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SUMMARY

Based on Kolmogorov’s superposition theorem and universal approximation theorems

by Cybenko and Barron, any vector-to-scalar function can be approximated by a multi-

layer perceptron (MLP) within certain bounds. The theorems inspire us to exploit deep

neural networks (DNN) based vector-to-vector regression. This dissertation aims at estab-

lishing theoretical foundations on DNN based vector-to-vector functional approximation,

and bridging the gap between DNN based applications and their theoretical understanding

in terms of representation and generalization powers.

Concerning the representation power, we develop the classical universal approximation

theorems and put forth a new upper bound to vector-to-vector regression. More specifically,

we first derive upper bounds on the artificial neural network (ANN), and then we generalize

the concepts to DNN based architectures. Our theorems suggest that a broader width of the

top hidden layer and a deep model structure bring a more expressive power of DNN based

vector-to-vector regression, which is illustrated with speech enhancement experiments.

As for the generalization power of DNN based vector-to-vector regression, we employ a

well-known error decomposition technique, which factorizes an expected loss into the sum

of an approximation error, an estimation error, and an optimization error. Since the approx-

imation error is associated with our attained upper bound upon the expressive power, we

concentrate our research on deriving the upper bound for the estimation error and optimiza-

tion error based on statistical learning theory and non-convex optimization. Moreover, we

demonstrate that mean absolute error (MAE) satisfies the property of Lipschitz continuity

and exhibits better performance than mean squared error (MSE). The speech enhancement

experiments with DNN models are utilized to corroborate our aforementioned theorems.

Finally, since an over-parameterized setting for DNN is expected to ensure our theoret-

ical upper bounds on the generalization power, we put forth a novel deep tensor learning

framework, namely tensor-train deep neural network (TT-DNN), to deal with an explosive

xi



DNN model size and realize effective deep regression with much smaller model complex-

ity. Our experiments of speech enhancement demonstrate that a TT-DNN can maintain or

even achieve higher performance accuracy but with much fewer model parameters than an

even over-parameterized DNN.

xii



CHAPTER 1

INTRODUCTION

1.1 Introduction to Vector-to-Vector Regression

The vector-to-vector regression problem is of great interest in machine learning, signal pro-

cessing, and wireless communications. For example, speech enhancement aims at finding

a regression operator to convert noisy speech spectral vectors to clean ones [1, 2]. Sim-

ilarly, clean images can be estimated from the corrupted ones by leveraging upon image

de-noising techniques [3]. Moreover, wireless communication systems can be designed

to transmit encrypted and corrupted codes to targeted receivers with the decoding infor-

mation as correct as possible [4, 5]. Furthermore, vector-to-vector regression is also seen

in ecological modeling, natural gas demand forecasting, and drug efficacy prediction do-

mains [6].

To implement a regression function f , several machine learning and signal processing

approaches have been proposed. Linear regression [7] admits a straightforward implemen-

tation, which originated from Pearson’s research in the evolution theory. Support vector

regression (SVR) [8] is a kernel-based algorithm and aims at solving a max-margin opti-

mization problem. However, the SVR is computationally expensive when dealing with a

large set of training data [9]. Lasso [10] and group Lasso-based regularization [11] admits a

sparse solution that selects representative features. Unfortunately, the regularization-based

approaches do not allow the natural use of kernels, which prevents their extension to the

nonlinear vector-to-vector regression.

With the resurgence of neural networks in many fields of machine learning and signal

processing, DNN with multiple hidden layers can provide an efficient and robust solution

in dealing with large-scale vector-to-vector regression problems. One typical example is

1



Figure 1.1: DNN based vector-to-vector regression for speech enhancement.

from the speech enhancement as shown in Figure 1.1, where the input is high-dimensional

vectors of noisy speech, and the output corresponds to the vectors of enhanced speech. A

feed-forward DNN composed of 3 hidden layers realizes the vector-to-vector regression

for speech enhancement and outperforms the traditional approaches [12]. However, the

theoretical understanding of DNN-based vector-to-vector regression is still lacking and this

thesis aims at filling the gap.

1.2 Motivations and Scientific Goals

Our theory is inspired by the classical universal approximation theory. The idea of univer-

sal approximation first appeared in Kolmogorov’s superposition theorem [13, 14], where

the representation power of multivariate continuous functions with feed-forward structures

are considered in two different Euclidean spaces. However, Kolmogorov’s superposition

theorem cannot be easily adopted in practice because the exact inner and outer functions

are difficult to specify. Later, Cybenko [15] and Barron [16] developed universal approxi-

2



mation theorems based on Kolmogorov’s superposition theorem. They claimed that an arti-

ficial neural network (ANN) [17] with a Sigmoid activation function [18] can approximate

any continuous vector-to-scalar function. Similarly, Hornik et al. [19] also demonstrated

that a multi-layer feed-forward network is a universal approximator. More specifically,

a well-configured ANN can approximate any vector-to-scalar function with an arbitrarily

small error, even though only a non-linear hidden layer is stacked between the input layer

and output one.

Inspired by the classical universal approximation theory, Xu et al. [2, 1] exploited deep

neural network (DNN) [20] based vector-to-vector regression within a machine learning

framework, where the DNN parameters can be adjusted by adopting machine learning

optimization algorithms, and the DNN based models exhibit advantages over other ap-

proaches [1]. However, a theoretical understanding of DNN based vector-to-vector regres-

sion has not been systematically studied, and thus this dissertation aims at bridging the

gap between the empirical DNN study and the related theoretical analysis. More specif-

ically, we first analyze the representation power of DNN-based regression and illustrate

experiments of speech enhancement to justify our theorems. Then, we compare mean ab-

solute error (MAE) [21] with mean squared error (MSE) [22] as an objective function for

the DNN-based vector-to-vector regression, and we also highlight the advantages of MAE

over MSE for DNN based regression problems. Moreover, the generalization power of

DNN-based regression is also discussed given the fact that the potential mismatch between

training and test data exists in real machine learning applications. Furthermore, our theory

suggests that an over-parameterized DNN is expected to lower the optimization (training)

error, we employ the tensor-train (TT) decomposition [23] to each hidden layer of DNN

such that the resulting TT-DNN model owns much fewer model parameters. In this work,

we assess if the TT technique does not only reduces the DNN parameters but it can also

maintain the baseline performance of the original DNN.

3



1.3 Contributions

The goal of this dissertation is to leverage the technique of error performance analysis

for the DNN based vector-to-vector regression. Our contributions can be summarized as

follows:

1. To investigate the representation power [24] of the DNN-based regression operator,

we upper bound an approximation error by developing the classical universal approx-

imation theory. The derived upper bound can be employed to estimate the practical

MSE values, and speech enhancement is utilized to validate our theorems.

2. To compare MAE with MSE for DNN-based vector-to-vector regression, we char-

acterize the objective function. Moreover, we highlight the advantages of MAE as

an objective function for the DNN based vector-to-vector regression in terms of the

Lipschitz continuity [25], the robustness against additive noises, and the functional

connection to the Laplacian distribution.

3. To understand the generalization power [26] of DNN based vector-to-vector regres-

sion, we upper bound an empirical Rademacher complexity which is closely related

to the estimation error, where a large number of training data is highly expected. Our

derived upper bound on the estimation error is assessed by employing a series of

experiments on speech enhancement and image de-noising.

4. To minimize the optimization error, we analyze how to avoid bad local optimal points

by leveraging certain DNN setups and constraints. In particular, we concentrate on

the Polyak-Lojasiewicz (PL) condition [27] and an over-parameterization [28] setup

for DNN.

5. To reparameterize an over-parameterized DNN into a TT-DNN, we use TT decom-

position to convert a DNN into a TT-DNN with TT formats. We empirically show

that a TT-DNN model can even obtain the accuracy of the original DNN with much

4



fewer parameters. In particular, TT-DNN can be applied to the tasks of multi-channel

speech enhancement [29, 30] and speech recognition [31, 32, 33].

1.4 Thesis Outline

The thesis is organized as follows: In Chapter 2, we introduce the necessary background

knowledge and the classical universal approximation theorem. More specifically, we dis-

cuss Kolmogorov’s superposition theorem and Cybenko and Barron’s theorems which are

associated with the expressive capability of a neural network with only one hidden layer.

In Chapter 3, we aim to analyze the representation power of DNN based vector-to-vector

regression, and we illustrate the experiments of speech enhancement to corroborate the de-

rived upper bound [34]. In Chapter 4, we exploit the characteristics of MAE for DNN based

regression operators and compare it with MSE as a loss function for DNN based regres-

sion problems [35]. In Chapter 5, we investigate the generalization power of DNN based

vector-to-vector regression and conduct experiments on speech enhancement and image

de-noising to justify our derived theorems [36]. In Chapter 6, we characterize TT-DNN

and discuss if it can maintain the representation power of DNN with the demonstration

of speech enhancement and speech recognition experiments [37, 38]. In Chapter 7, we

conclude the thesis and present the future work.

1.5 Notations

We define the notations consistently used throughout this thesis.

• f ◦ g: The composition of functions f and g.

• ||v||p: Lp norm of the vector v.

• 〈x, y〉 and x>y: Inner product of two vectors x and y.

• [Q]: An integer set {1, 2, 3, ..., Q}.

5



• ∇f : A first-order gradient of the function f .

• E[X]: Expectation over a random variable X .

• 1: A vector of all ones.

• 1m: Indicator vector of zeros but with the m-th dimension assigned to 1.

• RI : I-dimensional real coordinate space.

• RI1×I2×···×IK : space of K-order tensors.

• [a, b]: Closed interval between a and b.

• (a, b): Open interval between a and b.

• O(·): If T (r) = O(f(r)), there exist constants z, r0 ≥ 0 such that T (r) ≤ zf(r) for

all r ≥ r0.

• Θ(·): If T (r) = Θ(f(r)), there exist constants z1, z2, r0 ≥ 0, such that z1f(r) ≤

T (r) ≤ z2f(r) for all r ≥ r0.

• o(·): If T (r) = o(f(r)), there exist constants z, r0 ≥ 0 such that T (r) ≥ zf(r) for

all r ≥ r0.

• h∗D: The best hypothesis of all functions over the distribution D.

• f ∗D: The optimal DNN hypothesis over the distribution D.

• f ∗S: The DNN empirical risk minimizer on the training dataset S.

• f̄S: The returned DNN hypothesis on the training dataset S.

• FK : The class of DNN hypothesis with K hidden layers.

• LD: The expected loss function over the distribution D.

• LS: The empirical loss function over the empirical training dataset S.

6



CHAPTER 2

BACKGROUND

In this chapter, we review the related literature that inspired us to conduct the research

exposed in this thesis. In more detail, we first introduce the universal approximation the-

ory [15, 16] and highlight its significance in analyzing the vector-to-vector regression based

on artificial neural networks (ANN) [17] and DNNs [20], respectively. Then, we investi-

gate practical applications of the DNN based vector-to-vector operators, which require fur-

ther theoretical foundations to interpret the results gathered in the related empirical studies.

Finally, tensor-train decomposition [23] and the related tensor-train networks [39] are com-

prehensively discussed.

2.1 A Review of Classical Universal Approximation Theorems

2.1.1 Kolmogorov’s Superposition Theorem

The classical universal approximation theorems were inspired by Kolmogorov’s superposi-

tion theorem [40]. Theorem 1 states that a real continuous function f : [0, 1]D → R can be

exactly represented by a superposition of a two-layer function, where there are D(2D+ 1)

inner functions at the bottom and (2D + 1) outer functions on the top. The inner functions

ψpq are universal because they do not rely on a particular choice of functional type, whereas

the outer functions φq require a delicate design.

Theorem 1 (Kolmogorov’s superposition theorem [13]). Given an D-dimensional input

vector x ∈ RD and a real continuous function f : [0, 1]D → R, there exist D(2D + 1)

continuous and monotone increasing univariate functions, by which f can be reconstructed

based on Eq. (2.1) as:

f(x) =
2D+1∑
q=1

φq

(
D∑
p=1

ψpq(xp)

)
. (2.1)
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2.1.2 Universal Approximation Theorems

Although several works have been investigated in composing Kolmogorov’s superposi-

tion theorem, some of the most significant contributions arise from Cybenko and Barron’s

universal approximation theorems [15, 16, 41]. More specifically, instead of exactly com-

posing the inner and outer functions, Cybenko put forth an approximate function based on

ANN, as shown in Theorem 2, to replace the inner and outer functions with affine transfor-

mations followed by a nonlinear Sigmoid activation function [42].

Theorem 2 (Cybenko’s universal approximation theorem [15]). Given x ∈ RD and an

arbitrary small ε > 0, a continuous function f̂ : RD → R can be approximated by an ANN

f such that ∣∣∣f̂(x)− f(x)
∣∣∣ ≤ ε. (2.2)

The approximate function f follows a model structure of ANN as:

f(x) =
J∑
j=1

ajσ(w>j x + bj), (2.3)

where ε denotes an approximation bias, J neurons are placed in the hidden layer, x,wj ∈

RD, ai, bi ∈ R, and σ refers to a Sigmoid activation function.

Furthermore, Barron quantifies the approximation error ε by connecting the width of

the hidden layer to the approximation upper bound, which is shown in Theorem 3.

Theorem 3 (Barron’s universal approximation theorem [41]). Given a continuous function

f̂ : [0, 1]D → R, we can find a function f : [0, 1]D → R in the convex hull of J Sigmoid

activation functions such that ∀x ∈ RD,

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ 2C

(
1√
J

+ δτ

)
, (2.4)

where the constants τ > 0, C > 0, and δτ refers to a distance between the unit setup
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function and a scaled Sigmoid activation function as:

δτ = min
0≤ε≤ 1

2

(
2ε+ max

|z|≥ε
|σ(τz)| − 1z>0

)
, (2.5)

where δτ goes to 0 when τ becomes infinity, and 1z>0 equals to 1 if z > 0 and otherwise

becomes 0.

The upper bound in Eq. (2.4) suggests that a larger J is related to a lower approximation

error, which implies that a sufficiently large number of hidden neurons results in a powerful

representation of an arbitrary continuous function.

2.2 From Universal Approximation Theory to Deep Learning-Based Regression

Although the theory of universal approximation implies that the neural network can serve

as a universal approximator to any continuous target function [15], the estimation of model

parameters should be placed in the context of machine learning framework, where a set

of training data is used to learn the DNN model parameters and another set of test data is

utilized to assess the DNN performance. The work [2] first investigates the DNN based

vector-to-vector regression for speech enhancement experiments in which noisy speech is

synthesized by corrupting clean speech with different types of noise at various signal-to-

noise ratios (SNRs), and a randomly initialized DNN model is further refined based on

the generated noisy speech corpus. Although the training data are not collected from the

practical scenarios, the well-trained model based on the synthesized training data owns a

strong generalization capability to enhance the unseen noisy speech data in practice. A

class of DNN hypothesis is defined in Eq. (2.6), where Wk denote the weight matrix for

the k-th hidden layer and σ refers to a non-linear activation.

fK(x) = WK(σ(WK−1(· · ·(W2(σ(W1(x))))))) (2.6)
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Then, a detailed introduction to DNN based vector-to-vector regression is described

as follows: DNN based vector-to-vector regression [1, 43] provides an effective way to

find underlying relationships between input vectors and their corresponding outputs. More

specifically, given a finite training dataset S = {(x1, y1), (x2, y2), ..., (xN , yN)} indepen-

dent and identically drawn from an unknown distribution D, where xi ∈ RD and yi ∈ RQ.

In the context of machine learning framework, we are concerned with finding a DNN op-

erator f : RD → RQ that can accurately represent the training instances. The regression

process is described as:

y = f(x) + e, (2.7)

where x ∈ RD, y ∈ RQ, and e ∈ RQ is the regression error vector.

Moreover, the regression operator f is taken as the parametric model, and an expected

loss LD(f) is used to estimate the parameters of f over the distribution D and is defined in

Eq. (2.8) as:

LD(f) = E(x,y)∼D[`(f(x), y)], (2.8)

where ` : RD × RQ → R is a loss function measuring the difference between the DNN

operator f(x) and the target vector y.

In the machine learning framework, instead of calculating the expected loss LD(f), an

empirical loss LS(f), which is defined in Eq. (2.9), is employed to approximate LD(f). If

the training data are representative enough over the distribution D, LS(f) can best approx-

imate LD(f).

LS(f) =
1

N

N∑
n=1

`(f(xn), yn). (2.9)

Moreover, given the space of all functions YX and DNN hypothesis class FK , we need

to take into account three types of errors: approximation error, estimation error, and op-

timization error. Figure 2.1 demonstrates the error performance analysis on DNN based

10



Figure 2.1: Error performance analysis on DNN based vector-to-vector regression.

vector-to-vector regression. The difference between the ground truth h∗D ∈ YX and the

optimal hypothesis f ∗D ∈ FK results in an approximation error, where h∗D and f ∗D denote

the minimizers of the expected loss over YX and the distribution D, respectively.

The estimation error arises from the difference between an empirically optimal hypoth-

esis f ∗S ∈ FK . f ∗S refers to a minimizer of the empirical loss over FK . Furthermore, a

returned DNN hypothesis f̄S ∈ FK is practically attained from training a DNN model

based on different DNN initialization and stochastic gradient descent (SGD) algorithms.

The bias between f̄S and f ∗S corresponds to the optimization (training) error.

