4.123e-04 3.625e-06
57 243.39 1.469e-03 1.124e-04
58 197.71 1.199e-03 5.569e-07
59 165.08 9.508e-04 4.582e-04
60 367.37 1.158e-03 2.270e-06

208

Table E.2: Dataset sizes from the DoE study S60 used for formulating and testing
the emulator and its constituents (i.e., the autoencoder and regression model).

Set Description Number of snapshots
Training set 80% of the snapshots from Cases 1-31, 33-43, 45-50, 53-58, 60 3,564

Validation set 20% of the snapshots from Cases 1-31, 33-43, 45-50, 53-58, 60 891
Test set All of the snapshots from Cases 32, 44, 51, 52, 59 405

E.2 Description of Cases from the DoE Study S36

DoE Study S36 comprises a subset of the cases from DoE Study S60;1 these are
Cases 1-30, 32, 52, 36, 31, 54 and 59. In DoE Study S36, Cases 32, 52, 36, 31,
54 and 59 were renamed as Cases 31a, 32a, 33a, 34a, 35a and 36a, respectively, for
convenience. The design parameters for these 36 cases are highlighted in Fig. E.2 and
described in Table E.3.

The snapshots from the 36 cases in DoE Study S36 were divided into 4 sets, as
shown in Table E.4. First, the snapshots from Cases 1-30 were collected and randomly
split into three separate groups, where 70% of the snapshots were used for training,
20% for validation, and 10% for testing the Univ-AE model (cf. Sec. 7.3.3.3). These
groups are referred to as the training set, validation set, and test set T1, respectively.
Finally, a fourth group, using the snapshots from Cases 31a-36a and referred to as
the test set T2, was considered.

1As noted above, the data for Study S36 were collected in the first phase of the project, with
only 36 CFD simulations, while the second phase comprised 24 more simulations, bringing the total
number of available samples to 60. The cases in DoE Study S36 were used to analyze the internal
flow dynamics and to compare the POD to the autoencoder method, and were published as AAS
publication [211]. The cases from DoE Study S60 were used to construct and evaluate the final
emulator framework, and were published as AIAA and SAE publications [212, 236].

209

Figure E.2: 2D projections of the sample points from the DoE study S36. Training
and validation cases are represented in blue circles, whereas testing cases (i.e., Cases)
are shown using red triangle symbols.

210

Table E.3: Description of the 36 cases from the DoE study S36. The fuel viscosity,
µF , is specified at 323 K.

Case Needle lift [µm] µF [N-s/m2] YN2 [-]
1 93.31 1.158e-03 2.374e-04
2 80.26 5.158e-04 1.000e-07
3 112.88 4.537e-04 9.661e-04
4 230.34 7.229e-04 8.475e-04
5 386.95 4.951e-04 7.797e-04
6 184.66 1.220e-03 7.119e-04
7 41.10 1.427e-03 2.882e-04
8 243.39 1.199e-03 6.102e-04
9 360.85 1.510e-03 8.644e-04

10 276.02 7.644e-04 4.577e-04
11 308.64 1.179e-03 2.713e-04
12 295.59 9.094e-04 8.814e-04
13 152.03 1.324e-03 3.729e-04
14 86.78 8.679e-04 1.865e-04
15 178.13 3.087e-04 1.357e-04
16 282.54 4.744e-04 3.390e-04
17 217.28 9.508e-04 2.543e-04
18 119.40 3.708e-04 6.272e-04
19 236.86 1.489e-03 3.052e-04
20 256.44 1.282e-03 8.136e-04
21 262.96 5.365e-04 7.458e-04
22 54.15 3.501e-04 2.204e-04
23 132.45 1.096e-03 6.441e-04
24 289.06 1.406e-03 5.094e-05
25 47.62 7.022e-04 9.492e-04
26 321.69 2.880e-04 5.424e-04
27 328.22 1.469e-03 5.085e-04
28 191.18 1.241e-03 1.526e-04
29 106.35 1.448e-03 6.949e-04
30 28.05 7.437e-04 3.399e-05

31a 178.14 1.386e-03 3.353e-04
32a 112.88 3.501e-04 8.555e-04
33a 373.90 1.179e-03 8.227e-05
34a 249.92 1.054e-03 1.597e-07
35a 210.76 6.815e-04 3.919e-04
36a 165.08 9.508e-04 4.582e-04

Table E.4: Dataset sizes from the DoE study S36 used for formulating and testing
the Univ-AE.

Set Description Number of snapshots
Training set 70% of the snapshots from Cases 1-30 1,701

Validation set 20% of the snapshots from Cases 1-30 486
Test set T1 10% of the snapshots from Cases 1-30 243
Test set T2 All of the snapshots from Cases 31a-36a 486

211

REFERENCES

[1] A. Forrester, A. Sobester, and A. Keane, Engineering Design via Surrogate
Modeling. John Wiley & Sons, 2008.

[2] S. Koziel and L. Leifsson (Eds.), Surrogate-Based Modeling and Optimization.
Springer, 2013.

[3] I. Kalashnikova, S. Arunajatesan, M. F. Barone, B. G. van Bloemen Waanders,
and J. A. Fike, “Reduced order modeling for prediction and control of large-
scale systems,” Sandia National Lab. (SNL-NM), Albuquerque, NM (United
States), Tech. Rep.

[4] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering. Cam-
bridge University Press, 2019.

[5] J. Oefelein, G. Lacaze, R. Dahms, A. Ruiz, and A. Misdariis, “Effects of real-
fluid thermodynamics on high-pressure fuel injection processes,” SAE Inter-
national Journal of Engines, vol. 7, pp. 1125 –1136, 2014.

[6] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck, “Model order reduc-
tion assisted by deep neural networks (ROM-Net),” Advanced Modeling and
Simulation in Engineering, vol. 7, pp. 1–27, 2020.

[7] P. J. Milan, X. Wang, and V. Yang, “Three-dimensional investigation of fluid
dynamics in a rocket engine injector at supercritical pressure,” ILASS-Americas
2021, pp. 1–10, 2021.

[8] X. Wang, Y. Wang, and V. Yang, “Three-dimensional flow dynamics and mix-
ing in a gas-centered liquid-swirl coaxial injector at supercritical pressure,”
Physics of Fluids, vol. 31, pp. 1–14, 2019.

[9] M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders, “Surro-
gate and reduced-order modeling: A comparison of approaches for large-scale
statistical inverse problems,” in Large-Scale Inverse Problems and Quantifica-
tion of Uncertainty. John Wiley Sons, Ltd, 2010, ch. 7, pp. 123–149.

[10] M. S. Eldred and D. M. Dunlavy, “Formulations for surrogate-based optimiza-
tion with data fit, multifidelity, and reduced-order model,” AIAA 2006-7117,
pp. 1–20, 2006.

212

[11] C. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning.
MIT Press, 2006.

[12] N. Zhang, J. Xiong, J. Zhong, and K. Leatham, “Gaussian process regression
method for classification for high-dimensional data with limited samples,” in
2018 Eighth International Conference on Information Science and Technology
(ICIST), 2018, pp. 358–363.

[13] G. Pang and G. E. Karniadakis, “Physics-informed learning machines for
partial differential equations: Gaussian processes versus neural networks,” in
Emerging Frontiers in Nonlinear Science, P. G. Kevrekidis, J. Cuevas-Maraver,
and A. Saxena, Eds. Cham: Springer International Publishing, 2020, pp. 323–
343.

[14] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, ser. Cambridge Monographs on Mechanics.
Cambridge University Press, 1996.

