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SUMMARY

During the past decade there has been significant research efforts in developing

traffic control and management methods based on an aggregated representation of

traffic networks. In fact, the traditional link-level network representation imposes

prohibitive computational costs for typical large-scale urban networks. Thankfully, it

has been observed that at a macroscopic level, the relationship between any pair of

network-average traffic variables can be described by simple functions called macro-

scopic fundamental diagrams (MFD). However, current MFD estimation methods

were mainly conceived for individual arterial corridors and their application to urban

networks has not been validated using extensive empirical data.

This dissertation fills this gap by extending current MFD estimation methods

to large-scale real-life networks, while using empirical data from 41 cities around the

world for calibration and validation. This dissertation further investigates the efficient

application of MFD in travelers’ route choice using the dynamic traffic assignment

(DTA) methods and sets forth the discrete- and continuum-space DTA approaches

are intrinsically similar and can be seen as equivalents on different aggregation levels,

although they previously seemed to be the two extreme ends of the macroscopic DTA

spectrum. A novel continuum-space DTA modeling framework consistent with the

MFD theory and assumptions has been developed and a semi-Lagrangian solution

method has been proposed by splitting up the network into smaller zones, which can

be implemented for minimizing either the travel times of individual users or the total

travel time of all users in the network. Finally, the potentiality of implementing the

MFD in microscopic vehicular emissions estimation models has been explored.

The major findings of this dissertation are as follows. The empirical MFD valida-

tion results identify the most important challenges in both analytical and empirical

MFD estimation approaches as: (i) the distribution of loop detectors within the links,

xvi



(ii) the distribution of loop detectors across the network, and (iii) the treatment of

unsignalized intersections and their impact on the block length. The numerical ex-

periment results using the proposed DTA framework indicate that partitioning the

network into a finer grid of zones can yield more accurate results with respect to the

approximated analytical solutions without significant loss of efficiency, and demon-

strate the potential of application of this framework for real-life networks with arbi-

trary network and zone shapes. The comparison between the results and runtimes

of the emissions estimations conducted in 4 different aggregation levels: lane, link,

corridor, and network, reveals that the efficiency can be significantly improved by

utilizing more aggregated network representation under some considerations. This

will make the MFD a powerful tool for real-time emissions estimation and control.
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CHAPTER 1

INTRODUCTION

Urban congestion is an overgrowing issue in many cities all over the globe. The

continuously-increasing mobility demand in developing communities is resulting in

(i) excessive delays and economic losses, (ii) uncurbed fuel consumption exacerbating

the depletion of non-renewable energy resources, and (iii) emissions from the vehi-

cles provoking local (air pollution, acid rain, health issues) and global (GHG1 effect)

damages. According to the 2019 INRIX traffic scorecard (Inrix, 2020), the average

American driver lost 99 hours a year in traffic in 2019 costing $1, 377, and summing

up to a total of $88 billion lost in time to congestion. Furthermore, the transporta-

tion sector accounted for the largest portion (28%) of total U.S. GHG emissions in

2018 according to a recent fact sheet published by the United States Environmental

Protection Agency (EPA, 2020b). Between 1990 and 2018, GHG emissions in the

transportation sector has increased more in absolute terms than any other sector (i.e.

electricity generation, industry, agriculture, residential, or commercial) due in large

part to the increased demand for both passenger and freight transportation. There-

fore, from a sustainable development perspective, such effects must be studied and

controlled in order to prevent any hindrance to the development process.

The financial, economic and environmental costs associated with congestion have

been vastly studied and control and management methods have been proposed to

improve the level of service and mitigate these costs. Dynamic traffic assignment

(DTA) models have become the mainstream method for urban planning and traffic

control purposes, either under user equilibrium (UE) or system optimum (SO) objec-

tives. However, the prohibitive computation times necessary to achieve equilibrium

1GreenHouse Gas
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on large-scale networks is one of the main challenges faced by practitioners in the real-

time implementation of DTA-based control policies (Ziliaskopoulos et al., 2004). The

main objective of most traffic control strategies has been to alleviate congestion and

to reduce the delay incurred by travelers and emission and fuel consumption control

have only gained interest in the past few years. However, the optimal emission and

fuel consumption strategy may not lead to minimal delay and congestion (Csikós and

Varga, 2011). Therefore, the optimal control strategy must be a trade-off between

optimum emission and optimum delay conditions.

Although most of the current traffic control and management methods rely on a

link-level representation of the transportation networks, significant amount of research

efforts has been devoted in the past decades to develop a better understanding of

the nature and dynamics of urban congestion and the way it propagates through

the urban street network. The idea of an aggregated relationship between average

density and flow over the network dates back to 1960s (Smeed, 1967; Godfrey, 1969).

Later, many researchers have elaborated on this idea and proposed various models to

describe the relationship between the network-wide traffic variables (see e.g., Herman

and Prigogine, 1979; Mahmassani et al., 1984; Ardekani and Herman, 1987).

Daganzo (2007) claims that the relationship between the average flow and density

is an invariant property of the network regardless of the demand and OD patterns.

The empirical verification of existence of such a network-level macroscopic funda-

mental diagram (MFD) for urban city street networks by Geroliminis and Daganzo

(2008) has opened the doors for its application in various traffic control aspects. For

example, DTA models based on an aggregated representation of the network have

become popular in the past decade. These models typically partition the urban net-

work into a number of disjoint regions, where the average regional flow, Q̄(n), is a

function of the accumulation n. On the other hand, there is a vast body of literature

dealing with DTA models in the continuum space consisting of a conservation law in
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two dimensions, supplemented with a Hamilton-Jacobi equation for the route choice.

These models rely on existence of a speed-density equilibrium relationship, which now

can be thought of as the MFD although the connection is not well understood yet.

This dissertation work will study the connection between the MFD-based and

continuum-space macroscopic DTA approaches, bring light to the shortcomings and

gaps in the state of the art, investigate ways to address these shortcomings, and de-

velop more efficient traffic control methods based on a simplified aggregated represen-

tation of the traffic dynamics inside the urban networks. Toward this end, Chapter

2 will critically review the literature on both discrete- and continuum-space DTA

models and provide insights into the shortcomings in the literature. In light of these

insights, Chapter 3 will develop a novel continuum-space DTA modeling framework,

which is consistent with the MFD theory and assumptions.

This simplified multi-reservoir representation has the potential to be utilized for

large-scale network planning and control purposes whether aiming to mitigate conges-

tion and reduce the delays or network-wide emissions and fuel consumption estimation

and control. Chapter 4 will provide a method to minimize the total travel cost in

the networks by establishing semi-DSO conditions in the DTA framework proposed

in the previous chapter. Furthermore, Chapter 5 will try to implement the multi-

reservoir traffic representation into microscopic emissions estimation using the EPA’s

state-of-the-science emissions model, MOVES (MOtor Vehicle Emission Simulator)

(EPA, 2020a).

All the previous chapters rely on the assumption that the MFDs are already

known, while estimation of the MFD might not be straightforward for real-life net-

works. Chapter 6 will try to address this issue by extending an analytical MFD

estimation method to estimate the network MFDs and estimating the corresponding

network parameters by fitting the model to empirical network-wide traffic data from

41 cities around the world. The takeaways from the results presented in this chapter

3



will touch on the required consideration for both empirical and analytical MFD esti-

mation methods. Last but not least, Chapter 7 will present the concluding remarks

of this dissertation work and identify the future research directions.
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CHAPTER 2

DYNAMIC TRAFFIC ASSIGNMENT USING THE MACROSCOPIC

FUNDAMENTAL DIAGRAM

This chapter is modified from the following published paper:

Rafegh Aghamohammadi and Jorge A. Laval (2020b). “Dynamic traffic assign-

ment using the macroscopic fundamental diagram: A Review of vehicular and pedes-

trian flow models”. In: Transportation Research Part B: Methodological 137, pp. 99–

118

2.1 Introduction

Traditional dynamic traffic assignment (DTA) models based on a link-level represen-

tation of the network are becoming the mainstream method for urban planning, either

under user equilibrium (UE) or system optimum (SO) objectives. Despite the vast

body of literature in this field, there are still some important drawbacks. Arguably,

the main challenge faced by practitioners is the prohibitive computation times nec-

essary to achieve equilibrium on large-scale networks, which typically have hundreds

of thousands of links and nodes (Ziliaskopoulos et al., 2004). This makes calibration

and validation of such large networks a daunting and intractable task in real time.

The DTA models generally follow one of the following objectives, either (i) dy-

namic user equilibrium (DUE), where each user tries to minimize his/her own travel

cost, or (ii) dynamic system optimum (DSO), where users are guided in a way to

minimize the total travel cost incurred by all users in the system in a cooperative

manner. DUE objective can be further divided up into (i) reactive dynamic user

equilibrium (RDUE), which minimizes instantaneous travel cost of users, and (ii)

predictive dynamic user equilibrium (PDUE), where each user tries to minimize their
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expected travel cost. Once the equilibrium condition is satisfied through either one

of the objectives, the travel cost on any used or unused possible route for each user

will be equal, i.e. no user can unilaterally reduce his/her travel cost by shifting to

another route. For a detailed review of different DTA methods please refer to Peeta

and Ziliaskopoulos (2001).

In the past 50 years, various theories have been proposed to describe the traffic

flow of urban networks at an aggregate level (Smeed, 1967; Herman and Prigogine,

1979; Herman and Ardekani, 1984; Mahmassani et al., 1984). The recent empirical

verification of the existence of a network-level Macroscopic Fundamental Diagram

(MFD) on congested urban areas in 2008 opened up a new paradigm (Daganzo, 2007;

Geroliminis and Daganzo, 2008). The average flow MFD

Q = Q(n), (average flow MFD) (2.1)

gives the average flow Q on network as a function of the number of vehicles inside

the network, n, arguably independently of trip origins and destinations, and route

choice. This makes the MFD an invaluable tool to overcome the difficulties of tradi-

tional planning models. For example, on a single region one can construct a reservoir

type model to approximate the evolution of the accumulation of vehicles inside the

reservoir. We can then estimate any average traffic variable of interest, provided that

we know the outflow MFD, namely the o-MFD, defined as

o(n) = Q(n)
L

`
, (o-MFD) (2.2)

where L corresponds to the length of network (in total lane-miles) and ` is the trip

length, typically assumed identical for all commuters. The o-MFD, o(n), gives the

number of trip completions per unit time, as a function of n. The simplest model for

the traffic dynamics inside the network is the simple reservoir (or bathtub) model,
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as shown in Fig. 2.1(a), which simply states the conservation of vehicles via the

following ordinary differential equation (ODE):

n
′(t) = λ(t)− o(n), (reservoir dynamics)

n(0) = n0, (initial conditions)

(2.3a)

(2.3b)

where λ(t) is the demand inflow into the network at time t, primes denote differen-

tiation and n0 specify the initial conditions. Fig. 2.1(b) illustrates a typical o-MFD,

where µ is the capacity of the reservoir in vehicles per hour and nj is the maximum

accumulation (jam accumulation) of the reservoir. Fig. 2.1(c) shows the resulting

average speed vs. accumulation diagram for the MFD in part (b) of the figure, where

u is the free-flow speed over the network.

The shape of MFD depends on network topology and control parameters such as

block length, existence of turn-only lanes, and traffic light settings. Up until recently,

estimating the MFD was not an easy task because the method of cuts in Daganzo

and Geroliminis (2008) becomes intractable for real-life networks and one needs to

resort to simulation methods, which defeats the purpose of macroscopic modeling.

However, Laval and Castrillón (2015) shows that (the probability distribution of) the

MFD can be well approximated by a function of mainly two parameters: the density

of traffic lights and the mean red to green ratio across the network. Since these are
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Figure 2.1: Illustration of: (a) reservoir model, (b) typical o-MFD diagram and (c)
resulting Speed-Accumulation MFD.
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observable parameters, we now have a simple method for estimating the MFD on

arbitrary road networks.

We conclude that it is now possible to formulate DTA models based on a macro-

scopic representation of the network. This representation may be expressed in (i)

discrete space, where the modeling region is divided in a finite number of zones with

well-defined MFDs and the traffic dynamics given by the conservation ODEs, Eq.

(2.3); in (ii) continuum space, where there is a MFD at each (x, y)-point.

It turns out that there is a large body of related literature prior to 2008, when

the MFD was verified empirically, that dealt with similar problems. In particular, we

have DTA models in continuum space that consist of a conservation law in two di-

mensions, supplemented with a Hamilton-Jacobi equation for the route choice. Math-

ematically, these models are identical to the continuum-space pedestrian flow models

in the literature, which is why we have included the pedestrian literature here. All

of these models rely on the existence of a speed-density (speed-accumulation) equi-

librium relationship, which could be thought of as the MFD as mentioned in some

of the studies in the literature. We will delve into the rationale of considering the

speed-density function in the continuum-space models as MFD in more detail in the

pertinent section.

Our purpose here is to review the literature in light of the aforementioned consid-

erations. In particular, we would like to identify the current challenges to bringing to

practice efficient macroscopic DTA models for cities.

It is worth mentioning that in order to keep the consistency of the notation through

this chapter, we have changed the notation of some of the studies reviewed here.

Moreover, a bold-typed reference in this chapter indicates the outset of its review.
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2.2 Discrete-space Models

In discrete-space models, the modeling region is divided into a finite number of zones

describing a tessellation of the (x, y)-plane, where each zone has a well-defined MFD

with traffic dynamics given by the conservation ODE, Eq. (2.3). Several clustering

methods for the heterogeneous networks have been proposed in the literature (see e.g.,

Ji and Geroliminis, 2012; Saeedmanesh and Geroliminis, 2017; Lopez et al., 2017).

Here, our focus will be on the studies dealing with the DTA problem using MFD

in the discrete space. A standard assumption in the literature is that in congestion,

demand should be restricted by the congested branch of the o-MFD, S(n):

λ(t) 6 S(n(t)). (supply constraint) (2.4)

To reflect that, in congestion, the inflow cannot exceed the outflow. This is con-

sistent with the idea that all links in the region, including those on its perimeter and

those where vehicles enter the network, have the same (congested) flow and therefore

if demand exceeds it, a queue accumulates outside the region.
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Figure 2.2: Various paths from region 1 to region 4 shown in: (a) regional and (b)
link-level representations (Yildirimoglu and Geroliminis, 2014).
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As the first explicit discrete-space DTA model, Yildirimoglu and Gerolimi-

nis (2014) incorporates MFD into a DTA model in a heterogeneous urban network

divided into homogeneous regions with low-scatter MFDs and finds the dynamic

stochastic user equilibrium (DSUE) numerically. Each path is defined as the se-

quence of regions from the origin to the destination. Fig. 2.2(a) shows three possible

paths from region 1 to region 4 as sequences of different regions. Since the trip lengths

are time-dependent and there may be various link sequences complying with the path

definition, stochastic network loading (SNL) is implemented to address variable trip

lengths within and between regions.

In order to determine the shortest path, the algorithm developed by Chabini

(1998) is implemented to determine the sequence of links leading to the minimum

experienced travel time inside a sequence of regions using the link-level representation

of the network, as seen in Fig. 2.2(b), while the speed on all links in a region is

given by the average speed of the MFD, based on the accumulation level. Then,

the probability of using each path is calculated using a multinomial logit discrete

choice model based on the calculated minimum travel times. Traffic equilibrium is

formulated as a fixed-point problem that is solved in an iterative manner using method

of successive averages (MSA), where the step size is determined a priori.

The proposed model is tested on an arbitrary network divided into 4 regions, where

all the origins are in regions one and two and all the destinations are in region four,

see Fig. 2.2. The results are compared to those of a micro-simulator and a one-shot

(non-iterative) assignment model with the aggregate dynamics, where the path choice

is updated periodically in a way that the vehicles departing at each period choose

their path based on instantaneous travel times measured at the previous period. It

is demonstrated that the one-shot assignment model does not satisfy equilibrium

conditions and overstate the network congestion, whereas the proposed model results

in DSUE condition and less congestion.
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Yildirimoglu et al. (2015) extends the work in Yildirimoglu and Geroliminis

(2014) to a route guidance system based on dynamic system optimum conditions,

where each region is divided into a number of sub-regions with well-defined MFDs

and routes are redefined as sequences of sub-regions instead of sequences of links in

Yildirimoglu and Geroliminis (2014). Two macroscopic traffic models are developed

in region-level and subregion-level, where the latter deploys a more detailed approach.

The transfer of variables from the subregion-based model to the region-based model

has also been described.

In this study, DTA has been achieved using three different approaches: (i) by

establishing PDUE conditions in subregion-level, (ii) by establishing DSO conditions

in subregion-level, and (iii) by providing travelers with route guidance (RG) informa-

tion based on DSO conditions in region-level, where the route guidance commands

are applied in subregion-level. DSO conditions require equal and minimal marginal

travel times on alternative routes at the same departure time. Several numerical

studies have been conducted in order to assess different DTA approaches. The results

reveal that RG approach outperforms DSO and PDUE approaches, except in very

high demands which might be due to the inconsistency between subregion-level and

region-level accumulation values near to the jam accumulation.

Stalling problem is the most significant potential drawback of the models proposed

in Yildirimoglu and Geroliminis (2014) and Yildirimoglu et al. (2015), which can

happen under intensive demand when the number of vehicles inside a (sub)region

reaches the jam accumulation. In this case, all the vehicles in the (sub)region will

have zero speed based on the average-speed MFD. Therefore, all the vehicles inside

the (sub)region will stall, no vehicle will be able to move out of the (sub)region to

resolve the jam, and the model will result in an insoluble unrealistic gridlock, which

will spread to the neighboring (sub)regions.
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Haddad et al. (2013) tries to deal with the macroscopic traffic modeling and

control of a large-scale mixed transportation network consisting of an urban network

and a freeway. The urban network is divided into two regions, where in each region

the dynamics of traffic flow are represented by a well-defined MFD, and the traffic

dynamics of the freeway are modeled according to a simplified version of Daganzo’s

Cell Transmission Model (CTM; Daganzo, 1994a; Daganzo, 1995), called Asymmetric

Cell Transmission Model (ACTM; Gomes and Horowitz, 2006). They investigate

and compare the effect of implementing RDUE and DSO route choice strategies on

network performance using several control policies. The results show that integrating

DSO within the centralized control scheme can increase the network performance by

12 percent compared to the RDUE route choice.

Sossoe and Lebacque (2017) develops an RDUE model for bi-directional traffic

flow based on the traffic flow model proposed in Saumtally et al. (2013) and Sossoe et

al. (2015). The urban network is decomposed into zones, where each zone is meshed

into quadrangular cells, as shown in Fig. 2.3, and four inflow and outflow directions

Figure 2.3: Network disaggregated into zones with quadrangular mesh of cells (Sossoe
and Lebacque, 2017).
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are considered for each cell. Cell flows and exit speeds in each direction are calculated

by cell densities using intersection traffic flow model rules.

Based on the position of the target cell regarding the origin cell, only two possible

outflow directions are assumed from the origin cell toward the designated target cell.

Two possible paths are considered based on each of the possible directions and the

turning proportions in each cell are computed using a weighted logit model, where

the cost of each path is assumed to be the instantaneous travel time.

2.2.1 Numerical Solutions

In the case of discrete-space models, numerical methods are needed to solve (i) the

single-MFD loading problem, and (ii) the network loading problem and equilibrium.

For the solution of (i), the main numerical component is the conservation ODE

(2.3), which is typically solved with Euler’s method, which is a first-order finite dif-

ferences scheme:

n(t+ ∆t) = n(t) + ∆t(λ(t)− o(n)) (2.5)

which converges linearly to the true solution as ∆t→ 0.

Laval et al. (2017) derived analytical solutions for this problem for a family

of demand curves well suited to model rush-hour periods, under the Greenshields’

(parabolic) MFD. These include second degree polynomial, exponential, and logistic

functions. For a general MFD, they found analytical solutions for the autonomous

case, i.e. when the demand is time-independent.

In order to solve (ii), we have seen that the methods used are similar to the

ones used in traditional DTA models with link exit-flow functions (Merchant and

Nemhauser, 1978; Friesz et al., 1989; Carey and McCartney, 2004). Although the

literature review on this vast subject is out of the scope of this manuscript, it is
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important to note that the lessons learned from those models can be directly applied

to these simplified macroscopic models.

2.3 Continuum-space Models

The continuum-space models are useful when the network is dense such that

both the distance between road sections and their longitude is small com-

pared to the size of the region (see e.g., Newell, 1980; Romero and Ben-

itez, 2010). In this case, the network can be considered as a contin-

uum, where the users (vehicles or pedestrians) can circulate at any point

x = (x, y) of the Euclidean, two-dimensional domain Ω ⊂ R2. In this section, we

review the large body of literature on continuum-space models and try to investigate

the connection between these models and aforedescribed discrete-space DTA models.

Continuum-space vehicular DTA and pedestrian flow models are mathematically

similar, as mentioned earlier. The first formulation of this type of models was pro-

posed in the context of pedestrian dynamics by Hughes (2002). In this study, a

two-dimensional walking infrastructure is represented as a continuum with domain

Ω ⊂ R2, as seen in Fig. 2.4. Γo denotes the outer spatial boundary, Γh is the hard

boundary of any obstruction at which no traveler is allowed to enter or exit the walk-

ing facility, and Γd represents the boundary of the destination area. In more general

cases, where there are more than one destination area in the study, Γid will represent

the boundary of each destination area, i.

Let ρ(x, y, t) be the time-varying density of travelers at location (x, y) at

time t, u = (u1(x,y, t), u2(x,y, t)) be the velocity vector, and f(x, y, t) =

(f1(x, y, t), f2(x, y, t)) ≡ ρu be the flux vector. Similar to the conservation of mass

law in fluid dynamics, the conservation of travelers yields

ρt +∇ · f = 0, (2D conservation law) (2.6)
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where ∇ · f = ∂f1/∂x+ ∂f2/∂y is the (spatial) divergence of f . This equation follows

simply by equating the net flow of pedestrians into a small region to the time rate of

accumulation of travelers in the region, and letting the area of the region shrink to

zero (Hughes, 2002). Further derivation of this equation can be found in texts on fluid

mechanics under the name of the continuity equation. In order to model the nature

of the pedestrian flow, Hughes makes three hypotheses. The first hypothesis asserts

that the speed of pedestrians at each point is an isotropic function of the density at

that point and time

‖u‖ = V (x, y, ρ), (2.7)

where ‖u‖ ≡
√
u2

1 + u2
2 is the norm of the velocity vector and V (x, y, ρ) represents

the location-specific speed-density relationship. The general form of this relationship

in the literature, especially the continuum-space vehicular DTA models, is

V (x, y, ρ) = Uf (x, y)e−βρ
2

, (isotropic speed-density relationship) (2.8)
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Figure 2.4: Illustration of continuum space with three destination areas and one
obstruction (lake).
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where Uf (x, y) gives the free-flow speed as an increasing function of the distance to

the destination and β is a positive parameter influenced by the road condition and etc.

After the empirical evidence in 2008 in support of the existence of a MFD on urban

networks, a number of recent studies have interpreted the speed-density relationship

as the MFD (see e.g., Du et al., 2013; Du et al., 2015; Long et al., 2017), but no

attempts exist to verify the assumptions of MFD theory. We will further investigate

this claim in the discussion section of this chapter.

In the second hypothesis, Hughes (2002) defines a potential function, φ(x, y, t),

that represents the cost of reaching the destination starting from (x, y, t) along the

minimum cost path. Therefore, the motion of any pedestrian is in the direction with

maximum potential reduction, i.e. in the direction perpendicular to the isopotential

curves. Since the gradient vector of the potential function, ∇φ ≡ (∂φ
∂x
, ∂φ
∂y

), is perpen-

dicular to these isopotential curves in the direction of maximum increase, it follows

that the flux vector, and as a result the velocity vector, are parallel to the gradient

of the cost potential and in the opposite direction, i.e.:

u // f // −∇φ. (optimum movement direction) (2.9)

where // means “is parallel to”. Thus, the velocity vector is given by

u = − ∇φ
‖∇φ‖

V, (speed vector parallel to streamlines) (2.10)

where ∇φ/‖∇φ‖ is the unit gradient vector of the potential function. If the cost

potential is the travel time, the cost per unit distance is the pace, and we have :

‖∇φ‖ = 1/‖u‖ = 1/V (ρ) (2.11)
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which is an Eikonal PDE. The third hypothesis defines a discomfort function, g(ρ), to

account for the behavior of the pedestrians to avoid higher densities, which satisfies

gV = 1/||∇φ||, (discomfort function g) (2.12)

where g > 1, ∂g/∂ρ > 0. However, Huang et al. (2009b) explain that assuming the

discomfort factor as an increasing function of density makes pedestrians perceive

faster movement at higher densities, which is counterintuitive. Instead, it proposes

∂g/∂ρ 6 0.

With all, Hughes’ (2002) model can be expressed as

 ρt −∇ ·
(
ρ g V 2∇φ

)
= 0,

gV = 1/||∇φ||,
(Hughes’ model)

(2.13a)

(2.13b)

which is not a hyperbolic system, as customary in the 1-D traffic flow literature.

Furthermore, Hughes extended his model to incorporate multiple pedestrian types

representing different walking characteristics and destinations. Segregated potential

functions are defined for each pedestrian type and the same hypotheses are developed

for different pedestrian types. The most important point in this extension is that the

speed of a pedestrian type at each point and time is determined by the total density

of all pedestrian types rather than the density of a single pedestrian type.

Although Hughes’ study does not clarify the physical interpretation of the poten-

tial function and the route choice strategy, it has been the seminal work in the area of

dynamic traffic assignment using continuum space, for both pedestrian and vehicular

traffic. The following subsections will review the existing literature in this field.
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2.3.1 Reactive Dynamic User Equilibrium Models

In the Reactive Dynamic User Equilibrium (RDUE) problem, travelers choose the

route that minimizes the instantaneous travel cost and change their choice en route

as a result (Boyce et al., 1995). Huang et al. (2009b) revisited Hughes’ (2002)

model and demonstrated that the route choice strategy in the model satisfies the

RDUE principle. To see this, let c(x, y, t) be the local cost per unit distance of

movement,

c = ‖∇φ‖, (2.14)

which is an Eikonal equation. It shows that to minimize the instantaneous walking

cost of a traveler, the route choice strategy should satisfy

c
f

‖f‖
+∇φ = 0. (reactive route-choice strategy) (2.15)

The authors prove that if φ is set to zero for (x, y) ∈ Γd, the potential function

can be interpreted as the minimum instantaneous travel cost to the destination. A

general modeling structure consisting of a set of partial differential equations (PDE)

is proposed as



ρt +∇ · f = 0,

‖f‖ = ρ V,

c
f

‖f‖
+∇φ = 0,

(2.16a)

(2.16b)

(2.16c)
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subject to appropriate initial and boundary conditions, typically:


ρ(x, y, 0) = ρ0(x, y), ∀(x, y) ∈ Ω,

f · n̂(x, y) = q(x, y, t), ∀(x, y) ∈ Γo,

φ = 0, ∀(x, y) ∈ Γd,

(2.17a)

(2.17b)

(2.17c)

where n̂(x, y) is the unit normal vector toward Ω on Γo, q(x, y, t) denotes the demand

flow crossing Γo and ρ0(x, y) is the initial density inside Ω. Jiang and Zhang (2011)

introduces a non-decreasing discomfort function and finds the direction of movement

of pedestrians, d̂, using

d̂ =
u

‖u‖
=

f

‖f‖
=

w1 + εw2

‖w1 + εw2‖
, ε > 0, (2.18)

where vectors w1 = − ∇φ
‖∇φ‖ and w2 = − ∇g√

1+‖∇g‖2
are directed along the dynamic

paths of the shortest instantaneous travel time and the higher comfort level, respec-

tively, and ε is a positive constant representing the psychological influence of avoiding

higher densities. The authors reconstruct the pedestrian flow model, Eq. (2.16), by

replacing Eq. (2.16c) with Eq. (2.18) subject to the initial and boundary conditions

of Eq. (2.17) and adding

f · n̂ = 0, ∀(x, y) ∈ Γh, (2.19)

to reflect that no traveler enters or exits the obstructions inside the continuum domain.

The concept of RDUE in continuum space has been adapted for the dynamic

traffic assignment of vehicles inside an urban network by Jiang and Zhou (2014)

for the first time. The urban network is considered as a 2-D continuum with a

configuration similar to Fig. 2.4, where the destination areas are the central business

districts (CBD) inside the urban network. The local travel cost per unit distance is
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reformulated as

c(x, y, t) = κ

(
1

U
+ π0ρ

2

)
, (general local cost function) (2.20)

where κ is the value of time and π0 is a nonnegative constant interpreting other costs,

such as avoiding higher densities. The resulting model is the following conservation

law (CL):

CL :


ρt +∇ · f = q, ∀(x, y) ∈ Ω,

f = −‖f‖ ∇φ
‖∇φ‖

, ∀(x, y) ∈ Ω,

c = ‖∇φ‖, ∀(x, y) ∈ Ω,

(2.21a)

(2.21b)

(2.21c)

subject to initial and boundary conditions similar to Eq. (2.17), where Eq. (2.17b)

is replaced by Eq. (2.19).

