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SUMMARY

Targeted alpha therapy (TAT) is an emerging new approach to radionuclide therapy, and

promises to be especially valuable in the treatment of metastatic disease and radioresistant

tumors. However, the dosimetry of TAT presents challenges not seen in photon therapy,

due to uncertainties in the relative biological effectiveness (RBE) of alpha radiation.

One of the most dominant sources of this uncertainty is the stochasticity originating

from the discrete nature of alpha particles, resulting in nonuniform cellular uptake patterns

at low specific activities. Current approaches to alpha particle internal dosimetry, based on

the MIRD formalism, typically assume that activity is uniformly distributed in subcellular

compartments, with resulting absorbed dose distributions being unrealistically homogeneous

and isotropic.

We develop a Monte Carlo generalization of the MIRD-based formalism that explicitly

accounts for stochastic nonuniform localization of alpha emitters in a general 3D multicellular

aggregate. In the limit of averaging over many replicates, our approach reduces to the

MIRD-based one, which we verify by comparing our code’s results with those of MIRDcell,

a commonly used software for TAT dosimetry based on the MIRD formalism. At low

specific activity, stochasticity manifests itself as an increase in cell survival beyond that

expected from MIRD-based calculations, along with corresponding shifts in the generalized

equivalent uniform dose. The magnitude of this effect strongly depends on the cellular

localization of alpha emission, a parameter that can be experimentally controlled by altering

the chemistry of the conjugate delivery vehicle of the radionuclide.
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CHAPTER 1

INTRODUCTION

1.1 The Status Quo in Cancer Treatment

The standard-of-care in modern cancer treatment is built on the three pillars of surgery,

radiotherapy and chemotherapy [1], as illustrated in Figure 1.1. Each modality has various

strengths and weaknesses, and in practice, combination of multiple modalities is often

necessary to optimize outcomes. Over the past century, advancements in this trifecta of

modalities have resulted in dramatic improvements in both overall survival and quality of

life in cancer patients.

Figure 1.1: The standard of clinical cancer treatment today is built on the three pillars of
radiation, surgery and chemotherapy. Courtesy of Nicholas G. Zaorsky [2].

However, despite this progress, cancer still remains a major global health burden, with

a recent report [3] estimating 12.7 million new cases and 7.6 million new deaths in 2008.

Prognosis is particularly poor for patients with metastatic disease [4], where the cancer has

spread from the original primary site of induction to distal secondary sites throughout the

body. In such cases, localized control at the primary site with surgery and radiotherapy is no

longer sufficient to suppress the inherently systemic nature of the disease. Chemotherapy,
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which circulates cytotoxic agents throughout the whole body, can slightly improve prognosis,

but this efficacy is often limited because of the combination of normal tissue toxicity [5]

and tumor chemoresistance due to cancer stem cells [6].

1.1.1 Emergence of Radiopharmaceutical Therapy (RPT)

Radiopharmaceutical therapy (RPT), which delivers radioactive atoms by conjugating them

onto a pharmaceutical [7], has emerged as an alternative treatment modality. In contrast

to more traditional radiotherapy, such as external beam, RPT is a systemic treatment that

circulates throughout the body as in chemotherapy, as illustrated in Figure 1.2. This renders

it particularly suitable for the treatment of metastatic disease. In addition, since RPT acts

by emitting ionizing radiation that directly acts on the DNA target, its efficacy is far less

sensitive to the specific details of biochemical pathways, enabling it to target tumors that are

resistant to chemotherapy and similar ‘biologic’ treatments. This combination of features,

among others, has resulted in RPT demonstrating favorable efficacy and low toxicity in

clinical practice compared to other systemic treatments [8].

Figure 1.2: Compared to more traditional forms of radiotherapy, such as external beam,
RPT results in a systemic whole-body distribution of radioactivity, rendering it potentially
useful for the treatment of metastatic disease. Reprinted with Open Access permissions
from Zhang, et al [9].
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Figure 1.3: A comparison of therapeutic energy levels, linear energy transer (LET) and
characteristic particle ranges for α, β and Auger electrons. Reprinted with permission
from Poty, et al [10].

1.2 Targeted-α-Therapy (TAT): Opportunities and Challenges

1.2.1 Arguments for Using α-emitters in RPT

Within the space of RPT, the use of α-emitting radionuclides, known as targeted-α-therapy

(TAT), has emerged as a particularly promising treatment subcategory. The reason for

this can be illustrated by comparing the properties of α particle radiation to that of other

commonly used radionuclide classes, such as β particles or Auger electrons, as shown in

Figure 1.3.