[15] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decompo-
sition in the analysis of turbulent flows,” Annual Review of Fluid Mechanics,
vol. 25, pp. 539–575, 1993.

[16] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[17] R. Maulik, B. Lusch, and P. Balaprakash, “Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoen-
coders,” Physics of Fluids, vol. 33, no. 3, pp. 1–20, 2021.

[18] T. Baltrusaitis, P. Robinson, and L. Morency, “Constrained local neural fields
for robust facial landmark detection in the wild,” in 2013 IEEE International
Conference on Computer Vision Workshops, 2013, pp. 354–361.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[20] Y. Wu et al., Google’s neural machine translation system: Bridging the gap
between human and machine translation, 2016. arXiv: 1609.08144.

[21] G. Cybenko, “Approximation by superpositions of a sigmoid function,” Math-
ematics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.

213

https://arxiv.org/abs/1609.08144

[23] L. Hardesty, Explained: Neural networks, https://news.mit.edu/2017/
explained-neural-networks-deep-learning-0414, 2017.

[24] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.

[25] Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, https://www.tensorflow.org/, Software available from tensorflow.org,
2015.

[26] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS Autodiff
Workshop, 2017.

[27] J. N. Kutz, “Deep learning in fluid dynamics,” Journal of Fluid Mechanics,
vol. 814, pp. 1–4, 2017.

[28] R. Vinuesa and S. L. Brunton, “The potential of machine learning to enhance
computational fluid dynamics,” arXiv preprint arXiv:2110.02085, pp. 1–13,
2021.

[29] N. Omata and S. Shirayama, “A novel method of low-dimensional represen-
tation for temporal behavior of flow fields using deep autoencoder,” AIP Ad-
vances, vol. 9, pp. 1–14, 2019.

[30] T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with
machine learning for fluid dynamics,” arXiv preprint arXiv:1906.04029, pp. 1–
15, 2019.

[31] Y. Seong, C. Park, J. Choi, and I. Jang, “Surrogate model with a deep neural
network to evaluate gas–liquid flow in a horizontal pipe,” Energies, vol. 13,
pp. 1–12, 2020.

[32] J. Xu and K. Duraisamy, “Multi-level convolutional autoencoder networks
for parametric prediction of spatio-temporal dynamics,” Computer Methods in
Applied Mechanics and Engineering, vol. 372, pp. 1–36, 2020.

[33] K. Urban and A. Patera, “A new error bound for reduced basis approximation
of parabolic partial differential equations,” Comptes Rendus Mathematique,
vol. 350, pp. 203–207, 2012.

[34] M. Yano, “A space-time Petrov-Galerkn certified reduced basis method: Ap-
plication to the Boussineq equations,” SIAM Journal on Scientific Computing,
vol. 36, A232–A266, 2013.

214

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://www.tensorflow.org/

[35] K. Urban and A. Patera, “An improved error bound for reduced basis approx-
imation of linear parabolic problems,” Mathematics of Computation, vol. 83,
pp. 1599–1615, 2014.

[36] M. Yano, A. Patera, and K. Urban, “A space-time hp-interpolation-based certi-
fied reduced basis method for Burgers’ equation,” Math. Models Methods Appl.
Sci., vol. 24, pp. 1903–1935, 2014.

[37] C. W. Rowley, T. Colonius, and R. M. Murray, “Model reduction for com-
pressible flows using POD and Galerkin projection,” Physica D: Nonlinear
Phenomena, vol. 189, pp. 115–129, 2004.

[38] M. Maumann, P. Benner, and J. Heiland, “Space-time Galerkin POD with ap-
plication in optimal control of semilinear partial differential equations,” SIAM
Journal on Scientific Computing, vol. 40, A1611–A1641, 2018.

[39] P. C. Constantine and Q. Wang, “Residual minimizing model interpolation
for parametrized nonlinear dynamical systems,” SIAM Journal on Scientific
Computing, vol. 34, A2118–A2144, 2012.

[40] K. Carlberg, C. Bou-Mosleh, and C. Farhat, “Efficient non-linear model reduc-
tion via a least-squares Petrov–Galerkin projection and compressive tensor ap-
proximations,” International Journal for Numerical Methods in Engineering,
vol. 86, pp. 155–181, 2011.

[41] Y. Choi and K. Carlberg, “Space-time least-squares Petrov-Galerking projec-
tion for nonlinear model reduction,” SIAM Journal on Scientific Computing,
vol. 41, A26–A58, 2019.

[42] R. Chakir and Y. Maday, “A two-grid finite-element/reduced basis scheme for
the approximation of the solution of parameter dependent P.D.E,” 9e Colloque
national en calcul des structures, pp. 1–6, 2009.

[43] R. Chakir, P. Joly, Y. Maday, and P. Parnaudeau, “A non intrusive reduced
basis method: Application to computational fluid dynamics,” 2nd ECCOMAS
Young Investigators Conference, pp. 1–4, 2013.

[44] E. Grosjean and Y. Maday, “Error estimate of the non intrusive reduced basis
method with finite volume schemes,” arXiv preprint arXiv:2103.11720, pp. 1–
20, 2021.

[45] M. G. Fernández-Godino, C. Park, N.-H. Kim, and R. T. Haftka, “Review of
multi-fidelity models,” arXiv preprint arXiv:1609.07196v3, pp. 1–46, 2017.

215

[46] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating scientific
knowledge with machine learning for engineering and environmental systems,”
arXiv preprint arXiv:2003.04919v5, pp. 1–35, 2021.

[47] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L.
Yang, “Physics-informed machine learning,” Nature Review Physics, vol. 3,
pp. 422–440, 2021.

[48] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[49] Q. Hernández, A. Badías, D. González, F. Chinesta, and E. Cueto, “Structure-
preserving neural networks,” Journal of Computational Physics, vol. 426, pp. 1–
16, 2021.

[50] J. Zhang and X. Zhao, “Spatiotemporal wind field prediction based on physics-
informed deep learning and lidar measurements,” Applied Energy, vol. 288,
pp. 1–13, 2021.

[51] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
differentiation in machine learning: A survey,” Journal of Machine Learning
Research, vol. 18, pp. 1–43, 2018.

[52] L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 361, pp. 1–25, 2020.

[53] Z. Zhang, Y. Shin, and G. E. Karniadakis, “GFINNs: Generic formalism in-
formed neural networks for determinisic and stochastic dynamical systems,”
arXiv preprint arXiv:2109.00092, pp. 1–20, 2021.

[54] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An intro-
ductory review of deep learning for prediction models with big data,” Frontiers
in Artificial Intelligence, vol. 3, pp. 1–23, 2020.

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[56] C. C. Aggarwall, Neural Networks and Deep Learning. Springer International
Publising AG, 2018.

[57] M. Nielsen, Neural Networks and Deep learning. Determination Press, 2015.

216

[58] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–
444, 2015.

[59] A. Krizhevsky, The cifar-10 dataset, https://www.cs.toronto.edu/~kriz/
cifar.html, 2009.

[60] L. Weng, From autoencoder to Beta-VAE, https://lilianweng.github.io/
lil-log/2018/08/12/from-autoencoder-to-beta-vae.html, 2018.

[61] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep convolutional
auto-encoders for anomaly detection in videos,” Pattern Recognition Letters,
vol. 105, pp. 13–22, 2018.

[62] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, pp. 1–43, 2013.

[63] S. Hochreiter, “The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions,” International Journal Uncertainty Fuzziness
Knowledge Based Systems, vol. 6, pp. 107–116, 1998.