The error decomposition provides us with a technique of error performance analysis to

assess the expected loss on the DNN returned hypothesis LD(f̄S), which is shown as:

LD(f̄S) = LD(f ∗D)︸ ︷︷ ︸
ApproximationError

+LD(f ∗S)− LD(f ∗D)︸ ︷︷ ︸
EstimationError

+LD(f̄S)− LD(f ∗S)︸ ︷︷ ︸
OptimizationError

. (2.10)

In Eq. (2.10), LD(f̄S) can be decomposed into the sum of three errors and we focus

on the analysis of each error term in this dissertation: the approximation error implies the

representation power and measures how well the DNN hypothesis class performs on the

distribution D; the estimation error, which is related to the generalization power, results
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Figure 2.2: An illustration of speech enhancement for DNN based vector-to-vector regres-
sion.

from the fact that a training dataset is received and the distribution D cannot be observed;

the optimization error measures the difference between the approximation errors concern-

ing the DNN hypothesis f̄S and f ∗S . This thesis aims at the performance of DNN based

vector-to-vector regression in terms of analyzing the three error terms, respectively.

2.2.1 Speech Enhancement

Figure 2.2 illustrates a framework of speech enhancement for DNN based vector-to-vector

regression [1], where the input is connected to high-dimensional noisy speech spectrograms

and the output corresponds to the clean or enhanced ones. The parametric DNN operator f

is designed to map the noisy speech spectrogram to the enhanced one. The DNN framework

aims at finding a DNN model which attains the minimum approximation error between the

enhanced speech and the reference one.

A feed-forward DNN architecture for speech enhancement was first introduced in the

experimental study [1, 2], which achieves the much better performance of speech enhance-

ment. Then, new deep learning models, such as Long Short-Term Memory (LSTM) [44],

Generative Adversarial Network (GAN) [45] and Convolutional Neural Network (CNN) [46],

was proposed to further improve the speech enhancement performance.

A typical dataset of speech enhancement in our experiments is conducted on the Ed-
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inburgh noisy speech database [47], where the noisy backgrounds of the training data are

inconsistent with the test ones. More specifically, clean utterances are from 56 speakers

including 28 males and 28 females from different accent regions of both Scotland and the

United States. Clean materials are randomly split into 23075 training, and 824 test wave-

forms, respectively. The noisy waveforms at four SNR levels, 15dB, 10dB, 5dB, and 0dB,

are set up by mixing the following noises: a domestic noise (inside a kitchen), an office

noise (in a meeting room), three public space noises (cafeteria, restaurant, subway station),

two transportation noises (car and metro) and a street noise (busy traffic intersection). In

summary, 40 different types of noise are synthesized into 23075 noisy training speech ut-

terances. As for the test set, the noisy conditions include a domestic (living room), an office

noise (office space), one transport (bus), and two street noises (open area cafeteria and a

public square) at 4 SNR levels (17.5 dB, 12.5 dB, 7.5 dB, 2.5 dB). Therefore, 20 various

noisy conditions can result in a total of 824 noisy test speech utterances.

Moreover, in the dissertation, the evaluation metrics for speech enhancement are based

on three types of criteria: MAE, MSE, perceptual evaluation of speech quality (PESQ) [48],

and short-time objective intelligibility (STOI) [49]. MAE and MSE are directly related to

the objective loss; PESQ, which ranges from −0.5 to 4.5, is an indirect evaluation that

is highly correlated with speech quality; The STOI score lies in the range from 0 to 1 and

refers to a measurement of predicting the intelligibility of enhanced speech. A higher PESQ

or STOI score corresponds to a better speech perception quality.

2.2.2 Image De-noising

As shown in Figure 2.3, image de-noising [3] is another illustration of DNN based vector-

to-vector regression, where an encoder-decoder architecture is applied. The DNN encoder

transforms the input images into the abstract features associated with a bottleneck layer,

and the decoder reconstructs the features back to the output image. Being similar to the

task of speech enhancement, a DNN based vector-to-vector operator f is expected to attain
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Figure 2.3: An illustration of image de-noising for DNN based vector-to-vector regression.

an enhanced image from a noisy input one.

Despite the successful application of DNN based vector-to-vector regression, the re-

lated fundamental understanding is still lacking in theory. Therefore, this thesis concen-

trates on the performance analysis of DNN based vector-to-vector regression. Moreover,

we also attempt the use of tensor-train (TT) decomposition [23] for DNN. An introduction

to the TT decomposition and the related tensor-train network (TTN) [50] are discussed in

the remainder of Chapter 2.

2.3 Tensor-Train Decomposition and Tensor-Train Network

Tensor-Train (TT) [23], also known as matrix product state (MPS) [51], characterizes the

representation of a chain-like product of three-index core tensors for a higher-order ten-

sor. More generally, TT denotes a technique of tensor decomposition to factorize a multi-

dimensional array into latent factors in a low-dimensional multi-linear space. In doing so,

the overhead of memory storage can be greatly reduced. Compared with other tensor de-

composition approaches [52] like Tucker decomposition [53] and CANDECOMP/PARAFAC

(CP) decomposition [54, 55], TT is referred to a special case of a tree-structured tensor net-

work and can be simply scaled to arbitrarily higher-order tensors. Thus, TT has been widely
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used in many signal processing and machine learning domains, such as multi-dimensional

harmonic retrieval [56], video classification [50], efficient inference in Markov random

field [57], and low-rank tensor decomposition [39]. Moreover, the TT technique can be

employed for the channel estimation in wireless communication [58], and it can also apply

to cyber-physical-social systems [59].

Figure 2.4: An illustration of TTD and TTN. (a) TTD is a tensor of order K in the TT
format and the core tensors are of order 3. A circle represents a core tensor, and each line
is associated with the dimension; (b) TTN is a tensor of order K in the TT format and the
core tensors are of order 4, a circle represents a core tensor and each line is associated
with the dimension.

2.3.1 Tensor-Train Decomposition

Tensor-train decomposition (TTD) [23] denotes that given a class of positive integer ranks

{R0, R1, ..., RK}, the K-order tensor W ∈ RI1×I2×···×IK can be factorized into the mul-

tiplication of 3-order tensors. More specifically, given a set of indices {m1,m2, ...,mK},

W(m1,m2, ...,mK) is decomposed as:

W(m1,m2, ...,mK) =
K∏
k=1

Wk(mk), (2.11)

where ∀mk ∈ Ik,Wk ∈ RRk−1×Ik×Rk andWk(mk) ∈ RRk−1×Rk . Since R0 = RK = 1, the

term
∏K

k=1Wk(mk) is a scalar value. Next, we show that a tensor-train network (TTN) can

be generated by employing the TT technique to DNN.
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2.3.2 Tensor-Train Network

A TTN refers to a TT representation of a feed-forward neural network with a fully-connected

(FC) hidden layer. In more detail, for an input tensor X ∈ RI1×I2×···×IK and the output ten-

sor Y ∈ RJ1×J2×···×JK , we achieve that

Y(j1, j2, ..., jK) =

I1∑
i1=1

· · ·
IK∑
iK=1

W((i1, j1), ..., (iK , jK)) · X (i1, i2, ..., iK)

=

I1∑
i1=1

· · ·
IK∑
iK=1

(
K∏
k=1

Wk(ik, jk)

)
· X (i1, i2, ..., iK),

(2.12)

where W((i1, j1), (i2, j2), ..., (iK , jK)) is closely associated with W(m1,m2, ...,mK) as

defined in Eq. (2.11), if we set the indexmk = ik×jk, k ∈ [K]. In doing so, given the class

of ranks {R0, R1, ..., RK}, the tensorWk ∈ RRk−1×Ik×Jk×Rk and the matrixWk(ik, jk) ∈

RRk−1×Rk .

Based on the tensor decomposition as shown in Eq. (2.11), given the class of ranks

{R0, R1, ..., RK}, the input tensor X can be represented as follows:

X (i1, i2, ..., iK) =
K∏
k=1

Xk(ik), (2.13)

in which Xk ∈ RRk−1×Ik×Rk and Xk(ik) ∈ RRk−1×Rk , ∀ik ∈ [Ik]. Then, Eq. (2.12) can be

further derived as:

Y(j1, j2, ..., jK) =

I1∑
i1=1

· · ·
IK∑
iK=1

(
K∏
k=1

Wk(ik, jk)

)
·
K∏
k=1

Xk(ik)

=
K∏
k=1

(
Ik∑
ik=1

Wk(ik, jk) · Xk(ik)

)

=
K∏
k=1

Yk(jk),

(2.14)

where Yk(jk) ∈ RRk−1×Rk , and thus
∏K

k=1 Yk(jk) is a scalar because of the ranks R0 =
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RK = 1. Eq. (2.14) suggests thatK parallel and independent channels are built to compute

Y(j1, j2, ..., jK). To configure a TTN, the ReLU activation is applied to Y(j1, j2, ..., jK),

which is represented as:

Ŷ(j1, j2, ..., jK) = ReLU(Y(j1, j2, ..., jK)) = ReLU

(
K∏
k=1

Yk(jk)

)
. (2.15)

The TTN is used in our theoretical work to compactly represent an over-parametrized

DNN and explore the empirical performance of tensor-to-vector regression.
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CHAPTER 3

ANALYZING REPRESENTATION POWER OF DNN BASED

VECTOR-TO-VECTOR REGRESSION

In this chapter, we first analyze the ANN-based vector-to-vector regression and then explore

the representation power of DNN architectures. The work has been published in [34].

3.1 Theory on the ANN Based Vector-to-Vector Regression

To begin with, we verify that the ReLU activation defined in ANN can satisfy the condition

of Eq. (2.5) in Theorem 3, where given a scalar x, the ReLU function is defined as:

ReLU(x) = max(0, x). (3.1)

Proof. For a given |z| ≥ ε and τz ∈ [0, 1], the ReLU activation function can ensure the

inequality as:

|σ(τz)− 1z>0| = |ReLU(τz)− 1z>0|

= (1− τz)1{0≤τz≤1}

≤ min
|z|≥ε

exp(−τε).

(3.2)

Based on Eqs. (2.5) and (3.1), given ε = ln τ
τ

, it yields

δτ ≤
1

τ
+

2 ln τ

τ
. (3.3)

Next, we use Eq. (3.2) and choose the parameter τ as
√
J ln J , the upper bound in Eq.
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Algorithm 1 Iterative Approximation [41]
1. Input: A bounded set F, and a target function f ∈ F.
2. Initialize an arbitrary function f0 ∈ F.
3. For t = 1, 2, ..., T :
4. Choose the pair (αt, gt) to solve
5. min

α∈[0,1],g∈G
||f − (αft−1 + (1− α)g)||22.

6. Update ft := αtft−1 + (1− αt)gt.

(2.4) becomes

2C

(
1√
J

+ δτ

)
≤ 2C

(
1√
J

+
1

τ
+

2 ln τ

τ

)
≤ 2C

(
2√
J

+
2 ln(ln J)√
J ln J

+
1√
J ln J

)
= O

(
1√
J

)
,

(3.4)

which justifies the upper bound in the universal approximation theory.

Furthermore, Barron’s universal approximation theory can be generalized to the sce-

nario of the vector-to-vector regression as shown in Theorem 4, and an iterative algorithm

is deployed to demonstrate how an ANN achieves the derived upper bound.

Theorem 4. Given a continuous vector-to-vector regression operator h∗D : [0, 1]D → RQ,

we can find an approximate operator f ∗D with Q functions f ∗D = [f ∗D,1, f
∗
D,2, ..., f

∗
D,Q], where

each function f ∗D,i : [0, 1]D → R with J Sigmoid or ReLU activation functions such that

||h∗D − f ∗D||1 = O
(
Q√
J

)
. (3.5)

Proof. Suppose that the regression operator h∗D denotes a Q-dimensional functional h∗D =

[h∗D,1, h
∗
D,2, ..., h

∗
D,Q], where each function h∗D,i : RD → R. Thus, based on Theorem 3, we
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obtain Eq. (3.5) as:

||h∗D − f ∗D||1 =

Q∑
i=1

|h∗D,i − f ∗D,i| =
Q∑
i=1

O
(

1√
J

)
= O

(
Q√
J

)
.

Theorem 4 suggests that the operator f corresponds to an ANN-based vector-to-vector

regression, and the upper bound in Eq. (3.4) in Theorem 4 implies that the representation

power of an ANN is essentially controlled by the width of the hidden layers.

The back-propagation (BP) algorithm [60] based on SGD [61] is applied to update ANN

parameters, we consider whether the SGD can achieve the bound in Eq. (3.5). We first

introduce an iterative approximation algorithm proposed by Barron [41] that can realize

the approximation bound as Eq. (2.4) in Theorem 3 by alternatively solving a minimization

problem concerning α and g in Step 5 of Algorithm 1. The minimizer g and α obtained in

Step 5 are then used to iteratively update f in Step 6. Furthermore, if f corresponds to a

parametric ANN, the update of ft refers to the update of the related parameters w and b at

time t. We assume that g represents the gradient of f , α is a learning rate, and the bounded

set F is defined as the set of functions represented by an J-node ANN in Eq. (3.6). Then,

Algorithm 1 becomes the BP algorithm with a momentum [62].

F = {fW,b : RD → R|W ∈ RJ×D,b ∈ RJ}. (3.6)

Corollary 1. Given an input domain [0, 1]D, the ReLU based hidden layer is a convex but

not smooth and not strongly convex function. Thus, the SGD algorithm for updating the

ReLU based hidden layer requires Θ( 1
ε2

) iterations for an ε-optimal solution.

Proof. It has been known that the ReLU activation function is a convex but non-smooth

20



function with the inequality as:

f(xt)− f(x∗) ≤ ∇f(xt)>(xt − x∗)

≤ 1

η
(xt − xt+1)>(xt − x∗)

≤ 1

η
(||xt − x∗||22 + ||xt − xt+1||22 − ||xt+1 − x∗||22)

≤ 1

2η
(||xt − x∗||22 − ||xt+1 − x∗||22) +

η

2
||∇f(xt)||22,

(3.7)

where x∗ denotes the optimal point, et refers to the sub-gradient of the point xt, η is the

learning rate.

Summing up the resulting inequality over T epochs, and using that ||xt − x∗|| ≤ R and

the sub-gradient of the modified ReLU ||∇f(xt)||22 ≤ 1 yield a regret Eq. (3.8) at time T

as:

RegretT =
>∑
t=1

(f(xt)− f(x∗)) ≤ R2

2η
+
ηT

2
. (3.8)

By taking η = R√
T

, we obtain

RegretT ≤ R
√
T . (3.9)

On the other hand,

f

(
1

T

>∑
t=1

xt

)
− f(x∗) ≤ 1

T

>∑
t=1

(f(xt)− f(x∗)) ≤ R√
T
. (3.10)

For an ε-optimal, we set R√
T

= ε so that we obtain T = Θ( 1
ε2

) for an ε-optimal solution.

Corollary 2. A Sigmoid or ReLU hidden layer is a β-smooth but not a convex function.

Thus, the SGD algorithm ensures that it takes Θ(β
ε
) iterations for an ε-optimal solution.

Proof. To prove Corollary 2, we define a continuously differential function f is β-smooth
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if∇f is β-Lipschitz, which is

||∇f(x)−∇f(y)||2 ≤ β||x− y||2. (3.11)

In addition, let f be a β-smooth function on RD. Then for any x, y ∈ RD, one has

|f(x)− f(y)−∇f(y)>(x− y)|

=

∣∣∣∣∫ 1

0

∇f(y + t(x− y))>(x− y)dt−∇f(y)>(x− y)

∣∣∣∣
≤
∫ 1

0

||∇f(y + t(x− y))−∇f(y)||2 · ||x− y||2dt

≤
∫ 1

0

βt||x− y||22dt

=
β

2
||x− y||22.

(3.12)

By taking x = xt+1, y = xt, and let f represent a Sigmoid or ReLU function, we obtain:

f(xt+1) ≤ f(xt) +∇f(xt)>(xt+1 − xt) +
β

2
||xt − xt+1||22

≤ f(xt)− η||∇f(xt)||22 +
β · η2

2
||∇f(xt)||22.

(3.13)

Summing up the resulting inequality over t, we obtain Eq. (3.14), where we set the

learning rate η = 1
β

.

E[||∇f(x)||22] =
1

T

>∑
t=1

||∇f(xt)||22

=
2(f(x1)− f(xT+1))

η(2− ηβ)T

≤ 2β(f(x1)− f(xT+1))

T

(3.14)

which suggests: E[||∇f(x)||22] = O( β
T

). Moreover, by setting

2β(f(x1)− f(xT+1))

T
= ε (3.15)
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which suggests that T = Θ(β
ε
) for an ε-optimal solution.

By comparing the convergence rates in corollaries 1 and 2, the SGD algorithm for

an ANN with ReLU based hidden layer ensures a faster rate because Θ( 1
ε2

) is smaller

than Θ(β
ε
) for all β > 1

ε
. Furthermore, some new optimization algorithms, e.g. root

mean square propagation (RMSProp) [63], adaptive gradient (AdaGrad) [64], and adaptive

moment estimation (Adam) [65], are the SGD extensions to accelerate the training process.

However, it is not clear if the optimization algorithms can achieve the Barron’s bound. As

a result, only the SGD algorithm is considered in this chapter.

3.2 Theory on the DNN Based Vector-to-Vector Regression

This section establishes a connection between the depth of a DNN and the representation

power of vector-to-vector regression operators. We discuss whether the DNN expressive

power can benefit from the increment of depth in terms of the number of hidden layers.