Bi-directional pedestrian flow models

In parallel, a number of studies have been conducted to investigate the interaction of

bi-directional pedestrian flows. Jiang et al. (2009) develops the first bi-directional

pedestrian flow model, where two pedestrian groups, a and b, have local walking

speeds Ua and U b dependent on the densities and direction of movement of both

pedestrian groups, i.e.:Ua(ρa, ρb,Ψ) = Uf e
−α(ρa+ρb)

2

e−β(1−cos(Ψ))(ρb)2 ,

U b(ρa, ρb,Ψ) = Uf e
−α(ρa+ρb)

2

e−β(1−cos(Ψ))(ρa)2 ,

(2.22a)

(2.22b)

where ρa(x, y, t) and ρb(x, y, t) are densities of each group, Ψ(x, y, t) is the intersecting

angle between two pedestrian groups, Uf is the free-flow walking speed of pedestrians,

and α and β are the model parameters. This study also assumes that the walking
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cost is equal to the travel time. Using these definitions and assumption, the authors

propose segregated systems of PDEs and initial and boundary conditions similar to

Eqs. (2.16) and (2.17), respectively, for each pedestrian group. The authors observed

that the pedestrians walking to the same destination form stripes, which shows the

cooperative strategy of pedestrians moving in different directions, as discussed in

Daamen and Hoogendoorn (2003). All later bi-directional pedestrian flow models in

the literature are based on the model proposed in this study and suggest improvements

to the model or its numerical solution.

Huang et al. (2009a) extends the bi-directional pedestrian flow model developed

by Jiang et al. (2009) by introducing look-ahead behavior in order to induce a viscosity

effect on movement patterns of pedestrians. The authors first define the look-ahead

displacement as

(δxi, δyi) = ε
f i

‖f i‖
, i ∈ {a, b}, (2.23)

where ε > 0 is a small look-ahead distance of a pedestrian following the crowd in

front of him corresponding to the traffic condition ahead at location (x+δxi, y+δyi).

The walking speed function with look-ahead effect for each group of pedestrians is

given by

 Üa(x, y, t) = Ua
(
ρa(x+ δxa, y + δya, t), ρb(x, y, t),Ψ

)
,

Ü b(x, y, t) = U b
(
ρa(x, y, t), ρb(x+ δxb, y + δyb, t),Ψ

)
,

(2.24a)

(2.24b)

where Ua and U b are as defined in Eq. (2.22). The rest of the model is the same as the

model developed in Jiang et al. (2009). Xiong et al. (2011) proposes a high-order

computational scheme for the numerical solution of the bi-directional pedestrian flow

model proposed in Jiang et al. (2009). This study found that the high-order scheme
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can obtain the same resolution on much coarser meshes with less computation time,

compared with the lower-order schemes.

Jiang et al. (2012) revisits the bi-directional pedestrian flow model proposed

in Jiang et al. (2009) and introduces a more general local cost function, rather than

assuming it to be equal to the travel time, as

ci(x, y, t) =
1

U i(ρa, ρb,Ψ)
+ γ gi(ρa, ρb, x, y, t), i ∈ {a, b}, (2.25)

where γ is a weighted factor and gi represents the discomfort function for pedestrian

group i. Then, the authors reconstruct their previous model by substituting the local

cost function with Eq. (2.25). They claim that numerical results of the model conform

well to the experimental data and show that the model is rational and efficient.

2.3.2 Predictive Route Choice

In the Predictive Dynamic User Equilibrium (PDUE) problem travelers choose their

routes to minimize the actual travel cost they will experience, in contrast to the RDUE

problem, where travelers seek to minimize their instantaneous travel cost. Thus, the

cost potential function φ(x, y, t) in the continuum-space PDUE models represents the

actual travel cost (to the destination incurred by a traveler who leaves location (x, y)

at time t toward the destination). The first continuum-space pedestrian PDUE model

is developed by Hoogendoorn and Bovy (2004) for multiple pedestrian groups,

where each group has a different destination, as


ρit +∇ · f i = qi(x, y, t), (CL equation)

− φit = min
ũ
{L(x, y, t, ũ) + ũ · ∇φi}, (HJB equation)

ui = argmin{L(x, y, t, ũ) + ũ · ∇φi},

(2.26a)

(2.26b)

(2.26c)
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where, L is the running cost, ũ is any possible velocity vector and ui is the optimal

velocity vector of group i. This model is comprised of two coupled PDEs; the first

PDE is a CL equation and the second PDE is a Hamilton-Jacobi-Bellman (HJB)

equation. In order to solve the model numerically, the authors presented a heuristic

iterative approach, where the HJB and the CL equations are calculated in each iter-

ation, respectively. Thus, the minimum value problem has to be solved twice in each

iteration.

Jiang et al. (2011) proposes a PDUE model for vehicular traffic in an urban

network with only one CBD based on the seminal work of Hughes (2002). The local

cost per unit distance is redefined as

c(ρ) = κ

(
1

V (ρ)
+ π (ρ)

)
, (general local cost function) (2.27)

where π(ρ) is a function representing other density-dependent costs. The authors

assert that the PDUE principle is satisfied, if the following conditions are met


(u1, u2, 1) ‖ −∇̄φ,

‖∇̄φ‖ =
cV√
V 2 + 1

,

(2.28a)

(2.28b)

where ∇φ =
(
∂φ
∂x
, ∂φ
∂y
, ∂φ
∂t

)
is the potential gradient including the time component.

Then, they develop a vehicular PDUE model based on these definitions and assump-

tions. Nevertheless, Du et al. (2013) has revisited this model and claimed that

the path-choice strategy is not appropriate, e.g., when the cost function is time-

independent, φt = 0, the condition stated by Eq. (2.28a) cannot be satisfied. This

study also indicates that there is an inconsistency in the units of one the PDE equa-

tions in the model and they prove that this equation is redundant.
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To resolve these issues, a special case is considered, where the travel cost is equal

to the time, and later a general PDUE model is proposed, whereas the local travel cost

per unit distance is given by Eq. (2.27). The final model consists of a conservation

law (CL) part similar to Eq. (2.21) and a Hamilton-Jacobi (HJ) part, governing

φ(x, y, t):

HJ :



1

V
φt − ‖∇φ‖ = −c, ∀(x, y) ∈ Ω,

φ(x, y, t) = φCBD, ∀(x, y) ∈ Γd,

φ(x, y, tend) = φ0(x, y), ∀(x, y) ∈ Ω.

(2.29a)

(2.29b)

(2.29c)

The authors interpreted φCBD as the cost of entering to the CBD and φ0(x, y) as

the instantaneous travel cost from any point at time t = tend to the CBD, when there

is no traffic in the city and the travel cost is only related to the travel time, computed

by an Eikonal equation as:

 ‖∇φ0‖ = c(x, y, tend), ∀(x, y). ∈ Ω

φ0 = φCBD, ∀(x, y) ∈ Γd.

(2.30a)

(2.30b)

Notice that the initial time in the CL portion is t = 0, whereas in the HJ portion

the initial time is t = tend. Du et al. (2015) revisits the model proposed in Hoogen-

doorn and Bovy (2004) for vehicular traffic for the sake of simplifying the numerical

solution. In this study, the authors have reduced the HJB equation to a HJ equation

by removing the minimum value problem from the solution procedure and computing

the actual travel cost when the velocity vector is known. Hence, the minimum value

problem is only solved once in each iteration in the CL portion of the model. They
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first reconsider the speed function as an anisotropic function as

U i = Uf h
(
ψi(x, y, t)

)
g

(∑
i

ρi

)
, (anisotropic speed-density relationship) (2.31)

where Uf is the free-flow speed, ψi is the angle between the direction of movement

of group i and the x-axis, h(ψi) denotes the adjustment to the free-flow speed due

to the direction of movement, and g(
∑
ρi) is a monotonically decreasing discomfort

function. The local travel cost per unit distance for each group is defined as Eq.

(2.27). The proposed model consists of two systems of PDEs: the CL portion and

the HJ portion. The HJ portion of the model for each group is the same as Eq. (2.29)

and the CL PDEs and their initial and boundary conditions are expressed as:



ρit +∇ · f i = qi, ∀(x, y) ∈ Ω,

U i = Uf h g, ∀(x, y) ∈ Ω,

ψi = argmin
ψ̃
pi(x, y, t, ψ̃), ∀(x, y) ∈ Ω,

f i · n̂ = 0, ∀(x, y) ∈ Γo ∪ (∪m6=i)Γmd ,

ρi(x, y, 0) = ρ0, ∀(x, y) ∈ Ω,

(2.32a)

(2.32b)

(2.32c)

(2.32d)

(2.32e)

where the CBDs other than the destination CBD of group i are viewed as obstructions

for the travelers of group i and pi is an auxiliary function defined as

pi(x, y, t, ψ̃) ≡ ∇φi(x, y, t) · ũi(x, y, t, ψ̃) + c̃i(ψ̃)Ũ i(ψ̃). (2.33)

Lin et al. (2017) extends the model proposed in Du et al. (2013) to a polycentric

urban city, where the speed and local cost per unit distance are computed separately

for each group of vehicles based on Eqs. (2.8) and (2.27), respectively, using the total

density instead of the individual density of each group.
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2.3.3 Combination of Reactive and Predictive Route Choice

We observed that the reactive and predictive route choice behaviors have been com-

bined in some papers in order to obtain more realistic models. Xia et al. (2009)

proposes a pedestrian DUE model founded on the hypothesis that ”the pedestrians

seek to minimize their estimated travel cost based on memory but temper this behav-

ior to avoid high densities”. In this hypothesis, the memory effect is the predictive

or global portion and the behavior to avoid higher densities is the reactive or local

portion of the route choice strategy. The route choice strategy is stated as

f(x, y, t)//−∇φ(x, y)− ω∇c (ρ) , (2.34)

where φ(x, y) is the time-independent minimum travel cost based on memory, c(ρ)

denotes the density-dependent costs per unit distance of movement at time t, and ω

is a positive constant representing the psychological influence. The function φ(x, y)

is given by an Eikonal equation and the function c(ρ) is given by

c(ρ) =
1

V (ρ)
+ β g(ρ), (2.35)

where V (ρ) = Uf

(
1− ρ

ρmax

)
is the walking speed, g(ρ) = ρ2 is the discomfort func-

tion, β reflects the sensitivity of the pedestrians’ route choice to discomfort, and ρmax

is the jam density. Hoogendoorn et al. (2015) suggests another model for combin-

ing the global and local route choice behaviors, where the authors consider multiple

groups of pedestrians with different destinations. The composite cost function for

each group, i, is defined as

ωi = φi + ϕi, (2.36)
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where φi is the global cost function representing the minimum cost of getting to the

destination, Γid, from (x, y, t), and ϕi is the local cost function reflecting additional

walking costs due to local (unforeseen) fluctuations in the density, which is composed

of crowdedness and delay components, as

ϕi = ϕcrowdednessi + αiϕ
delay
i , (2.37)

where αi is the weight representing the relative importance of the two factors for each

pedestrian group. The route choice strategy gives the direction of movement as

fi//−∇ωi = −∇φi −∇ϕi. (2.38)

The crowdedness term in local cost function describes the tendency of the pedes-

trians to avoid areas with higher densities and the delay term reflects the expected

increase in delay caused by local densities. The authors also did some simulation

experiments in order to investigate the impact of different factors introduced in their

new model.

2.3.4 Higher-order Macroscopic Models

The first-order models that have been discussed earlier are based on the assump-

tion that the traffic flow is always in the equilibrium state and hence, they are not

capable of describing non-equilibrium phenomena such as stop-and-go waves and for-

mation of congestions. Jiang et al. (2010) introduces a second-order pedestrian

flow model incorporating an equilibrium of linear momentum equation in addition to

the conservation of mass Eq. (2.6), as:

ut + (u ·∇)u =
V (ρ) d̂− u

τ
−R′(ρ)

∇ρ
ρ
, (second-order conservation law) (2.39)
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where u(x, y, t) is the average pedestrian velocity vector, d̂ = (d1, d2) denotes the unit

optimal movement direction, τ is the relaxation time of u toward the optimal velocity

(taken as 0.5 s by the authors), R(ρ) denotes the traffic pressure, which describes the

response of pedestrians to compression, and R′(ρ) = c2
s(ρ), where cs is the sonic

speed at which small disturbances propagate in a crowd. The first term at the right

side of Eq. (2.39) is called the relaxation term, which represents the relaxation to

equilibrium, and the second term is called the anticipation term, which reflects the

reaction to the surrounding traffic condition. Equation (2.39) can be rewritten more

explicitly in the components form as


∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
=
V d1 − u1

τ
− c2

s

ρ

∂ρ

∂x
,

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
=
V d2 − u2

τ
− c2

s

ρ

∂ρ

∂y
.

(2.40a)

(2.40b)

As usual, the velocity vector is assumed tangential to the gradient of −φ, i.e.

satisfying the Eikonal PDE (2.14). The final RDUE model proposed in Jiang et al.

(2010) is a system of PDEs comprised of the CL Eq. (2.6), the equilibrium of linear

momentum Eq. (2.39), and the Eikonal Eq. (2.14). Using numerical experiments,

the authors found that the traffic becomes more unstable as the anticipation factor

decreases, which is explained more explicitly later in Jiang et al. (2016a).

Jiang et al. (2016b) develops a second-order PDUE pedestrian flow model using

Eqs. (2.6) and (2.39) for the CL part and Eq. (2.29) for the HJ part. They model

is validated using experimental pedestrian flow data collected under non-congested

conditions. For congested pedestrian flow conditions, using numerical experiments,

this study found that increasing the anticipation factor results in significant reduction

of the density near bottlenecks.

Jiang et al. (2016a) compares the RDUE and PDUE models developed by Jiang

et al. (2010) and Jiang et al. (2016b), respectively, and evaluates their behavior by
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numerical experiments. In order to conduct these numerical experiments, the authors

define the equivalent traffic sonic speed as

cs(ρ) = σρ, (2.41)

where σ is the anticipation degree representing the anticipation behavior of pedestri-

ans to compression. The RDUE and PDUE models are tested using different values

for the anticipation degree and they found that if the pedestrians have strong an-

ticipation consciousness, i.e. σ > 0.33, traffic flow is always in a stable state, less

congestion occurs, and there are no significant difference between two models. On

the contrary, if the anticipation degree falls below a critical value, e.g. σ < 0.33,

traffic instability occurs, density increases at certain points resulting in congestion,

and the RDUE model exhibits more uniform density distribution compared to the

PDUE model.

2.3.5 Dynamic System Optimum

In dynamic system optimum (DSO) assignment problems the goal is minimizing the

total travel cost for all of the travelers in the system. Solving DSO problem using

macroscopic fundamental diagram is yet an underdeveloped area, with Tao et al.

(2014) being the only DSO model using the continuum space for vehicular traffic.

This model is based on the assumption that the intelligent transportation system

(ITS) and the advanced traveler information system (ATIS) have perfect information

about the time-varying traffic status and the travelers choose and change their route,

if needed, entirely on the information given by the ITS and ATIS. The local cost per

unit distance is defined as

c(ρ) =
κ

V (ρ)
, (2.42)
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where κ is the value of time and V (ρ(x, y, t)) ≡ Uf (x, y)e−βρ. The system cost is

expressed as:

Φ(ρ, θ) = κ

∫∫∫
Ω×T

ρ dx dy dt, (system cost) (2.43)

where θ(x, y, t) is the directed angle of speed, representing travelers’ route choice.

The DSO model is formulated as an optimization problem with a feasible region in

the function space as:

min Φ(ρ, θ), (2.44)

subject to the constraints



ρt +∇ · f = q, ∀(x, y) ∈ Ω,

V = ‖u‖, ∀(x, y) ∈ Ω,

ρ(x, y, 0) = ρ(x, y, tend) = 0, ∀(x, y) ∈ Ω,

ρ(x, y, t) = 0, ∀(x, y) ∈ Γo ∪ Γh.

(2.45a)

(2.45b)

(2.45c)

(2.45d)

Since the analytic properties of the proposed model were not studied by the au-

thors, they were not able to develop a global optimal solution for the model. Instead,

they derive a locally optimal solution with low computation cost.

2.3.6 CTM-based Models

The aforedescribed continuum-space models are solved numerically using standard

PDE solution methods for discretization of continuum space and time. Hänseler

et al. (2014) argues that the numerical discretization schemes of continuum space

are relatively costly, which make those models infeasible for large-scale applications.

The authors propose a discrete-time discrete-space pedestrian flow model, named

30



PedCTM, which utilizes a discretization scheme similar to Daganzo’s Cell Transmis-

sion Model (CTM; Daganzo, 1994a; Daganzo, 1995). We have included this model in

the continuum-space models category since PedCTM can be viewed as a numerical

solution method of a conservation law in 2-D, similar to the CTM for one spatial

dimension.

The period of analysis is discretized into intervals, τ , with uniform length ∆t.

The 2-D walking domain is partitioned into cells, κ, with uniform shape, which are

assumed to be partitioned orthogonally with spacing size of ∆L. The pedestrians are

assumed to be distributed homogeneously within a cell and their movements are not

modeled explicitly.

A pedestrian group, i, is defined by a route ηi, a departure time interval τi, and

a size Xi. A route can be defined as a sequence of areas, η = (ro, r1, ..., rd), where

each area r is a set of cells and ro and rd denote the origin and destination areas,

respectively. Inside each route, several sequences of cells can connect the origin area

to the destination area, where each sequence of cells is called a path and the en-route

path choice is made by computing turning proportions at each cell.

In order to describe the internal dynamics of the model, a normalized PedCTM

model is developed, which is independent of the absolute values of free-flow speed

and jam density. This model utilizes an isotropic normalized cell-based version of the

speed-density relationship proposed by Weidmann (1993) as

υ(ρ̄κ,τ ) = 1−exp

(
−ω(

1

ρ̄κ,τ
− 1)

)
, (normalized speed-density relationship) (2.46)

where υ is the normalized prevailing walking speed function, ρ̄κ,τ represents the nor-

malized density of cell κ at time interval τ and ω is a dimensionless parameter. The

route choice behavior of pedestrians is described using route-specific cellular potential
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fields P η
κ,τ , given by

P η
κ,τ = αzη

κ − βDκ,τ , (potential field) (2.47)

where zη
κ is the static floor field, which is assumed to be the minimum distance

(number of cells) to be traversed from cell κ toward the destination area along route

η, Dκ,τ represents the dynamic floor field, which is taken as υ(kκ,τ ) and α and β are

positive weights. If the set of all adjacent cells to κ that are part of route η is denoted

by Θη
κ, the turning proportion corresponding to link κ → χ ∈ Θη

κ is expressed as

δηκ→χ,τ =
exp

(
−P η

χ,τ

)∑
χ′∈Θηκ

exp
(
−P η

χ′,τ

) . (turning proportion) (2.48)

In this manner, the route-specific potential field can be interpreted as disutility of

each cell in the route toward the destination area and the pedestrians try to decrease

their disutility along the route in a reactive manner. The results of two real case

studies reveal a realistic behavior of the framework under different conditions and

a slightly better performance compared to social force model (SFM; Helbing and

Molnár, 1995).

Hänseler et al. (2017) proposes an anisotropic discrete-time discrete-space

pedestrian flow model based on a stream-based pedestrian fundamental diagram

(SbFD). Unlike Hänseler et al. (2014) where areas were comprised of cells, in Hänseler

et al. (2017), each area, ζ, contains a number of streams, s, and the set of streams

associated with area ζ is denoted by Λζ . Each route, η, consists of a pair of origin

and destination nodes and a set of streams ,Λη, connecting them. The walking speed

of stream s in area ζ is computed by

Us = Uf exp

(
−ϑ(

Nζ

Aζ
)2

) ∏
s′∈Λζ

exp

(
−β(1− cos θs,s′)

Ms′

Aζ

)
, (2.49)
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where Nζ and Aζ are the accumulation and surface size of area ζ, Ms′ denotes the

number of pedestrians in stream λ′, θs,s′ is the intersection angle between streams s

and s′, and ϑ and β are the model parameters. At each node Υ, where the streams

intersect, a potential value P η
Υds ,τ

is defined as the remaining walking time to desti-

nation d using stream s in route η that can be calculated using any shortest path

algorithm, e.g., Dijkstra (1959). A path choice strategy similar to Hänseler et al.

(2014) is proposed, which incorporates a weighted logit-type model at each node.

The performance of the model is compared to a few isotropic specifications (Wong

et al., 2010; Weidmann, 1993) at the example of two case studies. The analysis

reveals that the consideration of anisotropy improves the accuracy of the proposed

model compared to the tested isotropic specifications. Overall, the model proposed

in Hänseler et al. (2017) can be seen as an analogy for the PedCTM model (Hänseler

et al., 2014), where the cell-based fundamental diagram, potential fields and path

choice are replaced by stream-based ones and anisotropy is also taken into account.

2.3.7 One-dimensional Spatial Model

Unlike previous models, which are in two spatial dimensions, Laval et al. (2017)

incorporates a single spatial dimension to describe the changes in the area covered by

the MFD. This study investigates DUE conditions on a single origin-destination pair

with two alternative routes, a freeway with a fixed capacity µ0 and the surrounding

city-streets (CS) network, described by an o-MFD with capacity µ1. The authors

first describe the single MFD dynamics and find analytical solution for special cases.

Subsequently, they add a freeway alternative under two scenarios for the CS network:

(i) constant network length, and (ii) variable network length to account for the spatial

extent of congestion. In the first scenario, the combined system dynamics are given
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by the following ODE


k′(t) =

b$(t)− kv
1− bmv′/v2

, (reservoir dynamics),

k(0) = k0, (initial conditions),

(2.50a)

(2.50b)

where k is the occupancy, t is measured in units of free-flow travel time inside the

MFD, τ ∗, b is a positive constant defining the shape of the MFD, and v(k) is a

dimensionless version of the speed-occupancy MFD. The dimensionless parameters

m and $ are given by

m =
µ0

µ1

, (Freeway to CS capacity ratio), (2.51a)

$(t) ≡ λ(t)− µ0

µ1

=
λ(t)

µ1

−m, (MFD demand intensity). (2.51b)

The authors were able to solve the ODE (2.50) analytically for the autonomous

case, where the demand is constant over time and the evolution of the system de-

pends only on the occupancy. For scenario (ii) the authors incorporate continuum

approximation (CA), proposed by Laval (2009), for off-ramps into their proposed for-

mulation, as seen in Fig. 2.5. The discrete off-ramps are considered as a continuum,

where vehicles can exit the freeway to CS at any location upstream the bottleneck

along 0 ≤ x ≤ ξ(t), where x = 0 is the bottleneck location and ξ(t) is a characteris-

tic of DUE solution, named information wave, marking the most upstream location

where vehicles divert from the freeway to the CS.

The implementation of CA in the proposed model makes it able to cope with

time-varying network and trip lengths for the MFD. Notwithstanding the fact that

analytical solutions become impossible for variable network and trip lengths, the

numerical solutions strongly suggest that the proposed system have many analogies

to the constant length model. The main difference is that gridlock does not happen in
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the proposed model and the steady-state solution is independent of surface network

parameters, when time is expressed in units of MFD free-flow travel time.

City Streets MFD
Coverage Area

Freeway

D
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n
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n

Figure 2.5: Freeway vs. City streets network with continuum approximation for
off-ramps (Laval et al., 2017).
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Figure 2.6: Square-root range in speed-density relationship (Hughes, 2002).
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2.4 Solution Methods for Continuum-Space models

2.4.1 Analytical Solutions for Hughes’ Model

Hughes (2002) shows that when the speed-density relation is proportional to ρ−1/2,

i.e.

V (ρ) = aρ−1/2, (2.52)

where a is a positive constant, then his formulation has a symmetry under conformal

mappings, i.e. Eq. (2.6) looks identical before and after the transformation. These

maps make it possible to obtain analytical solutions to problems with obstructions

of complicated shape. There are map dictionaries where one can identify which

particular mapping will transform the shape of the obstructions to lines or circles, for

which the solution is known.

Since the square root approximation, Eq. (2.52), is not a good representation of

speed for all densities, Hughes assumes that it holds inside a density range, which

we can call the “square-root” range; see Fig. 2.6. Unfortunately, when the density

falls outside of this range, the symmetry is lost and the solution method becomes

convoluted.

Later in this chapter, we will show that the conformal mapping symmetry is valid

for all density ranges and for any speed-density relationship. In fact, Eq. (2.52) is

needed only to simplify Hughes’ model to Laplace’s equation,

∇2φ = 0, (Laplace’s equation) (2.53)

36



whose solution is well understood. To see this, notice that the conservation law Eq.

(2.13a) can be expressed as

ρt −
(
2ρV ′∇ρ · ∇φ+ (ρ∇2φ+∇ρ · ∇φ)V

)
V = 0, (2.54)

by expanding the divergence term and assuming the discomfort function g(ρ) = 1

without loss of generality. The reader can verify that the two terms of involving

∇ρ ·∇φ cancel out under Eq. (2.52) and since ρt = 0 in steady-state, we end up with

Laplace equation as sought.

Hughes also identifies two limit cases and proposes simpler equations that the

solution satisfies in steady state:

1. at low free-flow densities ‖∇ρ‖ >> ‖∇φ‖, therefore the CL Eq. (2.13a) becomes

∇ρ · ∇φ ≈ 0 (2.55)

which means that lines of constant density are almost perpendicular to lines of

constant potential.

2. at high congested densities ‖∇ρ‖ << ‖∇φ‖, thus the CL becomes

∇2φ ≈ 0 (2.56)

Although not shown in the original study, we can obtain these results using Eq.

(2.54) and letting ρt = 0 and ∇2φ = 0 for the first case, and ‖∇ρ‖ ≈ 0 for the second

case.

37



2.4.2 Numerical Solutions

In order to solve the continuum-space models, various numerical solutions are pro-

posed in the literature. Most of the solution procedures use a combination of stan-

dard solution methods for PDEs in order to discretize the continuous space and time.

Conservation law and Hamilton-Jacobi equations are often solved by methods such

as finite volume methods (FVM), finite difference methods (FDM), including Lax-

Friedrichs (LF) and weighted essentially non-oscillatory (WENO) schemes, and finite

element methods (FEM), including discontinuous Galerkin method (DGM).

Fast sweeping method (FSM) and fast marching method (FMM) are mostly uti-

lized to solve the Eikonal equation. Most of the studies use total variation diminish-

ing Runge-Kutta (TVDRK) for time discretization and/or integration. Some of the

PDUE studies have also viewed the model as a fixed-point problem and have solved

the CL and HJ parts simultaneously using self-adaptive method of successive averages

(SA-MSA). Table 2.1 presents the different solution methods used in each study.

2.5 Discussion and Outlook

In this section, we discuss our main findings in terms of the observed trends in the

literature, and identify issues that deserve further research. Table 2.1 presents an

overview of the studied papers and their specifications. The lines between some rows

delimit the studies reviewed in different sections and subsections of this chapter, where

the bold-faced characteristic at each row specify the common feature of the models

in the pertinent subsection.

2.5.1 The Missing Connection Between Continuum-space and Discrete-space Models

As mentioned earlier in the third section, a few studies in the continuum-space DTA

literature have briefly mentioned MFD as a justification for the speed-density rela-
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tionship traditionally used within this modeling approach (Du et al., 2013; Du et al.,

2015; Long et al., 2017). However, the speed-density relationships used in most of

the studies are similar to Eq. (2.8), which might be convenient for mathematical

purposes but is unrealistic (infinite jam density) and does not explicitly incorporate

the effects of network topology and signal timing.

Nevertheless, we agree that the speed-density relationship should be the MFD (as

opposed to a traditional fundamental diagram, FD), mainly because in a well-defined

continuum-space DTA model, the speed-density relationship has to incorporate the

influence of intersections. To illustrate the point more clearly, Fig. 2.7 demonstrates

a simple case where there is a signalized intersection downstream of a link. Fig. 2.7(a)

shows the uninterrupted link FD (without the intersection), where u is the free-flow

speed, w is the wave speed and the blue line indicates the intersection capacity, which

is a function of the ratio of green time over the cycle length. Combining the effect

of intersection with the supposed uninterrupted FD results in Fig. 2.7(b), the MFD

of the link upstream of the intersection. We think that it is preferable to call the
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Table 2.1: Overview of the macroscopic DTA (discrete-/continuum-space) studies

Source Granularity
Pedestrian or
Vehicular

Route
Choice

Multi-
Destination

Directionality
Solution
Methods∗

Main Contribution

Yildirimoglu and

Geroliminis

(2014)

Discrete Vehicular Predictive Yes Isotropic
SNL, MSA,

Logit

Divides heterogeneous urban network into

homogeneous regions and defines the route

as the sequence of regions

Yildirimoglu

et al. (2015)
Discrete Vehicular

Predictive

& Marginal
Yes Isotropic MSA

Divides regions into sub-regions and redefines

the route-choice as the sequence of

sub-regions

Haddad et al.