[64] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, pp. 1–14, 2013.

[65] I. Goodfellow et al., “Generative adversarial networks,” arXiv preprint arXiv:1406.2661v1,
pp. 1–9, 2014.

[66] A. Vaswani et al., “Attention is all you need,” arXiv preprint arXiv:1706.03762v5,
pp. 1–15, 2017.

[67] Wikipedia, Backpropagation, https://en.wikipedia.org/wiki/Backpropagation,
2021.

[68] L. Prechelt, “Automatic early stopping using cross validation: Quantifying the
criteria,” Neural Networks, vol. 11, pp. 761–767, 1998.

[69] J. Brownlee, Weight initialization for deep learning neural networks, https:
/ / machinelearningmastery . com / weight - initialization - for - deep -
learning-neural-networks/, 2021.

[70] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath, and S. M. Wild, “Deep-
Hyper: Asynchronous hyperparameter search for deep neural networks,” in
2018 IEEE 25th International Conference on High Performance Computing
(HiPC), 2018, pp. 42–51.

[71] Google, Model search, https://github.com/google/model_search, 2021.

217

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://en.wikipedia.org/wiki/Backpropagation
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://github.com/google/model_search

[72] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, pp. 145–151, 1999.

[73] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, pp. 2121–2159, 2011.

[74] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, pp. 1–15, 2014.

[75] NVIDIA, CuDNN, https://developer.nvidia.com/cudnn.

[76] ——, TensorRT, https://developer.nvidia.com/tensorrt.

[77] F. Chollet et al., Keras, https://github.com/fchollet/keras, 2015.

[78] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[79] A. Ng and K. Katanforoosh, CS230 Deep learning. Section 5 (week 5): Ten-
sorFlow and Pytorch, https://cs230.stanford.edu/section/5/, 2021.

[80] T. E. Oliphant, Guide to NumPy. Continuum Press, 2015.

[81] F. M. White, Viscous Fluid Flow. McGraw-Hill, 1991.

[82] J. D. Anderson, Computational Fluid Dynamics. McGraw-Hill, 1995.

[83] F. A. Williams, Combustion Theory. Benjam Commings, 1985.

[84] U. Piomelli, “Large-eddy simulation: Achievements and challenges,” Progress
in Aerospace Sciences, vol. 35, pp. 335–362, 1999.

[85] S. Goldstein, “Fluid mechanics in the first half of this century,” Annual Review
of Fluid Mechanics, vol. 1, pp. 1–29, 1969.

[86] P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence
research,” Annual Review of Fluid Mechanics, vol. 30, pp. 539–578, 1998.

[87] S. B. Pope, Turbulent Flows. Cambridge University Press, 2000.

[88] P. Sagaut, Large Eddy Simulation for Incompressible Flows. Springer, 2006.

[89] E. Garnier, N. Adams, and P. Sagaut, Large Eddy Simulation for Compressible
Flows. Springer, 2009.

218

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://github.com/fchollet/keras
https://cs230.stanford.edu/section/5/

[90] G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang, “Toward the
large-eddy simulation of compressible turbulent flows,” Journal of Fluid Me-
chanics, vol. 238, pp. 155–185, 1992.

[91] E. Pomraning and C. J. Rutland, “A dynamic one-equation non-viscosity les
model,” AIAA Journal, vol. 40, pp. 659–701, 2002.

[92] P. Moin and J. Kim, “Numerical investigation of turbulent channel flow,” Jour-
nal of Fluid Mechanics, vol. 118, pp. 341–377, 1982.

[93] W. Calhoon and S. Menon, “Subgrid modeling for reacting large eddy simula-
tions,” AIAA 96-0561, pp. 1–24, 1996.

[94] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics.
Springer-Verlag, 2002.

[95] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Pearson Education, 2007.

[96] N. Zong, “Modeling and simulation of cryogenic fluid injection and mixing
dynamics under supercritical conditions,” PhD Thesis, The Pennsylvania State
University, 2005.

[97] H. Huo, “Large-eddy simulation of supercritical fluid flow and combustion,”
PhD Thesis, The Pennsylvania State University, 2011.

[98] K. J. Richards, P. K. Senecal, and E. Pomraning, CONVERGE (v3.0) Manual,
Convergent Science, Inc., 2020.

[99] Britannica, Internal-combustion engine, https : / / www . britannica . com /
technology/internal-combustion-engine, 2021.

[100] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill, 1988.

[101] Wikipedia, Four-stroke engine, https://en.wikipedia.org/wiki/Four-
stroke_engine, 2021.

[102] A. Khajepour, M. S. Fallah, and A. Goodarzi, Electric and Hybrid Vehicles:
Technologies, Modeling and Control - A Mechatronic Approach. Wiley, 2014.

[103] DieselNet, Diesel fuel injector nozzles, https : / / dieselnet . com / tech /
engine_fi_nozzle.php, 2017.

219

https://www.britannica.com/technology/internal-combustion-engine
https://www.britannica.com/technology/internal-combustion-engine
https://en.wikipedia.org/wiki/Four-stroke_engine
https://en.wikipedia.org/wiki/Four-stroke_engine
https://dieselnet.com/tech/engine_fi_nozzle.php
https://dieselnet.com/tech/engine_fi_nozzle.php

[104] J. Oefelein, R. N. Dahms, and G. M. L. Lacaze, “Detailed modeling and sim-
ulation of high-pressure fuel injection processes in diesel engines,” SAE Inter-
national Journal of Engines, vol. 5, pp. 1410–1419, 2012.

[105] P. Jenny, D. Roekaerts, and N. Beishuizen, “Modeling of turbulent dilute
spray combustion,” Progress in Energy and Combustion Science, vol. 38, no. 6,
pp. 846–887, 2012.

[106] Y. Sun, Z. Guan, and K. Hooman, “Cavitation in diesel fuel injector nozzles and
its influence on atomization and spray,” Chemical Engineering & Technology,
vol. 42, no. 1, pp. 6–29, 2019.

[107] A. Ferrari, “Fluid dynamics of acoustic and hydrodynamic cavitation in hy-
draulic power systems,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 473, pp. 1–32, 2017.

[108] C. Hirt and B. Nichols, “Volume of fluid (VOF) method for the dynamics
of free boundaries,” Journal of Computational Physics, vol. 39, pp. 201–225,
1981.

[109] G. H. Yeoh and J. Tu, Computational Techniques for Multiphase Flows. Else-
vier Ltd., 2010.

[110] C. E. Brennen, Fundamentals of Multiphase Flows. Cambridge University Press,
2005.

[111] S. Clerc, “Numerical simulation of the homogeneous equilibrium model for
two-phase flows,” Journal of Computational Physics, vol. 161, no. 1, pp. 354–
375, 2000.

[112] C. E. Brennen, Cavitation and Bubble Dynamics. Oxford University Press,
1995.

[113] S. Subramaniam, “Lagrangian–Eulerian methods for multiphase flows,” Progress
in Energy and Combustion Science, vol. 39, pp. 215–245, 2013.

[114] A. Panchal and S. Menon, “A hybrid Eulerian-Eulerian/Eulerian-Lagrangian
method for dense-to-dilute dispersed phase flows,” Journal of Computational
Physics, vol. 439, 2021.

[115] G. P. Sutton and O. Biblarz, Rocket Propulsion Elements. John Wiley & Sons,
2010.

[116] M. J. L. Turner, Rocket and Spacecraft Propulsion. Springer, 2009.