Theorem 5 suggests that a deeper DNN architecture can result in a lower upper bound.

On the other hand, Theorem 5 implies that a larger input dimension D or a larger output

dimension Q can result in a higher upper bound.

Theorem 5. Let h∗D : [0, 1]D → RQ be a target smooth function, we can find a feed-forward

DNN f ∗D with K ReLU based hidden layers (K ≥ 2), where the width of each hidden layer

is at least D + 2. The function f ∗D can be approximated with an upper bound as:

||h∗D − f ∗D||1 = O((K − 1)−
r
D ), (3.16)

where r depends on the maximum value of the first K derivatives of h∗D.

Proof. Before we demonstrate Theorem 5, we first introduce Lemma 1 and Lemma 2.

Lemma 1 is based on Theorem 1 in [66], and Lemma 2 is derived from [67].
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Lemma 1 (Mhaskar and Poggio’s approximation theory [66]). For a smooth function h∗D :

RD → RQ, there exists a ReLU based ANN f ∗D with a hidden layer of K units and a

constant Ch∗D which relies on the maximum value of the first K derivatives of f ∗D. Then, we

can find an integer r ≥ 1, so that there is a constraint Eq. (3.17) where DKf ∗D denotes a

vector of derivatives as [∇f ∗D,∇2f ∗D, ...,∇Kf ∗D].

||f ∗D||∞ +
∑

K,1≤K(K−1)
2

≤r

||DKf ∗D||∞ ≤ Ch∗D , (3.17)

such that we attain Eq. (3.18) as:

||h∗D − f ∗D||1 = O(K−
r
D ). (3.18)

Lemma 2 (Hanin’s universal function approximation [67]). Let h∗D : RD → RQ be a ReLU

based ANN with input dimension D and one hidden layer of width K(K ≥ 1). There exists

another ReLU based DNN f ∗D, which owns an input dimension D and (K + 1) hidden

layers with the width (D + 2) for each hidden layer that results in the same result as f ∗D.

Proof. Assume a vector A(k) = {A(k)
1 , A

(k)
2 , ..., A

(k)
nk } as the output of the k-th hidden layer

of the width Jk = D + 2 based on the ReLU activation function. Then, we can derive Eq.

(3.19) and Eq. (3.20) as:

A(k+1) = ReLU

(
b(k) +

Jk∑
j=1

w(k)
j A

(k)
j

)
, (3.19)

f ∗D = b(k+1) +

Jk+1∑
l=1

w(k+1)
l A

(k+1)
l . (3.20)

Then, we know that h∗D can be approximated by A(k+1), which implies that h∗D can be

guaranteed to be approximated by f ∗D by separately setting the values of b(k+1) and w(k+1)
j

as 0 and 1
Jk+1

.
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Finally, by applying Lemma 2 to Lemma 1, we can find a ReLU based DNN f ∗D with

K hidden layers that can be represented by an ANN with a single hidden layer of (K − 1)

units. Therefore, we can attain

||h∗D − f ∗D||1 ≤
Cf

(K − 1)
r
D

= O
(

1

(K − 1)
r
D

)
.

Theorem 5 suggests that the asymptotic upper bound relies on the depth of hidden layers

K, the input dimension D, and the output dimension Q. For a fixed pair (D,Q), a tighter

upper bound can be obtained by setting a larger K. Besides, the width of hidden layers

must have at least (D+ 2) units to obtain the bound in Eq. (3.16). In other words, a deeper

DNN architecture corresponds to a better expressive power for the target operator h∗D.

Although Theorem 5 implies that an upper bound on DNN based vector-to-vector re-

gression depends on the depth K of a DNN architecture, we also explore the relationship

between the width of hidden layers and upper bound on the representation power. Theo-

rem 6 revises the upper bound in Theorem 5, where both depth and width are jointly taken

into account.

Theorem 6. For a target regression smooth function h∗D : RD → RQ, there exists a DNN

f ∗D with K(K ≥ 2) ReLU based hidden layers, where the width of each hidden layer is at

least (D + 2) and the top hidden layer owns JK(JK ≥ D + 2) units. For an integer r ≥ 1

associated with the maximum value of continuous derivatives of h∗D, we can obtain

||h∗D − f ∗D||1 = O
(

Q

(JK +K − 1)
r
D

)
. (3.21)

Proof. As in the proof of Lemma 2 in [67], the first D hidden nodes in each hidden layer

before the last, are scaled and shifted the exact copies of the input; the (D + 1)-th node in

each hidden layer computes a new ReLU function of the input, and the (D + 2)-th node
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computes the accumulation of all of the ReLU functions computed by layers thus far. In

that case, the entire network acts like an ANN with JK + (K − 1) hidden nodes. Based on

Lemma 1, the approximation error is upper bounded by O
(

Q

(JK+K−1)
r
D

)
.

Discussion: Our theorem on DNN based vector-to-vector regression relies on an assump-

tion that the target function is smooth, whereas a continuous target function is assumed

for the classical universal approximation. Next, we first compare the property of smooth-

ness and continuity for a target function, and then we connect our theorem to the classical

universal approximation when the continuous property is considered.

Lemma 3. For a continuous function f : RD → R, given a small value ε1, ε2 > 0, there

exists a value δ > 0 such that for a fixed point x0, ∀x ∈ (x0 − δ1, x0 + δ1), the value of

f(x) satisfies

f(x0) + ε1 ≤ f(x) ≤ f(x0) + ε2. (3.22)

Definition 1. Let f be a β-smooth function f : RD → R, then ∀x, y ∈ RD, we have

∣∣f(x)− f(y)−∇f(y)>(x− y)
∣∣ ≤ β

2
||x− y||22. (3.23)

Based on Lemma 3 and Definition 1, we will show that the smoothness is a stronger

condition than the continuity. In other words, a smooth function can lead to a continuous

one, but the continuous function cannot result in a smooth one. That is because Eq. (3.23)

can bring about Eq. (3.24) as:

f(y)+∇f(y)>(x−y)− β
2
||x−y||22 ≤ f(x) ≤ f(y)+∇f(y)>(x−y)+

β

2
||x−y||22. (3.24)

Then, by defining

ε1 = ∇f(y)>(x− y)− β

2
||x− y||22,

26



ε2 = ∇f(y)>(x− y) +
β

2
||x− y||22,

we can obtain that

f(y) + ε1 ≤ f(x) ≤ f(y) + ε2,

which is consistent with the definition of a continuous function. However, the property of

continuity cannot derive the property of smoothness.

Furthermore, we analyze the theorem for DNN based vector-to-vector regression when

the target function is continuous, which is shown in Theorem 7.

Theorem 7. For a target continuous regression function h∗D : RD → RQ, there exists a

feed-forward DNN f ∗D with the ReLU activation and K hidden layers whose width having

at least D + 2 neurons, such that for a small ε > 0,

||h∗D − f ∗D||1 ≤ ε.

Proof. Theorem 7 can be derived from the Lemma 6 in [67]. It means that a ReLU ANN

with a single hidden layer of width K. There exists another ReLU DNN f ∗D : RD → RQ

that computes the same function as ANN, but it has K + 2 hidden layers with the width at

least D + 2.

Theorem 7 connects our theorem to the universal approximation theory when a regres-

sion target function is assumed to be continuous. Since the smooth target function is always

taken as the objective function, Theorem 6 is utilized in our experiments.

3.3 Estimation of Mean Squared Error (MSE) Upper Bounds

MSE is usually taken as the loss function for training DNN based vector-to-vector regres-

sion operator. In this section, we discuss how to make use of our derived theorems to
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estimate MSE practical values of the DNN based vector-to-vector regression models in our

experiments of speech enhancement.

Proposition 1 generalizes our theoretical upper bounds to practical upper bounds, where

the amount of training data N and the input dimension D need to be considered.

Proposition 1. For a target function h∗D : RD → RQ, we can use N training samples

to attain an ANN f̄S with J Sigmoid or ReLU based activation functions such that the

evaluation loss of MSE can be upper bounded as:

MSE(f̄S, h
∗
D) = O

(
Q

J

)
+O

(
QJD

N
logN

)
+ ν, (3.25)

where ν represents a constant approximation error from the non-deterministic randomness

of the input noise.

Proposition 1 focuses on the representation power and thus do not consider the gener-

alization power associated with the estimation error. Besides, Proposition 1 also suggests

that given two constants c1 and c2, MSE(f̄S, h
∗
D) can be upper bounded as:

MSE(f̄S, h
∗
D) ≤ c1

Q

J
+ c2

QJD

N
logN + ν. (3.26)

For f1 with J1 neuron units and f2 with J2 neuron units, if Eq. (3.27), Eq. (3.28), and

Eq. (3.29) are jointly satisfied, we can separately derive Eq. (3.30) and Eq. (3.31) as:

ε1 ≤MSE(h∗D, f1) ≤ c1
Q

J1

+ c2
QJ1D

N
logN + ν, (3.27)

ε2 ≤MSE(h∗D, f2) ≤ c1
Q

J2

+ c2
QJ2D

N
logN + ν, (3.28)

c1
Q

J1

+ c2
QJ1D

N
logN + ν ≥ c1

Q

J2

+ c2
QJ2D

N
logN + ν, (3.29)
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c1 ≥
J1J2(ε1 + ε2 − 2ν)

2Q(J1 + J2)
= ĉ1, (3.30)

0 < c2 ≤
Nc1

J1J2D logN
, ĉ2 =

Nĉ1

J1J2D logN
. (3.31)

In practice, some factors such as the amount of training data and the dimensions of

some hidden layers, are necessarily taken into account, which results in our Proposition 2.

Proposition 2. For a target operator h∗D : RD → RQ, we can use N training samples to

obtain a f̄S with K(K ≥ 2) ReLU based hidden layers, where the width of each hidden

layer is at least (D + 2). For an integer r > 1 that is associated with the maximum value

of derivatives of h∗D, the MSE loss is bounded as:

MSE(f̄S, h
∗
D) = O

(
Q

(K − 1 + JK)
2r
D

)
+O

(
QJKJK−1

N
logN

)
+ ν, (3.32)

where JK and JK−1 separately denote the numbers of hidden neurons for the K-th and

(K − 1)-th hidden layers, and ν refers to a constant approximation error arose from a

non-deterministic input noise.

Proof. For a DNN with K(K ≥ 2) hidden layers, we regard the bottom (K − 2) hidden

layers as a feature extractor for the top hidden layer which can be taken as the input to the

top hidden layer. By combining Eq. (3.16) in Theorem 5 with Eq. (3.25) in Proposition 1,

we derive Eq. (3.32) in Proposition 2.

Furthermore, Proposition 2 suggests that there exist two constants a1 and a2, which

results in the following inequality as:

MSE(f̄S, h
∗
D) ≤ a1Q

(JK +K − 1)
2r
D

+
a2QJKJK−1

N
logN + ν. (3.33)

Eq. (3.33) suggests that the term Q

(JK+K−1)
2r
D

solely relies on the depth, and a deeper
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DNN architecture corresponds to a lower upper bound on MSE. Therefore, we can sepa-

rately set a1 and a2 as c1 and c2 because the depth of DNN does not impose an additional

restriction any more.

Furthermore, ĉ1 in Eq. (3.30) and ĉ2 in Eq. (3.31) are associated with the minimum

estimated MSE values, which correspond to the attained values by SGD. However, a vanilla

SGD without the use of some optimization tricks since the technique of dropout generally

cannot ensure a closely approximated solution to the global point. Hence, we set an MSE

upper bound by setting c1 = ĉ1 in Eq. (3.30) and c2 = Nĉ1
J1J2D logN

in Eq. (3.31) to reduce

an implicit optimization bias and keep MSE upper bounds as minimum as possible.

As for the setup ε1 and ε2 for the computation of c1 and c2, ReLU based ANN can

ensure the minimum MSE because of the property of convexity. Thus, we can set ε1 and ε2

as the empirical MSE values of two ReLU based ANN models. Besides, we set the integer

r in Eq. (3.33) as D, which keeps the same as the input dimensions. Consequently, the

estimation of MSE upper bound can be modified as:

MSE(f̄S, h
∗
D) ≤ a1Q

(JK +K − 1)2
+
a2QJKJK−1

N
logN + ν. (3.34)

Finally, the configuration for ν varies from different noise types of various SNR levels.

Practically, we set the values of ν as 0.1.

3.4 Experiments of Speech Enhancement

3.4.1 Experimental Goals

We now discuss deep learning for speech enhancement with particular attention to linking

experimental outcomes with the theorems presented in the previous sections. DNN gener-

alization capability of the vector-to-vector regression has been empirically justified in our

earlier efforts [68, 69]. Thus, the present work mainly discusses the expressive power but

not the generalization problem and over-fitting problems, which implies that we would not
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use very large neural architectures and focus on matched noisy conditions. More specifi-

cally, we aim at verifying the following aspects:

• The expressive power of the ANN-based vector-to-vector regression function can be

enhanced by enlarging the width of the hidden layer.

• The depth of a DNN can contribute to the improvement of the expressive power of

the vector-to-vector regression.

• The above properties can be consistently maintained and verified in various noisy

conditions and SNR levels.

• Although the depth and width are two joint parameters affecting the expressive power

of vector-to-vector regression, a top hidden layer with a broader width for a deeper

DNN architecture contributes to a better expressive capability. This property has

also been experimentally verified in [70, 71, 72, 73], where the bottleneck features

extracted from a layer closer to the output led to a better abstract representation of

the original speech features.

3.4.2 Experimental Setup

The DNN used for speech enhancement is a feed-forward ANN, where inputs were the

normalized log-power spectral feature vectors [71] of noisy speech, and outputs referred

to the feature vectors of clean or enhanced speech. The reference of clean speech feature

vectors associated with the noisy one was assigned to the top layer of DNN in the training

process, but the top layer of DNN corresponds to the feature vectors of the enhanced speech

during the testing stage. The Sigmoid and ReLU functions were used for hidden layers of

neural networks, whereas a linear activation function was used in the output layer for the

vector-to-vector regression. Global variance equalization [74] was used to alleviate the

problem of over-smoothing by correcting the global variance between estimated feature
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vectors and clean reference targets. During the DNN training process, the standard back-

propagation algorithm (BP) [75] with MSE was adopted to measure the difference between

a normalized log-power spectral feature vector, and the reference one. To enable non-

stationary noise awareness, the technique of noise-aware training (NAT) [76] was employed

to generate high-dimensional feature vectors of the length of 3 frames via concatenating

frames within a sliding window. Moreover, the SGD algorithm with a learning rate of

1× 10−2 and a momentum rate of 0.4 was used for the update of parameters.

The clean dataset was obtained from the TIMIT speech corpus [77], where 4620 utter-

ances were used for training, and 1600 utterances were selected for testing. Two types of

noises, namely M109 and Babble, from the Noise-92 dataset [78] were chosen for synthe-

sizing the noisy training and testing samples at SNR levels of 5dB, and 15dB. The M109

noise is stationary and is collected from the engine of tanks. The Babble noise is more

challenging because it involves a mixture of multiple speakers. Since we are interested in

assessing the DNN based vector-to-vector expressive power, concerning the theorem dis-

cussed in previous chapters, we have deliberately built and evaluated DNN architectures

of speech enhancement based on training and testing data covering the same noise types

and SNR levels. For example, if a DNN model was trained with noisy speech material

corrupted by the Babble noise with an SNR of 15dB, the DNN model would be evaluated

with the test data having the same characteristics in terms of noise types and SNR values.

Besides, all clean and noise waveforms were downsampled to 8KHz. Both frame and the

shift length were separately set to 32 msec and 16 msec, which correspond to 256 samples

and 128 samples, respectively. Therefore, the dimension of one feature vector is 257 which

involves an additional dimension for the log-power feature. To improve the robustness

against noises, long-term features were applied by separately connecting 3 left-and-right

neighbors of each frame, which resulted in a dimension of 771. The feature values were

further processed by using a mean and variance normalization before they were fed to the

DNN inputs. Besides, two evaluation criteria, namely MSE and the perceptual evaluation
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of speech quality (PESQ) [79], were employed in our experimental validation.

3.4.3 An Evaluation of the Expressive Power of Layered ANNs

We here present experimental results on speech enhancement by comparing different neural

network architectures obtained by varying width and depth of the hidden layers. Table 4.1

lists the model architectures in our experiments, where the structures (the dimension in

each layer) follow an order of Input→ hidden layer 0→ hidden layer 1→ · · · → hidden

layer K → Output.

Table 3.1: Model structures for various vector-to-vector regression models

Model Structure (Input – hidden layers – Output)

ANN1 (ReLU) 771-800-257

ANN2 (ReLU) 771-1600-257

ANN1 (Sigmoid) 771-800-257

ANN2 (Sigmoid) 771-1600-257

DNN1 (ReLU) 771-800-800-800-1600-257

DNN2 (ReLU) 771-800-800-800-800-800-1600-257

DNN3 (ReLU) 771-800-800-800-800-800-800-257

DNN4 (ReLU) 771-800-800-800-800-1600-800-257

As shown in Table 3.1, we first compare the regression performance of an ANN with

a narrower and broader width. The width of the hidden layer of ANN1 was set equal to

800, which is based on the unit constraint for the hidden layers in Theorem 5 (D = 771,

D + 2 = 773 < 800); whereas, ANN2 had a hidden layer of 1600 neuron units. Next, we

studied vector-to-vector regression by increasing the number of hidden layers of DNN1.