(2013)

Discrete &

Freeway
Vehicular

Reactive

& DSO
Yes Isotropic MPC

Shows that integrating DSO within

centralized control scheme increases network

performance compared to RDUE

Sossoe and

Lebacque (2017)
Discrete Vehicular Reactive Yes Bi-directional Logit

Decomposes the urban network into zones,

which are meshed into cells, and computes

the turning proportion in each cell using logit

Hughes (2002) Continuum Pedestrian — Yes Isotropic
Conformal

maps

Develops the framework for continuum

modeling of DTA

Huang et al.

(2009b)
Continuum Pedestrian Reactive No Isotropic

WENO, FSM,

TVDRK

Proves that Hughes (2002) satisfies the

RDUE conditions

Jiang and Zhang

(2011)
Continuum Pedestrian Reactive No Isotropic

DGM,

TVDRK
Introduces a new route-choice strategy

Jiang and Zhou

(2014)
Continuum Vehicular Reactive No Isotropic

FVM, FSM,

TVDRK

Extends the concept of RDUE to the

vehicular traffic

Jiang et al.

(2009)
Continuum Pedestrian Reactive Yes, 2 Bi-directional

FVM, FMM,

TVDRK

Extends the RDUE concept to bi-directional

pedestrian flow

Huang et al.

(2009a)
Continuum Pedestrian Reactive Yes, 2 Bi-directional FDM, LF

Extends the model developed in Jiang et al.

(2009) by introducing look-ahead behavior

Xiong et al.

(2011)
Continuum Pedestrian Reactive Yes, 2 Bi-directional

WENO, LF,

FSM, TVDRK

Proposes a different numerical solution

procedure for the model developed in Jiang

et al. (2009)

Jiang et al.

(2012)
Continuum Pedestrian Reactive Yes, 2 Bi-directional

FVM, FSM,

TVDRK

Revisits the model developed in Jiang et al.

(2009) and introduces a more general local

travel cost

Hoogendoorn

and Bovy (2004)
Continuum Pedestrian Predictive Yes Isotropic FDM

Develops the first pedestrian PDUE model

comprised of CL and HJB parts

Jiang et al.

(2011)
Continuum Vehicular Predictive No Isotropic

FVM, FEM,

LF, TVDRK

Develops the first continuum-space PDUE

model for vehicular traffic

Du et al. (2013) Continuum Vehicular Predictive No Isotropic
LF, FSM/

SA-MSA

Revisits the route-choice strategy proposed in

Jiang et al. (2011)

Du et al. (2015) Continuum Vehicular Predictive Yes Anisotropic LF/ SA-MSA

Revisits the model developed in Hoogendoorn

and Bovy (2004) for vehicular traffic and

reduces the HJB to HJ

Lin et al. (2017) Continuum Vehicular Predictive Yes Isotropic
FVM/

SA-MSA

Extends the model developed in Du et al.

(2013) to polycentric urban city

Xia et al. (2009) Continuum Pedestrian
Predictive
& Reactive

No Isotropic
DGM, FSM,

TVDRK

Proposes a route-choice strategy including

the global and local route-choice behaviors

Hoogendoorn

et al. (2015)
Continuum Pedestrian

Predictive
& Reactive

Yes Isotropic FDM
Proposes a more detailed local route-choice

formulation compared to Xia et al. (2009)

Jiang et al.

(2010)
Continuum Pedestrian Reactive No Isotropic

FVM, FSM,

TVDRK

Develops a second-order RDUE model

incorporating equilibrium of linear momentum

Jiang et al.

(2016b)
Continuum Pedestrian Predictive No Isotropic

FVM, FSM/

SA-MSA

Develops a second-order PDUE model similar

to Jiang et al. (2010)

Jiang et al.

(2016a)
Continuum Pedestrian

Predictive

& Reactive
No Isotropic

FVM, FSM/

SA-MSA

Compares the second-order RDUE (Jiang

et al., 2010) and PDUE (Jiang et al., 2016b)

models

Tao et al. (2014) Continuum Vehicular DSO No Isotropic FVM
Finds the DSO solution instead of the DUE

solution

Hänseler et al.

(2014)
Cells Pedestrian Reactive Yes Isotropic Logit

Develops PedCTM model and incorporates

cell-based logit route-choice

Hänseler et al.

(2017)
Areas Pedestrian Reactive Yes Anisotropic Logit

Replaces the cell-based route-choice in

Hänseler et al. (2014) to link-based
route-choice using logit

Laval et al.

(2017)

Continuum
& Freeway

Vehicular — Single O-D Isotropic
Analytical
Solution

Investigates the DUE conditions for CS

network with an alternative Freeway

∗ DGM: Discontinuous Galerkin Method, FDM: Finite Difference Method, FEM: Finite Element Method, FMM: Fast Marching
Method, FSM: Fast Sweeping Method, FVM: Finite Volume Method, LF: Lax-Friedrichs method, MPC: Model Predictive Control,
MSA: Method of Successive Averages, SA-MSA: Self-Adaptive Method of Successive Averages, SNL: Stochastic Network Loading,
TVDRK: Total Variation Diminishing Runge-Kutta, WENO: Weighted Essentially Non-Oscillatory
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resultant diagram MFD, aka Network Fundamental Diagram, since the effects of

network are also included in it, although this interpretation may not fit the common

belief regarding MFD that it has to be defined over a large network. The same thing

can be done at the corridor level, and also at the network level. This is equivalent

to the well-known method of cuts used to obtain MFD (Daganzo and Geroliminis,

2008).

Much in the same way as in 1-D continuum traffic flow theory, where the discrete

vehicle trajectories are “liquefied” in its vicinity, in 2-D continuum models it is the

network, in particular the effects of intersections, that are spread out within a vicinity.

In this regard, any equation describing the fundamental relationships of traffic flow in

any portion of such dense network has to take into account the network effects, and

thus it is a MFD and not a FD. Hence, a crucial direction for future research is the

formulation of speed-density relationship in continuum-space DTA framework based

on the assumptions and methods of MFD theory.

Regarding the connection with the MFD in discrete-space models, recall that in

these models the spatial dimension is omitted after assuming that the network is more

or less homogeneous in a given region. This means that if the spatial dimension were

to be re-introduced, then at each (x, y) point in the region the continuum MFD should

u
w

Intersection

Capacity

Uninterrupted

Link FD

F
lo

w

Density

F
lo

w

Density

ð
Link MFD considering

the network effects

(a) (b)

Figure 2.7: Simple case of obtaining MFD of a link upstream of a signalized intersec-
tion.
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be a scaled version of the discrete-space MFD. This interpretation is consistent with

the premise of a well-defined connection between discrete and continuum models: a

well-defined discrete-space model can be interpreted as the numerical solution of a

continuum model; i.e., when the size of sub-regions tends to zero while keeping the

total area constant, the discrete model tends to the continuum model.

2.5.2 From MFD to the Conservation Law

No attempts can be found in the continuum-space literature to verify whether or not

the assumptions of MFD theory are met. This is perhaps because in existing models,

travelers do not exit within the region except at discrete destinations. But in the case

of origins and destinations distributed randomly in the region, we can postulate the

conservation law with source term, i.e. ρt +∇ · f(ρ) = (λ− o(ρ))/L, where λ(x, y, t)

is the demand flow, which may or may not be constrained by Eq. (2.4) as discussed

earlier1. In the isotropic case, we have that the flux vector satisfies ‖f‖ = V (ρ) ρ,

and since by definition (2) we have o(ρ) = V (ρ) ρ L
`
, it follows that the corresponding

conservation law becomes

ρt +∇ · f(ρ) = λ/L− V (ρ) ρ/`. (2.57)

Notice that the network length L and the trip length ` appear explicitly in this

formulation, unlike existent literature. Research is needed to fully understand the

solution of this equation in the context of the different cost functions proposed in the

literature, and to generalize it for the anisotropic case and variable trip length.

1Notice that in this subsection the density ρ is defined per unit distance, and not per unit area
as in the rest of this review.
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2.5.3 Differences Between the Continuum-space Pedestrian Flow and Vehicular DTA

Models

We mentioned at the outset that continuum-space pedestrian flow and vehicular DTA

models are mathematically very similar, and therefore can be analyzed within the

same framework. From a modeling perspective, however, there are some differences.

A quick look at Table 2.1 reveals that most of the studies investigating pedestrian flow

incorporate reactive route choice component, whereas the studies regarding vehicular

flow subsume predictive route choice component. This seems rational since it means

that pedestrians usually do not have complete information about the conditions to-

ward their destination and seek to reduce their instantaneous travel cost by choosing

the shortest path and also avoiding higher densities, which cause discomfort and ex-

cessive delay. On the other hand, drivers are increasingly having better information

about the traffic conditions in different routes, using their own experience or traffic

applications, and try to minimize their actual travel cost.

Another obvious difference between continuum-space pedestrian flow and vehicu-

lar DTA models is that in the pedestrian flow models the demand is exogenous, i.e.

set to zero inside the continuum domain and set to q on outer boundary, while it is

endogenous in vehicular DTA models, i.e. set to q inside the continuum domain and

set to zero on outer boundary.

2.5.4 Departure Time Choice

Departure time choice modeling has not been incorporated in the literature. There

is a clear need to concentrate in departure time choice within the macroscopic DTA

framework, especially after the compelling results by Fosgerau (2015), which shows

that under ”regular sorting” (shorter trips depart later and arrive earlier compared to

longer trips) the problem becomes simplified very significantly in the case of a single

MFD, to the point that reservoir dynamics do not need to be computed explicitly.
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Contrary to the results of Fosgerau (2015), Lamotte and Geroliminis (2017) shows

that if there is only a single peak in the morning commute, a First-in, First-out (FIFO)

sorting pattern emerges within early and late user families having identical α−β− γ

scheduling preferences and heterogeneous trip lengths. The α, β and γ parameters

are, respectively, the per-time-unit costs of travel/queuing, earliness, and lateness, as

defined first in Vickrey (1969). Empirical measurements are needed to resolve these

discrepancies.

2.5.5 System Optimum Assignment

Only a few studies, Haddad et al. (2013) and Yildirimoglu et al. (2015) in discrete

space, and Tao et al. (2014) in continuum space have tried to establish the DSO

conditions, but the proposed solution methods are numerical. Since it is hard to

extract insights from numerical solution methods, future research should focus on

analytical solutions, possibly of simplified systems.

2.5.6 Directionality

Most of the studies propose isotropic models and only a few investigate bi-directional

or anisotropic conditions. Although solving anisotropic models seems to be more

costly and sometimes unattainable, it is clear that more effort is needed on investi-

gating anisotropic conditions and the interaction of intersecting flows.

One possibility could be estimating separate MFDs for each cardinal direction,

with the method in Laval and Castrillón (2015) for example, and incorporate a model

to manage the interactions between the flows in different directions.

2.5.7 Capacity Constraint

We saw that a standard assumption in the literature is Eq. (2.4), i.e. that in con-

gestion, the inflow cannot exceed the outflow. We argue that this constraint can be
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relaxed to account for more realistic operations. For example, (i) transient surges in

demand could be allowed temporarily, and (ii) distance traveled within the reservoir

may increase with congestion as travelers find longer routes. Research is needed to

identify how the capacity constraint should be modified to accommodate these and

other modeling improvements.

2.5.8 Solution Methods

Numerical solution of continuum-space models

For continuum-space models, we have seen that the proposed numerical solution meth-

ods correspond to standard methods in numerical PDEs. These methods converge to

exact solutions only when the mesh size of the numerical grid tends to zero; otherwise,

significant numerical viscosity can be introduced. Additionally, it is not clear from

the literature how computation times compare with traditional DTA methods; it is

possible that for acceptable accuracy, the computational times of continuum-space

models might be even greater.

Further research is needed to extend the recent advances in exact numerical

solution methods for one-dimensional kinematic wave (LWR) model (Lighthill and

Whitham, 1955; Richards, 1956) to the two-dimensional models in order to develop

more efficient and less diffusive numerical methods. These recent advances exploit

(i) a shear symmetry property of conservation laws (Laval and Chilukuri, 2016),

and (ii) the link between conservation laws and the Hamilton-Jacobi equation. In

the one-dimensional case, the viscosity solution of the Hamilton–Jacobi equation,

$t +H($x) = 0, is the primitive of the unique entropy solution of the corresponding

conservation law, ρt + H(ρ)x = 0, where ρ = $x. However, in the multi-dimensional

case, this one-to-one correspondence no longer exists, but the gradient ∇$ satisfies

a system of conservation laws (see Kurganov et al., 2001). Of particular interest
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would be a cellular automaton type solution method, which could potentially reduce

computational times by orders of magnitude.

Analytical solution of continuum-space models

As mentioned in section 2.4.1, it turns out that the conformal mapping symmetry

is valid for all density ranges and for any MFD. The implications are profound, as

it implies that one can choose the conformal mapping that would simplify boundary

conditions as much as possible, thereby simplifying the overall solution method. Re-

search is needed to see if this symmetry is also valid for the other continuum models

in the literature.

To show that the conformal mapping symmetry is valid for all density ranges and

for any MFD, let the discomfort function g(ρ) = 1 in Hughes’ model without loss of

generality, which becomes

 ρt −∇ ·
(
ρV 2∇φ

)
= 0,

||∇φ|| = 1/V,

(2.58a)

(2.58b)

with appropriate boundary conditions. We now study Hughes (2002) equations under

a general transformation and then conclude that conformal mappings are the only

invariant ones. To see this, let z = (x, y) represent the original coordinate and let

Z(x, y) = (X(x, y), Y (x, y)) (2.59)

be a spatial transformation to the new coordinate sys-

tem Z = (X, Y ). The Jacobian of this transformation,

J =

 ∂X/∂x ∂X/∂y

∂Y/∂x ∂Y/∂y

 can be written more concisely as J = ∇zZ where we

have introduced the coordinate system as a subscript to the gradient operators. It
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can be shown that

∇z φ(X(x, y), Y (x, y), t) = ∇Z φ(X, Y, t) · J, (2.60a)

∇z · f(X(x, y), Y (x, y), t) = ∇Z · (J · f(X, Y, t)). (2.60b)

Replacing Eq. (2.60) in Eq. (2.58a) gives

ρt −∇Z ·
(
ρV 2J · JT · ∇Zφ

)
= 0.

Since ρ(x, y, t) = ρ(X, Y, t)|J| and V (ρ(x, y, t)) = V (ρ(X, Y, t))|J|−1/2 (because

transformed small areas equal the original area scaled by the determinant |J |), we

have

|J|ρt −∇Z ·
(
ρV 2J · JT · ∇Zφ

)
= 0. (2.61)

Conformal maps have the unique property that J · JT = |J| · I, so that Eq. (2.61)

becomes

ρt −∇Z ·
(
ρV 2∇Zφ

)
= 0. (2.62)

which reads exactly as Eq. (2.58a). Therefore, conformal mappings are the only ones

where Hughes’ model is invariant.

2.6 Chapter Summary

This chapter has presented a detailed and comprehensive literature review of dy-

namic traffic assignment (DTA) models that implement the macroscopic fundamen-

tal diagram (MFD). These models can be categorized into (i) discrete-space, and (ii)

continuum-space models depending on the treatment of the spatial dimensions.
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Discrete-space DTA models have been recently given attention by researchers and

the literature in this area is yet underdeveloped. In these models, a MFD at each

subregion determines the speed of all vehicles present in that subregion. One potential

problem of these models can be encountered in highly-heterogeneous networks, where

the homogeneous subregions are relatively small. Under excessive demand, if the

accumulation of a subregion reaches its maximum accumulation, the average speed

of vehicles over the subregion will become zero. Since the speed of all vehicles in a

sub-region is assumed to equal to the average speed computed by MFD, no vehicles

can move out of the subregion and the subregion will get clogged forever. Ongoing

research by the authors is trying to address this drawback.

On the other hand, the literature on continuum-space vehicular DTA and pedes-

trian flow models, which dates back to 2002, is more developed in various aspects.

These models are usually solved numerically using standard PDE solution methods,

that discretize the space and time. One of the significant gaps in the literature is

the missing link between discrete-space and continuum-space models, which we have

tried to elucidate in this review. Although it seems to be vague in the literature, we

have tried to clarify why some of the recent studies in the literature have interpreted

the speed-density relationship used in these models as the MFD in subsection 2.5.1.

Based on the discussion in subsection 2.5.1, the numerical solution of continuum-

space models can be regarded as a discrete-space model. Unfortunately, we have

seen that the numerical solution methods used in the literature correspond to stan-

dard methods in numerical PDEs, which prevents an intuitive interpretation of the

resulting discrete model. The numerical solution methods can become costly and

intractable for large-scale and more general applications that are not observed in the

literature. It seems promising to extend the latest solution methods proposed for

the one-dimensional traffic flow models based on Godunov’s method (such as the cell

transmission model), in which case the interpretation is very intuitive and therefore
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could be worked with independently of the continuum model. A step in this direction

is the models in Hänseler et al. (2014) and Hänseler et al. (2017), which have recently

made some effort to using CTM-based space discretization schemes.

Other major shortcomings of the literature have been presented in subsection

2.5 and recommendations for future research are also highlighted based on these

drawbacks.
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CHAPTER 3

CONTINUUM-SPACE DYNAMIC TRAFFIC ASSIGNMENT

FRAMEWORK CONSISTENT WITH THE MFD THEORY

This chapter is modified from the following published paper:

Rafegh Aghamohammadi and Jorge A. Laval (2020a). “A continuum model for

cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution

method”. In: Transportation Research Part B: Methodological 132, pp. 101–116

3.1 Introduction

The previous chapter has presented an extensive literature review on the dynamic

traffic assignment (DTA) models using an aggregated representation of the network

and pointed out the current gaps and shortcomings in the literature. These models

are categorized into 2 approaches: (i) the discrete-space approach, where the

network is partitioned into a number of zones and the traffic dynamics inside each

zone is given by its MFD, and (ii) continuum-space approach, where the network

is too dense such that it can be approximated as a continuum space that the users can

circulate at any point x = (x, y) of the Euclidean, two-dimensional domain Ω ⊂ R2

and the traffic dynamics is given by a 2-dimensional conservation law Eq. (2.6).

Nevertheless, the connection between these two modeling approaches is not well

understood. To the best of our knowledge, there are only three references in the

continuum literature that briefly mention the MFD to justify the use of a speed-

density relationship, V (ρ), in the conservation law (Du et al., 2013; Du et al., 2015;

Long et al., 2017), and no references in the MFD literature citing continuum models.

Chapter 2 delves into this gap in the literature and argues that the speed-density

relationships in the continuum models need to consider the network effects and hence,
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it is valid to interpret them as MFD. However, it is still not clear how the flux function

for the conservation law Q(ρ) = ρV (ρ) and Q̄(n) are related, or how the average trip

length affects the continuum model. It is the purpose of this chapter to fill this gap by

reformulating the theory such that both modeling approaches are consistent, in the

sense that taking the limit of the reservoir size going to zero leads to the continuum

model, and vice versa, the spatial integration of the continuum model leads to the

reservoir model.

As pointed out in Chapter 2, the numerical solution methods that have been pro-

posed to solve both the conservation law and route choice component of continuum

models correspond to the standard numerical solution methods for PDEs. These

methods converge to exact solutions only when the mesh size of the numerical grid

tends to zero, which could be problematic if fast computations are required; otherwise,

significant numerical viscosity can be introduced even in the case of a single commod-

ity (i.e. one type of users, all going to the same destination). For multi-commodity

problems, the formulation becomes cumbersome and the numerical solution methods

introduce additional errors that can lead to first-in-first-out (FIFO) violations (Jin

and Jayakrishnan, 2005).

We argue that these challenges in current continuum models arise because they

were formulated and solved numerically in Eulerian coordinates, which are attached

to the infrastructure. A more natural representation of this problem is achieved in

Lagrangian coordinates which are attached to the vehicle particles. In this repre-

sentation, origin-destination information (and any vehicle-specific characteristic) is

propagated naturally in the traffic stream (Leclercq et al., 2007; Laval and Leclercq,

2013). However, in a fully Lagrangian representation, it is cumbersome to keep track

of variables that are fixed in space such as demand inflow or changes in the infras-

tructure, or the flux transfers between neighboring reservoirs, in particular, which are

fixed in space.
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In this chapter, we will develop a semi-Lagrangian scheme that uses Eulerian and

Lagrangian representations where it is most convenient. These schemes use an Eule-

rian computation grid where the motion of particles is tracked. Using these trajecto-

ries, at every time step we estimate the continuum variables at the grid points. This

general idea has been applied copiously in the field of atmospheric sciences (Staniforth

and Cote, 1991). In traffic flow, there have been efforts to combine these two coordi-

nate systems in one spatial dimension for the kinematic wave model (Leclercq, 2007)

using a microscopic car-following model for the road segments, and a macroscopic

network junction model for merges. Here, we adapt Leclercq’s (2007) framework for

the two-dimensional case and modify the microscopic components in the spirit of the

MFD; i.e. instead of a car-following model where each vehicle can have a different

speed, we impose that all vehicles traveling from one reservoir to an adjacent one

have the same speed. The calculation of this speed is not trivial. We found that

the conventional approach to assign the MFD speed V (ρ), as in Yildirimoglu and

Geroliminis (2014), Yildirimoglu et al. (2015), and Leclercq et al. (2017a), might lead

to stalling in the multi-reservoir setting. To avoid stalling, and in the spirit of the

kinematic wave model, the speed is taken directly from the network junction model.

While the relevant literature contains no efforts to achieve a consistent formula-

tion both in discrete and continuum space, the Eulerian components of our solution

method are closely related to the framework proposed in Sossoe and Lebacque (2017),

Hänseler et al. (2014), and Hänseler et al. (2017). Sossoe and Lebacque (2017) pro-

poses a multi-reservoir reactive DTA model where the flows between reservoirs are

obtained with a network junction model (see e.g., Jin, 2012; Jin and Zhang, 2003, and

references therein). This model considers only two possible paths in each cell for the

route choice based on a logit model, where the cost of each path is assumed to be the

instantaneous travel time. There is no mention of the MFD or of the corresponding

continuum model, however. Hänseler et al. (2014) develops a discrete-time discrete-
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space pedestrian flow model, named PedCTM, which extends Daganzo’s Cell Trans-

mission Model (CTM; Daganzo, 1994a; Daganzo, 1995) to 2 dimensions. The model

in Hänseler et al. (2017) is analogous to the PedCTM model, where the cell-based

fundamental diagram, potential fields and path choice are replaced by stream-based

ones and anisotropy is also taken into account.

3.2 Continuum-space MFD Formulation

In this section, we will formulate a continuum-space model consistent with the as-

sumptions behind the MFD theory. We will show that this consistent formulation is

capable of handling randomly distributed destinations over the network. Later, the

properties of solutions to this model in both isotopic and anisotropic cases will be

discussed. Consistency in this section means that the spatial integration of the contin-

uum model should lead to the reservoir model. Notice that this formulation pertains

only to the conservation law component of the model; the route choice component is

arbitrary.

Our purpose here is to find the connection between the continuum-space conser-

vation law Eq. (2.6) and the reservoir dynamics ODE Eq. (2.3). Toward this end,

we first need to reformulate the conservation law to incorporate the outflow of the

vehicles from the continuum space. The key for this addition is to assume point

destinations instead of closed area destinations. Based on this assumption, we let

µ(x, y, t) represent the trip completion rate at point (x, y) at time t, in units of flow

per unit area. It follows that the conservation law becomes:

∂ρ

∂t
+∇ · f = λ− µ. (conservation law consistent with MFD theory) (3.1)

To see the relationship between the variables in the discrete- and continuum-space

model formulations, let Ω be the region for which the reservoir model has been defined.
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Then,

n(t) =

∫
Ω

ρ(x, y, t) dx dy, (accumulation and density) (3.2a)

Λ(Ω, t) =

∫
Ω

λ(x, y, t) dx dy, (inflow and demand rate) (3.2b)

M(Ω, t) =

∫
Ω

µ(x, y, t) dx dy, (outflow and trip completion rate) (3.2c)

where n is the accumulation (number of vehicles inside the reservoir), Λ denotes

the total inflow to the reservoir at any time t, and M is the total outflow from the

reservoir at time t. This formulation is consistent with MFD theory because the

reservoir model Eq. (2.3) can be obtained by integrating Eq. (3.1) over the region Ω

and replacing the variables from Eqs. (3.2). Note that from the divergence theorem

∫
Ω

∇ · f dx dy =

∫
Γo

f · n̂ ds = 0, (2D divergence theorem) (3.3)

where the last equality is due to the boundary condition Eq. (2.17b). Hence, the

proposed conservation law Eq. (3.1) will lead to a new realization of the continuum

space as shown in Fig. 3.1, where both the origin and destination point can be

randomly distributed over the continuum space.

Recall assumption (2.2) of MFD theory stating that the trip completion rate on a

physical link is proportional to the flow on that link. In the continuum, this amounts

to assuming that the trip completion rate is proportional to the norm of the flux,

µ = ‖f‖/`, which in the isotropic case is

µ = Q(ρ)/`, (3.4)
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which can be integrated over the region A to obtain

M(A, t) =

∫
A

Q(ρ)/` dx dy, (3.5a)

≈ Q(ρ) |A|/`, (3.5b)

= Q̄(n) L/`. (3.5c)

where approximation (3.5b) follows when both the flux MFD and the density are

approximately constant in A. Equality (3.5c) follows because the production in the

continuum framework, Q(ρ) |A|, and in the discrete framework, Q̄(n) L, are equal.

To see this, one can use the fundamental traffic flow relationship in both frameworks

to obtain ρV (ρ) |A| and V (n)n, respectively. Using the identity n = ρ|A| gives

V (ρ) = V (n). Therefore, we have shown that the spatial integration of the continuum

model leads to the reservoir model, as sought.

The introduction of the term µ in conservation law Eq. (3.1) suggests that the

vehicles can complete their trip and exit the network at any point. Therefore, the

proposed formulation is intrinsically capable of handling multi-commodity flows and

multiple destinations, which is more compatible with the nature of the real-life net-

W
o

G
h

G

Obstruction

Origin

Destination

Figure 3.1: Randomly distributed origins and destination over the continuum space
in the proposed consistent model.

55



works compared to the traditional continuum-space models, where there is only one or

a few destination areas. When more than one destination is considered, the standard

approach is to breakdown the total density into commodities, one per destination (see

e.g., Hughes, 2002; Saumtally et al., 2013; Lin et al., 2017). As shown next, although

some general insight might be derived from this disaggregation method, the general

solution using this method can be cumbersome and intractable. Subsequently, a new

disaggregation method based on travel direction is introduced in Section 3.2.2, which

is amenable for the semi-Lagrangian solution proposed later in this chapter.

3.2.1 Vehicles Disaggregated by Destination (Isotropic Case)

In the proposed formulation, any point on the continuum space can be a destination;

see Fig. 3.1. To understand how each destination contributes to the conservation

law of global quantities in Eq. (3.1), we let group i = 1, 2, . . . denote the vehicles

bound towards destination point xi = (xi, yi), and subscript i to denote group-specific

quantities, e.g. ρi, fi, φi, etc. Clearly,

ρ =
∑
i

ρi, f =
∑
i

fi =
∑
i

ρiui, and λ =
∑
i

λi. (3.6)

The speed vector of each group is now given by

ui = − ∇φi
||∇φi||

V (ρ), (3.7)

in the isotropic case, and notice that:

‖∇φi‖ = 1/‖ui‖ = 1/V (ρ), (3.8)
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as in Eq. (2.11). It follows that

fi = −V (ρ)2ρi∇φi. (3.9)

The disaggregated outflow µi is less obvious because it should be identically zero

everywhere except at the group’s destination xi. Introducing the Dirac delta function

δxi
(x) defined as:

δxi
(x) =

 1, if x = xi,

0, otherwise,

(3.10a)

(3.10b)

we have:

∑
i

µi δxi
(x) = µ = V (ρ)ρ/`, (3.11)

as required, and where the last equality follows from Eq. (3.4) and the fundamental

traffic flow relationship Q(ρ) = V (ρ)ρ. With all, the conservation law of each group

can be expressed as ∂ρi/∂t − ∇ · fi = λi − µi δxi
(x), where summation over all the

groups will recover the global conservation law Eq. (3.1), as expected. Using Eq.