220

[117] C. Lioi, “Linear combustion stability analysis of oxidizer-rich staged combus-
tion engines,” PhD Thesis, Georgia Institute of Technology, 2019.

[118] Britannica, Liquid-propellant rocket engines, https://www.britannica.com/
technology / rocket - jet - propulsion - device - and - vehicle / Liquid -
propellant-rocket-engines, 2021.

[119] C. Lioi, D. Ku, and V. Yang, “Linear acoustic analysis of main combustion
chamber of an oxidizer-rich staged combustion engine,” Journal of Propulsion
and Power, vol. 34, pp. 1505–1518, 2018.

[120] G. P. Sutton, History of Liquid Propellant Rocket Engines. American Institute
of Aeronautics and Astronautics, 2006.

[121] X. Wang, Y. Wang, and V. Yang, “Geometric effects on liquid oxygen/kerosene
bi-swirl injector flow dynamics at supercritical conditions,” AIAA Journal,
vol. 55, pp. 3467–3475, 2017.

[122] L. Zhang, X. Wang, Y. Li, S.-T. Yeh, and V. Yang, “Supercritical fluid flow
dynamics and mixing in gas-centered liquid-swirl coaxial injector,” Physics of
Fluids, vol. 30, pp. 1–16, 2018.

[123] X. Wang, H. Huo, U. Unnikrishnan, and V. Yang, “A systematic approach to
high-fidelity modeling and efficient simulation of supercritical fluid mixing and
combustion,” Combustion and Flame, vol. 195, pp. 203–215, 2018.

[124] X. Wang, L. Zhang, Y. Li, S.-T. Yeh, and V. Yang, “Supercritical combustion
of gas-centered liquid-swirl coaxial injectors for staged-combustion engines,”
Combustion and Flame, vol. 197, pp. 204–214, 2018.

[125] P. Milan, J.-P. Hickey, X. Wang, and V. Yang, Deep-learning accelerated cal-
culation of real-fluid properties in numerical simulation of complex flowfields,
vol. 444, pp. 1–25, 2021.

[126] P. Milan, X. Wang, J.-P. Hickey, Y. Li, and V. Yang, “Accelerating numerical
simulations of supercritical fluid flows using deep neural networks,” AIAA
2020-1157, pp. 1–12, 2020.

[127] V. Yang, “Modeling of supercritical vaporization, mixing, and combustion pro-
cesses in liquid-fueled propulsion systems,” Proceedings of the Combustion In-
stitute, vol. 28, pp. 925–942, 2000.

[128] D.-Y. Peng and D. B. Robinson, “A new two-constant equation of state,”
Industrial & Engineering Chemistry Fundamentals, vol. 15, pp. 59–64, 1976.

221

https://www.britannica.com/technology/rocket-jet-propulsion-device-and-vehicle/Liquid-propellant-rocket-engines
https://www.britannica.com/technology/rocket-jet-propulsion-device-and-vehicle/Liquid-propellant-rocket-engines
https://www.britannica.com/technology/rocket-jet-propulsion-device-and-vehicle/Liquid-propellant-rocket-engines

[129] J. C. Oefelein and R. Sankaran, “Large eddy simulation of reacting flow physics
and combustion,” in Exascale Scientific Applications: Scalability and Perfor-
mance Portability, T. P. Straatsma, K. B. Antypas, and T. J. Williams, Eds.,
CRC Press, 2018, ch. 11, pp. 231–256.

[130] G. Soave, “Equilibrium constants from a modified redlich-kwong equation of
state,” Chemical engineering science, vol. 27, pp. 1197–1203, 1972.

[131] P. Milan, Y. Li, X. Wang, S. Yang, W. Sun, and V. Yang, “Time-efficient meth-
ods for real fluid property evaluation in numerical simulation of chemically
reacting flows,” 11th US National Combustion Meeting, 71TF-0396, pp. 1–10,
2019.

[132] P. Boncinelli, F. Rubechini, A. Arnone, M. Cecconi, and C. Cortese, “Real gas
effects in turbomachinery flows: A computational fluid dynamics model for
fast computations,” Journal of Turbomachinery, vol. 126, pp. 268–276, 2004.

[133] S. Kawai, H. Terashima, and H. Negishi, “A robust and accurate numerical
method for transcritical turbulent flows at supercritical pressure with an arbi-
trary equation of state,” Journal of Computational Physics, vol. 300, pp. 116–
135, 2015.

[134] M. Pini, A. Spinelli, G. Persico, and S. Rebay, “Consistent look-up table inter-
polation method for real-gas flow simulations,” Computers & Fluids, vol. 107,
pp. 178–188, 2015.

[135] S. Bhalla, M. Yao, J.-P. Hickey, and M. Crowley, “Compact representation of
a multi-dimensional combustion manifold using deep neural networks,” in Ma-
chine Learning and Knowledge Discovery in Databases, U. Brefeld, E. Fromont,
A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet, Eds., Cham: Springer
International Publishing, 2020, pp. 602–617.

[136] G. Xia, D. Li, and C. L. Merkle, “Consistent properties reconstruction on
adaptive cartesian meshes for complex fluids computations,” Journal of Com-
putational Physics, vol. 225, pp. 1175–1197, 2007.

[137] Z. Liu, J. Liang, and Y. Pan, “Construction of thermodynamic properties look-
up table with block-structured adaptive mesh refinement method,” Journal of
Thermophysics and Heat Transfer, vol. 28, pp. 50–58, 2014.

[138] A. Rubino, M. Pini, M. Kosec, S. Vitale, and P. Colonna, “A look-up table
method based on unstructured grids and its application to non-ideal compress-
ible fluid dynamic simulations,” Journal of Computational Science, vol. 28,
pp. 70–77, 2018.

222

[139] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence mod-
elling using deep neural networks with embedded invariance,” Journal of Fluid
Mechanics, vol. 807, pp. 155–166, 2016.

[140] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot, “Training
convolutional neural networks to estimate turbulent sub-grid scale reaction
rates,” Combustion and Flame, vol. 203, pp. 255 –264, 2019.

[141] Z. M. Nikolaou, C. Chrysostomou, L. Vervisch, and S. Cant, “Progress variable
variance and filtered rate modeling using convolutional neural networks and
flamelet methods,” Flow, Turbulence and Combustion, vol. 103, pp. 485–501,
2019.

[142] M. Ihme, “Construction of optimal artificial neural network architectures for
application to chemical systems: Comparison of generalized pattern search
method and evolutionary algorithm,” in Artificial Neural Networks, C. L. P.
Hui, Ed., Rijeka: IntechOpen, 2011, ch. 7, pp. 125–150.

[143] Z. Shadram, T. M. Nguyen, A. Sideris, and W. A. Sirignano, “Neural net-
work flame closure for a turbulent combustor with unsteady pressure,” AIAA
Journal, vol. 59, pp. 621–635, 2021.

[144] O. Owoyele, P. Kundu, M. M. Ameen, T. Echekki, and S. Som, “Application
of deep artificial neural networks to multi-dimensional flamelet libraries and
spray flames,” International Journal of Engine Research, pp. 11–18, 2019.

[145] J. Xing et al., “Predicting kinetic parameters for coal devolatilization by means
of artificial neural networks,” Proceedings of the Combustion Institute, vol. 37,
pp. 2943–2950, 2019.

[146] W. J. Coirier, “Efficient real gas Navier-Stokes computations of high speed
flows using an LU scheme,” AIAA 90-0391, pp. 1–18, 1990.

[147] S. Kawai, H. Terashima, and H. Negishi, “A robust and accurate numerical
method for transcritical turbulent flows at supercritical pressure with an arbi-
trary equation of state,” Journal of Computational Physics, vol. 300, pp. 116–
135, 2015.