As shown in Table 3.1, DNN1 had four hidden layers with widths 800-800-800-1600. Two

additional hidden layers of width 800 were further appended to DNN2, which resulted in a

deeper six hidden layers 800-800-800-800-800-1600.

Table 3.4 shows the experimental results of different neural network architectures. The

evaluation of speech enhancement in terms of both MSE and PESQ measures was con-
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ducted in a straightforward noisy condition (M109) with a high SNR level (15dB). The re-

sults show that ANN2 with a broader width can outperform ANN1 with a narrower width,

and DNN2 with six hidden layers achieves better results than DNN1 with four hidden non-

linear layers. Moreover, both DNN1 and DNN2 with deeper architectures can result in

better regression performance.

Table 3.2: The setup of hyper-parameters for the estimation of MSE upper bounds.

Noises M109(15dB) M109(5dB) Babble(15dB) Babble(5dB)

ε1 0.2242 0.3977 0.3189 0.4323

ε2 0.2050 0.3607 0.3073 0.3829

l1 800 800 800 800

l2 1600 1600 1600 1600

N 5.43× 108 5.43× 108 5.43× 108 5.43× 108

ĉ1 0.2378 0.4422 0.5794 0.6383

ĉ2 0.0065 0.0121 0.0159 0.0175

v 0.1 0.1 0.1 0.1

Besides, we estimate the MSE upper bounds based on Eq. (3.27) for ANNs and Eq.

(3.34) for DNNs. We also assume that the ReLU based ANNs can achieve ε1 and ε2 based

on Eq. (3.28) and Eq. (3.29) by taking

ε1 = Estimated MSE (ReLU) = ANN1 (ReLU), (3.35)

ε2 = Estimated MSE (ReLU) = ANN2 (ReLU). (3.36)

Then, we can compute ĉ1 and ĉ2 based on the estimated ε1 and ε2, where the other hyper-

parameters for the estimation of MSE upper bounds can be found in Table 3.2. Based on

Table 3.3, the results suggest that our estimated MSE (Estimated MSE) can offer rational

upper bounds for DNN based models, but they cannot ensure rational upper bounds for

Sigmoid based ANNs because of the non-convexity of Sigmoid functions. Overall, the
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experimental results support our theoretical analysis.

Table 3.3: The evaluation results under the M109 noise of SNR 15dB.

Models MSE PESQ Estimated MSE

ANN1 (ReLU) 0.2242 2.74 0.2242

ANN2 (ReLU) 0.2050 2.77 0.2050

ANN1 (Sigmoid) 0.2332 2.73 0.2146

ANN2 (Sigmoid) 0.2198 2.75 0.2146

DNN1 (ReLU) 0.1662 2.84 0.1793

DNN2 (ReLU) 0.1412 2.86 0.1755

3.4.4 Evaluating the Width at the Top Hidden Layer of DNN

We now analyze the effects of the width of the top hidden layer in a DNN. Although we

observe that the width of hidden layers and depth of the neural architecture are two joint fac-

tors affecting the expressive power of the DNN based vector-to-vector regression function,

it is expected that a broader width at the top of the hidden layer can achieve better regres-

sion results based on Theorem 6. Therefore, we compared three DNNs with architectures as

shown in Table 3.1, where DNN3 corresponds to a structure of 800-800-800-800-800-800

and the architecture of DNN4 is set up as 800-800-800-800-1600-800.

Table 3.4 shows the results for those three DNNs. It is observed that the top hidden

layer with a broader width corresponds to lower MSE and higher PESQ, which suggests

that the configuration of a broader width at the top hidden layer is essential to allow for

a better expressive power of a DNN based vector-to-vector regression function. However,

a broader hidden layer in the middle of DNN cannot contribute to a better result, which

is matched with our estimated MSE for DNN4 in Table 3.4, where we also verify the

estimated MSE upper bounds for DNN3 are consistent with the results.
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Table 3.4: A comparison of the expressive power among DNN2 (800-800-800-800-800-
1600), DNN3 (800-800-800-800-800-800), and DNN4 (800-800-800-800-1600-800) under
M109 noise of SNR 15dB

Models MSE PESQ Estimated MSE

DNN2 (ReLU) 0.1412 2.86 0.1755

DNN3 (ReLU) 0.1557 2.84 0.1578

DNN4 (ReLU) 0.1598 2.82 0.1794

3.4.5 Empirical Assessment in Adverse Noisy Conditions

So far, we have analyzed the expressive power of the DNN based vector-to-vector regres-

sion function in favorable noisy conditions. In this section, we further evaluated the related

expressive power under some noisy adverse conditions. Table 3.5 shows the regression

results under a complicated Babble noisy condition. Table 3.6 and Table 3.7 separately

list the regression results in the adverse noisy conditions at a low SNR level. We observed

that all the conclusions of the DNN based vector-to-vector regression are still valid in the

adverse noisy environments at a low SNR level, although the performance becomes worse

in such conditions. However, we have only tested on a complicated noisy condition, yet the

resulting property can be regarded as a general case because the Babble noise is a typical

and one of the most complicated noises in practice.

In adverse conditions, the estimated MSE values based on Eq. (3.27) and Eq. (3.35)

are separately shown in Table 3.5, Table 3.6 and Table 3.7. By comparison, the estimated

MSE upper bounds provide the rational estimation to the real empirical MSE in all cases

except Sigmoid-based ones.

3.4.6 Experimental Summary

The empirical regression results discussed in the previous sections confirm our theoretical

claims. More specifically, the experimental results verify that an ANN with a broader hid-

den width outperforms the one with a narrower width, and a deeper architecture contributes
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Table 3.5: Evaluating Results under the Babble noise of SNR 15dB

Models MSE PESQ Estimate MSE

ANN1 (ReLU) 0.3189 2.65 0.3189

ANN2 (ReLU) 0.3073 2.68 0.3073

ANN1 (Sigmoid) 0.3217 2.65 0.3131

ANN2 (Sigmoid) 0.3098 2.67 0.3131

DNN1 (ReLU) 0.2451 2.74 0.2475

DNN2 (ReLU) 0.2238 2.76 0.2464

Table 3.6: Evaluating Performance under the M109 noise of SNR 5dB

Models MSE PESQ Estimated MSE

ANN1 (ReLU) 0.3977 2.54 0.3977

ANN2 (ReLU) 0.3607 2.57 0.3607

ANN1 (Sigmoid) 0.4108 2.55 0.3792

ANN2 (Sigmoid) 0.3744 2.56 0.3792

DNN1 (ReLU) 0.3049 2.62 0.3059

DNN2 (ReLU) 0.2895 2.65 0.2932

Table 3.7: Evaluating Performance under the Babble noise of SNR 5dB

Models MSE PESQ Estimated MSE

ANN1 (ReLU) 0.4323 2.52 0.4323

ANN2 (ReLU) 0.3829 2.55 0.3829

ANN1 (Sigmoid) 0.4384 2.51 0.4076

ANN2 (Sigmoid) 0.3950 2.53 0.4076

DNN1 (ReLU) 0.3415 2.59 0.3528

DNN2 (ReLU) 0.3267 2.61 0.3315

to a better expressive power. Experimental evidence also suggests a configuration with a

broader width at the top hidden layer is essential to achieving a better expressive power for

DNN based vector-to-vector regression. Moreover, the related properties of DNN based

vector-to-vector regression function can be maintained in noisy adverse conditions of var-

ious SNR levels. Furthermore, the evaluated MSE upper bound can be closely estimated
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based on our Propositions 1 and 2.

Besides, since optimizing a DNN with more than two hidden layers is a non-convex

problem, the optimization error may affect the reliability of the estimated MSE strategies

discussed in this work. Thus, some theoretical work on the issue of optimization methods

for DNN should be essentially considered to discuss the generalization capability of DNN

based vector-to-vector regression.
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CHAPTER 4

ON MEAN ABSOLUTE ERROR FOR DEEP NEURAL NETWORK BASED

VECTOR-TO-VECTOR REGRESSION

4.1 Introduction

Mean absolute error (MAE) [80], originated from a measurement of average error [81], is

often employed in assessing vector-to-vector (a.k.a. multivariate) regression models [82].

Another form of average error is a root-mean-squared error (RMSE) [83], but MAE was

shown to outperform RMSE for assessing an average model accuracy in most situations

except the Gaussian noisy scenarios [84, 85, 86]. An exception occurs when the expected

error satisfies Gaussian-distributed and enough training samples are available [84]. Be-

sides, mean squared error (MSE) [87] is the squared form of RMSE and it is commonly

adopted as a regression loss function [88, 89, 90, 91].

In the literature, there have been some discussions on the relationship between MSE

and MAE. Berger [92] presented the pros and cons of squared and absolute errors from

an estimation point of view. In [93], a better solution to support vector machines could

be obtained based on a loss function of an absolute difference instead of the quadratic er-

ror. Li et al. [94] discussed the effectiveness of MAE and its variations when training a

deep model for energy load forecasting; Imani et al. [95] investigated distributional losses,

including both MAE and MSE, for regression problems from the perspective of efficient

optimization. Pandey and Wang [96] exploited the MAE and MSE loss functions for gener-

ative adversarial nets (GANs). However, a comparison between MAE and MSE in terms of

generalization capabilities [97, 98, 34] is still missing in theory. Thus, we aim at bridging

this gap. In particular, we investigate MAE and MSE in terms of performance error bounds

and robustness against various noises in the context of the DNN based vector-to-vector re-
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gression, since DNNs offer better representation power and generalization capabilities in

large-scale regression problems, such as those addressed in [99, 100, 2, 37].

In this chapter, we first prove that the Lipschitz continuity property, which holds for

MAE but not for MSE, is a necessary condition to derive the upper bound on the Rademacher

complexity of DNN based vector-to-vector regression operators, as we have demonstrated

in [36]. Next, we show that the MAE Lipschitz continuity property can result in a new up-

per bound on the generalization capability of DNN based vector-to-vector regression in the

presence of additive noise. Moreover, another contribution of this work is that we establish

a connection between the MAE loss function and the Laplacian distribution, which is in

contrast to the MSE loss function associated with the Gaussian distribution. In doing so,

we can highlight the key advantages of MAE over MSE by comparing the characteristics

of those two distributions.

Our experiments of speech enhancement are used as the regression task to evaluate

our theoretical derivations and empirically verify the effectiveness of MAE over MSE. We

choose regression-based speech enhancement because it is an unbounded mapping from

RD → RQ, where enhanced speech features are expected to closely approximate the clean

speech features in regression.

Our theory and experimental verification of MAE for DNN based vector-to-vector re-

gression have been shown in the publication [35].

4.2 Useful Definitions

4.2.1 Mean Absolute Error (MAE)

Definition 2 (MAE [80]). MAE measures the average magnitude of absolute differences

between N predicted vectors S = {x1, x2, ..., xN} and S∗ = {y1, y2, ..., yN}. The corre-
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sponding loss function is defined as:

LMAE(S, S∗) =
1

N

N∑
i=1

||xi − yi||1, (4.1)

where || · || denotes the L1-norm.

4.2.2 MSE

Definition 3 (MSE [87]). MSE denotes a quadratic scoring rule that measures the average

magnitude of N predicted vectors S = {x1, x2, ..., xN} and N actual observations S∗ =

{y1, y2, ..., yN}. The corresponding loss function is shown as:

LMSE(S, S∗) =
1

N

N∑
i=1

||xi − yi||22, (4.2)

where || · ||2 denotes L2-norm.

Besides, two useful mathematical tools “Lipschitz function” and “empirical Rademacher

complexity” are separately defined as follows:

Definition 4 (Lipschitz Continuity). A function f is β-Lipschitz continuous if ∀x, y ∈ RD

and an integer P ≥ 1,

||f(x)− f(y)||P ≤ β||x− y||P . (4.3)

Definition 5 (Empirical Rademacher Complexity). The empirical Rademacher complex-

ity of a hypothesis space H of functions h : RD → R with respect to N samples S =

{x1, x2, ..., xN} is:

R̂S(H) := Eα1,...,αN

[
sup
h∈H

1

N

N∑
n=1

αnh(xn)

]
. (4.4)

where xi ∈ RD, α1, α2, ..., αN are the Rademacher random variables, which are defined by
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the uniform distribution as:

αi =


1, with probability 1

2

-1, with probability 1
2
.

(4.5)

In [101, 102, 103], it was shown that a function class with larger empirical Rademacher

complexity is more likely to be over-fitted to the training data.

Lemma 4 (Talagrand’s Lemma [90]). Let Φ1,Φ2, ...,ΦN be L-Lipschitz functions and α =

{α1, α2, ..., αN} be Rademacher random variables. Then, for any hypothesis space H of

functions h : RD → R with respect to N samples S = {x1, x2, ..., xN}, the following

inequality holds

1

N
Eσ

[
sup
h∈H

N∑
i=1

σi(Φi ◦ h)(xi)

]
≤ L

N
Eσ

[
sup
h∈H

N∑
n=1

σih(xi)

]
= LR̂S(H), (4.6)

where R̂S(H) refers to the empirical Rademacher complexity.

4.3 Characterizing MAE for DNN based Vector-to-Vector Regression

4.3.1 MAE Loss Function for Upper Bounding Empirical Rademacher Complexity

The Lipschitz continuity property is fundamental to derive an upper bound of the estimated

regression error. In the following Lemma 5, we show that the MAE loss function can ensure

the Lipschitz continuity property. In Lemma 6, we instead show that the property does not

hold for MSE.

Lemma 5. The MAE loss function is 1-Lipschitz continuous.

Proof. For two vectors x1, x2 ∈ RD, and a target vector x ∈ RD, the absolute value of
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MAE loss difference is

|L(x1, x)− L(x2, x)| = |||x1 − x||1 − ||x2 − x||1|

≤ ||x1 − x2||1

= LMAE(x1, x2).

(4.7)

Lemma 6. The MSE loss function cannot lead to the Lipschitz continuity property.

Proof. ∀x1, x2 ∈ RD, and ||x2||22 > ||x1||22, there is

||x1 − x2||22 = ||x1||22 + ||x2||22 − 2x>1 x2. (4.8)

Next, we assume x = 2x2, and we have that

||x1 − x||22 − ||x2 − x||22 = ||x1||22 − 2x>1 x− ||x2||22 + 2x>2 x

= ||x1||22 − 4x>1 x2 − ||x2||22 + 4||x2||22

= ||x1||22 − 4x>1 x2 + 3||x2||22.

(4.9)

By reducing Eq. (4.8) from Eq. (4.9),

||x1 − x||22 − ||x2 − x||22 − ||x1 − x2||22

= 2||x2||22 − 2x>1 x2

> ||x2||22 + ||x1||22 − 2x>1 x2

= ||x1 − x2||22

> 0,

(4.10)

we derive that ∣∣||x1 − x||22 − ||x2 − x||22
∣∣ > ||x1 − x2||22, (4.11)
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which contradicts the property of Lipschitz continuity. Thus, the MSE loss function is not

Lipschitz continuous.

We now discuss the characteristic of Lipschitz continuity derived from the MAE loss

function for upper bounding the estimation error T , which is associated with the general-

ization capability and defined as:

T = sup
f∈FK

|LS(f)− LD(f)| ≤ R̂S(LS), (4.12)

where FK = {f : RD → RQ} is a family of DNN based vector-to-vector functions and LS

denotes the family of expected MAE loss functions. In [36], we have shown that the esti-

mation error T can be upper bounded by the empirical Rademacher complexity R̂S(LS).

In [36], we have also shown that the estimation error T can be further upper-bounded

as:

T = sup
f∈FK

|LS(f)− LD(f)| ≤ R̂S(LS) ≤ R̂S(FK), (4.13)

where R̂S(FK) is defined as:

R̂S(FK) =
1

N
Eα

[
sup
f∈FK

N∑
i=1

(αi1)>f(xi)

]
, (4.14)

where α = {α1, α2, ..., αN} denotes a set of Rademacher random variables.

4.3.2 MAE Loss Function for DNN Robustness Against Additive Noises

We now show that the MAE loss function can give an upper bound for regression errors to

ensure DNN robustness against additive noises.

Theorem 8. For an objective function h = L ◦ f : RD → R with the MAE loss function

L : RQ → R and a vector-to-vector regression function f : RD → RQ, the difference of

44



the objectives for adding noise η to signal x is bounded as:

|h(x + η)− h(x)| ≤ L2||η||2, (4.15)

where L2 =
∑Q

i=1 L2,i is the Lipschitz constant for DNN based vector-to-vector regression,

and each L2,i is shown as:

L2,i = sup{||∇fi(x)||2 : x ∈ RD}. (4.16)

Proof. To prove Theorem 8, we first introduce Lemma 7, which is achieved by the modifi-

cation of Theorem 1 in [104].

Lemma 7. For a vector-to-vector regression function f : RD → RQ with the property of

Lipschitz continuity, ∀x, y ∈ RD, there exists an inequality as:

||f(x)− f(y)||1 ≤ LP ||x− y||Q, (4.17)

where LP = sup{||∇f(x)||P : x ∈ RD} is a Lipschitz constant, and 1
P

+ 1
Q

= 1, P,Q ≥ 1.

We employ the fact that DNNs with the ReLU activation function is Lipschitz continu-

ous [105]. Then, based on both triangle inequality and Lemma 7, we can upper bound the

difference of objective functions with and without the additive noise η as:

|h(x + η)− h(x)| = |||f(x + η)||1 − ||f(x)||1|

≤ ||f(x + η)− f(x)||1 (triangle ineq.)