(3.9) the conservation law for each group can also be expressed as:

∂ρi
∂t
−∇ ·

(
V (ρ)2ρi∇φi

)
= λi − µi δxi

(x). (3.12)

Following Hughes (2002), we examine two limit cases of Eq. (3.12), light and

heavy traffic, under steady-state conditions. Expanding the divergence term in Eq.

(3.12), rearranging and considering locations x 6= xi, we have:

−
(
V (ρ)∇ρi · ∇φi + ρi

(
2V ′(ρ)∇ρ · ∇φi + V (ρ)∇2φi

))
V (ρ) = λi. (3.13)
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At low free-flow densities, we can assume ∇2φi ≈ 0, ρi ≈ ρ ≈ 0 since speed is

constant along the optimal path and consequently ‖∇φi‖ will also be constant. Thus,

Eq. (3.13) becomes

∇ρi · ∇φi ≈ −λi/V 2(0), (3.14)

which means that lines of constant density (or flow) are no longer perpendicular to

lines of constant potential, as in Hughes model, unless the inflow λi is zero. Instead,

the angle between the two increases with λi/V
2(0) (since the dot product is pro-

portional to the cosine of the angle between two vectors). We can say that a local

increase in the inflow of group i increases the cost of the optimal route by imposing

a detour.

At high congested densities, we have ||∇ρ|| << ||∇φ||, so that both ∇ρ · ∇φ and

∇ρi · ∇φi ≈ 0 and Eq. (3.13) becomes

∇2φi ≈ −λi/(V 2(ρ) ρi), (3.15)

known as the Poisson equation, where the right-hand side is negative and probably

large in magnitude (because speeds are low), which means that the cost potential is

increasing very rapidly and nonlinearly away from the destination, possibly inducing

gridlock near the destination. However, if the inflow is to be restricted by the outflow,

it is likely that the the right-hand side would be ≈ 0 and the steady-state solution

should be close to Laplace’s equation ∇2φi = 0 as in Hughes model with zero inflow.

3.2.2 Vehicles Disaggregated by Direction (Anisotropic Case)

The multi-commodity formulation in the previous section is not easy to solve in Eu-

lerian coordinates, especially when the number of destinations is large as in our case.

Recognizing that in the vehicular networks there are only a few possible movement
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directions at any given point (typically 4, one per each cardinal direction), here we

propose:

∂ρa
∂t

+∇ · fa = λa − µa, (3.16)

where a = 1, 2, . . . ,m is an index for the direction of travel, and subscript a is used

to denote group-specific quantities. Naturally, summation of Eq. (3.16) over all

directions yields the global conservation law Eq. (3.1), as expected Notably, since the

flux fa is in direction a only, it suffices to consider a regular scalar function fa, and

therefore its divergence reduces to the scalar partial derivative:

∇ · fa =
∂fa
∂xa

, (3.17)

where xa is the scalar distance in direction a. Replacing Eq. (3.17) into Eq. (3.16)

gives the 1-D kinematic wave model with sink and source terms:

∂ρa
∂t

+
∂fa
∂xa

= λa − µa. (3.18)

The main distinction is that in the current model at a given point the speed and

flux in each direction, va and fa, are not only functions of ρa, but also of the densities

in other directions as well. The next section will describe a semi-Lagrangian solution

method to this model.

3.3 Semi-Lagrangian Multi-reservoir Solution Method

Here, we propose using a semi-Lagrangian solution scheme for the anisotropic case

discussed earlier exploiting Eulerian or Lagrangian representations where it is most

convenient. These schemes use an Eulerian computational grid (cells) over which the

motion of particles is tracked. Using these trajectories, we estimate the continuum
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variables at the grid points. This general idea has been applied copiously in the

field of atmospheric sciences (Staniforth and Cote, 1991). In our case, we propose to

use the Eulerian representation to compute the flux transfers between cells, and the

Lagrangian representation to move discrete particles and compute the corresponding

cell densities of each commodity; see Fig. 3.2. The following subsections will formulate

each of the components in this figure.

3.3.1 The Computational Grid and Network

In the proposed method, an Eulerian uniform computational grid is defined by spatial

cells (reservoirs) of rectangular shape of sides ∆x,∆y > 0 together with the time-step

∆t, which is assumed to be small enough so as to satisfy the Courant-Friedrich-Lewy

(CFL) condition:

max
ρ

(
max |f ′1(ρ)|

∆x
,
max |f ′2(ρ)|

∆y

)
∆t ≤ 1, (3.19)

CT Rule

Position Update

Conservation:

Cell Density from 

Trajectories

Route Choice & 

Update

LagrangianEulerian

Figure 3.2: Flowchart of the proposed semi-Lagrangian solution framework.
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which implies that a vehicle will not be able to traverse a cell in less than one time

step. Assuming ∆y = ∆x for simplicity, the numerical grid is then

xi = i∆x, yj = j∆x, tk = k∆t, i, j, k = 1, 2 . . . (3.20)

It will be convenient to denote a cell by the object c, and allow the dot notation

c.i and c.j to represent the discrete spatial coordinates of the cell’s center. In this

way, the numerical scheme will produce densities ρkc that approximate ρ(xc.i, yc.j, tk).

For clarity in notation, from now on we drop the time index k as much as possible.

On top of the Eulerian grid, we superimpose a Lagrangian network consisting of

the directed links connecting every pair of adjacent cells; see Fig. 3.3. Each link, a,

represents one of the four directions of travel, and contains the vehicles in the source

cell, a.s, for which the minimum path to their destination passes by the adjacent

target cell, a.t. Links do not have spatial dimensions, and the length of each link, `a,

is simply an attribute to represent the average trip length from source to target cells.

At each time-step k, a link has speed vka , flux fka and density ρka in units of vehicles

per unit area. The speed on link a is computed using the fundamental traffic flow

relationship:

va = fa/ρa, (3.21)

and all vehicles on link a move at this speed. The key to our solution method is that

fluxes fa also represent the flux at the boundary between source cell a.s and target

cell a.t, and are computed using Godunov’s method, as explained momentarily.

3.3.2 The Route Choice Component

The role of the route choice component is the calculation of ρa, the density in cell

c willing to use outgoing link a. A popular method in the literature to calculate
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the ρa is to use partial flows to represent each origin-destination commodity and

specify turning proportions at each cell, typically with a discrete choice model of the

logit type (Hänseler et al., 2014; Yildirimoglu and Geroliminis, 2014; Hänseler et al.,

2017). But as pointed out earlier, the solution to this problem in Eulerian coordinates

is cumbersome, and here we adopt a Lagrangian approach instead.

We saw previously that to achieve RDUE conditions, vehicular motion should be in

the direction with maximum potential reduction, i.e. in the direction of −∇φ/‖∇φ‖,

which boils down to solving the Eikonal PDE Eq. (2.11). In the literature, this

PDE is solved numerically in Eulerian coordinates with methods that are intimately

connected with shortest path algorithms. This connection is not a coincidence since in

a Lagrangian representation, we only need the direction of motion at each cell, which

can be obtained with a standard shortest path routine on our Lagrangian network.

Once all shortest path trees have been computed, vehicles in cell c are assigned

to the outgoing link a, which is the first link of their shortest path. This allows the

computation of ρa, simply by counting how many vehicles are assigned to each link

Shift

  

c=a.s c=a.t

 
  

  

(a)                                               (b)

Figure 3.3: (a) Eulerian cells and Lagrangian links. Note that a link represents the
distance traveled in the source cell only, as shown by the dashed arrow in (b). But
we shift the beginning of the link to the centroid to avoid multiple overlaps.
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(and dividing by ∆x2). The total density in cell c is therefore:

ρc =
∑

a ∈ Oc

ρa, (3.22)

where Oc is the set of directed links from c to all its adjacent cells. The speed of

each of the outgoing links is calculated by Eq. (3.21), where the flux on the link is

determined by the Cell Transmission (CT) rule explained next.

3.3.3 The Cell Transmission Rule

As customary in the 1-D traffic flow literature, Godunov scheme is a preferred method

due to its simplicity and accuracy compared to the traditional methods. Godunov’s

method was first used in traffic flow in the well-known Cell Transmission (CT) model

(Daganzo, 1994b) to solve the 1-D traffic flow problem, i.e. a scalar conservation

law in one spatial dimension with no source term. Here, we need a method in 2-D

and with source term. Laval et al. (2016) proposed a Godunov-type scheme based

on variational theory (Daganzo, 2005a) to incorporate source terms in 1-D problems,

and also showed that the CT scheme is able to cope with source terms, albeit not as

accurately. For simplicity, our starting point here is the CT scheme, which can be

expanded to two spatial dimensions as shown below.

The key to Godunov’s method is the computation of the fluxes at the boundary

between adjacent cells, which are obtained by finding the entropy solution to the

corresponding Riemann problems. To illustrate, let us assume for a moment that all

vehicles in cell want to go to one of the adjacent cells, i.e. there is a single user class

or commodity. The Riemann problem, in this case, is to obtain the maximum flux at

the boundary between these two cells, given their initial densities. If these two cells

are connected by link a, then the CT rule is precisely the solution to the Riemann
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problem:

fa = min{D(ρa.s), S(ρa.t)}, (CT rule, single commodity) (3.23)

where D(·) and S(·) are the well-known demand and supply flux functions in traffic

flow, respectively:

D(ρ) =

 Q(ρ), ρ ≤ ρ∗

Q∗, ρ > ρ∗
and S(ρ) =

 Q(ρ), ρ ≥ ρ∗

Q∗, ρ < ρ∗
(3.24)

where ρ∗ and Q∗ are the critical density and capacity of the flux MFD, Q(ρ), respec-

tively; see Fig. 3.4.

Nevertheless, flows are multi-commodity in two dimensions, one commodity per

each origin-destination pair in the network. At the cell level, however, there are only

a few commodities that matter, one per outgoing link a. The mapping from the

origin-destination commodities to the outgoing link commodities is a result of the

route choice model, which gives us the density willing to use each outgoing link ρa.

The problem of deciding the corresponding flux through that link, fa, given all the

 
  

  S(ρ) D(ρ)

flux

Figure 3.4: Demand, D(ρ), and supply, S(ρ), functions
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competing densities willing to travel to cell a.t is identical to the network junction

problem in the literature (see e.g., Jin, 2012, and references therein). The solution to

this problem can be expressed as the following multi-commodity CT rule:

fa = min{Da, Sa}, (CT rule, multiple commodities) (3.25)

and the speed on link va can then be computed with (3.21). There has been mul-

tiple formulations of these commodity-specific demand and supply functions in the

literature, in the context of intersection modeling (see e.g. Jin, 2017, and references

therein). Here, we use:

Da = D(ρa.s) ·
ρa
ρa.s

, and Sa = S(ρa.t) · IT (b ∈ Ia.t), (3.26)

where Ic is the set of directed links from c’s adjacent cells into c. Eq. (3.26) describes

that demand and supply of link a are a fraction of the total demand in source cell a.s

and supply in the target cell a.t, respectively. The demand fraction is proportional

to the number of vehicles willing to use link a. For the supply fraction, we use the

Incremental Transfer (IT) principle (Daganzo et al., 1997), where the total supply

S(ρa.t) is viewed as a reservoir being filled gradually from links coming from each of

the four adjacent cells, i.e, links b ∈ Ia.t. In this way, the IT principle states that

each reservoir will send fluid downstream until upstream reservoirs are empty or the

receiving reservoir is full.

The output of this component is the link speeds va, which are updated using Eqs.

(3.21), (3.25) and (3.26). Next, we update vehicle positions accordingly.

3.3.4 Vehicle Position Update

Let vkn and xkn be vehicle n’s speed and distance traveled along the current link a at

time-step k, respectively. Assuming that the speed remains constant during a time
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step, the position of this vehicle in the next time step will be:

xkn = xk−1
n + ∆t vk−1

n . (3.27)

When at a time step tk, the distance traveled by the vehicle n on its current link

becomes greater than the link length `a, the vehicle has crossed the cell boundary

(i.e. entered cell a.t and one of its outgoing links based on the shortest path of the

vehicle) at some time t0, and all relevant variables are updated accordingly. In order

to reduce the numerical error, we assume that the vehicle travels the remainder of

time step after t0 in the source cell, such as its position becomes:

xkn = (tk − t0) vk−1
n , (3.28)

where xkn is now the distance traveled in cell a.t and vk−1
n is the speed of the new link

in cell a.t at the previous time step.

A crucial point is how to compute the speeds vkn. In the spirit of the MFD

one might postulate vkn = V (ρka.s), which is a common assumption in the literature

(Yildirimoglu and Geroliminis, 2014; Yildirimoglu et al., 2015; Leclercq et al., 2017a),

but can lead to stalling (complete gridlock) on the multi-reservoir configurations. To

see this, notice that when a cell reaches jam density, both the speed and the outflow

will be zero even when neighboring cells might be freely flowing. Instead, here we

use the CT rule Eq. (3.25) to compute fluxes fa and then use the fundamental traffic

flow relationship to compute the speed on link, va, per Eq. (3.21) and we assign this

speed to all vehicles in the link, i.e.:

vn = va. (3.29)
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This formulation avoids unrealistic stalling because if a cell is at jam density its

flow will be determined by the supply on the downstream cell, which is zero only if

that cell is also full.

3.3.5 Conservation of Vehicles

After all vehicles’ positions and current cell have been updated, total cell densities

ρc are updated simply by (i) counting the number of vehicles in each cell (ii) add

the number of vehicles entering the network at cell c,Λc, (iii) subtract the number of

vehicles whose destination is cell c, and (iv) divide by the cell area ∆x2. Notice that

it is customary to cap the inflow at the supply of the origin cell; i.e.,

Λc = min{S(ρc) , λ(xc.i, yc.j, tk)∆x} ∆t∆x, (3.30)

since otherwise unrealistic gridlock can occur. At this point, we recalculate the min-

imum paths with the updated link speeds from Eq. (3.21).

3.4 Numerical Experiments

In this section, we have used the aforedescribed numerical solution method to simu-

late a square-shaped city of side b with parabolic homogeneous flux-MFD given by

Q(ρ) = ρu · (1 − ρ/ρj), where u is the free-flow speed and ρj is the jam density (in

units of vehicles per unit area). We eliminate these two parameters by measuring

distance in units of ρ
−1/2
j and time in units of ρ

−1/2
j u−1, which gives:

Q(ρ) = ρ · (1− ρ). (3.31)

Total arrivals are given by a Poisson process of constant rate λ veh/hr-km2, while

origins are uniformly distributed across the region. The average trip length inside

each cell to all adjacent cells is assumed as the side length of the cell, `a = ∆x. Two
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sets of experiments are performed differing only in the treatment of destinations: (i)

a single region-destination, e.g. CBD, and (ii) multiple point-destinations.

3.4.1 A Single-destination Region

In this experiment, vehicles travel toward a single destination located at the center

of the square region starting their trips from uniformly distributed origins. Different

simulation runs have been done using different cell sizes, while the size of the destina-

tion area is kept constant across simulation runs in order to have the same maximum

outflow rate, which makes us able to study the convergence of the model. This con-

vergence is measured in terms of the delay with respect to the analytical solution,

which is simple for this problem since the destination will serve at constant capacity

when congested. Therefore, we can find the theoretical cumulative departure curve

and compare it with results of the experiment. Other assumptions for this experiment

are summarized in Table 3.1.

The same origin-destination points are used for all simulations. Fig. 3.5 shows

the cumulative arrivals, entrances and departures for a 10 by 10 and a 40 by 40

partitioning of the network area. The analytical cumulative departure curve is plotted

by shifting the constant departure rate curve by the average free flow travel time of

vehicles to the right. Although in the experiment with coarser partitioning we observe

slight variations in the experimental departure curve whereas its slope is faintly lower

Table 3.1: Assumptions of the single-destination experiment

Parameter Value

Side of the square region, b 5000 meters

Perimeter of the destination area 500 meters

Jam accumulation of the region 20,000 vehicles

Loading duration 10 minutes

Arrival rate, Λ 5 veh/s

Maximum completion rate, M 1 veh/s

Free-flow speed, u 10 m/s
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than the expected maximum departure rate, the departure curve for the experiment

with finer partitioning fits the analytical departure curve impeccably.

The distinction in the arrival and entrance curves arises due to the supply cap Eq.

(3.30), i.e. the demand at the origin cell is equal or greater than its supply, therefore

the vehicle has to wait for adequate supply to begin its trip. This phenomenon

mostly arises at the cells near to the destination area, since these cells are utilizing

the maximum supply they get, most of the time. As seen in Fig. 3.5, the entrance

delay, i.e. the time that vehicles have to wait for sufficient supply to enter the network,

is considerably lower in the experiment with finer partitioning.

Furthermore, Fig. 3.6 shows the average delay per vehicle for different number of

cells versus the analytical approximation of average delay. It can be seen that the

average delay converges to the analytical approximation with increasing the number

of cells, i.e. decreasing the size of cells.
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Figure 3.5: Cumulative arrival, entrance, and departure curves for two different ex-
periments
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The results suggest that the overall performance of the model improves with par-

titioning the region into smaller cells. However, by decreasing the cell size, the jam

accumulation of each cell also decreases, which could result in stalling problem under

congested conditions if the speed was directly taken from the MFD as in the discrete-

space literature, which is not the case in the proposed model since the flux and speed

are calculated using the supply and demand functions.To get a better insight into

the performance of the model under congested conditions, in another experiment, the

network is divided into 125-meter-long square cells, i.e. 40 cells in each direction, and

it is loaded for 20 minutes with an average arrival rate of 5 vehicles per second, while

the maximum outflow rate of the destination area is one vehicle per second. Fig. 3.7

shows the cell occupancies at time t = 1200 s , the end of loading duration, while the

network is the most congested.

The interesting point in Fig. 3.7 is that the peak of density is not immediately

on the borders of the destination area, rather it is observed at a distance from the

destination area. An approximate steady-state analytical solution to this problem

without inflow supply cap, can be found in polar coordinates (r, θ), assuming that
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the destination is a circle of radius r0. As shown in Newell (1980, p. 130), fluxes should

be in the radial direction and rotationally symmetric, and therefore the conservation

law in steady-state can be expressed as:

∂

∂r
(rQ(ρ)) = rλ. (3.32)

By imposing that far away from the destination the inflow vanishes, Newell shows

that the flux decays with distance as 1/r, independently of the shape of the flux

function. Here, we use the parabolic flux-MFD Eq. (3.31) and solve Eq. (3.32) to

find:

ρ(r) =
1

2
±
√

2f0 r0 + r/2− λ(r2 − r2
0), (3.33)

Cell Occupancy, Cell Length= 125 m, t= 1200 s
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where ρ0 = ρ(r0) is the boundary condition at the destination’s perimeter, f0 = Q(ρ0)

is the initial flux and ± is the sign of (ρ0− 1/2). Fig. 3.8 shows a cross-section of the

density obtained with the simulation superimposed to the analytical approximation

Eq. (3.33). It can be seen that despite some small variations, simulation results

accord well with the analytical solution.

The flux as a function of distance can be readily obtained using Eq. (3.33):

Q(ρ(r)) =
λ(r2 − r2

0)

2r
+
f0 r0

r
, (3.34)

where it can be seen that when the inflow vanishes (λ = 0) the flux indeed decays

as 1/r as predicted by Newell, but if it is nonzero then eventually the flux will start

increasing linearly with r; the minimum flux happens at location r∗ given by:

r∗ =
√
r0 (2f0/λ− r0). (3.35)
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This result indicates that congestion is most severe at a distance r∗ from the

destination, and that this distance increases as the square root of f0/λ.

3.4.2 A Multi-destination Region

In this experiment, the arrival rate and other assumptions are similar to the previous

experiment but now both origins and destinations are uniformly distributed across

the region. In steady-state, this problem is characterized by the fundamental traffic

flow relationship:

ρ =
f

v
=
λE[D]

v
, (3.36)

where v is the (deterministic) steady-state speed in the network, and E[D] gives

the expected value of the distance traveled by a driver, D. Notice that the flux

f = λE[D] is a constant of this problem, and can be used to obtain the speed v using

the flux-speed MFD provided we know the traffic regime. In our case we have:

v(f) =
1

2

(
1±

√
1− 4f

)
, (3.37)

where ± represents addition when in free-flow and subtraction in congestion.

In our case the Manhattan distance traveled by a driver is D = |x1 − x2|+ |y1 −

y2|, where subscripts 1 and 2 refer to the coordinates of the origin and destination,

respectively. For origins and destinations uniformly distributed on a square region of

side b, one can show that the probability density function (pdf) of D, pD(d), is:

pD(d) =
1

b


−2

3
(d/b− 2)3, 1 ≤ d/b ≤ 2,

2
3
(d/b) ((d/b)2 − 6d/b+ 6) , 0 < d/b < 1, (pdf of D)

0, otherwise,

(3.38)
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where one can verify that E[D] = 2b/3; therefore, we can express the speed as a

function of the demand

v(λ) =
1

2

(
1−

√
1− 8λb/3

)
. (3.39)

The travel time random variable is simply T = D/v, and its pdf given by:

pT (t) = vpD(vt). (travel time pdf) (3.40)

Fig. 3.9 shows travel time histograms from the simulation for different values

of the demand parameter λ. The thick lines correspond to the analytical pdf Eq.

(3.40), where v is obtained using Eq. (3.39). It can be seen that the agreements

between analytical and simulated histograms is apparent. Although not surprising

for the free-flow histogram, the good fit with the congested histogram indicates that

Eq. (3.40) captures the correct shape of these density functions without the need of

an extra parameter.
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Figure 3.9: Simulated and analytical (red) travel time histograms

74



3.5 Chapter Summary

Existing continuum-space models for cities do not consider the completion rate term

µ in Eq. (3.1), perhaps because they are based on pedestrian models where it is

customary to assume that travelers exit the network only at discrete destinations

represented as small regions, as in Fig. 2.4. We argue that region-destinations are

problematic, and should be avoided in general. The size of these regions is arbitrary

and are devoid of flow. This means that the spatial integration will not lead to a

consistent model unless some additional considerations are included. But even then

one could argue that the size of the destinations might affect the shape of the MFD,

which complicates matters even further. Additionally, we saw that in the isotropic

case the missing term is µ = Q(ρ)/`, and therefore in current formulations, the average

trip length is also ignored. Incorporating destinations continuously distributed across

the network would be a daunting task in the existing framework, but a very simple

one if the MFD concepts are incorporated as in the formulation proposed here.

Section 3.2 formulates a consistent continuum MFD model, in the sense that as

the size of the subregions tends to zero, the limit of the discrete model corresponds

to the continuum model. The emergence of trip completion rate term, µ, in the

consistent conservation law Eq. (3.1) suggests that the proposed model is capable of

incorporating randomly distributed destinations all over the continuum space, which

is in more conformance with the nature of real-life networks. Our motivation is that

existing multi-reservoir MFD models might not be consistent, which would imply that

its predictions might change drastically upon changes in the partition of the network.

The simplest way to accomplish consistency is to start with a numerical scheme to

solve our problem and interpret each spatial cell as a subregion of the multi-reservoir

model.
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The numerical solution method presented here is based on the assumption that

there are only a limited number of possible movement directions at each point in the

vehicular networks, unlike the pedestrian flow models, where the pedestrians can move

at any desired direction. By choosing rectangular cells, there are only four possible

movement directions from each cell to each of the neighboring cells. Although the

MFD is the same in all four cardinal directions, this does not mean that the speed

va in all directions is the same, necessarily. In fact, our commodity-specific demand

and supply functions in Eq. (3.26) imply that the speed on all outgoing links are

different in congestion, and determined by the downstream reservoir of each link.

However, in congestion all incoming links will have the same speed since the IT

principle splits the supply of the receiving cell evenly among incoming links. Of

course, different priorities in the IT principle could be assigned to each cardinal

direction to reflect uneven infrastructure or signal timing in each direction. This

solution appears superior to imposing a different MFD for each direction altogether

because extra conditions should be added to govern any correlation or interactions

between the traffic states in all directions.

The proposed framework can be extended in a number of directions in a rather

straightforward way, including reservoirs of arbitrary shapes, different cost functions,

and inhomogeneous cities. Extensions such as users with different car-following be-

havior e.g. trucks, buses or automated vehicles, are more challenging because the

different fleet compositions should change the MFD in ways that are not well under-

stood yet.
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CHAPTER 4

DYNAMIC SYSTEM OPTIMUM TRAFFIC ASSIGNMENT IN

CONTINUUM SPACE

This chapter is modified from the following presented conference paper:

Rafegh Aghamohammadi, Ludovic Leclercq, and Jorge A. Laval (2020). “A

Semi-Lagrangian Dynamic System Optimum Traffic Assignment model in Continuum

Space”. In: 99th Annual meeting of Transportation Research Board. Washington,

D.C.

4.1 Introduction

The literature review on the macroscopic DTA models in Chapter 2 of this disserta-

tion highlights the gaps in the literature and states that a well-defined discrete-space

DTA model can be interpreted as the numerical solution of a continuum-space DTA

model; i.e., when the size of regions tends to zero while keeping the total area con-

stant, the discrete-space model tends to the continuum-space model. To fill this

gap between two modelling approaches, Chapter 3 develops a novel continuum-space

DTA framework which is consistent with the MFD theory and assumptions. The

route choice component of this DTA framework is arbitrary and the semi-Lagrangian

solution method presented in Section 3.3 achieves the reactive dynamic user equi-

librium (RDUE) goal by minimizing the instantaneous travel cost of the individual

users.

Most of the developed models in the macroscopic DTA literature propose dynamic

user equilibrium (DUE) solutions, which do not necessarily result in the minimum

total travel cost over the network and might not be favorable from a system point of

view. Achieving dynamic system optimum (DSO) conditions by minimizing the total
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travel time of the users in two-dimensional large-scale networks is cumbersome and to

the best of our knowledge, there are only two studies in literature trying to develop

DSO condition, one in discrete space (Yildirimoglu et al., 2015) and the other one in

continuum space (Tao et al., 2014).

In this chapter, we revisit the solution method in Section 3.3 and try to achieve

semi-DSO conditions using the instantaneous travel times for the sake of minimizing

the total travel cost of all travelers using the proposed consistent DTA framework.

4.2 Background

The basic notion behind the continuum-space traffic models is that when the network

is dense enough such that the distances between road segments are small compared to

the size of network, the network can be approximated by a continuum space where the

vehicles can circulate at any point x = (x, y) of a Euclidian two-dimensional domain

Ω ⊂ R2; see Fig. 4.1(i). The traffic dynamics inside the continuum space is governed

by the following conservation law (CL) partial differential equation (PDE):

∂ρ

∂t
+∇ · f = λ, (traditional 2D conservation law) (4.1)

W
oGhG

Obstruction

Origin

Destination

W
oGhG

Obstruction
1
dG

2
dG

Destination 1

Destination 2

(i) (ii)

Figure 4.1: Illustration of the continuum-space models: (i) the traditional models
based on (Hughes, 2002), (ii) the model proposed in Chapter 3 of this dissertation.
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where boldface symbols indicate vector quantities, ρ(x, y, t) represents the time-

varying density of travelers at point (x, y) and time t (in units of # per unit

area), u = (u1(x,y, t), u2(x,y, t)) denotes the velocity vector, f(x, y, t) =

(f1(x, y, t), f2(x, y, t)) ≡ ρu is the flux vector (in flow units per unit distance),

∇ · f = ∂f1/∂x + ∂f2/∂y is the spatial divergence of f and λ(x, y, t) represents the

time-varying demand rate (in flow units per unit area).

The final model consists of the CL PDE Eq. (4.1) coupled with an Eikonal or

Hamilton-Jacobi PDE for route choice, which is solved using the traditional numerical

PDE solution methods. The solution methods in the literature mostly solve the model

for RDUE conditions and Tao et al. (2014) presents the only continuum-space DTA

model trying to find DSO solution. In this study, the system cost is expressed as:

Φ(ρ, θ) =

∫∫∫
Ω×T

κρ dx dy dt, (system cost) (4.2)

where θ(x, y, t) is the directed angle of speed representing travelers’ route choice, κ is

the value of time and T is the length of analysis period. The DSO model is formulated

as an optimization problem with an objective function to minimize Φ(ρ, θ) subject

to proper constraints. The proposed numerical solution method first discretizes the

continuum space using a finite volume method (FVM) and later optimizes a local

form of the discretized objective function using a heuristic method. In the heuristic

optimization method, the RDUE solution is used as the initial approximation for the

DSO solution. Since the analytic properties of the proposed model were not fully

studied by the authors, they were not able to develop a global optimal solution for

the model. In order to reduce the computational cost, the computational grids are

too coarse, which leads to a large degree of numerical error.