[148] P. C. Ma, Y. Lv, and M. Ihme, “An entropy-stable hybrid scheme for sim-
ulations of transcritical real-fluid flows,” Journal of Computational Physics,
vol. 340, pp. 330–357, 2017.

[149] D. T. Banuti, P. C. Ma, J.-P. Hickey, and M. Ihme, “Thermodynamic structure
of supercritical LOX-GH2 diffusion flames,” Combustion and Flame, vol. 196,
pp. 364–376, 2018.

223

[150] T. W. Leland and P. S. Chappelear, “The corresponding states principles. A
review of current theory and practice,” Industrial and Engineering Chemistry
Fundamentals, vol. 60, pp. 15–43, 1968.

[151] T. H. Chung, M. Ajlan, L. L. Lee, and K. E. Starling, “Generalized multiparam-
eter correlation for nonpolar and polar fluid transport properties,” Industrial
& Engineering Chemistry Research, vol. 27, pp. 671–679, 1988.

[152] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases
and Liquids. McGraw-Hill, 2001.

[153] E. Fuller, P. Schettler, and J. C. Giddings, “A new method for prediction of
binary gas,” Industrial and Engineering Chemistry Research, vol. 58, pp. 18–
27, 1996.

[154] S. Takahashi and M. Hongo, “Diffusion coefficients of gases at high pressures
in the CO2-C2H4 system,” Journal of Chemical Engineering Japan, vol. 15,
pp. 57–59, 1982.

[155] J. C. Wilke, “Diffusional properties of multicomponent gases,” Chemical En-
gineering Progress, vol. 46, pp. 95–104, 1950.

[156] H. Meng, G. C. Hsiao, V. Yang, and J. S. Shuen, “Transport and dynamics
of liquid oxygen droplets in supercritical hydrogen streams,” Journal of Fluid
Mechanics, vol. 527, pp. 115–139, 2005.

[157] J. C. Oefelein, “Advances in modeling supercritical fluid dynamics and combus-
tion in high-pressure propulsion systems,” AIAA 2019-0634, pp. 1–32, 2019.

[158] H. Meng and V. Yang, “A unified treatment of general fluid thermodynamics
and its application to a preconditioned scheme,” Journal of Computational
Physics, vol. 189, pp. 277–304, 2003.

[159] N. Zong and V. Yang, “An efficient preconditioning scheme for real-fluid mix-
tures using primitive pressure-temperature variables,” International Journal
of Computational Fluid Dynamics, vol. 21, pp. 217–230, 2007.

[160] S.-Y. Hsieh and V. Yang, “A preconditioned flux-differencing scheme for chem-
ically reacting flows at all mach numbers,” International Journal of Computa-
tional Fluid Dynamics, vol. 8, pp. 31–49, 1997.

[161] G. Wilczek-Vera and J. H. Vera, “Understanding cubic equations of state: A
search for the hidden clues of their success,” American Institute of Chemical
Engineers Journals, vol. 61, pp. 2824–2831, 2015.

224

[162] R. Swanson and E. Turkel, “On central-difference and updwind schemes,” Jour-
nal of Computational Physics, vol. 101, pp. 292–306, 1992.

[163] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Program-
ming with the message-passing interface. The MIT Press, 2014.

[164] M. X. Yao, “Thermoacoustic instabilities in counterflow diffusion flames,” MASc
Thesis, University of Waterloo, 2019.

[165] A. C. Zambon and H. K. Chelliah, “Self-sustained acoustic-wave interactions
with counterflow flames,” Journal of Fluid Mechanics, vol. 560, pp. 249–278,
2006.

[166] D. G. Goodwin, R. L. Speth, H. K. Moffat, and B. W. Weber, Cantera:
An object-oriented software toolkit for chemical kinetics, thermodynamics, and
transport processes, https://www.cantera.org, Version 2.4.0, 2018.

[167] K. Denbigh, The Principles of Chemical Equilibrium. Cambridge University
Press, 1966.

[168] D. Liu and Y. Wang, “Multi-fidelity physics-constrained neural network and
its application in materials modeling,” Journal of Mechanical Design, vol. 141,
pp. 686–707, 2019.

[169] H.-G. Li, N. Zong, X.-Y. Lu, and V. Yang, “A consistent characteristic bound-
ary condition for general fluid mixture and its implementation in a precon-
ditioning scheme,” Advances in Applied Mathematics and Mechanics, vol. 4,
pp. 72–92, 2012.

[170] A. Mani, “Analysis and optimization of numerical sponge layers as a non-
reflective boundary treatment,” Journal of Computational Physics, vol. 231,
pp. 704–716, 2012.

[171] H. Tsuji, “Counterflow diffusion flames,” Progress in Energy and Combustion
Science, vol. 8, pp. 93–119, 1982.

[172] R. W. Bilger, S. H. Starner, and R. J. Kee, “On reduced mechanisms for
methane air combustion in nonpremixed flames,” Combustion and Flame, vol. 80,
pp. 135–149, 1990.

[173] H. Huo, X. Wang, and V. Yang, “A general study of counterflow diffusion
flames at subcritical and supercritical conditions: Oxygen/hydrogen mixtures,”
Combustion and Flame, vol. 161, pp. 3040–3050, 2014.

225

https://www.cantera.org

[174] M. X. Yao, J.-P. Hickey, P. C. Ma, and M. Ihme, “Molecular diffusion and
phase stability in high-pressure combustion,” Combustion and Flame, vol. 210,
pp. 302–314, 2019.

[175] M. Burke, M. Chaos, Y. Ju, F. Dryer, and S. Klippenstein, “Comprehensive
H2/O2 kinetic model for high-pressure combustion,” Internal Journal of Chem-
ical Kinetics, vol. 44, pp. 444–474, 2012.

[176] P. J. Milan, G. M. Magnotti, and V. Yang, “Data-driven deep learning sur-
rogates for parametric prediction of reacting flows,” ILASS-Americas 2021,
pp. 1–13, 2021.

[177] S. Mak et al., “An efficient surrogate model for emulation and physics extrac-
tion of large eddy simulations,” Journal of the American Statistical Associa-
tion, vol. 113, pp. 1443–1456, 2018.

[178] S.-T. Yeh et al., “Common proper orthogonal decomposition-based spatiotem-
poral emulator for design exploration,” AIAA Journal, vol. 56, pp. 2429–2442,
2018.

[179] Y.-H. Chang et al., “Kernel-smoothed proper orthogonal decomposition–based
emulation for spatiotemporally evolving flow dynamics prediction,” AIAA Jour-
nal, vol. 57, pp. 5269–5280, 2019.

[180] Y. Li, X. Wang, Y.-H. Chang, P. J. Milan, and V. Yang, “A novel surrogate
model for emulation of bi-fluid swirl injector flow dynamics,” AIAA 2020-1070,
pp. 1–41, 2020.

[181] P. Milan, X. Wang, Y. Li, and V. Yang, “Machine learning approaches for
computational fluid dynamics of supercritical fluid flows,” ILASS-ASIA-2020-
5-16, pp. 1–9, 2020.

[182] Y.-H. Chang et al., “Reduced-order modeling for complex flow emulation by
common kernel-smoothed proper othogonal decomposition,” AIAA Journal,
vol. 59, pp. 3291–3303, 2021.

[183] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nature Communications, vol. 9, pp. 1–10,
2018.

[184] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–
2324, 1998.