= L2||η||2 (Lemma 2),

which completes the proof.

Theorem 8 holds for the MAE loss function but is not valid for MSE loss because

it is not Lipschitz continuous. In other words, the difference of additive noises imposed
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upon the DNN based vector-to-vector function is unbounded on the MSE loss function but

the MAE can guarantee an upper bound. The upper bound makes more sense when the

additive noise is small because the upper bound suggests that the imposed noise cannot

lead to significant performance degradation.

4.3.3 Connection of MAE Loss Function to Laplacian Distribution

We now separately link the MAE and MSE loss functions to Laplacian distribution (LD)

and Gaussian distribution (GD) based loss functions as defined in [106]. Both LD and GD-

based losses for DNN based multivariate regression were experimentally compared and

contrasted in [106], and it was shown that the LD loss can attain better vector-to-vector

regression accuracies than those obtained optimizing GD losses.

For N input samples {x1, x2, ..., xN} and N target vectors {y1, y2, ..., yN}, assuming

f : RD → RQ is a vector-to-vector regression function, we change the MAE loss function

as:

LMAE(S, S∗) =
1

N

N∑
i=1

||f(xn)− yn||1

=
1

N

N∑
n=1

D∑
m=1

|fm(xn)− yn,m|

=
1

N

N∑
n=1

D∑
m=1

|f̂m(xn)− ŷn,m|
αm

,

(4.18)

where f̂m(xn) = αmfm(xn), ŷn,m = αmyn,m, and αm is the variance of dimension m.

To link the LD based loss functionLLD(S, S∗) in [106], an additional termN
∑D

m=1 lnαm

is added to LMAE(S, S∗), and we obtain

LLD(S, S∗) = LMAE(S, S∗) +N

D∑
m=1

lnαm. (4.19)
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Moreover, an MSE based loss function can be modified as:

LMSE(S, S∗) =
1

N

N∑
n=1

D∑
m=1

|f̂m(xn)− ŷn,m|2

α2
m

. (4.20)

Then, the GD based loss LGD(S, S∗) can be derived by adding the term N
∑D

m=1 lnαm to

the MSE loss LMSE(S, S∗),

LGD(S, S∗) = LMSE(S, S∗) +N
D∑

m=1

lnαm. (4.21)

We can observe that LMAE(S, S∗) and LMSE(S, S∗) are special cases of LLD(S, S∗)

and LGD(S, S∗) without concerning the variance terms. When ∀m ∈ [D], the variance

αm is a constant, LLD(S, S∗) and LGD(S, S∗) exactly correspond to LMAE(S, S∗) and

LMSE(S, S∗), respectively.

Since the work [106] suggests that the LD-based loss function can achieve better re-

gression performance than the GD-based one, we show that the MAE-based loss function

can also keep the advantage over the MSE when the variance related terms are the same.

4.4 Experiments

This section presents our speech enhancement experiments to corroborate the aforemen-

tioned theorems. The goal of the experiments is to verify that MAE can achieve better

regression performance than MSE under various noisy conditions because of the ensured

upper bounds on the MAE loss functions for DNN based vector-to-vector regression.

4.4.1 Experimental Setup

Our experiments were conducted on the Edinburgh noisy speech database, which has been

introduced in Chapter 2. In this work, DNN based vector-to-vector regression models fol-

lowed feed-forward architectures, where the inputs were normalized log-power spectral
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(LPS) feature vectors of noisy speech [107, 108], and the outputs were LPS features of ei-

ther clean or enhanced speech. At training time, clean LPS vectors were assigned to the top

layer of DNN to function as targets. At test time, the top layer of DNN generated enhanced

LPS vectors. The architecture of DNN had the structure 771-800-800-800-800-800-1600-

257, which corresponds to Input−Hidden−Output. The ReLU activation function was em-

ployed in the hidden neurons, and a linear activation function was used in the top layer for

the vector-to-vector regression. The enhanced waveforms were reconstructed based on the

overlap-add method as shown in [2]. The technique of global variance equalization [109]

was utilized to improve the subjective perception of speech enhancement. At training time,

the BP algorithm was adopted to update the model parameters. The MAE and MSE loss

functions were separately used to measure the difference between normalized LPS features

and the reference ones. The SGD based optimizer with a learning rate of 1×10−3 and a mo-

mentum rate of 0.4 was set up for the BP algorithm. Moreover, the technique of NAT was

also used to enable non-stationary noise awareness. Context information was accounted

at the input by using 3 LPS vectors by concatenating frames within a sliding window [73,

110, 111]. During the training time, one-tenth of training data were randomly split into a

validation set, and the training process was stopped if the performance of the model on the

validation dataset started to degrade. The evaluation metrics were based on four types of

criteria: MAE, MSE, PESQ, and STOI, which have been described in Chapter 2.

4.4.2 Evaluation Results

We train two DNN models based on the MAE criterion (DNN-MAE) and the MSE criterion

(DNN-MSE), respectively. Table 4.1 presents the MAE values for speech enhancement ex-

periments with test data. The MAE value evaluated for DNN-MAE in the top row is lower

than that that in the bottom row evaluated for DNN-MSE under the same noisy condition

in the first column. In more detail, DNN-MAE achieves a lower MAE score than DNN-

MSE (0.6876 vs. 0.6922). Similarly, even though MSE is utilized for the DNN training,
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DNN-MSE can obtain a lower MSE loss score than DNN-MAE (0.8476 vs. 0.8447), but

the margin difference is smaller compared with the first column evaluated by MAE.

Table 4.1: The MAE and MSE Values of unseen test data on Edinburgh speech corpus.

Models MAE MSE

DNN-MAE 0.6876 0.8476

DNN-MSE 0.6922 0.8447

Table 4.2: The PESQ and STOI scores of unseen test data on Edinburgh speech corpus.

Models PESQ STOI

DNN-MAE 2.74 0.8529

DNN-MSE 2.67 0.8420

Table 4.2 shows PESQ and STOI scores obtained with the DNN-MAE and DNN-MSE

models. It can be seen that the DNN model trained with the MAE criterion consistently

outperforms the models trained with the MSE criterion (2.74 vs. 2.67 for PESQ, and 0.8529

vs. 0.8420 for STOI), which further confirms that MAE is a good objective function to

optimize when training DNNs for speech enhancement.

Furthermore, the performance advantages of DNN-MAE over DNN-MSE reflects what

is expected by the aforementioned theorems, namely: (1) the upper bound in Eq. (4.15)

ensures more robust performance against the additive noise; (2) the performance gain is

consistent with the connection between MAE loss function and the Laplacian distribution.
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CHAPTER 5

ANALYZING UPPER BOUNDS ON MEAN ABSOLUTE ERRORS FOR DEEP

NEURAL NETWORK BASED VECTOR-TO-VECTOR REGRESSION

5.1 Introduction

In Chapter 2, we investigate the representation power of DNN based vector-to-vector re-

gression. In this chapter, we explore the generalization capability of DNN based regression

problems. In particular, we focus on an analysis of the generalization power and study the

upper bounds on an expected loss of mean absolute error (MAE) for DNN based vector-to-

vector regression with mismatched training and testing scenarios. Moreover, we associate

the required constraints with DNN models to attain the upper bounds.

In the literature, the recent success of deep learning has inspired many studies on the

expressive power of DNNs, which extended the classical universal approximation theory

on shallow ANNs to DNNs. As discussed in [101], an approximation error is tightly as-

sociated with the DNN expressive power. Moreover, the estimation error represents the

DNN generalization power, which can be reflected by error bounds on the out-of-sample

error or the testing error. The methods of analyzing DNN generalization power are mainly

divided into two classes: one refers to algorithm-independent controls [112, 113, 114] and

another one denotes algorithm-dependent [115, 28]. In the class of algorithm-independent

controls, the upper bounds for the estimation error are based on the empirical Rademacher

complexity [116] for a functional family of certain DNNs. In practice, those approaches

concentrate on techniques of how weight regularization affects the generalization error

without considering advanced optimizers and the configuration of hyper-parameters. As

for the algorithm-dependent approaches [115, 28], several theoretical studies focus on the

“over-parameterization” technique [117, 118, 119, 120], and they suggest that a global
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optimal point can be ensured if parameters of a neural network significantly exceed the

amount of training data during the training process.

Besides, the generalization capability of deep models can also be investigated through

the stability of the optimization algorithms. More specifically, an algorithm is stable if a

small perturbation to the input does not significantly alter the output, and a precise connec-

tion between stability and generalization power can be found in [121, 122].

In this chapter, the aforementioned issues are taken into account by employing the er-

ror decomposition technique [123] concerning an empirical risk minimizer (ERM) [124,

125] using three error terms: an approximation error, an estimation error, and an op-

timization error. Then, we analyze generalized error bounds on MAE for DNN based

vector-to-vector regression models. More specifically, the approximation error can be

upper bounded by modifying our previous bound on the representation power of DNN

based vector-to-vector regression [34]. The upper bound on the estimation error relies

on the empirical Rademacher complexity [116] and necessary constraints imposed upon

DNN parameters. The optimization error can be upper bounded by assuming γ-Polyak-

Lojasiewicz (γ-PL) [27] condition under the “over-parameterization” configuration for neu-

ral networks [126, 127]. Putting together all pieces, we attain an aggregated upper bound

on MAE by summing the three upper bounds. Furthermore, we exploit our derived upper

bounds to estimate practical MAE values in experiments of DNN based vector-to-vector

regression. The experiments of image de-noising and speech enhancement are employed

to corroborate our derived theorems. Our new theories and experimental verification have

been published in [36].

5.2 Error Decomposition of the Empirical Loss Function of MAE

Based on the traditional error decomposition approach [90, 91], we generalize the technique

to the DNN based vector-to-vector regression, where the smooth ReLU activation function,

the regression loss functions, and their associated hypothesis space are separately defined
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in Definition 6.

Definition 6. Given a set of training samples S, f ∗S ∈ FK is defined as the ERM, and

LS = {LS(f, f ∗S) : RD × RD → R|f ∈ Fk} is taken as the class of empirical loss of MAE

over Fk. For simplicity, LS(f, f ∗S) is denoted as LS(f).

The following proposition bridges the connection of Rademacher complexity between

the class LS based on the MAE objective function and the class FK for DNN based vector-

to-vector functions.

Proposition 3. For any sample set S = {x1, x2, ..., xN} drawn i.i.d. from a given distribu-

tion D, the empirical Rademacher complexity R̂S(LS) can be upper bounded as:

R̂S(LS) ≤ R̂S(FK), (5.1)

where R̂S(FK) refers to the empirical Rademacher complexity over the family FK , and it

is defined as:

R̂S(FK) = Eα

[
1

N
sup
f∈FK

N∑
n=1

(αn1)>f(xn)

]
, (5.2)

in which α = {α1, α2, ..., αN} refer to the empirical Radamacher variables.

Proof. In Chapter 4, we have known that the MAE loss function is 1-Lipschitz continuous.

By applying Talagrand’s Lemma [90], we obtain that

R̂S(LS) =
1

N
Eα

[
sup
f∈FK

N∑
n=1

αnLS(f(xn))

]

=
1

N
Eα

[
sup
f∈FK

N∑
n=1

αnLS(

Q∑
q=1

〈1q, f(xn)〉1q)

]

≤ 1

N
Eα

[
sup
f∈FK

N∑
n=1

(αn1)>f(xn)

]

= R̂S(FK).

(5.3)
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Since R̂S(FK) is an upper bound of R̂S(LS), we can utilize the upper bound on R̂S(LS)

to derive the upper bound for R̂S(FK). Next, we adopt the error decomposition technique

to attain an aggregated upper bound, which consists of three error components.

Theorem 9 (Error decomposition). Let LS ∈ LS denote an empirical loss function of MAE

for a set of training samples S drawn i.i.d. from a given distribution D. For an expected

loss function of MAE LD, ε > 0, and 0 < δ < 1, there exists a returned DNN hypothesis

f̄S ∈ FK such that with a probability of δ, we can attain that

LD(f̄S) = LD(f ∗D)︸ ︷︷ ︸
ApproximationError

+LD(f ∗S)− LD(f ∗D)︸ ︷︷ ︸
EstimationError

+
(
LD(f̄S)− LD(f ∗S)

)︸ ︷︷ ︸
OptimizationError

≤ LD(f ∗D) + 2 sup
f∈FK

|LD(f)− LS(f)|+
(
LD(f̄S)− LD(f ∗S)

)
≤ LD(f ∗D) + 2R̂S(FK) +

(
LD(f̄S)− LD(f ∗S)

)
(5.4)

Proof. To proof Eq. (5.4), we need to show that

LD(f ∗S)− LD(f ∗D) ≤ 2 sup
f∈FK

|LD(f)− LS(f)| ≤ 2R̂S(FK). (5.5)

The first inequality comes from the fact that

LD(f ∗S)− LD(f ∗D) = LD(f ∗S)− LS(f ∗S) + LS(f ∗S)− LD(f ∗D)

≤ LD(f ∗S)− LS(f ∗S) + LS(f ∗D)− LD(f ∗D)

≤ 2 sup
f∈FK

|LS(f)− LD(f)|

(5.6)

Then, we continue to upper bound the term 2 sup
f∈FK

|LS(f) − LD(f)|. We first define µ

53



as the expected value of sup
f∈FK

|LS(f)− LD(f)|, and then introduce the fact that

µ = E
[

sup
f∈FK

|LS(f)− LD(f)|
]
≤ 2R̂S(LS). (5.7)

For a small δ (0 < δ < 1), we apply the Hoeffding’s bound [128] as:

P
(

2 sup
f∈FK

|LS(f)− LD(f)| ≤ ν

)
≥ 1− 2 exp

(
−2N(ν − µ)2

)
≥ 1− 2 exp

(
−2N(ν − 2R̂S(LS))2

)
= δ,

which can derive ν as:

ν = 2R̂S(LS) +

√
1

2N
ln

(
2

1− δ

)
,

and we thus obtain that

2 sup
f∈FK

|LS(f)− LD(f)| ≤ 2R̂S(LS) +

√
1

2N
ln

(
2

1− δ

)
.

Therefore, for a sufficient large N , we attain that

2 sup
f∈FK

|LS(f)− LD(f)| ≤ 2R̂S(LS).

In the following parts of this chapter, each of the error components needs to be upper

bounded and an aggregated upper bound is attained to estimate practical MAE values of

DNN based vector-to-vector regression.
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5.3 Theoretical Upper Bounding on MAE based Vector-to-Vector Regression

5.3.1 An Upper Bound for Approximation Error

The upper bound for the approximation error is shown in Theorem 10, which is based

on the modification of our previous theorem for the representation power of DNN based

vector-to-vector regression [34].

Theorem 10. For a smooth vector-to-vector regression target function h∗S : RD → RQ,

there exists a DNN f ∗D ∈ FK with K(K ≥ 2) modified smooth ReLU based hidden layers,

where the width of each hidden layer is at least D + 2 and the top hidden layer has nK

units. Then, we derive the upper bound for the approximation error as:

inf
f∈FK

LD(f) = ||h∗D − f ∗D||1 = O
(

Q

(nK +K − 1)
r
D

)
, (5.8)

where r refers to the maximum value of the differential order of h∗D.

Theorem 10 is a direct theoretical outcome derived from Lemma 2 in [129], where the

standard ReLU is employed. Moreover, Theorem 10 requires at least D + 2 neurons for a

D-dimensional input vector to achieve the upper bound.

5.3.2 An Upper Bound for Estimation Error

Since the estimation error in Eq. (5.5) is upper bounded by the empirical Rademacher

complexity R̂S(FK), we derive Theorem 11 to present an upper bound on R̂S(FK). Our

derived upper bound is explicitly controlled by the constraints of weights in the hidden

layers, inputs, and the number of training data. In particular, the constraint of L1-norm is

set to the top hidden layer, and L2-norm is imposed upon the other hidden layers.

Theorem 11. For a DNN based vector-to-vector mapping function f(x) = WK◦σ◦WK−1◦

· · ·◦W2 ◦σ◦W1(x) : RD → RQ with a ReLU function σ and ∀i ∈ [K], Wi being the weight
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matrix of the i-th hidden layer, we obtain an upper bound for the empirical Rademacher

complexity R̂S(FK) with regularized constraints of the weights in each hidden layer, and

the L2-norm of input vectors x is bounded by s.

2 sup
f∈FK

|LS(f)− LD(f)| ≤ 2R̂S(FK) ≤ 2QΛ
′
ΛK−1s√
N

s.t., ||WK(i, :)||1 ≤ Λ
′
,∀i ∈ [Q]

||Wj(a, :)||2 ≤ Λ,∀j ∈ [K − 1], a ∈ [Jj]

||x||2 ≤ s,

(5.9)

where Wj(m,n) is an element associated with the j-th hidden layer of DNN where m is

indexed to neurons in the j-th hidden layer and n is pointed to units of the (j−1)-th hidden

layer, and Wj(m, :) contains all weights from the m-th neuron to all units in the (j − 1)-th

hidden layer.