Specifically, α particles at clinically relevant energies have an especialy high linear

energy transfer (LET) compared to β particles, which renders them highly potent and

effective at killing cells. This property is especially important when dealing with tumors

that resist chemotherapy or other more traditional types of radiotherapy, since the high-LET

potency effect is very robust to biological variability of the target cells.

In addition, clinically relevant α particles have a reasonable intermediate range in

biological tissue on the order of 10-100 µm, in between that of the shorter-range Auger

electrons and the longer-range β particles. This range is at the very useful ‘sweet spot’
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length scale of a few cell diameters. Thus, it is both short enough to enable sparing of

organs at risk (OARs), but long enough to enable penetration of the tumor microenvironment.

1.2.2 The Relative Biological Effectiveness (RBE) Uncertainty Roadblock

However, despite this promise, roadblocks still remain in the clinical application of RPT

in general, and TAT in particular. This is due in no small part to challenges associated

with dosimetry and treatment planning compared to more traditional forms of radiotherapy.

Specifically, while treatment planning for external beam and brachytherapy relies, for the

most part, only on physical dosimetry metrics like the dose-volume histogram (DVH) or

absorbed dose distribution, treatment planning for RPT places greater demands on radiobiological

modeling in order to map physical dose to biological effects. The standard quantitative

metric for such mapping is the relative biological effectiveness (RBE) [11, 12].

The RBE determined by measuring in vitro cell-survival curves at varying doses of that

radiation, and comparing this cell survival curve to the corresponding one for X-rays. The

RBE for a given radiation type is typically taken to be the ratio of the dose of that radiation

required for a 0.1 cell survival fraction over the corresponding X-ray dose required for a 0.1

survival fraction. Typically this is done by fitting cell survival curves to a linear-quadratic

formula [13]

SF = e−αD−βD
2

(1.1)

where SF is the cell survival fraction, D is the dose, and α and β are radiobiological

parameters.

For heavy particles, such as α emissions, however, a complication arises due to the

large uncertainty, or variability, of RBE. An example of this is shown in Figure 1.4 for a

squamous cell lung carcinoma cell line under both gamma and α radiation, for four different

endpoints. We see that depending on the endpoint, the uncertainty of the RBE can be

anywhere from 30 to 45 percent of the estimated value. This presents a problem for clinical

use, since this high variability restricts the ability of physicians, dosimetrists and medical
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Figure 1.4: This figure, reprinted from [14], demonstrates the uncertainity of RBE from α
particles (black squares) from an Am-241 source, relative to gamma rays (black triangles)
from a Cs-137 source, for the SW-1573 sqaumous cell lung carcinoma cell line, and for four
different biological endpoints.Calculated RBE values for DNA-DSBs, cell reproductive
death, chromosome fragments and colour junctions are 1.0 ± 0.3, 14.7 ± 5.1, 15.3 ± 5.9
and 13.3 ± 6.0, respectively.

physicists to achieve the necessary consistency of high quality, accurate treatment planning

required for safe and effective use.

1.2.3 Understanding RBE Uncertainty with Monte Carlo (MC) Calculations

The underlying reasons for the large RBE uncertainty of α particles are complex and

multifaceted. Although a complete and rigorous mechanistic understanding is currently

not possible, at a more general level the uncertainty of RBE can be understood as arising

from the stochastic effects of how alpha particles deposit their energies at two different

scale levels: (1) multicellular (i.e. the microdosimetry effect), and (2) subcellular (i.e. the

nanodosimetry effect).

The microdosimetry effect, which is the focus of this thesis, arises from the stochastic

and nonuniform uptake of -emitters at the cellular and sub-cellular levels. The nanodosimetry
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effect, which is more complex and beyond the scope of this work, arises from the drastic

change in LET of particles at the subcellular scale, results in variations in biological

endpoints such as DNA double strand breaks (DSBs), chromosome aberrations, or cell

survival.

Ultimately, whether due to microdosimetry or nanodosimetry effects, the uncertainty

of RBE requires Monte Carlo (MC) calculations that explicitly incorporate randomness,

whether in radiopharmaceutical uptake or in the track structure of α particles traversing

the cell nucleus. Modeling the latter type of randomness requires very advanced MC

algorithms and software, such as Geant4-DNA [15] and TOPAS-nBio [16], where the

particle track structure calculations are fully carried and the subcellular structures (e.g.