226

[185] J. Almotiri, K. Elleithy, and A. Elleithy, “Comparison of autoencoder and
principal component analysis followed by neural network for e-learning using
handwritten recognition,” in 2017 IEEE Long Island Systems, Applications
and Technology Conference (LISAT), 2017, pp. 1–5.

[186] L. Agostini, “Exploration and prediction of fluid dynamical systems using auto-
encoder technology,” Physics of Fluids, vol. 32, pp. 1–32, 2020.

[187] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked convolutional
auto-encoders for hierarchical feature extraction,” International Conference on
Artificial Neural Networks, pp. 52–59, 2011.

[188] O. San and T. Iliescu, “Proper orthogonal decomposition closure models for
fluid flows: Burger equations,” arXiv preprint arXiv:1308.3276, pp. 1–22, 2013.

[189] M. Buffoni and K. Wilcox, “Projection-based model reduction for reacting
flows,” AIAA 2010-5008, pp. 1–14, 2010.

[190] K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on non-
linear manifolds using deep convolutional autoencoders,” Journal of Compu-
tational Physics, vol. 404, pp. 1–32, 2020.

[191] K. Lee and E. J. Parish, “Parameterized neural ordinary differential equa-
tions: Applications to computational physics problems,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 477,
p. 20 210 162, 2021.

[192] B. Cuenot and T. Poinsot, “Asymptotic and numerical study of diffusion flames
with variable lewis number and finite rate chemistry,” Combustion and Flame,
vol. 104, pp. 111–137, 1996.

[193] I. Glassman, R. A. Yetter, and N. G. Glumac, Combustion. Elsevier Inc, 2015.

[194] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations. Society for Industrial and Applied Mathematics, 2007.

[195] A. Vallet, A. A. Burluka, and R. Borghi, “Development of a Eulerian model for
the atomization of a liquid jet,” Atomization and Sprays, vol. 11, pp. 619–642,
2001.

[196] K. Saha, P. Srivastava, S. Quan, P. K. Senecal, E. Pomraning, and S. Som,
“Modeling the dynamic coupling of internal nozzle flow and spray formation
for gasoline direct injection applications,” SAE Technical Paper 2018-01-0314,
pp. 1–15, 2018.

227

[197] J. Anez, A. Ahmed, N. Hecht, B. Duret, J. Reveillon, and F. Demoulin,
“Eulerian–Lagrangian spray atomization model coupled with interface cap-
turing method for diesel injectors,” International Journal of Multiphase Flow,
vol. 113, pp. 325–342, 2019.

[198] S. Som, D. Longman, A. Ramírez, and S. Aggarwal, “A comparison of injec-
tor flow and spray characteristics of biodiesel with petrodiesel,” Fuel, vol. 89,
pp. 4014–4024, 2010.

[199] M. Battistoni, C. Grimaldi, and F. Mariani, “Coupled simulation of nozzle flow
and spray formation using diesel and biodiesel for CI engine applications,” in
SAE 2012 World Congress & Exhibition, SAE International, 2012.

[200] K. Saha, S. Som, M. Battistoni, S. Quan, P. K. Senecal, and E. Pomraning,
“Coupled Eulerian internal nozzle flow and Lagrangian spray simulations for
GDI systems,” in WCX™ 17: SAE World Congress Experience, SAE Interna-
tional, 2017.

[201] S. Quan et al., “A one-way coupled volume of fluid and Eulerian-Lagrangian
method for simulating sprays,” ASME 2016 Internal Combustion Engine Di-
vision Fall Technical Conference, pp. 1–9, 2016.

[202] M. Traver, Y. Pei, T. Tzanetakis, R. Torelli, C. Powell, and S. Som, “Investiga-
tion and simulation of gasoline in a diesel fuel injector for gasoline compression
ignition applications,” in 11. Tagung Einspritzung und Kraftstoffe 2018, H.
Tschöke and R. Marohn, Eds., Wiesbaden: Springer Fachmedien Wiesbaden,
2019, pp. 423–442.

[203] R. Ravendran, B. Endelt, J. d. C. Christiansen, P. Jensen, M. Theile, and I.
Najar, “Coupling method for internal nozzle flow and the spray formation for
viscous liquids,” International Journal of Computational Methods and Exper-
imental Measurements, vol. 7, pp. 130–141, 2019.

[204] L. Nocivelli et al., “Analysis of the spray numerical injection modeling for
gasoline applications,” in WCX SAE World Congress Experience, SAE Inter-
national, 2020.

[205] G. Bianchi and P. Pelloni, “Modeling the diesel fuel spray breakup by using
a hybrid model,” in International Congress & Exposition, SAE International,
1999.

[206] E. von Berg et al., “Coupled simulations of nozzle flow, primary fuel jet
breakup, and spray formation,” Journal of Engineering for Gas Turbines and
Power, vol. 127, pp. 897–908, 2004.

228

[207] F. Wang, Z. He, J. Liu, and Q. Wang, “Diesel nozzle geometries on spray
characteristics with a spray model coupled with nozzle cavitating flow,” Inter-
national Journal of Automotive Technology, vol. 16, pp. 4014–4024, 2014.

[208] Q. Xue et al., “An Eulerian CFD model and X-ray radiography for coupled
nozzle flow and spray in internal combustion engines,” International Journal
of Multiphase Flow, vol. 70, pp. 77–88, 2015.

[209] D. Kim et al., “High-fidelity simulation of atomization in a gas turbine injector
high shear nozzle,” ILASS-Americas 2014, pp. 1–15, 2014.

[210] L. Bravo, Q. Xue, S. Som, C. Powell, and C.-B. M. Kweon, “Fuel effects on
nozzle flow and spray using fully coupled Eulerian simulations,” ASME 2015
Power Conference, pp. 1–11, 2015.

[211] P. J. Milan, R. Torelli, B. Lusch, and G. Magnotti, “Data-driven model reduc-
tion of multiphase flow in a single-hole automotive injector,” Atomization and
Sprays, vol. 30, pp. 1–29, 2020.

[212] P. J. Milan, S. Mondal, R. Torelli, B. Lusch, R. Maulik, and G. M. Mag-
notti, “Data-driven modeling of large-eddy simulations for fuel injector design,”
AIAA 2021-1016, pp. 1–12, 2021.

[213] Engine Combustion Network, https://ecn.sandia.gov/, 2019.

[214] B. A. Sforzo et al., “Fuel nozzle geometry effects on cavitation and spray
behavior at diesel engine conditions,” Proceedings of the 10th International
Symposium on Cavitation, vol. CAV18-05098, pp. 474–480, 2018.

[215] Spray Combustion Consortium, https://scc.sandia.gov/, 2020.

[216] K. Yasutomi, J. Hwang, L. M. Pickett, B. Sforzo, K. Matusik, and C. F. Powell,
“Transient internal nozzle flow in transparent multi-hole diesel injector,” in
WCX SAE World Congress Experience, SAE International, 2020.

[217] M. Battistoni, D. Duke, A. B. Swantek, F. Z. Tilocco, C. F. Powell, and S.
Som, “Effects of noncondensable gas on cavitating nozzles,” Atomization and
Spray, vol. 2015, pp. 453–483, 2015.

[218] R. Torelli, S. Som, Y. Pei, Y. Zhang, and M. L. Traver, “Influence of fuel
properties on internal nozzle flow development in a multi-hole diesel injector,”
Fuel, vol. 204, pp. 171–184, 2017.