Proof. We first consider an ANN with one hidden layer of J neuron units with the ReLU

function gu, and also denote FK as a family of ANN based vector-to-vector regression

functions. FK can be decomposed into the sum of Q subspaces
Q∑
q=1

FK,q and each subspace

FK,q is defined as:

FK,q =

{
x→

J∑
j=1

wjσ(u>j x) · 1q : ||w||1 ≤ Λ
′
, ||uj||2 ≤ Λ

}
,

where J is the number of hidden neurons, ∀j ∈ [J ], w and uj separately correspond to

W2(m, :) and W1(j, :) in Equation 5.9. Given N data samples {x1, x2, ..., xN} and N em-

pirical Rademacher variables αi, the empirical Rademacher complexity of FK,q is bounded
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as:

R̂S(FK,q) =
1

N
Eα

[
sup

||w||1≤Λ′ ,||uj ||2≤Λ

N∑
n=1

αn

J∑
j=1

wjσ(u>j xn)

]

=
1

N
Eα

[
sup

||w||1≤Λ′ ,||uj ||2≤Λ

J∑
j=1

wj

N∑
n=1

αnσ(u>j xn)

]

≤ Λ
′

N
Eα

[
sup
||uj ||2≤Λ

max
j∈[J ]

∣∣∣∣∣
N∑
n=1

αnσ(u>j xn)

∣∣∣∣∣
]

(Hölder’s ineq.)

=
Λ
′

N
Eα

[
sup
||u||2≤Λ

∣∣∣∣∣
N∑
n=1

αnσ(u>xn)

∣∣∣∣∣
]

≤ Λ
′

N
Eα

[
sup
||u||2≤Λ

∣∣∣∣∣
N∑
n=1

αnu>xn

∣∣∣∣∣
]

(c.f. Telegram’s Lemma)

≤ ΛΛ
′

N
Eα

[
||

N∑
n=1

αnxn||2

]
(Cauchy-Schwartz ineq.)

≤ ΛΛ
′

N

√√√√Eα

[
||

N∑
n=1

αnxn||22

]
(Jensen’s inequality).

(5.10)

The last term in the inequality Eq. (5.10) can be further simplified based on the indepen-

dence of αn. Thus, we finally derive the upper bound as:

R̂S(FK,m) ≤ ΛΛ
′

N

√√√√Eα

[
||

N∑
n=1

αnxn||22

]

=
ΛΛ

′

N

√√√√ N∑
n,m=1

Eα[αnαm](x>n xm)

=
ΛΛ

′

N

√√√√ N∑
n=1

||xn||22 (independence of σns)

≤ ΛΛ
′
s√
N
.

(5.11)

The upper bound for R̂S(FK) is derived based on the fact that for Q families of func-
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tions FK,q, q ∈ [Q], there is R̂S(FK) = R̂S(
∑Q

q=1 FK,q) =
∑Q

q=1 R̂S(FK,q), and thus

R̂S(FK) =

Q∑
q=1

R̂S(FK,q) ≤
QΛΛ

′
s√

N
, (5.12)

which is an extension of the empirical Rademacher identities [90]. Then, for the family

of DNNs FK with k hidden layers activated by the smooth ReLU function, we iteratively

apply Talagrand’s Lemma and end up deriving the upper bound as:

R̂S(FK) = Eα

[
sup
∀l,wjl

∈U

Q∑
q=1

N∑
n=1

αn

JK∑
jK=1

wjKσ(· · ·
J1∑
j1=1

wj1σ(u>j xn))

]

≤ Eα

[
sup
∀l,wjl

∈U

Q∑
q=1

N∑
n=1

αn

JK∑
jK=1

wjK · · ·
J1∑
j1=1

wj1u>j xn

]

≤ QΛ
′
ΛK−1s√
N

,

where wj1 , ..., wjK are selected from the hypothesis space

U =

wj1 , ..., wjK :

JK∑
jK=1

|wjK | ≤ Λ
′
,

√√√√ Ji∑
ji=1

w2
ji
≤ Λ,∀i ∈ [K − 1]

 . (5.13)

5.3.3 An Upper Bound for Optimization Error

Next, we derive an upper bound for the optimization error. A recent work [130] has shown

that the γ-PL property can be ensured if neural networks are configured with the setup of

the “over-parametrization” [127], which is induced from the two facts as follows:

• Neural networks can satisfy γ-PL condition, when the weights of hidden layers are

initialized near the global minimum point [127, 98].

• As the neural network involves more parameters, the update of parameters moves
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less, and there exists a global minimum point near the random initialization [119,

120].

Thus, the upper bound on the optimization error can be tractably derived in the context

of the γ-PL condition for the expected MAE loss LD. The ReLU activation function admits

smooth DNN based vector-to-vector functions, which can result in an upper bound on the

optimization error as:

LD(f̄S)− LD(f ∗S) ≤ µM2β

2γ
, (5.14)

where M and β refer to two constants introduced in the following.

To achieve the upper bound in Eq. (5.14), we assume that the SGD algorithm can result

in an approximately equal optimization error for both the expected MAE loss LD and the

empirical MAE loss LS , which is

LD(f̄S)− LD(f ∗S) ≈ LS(f̄S)− LS(f ∗S). (5.15)

Therefore, we focus on analyzing LS(f) because it can be updated during the training

process. We assume that LS(f) is β-smooth with ||∇LS(f)||2 ≤ M and it also satisfies

the γ-PL condition from an early iteration t0. Besides, the learning rate of SGD is set to µ.

Moreover, we define fwt ∈ F as the function with an updated parameter wt at the itera-

tion t, and denote fw∗ ∈ F as the function with the optimal parameter w∗. The smoothness

of LS implies that

LS(fwt+1)− LS(fwt)− 〈∇LS(fwt),wt+1 − wt〉 ≤
β

2
||wt − wt+1||22. (5.16)

Then, we apply the SGD algorithm to update model parameters at the iteration t as:

wt+1 = wt − µ∇LS(fwt). (5.17)
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Next, we substitute −µ∇LS(fwt) in Eq. (5.17) for wt+1 − wt in Eq. (5.15), and we

have that

LS(fwt+1)− LS(fwt) + µ||∇LS(fwt)||22 ≤
βµ2

2
||∇LS(fwt)||22. (5.18)

By employing the condition ||∇LS(fwt)||22 ≤M2, we further derive that

LS(fwt+1)− LS(fwt) + µ||∇LS(fwt)||22 ≤
µ2M2β

2
. (5.19)

Furthermore, we employ the γ-PL condition to Eq. (5.18) and obtain the inequalities

as:

LS(fwt+1)− LS(fw∗)

≤ (LS(fwt)− LS(fw∗)− γµ(LS(fwt)− LS(fw∗))) +
µ2M2β

2

≤ (1− µγ) (LS(fwt)− LS(fw∗)) +
µ2M2β

2

≤ (1− µγ)2
(
LS(fwt−1)− LS(fw∗)

)
+

1∑
i=0

(1− γµ)i
µ2M2β

2

≤ · · ·

≤ (1− µγ)t−t0+1
(
LS(fwt0

)− LS(fw∗)
)

+

t−t0∑
i=0

(1− γµ)i
µ2M2β

2

≤ (1− µγ)t−t0+1
(
LS(fwt0

)− LS(fw∗)
)

+
µM2β

2γ

≤ exp(−µγ(t− t0 + 1))
(
LS(fwt0

)− LS(fw∗)
)

+
µM2β

2γ
.

(5.20)

By connecting the optimization error in Eq. (5.14) to our derived Eq. (5.20), we further
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have that

LD(f̄S)− LD(f ∗S) ≈ LS(f̄S)− LS(f ∗S)

≤ exp(−µγ(T + 1)) (LS(fw0)− LS(f ∗S)) +
µM2β

2γ

≈ µM2β

2γ
,

(5.21)

where T = t − t0 and fw0 ∈ F denotes a function with an initial parameter w0. The

inequality in Eq. (5.21) suggests that when the number of iterations T is sufficiently large,

we eventually attain the upper bound as Eq. (5.14).

Remark 1: The “over-parametrization” condition becomes difficult to be configure in

practice when large datasets have to be dealt with. In such cases, the upper bound on

the optimization error cannot be always guaranteed, but we can relax the configuration of

“over-parametrization” for DNNs and assume the γ-PL condition to derive the upper bound

on the optimization error. In doing so, our proposed upper bound can be applied to more

general DNN based vector-to-vector regression operators.

5.3.4 An Aggregated Bound for MAE

Based on the upper bounds for the approximation error, estimation error, and optimization

error, we can derive an upper bound for LD(f̄S). Besides, the constraints as shown in

Eq. (5.21), which arise from the upper bounds on the approximation, estimation, and

optimization errors, are necessary conditions to derive the upper bound with a probability
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δ ∈ (0, 1) as:

LD(f̄S) ≤ LD(f ∗D) + 2R̂S(FK) + LD(f̄S)− LD(f ∗S)

≤ O
(

Q

(Jk +K − 1)
r
D

)
+

2QΛ
′
ΛK−1s√
N

+
µM2β

2γ

s.t., Hidden Layers: Jj ≥ D + 2,∀j ∈ [K]

Regularization: ||Wk(i, :)||1 ≤ Λ
′
,∀i ∈ [Q]

||Wj(m, :)||2 ≤ Λ, ∀j ∈ [K − 1],m ∈ [Jj]

Bounded Inputs: ||x||2 ≤ s

Optimization constraints: Over-parameterization + PL condition

(5.22)

Eq. (5.22) suggests that several hyper-parameters are required to derive the upper

bound, which makes it difficult to be utilized in practice because of the prior setup of µ,

M , β and γ are strong assumptions in use. The term QΛ
′
ΛK−1s√
N

in Eq. (5.22) may become

arbitrarily large when a large K and Λ > 1 are concerned. Thus, we set Λ as 1 to ensure

normalized weights of the first K − 1 layers, and the amount of training data N could be

large enough to ensure a small estimation error.

The configuration of “over-parametrization” requires that the number of model param-

eters exceeds the amount of training data such that the γ-PL condition can be guaranteed

and consequently the upper bound on the optimization error can be attained. However,

when the setup of “over-parametrization” cannot be strictly satisfied, the γ-PL condition

does not always hold. Then, we can still assume the γ-PL condition to obtain the upper

bound as shown in Eq. (5.14), which allows the derived upper bound applicable for more

general DNN based vector-to-vector regression functions.

Remark 2: Our work employs MAE as the loss function instead of MSE for the following

reasons: (i) MSE does not satisfy the Lipschitz continuity such that the inequality Eq. (5.4)

cannot be guaranteed [35]; (ii) The MAE loss function for vector-to-vector regression tasks
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can achieve better performance than MSE in experiments [85].

5.4 Estimation of MAE Upper Bounds

MAE can be employed as the loss function for training an ANN or DNN based vector-to-

vector regression function. In this section, we discuss how to make use of our theorems to

estimate MAE upper bounds for the vector-to-vector regression models in our experiments.

Proposition 4 provides an upper bound on MAE based on our theorem in Eq. (5.22),

where c and b are two non-negative hyper-parameters to be estimated from the experimen-

tal MAE losses of the ANN-based vector-to-vector regression. An ANN with the ReLU

activation function is a convex and smooth function, which implies that the local optimum

point returned by the SGD algorithm corresponds to a global one. Then, the estimated

hyper-parameters c and b can be used to estimate the MAE values of DNN based vector-to-

vector regression.

Proposition 4. For a smooth target function h∗D : RD → RQ, we use N training data

samples to obtain a DNN based vector-to-vector regression function f̄S ∈ F with K ReLU

based hidden layers (K ≥ 2), where the width of each hidden layer is at least D+ 2. Then,

we can derive an upper bound for MAE as:

MAE(f̄S, h
∗
D) ≤ cQ

(nK +K − 1)
r
D

+
2QΛ

′
ΛK−1s√
N

+ b, (5.23)

where the hyper-parameters c and b are separately set as:

c =
(MAE1 −MAE2)J

r/D
1 J

r/D
2

Q(J
r/D
2 − Jr/D1 )

, (5.24)

and

b = max

(
MAE1 −

(MAE1 −MAE2)J
r/D
2

J
r/D
2 − Jr/D1

− 2QΛ
′
s√

N
, 0

)
. (5.25)

Note that MAE1 and MAE2 are two practical MAE loss values associated with two ANNs
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with hidden units J1 and J2, respectively.

Proof. For two ANNs with hidden layers with units J1 and J2, we set K to 2 and then

estimate their corresponding MAE losses as:

cQ

J
r/D
1

+
2QΛ

′
s√

N
+ b = MAE1, (5.26)

cQ

J
r/D
2

+
2QΛ

′
s√

N
+ b = MAE2, (5.27)

which can result in hyper-parameters c and b. In particular, we substitute µM2β
2γ

for b in

Eq. (5.23) and then subtract two sides of Eq. (5.26) by Eq. (5.27), which can result in Eq.

(5.24). By replacing c in Eq. (5.26) with Eq. (5.24), we finally obtain Eq. (5.25).

Compared with our previous approaches to estimating practical MAE values in [34]

where the DNN representation power is mainly considered, Eq. (5.23) results from the

upper bound on the DNN generalization capability such that it can be used to estimate

MAE values in more general experimental settings.

5.5 Experiments

5.5.1 Experimental Goals

Our experiments separately employ the DNN based vector-to-vector regression for both

image de-noising and speech enhancement with particular attention to linking empirical

results with our proposed theorems. Being different from our analysis on the represen-

tation power of the DNN based regression task in [34], we here focus on the generaliza-

tion capability of the DNN based vector-to-vector regression based on our derived upper

bounds. More specifically, we employ the tasks of image de-noising and speech enhance-

ment, where inconsistent noisy conditions are mixed to the clean training and testing data,

64



to validate our theorems by comparing the estimated MAE upper bound (MAE B) with the

practical one.

It should also be remarked that the image de-noising experiment corresponds to an

“over-parametrization” setting, in which the number of DNN parameters is much larger

than the amount of training data. We cannot set up the “over-parametrization” for speech

enhancement tasks due to a significantly large amount of training data. However, we as-

sume the γ-PL condition and evaluate our derived upper bounds on the speech enhancement

tasks.

Therefore, our experiments of image de-noising and speech enhancement aim at veri-

fying the following points:

• The estimated MAE upper bound (MAE B) matches with experimental MAE values.

• A deeper DNN structure corresponds to a lower approximation error (AE).

• A significantly small optimization error can be achieved if the “over-parametrization”

configuration is satisfied. Otherwise, the optimization error could be large enough to

dominate MAE losses, even if the γ-PL condition is assumed.

5.5.2 Experiments of Image De-noising

Data Preparation

This section presents the image de-noising experiments on the MNIST dataset [131]. The

MNIST dataset consists of 60000 images for training and 10000 ones for testing. We added

additive Gaussian random noise (AGRN), with mean 0 and variance 1, to both training and

testing data. The synthesized noisy data were then normalized such that for each image the

condition ||xnoisy||2 ≤ 1 is satisfied.
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Experimental Setup

The experiments of DNN based vector-to-vector regression were carried out using a feed-

forward neural network architecture, where the inputs were 784-dimensional feature vec-

tors of the noisy images and the outputs were 784-dimensional features of either clean or

enhanced images. The reference of clean image features associated with the noisy inputs

was assigned to the top layer of DNN in the training process, but the top layer corresponded

to the features of the enhanced images during the testing stage. Table 5.1 lists the struc-

tures of the neural networks used in our experiments. In more detail, the vector-to-vector

regression model was first built based on an ANN. The width of the hidden layer of ANN1

was set to 1024, which satisfies the constraint of the number of neurons in hidden layers

based on both the inequality Eq. (5.22) (D = 784, D + 2 = 786 < 1024) and the “over-

parametrization” (784 × 1024 = 802816 > 60000) condition; On the other hand, ANN2

had a width of 2048 neurons, which was twice larger than that of ANN1. Next, we studied

the DNN based vector-to-vector regression by increasing the number of hidden layers of

DNN1. Specifically, DNN1 was equipped with 4 hidden layers with widths 1024-1024-

1024-2048. Additional two hidden layers of width 1024 were further appended to DNN2,

which brings an architecture with 6 hidden layers 1024-1024-1024-1024-1024-2048.

Table 5.1: Model structures for various vector-to-vector regression

Models Structures (Input – Hidden layers – Output)

ANN1 784-1024-784

ANN2 784-2048-784

DNN1 784-1024-1024-1024-2048-784

DNN2 784-1024-1024-1024-1024-1024-2048-784

Moreover, the SGD optimizer with a learning rate of 0.02 and a momentum rate of 0.2

was used to update model parameters based on the standard BP algorithm. The weights

of the K − 1 hidden layers were normalized by dividing the L2 norm, which corresponds
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to the term ΛK−1 configured to 1 in Eq. (5.23). The weights of the top hidden layer were

normalized by dividing the L1 norm such that Λ′ is set to 1. Besides, MAE was employed

as the evaluation metric in our experimental validation because the MAE metric is directly

connected to the objective loss function of MAE.

Experimental Results

We present our experimental results on the noisy MNIST dataset, where the AGRN was

added to the clean images. Table 5.2 shows the setup of hyper-parameters J1, J2, N , and

r in Eq. (5.23) to estimate MAE B. Table 5.3 shows that the estimated MAE values are in

line with the practical MAE values. Specifically, DNN2 attains a lower MAE (0.1278 vs.

0.1263) than DNN1. Moreover, our estimated MAE B score for DNN2 is also lower than

that for DNN1, namely 0.1438 vs. 0.1434, which arises from the decreasing AE score for

DNN2 with a deeper architecture. Since we keep Λ and Λ′ equal to 1, estimation error (EE)

and optimization error (OE) for both DNN1 and DNN2 share the same values. Further-

more, although the OE values are comparatively larger than AE and EE, they also stay at a

small level because of the “over-parametrization” technique adopted in our experiments.