In the discrete space, Yildirimoglu et al. (2015) is the only study investigating DSO

conditions, where each region is divided into a number of sub-regions with well-defined
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MFDs and routes are redefined as sequences of sub-regions instead of sequences of

links in Yildirimoglu and Geroliminis (2014). Two macroscopic traffic models are

developed in region-level and subregion-level, where the speed of all vehicles inside a

subregion is equal to sub-region’s average speed taken from its speed MFD.

To overcome the limitations and drawbacks of the current MFD-based DTA mod-

els, Chapter 3 has proposed a new continuum-space DTA framework consistent with

the MFD theory and assumptions. In this model, the conservation law PDE Eq. (4.1)

has been revised and rewritten as:

∂ρ

∂t
+∇· f = λ−µ. (2D conservation law in the new framework) (4.3)

where µ(x, y, t) is the trip completion rate at point (x, y) at time t, which has been

associated with the outflow MFD. The introduction of this term to the conversation

law enables the model to incorporate destinations at any point over the network as

seen in Fig. 4.1(ii).

A semi-Lagrangian solution method has also been developed for the proposed

model, which is able to solve the RDUE problem in the two-dimensional space for

both single-destination and multi-destination regions. This solution method utilizes

an Eulerian grid with infinitesimal cells and superimposes a Lagrangian Network on

top of that consisting of directed links connecting each pair of adjacent cells. While

this model is consistent with both modeling approaches, the RDUE route choice

component may not result in the minimum total cost in the network over the modeling

period and it might not be favorable from a system perspective.
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4.3 Methodology

4.3.1 Nature of the Solution

The nature of the DSO solution is well understood for simple problems (Muñoz and

Laval, 2005; Laval et al., 2015). In essence, it requires that bottlenecks to be utilized

at their capacity, while keeping their queues at zero for as long as possible. Once

a particular bottleneck becomes operating at capacity, the extra inflow should be

diverted to a longer route provided that the extra free-flow travel time on that route

is less then the marginal cost of the original route at that time.

The difficulty resides in the computation of the marginal cost of a certain route,

as it reflects the extra travel time imposed to all users in the network until the end

of the rush, i.e. until congestion disappears everywhere in the network. Adding an

additional driver to a congested route will cause an extra delay (given by the inverse

of the bottleneck capacity on that route) to all subsequent drivers using this route,

and possibly to the users of other intersecting routes. However, when the route is not

congested, this marginal cost is identically zero. Once the marginal costs are known,

it is well known in the literature that the DSO solution can be obtained in the same

way as DUE solution but by minimizing the total marginal cost instead of the total

user cost, typically the travel time.

Nevertheless, in two-dimensional networks, obtaining the optimal DSO solution

becomes more complicated due to interdependence of the local directional flows and

their impact on travel cost and route choice behavior of other travelers in the net-

work. Here, we propose a reactive DSO solution method aiming to minimize the

instantaneous or perceived total travel time inside the network rather than the actual

or experienced travel time. This is achieved at each timestep by first finding the

shortest paths all over the network using the current travel times, which are obtained

from the solution of the previous timestep, and later assigning the vehicles at each
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point to the possible paths with the objective of minimizing the local marginal travel

cost considering the interactions between directional flows. Although the proposed

solution method might not result in the global DSO solution minimizing the actual

total travel cost, it is a step in this direction, and is based on an approximation of

marginal costs that does not require knowing the actual marginal cost until the end

of the congestion.

4.3.2 Proposed Solution Method

In the numerical scheme presented in Section 3.3, the two-dimensional continuum

space is divided into a number of homogeneous rectangular zones, i.e. cells, of sides

∆x,∆y > 0. The density of each cell computed by the numerical scheme at time step

τ , ρτc , approximates the density of its centroid, xc = (xc, yc), at time tτ = τ ∆t. The

time-step ∆t is assumed to be small enough to satisfy the Courant-Friedrich-Lewy

(CFL) condition:

max
ρ

(
max |f ′1(ρ)|

∆x
,
max |f ′2(ρ)|

∆y

)
∆t ≤ 1, (CFL condition) (4.4)

which implies that no vehicle will be able to traverse more than a cell during one time

step. Each zone is connected to the adjacent zones via links. In order to compute

the fluxes at the boundaries between adjacent connected zones, links, l, are defined

as the set of all possible paths from the source zone, l.s, to the target zone, l.t. For

example, Fig. 4.2(i) shows some of the possible paths consisting the link from zone a

to zone b. As seen in this figure, all the travel on a link takes place in its source zone.

The total demand and supply of each zone are calculated using the well-known

demand, D(·), and supply, S(·), functions as:

D(ρ) =

 Q(ρ), ρ ≤ ρ∗

Q∗, ρ > ρ∗
, and S(ρ) =

 Q(ρ), ρ ≥ ρ∗

Q∗, ρ < ρ∗
, (4.5)
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where ρ∗ and Q∗ are the critical density and capacity of the flux MFD, Q(ρ), re-

spectively. In two dimensions, flows are multi-commodity, i.e. one per each origin-

destination pair, but at the cell level, there are only a few commodities that matter,

one per each outgoing link a. The mapping from the origin-destination commodities

to the outgoing link commodities is a result of the route choice model, which gives

us the density willing to use each outgoing link, ρa. The problem of deciding the

corresponding flux through that link, fa, given all the competing densities willing to

travel to cell a.t is identical to the network junction problem in the literature (see

e.g., Jin, 2012, and references therein). The solution to this problem can be expressed

as the following multi-commodity CT rule:

fa = min{Da, Sa}, (CT rule, multiple commodities) (4.6)

(i)

a b

c

d

e

(ii)

a b

c

d

e

Figure 4.2: Illustration of zones and links on a real network: (i) some of the paths
constituting the link from cell a○ to cell b○, (ii) mutuality of the first portion of links
from cell a○ to the neighboring cells (Background maps taken from Google Maps)
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and the speed on link va can then be computed by:

va = fa/ρa. (link speed) (4.7)

There are multiple formulations of these commodity-specific demand and supply

functions in the literature, in the context of intersection modeling (see e.g. Jin, 2017,

and references therein). Here, we use:

Da = D(ρa.s) ·
ρa

ρa.s
, and Sa = S(ρa.t) ·

1

N i
a.t

, (4.8)

where N i
c is the number of incoming links from adjacent cells to cell c. Eq. (4.8)

describes that demand and supply of link a are a fraction of the total demand in

source cell a.s and the total supply in the target cell a.t, respectively. The demand

fraction is proportional to the number of vehicles willing to use link a, while the cell

supply is assumed to be equally divided among the incoming links from the adjacent

cells.

4.3.3 Solution Algorithm

Before describing the proposed two-dimensional DSO assignment method, it is nec-

essary to state the further assumptions made in the solution method. These assump-

tions can be stated as follows:

a) The network is partitioned into square-shaped cells.

b) The travel distance on all links inside a cell is assumed to be identical and equal

to the side length of the cell.

c) The first 50% of the links are assumed to be mutual, i.e. if a vehicle is in the

first 50% of a link, it can shift to another link and move toward a different

target cell, if required by the route choice strategy, as illustrated in Fig. 4.2(ii).

However, to prevent erratic fluctuations, the vehicles are allowed to change their
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route only once inside each cell. Note that this percentage is arbitrary and it

can be modified based on the specific geometry of any cell.

As discussed earlier, at the cell level, there are only a few commodities that matter,

one per each outgoing cell. Thus, our goal is to find the flow on each outgoing link

in a way that satisfies the route choice strategy objective. The travel time from cell

c to the destination through each outgoing link can be calculated as:

TT l,τ+1
c (nl,τ+1) = T l,τ+1(nl,τ+1) + TT ∗,τl.t , ∀ l ∈ Oc (4.9)

where:

nl,τ+1: number of vehicles on link l at this time step τ + 1,

TT l,τ+1
c : travel time from cell c to the destination via outgoing link l at time step τ + 1,

T l,τ+1: travel time of link l at time step τ + 1,

TT ∗,τl.t : the shortest path travel time from link l’s target cell to the destination cell

computed using the current instantaneous travel times, which is not a function

of nl,τ+1,

Oc: the set of all outgoing links of cell c.

For each link, the number of vehicles that have travelled less than 50% of their

trip distance inside the current cell and have not changed their route inside this cell is

denoted by sl,τ . These vehicles are the candidates of shifting to other outgoing links

of their current cell if required by the route choice component. The number of the

rest of the vehicles on the link, which will be on the same link during the next time

step as well, is denoted by ml,τ .
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The marginal cost of adding p vehicles to link l during time step τ + 1, M l,τ+1(p),

can be derived by differentiating Eq. (4.9) and expressed as:

M l,τ+1(p) = p TT l,τ+1
l.s (ml,τ + p) +ml,τ [T l,τ+1(ml,τ + p)− T l,τ+1(ml,τ )], (4.10)

where the first part of RHS is the sum of total travel cost for the added vehicles and

the second part is the sum of additional travel cost incurred by the vehicles already

present on the link as a result of adding p vehicles to the link.

At each simulation time step, the steps below will be followed to move the vehicles

through the network toward their destination achieving the DSO conditions:

Step 1. Vehicles arriving to the network are assigned to the corresponding origin cell

based on the location of their origin point and queued to enter the network

during the route choice. The number of vehicles in the queue to enter cell c at

time step τ is denoted by qτc .

Step 2. Shortest paths from each cell to the destination cell are computed using the

current link travel times.

Step 3. Number of vehicles inside each cell during time step τ + 1 can be found as:

nτ+1
c = min{nτc + qτc , n

jam
c }, (4.11)

where njamc is the jam accumulation of cell c. Eq. (4.11) ensures that the

number of vehicles inside a cell does not exceed the jam accumulation of the

cell. Therefore, some of the vehicles willing to enter the network might need to

wait outside the network until their origin cell gets enough capacity to let them

in. The change in the accumulation of each cell, eτ+1
n , is expressed as:

eτ+1
c = nτ+1

c − nτc . (4.12)
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Step 4. Cell demands and supplies are computed based on nτ+1
c . Consequently, link

supplies can be calculated using Eq. (4.8).

Step 5. Number of shift candidates from each link, sl,τ , and minimum number of vehicles

staying on the same link, ml,τ , is calculated for all the links across the network.

The total number of shift candidates inside a cell, sτc , is found as:

sτc =
∑
l∈Oc

sl,τ . (4.13)

Step 6. The aim of DSO assignment method is to assign sτc +eτc vehicles to the outgoing

links of the cell with the aim of minimizing the total travel cost for all vehicles.

This can be achieved by minimizing the sum of marginal costs for all the out-

going links of each cell. At the cell level, the objective function can be written

as:

min Zc =
∑
l∈Oc

M l,τ+1(rl,τ+1), (4.14)

subject to:

∑
l∈Oc

rl,τ+1 = sτc + eτc , ∀c, τ (4.15a)

rl,τ+1 ≥ 0, ∀ l, τ (4.15b)

rl,τ+1 integer, ∀ l, τ (4.15c)

where rl,τ+1 is the number of vehicles added to link l during time period τ + 1

in addition to ml,τ vehicles present on the link. Although the optimization

problem may seem simple at the first glance, by incorporating Eqs. (4.10),

(4.9), (4.8), (4.7) and (4.6) into the objective function one can realize that it is

a mixed-integer nonlinear program (MINLP) problem.
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There are several methods to solve this problem: (i) comparing the objective

function at all candidate points in the set of possible solutions and finding

the optimal point, (ii) using the well-known standard MINLP solvers, or (iii)

relaxing the integer constraint, solving the resultant continuous sub-problem

and rounding the optimum point to the closest integer point in the feasible

region, which might not lead to the global optimum solution of the problem.

The last two methods become significantly more efficient when feasible space is

large. However, since in the present optimization problem there are only a few

variables and the feasible region is relatively small, the first method can also

efficiently reach the optimal solution in a very short time. Therefore, we have

chosen to solve the optimization problem Eq. (4.14) using this basic method

without resort to the complicated MINLP solvers.

Step 7. Solving the minimization problem Eq. (4.14) results in the optimum number of

added vehicles to each link. The vehicles inside the set of shift candidates and

arrivals are assigned to the outgoing links based on rl,τ+1 of each link. Later,

vehicle positions are updated using the speed of their current link. Any vehicle

completing its trip inside a cell either exits the region if it was in its destination

cell or moves to the next cell on its path if the accumulation of the target cell

is below its jam accumulation.

These steps are followed at each time step to achieve the DSO conditions at

each cell. In the next section, the results of two simulation experiments using this

algorithm will be presented and compared to the results of the RDUE assignment

method developed in the previous chapter.

4.4 Numerical Experiments

This section will present and discuss the results of two simulation experiments using

the proposed DSO framework. The same experiments are also done using the RDUE
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solution method proposed previous chapter and the results from both approaches are

compared to demonstrate the advantage of the DSO model over RDUE model in

terms of congestion management.

Both experiments have been carried out on a rectangular network with a length of

5000 meters and width of 4500 meters, which is partitioned into 90 square cells with

side length of 500 meters, as seen in Fig. 4.3(i). Without loss of generality and for the

sake of simplicity, all cells are assumed to have the same parabolic (Greenshields’)

flux MFD with a jam cell accumulation of 200 vehicles. The maximum average

speed inside the network is assumed to be 10 m/s (36 km/h), while the speed at the

boundary of any adjacent pair of cells is computed using Eq. (4.7).

Although the model is capable of handling randomly distributed origins all across

the network, to better see the performance of model under congested conditions,

all the vehicles start their trips inside the network from a single origin point and

travel toward a single destination point. The corresponding cells with the origin and

destination locations are indicated by the green and red borders, respectively, in Fig.

4.3.
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Figure 4.3: Network configurations: (i) Experiment 1, (ii) Experiment 2
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4.4.1 Experiment 1: No Physical Bottlenecks

This experiment investigates the behavior of traffic in a two-dimensional domain

without any physical bottlenecks, where the vehicles can circulate at any point on the

network; see Fig. 4.3(i). The second experiment will analyze the performance of the

proposed model on a similar network with obstructions creating a physical bottleneck

in the network as seen in Fig. 4.3(ii). The network is loaded with a demand rate

of 2 veh/s for 30 minutes and simulation runs till the last vehicle completes its trip

inside the network by reaching the destination point. The maximum outflow rate

from the region is equal to the capacity inflow rate of the destination cell, which can

be computed using the parabolic flux MFD as 1 veh/s. Therefore, it is expected

to see some congestion over the network, since the demand rate is higher than the

maximum outflow rate.

This experiment has been also conducted in the RDUE model proposed in Chapter

3 using the same network and loading configurations. Fig. 4.4(i) shows the cumulative

curves of demand, inflow to the region and outflow from the region for both DSO and

RDUE models. The difference between the demand and inflow curves arises when the

origin cell reaches the jam accumulation and does not have enough capacity to let the

demand inside the network, as explained earlier in Step 3 of the solution algorithm.

We observe that on average the inflow rate of the RDUE model is lower than the

DSO model. This is due to the fact the RDUE model overloads the initial link of

the shortest path from the origin zone without considering its effect on the vehicles

currently on that link that causes over-congestion of the link and consequently con-

gestion in the link’s target cell. Eventually, this results in reduction in the supplies of

adjacent cells to the origin cell, reduction in the outflow rate from the origin cell and

subsequently reduction in the inflow rate to the origin cell. The same phenomenon

is also observed under the DSO conditions but comparing the inflow curves, we can
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Figure 4.4: Experiment 1 results: (i) Cumulative curves, (ii) Travel time distributions
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observe that the DSO model manages the over-congestion due to excessive demand

better than the RDUE model.

The outflow from the region starts earlier and has a steadier rate in the DSO

model compared to the RDUE model. Considering both inflow and outflow curves

for two models, we can conclude that the DSO model results in less total travel

time and total delay over the network compared to the RDUE model. This can be

further confirmed by comparing the travel time histograms for these two models in

Fig. 4.4(ii). The average travel time in the DSO model is 1579 seconds, while for

the RDUE model it is 1669 seconds. Considering that the free-flow travel time from

the origin to destination is 500 seconds (dividing the distance between origin and

destination, 5000 meters, by the maximum average speed in the region, 10 m/s), we

observe that the DSO model reduces the average delay and consequently, the total

travel cost by 7.7% in this experiment.

The interesting observation in this figure is that the frequency of vehicles with

shorter travel time is higher in the DSO model than the RDUE model as opposed to

what we were expecting to observe based on the fact that under RDUE conditions

vehicles greedily try to minimize their travel time and as a result there would be more

vehicles with lower travel times compared to the DSO conditions. In contrary, the

greedy behavior of drivers under the RDUE conditions to minimize their own travel

time based on the perceived travel times results in the over-congestion of the shortest

paths and eventually higher experienced travel times.

Fig. 4.5 exhibits the distribution of cell occupancy, oc = ρc/ρ
max
c , at 3 different

times for both DSO and RDUE models. The shortest path over-congestion phenom-

ena under the RDUE conditions can be observed clearly in Fig. 4.5(b), where the

adjacent cells to the origin cell are more congested compared to the DSO method at

the same time. This issue imposes excessive delay on the vehicles choosing the short-

est path and hinders their trip to the destination. On the other hand, the DSO model
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(a) DSO, t=500s
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(b) DUE, t=500s
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(c) DSO, t=2000s
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(d) DUE, t=2000s
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(e) DSO, t=3000s
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(f) DUE, t=3000s

0 
  

50
0 

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

x (m)

4500

4000

3500

3000

2500

2000

1500

1000

500 

0   

y 
(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5: Occupancy heatmaps for experiment 1 at different time steps, Left: DSO,
Right: RDUE
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distributes the density more evenly throughout the analysis period, which eventually

results in less average delay in the network.

4.4.2 Experiment 2: Presence of Physical Bottleneck

The second experiment is carried out on a similar network to the network in experi-

ment 1 but in order to further highlight the advantages of the proposed DSO solution

method over the RDUE method in Chapter 3, a physical bottleneck has been created

in the network by placing two obstructions, which vehicles cannot exit or enter, as

seen in Fig. 4.3(ii). There is an obvious shortest path in terms of travel distance

from the origin to the destination, while all the other paths have significantly higher

lengths. The other loading and partitioning properties are the same as experiment 1.

The experiment is simulated once using the proposed DSO model in this chapter and

once using the RDUE solution method in the previous chapter and the performances

of these two solution methods are compared.

Fig. 4.6(i) demonstrates the cumulative demand, inflow and outflow curves for

both DSO and RDUE models. It is noticeable that deviation of inflow and outflow

curves in the RDUE method from the ones in the DSO model is more significant

compared to experiment 1. Travel time histograms in Fig. 4.6(ii) also assert that on

average the DSO model outperforms the RDUE model. The average delay for DSO

and RDUE methods are 1256 and 1523 seconds, respectively, which indicates that

the DSO method results in a reduction of 17.5% in average delay and total system

cost compared to the RDUE method.

We can infer that the shortest path over-congestion problem in the RDUE model

becomes more severe with presence of a distinct shortest path in the region. This

can be confirmed by comparing the snapshots of distribution of vehicles over the

network for the DSO and RDUE solutions in Fig. 4.7. At time t = 500, we can

observe excessive congestion on the straight path from origin to destination in the
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Figure 4.6: Experiment 2 results: (i) Cumulative curves, (ii) Travel time distributions
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(a) DSO, t=500s
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(b) DUE, t=500s
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(c) DSO, t=2000s
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(d) DUE, t=2000s
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(e) DSO, t=3000s
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(f) DUE, t=3000s
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Figure 4.7: Occupancy heatmaps for experiment 2 at different time steps, Left: DSO,
Right: RDUE
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RDUE solution, while the density is more evenly distributed in the DSO solution by

minimizing the total system cost rather than the individual travel time.

4.5 Chapter Summary

This chapter has presented a semi-DSO traffic assignment model in two-dimensional

continuum space using instantaneous travel times. To the best of our knowledge, this

is the first study investigating the DSO conditions for two-dimensional networks in a

detailed manner. The results of two simulation experiments indicate that achieving

the DSO conditions using the proposed solution method results in reduction of the

total travel cost and delay in the network compared to the RDUE method in the

literature.

The numerical results in Chapter 3 indicate that the accuracy of the solution

method increases when the region is partitioned into smaller cells, which is also true

for the DSO assignment method proposed in this chapter. The proposed solution

method is based on instantaneous travel times, which might not result in the minimum

experienced total travel cost. However, this is just a starting point for investigating

DSO conditions in two-dimensional networks. An important future research direction

is reformulating the solution method based on experienced travel time, which can solve

the model to find the minimum total actual travel cost.
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CHAPTER 5

INCORPORATING MACROSCOPIC FUNDAMENTAL DIAGRAM

INTO EMISSIONS ESTIMATION USING THE MOVES MODEL

5.1 Introduction

The continuously increasing mobility demand in developing communities is resulting

in several consequences where (i) delays caused by congestion directly result in eco-

nomic loss, (ii) uncurbed fuel consumption exacerbates the depletion of non-renewable

energy resources, and (iii) emissions from the vehicles provoke local (air pollution,

acid rain, health issues) and global (climate change, global warming effect) damages.

Therefore, from a sustainable development perspective, such effects must be studied

and controlled in order to prevent any hindrance to the development process.

The motor vehicles emissions can be categorized into two general categories: (i) the

air pollutants such as Particular Matter (PM), Volatile Organic Compounds (VOCs),

Nitrogen Oxides (NOx), Carbon Monoxide (CO) and Sulfur Dioxide (SO2), which

impact the air quality and can result in human health issues, and (ii) Greenhouse

Gases (GHG) including Carbon Dioxide (CO2), Methane (CH4) and Nitrous Oxide

(N2O), which have broader impacts such as climate change and global warming.

Although the predominant GHG emitted from motor vehicles is CO2, the latter two

GHGs have higher Global Warming Potential (GWP) despite their lower emission

rates (Azar and Johansson, 2012).

According to a recent fact sheet published by the United States Environmental

Protection Agency (EPA), transportation sector accounted for the largest portion

(28%) of total U.S. GHG emissions in 2016 (EPA, 2018). Between 1990 and 2016,

GHG emissions in the transportation sector has increased more in absolute terms
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than any other sector (i.e. electricity generation, industry, agriculture, residential, or

commercial) due in large part to increased demand for travel.

Several national and international policies including 1990 Clean Air Act Amend-

ment, Kyoto Protocol and Paris Agreement have been proposed to control the GHG

and pollutants emissions. The kernel technical basis of all these policies is the

requirement of reliable emissions data, which is estimated using emission models.

Emission models can be categorized as microscopic and macroscopic models (Rakha

et al., 2003). Macroscopic models such as EPA’s MOBILE and California Air Re-

sources Board’s EMFAC models use average aggregate network parameters to esti-

mate network-wide energy consumption and emission factors. The major drawback

of these macroscopic models is in the use of a single traffic-related variable to es-

timate emissions, thereby ignoring other important explanatory variables that can

significantly affect emission estimates.

The project level of EPA’s state-of-the-science emissions model, MOVES (MOtor

Vehicle Emission Simulator; EPA, 2020a), is a microscopic model that incorporates

the effects of different instantaneous speed and acceleration profiles on vehicle emis-

sions, thereby representing real driving conditions. The latest approved version of

MOVES is required by the regulations to be used in all transportation and air quality

planning and assessment work. However, the complicated interface of MOVES, the

need to comprehensive data and analysis for each link of the network and exhaustive

run-time make it impractical for real-time analysis and control purposes on large-scale

networks.

Up until recently, the main objective of most traffic control strategies has been to

alleviate congestion and to reduce the delay incurred by travelers and emission and

fuel consumption control have only gained interest in the past few years. However,

the optimal emission and fuel consumption strategy may not lead to minimal delay

and congestion (Csikós and Varga, 2011). Therefore, the optimal control strategy
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considering all aspects must be a trade-off between optimum emissions and optimum

delay conditions.

Estimation of emissions and energy consumption using MOVES or other micro-

scopic models is resource-intensive for large-scale networks and intractable for real-

time analysis and control purposes. Several efforts have lately been made to improve

the efficiency of MOVES model, e.g. MOVES Lite (Liu and Frey, 2013) and MOVES-

Matrix (Liu et al., 2016), but still the need to link-level computations is a hurdle to

the real-time emission estimation for traffic control purposes.

The idea of an aggregated relationship between the network-wide traffic variables

dates back to 1960s (Smeed, 1967; Godfrey, 1969) and a few other studies in 1980s

(Herman and Prigogine, 1979; Mahmassani et al., 1984; Ardekani and Herman, 1987).

However, the recent empirical verification of existence of a network-level Macroscopic

Fundamental Diagram (MFD) on urban areas has opened up a new paradigm (Geroli-

minis and Daganzo, 2008).

The MFD gives average traffic variables as a function of the number of vehicles

inside the region, n. For instance, the average flow MFD:

Q = Q(n), (average flow MFD) (5.1)

gives the average flow, Q, on network arguably independently of trip origins and

destinations, and route choice. This makes the MFD an invaluable tool to overcome

the difficulties of the traditional link-level planning and control models including the

microscopic emissions estimation models. If the MFD is accurately derived using em-

pirical data or estimated using the analytical models on a region with homogeneous

traffic distribution, it can be used to replace the links inside the region with a single

entity, whose traffic dynamics is given by the MFD variables, in the emissions estima-

tion method without significant loss of accuracy. The MFD has been widely used in
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other aspects of traffic planning and management such as dynamic traffic assignment

(Yildirimoglu et al., 2015; Batista et al., 2019; Aghamohammadi and Laval, 2020a;

Aghamohammadi and Laval, 2020b), optimal control (Ramezani et al., 2015; Had-

dad, 2017; Kouvelas et al., 2017), parking (Cao and Menendez, 2015; Leclercq et al.,

2017b) and pricing (Zheng et al., 2016; Yang et al., 2019).

Nevertheless, the implementation of MFD in emissions estimation is yet an un-

derdeveloped field of research and practice, with only a handful of studies conducted

on this topic up until now. Furthermore, since emissions analysis is required to be

done according to certain regulations or using specific models by the national or local

agencies, many authorities are limited to use the specific models and software pack-

ages for the emissions estimation purposes. Therefore, researchers tend to explore

innovative ways to incorporate the state-of-the-art developments in traffic modeling

realm into the existing emissions estimation methods to improve their efficiency.

In this chapter, we will first conduct an extensive review of the existing litera-

ture on implementation of the MFD for emissions estimation purposes in the recent

years. Of foremost importance is the studies which try to incorporate the MFD dy-

namics into the existing well-established emissions estimation models mandated by

the authorities to be used for emissions analysis. Later, a numerical experiment of

estimating the emissions of a grid network in different aggregation levels using the

MOVES model will be presented and the efficiency and accuracy of the results will

be discussed.

5.2 Background

Considering the monotonous increase of the share of transportation industry in the

pollutants and GHG emissions, there will be a need to develop traffic control and

routing strategies in the near future not only based on the travel time minimiza-

tion criterion, but also seeking to optimize the pollutants and GHG emissions and
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energy consumption, which would require accurate real-time emissions estimations.

In general, the emissions estimation models can be categorized into three different

approaches based on their need to different levels of data (Yin et al., 2013):

I) The emission factor models, which assign an emission factor derived from

repetitive experiments to the whole analysis period. The emission factor can

be multiplied by correction factors to incorporate different vehicle speeds, fuel

type, vehicle age, etc. The total amount of emission for any specific pollutant

or GHG is found by multiplying the corresponding emission factor by the total

vehicle miles travelled (VMT) for the analysis period.

II) The physical power-demand models, which take into account the vehicle’s oper-

ational conditions and driving environment to provide second-by-second emis-

sions. This models usually consider different operational characteristics of

vehicles such as engine power, engine speed, air/fuel ratio, fuel use, etc. for

different vehicle operation states. These type of models estimate the emis-

sions more accurately, however, their extensive need to obtain a large variety

of detailed data is an obstacle in their application.

III) The acceleration and speed-based models, which compute emission rates as

nonlinear functions of instantaneous speed and acceleration values. This ap-

proach has gained more popularity recently, since they provide more accurate

estimates compared to the emission factor models and require less information

compared to physical power-demand models.

Nevertheless, the current microscopic methods of emission estimation such as the

MOVES model are unsuitable for real-time applications in large-scale networks with

thousands of links despite their higher accuracy compared to the previous models. In

this section, we will perform an extensive review of the state of the art in incorporating

MFD in vehicular emissions estimation. It is worth mentioning that in order to keep
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the consistency of the notation throughout this chapter, we have changed the notation

of some of the studies reviewed here. Moreover, a bold-typed reference in the next

section indicates the outset of its review.

5.2.1 Reservoir-based Models

Most of the MFD-based emissions estimation models in the literature model the entire

network as a reservoir, whose traffic dynamics are given by the MFD of the reservoir.

The network-wide aggregated MFD variables are then used to estimate the vehicular

emissions inside the network.