DNA, chromatin fibers, etc...) are modeled in great detail. The former type of randomness,

however, is amenable to much simpler MC calculations that enable one to quantitatively

analyze how the stochastic microdosimetry effect may affect the uncertainty of the RBE

value for TAT.

1.3 Outline of this Thesis

With this in mind, the motivation behind this thesis is to develop, validate, and apply a

MC model to characterize the effects of stochastic microdosimetry, due to nonuniform

radionuclide uptake, on RBE. Chapter 2 starts by introducing the Medical Internal Radiation

Dosimetry (MIRD) formalism, the currently accepted deterministic approach to internal

dosimetry at the whole-organ level, as well as its limitations when dealing with microdosimetry.

With this background, chapter 3 proceeds to develop a Monte Carlo generalization of the

MIRD approach, validate it by comparing it with deterministic microdosimetry calculations

and apply it to simulate stochastic microdosimetry in a multicellular aggregate. Chapter

4 reports the results of these simulations, including an analysis of the implications for

various measures of biological effectiveness. Finally, chapter 5 concludes the thesis by

summarizing the findings.
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CHAPTER 2

FROM MIRD TO MONTE CARLO INTERNAL DOSIMETRY

2.1 The Medical Internal Radiation Dose (MIRD) Formalism

Internal dosimetry, the calculation of absorbed dose from internally deposited radionuclides,

is a broad topic, a complete coverage of which is beyond the scope of this thesis. For a more

thorough introduction, the reader is referred to the MIRD Primer [17]. Here, we only give

a brief overview of the basics.

We take as our starting point for MIRD calculations, the cumulative time-integrated

radionuclide activity

Ã =

∫ ∞
t=0

A(t) (2.1)

, which can be calculated given the time-dependent activity A(t) throughout the organs

of the body, which in turn can be extracted via a combination of imaging and biokinetic

physiological modeling.

Mathematically, if there arem separate source organs where radionuclide activity localized

to, we may represent this as

Ãs , s = 1, ...,m. (2.2)

From each of these source organs emanates a certain amount of radioactivity. This

radioactivity is then propagated throughout the body and deposited in various target organs

as absorbed dose contributions. The total sum of all such contributions leads to a tabulation

of absorbed doses D̄. If there are n separate target organs, a corresponding mathematical

representation of the target absorbed doses is

D̄t , t = 1, ..., n. (2.3)
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To estimate the target absorbed doses D̃t from the source cumulative activities Ãs, we

must determine, for each source-target pair, how the absorbed dose to a target from a given

source varies with the cumulative activity in said source. In doing this, note that we must

also consider ‘self-doses’, where the source organ and target organ are the same. A visual

demonstration of this process is shown in Figure 2.1.

Figure 2.1: Diagrammatic illustration of the difference between ‘source’ and ‘target’ organs
in the MIRD formalism. To the get the absorbed dose to a given target, we must calculate
separately the total dose contributed from each source organ undergoing a given amount of
cumulative activity. Reprinted from MIRD Primer [17].

To understand the mapping of cumulative activities to absorbed doses, let us without

loss of generality consider a simplified example of two source organs, s = 1, 2, and one

target organ, t = 1 that receives both ‘self-dose’ from its own radioactivity and ‘cross-dose’

from that of organ 2.

Over the time course of internal deposition, the total number of radioactive disintegration

events that occur in organ 1 is equivalent to its cumulative time-integrated activity, Ã1. Let

there be p different types of disintegration events, and let each of them have a distinct

average energy released per event, ∆i, for i = 1, ..., p. Furthermore, let us assume that

each separate disintegration product deposits a certain fraction φi(1 ← 1) of its total

energy directly on organ 1, and that φ1(1 ← 1) is independent of the total amount of

activity. Then the average amount of energy deposited in organ 1 per disintegration event

in organ 1, Ē(1 ← 1)/Ã1, is equal to the sum of the contributions of each of the separate

8



disintengration events,
Ē(1← 1)

Ã1

=

p∑
i=1

∆iφi(1← 1). (2.4)

If the mass of organ 1 is m1, we can then use equation 2.4 to calculate the absorbed

dose to organ 1 due to activity in organ 1, equals the average energy deposited divided by

the mass

D̄(1← 1) =
Ē(1← 1)

m1

= Ã1

∑p
i=1 ∆iφi(1← 1)

m1

. (2.5)