Table 5.2: Hyper-parameters for the estimation of MAE upper bounds.

J1 J2 N r ANN1 MAE ANN2 MAE

1024 2048 6× 104 1176 0.1318 0.1292

Table 5.3: The evaluation results under the AGRN noise.

Models MAE AE EE OE MAE B

DNN1 0.1278 0.0172 0.0261 0.1005 0.1438

DNN2 0.1263 0.0168 0.0261 0.1005 0.1434
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5.5.3 Experiments of Speech Enhancement

Experimental Setup

Our experiments of speech enhancement were conducted on the Edinburgh noisy speech

database, which has been introduced in Chapter 2. The DNN based vector-to-vector regres-

sion for speech enhancement also followed the feed-forward ANN architecture, where the

input was a normalized LPS feature vector of noisy speech, and the output was LPS feature

vectors of either clean or enhanced speech. The references of clean speech feature vectors

associated with the noisy inputs were assigned to the top layer of DNN in the training pro-

cess, but the top layer of DNN corresponds to the feature vectors of the enhanced speech

during the testing phase. The ReLU function was employed in the hidden nodes of the

neural architectures assessed in this work, whereas a linear function was used at the output

layer. To improve the subjective perception in the speech enhancement tasks, the global

variance equalization [132] was applied to alleviate the problem of over-smoothing by cor-

recting a global variance between estimated features and clean reference targets [133]. In

the training stage, the BP algorithm was adopted to update the model parameters, and

the MAE loss was used to measure the difference between a normalized LPS vector, and

the reference one. NAT was also employed to enable non-stationary noise awareness, and

feature vectors of 3-frame size were obtained by concatenating frames within a sliding win-

dow [110]. Moreover, the SGD optimizer with a learning rate of 1×10−3 and a momentum

rate of 0.4 was used for the update of parameters. The weights of the first k − 1 hidden

layers are normalized by dividing the L2 norm of each row of weights, which correspond

to the term Λk−1 equal to 1 in Eq. (5.22). Moreover, we set s in Eq. (5.22) as the maxi-

mum value of L2 norm of the input, and assume Λ
′ in Eq. (5.22) as the maximum value of

(||Wk(1, :)||1, ..., ||Wk(Q, :)||1), which are different from the setup of image de-noising.

Table 5.4 shows the neural architectures used in our speech enhancement experiments.

Two ANN models (ANN1 and ANN2) were utilized to estimate the hyper-parameters in
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Eq. (5.23), which were then used to estimate the MAE values of DNN models based on

Eq. (5.23).

Table 5.4: Model structures for various vector-to-vector regressions

Models Structures (Input – Hidden layers – Output)

ANN1 771-800-257

ANN2 771-1600-257

DNN1 771-800-800-800-1600-257

DNN2 771-800-800-800-800-800-1600-257

The MAE and PESQ metrics are used to assess the quality of enhanced speech in the

experiments. All of the evaluation results on the test datasets are presented in Table 5.6.

Experimental Results

We now present our experimental results on the Edinburgh speech database. Table 5.5

shows the parameters used in the experiments to estimate the upper bound based on Eq.

(5.22). The experimental results as shown in Table 5.6 are in line with those observed in the

consistent noisy conditions. Specifically, DNN2 attains a lower MAE (0.6859 vs. 0.7060)

and higher PESQ values (2.85 vs. 2.82) than DNN1. Moreover, the MAE B score for

DNN2 is also lower than that for DNN1, namely 0.7124 vs. 0.7236. Furthermore, DNN2

owns a better representation power in terms of AE scores (0.0081 vs. 0.0161) and a better

power generalization capability because of a lower (EE + OE) score. More significantly,

the OE term is the key contributor to the MAE B score, which suggests that the MAE loss

is primarily from OE, as expected. Optimization plays an important role when it comes

to training large neural architectures [2, 1], which in turn shows that the proposed upper

bounds are in line with current research efforts [28, 119, 127, 126] on the optimization

strategies.
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Table 5.5: Hyper-parameters for the estimation of MAE upper bounds.

l1 l2 N r

800 1600 1.04× 1010 771

ANN1 MAE ANN2 MAE Λ′(ANN1) Λ′ (ANN2)

0.7409 0.7328 8.9543 10.1542

Table 5.6: The MAE Results on the Edinburgh speech database

Models MAE PESQ AE EE OE MAE B

DNN1 0.7060 2.82 0.0161 0.0579 0.6496 0.7236

DNN2 0.6859 2.85 0.0081 0.0728 0.6315 0.7124

5.5.4 Discussion

The experimental results of the image de-noising and speech enhancement suggest that our

proposed upper bounds on the generalized loss of MAE can tightly estimate the practical

MAE values. Unlike our previous work on the analysis of the representation power, which

is strictly constrained to consistent noisy environments, our MAE bounds aim at the gener-

alization power of DNN based vector-to-vector regression and can be generalized to more

general noisy conditions.

Experimental results are based on our aggregated bound in Eq. (5.22), and the related

practical methods in Eq. (5.22). The decreasing AE scores of DNN2 correspond to Eq.

(5.8), where a deeper depth K can lead to smaller AE values. In the meanwhile, Eq. (5.24)

and Eq. (5.25) suggest that a smaller EE is associated with a larger OE, which also corre-

sponds to our estimated results. Furthermore, deeper DNN structures can result in a larger

Λ′, which slightly escalates the AE scores and also decreases OE values. With the setup

of “over-parametrization” for neural networks in image de-noising experiments, OE can be

lowered to a small scale compared to AE and EE. However, OE becomes much larger than

AE and EE without the “over-parametrization” configuration in the speech enhancement

tasks.
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CHAPTER 6

VECTOR-TO-VECTOR REGRESSION BASED ON TENSOR-TRAIN DEEP

NEURAL NETWORK

In the preceding chapters, we focus on a vector-to-vector regression based on DNN, where

our theoretical analysis suggests that an over-parametrized DNN is preferred. The over-

parameterized DNN requires several model parameters greater than the amount of training

data. Fortunately, TT-DNN provides a compact tensor representation for a DNN. Thus,

in this chapter, we investigate if a tensor-train deep neural network (TT-DNN) with much

fewer parameters is capable of maintaining the empirical baseline performance of the DNN

counterpart. In particular, we investigate the deployment of the TT-DNN in the fields

of speech processing including multi-channel speech enhancement and spoken command

recognition. The related work has been published in [37, 38].

6.1 Tensor-Train Deep Neural Network

Tensor-Train Network (TTN) [23], as discussed in Chapter 2, can be generalized to a deeper

architecture and it is closely associated with the TT representation for DNN, namely TT-

DNN. Figure 6.4 illustrates that a DNN model can be converted into a TT-DNN structure,

where the input vector X is decomposed into the TT format as X , and all FC hidden layers

are represented as the TT ones. An additional softmax operation is employed for classifi-

cation. More specifically, ∀k ∈ [K] and ∀l ∈ [L], the DNN matrix Wl ∈ RJl×Il can be

decomposed into K core tensors {Wl,1,Wl,2, ...,Wl,K}, whereWl,k ∈ RRk×Jl,k×Il,k×Rk−1 ,

Jl = Jl,1 × Jl,2 × · · · × Jl,K and Il = Il,1 × Il,2 × · · ·Il,K .

Figure 6.4 illustrates the TT-DNN model, which is a TT representation for DNN. Al-

though TT-DNN is associated with DNN, TT-DNN can be independently set up and learned

from scratch. On the other hand, the TTD admits a TT-DNN model with much fewer model
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Figure 6.1: An illustration of converting DNN into TT-DNN, where each FC layer of DNN
is converted to K core tensors of TT-DNN.

parameters than the related DNN. More specifically, a DNN with
∑L

l=1 JlIl parameters

could be converted into a TT-DNN with fewer parameters such as
L∑
l=1

K∑
k=1

Jl,kIl,kRk−1Rk.

For the task of speech enhancement, we also put forth a new hybrid vector-to-vector re-

gression framework, namely CNN+(TT-DNN). The CNN+(TT-DNN) model is composed

of a convolutional neural network (CNN) at the bottom for feature extraction and TT-DNN

for enhancing speech vectors. In this chapter, we first consider the deployment of TT-DNN

and CNN+(TT-DNN) for single speech enhancement, and then we extend the TT models

to multi-channel speech enhancement.

6.1.1 TT-DNN based tensor-to-vector regression for speech enhancement

A framework of TT-DNN based multi-channel speech enhancement is shown in Figure 6.2,

where the input refers to a multi-dimensional tensor corresponding to speech features from

multiple microphones, the output is connected to enhanced speech vectors, and several

hidden TT layers are stacked. The TT-DNN architecture is contrasted to the framework of

72



Figure 6.2: A TT-DNN based multi-channel speech enhancement.

vector-to-vector regression as shown in Figure 6.3. An array of microphones is exploited

from multiple microphones into a single high-dimensional vector so that the vector-to-

vector regression approach can be employed for speech enhancement by appending multi-

channel feature vectors together into a high-dimensional vector. Such a simple solution

clashes with Theorem 6 in Chapter 3, which claims that the width of each DNN hidden

layer is greater than the input dimension plus two. In doing so, although the expressive

power of DNN based vector-to-vector regression can be guaranteed, a huge amount of

computational resources and memory storage are required. Fortunately, the TT-DNN model

can significantly reduce the number of model parameters, and our experiments of speech

enhancement are investigated whether TT-DNN can maintain the baseline performance of

DNN.

6.1.2 Deep hybrid tensor-to-vector regression for speech enhancement

A hybrid tensor-to-vector regression based on CNN+(TT-DNN) is further proposed to im-

prove the performance of TT-DNN. In addition to the DNN baseline as shown in Figure 6.4

(a), Figure 6.4 (b), (c) and (d) demonstrate the tensor-to-vector regression models employed
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Figure 6.3: Conventional multi-channel DNN based vector-to-vector regression for speech
enhancement.

in this work. More specifically, Figure 6.4 (b) represents a CNN model where the hidden

layers are composed of 2D convolutional layers; Figure 6.4 (c) refers to the model of TT-

DNN with all hidden layers stacked with TT layers; Figure 6.4 (d) presents our proposed

CNN+(TT-DNN) model, where the 2D convolutional layers are placed at the bottom and

the TT layers are appended on the top of convolutional layers. The convolutional layers are

used to extract CNN features before going through the FC or TT layers for regressing the

enhanced speech.

6.2 Experiments

6.2.1 Single-channel Speech Enhancement

Experimental setup

Our proposed experimental results were assessed on the Edinburgh noisy speech dataset,

which has been introduced in Chapter 2. In all experiments, we use 257-dimensional LPS

feature vectors as inputs. LPS features were generated by computing 512 points Fourier

transform on a speech segment of 32 milliseconds. For each input frame, M neighboring
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Figure 6.4: The speech enhancement models utilized in this study, where BN denotes the
batch normalization.

adjacent frames were concatenated together, which results in a total 257× (2M + 1)× B

dimensional feature, where B is the channel number of the input signal. As for the setup

of TT-DNN, we ignore the first dimension of the input LPS features because it corresponds

to the direct-current component. After the regression, the first dimension of the input was

concatenated back to the 256-dimensional output without any change. The clean speech

features were assigned to the top layers of tensor-to-vector regression models as the refer-

ence during the training stage.

The DNN based regression model was adopted as a baseline model. The DNN model

consisted of 4 hidden layers with hidden dimensions configured to 1024-1024-1024-2048,

respectively. Moreover, the CNN models kept similar deep tensor-to-vector structures in

all experiments and were composed of four convolutional layers with gradually increas-

ing the number of channels according to the setup of 32-64-128-128. Furthermore, the

ReLU activation function and batch normalization (BN) [134] were utilized in each convo-

lutional layer, and two FC layers with 2048 neurons were stacked on the top hidden layer

to generate output vectors. Moreover, to improve the subjective perception in the speech

enhancement tasks, the global variance equalization was applied to alleviate the problem of
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Table 6.1: PESQ comparisons of single-channel deep speech enhancement models on the
Edinburgh noisy speech database. The average PESQ score for unprocessed noisy speech
is 1.97.

Model Parameters # PESQ
DNN 5.5M 2.82
CNN 9.1M 3.04
TT-DNN 0.55M 2.81
CNN+(TT-DNN) 0.73M 3.02
CNN+(TT-DNN) 2.9M 3.09
CNN+(TT-DNN) 5.1M 3.13

over-smoothing by correcting a global variance between estimated features and clean ref-

erence targets, and a technique of NAT was also employed to enable non-stationary aware-

ness. Besides, the MSE loss was applied. Adam optimizer with an initial learning rate of

0.002 was utilized during the training stage, and the BP algorithm was used to update the

model parameters.

Perceptual evaluation of speech quality (PESQ) [48] was used as the evaluation cri-

terion. The PESQ score, which ranges from −0.5 to 4.5, is calculated by comparing the

enhanced speech with the clean one. A higher PESQ score corresponds to a higher quality

of speech perception.

Experimental results

Table 6.1 demonstrates our experimental results on the Edinburgh noisy speech data set.

The tensor-to-vector regression based on CNN outperforms the DNN baseline results in

terms of a higher PESQ score (3.04 vs. 2.82). TT-DNN with much fewer model parameters

(0.55M vs. 5.51M) can maintain the same empirical performance of DNN, where the

TT transformation was applied in the FC layers. More importantly, compared with the

combined CNN and TT layers, the proposed CNN+(TT-DNN) can attain the highest PESQ

score. If we allow the size of the CNN+(TT-DNN) model to increase up to 5.05Mb, a better

speech enhancement quality can be attained with a PESQ score as high as 3.13.
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6.2.2 Multi-Channel Speech Enhancement

Data preparation

Our proposed TT-DNN based models are evaluated on the simulated data from WSJ0,

which contains additive noise, interfering speakers, and reverberation. The dataset is cre-

ated by corrupting the WSJ0 corpus with OSU-100-noise. When simulating the noisy data,

each waveform is mixed with one type of background noise, which results in 30 hours

of training materials and 5 hours of testing data. The target and additional interfering

speech with their corresponding RIRs are convoluted to generate our required waveform.

In particular, our training and testing datasets are created from different noisy utterances

of various speakers. As for the training dataset, a 5-minute clean speech from each of the

targeted speakers is randomly mixed with 73 interfering speakers and 90 types of additive

noises. The targeted an-echoic speech is generated by combining clean speech with the

direct path response between the targeted speakers and the reference channel. To generate

the test dataset, another 5-minute unseen speech of targeted speakers are mixed with 10 un-

seen interfering speakers and 10 types of unseen noise. The signal-to-interfered-noise-ratio

(SINR) level of each utterance is set as follows: when SINR is 5dB, the signal-to-noise-

ratio (SNR) is set to 15dB; when SINR is 15dB, the SNR level is increased to 20dB. The

proportion of each SINR level is equally set. Besides, some utterances of SINR 30dB are

included in the training set to cover some very high SINR conditions.

To simulate reverberated speech, a reverberated acoustic environment is built: a micro-

phone array of 8-circular channel microphone is arranged in a room of size 6.5m×5.5m×

3m in terms of length-width-height. As for the single-channel scenario, the microphone

is placed at the center of the array. To avoid unnecessary combinations of multiple inter-

ferences, we deliberately constrain the conditions that the microphone array exactly aims

at one targeted speaker, and it received one type of additive noise. Specifically, a horizon-

tal distance of a targeted speaker to the center of the microphone array is strictly fixed to
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3m. Besides, we set both the targeted speaker and the interfering speaker keeping the same

distance to the microphone array, and the angle of them is configured as 40◦. Before we

build the training and test sets, an important image-source method (ISM) is used to generate

RIRs of reverberation time (RT60) (from 0.2s to 0.3s) and the corresponding direct path

response for each microphone channel. For both training and testing datasets, the setting of

RIRs is fixed to the same conditions, such as the room size, RT60, and all of the distances

and directions.

Experimental settings

In our experiments, 257-dimensional normalized LPS features were taken as the inputs

to the DNNs. The LPS features were generated by computing 512 points Fourier trans-

formation on a speech segment of 32 milliseconds. For B-channel data, the inputs of all

channels were concatenated together for the model training. For each input frame, the ad-

jacent context of size M was combined with the current frame. The input size for TTN was

256×(2M+1)×B. After the regression, the first dimension of the input was concatenated

back to the 256-dimensional output without any change. The clean speech features of the

first channel were assigned to the top layers of DNN and TT-DNN, as the reference during

the training stage.

Our baseline DNN model is composed of 6 hidden layers, and each hidden layer owns

2048 neurons. The ReLU activation function was used for all hidden layers. A linear

function was employed in the top hidden layer. As for the setup of TT-DNN, each hid-

den dense layer is decomposed and replaced by a TT layer. Both DNN and TT-DNN are

jointly trained from scratch based on the standard back-propagation algorithm, and both

models adopt the same training configuration. During the training phase, Adam optimizer

is adopted, and the initial learning rate is set to 0.0002. The MSE is utilized as the objective

function. The context window size at the input layer was set to 5 for all models, in which

the current frame was concatenated with the previous 5 frames and the following 5 frames
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within the same channel.