Shabihkhani and Gonzales (2014) developed a methodology for GHG emis-

sions estimation using the MFD of a single homogeneous network for estimating driv-

ing cycle components, i.e. (i) time spent cruising at free-flow speed, Tc, (ii) time spent

idling while stopped, Ti, and (iii) the number of vehicle stops per distance traveled,

n, without the need for extensive trajectory analysis using conventional microscopic

methods. Then, the total emissions per vehicle distance traveled, E, is computed as:

E = ecTc + eiTi + esn, (total emissions per distance travelled) (5.2)

where ec is the emission factor per unit cruising time, ei is the emission factor per unit

idling time and es is the emission factor associated with complete cycle of deceleration

from the free-flow speed, vf , to 0 and then acceleration from 0 to vf . In order to

estimate the emission factors, a traffic simulation has been conducted on a simple

ring network with a single intersection representing a long arterial or a network with

homogeneous traffic conditions. The ring network has been loaded with the full range

of possible densities from an empty network to complete jam. The vehicle trajectories

are extracted to be used for microscopic emissions estimation via the project level of
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the MOVES model as a comparison benchmark to compute the emission factors and

the duration of a full deceleration and acceleration cycle, τ .

The next step is to approximate the aforementioned driving cycle components

using the MFD. It has been assumed that the vehicles stop only once during each

traffic signal cycle, C. The driving cycle components for each traffic state, with average

MFD speed v are estimated as:

n =
1

vC
, (number of stops per unit distance travelled)

Tc =
1

vf
− τ

2
n, (cruising time)

Ti =
1

v
− 1

vf
− τ

2
n. (idling time)

(5.3a)

(5.3b)

(5.3c)

Later, sensitivity analysis has been done to see the impact of 3 main factors, green

time to cycle length ratio, signal cycle length and block length, on GHG emissions

estimates and their relative error compared to the benchmark emissions rate computed

using the MOVES model. It has been found that the green time to cycle length

ratio plays a key role in both the shape of the MFD and the rate of emissions and

the estimation errors are significant and consistently positive at near-to-jam density

values. A significant shortcoming of the proposed model is not being capable of taking

different vehicle types into account.

Csikós et al. (2015) developed an optimal perimeter control model aiming to

minimize the emissions from the vehicles inside the perimeter built on the emissions

estimation model proposed in Csikós and Varga (2012) using the average speed (v),

total travel distance (TTD) and total time spent (TTS) variables obtained using the

MFD. Emission factors for different traffic states for the network are calculated similar

to the link-wise emission factors formulation provided by Ntziachristos et al. (2009)

using the MFD average speed, which has later been multiplied by the TTD of the

network to find the total emissions of the network. The CO emission estimates for two
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different case studies indicate that the proposed method has a 20% error compared

to the link-level microscopic Versit+Micro model (Smit et al., 2007) but yields in

very similar results compared to the link-level Copert IV model (Ntziachristos et al.,

2009).

Amirgholy et al. (2017) proposes a model for optimal design of public trans-

portation systems in congested urban networks. As a component of the total cost of

the transportation system, the external cost of emissions is approximated by using

the average speed of the network MFD in a VMT-based emissions estimation model

proposed by Affum et al. (2003). In this model, the external cost of emissions (EN)

is computed as a function of the fuel consumption of automobiles (FA) and transit

vehicles (FT ), where the MFD speed for any given average density state in the net-

work is only used for computation of the fuel consumption of the average automobile

per unit distance traveled in the network.

Ingole et al. (2020) proposed an optimal perimeter control model for a network

comprised of an inner city modeled as a reservoir with entrances and exits at three

locations on the perimeter and bypass freeways connecting and exit points. The

model aims to minimize the NOx emissions inside the reservoir using a gating strategy

based on Nonlinear Model Predictive Control (NMPC). The reservoir emissions are

computed by integrating the fourth-degree polynomial formulation proposed by Lejri

et al. (2018) into the COPERT IV model (Ntziachristos et al., 2009). The total

emissions of pollutant m ∈ {CO2, NOx} between t and t + dt, Em
dt(t), in [g] is found

as:

Em
dt(t) = EFm(v(t))× n(t)× v(t)× dt, (5.4)

where EFm(v(t)) is the emission factor of pollutant m in [g/km], n(t) is the accumu-

lation of vehicles inside the reservoir at time t, v(t) is the MFD mean speed at time t
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in [km/h] and dt is the time step in [h]. The emission factors are calibrated through

curve fitting to the actual microscopic emissions for different MFD mean speeds. The

emissions of each internal route i inside the reservoir is found by replacing n in Eq.

(5.4) with the partial accumulation of the route ni. Furthermore, the emissions of

each bypass link can be calculated by replacing the accumulation and average speed

of the link in Eq. (5.4).

Saedi et al. (2020) developed a model to estimate the network-wide emissions

by incorporating the MFD into the microscopic emission model considering different

light and heavy-duty vehicle compositions. The benchmark microscopic emission

rates are obtained using the polynomial model proposed in Panis et al. (2006) as:

Em
n (t) = max

[
0.0, (f1)mn + (f2)mn vn + (f3)mn v

2
n + (f4)mn an + (f5)mn a

2
n + (f6)mn vnan

]
,

(5.5)

where n ∈ {gasoline car, diesel car, LPG car, heavy-duty vehicles} is the vehicle type,

m ∈ {CO2,NOx} represents different emission types, vn is the vehicle’s speed in

[m/s], an is the vehicle’s acceleration in [m/s2] and (f1)mn to (f6)mn are model constants

determined by non-linear multiple regression methods. For the macroscopic emissions

estimation the authors propose:

Em(t) =

(
N∑
i=1

αmi pi

)
k(t) (βm + v(t)) =

(
N∑
i=1

αmi pi

)
(βmk(t) + q(t)) , (5.6)

where Em(t) is the rate of emission in [g/s] of pollutant m ∈ {CO2,NOx} at time

step t in the observation period, pi is the penetration rate of vehicle type i in the

traffic stream, k(t), v(t), and q(t) are network-wide average density, speed, and flow,

respectively, and αmi and βm are the model parameters for pollutant m. βm can be
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perceived as a penalty factor for high density scenarios, when the traffic is congested

and repeated stop and go movements have a significant toll on the emissions.

A micro-simulation is used to produce traffic data for different demand and vehicle

composition scenarios in order to calibrate the proposed macroscopic emission model

parameters using the microscopic emission estimates found by Eq. (5.5). The signif-

icant difference between the calibrated parameters for a congested central business

district (CBD) inside the network and the entire network, which is less congested

on average, demonstrate that the model parameters are very sensitive to the network

topology and demand intensity and that the parameters have to be calibrated for each

network. The results indicate that different vehicle compositions only have a scal-

ing factor on the resulting total emissions. Using the results, 3-dimensional Network

Emission Diagrams (NED) are developed showing the emission rate for any average

flow and density pair for the studied network.

The next subsection will review another class of MFD-based emissions estimation

models, which do not explicitly state the incorporation of MFD in their model but in

fact are using MFD for their local traffic flow relationships similar to the continuum-

space DTA models presented earlier in Chapter 2.

5.2.2 Continuum-space Models

Another major approach observed in the literature is to model the network as a

continuum space where the vehicles can circulate at any point x = (x, y) of a Eu-

clidian two-dimensional domain Ω ⊂ R2, see Fig 5.1(a). The basic notion behind the

continuum-space traffic models is that when the network is dense enough such that

the distances between road segments are small compared to the size of network, the

network can be approximated by a continuum space. There is a vast body of literature

on continuum-space Dynamic Traffic Assignment (DTA), emanating from the seminal

pedestrian flow model by Hughes (2002). Later, researchers have adapted this frame-

107



work to the vehicular traffic and have proposed various DTA models in continuum

space (see e.g., Jiang et al., 2011; Du et al., 2013; Lin et al., 2017), which consist of a

conservation law partial differential equation (PDE) in two dimensions, supplemented

with an Eikonal or Hamilton-Jacobi PDE for the route choice component.

The connection between the continuum-space models and the MFD theory lies in

the numerical solution of these models, where the continuum space is partitioned into

a grid of small regions, see Fig. 5.1(b), and the traffic dynamics inside each region

is described by a local speed-density relationship. A number of recent studies in the

continuum-space DTA literature have mentioned the local speed-density relationship

as MFD (Du et al., 2013; Du et al., 2015; Long et al., 2017). Aghamohammadi and

Laval (2020b) shows that the speed-density relationship can in fact be interpreted as

the MFD, since it is defined on a portion of the network and has to also take the

network effects such as signal timing into account. Note that the local MFDs in the

continuum-space models are defined only on a small portion of the network, while in

the reservoir-based models there is a single MFD defined over the entire network.

As the first study investigating the emissions in the continuum space, Yin et al.

(2013) proposes a bi-level optimization problem to optimize housing allocation to

minimize vehicular emissions in an integrated land use and transportation modeling

framework. The lower-level subprogram formulates the traffic assignment problem to

Figure 5.1: Illustration of (a) continuum space and (b) typical solution grid
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achieve the user optimum (UE) solution, where the total cost for each user is consisted

of the travel and housing costs, and solves the resulting system of PDEs using the

finite element method (FEM). For a complete review of formulation and different

solution methods of continuum-space traffic assignment models refer to Chapter 2.

In the upper-level subprogram, the housing allocation is optimized to minimize

the CO2 emissions. The emissions and fuel consumption estimation model proposed

by Ahn et al. (2002) is adopted to estimate the emission rate of each type of emission

as:

Em(v, a) = exp

(
3∑
i=0

3∑
j=0

ωmi,jv
iaj

)
, (5.7)

where Em is the instantaneous emission rate and fuel consumption with superscript

m denoting different kind of emissions, HC and CO in [mg/s] and fuel consumption in

[gal/h], v is the speed in [km/h], a is the acceleration in [km/h2] and ωmi,j denotes the

model regression coefficient for emission type m, speed power i and acceleration power

j. However, this model cannot be directly used to estimate the CO2 emissions and the

CO2 emission rate can be found using the carbon balance between fuel consumption

and emissions of other gases including carbon as:

ECO2(v, a) = 2458.29F (v, a)− 3.17EHC(v, a)− 1.57ECO(v, a), (5.8)

where F , EHC and ECO are Fuel consumption in [gal/h], HC emission rate in [mg/s]

and CO emission rate [mg/s], respectively, which all can be computed using Eq. (5.7)

using the available model coefficients. The total CO2 emissions in the network are

found by integrating the CO2 emission rate multiplied by the norm of the optimum

flow vector at any point f∗(x, y) over the entire network considering that the speed and

acceleration values at the vicinity of any point is given by the local MFDs described

earlier.
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Jiang et al. (2018) proposes a second-order continuum-space DTA model, where

the travelers seek to minimize their travel cost based on the dynamic user equilib-

rium (DUE) principle considering that the travelers only perceive their instantaneous

travel times as the travel cost. After solving the DTA problem using the standard

PDE solution methods, the instantaneous emission rate Em
n (x, t) in [g/s/veh] for each

vehicle type n and emission type m ∈ {CO2, NOx, PM, VOC} at any location x ∈ Ω

and time t is found using the Panis et al. (2006) model given by Eq. (5.5). The

concentration of the emission for the nth vehicle type and the mth emission type at

location x ∈ Ω and time t is expressed as DEm
n (x, t) in [kg/km2/h] and is calculated

as:

DEm
n (x, t) = 3.6× ρn(x, t)Em

n (x, t), (emission concentration) (5.9)

where ρn(x, t) is the density of nth vehicle type at location x and time t. The

total emission rate for the nth vehicle type and the mth emission type in the entire

continuum space at time t is denoted as TEm
n (t) in [kg/h] and is obtained as:

TEm
n (t) =

∫∫
Ω

DEm
n (x, y, t)dxdy. (total emission rate) (5.10)

The corresponding cumulative emission for the nth vehicle type and the mth

emission type in the entire network since the beginning of analysis till time t, CEm
n (t)

in [kg], can be found as:

CEm
n (t) =

∫ t

0

TEm
n (s)ds. (cumulative emission) (5.11)
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5.3 Discussion and Outlook

In this section, we discuss the main findings in terms of the observed trends in the

literature, and identify the issues and challenges that deserve further research. Table

5.1 presents an overview of the studied papers, their specifications and main contri-

butions.

5.3.1 From Single-reservoir to Multi-reservoir Models

The studies reviewed here demonstrate that the MFD can be a powerful tool in

making the microscopic emissions estimation models less resource intensive and more

efficient for real-time network control and management purposes. However, due to

the heterogeneity of realistic large-scale networks, the single-reservoir models pre-

sented here cannot accurately estimate the emissions in large-scale networks. The

current trend of dealing with heterogeneity in large-scale networks is to partition the

Table 5.1: Overview of studied papers

Source
Estimated
Emissions

MFD
Variables

Base Model Main Contribution

Reservoir-based Models

Shabihkhani
and Gonzales

(2014)
GHG v

MOVES (EPA,
2020a)

Computed driving cycle components to
be used in the MOVES model

Csikós et al.
(2015)

CO
v, TTD,
TTS

COPERT IV
(Ntziachristos
et al., 2009)

Replaced the MFD-based variables for
network into the link-level COPERT

IV model

Amirgholy
et al. (2017)

External
cost of

emission
v

Affum et al.
(2003)

Proposed optimal transit system design
by incorporating external emissions

cost in the total cost

Ingole et al.
(2020)

CO2, NOx v, n
COPERT IV
(Ntziachristos
et al., 2009)

Proposed optimal perimeter control
minimizing the emissions inside the

reservoir

Saedi et al.
(2020)

CO2, NOx v, q, k
Panis et al.

(2006)

Developed the most detailed
MFD-based emissions model in the

literature using mean MFD v, q and k

Continuum-space Models

Yin et al.
(2013)

CO2 v, a
Ahn et al.

(2002)

Developed a housing allocation
optimization model by minimizing the

CO2 emissions in the network

Jiang et al.
(2018)

CO2, NOx,
PM, VOC

v, a
Panis et al.

(2006)
Developed a comprehensive method to
estimate emissions in continuum space
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network into smaller regions with homogeneous traffic conditions, which will exhibit

accurate low-scatter MFDs. This approach has been recently very popular among

the researchers for network control and traffic assignment purposes (Haddad, 2017;

Yildirimoglu et al., 2015; Aghamohammadi and Laval, 2020a).

In a similar way, for emissions estimation purposes the large-scale networks can

be divided into smaller regions in order to estimate the emissions inside the network

more accurately. The size of regions can be determined based on the physical reality

of the networks or in a way to make a balance between the accuracy and efficiency

of the model. The smaller the regions inside the network, the more accurate the

emissions estimations will be but on the other hand the higher number of regions

would increase the computation times and reduce the model efficiency.

After appropriately partitioning the network into smaller regions, the same single-

reservoir emissions estimation methods presented here can be applied to estimate the

emissions from each region, which would sum up to the emissions from the entire

network. Furthermore, the knowledge about emissions at each part of the network

will pave the path to develop traffic control and routing strategies aiming to minimize

the emissions inside the network.

5.3.2 Challenges in Estimation of the MFD

Although the proposed multi-reservoir approach sounds promising, deriving the

MFDs for each and every region inside the network seems to be a hurdle in its im-

plementation. The MFD can be empirically derived using empirical data such as

loop detector data (LDD). However, the required empirical data is not available for

many networks and even when available it is subject to significant errors and bias.

Another approach is to determine the MFD analytically, which does not require em-

pirical data and estimates the shape of the MFD using network topology and control
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characteristics such as block length, existence of turn-only lanes, and traffic signal

settings.

Up until recently, estimating the MFD was not an easy task because the Method

of Cuts (MoC) in Daganzo and Geroliminis (2008) becomes intractable for real-life

networks and one needs to resort to simulation methods, which defeats the purpose of

macroscopic modeling. Laval and Castrillón (2015) develops the Stochastic Method

of Cuts (SMoC) by extending the MoC to stochastic corridors with different block

lengths and signal timing settings and shows that (the probability distribution of) the

MFD can be well approximated by a function of mainly two parameters: the density

of traffic signals (λ) and the mean red to green ratio of traffic signals (µ). Chapter

6 of this dissertation will present an extension of the SMoC to general networks and

and develop a statistical inference method to estimate the shape of the MFD and

network parameters using available limited empirical data.

Adopting the analytical methods discussed above or other analytical MFD estima-

tion methods in the literature can help to overcome the obstacle of determining the

MFDs of regions in the multi-reservoir approach by only needing some information

about the network topology and control characteristics. Moreover, if the data for an-

alytical methods are not easy to obtain, one can resort to micro-simulation methods

to derive the MFD, which would need precise calibration and validation to represent

the ground truth accurately.

5.4 Incorporating the MFD in the MOVES model

Out of the studied papers, only one study builds an MFD-based emissions estima-

tion model based on the MOVES model (EPA, 2020a) required by the US EPA for

emissions analysis. The European researchers tend to utilize the COPERT IV model

(Ntziachristos et al., 2009), which is developed and required by the European Envi-

ronment Agency. Therefore, it would be better if the researchers in the US put more
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emphasis on improving the efficiency of the MOVES model by incorporating recent

advances in traffic modeling domain such as the MFD.

The project level of the MOVES model allows the traffic data to be included in the

model via three different methods: (i) the average link speed for the analysis period,

(ii) the second-by-second link drive schedule demonstrating instantaneous link speeds,

or (iii) the operating mode distribution for all links in the network. The derivation

of the second set of data might be unattainable from the MFD only, unless we have

information about the evolution of the MFD over time. The sequential MFD data

can help us to derive the driving cycle components more accurately compared to the

method presented in Shabihkhani and Gonzales (2014), which uses only the mean

MFD speed in order to find the driving cycle components. Furthermore, the variance

of MFD at any given density value might be helpful in determining the driving cycle

components, which needs further investigation.

On the other hand, the average link speed input method provides a straight-

forward method to incorporate MFD variables in the MOVES model. Following the

aforementioned recommendations, after dividing the network into several regions with

homogeneous traffic conditions, all the links inside each region can be replaced by a

single entity with its average speed given by the mean MFD speed. However, case-

specific correction factors may be needed to estimate the emissions accurately by this

approach, which can be found by calibrating the results using the results of link-level

emissions estimates.

The next section will present the results from a numerical experiment incorpo-

rating the aggregated traffic variables in the MOVES model and will compare the

efficiency and accuracy attained by 4 different aggregation levels of network represen-

tation.
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5.5 Numerical Experiment

The project scale is the most in-detail module of the MOVES model requiring detailed

inputs describing the vehicle population and activity at the site. This module is capa-

ble of estimating the emissions of different pollutants emitted from a transportation

network for a one-hour period in a specific month of the year at a specific county

given information on network geometry, vehicle type, fuel type and age distribution

of the fleet, meteorology data, and any ongoing maintenance programs at the project

location.

Figure 5.2: Illustration of the 5-by-5 grid network
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The numerical experiment here aims to demonstrate the potential of implementing

aggregated-level representation of a network in the MOVES model by comparing the

accuracy and efficiency of emissions estimations conducted in 4 different aggregation

levels: (i) lane, (ii) link, (iii) corridor, and (iv) network. Toward this purpose, a 5-

by-5 homogeneous grid network with identical block lengths of 200 meters, 2 lanes in

each direction and traffic signals with a cycle length of 90 seconds at all intersections,

as shown in Fig. 5.2, has been loaded with a constant demand rate of 5 vehicles per

second for 2100 seconds with randomly-distributed origins and destinations across

the network using the SUMO traffic simulation package (Lopez et al., 2018). The

evolution of departures, arrivals, accumulation and network average speed during the

analysis period is demonstrated in Fig. 5.3. The accumulation curve, indicating the

number of running vehicles on the network, can be derived as the difference between

the cumulative departures and arrivals curves at any time.

Fig. 5.4 exhibits the average speed versus accumulation and average flow versus

average density MFD plots for the network. The two different branches in each of

Figure 5.3: Evolution of the cumulative curves and average speed over time
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these diagrams, known as the “hysteresis loops” in the literature, are associated with

the loading and unloading phases of the network and different behavior of the urban

networks in loading and unloading periods due to abrupt and immense changes in the

demand as in this experiment. However, in real life, the changes in demand pattern

are usually gradual and the networks do not exhibit distinct loading and unloading

behavior. This will reduce the likelihood of observing hysteresis loops and will result

in well-defined MFD functions. The analysis in this experiment will not be impacted

by this phenomenon since we can directly obtain the speed values at any point of

time, needless of referring to the MFD.

The simulation provides second-by-second speed, density and flow measurements

for each lane in the network, which can be inputted to the MOVES model to compute

the lane-level emissions, which results in the most accurate estimates and will be used

as a benchmark for comparison purposes. Furthermore, 3 other emissions estimations

have been performed the link, corridor and network levels by replacing all the lanes

inside each of the aforementioned aggregated representations by a single entity, whose

traffic conditions are computed by averaging the traffic variables of all lanes inside

Figure 5.4: (a) Average speed vs. Accumulation, and (b) Average Flow vs. Average
Density MFDs
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Table 5.2: MOVES input parameters for the numerical experiment

Parameter

Year, month, day Weekday in June 2021
Time of day 17:00 to 18:00
Location Fulton county, Georgia
Vehicle type Passenger cars
Fuel type Gasoline
Road type Urban unrestricted access

them. The other required inputs of the MOVES model, which will be the same

through all runs, are given in Table 5.2.

The estimated emissions, total energy consumption and run-times for different

aggregation levels are presented in Table 5.3. The lane-level network representation

estimates are the most accurate results and have been selected as a benchmark to

compare the accuracy and efficiency of the estimates using other aggregation levels.

Table 5.3: Emissions estimates and run-times for different aggregation levels

Aggregation level
Component

Lane Link Corridor Network

Carbon Monoxide
(CO) [kg]

64.51
59.36

(-7.97%)
66.14

(2.53%)
76.4

(18.43%)

Carbon Dioxide
Equivalent (CO2) [kg]

3646.90
3753.68
(2.92%)

3875.27
(6.26%)

4162.17
(14.12%)

Oxides of
Nitrogen (NOx) [g]

996.26
923.57

(-7.29%)
896.41

(-10.02%)
744.6

(-25.25%)

Primary Exhaust
PM2.5 [g]

32.95
31.13

(-5.51%)
27.95

(-15.14%)
24.71

(-24.99%)

Methane
(CH4) [g]

127.43
126.03

(-1.09%)
130.19

(2.17%)
116.9

(-8.25%)

Total Energy
Consumption [109J]

50.59
52.07

(2.92%)
53.75

(6.26%)
57.75

(14.15%)

Run-time
. [s] .

1098.7
612.5

(-44.25%)
206.2

(-81.24%)
84.0

(-92.35%)

Relative percent change with respect to the lane-level results in parentheses
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The numbers in parentheses in this table show the relative percent change in the

estimates with respect to the lane-level estimates, which have been further plotted

against the run-time of each estimation process in Fig. 5.5. The results indicate

that using an aggregated network representation in link, corridor and network levels,

will result in 1.8, 5.3, and 13.1 times faster estimation, respectively, compared to the

lane-level estimation. However, this higher efficiency comes at the expense of losing

some accuracy. While the link-level estimates have a maximum relative error rate

of 8%, the relative error of network-level estimates is as high as 25%. On the other

hand, the relative error of the corridor-level results for all components except PM2.5

is below 10%. Considering the 81% reduction in the execution time, the corridor-

level aggregation looks as an efficient and plausible approximation method for the

microscopic emissions estimation at the lane level.

Although the results presented here are for an arbitrary and simplified network,

the two main impacting factors for the aggregated-level emissions estimation in the

MOVES model can be listed as:

1) The lengths provided in the network configuration to the MOVES model serve

as the trip length on the given entity. This is valid for the lane- and link-

Figure 5.5: Emission estimates vs. Run-times for different aggregation levels
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level network representations; however, in the corridor and network levels, the

travelers do not necessarily travel the entire length and their trip length is

usually lower than the length of the corridor or network. Therefore, using the

actual corridor and network lengths will most probably result in overestimation

of the emissions. Using average trip length instead of entity length in corridor-

and network-level representations can help to mitigate this issue and increase

the accuracy of the results.

2) Implementing an aggregated representation will result in a less-detailed rendi-

tion of the traffic flow evolution in the emissions estimation process, which will

prevent the estimation process from capturing the entire driving cycles in the

network and presumably result in underestimation of the emissions. Although

this was expected by implementing aggregated representations of the network,

it can be diminished by calibrating the aggregated estimates to the microscopic

estimates.

As it can be seen in Fig. 5.5, the estimated components exhibit different behaviors

in different aggregation levels, except the CO2 emissions and total energy consumption

which have totally similar behaviors, stemming from individual formulations with

different weights of the impacting factors used to compute them. Therefore, any

calibration process for the emissions estimates in different aggregation levels should

be network and component specific.

Once the results from a training set has been calibrated for a network, a gen-

eral recipe can be provided to estimate the emissions with high accuracy using the

aggregated traffic variables. The main advantage of such method in addition to its

significantly higher efficiency would be that the emissions inside any region of the

network can be easily estimated by tracking a single traffic variable: the number

of vehicles inside the region or accumulation. This will enable the practitioners to

develop perimeter control strategies aiming to minimize the emission of any compo-
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nent for a multi-region network with well-known MFDs and calibrated MFD-based

emissions estimation methods.

5.6 Chapter Summary

This chapter presented a comprehensive review of studies incorporating MFD dy-

namics for emissions estimation using various microscopic estimation frameworks.

These studies show the potential of applicability of MFD-based tools for emissions

estimation. However, the accuracy of existing models in estimating the emissions

of large-scale urban networks is questionable due to their inability in capturing the

variations in traffic conditions across such networks.

As a solution to this problem, we have proposed to develop multi-reservoir emis-

sions estimation framework by partitioning large-scale networks into smaller regions

with homogeneous traffic conditions and low-scatter MFDs similar to the multi-

reservoir DTA solution method proposed in Chapter 3, which can result in more

accurate network-wide emissions estimation. The key component of this framework

is finding a method to accurately estimate the emissions using aggregated network

representation and its corresponding variables. A numerical experiment on an arbi-

trary network shows that the estimation efficiency can increase significantly by im-

plementing aggregated network representation, albeit the results will be less accurate

the more aggregated the representation becomes. The possible reasons and consid-

erations for future application have been discussed, which would lead to developing

calibrated aggregated-level methods, which can estimate the emissions efficiently and

accurately.

After calibrating the MFD-based emissions estimation method to acceptable levels

of accuracy and efficiency, traffic control strategies can be proposed to optimize the

energy consumption and emissions of CO, CO2, NOx, PM2.5, CH4, VOC, etc. The

proposed control strategies can include perimeter control strategies in the boundaries
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of the regions, ramp-metering strategies at the connections to the freeways and signal

timing strategies, which is known to influence the shape of the MFD.
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CHAPTER 6

PARAMETER ESTIMATION OF THE MACROSCOPIC

FUNDAMENTAL DIAGRAM

This chapter is modified from the following published preprint at the time of submis-

sion of this dissertation:

Rafegh Aghamohammadi and Jorge A. Laval (2021). “Parameter Estimation of

the Macroscopic Fundamental Diagram: A Maximum Likelihood Approach”. In:

Preprints.org, 2021100310.

6.1 Introduction

The previous chapters have discussed the application of the macroscopic fundamental

diagram (MFD) in dynamic traffic assignment (DTA) and emissions estimation, given

that the MFD of each zone relating the aggregated traffic variables inside the zone is

already known. Existence of such well-defined relationship, i.e., MFD, was empirically

verified for the first time by Geroliminis and Daganzo (2008) using the loop detector

and taxi GPS data from Yokohama. Since then, many researchers have collected

network-wide data to investigate the relationship between average flow, density and

speed across urban networks and have derived the MFD for several cities around the

world (see e.g., Buisson and Ladier, 2009; Tsubota et al., 2014; Wang et al., 2015;

Ambühl et al., 2018; Knoop et al., 2018).

Nevertheless, deriving the MFD using the empirical data is challenging since (i) the

required loop detector data is not available in most of the cities, (ii) in the networks

with available loop detector data, the loop detectors cover only a fraction of streets

in the network, and (iii) the data coming from various loop detectors is prone to bias

and inaccuracy, which makes the data cleaning and processing cumbersome. These
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challenges make it difficult to obtain systematic insight into MFD characteristics and

the factors impacting its shape.

To overcome these challenges, some studies have resorted to micro-simulation

approaches to see how the changes in network topology and control can affect the

shape of the MFD (see e.g., Ji et al., 2010; Knoop et al., 2014; Gayah et al., 2014).

However, these studies are mostly carried out on small arbitrary networks since the

calibration of the micro-simulation models on large-scale networks is a cumbersome

task due to their complex and heterogeneous nature. Therefore, the micro-simulation

approach might not be a feasible option to study the impact of network characteristics

on the shape of the MFD of real-life networks.