[219] R. Torelli, G. M. Magnotti, S. Som, Y. Pei, and M. L. Traver, “Exploration of
cavitation-suppressing orifice designs for a heavy-duty diesel injector operat-

229

https://ecn.sandia.gov/
https://scc.sandia.gov/

ing with straight-run gasoline,” SAE Technical Paper 2019-24-0126, pp. 1–15,
2019.

[220] SAS Institute Inc., JMP® 14 fitting linear models, Cary, NC: SAS Institute
Inc., 2018.

[221] H. Guo et al., “Internal nozzle flow simulations of the ECN Spray C injec-
tor under realistic operating conditions,” in WCX 20: SAE World Congress
Experience, SAE International, 2020, pp. 1–11.

[222] G. M. Magnotti and S. Som, “Assessing fuel property effects on cavitation and
erosion propensity using a computational fuel screening tool,” ASME 2019 In-
ternal Combustion Engine Division Fall Technical Conference, pp. 1–13, 2019.

[223] R. Battino, T. R. Rettich, and T. Tominaga, “The solubility of nitrogen and air
in liquids,” Journal of Physical and Chemical Reference Data, vol. 13, pp. 563–
600, 1984.

[224] M. D. McKay, “Latin hypercube sampling as a tool in uncertainty analysis of
computer models,” in WSC ’92, 1992, pp. 557–564.

[225] R. Torelli et al., “Comparison of in-nozzle flow characteristics of naphtha and
n-dodecane fuels,” in WCX 17: SAE World Congress Experience, SAE Inter-
national, 2017, pp. 1–16.

[226] R. Torelli et al., “Evaluation of shot-to-shot in-nozzle flow variations in a
heavy-duty diesel injector using real nozzle geometry,” SAE Int. J. Fuels Lubr.,
vol. 11, pp. 379–395, 2018.

[227] O. Redlich and J. Kwong, “On the thermodynamics of solutions. V. An equa-
tion of state. Fugacities of gaseous solutions,” Chemical reviews, vol. 44, pp. 233–
244, 1949.

[228] Z. Bilicki and J. Kestin, “Physical aspects of the relaxation model in two-phase
flow,” Proceedings of the Royal Society London A, vol. 428, pp. 379–397, 1990.

[229] J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for modeling
surface tension,” Journal of Computational Physics, vol. 100, pp. 335–354,
1992.

[230] M. Battistoni, Q. Xue, S. Som, and E. Pomraning, “Effects of off-axis needle
motion on internal nozzle and near exit flow in a multi-hole fuel injector,” SAE
International Journal of Fuels and Lubricants, vol. 7, pp. 167–182, 2014.

230

[231] D. J. Duke, A. L. Kastengren, F. Z. Tilocco, A. B. Swantek, and C. F. Powell,
“X-ray radiography measurements of cavitating nozzle flow,” Atomization and
Sprays, vol. 23, pp. 841–860, 2013.

[232] G. M. Magnotti, M. Battistoni, K. Saha, and S. Som, “Influence of turbu-
lence and thermophysical fluid properties on cavitation erosion predictions in
channel flow geometries,” SAE Int. J. Adv. & Curr. Prac. in Mobility, vol. 1,
pp. 691–705, 2019.

[233] A. Tekawade et al., “A comparison between CFD and 3D X-ray diagnostics
of internal flow in a cavitating diesel injector nozzle,” 30th Annual Conference
on Liquid Atomization and Spray Systems (ILASS-Americas), 2019.

[234] I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,” MMCE,
vol. 1.4, pp. 407–414, 1993.

[235] J. Shi and M. Arafin, “CFD investigation of fuel property effect on cavitating
flow in generic nozzle geometries,” 23rd Annual Conference on Liquid Atom-
ization and Spray Systems (ILASS-Europe), 2010.

[236] S. Mondal, R. Torelli, B. Lusch, P. J. Milan, and G. M. Magnotti, “Accelerating
the generation of static coupling injection maps using a data-driven emulator,”
in SAE WCX Digital Summit, SAE International, 2021.

[237] R. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,”
Atomization Spray Technology, vol. 3, pp. 309–337, 1988.

[238] J. C. Beale and R. D. Reitz, “Modeling spray atomization with the Kelvin-
Helmholtz/Rayleigh-Taylor hybrid model,” Atomization and Sprays, pp. 623–
650, 1999.

[239] A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II: A computer
program for chemically reactive flows with sprays,” 1989.

[240] A. Nunno, P. Kundu, and S. Som, Extending the unsteady flamelet-progress
variable model to split injection and compression ignition engine applications,
in preparation, 2021.

[241] C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran, and E. J. Silke, “A
comprehensive detailed chemical kinetic reaction mechanism for combustion
of n-alkane hydrocarbons from n-octane to n-hexadecane,” Combustion and
Flame, vol. 156, pp. 181–199, 2009.

231

[242] G. M. Magnotti, P. Kundu, A. C. Nunno, and S. Som, “Linking cavitation ero-
sion in a multi-hole injector with spray and combustion development,” ICLASS
2021, pp. 1–8, 2021.

[243] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in Artificial Neural Networks and Machine Learning
– ICANN 2018, V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I.
Maglogiannis, Eds., Cham: Springer International Publishing, 2018, pp. 270–
279.

[244] O. Owoyele, P. Pal, and A. Vidal Torreira, “An Automated machine learning-
genetic algorithm framework with active learning for design optimization,”
Journal of Energy Resources Technology, vol. 143, 2021.

[245] K. Shukla, A. D. Jagtap, and G. E. Karniadakis, “Parallel physics-informed
neural networks via domain decomposition,” Journal of Computational Physics,
vol. 447, pp. 1–19, 2021.

[246] C. Hoang, Y. Choi, and K. Carlberg, “Domain-decomposition least-squares
Petrov-Galerkin (DD-LSPG) nonlinear model reduction,” Computer Methods
in Applied Mechanics and Engineering, vol. 384, pp. 1–41, 2021.

[247] H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: Physics-informed geometry-
adaptive convolutional neural networks for solving parameterized steady-state
pdes on irregular domain,” Journal of Computational Physics, vol. 428, pp. 1–
27, 2021.

[248] R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, and I. Pan, “Latent-space
time evolution of non-intrusive reduced-order models using gaussian process
emulation,” Physica D: Nonlinear Phenomena, vol. 416, pp. 1–17, 2021.

[249] S. Mondal, G. M. Magnotti, B. Lusch, R. Maulik, and R. Torelli, “Machine
Learning-Enabled Prediction of Transient Injection Map In Automotive In-
jectors With Uncertainty Quantification,” ASME 2021 Internal Combustion
Engine Division Fall Technical Conference, pp. 1–12, 2021.

[250] Y. C. Liang, H. P. Lee, S. P. Lim, W. Z. Lin, K. H. Lee, and C. G. Wu, “Proper
orthogonal decomposition and its applications – part I: Theory,” Journal of
Sound and Vibration, vol. 252, pp. 527 –544, 2002.

[251] K. Taira et al., “Modal analysis of fluid flows: An overview,” AIAA Journal,
vol. 55, pp. 4013–4041, 2017.

[252] T. Barber, M. Ahmed, and N. A. Shafi, “POD snapshot data reduction for
periodic fluid flows,” AIAA 2005-287, pp. 1–12, 2005.

232

[253] M. J. Morna and H. N. Shapiro, Fundamentals of Engineering Thermodynam-
ics. John Wiley & Sons, 2000.