Experimental results

Our TT-DNN was first assessed on the single-channel speech enhancement task. In Ta-

ble 6.2, we observe that a 6-layer DNN model, which is taken as a baseline system, achieves

a PESQ score of 2.86 with 27 million parameters. A TT-DNN architecture is generated by

applying tensor-train decomposition to the DNN baseline model. Each weight matrix of

DNN is decomposed into two four-dimension tensors using tensor decomposition. For ex-

ample, a weight matrix of the size 2048× 2048 can be decomposed to two tensors with the

size of 1 × 32 × 32 × 4 and 4 × 64 × 64 × 1. The TT-DNN core tensors are randomly

initialized and then trained from scratch using the Adam optimizer.

Table 6.2 shows that a substantial parameter reduction when the TT model is employed.

A drop in the PESQ value, from 2.86 (DNN) to 2.66 (TT-DNN), is observed because of the

parameter reduction. Nonetheless, TT-DNN consistently delivers better speech enhance-

ment results as its number of parameters increases. As shown in Table 6.2, the TT-DNN

model with 5 million parameters can achieve nearly the same PESQ scores as the DNN

baseline model (2.84 vs 2.86). However, the TT-DNN model uses only 18% of the num-

ber of parameters in the DNN, which suggests that TT-DNN can significantly reduce the

number of parameters while keeping the baseline performance. Furthermore, if we fur-

ther increase the parameter number of the TT-DNN model, we can even obtain a better

TT-DNN model achieving a 0.1 absolute PESQ improvement using only 74% of the DNN

parameters, namely 20 million.

6.2.3 Exploring Hybrid Models of Tensor-Train Networks for Spoken Command Recognition

In this part, we focus on the employment of the hybrid tensor-train model for spoken com-

mand recognition. Figure 6.5 illustrates the proposed SCR system. The CNN framework

is used to convert speech signals into spectral features in Figure 6.5 (a). The entire CNN
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Table 6.2: PESQ results for multi-channel speech enhancement.

Model Channel # Parameter # PESQ
DNN 1 27M 2.86
DNN 2 33M 3.00
DNN 8 68M 3.06
TT-DNN 1 0.6M 2.66
TT-DNN 1 5M 2.84
TT-DNN 1 20M 2.96
TT-DNN 2 5M 2.96
TT-DNN 8 5M 3.06
TT-DNN 8 20M 3.12

framework consists of 4 components, each of which is constructed by stacking a 1D convo-

lutional layer with BN and the ReLU activation, which is followed by a max-pooling layer

with a kernel size of 4. Particularly, the first component owns a kernel size of 80 and 16

strides, while the kernel sizes of 3 and the stride of 1 are assigned to the other CNN com-

ponents. Moreover, the number of channels for the CNN framework follows the pipeline

of 1-32-64-64.

The spectral features associated with the outputs of the CNN framework are fed into

the FC layers or TT layers, which are shown in Figure 6.5 (b), (c), and (d), respectively.

We set our baseline system as the CNN+DNN architecture in which several FC layers are

stacked on top of the CNN layers. On the other hand, the FC layers are changed to the

TT layers in our proposed CNN+(TT-DNN) model. Besides, two training methods for

the CNN+(TT-DNN) model are considered: one refers to setting up the CNN+(TT-DNN)

model with a random initialization for model parameters, and another one is derived from

the TT decomposition of a well-trained CNN+DNN model. Moreover, the output of the

SCR system is connected to the classification labels.

Data profile

Our spoken command recognition experiments were conducted on the Google Speech

Command dataset [135], which includes 35 spoken commands, e.g. [‘left’, ‘go’, ‘down’,
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Figure 6.5: The CNN+DNN and CNN+(TT-DNN) models for spoken command recogni-
tion, where CNN+(TT-DNN) 1 and CNN+(TT-DNN) 2 differ in the tensor shape of the top
hidden layer.

‘up’, ‘on’, ‘right’, ...]. There are a total of 11, 165 development and 6, 500 test utterances.

The development data are randomly split into two parts: 90% is used for model training and

10% is used for validation. All the audio files are about 1 second long, down-sampled from

16KHz to 8KHz. The batch size was set to 256 in the training process, and the speech

signals in a batch were configured as the same length by zero padding.

Experimental Setup

The model architectures for the tested SCR systems are shown in Figure 6.5, where we

take three acoustic models into account. Figure 6.5 (b) shows our baseline SCR system in

which 4 FC layers (64-128-256-512) are stacked and 35 classes are appended as the label

layer. Figure 6.5 (c) illustrates our CNN+(TT-DNN) model where 4 TT layers follow the

tensor shape of 4× 4× 2× 2− 4× 4× 4× 2− 4× 4× 4× 4− 8× 4× 4× 4, whereas in

Figure 6.5 (d) the shape of the top TT layer is modified as 8× 4× 4× 4, because a larger
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CNN+(TT-DNN) model is considered to compare SCR performances.

The loss function was based on the criterion of cross-entropy (CE), and the Adam op-

timizer with a learning rate of 0.01 was used in the training stage. The loss value of CE is

a direct assessment for the model performance of SCR, and Accuracy (Acc.) is an indirect

measurement to evaluate speech recognition performance. There are a total of 100 epochs

used in the training process. We report the best average accuracy for each SCR architecture

with 10 runs.

Experimental Results

The CNN+(TT-DNN) models are randomly initialized, and CNN+(TT-DNN) 1 and CNN+(TT-

DNN) 2 correspond to the models in Figure 6.5 (c) and (d), respectively. Our models are

compared with neural network models available in the literature, namely: DenseNet-121

benchmark used in [136] for SCR, Attention-RNN [137, 138], which refers to the neural

attention model, and QCNN [139], which refers to the use of quantum convolutional fea-

tures for the task. We extend the 10 classes training setup used in [139] to 35 classes to

report its final results. All deployed models are trained with the same SCR dataset from

scratch without any data augmentation [140] or pre-training techniques [141] to make a fair

architecture-wise study.

Table 6.3: The experimental results on the test dataset. Params. represents the number
of model parameters; CE means the cross-entropy; and Acc. refers to the classification
accuracy.

Models Params (Mb) CE Acc. (%)

DenseNet-121 [136] 7.978 0.473 82.11

Attention-RNN [137] 0.170 0.291 93.90

QCNN [139] 0.186 0.280 94.23

CNN+DNN 0.216 0.251 94.42

CNN+(TT-DNN) 1 0.056 0.137 96.31

CNN+(TT-DNN) 2 0.083 0.124 97.20
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Experimental Summary

Our experiments of speech recognition assess different model settings on the task of spoken

command recognition. Our experimental results show that the use of TTD can maintain and

even obtain better performance than the given baseline models (DenseNet, Attention-RNN,

QCNN). In particular, the performance of the CNN+(TT-DNN) model can be boosted by

increasing the number of model parameters.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Inspired by Cybenco and Barron’s universal approximation theory, we formulate the vector-

to-vector regression based on the DNN architectures in the machine learning setting. In

this thesis, we focus on the representation and generalization powers of DNN based regres-

sion operators. Leveraging upon the technique of MAE decomposition, the representation

power is related to the approximation error and the generalization capability is associated

with the estimation error in addition to optimization error. Our contributions can be sum-

marized as follows:

1. We first analyze the representation power of DNN based vector-to-vector regression,

which is related to the upper bound on the approximation error. More specifically,

we upper bound the approximation error by developing the universal approximation

theory adapting to the deep learning architectures. Moreover, the experiments of

speech enhancement are designed to corroborate our theorems. In particular, our

derived upper bound on the approximation error can be used to estimate the practical

MSE values, and the experimental results of speech enhancement can corroborate

our theoretical analysis.

2. We next compare MAE with MSE as the loss function for the DNN based vector-

to-vector regression. We highlight the advantages of MAE over MSE in terms of

Lipschitz continuity, noise robustness, and the connections to the Laplacian distribu-

tion. Our experiments of speech enhancement are conducted to show that the DNN

models equipped with the MAE loss function can result in better empirical results

than the MSE as a loss function for DNN.

3. We further exploit the generalization power by employing the error decomposition
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technique, where the expected loss of MAE is upper bounded by the sum of the ap-

proximation error, estimation error, and optimization error. The approximation error

is associated with the representation power discussed in Chapter 3, and the estimation

error and optimization error are separately discussed in Chapter 5. The estimation

error can be upper bounded by deriving an upper bound on the empirical Rademacher

complexity, and the optimization error relies on the setup of over-parameterization

and the PL condition for DNN. Our derived upper bounds can help to analyze how

to set up DNN models for regression problems, and our derived bounds can also

be used to estimate practical MAE loss values. The experiments of vector-to-vector

regression for image de-noising and speech enhancement to verify our theorems.

4. We also investigate how to apply TT decomposition to re-parameterize the DNN

based vector-to-vector regression such that model parameters of an over-parameterized

DNN can be substantially reduced. Our TT-based regression models include TT-

DNN based tensor-to-vector regression and a more advanced hybrid tensor-to-vector

model with CNN. Our empirical experiments of single and multi-channel speech

enhancement and speech recognition demonstrate that TT-DNN with much fewer

model parameters can maintain the DNN baseline performance.

Finally, our theoretical analysis of DNN-based vector-to-vector regression can be ex-

tended to future work as described in the following list:

1. Our theoretical analysis of DNN can be exploited to supervise the model pruning

of DNN parameters. In particular, the existing approach of lottery ticket hypothesis

(LTH) [142] exhibit the fact that a small subnet of DNN is capable of achieving even

better performance than the over-parameterized DNN.

2. Although tensor-train decomposition is an efficient way to reparameterize DNN into

a compressed model, it is still worth further exploration in finding the tensor networks

for convolutional neural networks.
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3. The theoretical study of DNN can help to facilitate the development of quantum

neural networks [143], which are based on quantum computers and are composed of

universal quantum circuits.
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APPENDIX A

SUPPLEMENTARY PROOFS FOR CHAPTER 4

A.1 More Discussions on the Cross-Entropy Loss Function

Although the MAE and MSE based loss functions are compared for DNN based vector-

to-vector regression, the loss function based on the cross-entropy (CE) for DNN based

classification still requires further discussion.

Theorem 12. Given the set of training data S = {(x1, y1), (x2, y2), ..., (xN , yN)}, the CE

loss function L(S; w) is ( 1
4N
||
∑N

n=1 xnxTn ||)-Lipschitz continuous function.

Proof.

L(S; w) =
1

N

N∑
n=1

L (xn, yn; w)

= − 1

N

N∑
n=1

C∑
c=1

yn log

 σ(wT
c xn)

C∑
c=1

σ(wT
c xn)




= − 1

N

N∑
n=1

C∑
c=1

(
yn log

(
σ(wT

c xn)
)
− yn log

(
C∑
c=1

σ(wT
c xn)

))
.

(A.1)

∂L
∂wc

= − 1

N

N∑
n=1

yn(1− σ(wT
c xn))

1− σ(wT
c xn)

C∑
c=1

σ(wT
c xn)

 xn. (A.2)
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1

N

N∑
n=1
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c xn)

C∑
c=1

σ(wT
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Since tn = (1−σ(wT
c xn))σ(wT

c xn)
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c xn)

C∑
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σ(wT
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+ (1− σ(wT
c xn))
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for any unit-length vector z,
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yntnxnxTn

)
z

≤ 1

4N
zT
(

N∑
n=1

xnxTn

)
z

=
1

4N

N∑
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(zTxn)2 ≥ 0.

(A.4)

Since the maximum value zT (
∑N

n=1 xnxTn )z corresponds to the maximum eigenvalue of

the matrix
∑N

n=1 xnxTn , a Lipschitz constant for the cross-entropy is 1
4N
||
∑N

n=1 xnxTn ||22.

Theorem 12 suggests that the CE loss is a data-dependent Lipschitz continuous func-

tion. Given the set of training data, the Lipschitz constant is fixed and the related analysis in

this chapter can be transferred to the analysis of the CE loss for DNN based classification.
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APPENDIX B

SUPPLEMENTARY PROOFS FOR CHAPTER 5

We append the necessary theorems and experimental evidence in Chapter 5.

Lemma 8. Let LS denote the empirical loss function given N training samples S =

{x1, x2, ..., xN} drawn i.i.d. from a distribution D. For an expected MAE loss function

LD, we have that

E
[

sup
f∈FK

|LD(f)− LS(f)|
]
≤ 2R̂S(FK). (B.1)

Proof. We utilize the symmetrization [144] to upper bound E
[

sup
f∈FK

|LD(f)− LS(f)|
]

.

The symmetrization introduces a ghost dataset S ′ = {x′1, x′2, ..., x′N} drawn i.i.d. from D.

Let L′S be the empirical risk with respect to the ghost dataset, and we assume LS′(f) =

ES′ [L
′

S′(f)]. Assuming L(f) ≥ L(f),∀f ∈ FK , we derive that

ES
[

sup
f∈FK

|LD(f)− LS(f)|
]

= ES
[

sup
f∈FK

(LD(f)− LS(f))

]
= ES

[
sup
f∈FK

(
ES′ [L

′

S′(f)]− LS′(f)
)]

≤ ES
[
ES′
[

sup
f∈FK

(
L′S′(f)− LS′(f)

)]]
≤ ES,S′

[
sup
f∈FK

1

N

N∑
n=1

σn(L′S′(f(x′n))− LS′(f(xn)))

]

≤ 2R̂S(FK),

where σ1, σ2, ..., σN are Rademacher random variables. Similarly, the assumption ofLD(f) ≤

LS′(f),∀f ∈ FK also brings the same result. Thus, we finish the proof of Lemma 8.

Lemma 9 (An extension of empirical Rademacher identities). Given any sample set S =

{x1, x2, ..., xN}, and hypothesis sets FK,1, FK,2, ..., FK,Q of functions f (1) ∈ FK,1, f (2) ∈
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FK,2, ..., f (Q) ∈ FK,Q mapping from RD to RQ, we have that

R̂S

(
Q∑
q=1

FK,q

)
=

1

N
Eσ

[
sup

f (1)∈FK,1,...,f (Q)∈FK,Q

N∑
n=1

σn

(
Q∑
q=1

f (q)(xn)

)]

=
1

N

Q∑
q=1

Eα

[
sup

f (1)∈FK,1,...,f (Q)∈FK,Q

N∑
n=1

αnf
(q)(xn)

]

=

Q∑
q=1

R̂S(FK,q).
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Regression,” Mathematical Methods in the Applied Sciences, vol. 5, no. 5, pp. 216–
233, 2015.

[83] E. V. Slud and T. Maiti, “Mean-Squared Error Estimation in Transformed Fay–
Herriot Models,” Journal of the Royal Statistical Society: Series B, vol. 68, no. 2,
pp. 239–257, 2006.

98



[84] T. Chai and R. R. Draxler, “Root Mean Square Error (RMSE) or Mean Absolute Er-
ror (MAE)?–Arguments Against Avoiding RMSE in the Literature,” Geoscientific
Model Development, vol. 7, no. 3, pp. 1247–1250, 2014.

[85] C. J. Willmott and K. Matsuura, “Advantages of The Mean Absolute Error (MAE)
Over The Root Mean Square Error (RMSE) in Assessing Average Model Perfor-
mance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005.

[86] C. J. Willmott, K. Matsuura, and S. M. Robeson, “Ambiguities Inherent in Sums-of-
Squares-Based Error Statistics,” Atmospheric Environment, vol. 43, no. 3, pp. 749–
752, 2009.

[87] D. Wallach and B. Goffinet, “Mean Squared Error of Prediction as A Criterion for
Evaluating and Comparing System Models,” Ecological Modelling, vol. 44, no. 3-
4, pp. 299–306, 1989.

[88] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer New York Inc., 2001.

[89] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[90] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning.
MIT Press, 2018.

[91] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms. Cambridge university press, 2014.

[92] J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer Science
& Business Media, 2013.

[93] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., 1995.

[94] N. Li, L. Wang, X. Li, and Q. Zhu, “An Effective Deep Learning Neural Network
Model for Short-Term Load Forecasting,” Concurrency and Computation: Practice
and Experience, vol. 32, Jan. 2020.

[95] E. Imani and M. White, “Improving Regression Performance with Distributional
Losses,” in Prof. International Conference on Machine Learning, 2018, pp. 2157–
2166.

[96] A. Pandey and D. Wang, “On Adversarial Training and Loss Functions for Speech
Enhancement,” in Proc. International Conference on Acoustics, Speech and Signal
Processing, 2018, pp. 5414–5418.

99



[97] V. N. Vapnik and A. Y. Chervonenkis, “On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities,” Theory of Probability and Its Appli-
cations, vol. 16, no. 2, pp. 264–280, 2018.

[98] Z. Charles and D. Papailiopoulos, “Stability and Generalization of Learning Algo-
rithms That Converge to Global Optima,” arXiv preprint arXiv:1710.08402, 2017.

[99] A. Lorencs, I. Mednieks, and J. Sinica-Sinavskis, “Biomedical Image Processing
Based on Regression Models,” in Proc. Nordic-Baltic Conference on Biomedical
Engineering and Medical Physics, 2008, pp. 536–539.

[100] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel Regression for Image Processing and
Reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 349–
366, 2007.

[101] J. Fan, C. Ma, and Y. Zhong, “A Selective Overview of Deep Learning,” Statistical
Science, vol. 36, no. 2, pp. 264–290, 2021.

[102] J. Zhu, B. R. Gibson, and T. T. Rogers, “Human Rademacher Complexity,” in Proc.
Advances in Neural Information Processing Systems, 2009, pp. 2322–2330.

[103] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge University Press, 2019, vol. 48.
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