Analytical approximation can be a useful tool to estimate the MFD without having

to face the data collection and preparation hurdles. Daganzo and Geroliminis (2008)

introduced the Method of Cuts (MoC) as an analytical approximation method for

estimation of an upper bound for the MFD of homogeneous corridors using the vari-

ational theory (VT; Daganzo, 2005b; Daganzo, 2005c). Later, Laval and Castrillón

(2015) developed the stochastic method of cuts (SMoC) by extending the MoC to

heterogeneous corridors by introducing stochasticity and using renewal theory. This

model is the most detailed analytical MFD estimation model to date, incorporating

the most number of the influential network topology and control characteristics and

the variations in their values over time and space.

Both of the mentioned analytical methods are proposed for estimation of the MFD

of signalized corridors, while limited discussion have also been presented on their ex-

tension for network MFD estimation. These extensions come along with a number of

assumptions and simplifications that make them impractical for estimating the MFD

of real-life large-scale networks due the inherent heterogeneity of their topological

and control characteristics. The reasons behind complexity of traffic dynamics in

large-scale networks compared to signalized corridors includes but is not limited to
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significantly higher number of links, inclusion of streets from different functional clas-

sifications and different speed limits, distribution of origins and destinations (trip start

and end points) all across the network, directionality of the links, different number

of lanes in each link, turning movements at intersections, different control strategies

at intersections (e.g. pre-timed signals, actuated signals, roundabouts, stop and yield

signs), etc. Therefore, some considerations have to be made before implementing the

current methods for estimation of network MFDs.

The purpose of this chapter is twofold: (i) first, to extend the SMoC for analytical

estimation of the MFD of large-scale real-life networks and (ii) second, to propose a

method to estimate the parameters of the stochastic analytical MFD using empirical

data for both corridors and networks and investigate the impact of different network

topology and control characteristics on the shape of the MFD. The network-wide

dataset studied here is obtained from the recently-published loop detector data (LDD)

in UTD19 (Loder et al., 2019) for 40 cities around the world.

6.2 Background

The MFD estimation methods in the literature can in general be classified into 3 main

categories: (i) empirical, (ii) simulation-based and (iii) analytical studies. Although

the empirical method is the most reliable and accurate way to estimate the MFD, the

required data is not available for many cities and even when available it is subject

to significant errors and bias. The exorbitant dependency of empirical approach on

the availability and accuracy of network-wide data makes it an impractical option for

estimation of MFD in many cities. While simulation seems to be a promising tool to

overcome the dependency of empirical approach on data, calibration of detailed micro-

simulation models for large-scale urban networks is a cumbersome and prohibitive

task.
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The aforementioned drawbacks of the empirical and simulation-based MFD es-

timation methods highlight the significance of the analytical approach to determine

the network MFD using network topology and control characteristics and find out

the impact of each factor on the shape of the MFD. However, no universal recipe yet

exists in the literature for analytical approximation of MFD for large-scale networks.

The present efforts in the literature investigate the analytical estimation of MFD for

signalized corridors and there are some limited extensions to estimate network-wide

MFDs. In this section, we will first present the literature on analytical estimation

of corridor MFDs and later review the analytical methods for estimation of network

MFDs.

6.2.1 Analytical Corridor MFD Estimation Methods

Daganzo and Geroliminis (2008) has proposed the Method of Cuts (MoC) as the first

analytical method for approximation of the MFD of signalized homogeneous corridors

implementing the VT. In this method a set of linear cuts are plotted on the average

flow-density space based on moving observers travelling in the corridor, forming an

upper bound for the corridor MFD. The average flow-density MFD is defined as the

steady-state flow at any location, x, as:

q(k) = min
v
{φ(k) + vk}, (MoC) (6.1)

where q and k are average flow and density, respectively, v is the average speed of the

moving observer and φ(v) is its maximum passing rate. However, evaluating φ(k) for

all cuts with different speeds is time-consuming and redundant, therefore, Daganzo

and Geroliminis (2008) proposes three families of “practical cuts” using stationary,

forward-moving and backward-moving observers in the corridor. These cuts form an

upper bound for the MFD, which might not tightly define the MFD.
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Leclercq and Geroliminis (2013) generalizes the concept of practical cuts by includ-

ing a sufficient number of additional cuts representing optimal paths with different

mean speeds to provide a tighter upper bound for the MFD. Xie et al. (2013) presents

two methods for estimation of the corridor MFDs with presence of public transport

by (i) including buses in the method proposed in Leclercq and Geroliminis (2013) and

(ii) accounting for buses in the time-space diagram according to the kinematic wave

theory.

Nevertheless, the MoC is proposed for homogeneous corridors with equal block

lengths and signal settings, which makes it complicated to be scaled up for the network

MFD estimation. Daganzo and Lehe (2016) has extended the concept of the MoC to

account for inhomogeneities in block length and offset of adjacent traffic signals and

formulated the method as a linear program.

To more generally account for the variations in the block length and signal timing

settings, Laval and Castrillón (2015) has extended the MoC to inhomogeneous corri-

dors developing the Stochastic Method of Cuts (SMoC). It first defines the stochastic

corridor random variable, where each inhomogeneous corridor is a realization of this

random variable with three main independent random variables: block length (`), sig-

nal green (g) and red (r) times which can vary in time and across different segments

of the corridor. In order to simplify the representation of the problem, it has refor-

mulated the individual link fundamental diagram (FD) and network parameters in

dimensionless form by measuring time in units of critical headway and space in units

of jam spacing, assumed the coefficients of variations (δ) of the three main parame-

ters are equal and performed a density transformation to have symmetric fundamental

diagram (FD) and MFD.

This method results in normally-distributed stochastic cuts, qs(k); therefore, the

yielding upper-bound MFD found using this model will also be stochastic, whose
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CDF, Fq(k′)(q), is given by:

Fq(k′)(q) = 1− (1− Fs0(q))B
∏
s∈Ω

(1− Fs,k′(q)), (SMoC MFD CDF) (6.2)

where Ω = {s\1, sZ1, s\2, sZ2} denotes the set of different forward-moving (denoted as ·\)
and backward-moving (denoted as ·Z) strategies, Fs,k′(q) is the CDF of cut s, s0 is

the stationary cut and B is the minimum number of stationary cuts. The authors

found that the shape of the MFD mainly depends on two dimensionless parameters:

(i) mean block length to critical length ratio, λ, and (ii) mean red to green signal time

ratio, ρ. The SMoC has shown promising results in capturing the shape of MFD for

corridors with different values of λ, ρ and δ.

Castrillón and Laval (2018) revisits the MoC to include the impact of buses on the

MFD of homogeneous corridors. They found that presence of buses has two major

impacts: (i) “moving bottleneck effect” due to lower speed of buses compared to other

vehicles and (ii) reduction in capacity due to the “short block” effect. Each of these

effects result in an additional cut in the MoC providing a tighter upper bound for the

corridor MFD.

Recently, Tilg et al. (2020) has compared the performance of MoC and SMoC

for an empirical corridor MFD obtained by data from the city of Munich, Germany.

The empirical data is for the northbound direction of an arterial segment of 1.1

km with 5 intersections, where all intersections are controlled by actuated traffic

signals. Although there are some discrepancies between the estimated analytical

MFDs and the empirical MFD, which might partially be due to the turning movements

at intersections and other real-life network complexities which are not considered in

the analytical methods, the results show that the MoC provides a good estimate for

the corridor capacity and the SMoC delivers a good fit for the free-flow branch of the

MFD.
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6.2.2 Analytical Network MFD Estimation Methods

Although the analytical MFD estimation methods discussed in the previous section

are proposed for estimation of corridor MFDs, most studies have discussed the poten-

tial extension of their method to network MFD estimation and have tested the model

on toy networks or simplified real-life networks under some assumptions. Daganzo

and Geroliminis (2008) has tested the MoC on the empirical data from Yokohama and

the simulation data for San Francisco by decomposing the network into 1-lane links,

thereby eliminating lane changing. For the Yokohama data, assumptions are made

for the link FD and signal setting parameters. While the MoC results in a good fit

for the simulation data for San Francisco assuming pre-timed signals with a common

cycle, it overestimates the speed and flow for the Yokohama network, which authors

have mentioned can be partly due to the measurement errors in the empirical data,

heterogeneity of the network and actuated signal settings varying with time.

Geroliminis and Boyacı (2012) introduces a number of extensions and refinements

to the VT to analytically investigate the effects of different traffic signal offsets and

block lengths on the homogeneous network MFD. Leclercq and Geroliminis (2013) has

extended its method to estimate the MFD of a simple network consisting a number

of parallel hyperlinks to investigate the impacts of different route choice models on

the MFD. The results show that variation in densities over the network can affect the

shape of the MFD.

Laval and Castrillón (2015) claims that their proposed SMoC can provide a good

approximation for networks as well as corridors if the following conditions are met: (i)

the density is distributed homogeneously over the network, and (ii) the block lengths

and signal green and red times are i.i.d. random variables. If these conditions are met,

all network paths can be considered as realizations of the stochastic corridor random

variable and the SMoC will provide a good approximation for the network MFD.

The approximated analytical MFD for the Yokohama network using the assumed
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network parameters in Daganzo and Geroliminis (2008) shows good agreement with

the empirical MFD.

Ambühl et al. (2018) developed a method to derive a functional form with a phys-

ical meaning for the upper bound MFD. The proposed model results in a trapezoidal

function using a smoothing parameter and four physical properties of the network:

free-flow speed, backward wave speed, jam density and intersection capacity. The

authors have fitted the model to empirical loop detector data from 4 cities in Eu-

rope, which has resulted in viable estimates for the model parameters. However, this

model does not take the block lengths into account, which has been shown to have a

significant impact on the shape of the MFD in most of the other studies.

6.3 Experimental Setup

As discussed earlier, several analytical methods are presented in the literature for

the MFD estimation. Although the models are mainly proposed for analytical esti-

mation of corridor MFDs, there have been limited discussions about extending them

to estimate the network MFDs. Among the models presented in the literature, the

SMoC seems to be the most detailed model incorporating the most number of the

influential network topology and control characteristics taking the spatial and tem-

poral variations in the parameters into account. However, this method has not been

empirically verified for estimation of network MFDs. Here, we will first present the

original SMoC model and explore how it can be extended to approximate the MFDs

of large-scale networks and later a method will be presented to estimate the SMoC

parameters to fit them to the empirical network MFDs and draw insights into the

impact of different parameters on the shape of the MFD.
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6.3.1 Structure of the SMoC

The stochastic method of cuts (SMoC) proposed by Laval and Castrillón (2015) in-

troduces an stochastic extension to the MoC by allowing for variations in the network

topology and control parameters. The variables used in the model are listed in Table

6.1. This model builds on the VT and MoC using cuts based on the same three

categories of forward-moving, stationary and backward-moving observers. The main

addition of the model is its ability to capture the spatial variations in block lengths

and the spatial and temporal variations in signals cycle and phase durations, enabling

its application for estimating the MFD where the signal timing settings are different

for different intersections or actuated signal controls are in use.

The model assumes that all links follow a triangular FD with capacity Q and jam

density K. The FD has been normalized by expressing the flow q and density k in

terms of Q and K, respectively. Laval and Chilukuri (2016) shows that by applying

a shear transformation to the FD one can reach a symmetric FD that can help to

simplify the analytical computations. Laval and Castrillón (2015) articulates that

if such transformation is applied to the link FDs in a network, the resulting MFD

Table 6.1: SMoC model parameters

Link Fundamental Diagram

Q Capacity (veh/h/ln)
K Jam Density (veh/km)
u Free-flow speed (km/h)
w Backward wave speed (km/h)
θ Free-flow speed to backward wave speed ratio (dimensionless)

Network Parameters

µ` Mean block length (m)
µg Mean signal green time (s)
µr Mean signal red time (s)
λ Mean block length to critical block length ratio (dimensionless)
ρ Mean signal red-to-green ratio (dimensionless)
δ Coefficient of variation of network parameters (dimensionless)
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of the network will also have a symmetric shape. This density transformation is a

mapping (q, k) → (q, k′) that keeps the same flow but transforms the density to the

transformed density k′ via the following equation:

k′ = k − 1

2

(
1−

(
1

w
− 1

u

)
q

)
, (density transformation) (6.3)

where the transformed density domain is k′ ∈ [−1/2, 1/2]. This transformation is

illustrated graphically in Fig. 6.1a. One of the main benefits of this transformation

would be that as a result of the transformation the empirical data fed to the MLE

method will be parametric itself, which will make finding the PDF of the given dataset

more tractable providing the method more degrees of freedom to seek for a better fit.

After calculating the cumulative distribution function (CDF) of cuts for each

strategy, s, the CDF of the corridor MFD, Fq(k′)(q), can be found using Eq. (6.2).

It has been shown that the cuts can analytically be determined by the mean block

length, µ`, the mean green, µg, and the mean red, µr, times and their respective

standard deviations δ`, δg and δr, which for the sake of further simplification of the

problem are all assumed to be equal δ` = δg = δr = δ.

The authors further claim that the shape of the MFD is mainly influenced by two

dimensionless parameters: (i) the mean block length to critical length ratio λ = µ`
µ`∗

,

and (ii) the mean red to green signal time ratio ρ = µr
µg

. The critical block length is

ℓ*
-wu

u -w

flow

density transformed density

flow

(a)         (b)

Figure 6.1: (a) Density transformation and (b) Critical block length on time space
diagram
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the minimum block length to avoid the short block effect; see Fig. 6.1b. As seen in

this figure, the critical block length can be computed as:

`∗ = ug
kc
K

=
Q

kc
g
kc
K

=
gQ

K
, (critical block length) (6.4)

where kc is the critical density. If the dimensionless forms of flow and density are

used in the equation above, one will have:

`∗ = g. (dimensionless critical block length) (6.5)

Knowing the values of the required parameters for a corridor or network, one

can compute the cut CDFs and eventually determine the corresponding CDF of the

MFD. However, gathering the data required to find the model parameters is not a

straightforward task. In many cities the data is not readily available due to the lack

of measurement equipment and even when it is available, it is prone to different biases

and measurement errors. Computing the parameters becomes more challenging if the

method is applied for network MFD estimation due to the higher complexity and

heterogeneity of the network topology and control settings. We will delve into these

challenges in more detail later in this chapter. Here, we will present a method to

statistically estimate the parameters by applying the maximum likelihood estimation

(MLE) method to the empirical corridor and network MFDs based on loop detector

data (LDD). But before that, we need to check how the original model can be extended

to approximate the MFDs of large-scale networks.

6.3.2 Extension of the SMoC for Network MFD Estimation

The SMoC has been originally developed for corridor MFD estimation. The authors

have claimed that the model can be applied for estimation of network MFDs as well.

However, the model cannot be readily implemented to estimate the network MFDs.
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Although the model can be extended in many different ways to take into account

additional network properties such as the presence of buses by including additional

cuts, here, we want to stick to the original model framework and cuts, and only explore

whether there would be any need for redefinition of any of the model parameters while

scaling up from corridors to networks.

A brief look at Table 6.1 reveals that link FD and the mean block length param-

eters can be defined and calculated for networks in the same fashion as the corridors.

However, this is not true for the signal timing parameters and especially for the

mean red to green signal time ratio, ρ, which is one of the most influential param-

eters impacting the shape of the MFD. In the corridor case, the calculation of ρ is

straightforward since at each intersection the green and red times for the corridor of

interest are known explicitly. However, in the network case, there arises confusion

in selecting the green and red times for each intersection, since there are several ap-

proaches with different green and red times. If the signal timing data is available for

all approaches of all intersection across the network, assuming that most signals have

only two phases, the sum of green times will almost be equal to the sum of red times

(neglecting the lost times) at the approach, intersection and network level, therefore

resulting in ρ ≈ 1.

Nevertheless, in many cities there are intersections with protected left turn phases

or more than two phases, which will make the mean red time higher than the mean

green time and ultimately ρ>1. To gain a better understanding of how the presence

of traffic signals with any general number of phases, ni, impacts the value of ρ, let us

first focus on a single phase of the intersection. By definition, one can find the mean

red to green signal time ratio for a phase, ρj, as:

ρj =
rj
gj

=

ni∑
k=1,k 6=j

gk

gj
, (ρj for a single phase, j) (6.6)
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where gj is the average green time for phase j and gk represents the average green

time for the rest of the phases, k.

The value of ρ in the model is in fact an indicator of the available intersection

capacity. Higher ρ values mean that more time is assigned to the red phase compared

to the green time and less intersection capacity is being utilized, while lower ρ values

would mean higher utilization of the cycle time and intersection capacity. Therefore,

the rational way to compute the average ρi for an intersection, i, is to take a weighted

average of the values for all phases in the signal timing with respect to their respective

demand or flow. Without loss of generality, one can assume that the signal timing

is efficiently programmed to be proportionate to the demand values at each phase.

Hence, the weight of each phase, wj, can be found as:

wj =
fj
ni∑
j=1

fj

=
gj
ni∑
j=1

gj

=
gj
C
, (weighting factor of each phase) (6.7)

where fj is the demand or flow of each phase j and C is the total cycle time for

the intersection. Now, the mean red to green time ratio for intersection i, ρi, can be

computed as:

ρi =

ni∑
j=1

wjρj =

ni∑
j=1

gj
C
×

ni∑
k=1,k 6=j

gk

gj
=

1

C

ni∑
j=1

ni∑
k=1
k 6=j

gk =
(ni − 1)C

C
= ni − 1. (6.8)

Now that we have obtained a simple expression for ρi, the mean red to green signal

time ratio for the entire network with N intersections can be calculated as:

ρ =

N∑
i=1

ρi

N
=

N∑
i=1

ni − 1

N
=

N∑
i=1

ni

N
− N

N
= n̄− 1, (ρ of a network) (6.9)
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where n̄ is the average number of signal phases of the intersections in the network.

Now that we have found how all the model parameters can be determined to approx-

imate the network MFDs, we can proceed to estimation of model parameters using

empirical data.

6.3.3 Parameter Estimation Using Maximum Likelihood Estimation Method

Once the probability distribution of a dataset is known, we can estimate the popula-

tion parameters using the distribution fitting methods such as the method of moments

or the maximum likelihood estimation (MLE) method. In this study, we will use the

MLE due to its large-sample or asymptotic properties to estimate the analytical MFD

given by the SMoC and its parameters for several different cases using their empirical

MFDs. The MLE estimators become minimum-variance unbiased estimators as the

sample size increases and have approximate normal distributions and approximate

sample variances that can be used to generate confidence bounds and hypothesis

tests for parameters.

Let the probability density function (PDF) of the MFD, which can be derived as

the derivative with respect to q of the CDF given in Eq. (6.2), be denoted as f(x|Θ).

The likelihood function for a given dataset X is the joint density of n independent and

identically distributed (i.i.d.) observations, which is the product of their individual

densities:

L(Θ|X) = f(x1, . . . , xn|Θ) =
∏
xi∈X

f(xi|Θ), (likelihood function) (6.10)

where Θ is the unknown parameter vector. Considering that some of the model pa-

rameters presented in Table 6.1 are dependent and can be derived using the other

parameters, we choose Θ = {Q,K, θ, µ`, µg, ρ, δ} as the independent parameter vec-

tor. It is worth noting that the likelihood function is a function of the parameters
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conditioned on the data whereas the joint density is a function of the data conditioned

on the parameters. In the MLE method, we aim to find the parameter values that

maximize the likelihood function for the observed data. However, for the sake of more

convenience in the computations, it is preferred to maximize the natural logarithm

of the likelihood function, l:

l(Θ|X) = lnL(Θ|X) = ln
∏
xi∈X

f(xi|Θ) =
∑
xi∈X

ln f(xi|Θ). (log-likelihood) (6.11)

By maximizing the log-likelihood function, we find the set of parameter estimators

Θ̂ for each dataset, under which observing the dataset is most probable. Under certain

regularity conditions, the estimators are known to asymptotically tend to have a

multivariate normal distribution for large samples:

Θ ∼ Np(Θ̂, J−1(Θ̂)), (multivariate normal distribution of estimators) (6.12)

where for our model the number of variables is p = 7 and the covariance matrix of

parameters, J−1(Θ̂), is the inverse of the observed Fisher’s information matrix, J(Θ),

calculated as:

J(Θ) = −∂
2l(Θ)

∂Θ2
, (observed information matrix) (6.13)

where the J−1 is the covariance matrix of the model parameters and its diagonal

elements are the variance of the parameters. The regularity conditions include: (i) the

true parameter values must be interior to the parameter space, (ii) the log-likelihood

function must be thrice differentiable and (iii) the third derivatives must be bounded

(Geyer et al., 1994). Knowing the distribution of the estimators will enable us to

perform hypothesis testings for the estimated values.
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6.3.4 Data Sources and Preparation

The proposed estimation method will first be applied on a empirical MFD dataset

for a 4-block corridor from Munich provided by Tilg et al. (2020). This dataset is

already consisted of the average flow versus average density data for the corridor and,

thus, does not need any further preparation to be used by the proposed method in

this study.

In order to evaluate the method for analytical network MFD and parameter es-

timation, the network-wide loop detector data published in UTD19 (Loder et al.,

2019) for 40 cities around the world is used. The dataset includes flow, loop detector

occupancy and sporadic speed measurements for 3 up to 60 minute intervals. We first

need to derive the empirical MFDs for the networks in the dataset and then apply the

proposed estimation method to approximate the analytical MFD and estimate the

network topology and control parameters. However, the provided raw data needs to

be cleaned and processed to produce valid empirical MFDs, which will be elucidated

in the ensuing subsection for the sake of reproducibility of the research.

Network empirical data cleaning and processing

The UTD19 dataset includes the loop detector measurements, loop detector de-

scriptions and link descriptions for 40 urban networks worldwide. We first separate

the respective data for each network before processing the data further. Our initial

evaluation of the dataset reveals that the time intervals of the measurements for

the city of Paris is 1 hour, which is very long for the purpose of finding the MFD.

Therefore, we exclude this city from further analysis in this study. Furthermore,

the data for the 9 cities of Bolton, Birmingham, Groningen, Innsbruck, Manch-

ester, Melbourne, Rotterdam, Torino and Utrecht provide partial or no occupancy

measurements. Hence, these 9 cities are also excluded from further investigation

in this study. For the remaining 30 cities, the following data cleaning steps are applied:
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• Similar to all other empirical data, the UTD19 dataset includes outliers

and faulty values. Some of the measurements have already been marked as

erroneous in the dataset, which are eliminated from the dataset. In addition to

the marked measurements, other faulty and missing values have been excluded

from the dataset based on the following criteria:

– Negative or nonnumerical flow or occupancy measurements,

– Occupancy measurements larger than 1,

– Flow measurements larger than 2500 veh/hr/ln,

– Flow measurements less than 10 veh/hr/ln for occupancy values between

0.2 and 0.75,

– Flow measurements higher than 100 veh/hr/ln for occupancy values larger

than 0.95.

• After eliminating all the outliers and faulty values, we select only the loop

detectors with valid data for more than 80% of the time intervals.

• Moreover, we only keep the intervals which have valid data from more than 80%

of the loop detectors selected in the previous step.

After cleaning and processing the raw data as explained in the steps above, we

obtain the average flow versus average occupancy MFDs for 30 cities as shown in Fig.

6.2. One of the most conspicuous issues observed in these empirical MFDs is that the

resulting diagrams only cover a very limited range of occupancy (density), resulting

in a lack of the capacity state and the descending congested branch of the MFD for

most cases. This deficiency in the empirical data might impact the performance of

the proposed parameter estimation method and its results, which will be discussed

further in the next section.
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Figure 6.2: Empirical Average Flow vs. Occupancy MFDs for the 30 networks in-
vestigated in this study. The vertical and horizontal lines and numbers indicate the
maximum occupancy and flow values, respectively.
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In order to derive the average flow versus average density MFDs, one should

convert the occupancy measurements for each individual loop to density values before

aggregation, which would need further information on the length of each loop detector

and the average vehicle length for each city to approximate the average field length for

each loop detector. However, the proposed estimation method in this study is based

on the normalized flow and density values by the capacity flow and jam density,

respectively. Therefore, if a linear relationship between the occupancy and density

values is assumed, one can regard the occupancy values as the normalized density

values and there will not be any need to further loop detector and average vehicle

length data for occupancy to density transformation.

6.3.5 Application Considerations

Our preliminary results indicate that the proposed MLE method might result in un-

realistic estimated values, e.g. negative values for strictly positive model parameters

or extremely large or small values that do not conform to the expected range of the

ground truth values, while producing satisfactory graphical fits. In order to prevent

the estimation process from resulting in such unrealistic results, we can instead solve

a constrained MLE (CMLE) problem, which allows the method to seek for optimum

parameter estimates inside a set of rational parameter boundaries on the parameter

space. The upper and lower bounds of these constraints for all model parameters

are given in Table 6.2, which have been selected in a way to provide a large feasible

Table 6.2: Lower and upper boundary values for MLE method parameters

Parameter µ`
[m]

µg
[s]

ρ
.

Q
[veh/h]

K
[veh/km]

θ
.

δ
.

Lower bound 100 20 1 1000 80 1 0.1
Upper bound 500 70 2 2500 200 4 0.4
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space for the parameters so that the optimizer can find optimum parameters inside

the parameter space. In addition to the parameter constraints given in Table 6.2,

another constraint have also been imposed to keep the free-flow speed, u, less than

60 km/h.

Although the CMLE problem will ensure that the estimated values are in plausible

ranges, the optimization method might not be able to find a global optimum inside the

parameter space and one or more of the estimated values might be on the boundaries

at the maximum log-likelihood value. This will result in a violation of the regularity

conditions discussed earlier, since the optimum parameter set will not be interior to

the parameter space. In such case, the first derivative of the log-likelihood function

with respect to the parameter on the edge of the parameter space is not necessarily

equal to zero, therefore the approximate multivariate normal distribution for the

parameters will be invalid. Therefore, we should be careful about the selection of the

boundaries of the parameter space to prevent this problem from happening.

However, as it will be discussed in the next section, hitting the boundaries in

the present problem might be inevitable due to high number of parameters needed

to be estimated, the probable errors and biases in the empirical data and the other

impacting factors which are not considered in the SMoC model such as the presence

of buses creating both stationary and moving bottlenecks along the network.

The next section will present the results of application of the proposed method

for estimation of analytical MFD parameters for both corridors and networks under

different assumptions.

6.4 Results

In this section, we will estimate the analytical MFD parameters using the proposed

MLE method for two different sets of empirical MFD data. The first set is the

data from a corridor and the second set includes empirical MFD datasets for several
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networks obtained from Loder et al. (2019). For the network datasets, the proposed

method will be tested under two different sets of assumptions.

Toward this purpose, the MFD CDF for the SMoC model has been coded in Wol-

fram Mathematica®. Then, the derivative of the CDF with respect to q is computed

to find the MFD PDF, which has been later used to find the log-likelihood function for

any given dataset and set of model parameters. A constrained optimization method

incorporating the constraints given in Table 6.2 has been utilized to find the opti-

mum parameter value maximizing the log likelihood function. Afterwards, the second

derivatives of the likelihood function are calculated to find the observed information

matrix and the variances of the model parameters, which will be used in hypothesis

testing for the estimated parameter values.

6.4.1 Corridor MFD Parameter Estimation

As the original SMoC model was initially proposed for corridor MFD estimation, we

first intend to test the proposed parameter estimation method on a corridor MFD

dataset. Tilg et al. (2020) has collected the LDD for a 4-block segment of one direction

of an arterial with total length of 1.1 km in Munich, Germany for 24 hours. The signal

timings for 5 intersections along the segment, which are all actuated, are also collected

for the duration of study. The authors have assumed the link capacity flow Q = 1690

veh/hr/ln, the jam density K = 150 veh/hr and the free-flow speed u = 45 km/hr.

The mean green and red times are not reported in the study; however, we have

approximated these values by the median green and red times, respectively, which

are presented in a figure in the study. The other required parameter values for the

SMoC have been calculated based on the available data and the analytical MFD have

been derived using these values.

Fig. 6.3 shows the fitted MFD CDF based on our proposed method. The figure

provides the 50% MFD CDF (solid black line) and 16% and 84% CDF limits (the gray
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Table 6.3: Empirical and estimated parameter values for the Munich dataset

λ
.

µ`
[m]

µg
[s]

ρ
.

Q
[veh/h]

K
[veh/km]

θ
.

δ
.

Empirical
Values

2.08 275 42.4 1.2 1690 150 3 NA

Estimation
Results

2.07
267.3
(2.26)

45.2
(2.39)

1.57
(18.02)

1452
(18.23)

141
(11.5)

3.2
(4.54)

0.59
(7.07)

t-statistics in parentheses

shaded area) along with the mean values for the stationary and moving cuts. The

method results in a good fit to the empirical data and the estimated values presented

in Table 6.3 are all statistically significant and most of them show close agreement

with the measured empirical values.