233

VITA

Petro Junior Milan obtained a BEng in Aerospace Engineering from Polytechnique
Montreal (Canada) in 2016. During his time at Polytechnique (2012-2016), he carried
out two summer research internships and three undergraduate research assistantships
under the guidance of Prof. Huu Duc Vo and Prof. Dominique Pelletier in the fields of
computational fluid dynamics (CFD), plasma aerodynamics, compressor/wing aero-
dynamics, flow control, and sensitivity/uncertainty analysis. He also interned in in-
dustry in the Installation & Turbine Aerodynamics group at Pratt & Whitney Canada
in the summers of 2015 and 2016, working on the numerical modeling and aerother-
modynamic analysis of mixed-flow exhaust turbofans.

Beginning in 2016 at the Georgia Institute of Technology, Milan was initially a
graduate research assistant at the Computational Combustion Laboratory, working
with Prof. Suresh Menon from 2016 to 2018. He moved to Prof. Vigor Yang’s
research group in August 2018 to pursue his interest in combining machine learning
with CFD, and obtained an MS in Computational Science and Engineering and a
PhD in Aerospace Engineering (along with a Minor in Mathematics), both in 2021.
During his time in Yang’s group, he worked on several projects in the fields of CFD,
rocket propulsion, supercritical turbulent combustion, surrogate modeling, and deep
learning. He also did two internships in the Multi-Physics Computational Research
Section at the U.S. Department of Energy’s Argonne National Laboratory in the
spring and summer of 2020, where he worked on using deep learning to accelerate
multiphase flow simulations for diesel engines. Milan has been the recipient of a
Master’s Research Scholarship from the Fonds de recherche du Québec – Nature et
technologies (FRQNT) (2016-2018), a Postgraduate Scholarship D from the Natural
Sciences and Engineering Research Council of Canada (NSERC) (2018-2021), and
an AE Graduate Student Fellowship from the Georgia Tech’s School of Aerospace
Engineering (2020-2021). After his PhD, he expects to move to the San Francisco Bay
Area to work at a machine learning startup on next-generation artificial intelligence
and data-intensive scientific applications.

234

	Title Page
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Abbreviations
	Mathematical Notation
	Introduction
	Context and Motivation
	Aim and Objectives of this Work
	Outline

	I Fundamental Background, Tools, and Techniques
	Approximation Methods and Deep Learning
	Taxonomy of Surrogate Models
	Classification based on Mathematical Structure
	Data-Fit Models
	Reduced-Order Models
	Hierarchical Models

	Data-Driven vs. Physics-Informed Deep Learning

	Neural Network Architectures
	What is Deep Learning?
	Artificial Neuron and Dense Layer
	Deep Feedforward Neural Networks
	Convolutional Neural Networks
	Autoencoders
	Fully-Connected Autoencoders
	Convolutional Neural Network Autoencoders

	Advanced Models
	Importance of Nonlinear Activation Functions

	Practical Considerations for Training Neural Networks
	Backpropagation
	Underfitting and Overfitting
	Regularization
	L1 and L2 Regularization Methods
	Early Stopping

	Data Validation Techniques
	Hold-Out Method
	Cross-Validation

	Setup and Initialization Issues
	Data Preprocessing
	Parameter Initialization
	Hyperparameter Tuning

	Gradient-Based Optimization Strategies
	GPU Acceleration
	Error Metrics
	Machine Learning Libraries

	Computational Fluid Dynamics
	Governing Equations
	Turbulence and its Modeling
	Large Eddy Simulation
	Filtering Operator
	Favre-Filtered Governing Equations
	Closure for SGS terms

	Finite-Volume Method
	Compact Forms
	Approximation of Volume and Surface Integrals

	CFD Solvers

	Fuel Injection Phenomena and Modeling Practices
	Engine Classification
	Fluid State Physics
	Diesel Engines
	Engine Components and Operating Cycles
	Types of Diesel Engines
	Fuel Injector Nozzles
	Liquid Jet Behavior
	Subcritical chamber pressures
	Supercritical chamber pressures

	Cavitation in Fuel Injector Nozzles
	Multiphase Modeling of Internal Nozzle Flow
	Spray Modeling

	Injection in Liquid-Propellant Rocket Engines
	Engine Components and Principle of Operation
	Types of Liquid-Propellant Rocket Engines and Power Cycles
	Injectors
	Flow Injection Behavior and Modeling

	II Research Projects
	Accelerating the Convergence of Real-Fluid Simulations using Deep Neural Networks
	Abstract
	Introduction and Literature Review
	Real-Fluid Properties and Numerical Framework
	Real-Fluid Properties
	Numerical Framework
	PMBFS (Parallel Multi-Block Flow Solver)
	One-D ThermoCode

	DFNN-BC Model Specification
	Overview of Deep Neural Networks
	Application to Real-Fluid Properties
	Boundary Information
	Canonical Example 1: Zero-Dimensional Thermodynamics
	Canonical Example 2: Zero-Dimensional Thermodynamics
	Integration in Flow Solvers

	Swirl Rocket Injector at Supercritical Conditions
	Geometry and Computational Setup
	Neural Network Design
	Evaluation of the Coupled DFNN-BC and LES Approach
	Instantaneous Flowfield
	Time-Averaged Flowfield

	Computational Cost

	Counterflow Diffusion Flame
	Computational Setup
	Neural Network Design
	Evaluation of the Integrated DFNN-BC and CFD Approach
	Computational Cost

	Summary
	List of Main Symbols

	Data-Driven Deep Learning Emulators for Parametric and Efficient Prediction of Fluid Flow Problems
	Abstract
	Introduction and Related Work
	Deep Learning Emulators
	Overview of the Emulator Models
	Constituent Parts
	Fully-Connected Autoencoder
	Convolutional Neural Network Autoencoder
	Regressor for Latent Space

	Training and Prediction Procedures

	One-Dimensional Viscous Burgers Equation
	Full-Order Model
	Design of Experiments
	Compressed Representations
	Emulated Flowfields
	Computational Cost

	Two-Dimensional Advection-Diffusion-Reaction Equation
	Full-Order Model
	Design of Experiments
	Compressed Representations
	Emulated Flowfields
	Computational Cost
	Sensitivity Analysis

	Summary
	List of Main Symbols

	Learning Spatiotemporal Injection Maps using a Data-Driven Emulator for Rapid Diesel Engine Design
	Abstract
	Introduction and Literature Review
	Internal Flow Simulation and Emulation
	Simulation Framework
	Injector Configuration and Operating Conditions
	Design of Experiments
	Computational Model Setup

	Emulator Framework
	Autoencoder
	Regression Model

	Results and Discussion
	Mesh Analysis
	Internal Flow Dynamics and Sensitivity to the Input Parameters
	Comparison between POD and Autoencoders
	Compressed Representations
	Emulated Flowfields
	Computational Cost

	One-Way Coupled Spray Simulation
	Reacting Spray Modeling Approach
	Results and Brief Discussion

	Summary
	List of Main Symbols

	III Conclusions
	Summary and Future Work
	Summary of Results
	Major Contributions
	Recommendations for Future Work

	Proper Orthogonal Decomposition
	Singular Value Decomposition
	Eigenvalue Decomposition
	Relationships Between the Two Modal Decompositions

	Proof of the Four Fundamental Equations of Backpropagation
	Thermodynamic Relations based on the SRK EOS
	Mixing Rules
	Internal Energy, Enthalpy, Specific Heats, and Speed of Sound
	Partial Derivatives
	Preconditioning Terms

	Parametric Analysis for Neural Network Design for 0D Thermodynamic Example
	DoE Studies for A-M1 Injector Problem
	Description of Cases from the DoE Study S60
	Description of Cases from the DoE Study S36

	References
	Vita