In the original study, although the resulting analytical MFD provided a good fit to

the free-flow branch of the empirical MFD, it overestimated the corridor capacity. In

particular, we see that the original study uses a higher capacity and lower ρ compared
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Figure 6.3: Estimated analytical corridor MFD and cuts for the Munich dataset
displayed in the normalized flow units with respect to the estimated link capacity,
Q, and the transformed and normalized density, k′, as discussed in subsection 6.3.1.
Note that the yellow markers show the empirical MFD points and the blue markers
represent the hypothetical congested branch mirrored with respect to the line k′ = 0.5.
The solid black line is the 50% CDF and the shaded area shows the 16% and 84%
CDF limits for the corresponding density values.
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to the estimated values in this study. The observed discrepancies can be attributed

to a number of issues. First, buses travel through the corridor and there is a major

public transportation hub in the middle of the corridor. Presence of buses is known

to lower the capacity due to their lower speed and frequent stops, imposing a moving

bottleneck effect. The signals along the corridor prioritize the movement of buses

causing further delay at the intersections, which is represented by higher ρ values in

the SMoC.

Furthermore, there are a few minor unsignalized intersections along the corridor.

Although vehicles on the corridor do not fully stop at these intersections, the turning

movements from and to the intersecting streets may cause the vehicles on the cor-

ridor to lower their speeds which will eventually result in lower capacity. The large

variations in the signal green and red times and the fact that we have approximated

the empirical value of ρ based on the median green and red times instead of their

mean values might also have contributed to the discrepancy. Taking all into account,

we conclude that the SMoC can capture the shape of the corridor MFD satisfactorily

provided that the parameters are carefully estimated. Our proposed method is a step

in that direction.

6.4.2 Network MFD Parameter Estimation

After testing the proposed method on empirical corridor and simulation network cases,

we aim to check the performance of the method to estimate the MFD parameters for

empirical network data. The data source and cleaning process has been explained

earlier in subsection 6.3.4. Here, we will present and discuss two sets of estimation

results for this network data under different assumptions.
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Estimation of all model parameters

We first assume that we do not have any a posteriori knowledge about the real value

of any of the model parameters Θ = {Q,K, θ, µ`, µg, ρ, δ} for the given networks and

all of these parameters are to be estimated. The cleaned and processed MFD data for

30 cities from the UTD19 dataset, shown in Fig. 6.2, is given to the program coded

based on the proposed method and the SMoC analytical MFD is fitted to the data

from each city and the model parameters for each network are estimated.

Despite the large feasible space provided by the parameter boundaries given in

Table 6.2, the estimation method results in boundary values for many datasets. For

16 cities out of the total 30 cities at least one estimated parameter value is on the

determined boundaries while the graphical fits to the empirical data look satisfactory.

This issue will result in a violation of the MLE regularity conditions and we will not

be able to make any statistical inference from the estimation results. The issue

can be resolved by changing the boundary values for the problematic boundaries;

however, we refrain from doing so since the imposed boundaries are selected to keep

the parameter estimates in meaningful ranges and further broadening of them would

result in unrealistic estimations. Therefore, we deem the results from the 16 cities

with at least one parameter estimate on the boundaries unsatisfactory and direct

our further analysis on the results from the 14 cities, where this problem is not

encountered. The satisfactory results mostly come from the datasets covering a wider

range of occupancy values or exhibiting downward-bending trends reaching a near

capacity state.

The estimated analytical MFDs and cuts for five cities, in which the method

exhibits a satisfactory performance, as illustrated in Fig. 6.4, show that the method

results in satisfactory fits of the analytical MFD CDF to the empirical data. The

estimated parameter values for these networks are given in Table 6.4. The t-statistics

for the estimated values (shown in parentheses) indicate that all of the estimated
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Figure 6.4: Estimated analytical MFDs and cuts using all 7 model parameters for a
number of studied networks displayed in the normalized flow units with respect to
the estimated link capacity, Q, and the transformed and normalized density, k′, as
discussed in subsection 6.3.1. Note that the yellow markers show the empirical MFD
points and the blue markers represent the hypothetical congested branch mirrored
with respect to the line k′ = 0.5. The solid black line is the 50% CDF and the shaded
area shows the 16% and 84% CDF limits for the corresponding density values.
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Table 6.4: Estimated parameter values for estimating all 7 model parameters

City λ
.

µ`
[m]

µg
[s]

ρ
.

Q
[veh/h]

K
[veh/km]

θ
.

δ
.

Augsburg
[1273.9]

2.39
218.3
(55.68)

40.6
(66.92)

1.81
(127.68)

1443.2
(86.35)

178.4
(55.67)

3.58
(73.94)

0.43
(27.86)

Bern
[2743.3]

1.20
152.1
(58.64)

41.2
(75.41)

1.67
(126.79)

1251.2
(61.38)

112.7
(58.64)

2.61
(74.33)

0.19
(16.26)

Bordeaux
[4089.8]

5.12
386.3
(11.14)

31.2
(9.09)

1.71
(9.25)

1457.6
(27.61)

167.3
(11.43)

3.80
(56.29)

0.41
(3.73)

Frankfurt
[874.2]

1.92
183.6
(5.75)

38.3
(9.46)

1.64
(12.50)

1432.6
(30.24)

159.4
(5.93)

3.50
(5.41)

0.31
(9.59)

Kassel
[2258.7]

1.73
234.3
(17.19)

37.1
(18.63)

1.83
(16.72)

1235.6
(85.59)

94.2
(17.19)

2.63
(17.09)

0.32
(46.65)

Maximum log likelihood value in brackets
t-statistics in parentheses

values are statistically significant and most of them are reasonable and in the expected

range of values in reality. However, at first sight, the estimated link capacity values

draw attention, which are lower than the expected uninterrupted link capacity (about

2000 veh/hr). Moreover, in some cases such as Kassel, the estimated jam density is

significantly lower than the anticipated jam density value (about 160 veh/km).

The estimated ρ values are all between 1 and 2, indicating that the average number

of signal phases for the studied networks is between 2 and 3 based on the formula-

tion presented in Section 6.3.2. Unfortunately, we do not have any information on

the signal timing configurations for the studied network, but the estimation results

sound reasonable based on what we can expect of the real-life configurations in urban

network with many signals having more than 2 phases.

Out of the estimated parameters, we can only obtain information on the link

lengths inside the analysis area of each network to compute the average block lengths,

µ`, using the provided data. Fig. 6.5 illustrates the 95% confidence intervals for the

average block length estimations along with the measured average block length using
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Figure 6.5: 95% estimation confidence intervals and the measured values for average
block length.

the available data for the 5 networks presented in Fig. 6.4. Although the graphical

fits look up to scratch, the measured real values of µ` do not necessarily fall in the

95% confidence interval of the estimations for all datasets. This might have happened

due to a host of reasons, out of which the most important ones seem to be: (i) the

position of loop detectors along the links, which impacts their measurements, (ii)

measuring the average block length based on only the links with loop detectors or all

the links inside the analysis area, and (iii) the presence of unsignalized intersections

along the links, which can impact their effective block length to be included in the

analytical model. All of these issues will be discussed in further detail in the next

section.

The next subsection will present another set of estimation results assuming that

the values for the average block length and jam density parameters are already known

for all networks and the method only will estimate the 5 remaining model parameters

to fit the analytical MFD to the empirical data.

Estimation by substituting the measured average block length and jam density

The UTD19 dataset further provides the location of loop detectors, the distance of

loop detectors to the downstream traffic signal and the length of their corresponding

block. Among the SMoC model parameters, the only parameter that we can readily

149



compute using the available data is the actual average block length, `. For each

network, ` can been computed as the average length of unique links with valid loop

detectors.

The jam density can be defined as the traffic density when all the vehicles are

jammed on the road bumper-to-bumper. Assuming that the average vehicle length

across different urban networks does not vary significantly, the jam density can be

considered as a universal constant that does not vary from a link to another link or

a network to another network. Considering that average vehicle length is about 5

meters and allowing extra spacing about 1 meter between the vehicles, the universal

jam density would approximately be 160 vehicles per kilometer.

Now that we have approximate knowledge on the values of average block length

and jam density parameters, we intend to revisit the parameter estimation results

by replacing the the values of these 2 parameters in the model and estimating only

the remaining 5 model parameters. This will result in a reduction of the degree

of freedom of the estimation method and thus a less optimum fit compared to the

previous results. However, if the replaced parameter values are computed precisely

based on the ground truth information, it will result in more accurate estimations for

the other parameters, which would also be closer to the real values. On the contrary,

if the replaced values are not accurate, they can put the estimation on the wrong

track and result in inaccurate estimated values, which will not match up to the real

values.

The MFD CDFs and cuts fitted by estimating the 5 other model parameters are

shown in Fig. 6.6. The new graphical fits look different than the ones in the previous

subsection, which can also be told by the change in the λ and ρ values that are the

most impactful parameters on the shape of the analytical MFD CDF. The estimated

parameter values are given in Table 6.5, where all the newly-estimated parameter
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Figure 6.6: Estimated analytical MFDs and cuts using only 5 model parameters for
the same networks as Fig. 6.4 displayed in the normalized flow units with respect to
the estimated link capacity, Q, and the transformed and normalized density, k′, as
discussed in subsection 6.3.1. Note that the yellow markers show the empirical MFD
points and the blue markers represent the hypothetical congested branch mirrored
with respect to the line k′ = 0.5. The solid black line is the 50% CDF and the shaded
area shows the 16% and 84% CDF limits for the corresponding density values.
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Table 6.5: Estimated parameter values for estimating only 5 model parameters

λ
.

µ`
[m]

µg
[s]

ρ
.

Q
[veh/h]

K
[veh/km]

θ
.

δ
.

Augsburg
[234.2]

2.78 202.6
31.5

(54.63)
1.57

(21.35)
1331.9
(140.6)

160
2.97

(92.43)
0.41

(37.71)

Bern
[911.4]

1.70 233.5
59.8

(35.85)
1.96

(86.65)
1304.7
(21.01)

160
2.53

(18.23)
0.28

(6.54)

Bordeaux
[4020.5]

5.31 358.2
27.3

(53.4)
1.71

(28.25)
1423.0
(97.99)

160
3.95

(67.96)
0.39

(15.07)

Frankfurt
[792.6]

2.3 225.6
41.2

(7.51)
1.73

(6.41)
1375.2
(12.30)

160
3.31

(10.17)
0.29

(3.79)

Kassel
[2160.9]

2.91 298.1
49.0

(7.36)
1.98

(13.93)
1203.4
(23.89)

160
2.73

(10.87)
0.41

(13.77)

Maximum log likelihood value in brackets
t-statistics in parentheses
µ` and K values are known a posteriori and are not estimated

values are statistically significant. However, most of these values are different than

the previously-estimated values, as it was expected.

Unfortunately, the available data do not include further information about most

of the model parameters, e.g. signal timing settings, and we are not able to com-

pare the estimated values to their corresponding real values and verify which of the

presented results conform more to the ground truth. By comparing the two sets of

results, we can conclude that the proposed MLE method can be highly sensitive to the

imposed assumptions or a posteriori information. For instance, many loop detectors

are located close to the downstream end of the links and their measurements might

not be representative of the average traffic condition in the whole link. Therefore, the

average of link lengths used as the average block length parameter, µ`, in the second

set of estimations might need an adjustment to take the location of loop detectors

within the links into account.
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6.5 Discussion

As demonstrated in the previous section, for the corridor case, the proposed method

results in a well-fitted analytical MFD with mostly plausible parameter estimates,

which are consistent with the ground truth. This shows that the underlying analyti-

cal MFD estimation method, SMoC, is well-suited for estimation of corridor MFDs.

On the other hand, for the network case, we have observed that for many cities the es-

timated values for one or more parameters lie on the predefined parameter boundaries

and therefore, we have deemed them as unsatisfactory and only presented the results

from a few cities, where this issue is not encountered. Nevertheless, this shortcoming

of the proposed method is a major issue, which needs to be addressed.

Furthermore, we do not have enough information about the real values of many

of the model parameters for the studied networks. This prevents us from comparing

the estimated and real-life parameter values to reach a solid conclusion about the

performance of the proposed estimation method and the accuracy of the estimated

values. The two different sets of results in the previous section, shown in Tables 6.4

and 6.5, highlight the sensitivity of the estimation results on any prior assumption

about the value of some of the model parameters. Hence, in this section, we will

discuss the possible reasons resulting in unsatisfactory estimations and other issues

and challenges with both measured and estimated parameter values. The discussions

here will provide numerous future research directions.

6.5.1 Missing Capacity and Congested States in the Empirical Data

An important issue with the available network-wide data is that the empirical MFDs

only cover a limited range of occupancy (density), resulting in a lack of the capacity

state and the descending congested branch of the MFD for most cases, which is obvi-

ous in Fig. 6.2. We highly believe that this is one of the main reasons of unsatisfactory
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estimation results, since the satisfactory results are mostly from the networks whose

empirical MFDs cover wider ranges of occupancy values or demonstrate bending trend

toward the descending congested branch.

The lack of a bending trend in the empirical MFD will prevent the proposed

method from accurately locating the MFD cuts and estimating their associated pa-

rameter values. Therefore, the significance of many parameters in the model will

drop and in order to maximize the value of the log-likelihood function, the CMLE

method may choose the boundary values for the insignificant parameters. This would

also violate the regularity conditions of the MLE method, which will prevent us from

calculating the covariance matrix and making inferences from the estimation results.

Considering that the parameter boundaries are selected in a way that any value be-

yond the boundaries would be inconsistent with the ground truth, any estimation

result with one or more estimated values on the boundaries has been deemed as

unsatisfactory.

The missing congested branch of the empirical MFDs is a very well-known issue

demonstrated by many studies in the literature, however, further research is still

required to identify the reasons behind this issue thoroughly. Of foremost interest is

the behavior of the MFD at the capacity state and whether the network exhibits a

continuous MFD or there is a breakdown in average flow values at the capacity state.

6.5.2 Distribution of Empirical Data Points

To gain further understanding of the possible reasons behind the unsatisfactory re-

sults, we want to look into the distribution of the average flow values at different

density values. Fig. 6.7 presents the histograms of the average flow values at the

vicinity of certain density values for several different cases. The histograms in the

first row of this figure illustrate the distribution of average flow values at the vicinity

of 3 different density values for the city of Augsburg, where the method has resulted
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in plausible graphical fit and estimates as shown in Fig. 6.4(a). As it can be seen,

the empirical values in the Augsburg dataset demonstrate bell-shaped distributions

similar to the estimated analytical distributions shown by the red curves.

On the other hand, there are many counterexamples in the datasets from the net-

works with unsatisfactory estimations, where the empirical histograms do not conform

to the expected bell-shaped analytical distribution of the average flow values. The

second row of Fig. 6.7 shows 3 histograms from 3 cities with unsatisfactory results,

where the empirical average flow histograms at the vicinity of certain average densi-

ties do not demonstrate bell-shaped curves, It can be observed that the histograms

of empirical data in the second row. This might be due to a host of reasons including

measurement errors in individual loop detectors or the fact that the empirical MFD

points might not be representative of the evolution of traffic in the entire network

due to the heterogeneous or sporadic distribution of the loop detectors across the

network.
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(a) Augsburg, k=0.06±0.01, n=246 (b) Augsburg, k=0.14±0.01, n=94

(d) London, k=0.2±0.01, n=459 (e) Luzern, k=0.24±0.01, n=65 (f) Zurich, k=0.08±0.01, n=165

(c) Augsburg, k=0.26±0.01, n=131

Figure 6.7: Empirical histograms and estimated analytical distributions (red curves)
of the average flow values at the vicinity of certain density values for different cities.
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6.5.3 Dependency of Empirical MFDs on Loop Detector Locations

While aggregation over a time interval decreases the dependency of flow measurements

on the location of the loop detector along the links, the occupancy measurements

will represent the occupancy at the loop detector’s location rather than the entire

link. The location of loop detectors is of essence to the shape of MFD and uneven

distribution of loop detectors within the links may introduce significant bias in the

MFD (Buisson and Ladier, 2009; Courbon and Leclercq, 2011). Fig. 6.8 illustrates

the distribution of block lengths and distance of loop detectors to their respective

downstream intersection for a number of studied networks.

The network map and location of loop detectors on the links for London and Mar-

seille are shown in Fig. 6.9. It is evident that the loop detectors’ distances to their

downstream intersection are significantly lower than their respective block lengths,

which is due to the fact that most loop detectors are placed just upstream of the

intersections for signal control purposes, which will eventually result in an overesti-

mation of link densities obtained by the loop detector occupancy measurements. On

the other hand, if the loop detectors are located too close to the upstream end of the

links, the queues formed on the links will rarely reach them making the loop detec-

Figure 6.8: Box-and-whisker plots for block lengths and distances of loop detectors
to downstream intersections for a number of the studied networks
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Figure 6.9: Street network and loop detectors’ location and coverage for (a) London
and (b) Marseille [Network maps are obtained from OpenStreetMap (2020)]
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tors unable to capture the congestion over the network. This issue needs foremost

attention in future MFD research since it impacts the accuracy of both empirical and

estimated analytical MFDs.

6.5.4 Empirical MFDs Not Representing the Entire Network

Fig. 6.9 illustrates the street network inside the analysis boundary for London and

Marseille, where the bold links indicate the links with loop detectors. As expected,

not all links in the network are equipped with loop detectors. While the loop detectors

in London cover an interconnected system of major arterials, we observe that in Mar-

seille, the loop detectors are placed in sparsely-distributed disjointed parcels across

the analysis zone, which might have heterogeneous density distributions violating one

of the main assumptions of the MFD existence. Even if the data shows homogeneous

density distribution, the resulting MFD at best represents the subnetwork that we

have loop detectors on. If the sample is carefully selected, e.g. London in this study,

the resulting MFD can be a good proxy for the network MFD. Otherwise, it is not

reasonable to conclude that the empirical MFD represents the average traffic flow of

the entire network.

6.5.5 Block Length Measurement Considerations

Theoretically, the block length should be equal to the length of the uninterrupted

segment of the approach upstream of an intersection, where the vehicles might need

to make a full stop due to signal control. This length is clear and unique in the case of

a grid network, where every intersection is signalized. However, in real-life networks,

not all intersections are signalized. For example, we have minor unsignalized intersec-

tions, which are controlled by stop signs on the minor approach and no control on the

major approach. An example from Zurich network is illustrated in Fig. 6.10. This

figure shows a section of the Zurich network where there are six unsignalized inter-
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sections with stop signs on the minor approaches along a link between two signalized

intersections.

We can safely assume that the incoming vehicles from the minor approaches,

which have to stop behind the stop signs, can enter the link only if there is sufficient

headway in the major link stream. Hence, they will not affect the flow of the vehicles

that were already on the main link and we can neglect the effect of incoming vehicles

from those minor intersection. However, the vehicles going from the main link to the

minor links will slow down and might affect the speed of the vehicles behind them

if the main link has only one lane in the movement direction. Since the MFDs are

mainly determined by the data from arterials having more than one lane in each

direction, it seems safe to neglect the effect of turning movements from the major

link at uncontrolled intersections on the flow of the major link. Therefore, it seems

appropriate to neglect the minor intersections without any controls on the major link

in block length calculations.

One of the main purposes of inclusion of block length in the model is to check

the “short block” effect. Above a certain length, the block length does not seem to

have significant impact on the speed of vehicles. In other words, if for a network

we have `∗ = 200 meters, a 300 meters link will not have a different average speed

than a 700 meters link, hence the extra link length will not have any impact on the

Legend    

Signalized intersection

Stop sign on minor approach

400 ft

N

➤➤

N

© 2020 Google

© 2020 Google

© 2020 Google

Figure 6.10: Example from Zurich network with unsignalized intersections between
two signalized intersections
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average performance of the network and the shape of MFD. An upper limit for the

block length may be needed to prevent the long blocks from skewing the mean block

length. The validity of this idea and determining case-specific upper limits for the

block length needs to be investigated using further link performance data.

6.5.6 Heterogeneities in Network Topology

The impacts of heterogeneity in the block lengths on the MFD has already been

discussed in this section. The urban street networks include links from different

functional classes, i.e. major and minor arterials, collectors, local streets. In general,

the streets from lower functional classes have less lanes and lower speed limits and as a

result lower operating speeds. It should not be expected to observe the same speed as

arterials on the local streets. Therefore, MFDs cannot include both arterials and local

streets, otherwise there will be huge variations in the speed and flow measurements,

introducing high scatter to the MFD. Based on the placement of the loop detectors,

we can conclude that the empirical MFDs represent the MFD of the grid of arterials

inside the network, which are of foremost importance for network management and

control purposes.

6.6 Chapter Summary

This chapter extends the SMoC to analytical estimation of network MFDs and pro-

poses a method to estimate the parameters and shape of analytical MFD using empir-

ical data in order to investigate the impact of different network topology and control

characteristics on the shape of the MFD. The SMoC model has been selected as the

base model after an exhaustive review of the present analytical MFD estimation mod-

els in the literature and the MLE method has been implemented to fit the analytical

MFD and estimate its parameters for several datasets.
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We have found that to extend the SMoC to estimate the analytical network MFDs,

we need to redefine the mean red to green signal time, ρ, parameter in the original

formulation as ρ = n̄− 1, where n̄ is the average number of signal phases for all the

intersections in the study area. The parameter estimation method imposes constraints

on the parameter space in order to keep the parameter estimates realistic. The lower

and upper boundaries for each parameter are selected in a way that any values beyond

them would not be attainable in real world.

Testing the proposed MLE method on the empirical data for a corridor yields

that the estimates are very close to the measured values. The parameter estima-

tion method is later used to estimate the analytical network MFD parameters for

30 networks using their empirical MFDs. While the estimation method results in

statistically significant estimated parameter values for many of the studied datasets,

there are also many networks where at least one parameter estimate is on the imposed

boundaries. Such results have been considered as unsatisfactory and the possible rea-

sons leading to this issue have been discussed in the next section. The satisfactory

estimation results are revisited by assuming that the average block length and jam

density values are already known a posteriori. The different parameter estimates and

analytical MFD shapes indicate that the proposed method can be highly sensitive to

the input values and any assumptions made throughout the process.

The observed discrepancies and limitations in the results are discussed in full

length in section 5. Many of these issues most probably stem from the shortcomings

of the underlying empirical data. The distribution of the loop detectors within the

links is an impactful factor considering the fact that the loop detectors measure the

occupancy at the point that they are located, which might not represent the density of

the link if they are placed too close to the beginning or end of the link. Furthermore,

it is discussed that the empirical MFDs might not be a good representative for the

network MFD due to the fact that the loop detectors do not cover all the links in a
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network. The computation of block lengths and signal control parameters for networks

are also discussed in this chapter. However, reaching clear methods to tackle these

issues needs further consideration using additional empirical data, which should be

addressed in future research efforts.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This dissertation contributes to the state of the art on macroscopic traffic flow mod-

eling and control by (i) identifying the gaps in the MFD-based DTA literature, (ii)

proposing a novel MFD-based DTA framework to fill the gap between the multi-

reservoir and continuum-space DTA approaches, (iii) demonstrating the potential of

the MFD to improve the efficiency of the standard emissions estimation methods, and

(iv) extending an analytical MFD estimation method to large-scale urban networks

and verifying it using network-wide empirical data from 41 cities around the world.

Similar to many other engineering problems, the fundamental matter in the ap-

plication of macroscopic traffic flow models narrows down to a trade-off between the

accuracy and efficiency. While more detailed link-level traffic flow models are able to

accurately replicate the traffic behavior in each element of the network, they might

suffer from prohibitive calibration and run times hindering their application, espe-

cially in real time. The MFD relating the average network traffic variables can come

in handy for solving this issue by replacing all the links inside a region with a single

entity in the modeling and analysis process and bringing down the computational

costs. However, this will reduce the accuracy of the results to some extent by assum-

ing that all the links inside a region will have the same traffic conditions at any time.

Therefore, the entirety of this dissertation is based on the idea to develop efficient

traffic flow models which yield accurate results conforming to real-life traffic behavior.

Toward this end, Chapters 2 through 4 of this dissertation explore the application

of the MFD in DTA. Chapter 2 presents an extensive review on macroscopic DTA

models and categorizes them to (i) discrete-space multi-reservoir, and (ii) continuum-

space approaches. This review reveals the shortcomings and gaps in the literature,
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the most important of which are (i) both modeling approaches have limitations and

are incapable of capturing the complex traffic dynamics in large-scale networks, and

(ii) the connection between the two approaches is not well understood. It has been

asserted that the speed-density relationship in the continuum-space models can be

interpreted as the local MFD of the area under consideration.

Building on this finding, Chapter 3 develops a new continuum-space DTA frame-

work and proposes a semi-Lagrangian solution method partitioning the network

into small regions with homogeneous traffic conditions, which is consistent with the

premise that a well-defined discrete-space model can be interpreted as the numeri-

cal solution of a continuum-space model; i.e., when the size of regions tends to zero

while keeping the total area constant, the discrete-space model tends to the numeri-

cal solution of the continuum-space model. This framework allows the distribution of

origin and destination points across the network, incorporates a more realistic local

speed-density function in the continuum space by utilizing the MFD of each region,

and resolves the stalling problem of the discrete-space models by incorporating the

supply and demand MFDs rather than using the speed MFD for each region. The

numerical experiments indicate that the accuracy of the model can be increased by

partitioning the network into a finer grid of regions. The proposed framework can be

extended in a number of directions including but not limited to reservoirs of arbitrary

shapes, different cost functions, and inhomogeneous city networks.

The main goal of the DTA models is to reduce the travel costs and mitigate the

congestion as much as possible. To demonstrate such application of the proposed

DTA framework, Chapter 4 develops a semi-DSO solution trying to minimize the

total instantaneous travel time of the users in the network by reactively minimizing

the total marginal cost of route choice decisions at each time step. Although this

solution method will not result in the fully DSO solution with the minimum total

experienced travel times of all users, the numerical experiments exhibit that compared
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to the original RDUE solution in Chapter 3, the semi-DSO solution results in (i) more

homogeneous distribution of density over the network, (ii) less congestion over time,

and eventually, (iii) less total travel time and average delay. An important future

research direction is to predictively incorporate the experienced travel times in the

solution method to find the DSO solution with the minimum total actual user travel

times and to compare the efficiency and accuracy of the proposed semi-DSO solution

against.

The aggregated network representation can be implemented in other aspects of

traffic flow modeling as well. Chapter 5 explores the application of the MFD in

emissions estimation. This is yet an underdeveloped field of research and the lim-

ited studies have been reviewed in this chapter highlighting their advantages and

disadvantages. In light of these findings, the possibility of implementing the MFD

in EPA’s MOVES model, which is the mandatory emissions estimation model for

transportation projects in the US. The emissions estimation for a grid network has

been conducted in 4 different levels: (1) lane, (2) link, (3) corridor, and (4) network

in the MOVES model. The comparison between results reveals that the efficiency

of the emissions estimation process can significantly improve if a more aggregated

representation of the network is implemented without sacrificing much accuracy.

For the specific grid network, the corridor-level results, which have a more homo-

geneous traffic distribution compared to the entire network, give acceptable relative

error rates of less than 10% for most of the components compared to the lane-level

estimates, which can be computed about 5 times faster than the lane-level estimation.

This finding yields that if the network can be appropriately partitioned into small re-

gions with homogeneous traffic conditions, a similar framework to the proposed DTA

framework in Chapter 3 can be developed to estimate the emissions from large-scale

networks efficiently and accurately. This can open the door for real-time emissions
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estimation and developing control strategies aiming to reduce emissions in real time

by only knowing and managing the number of vehicles inside each region.

The previous chapters demonstrate applications of the MFD in traffic modeling

and analysis assuming that MFDs are already known for the network and its regions.

Chapter 6 argues that in reality, deriving the MFD using empirical or simulation ap-

proaches can become a cumbersome task, especially for large-scale networks, and the

proposed analytical methods in the literature are originally conceived for estimating

the corridor MFDs. In this chapter, an analytical corridor MFD estimation method,

the SMoC, has been first extended to estimation of network MFDs and later has

been tested by estimating the model parameters using empirical data from 41 urban

networks around the globe. Although the results cannot be fully validated due to

unavailability of additional information from the studied networks, they reveal the

drawbacks and further considerations required in both empirical and analytical MFD

estimation approaches, which can guide the focus of future research in this field. The

analytical model can be further improved by including additional cuts to incorporate

the impacts of other factors such as (i) the “short block” effect, and (ii) the “moving

bottleneck” effect caused by operation of buses in the network, which usually move

slower than the general traffic and make frequent stops.
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