To determine how much absorbed dose organ 1 receives from organ 2, we proceed with

a nearly identical argument. The only differences now are in: 1) the fractions φi(2 ← 1),

which represent how much radioactivity from each disintegration type i ‘leaks out’ from

organ 2 and ends up on organ, and 2) the value of the source activity, Ã2. With those

changes, we have

D̄(1← 2) = Ã2

∑p
i=1 ∆iφi(1← 2)

m1

. (2.6)

Adding the contributions together, we see that the total dose to the target organ 1 is

D̄1 =
2∑
s=1

D̄(1← s) =
2∑
s=1

Ãs

∑p
i=1 ∆iφi(1← s)

m1

. (2.7)

Generalizing, for s = 1, ...,m source organs, the absorbed dose to a target organ t is

D̄t =
m∑
s=1

Ãs(

∑p
i=1 ∆iφi(t← s)

mt

). (2.8)

The quantity in parentheses is so important that it is given a special name, the S-value,

S(t← s) =

∑p
i=1 ∆iφi(t← s)

mt

. (2.9)

S values are a compact quantitative representation of the absorbed dose to a given organ

per unit cumulative activity in a given source organ, and are tabulated in the literature [18]

for a variety of radiation types and organs.
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Combining equations 2.3, 2.8 and 2.9, we end up with arguably the most important

equation [11] in the Medical Internal Radiation Dose (MIRD) formalism,

Dt =
m∑
s=1

ÃsS(t← s) , t = 1, ..., n (2.10)

This formalism makes many assumptions, one of the most glaring ones being the

continuum approximation that the activities and absorbed doses in the source and target

organs can be represented as uniform, homogeneous concentrations. A more realistic

approach should take into account the microscale heterogeneity, due to the cellular microstructure

of structures and organs, which in turn implies that the actual activity and absorbed dose

will be correspondingly heterogeneous. Depending on the chemistry of the conjugate

delivery vehicle, the radionuclide uptake may be preferentially localized, for example, at

the cell membrane, at the cell cytoplasm, or at the nucleus. This heterogeneity effect is

most pronounced for TAT due to the short ranges of alpha particles, and therefore needs to

be investigated separately.

2.2 Towards Cellular Microdosimetry with MIRD-CELL and Monte Carlo

One of the simplest ways to account for this cellular microstructure is to treat each cell, with

its corresponding nucleus, cytoplasm and membrane, as equivalent to a distinct microscale

‘organ’, as illustrated in Figure 2.2. Then, by determining the cellular and sub-cellular

activity distributions, and given some distance-dependent S-values, we can extend the

MIRD formalism of equation 2.10, by calculating the absorbed dose to individual ‘target

organ’ cell nuclei, starting from a given cellular and sub-cellular distribution of time-

integrated activities. This approach was worked out in detail in the 1990s [19, 20], and is

currently the basis of state-of-the-art cellular microdosimetry calculations as implemented

in the MIRD-CELL code [21].

While more precise than the initial MIRD formalism, the approach in MIRD-CELL still
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Figure 2.2: Diagrammatic illustration of the definition of cellular and subcellular ‘organ’
analogues in the MIRD-CELL formalism. Reprinted from MIRD Pamphlet 25 [21].

assumes that the activities and absorbed doses are large enough to be treated as a uniform

continuum at the level of individual cells, membranes, or nuclei. For high specific activities,

or large numbers of radionuclides per cell, this is not an unreasonable approximation.

However, when the number of radionuclides per cell becomes sufficiently small, the continuum

approximation can no longer be reasonably justified. A schematic illustration of this is

shown in 2.3.

Figure 2.3: When discussing the concentration of discrete, finite-sized particles in a larger
region, as is the case for, e.g., radionuclides in a subcelluar volume, distinctions must be
made between the limits of high and low specific activities, or equivalently, concentration.
At high specific activity, the concentration of radionuclides is enough that this density can
be approximated as a uniform continuous field. However, at low specific activities, even
though the likelihood of the particles being placed may be equal at all points in the volume,
the low density invariably leads to a breakdown of the approximation of the homogeneity.

Accordingly, in order to properly account for this ‘stochastic’ effect arising from the

discrete nature of the source carriers, a more rigorous Monte Carlo approach is needed.
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CHAPTER 3

MONTE CARLO MODELING OF STOCHASTIC MICRODOSIMETRY

3.1 Building Blocks of the Monte Carlo Approach

To introduce the basics of the Monte Carlo approach to stochastic microdosimetry, let us

start with a simple example of two cell nuclei, one a ‘source’ nucleus and the other a ‘target’

nucleus, as illustrated in Figure 3.1.

Figure 3.1: Converting a continuous activity to a discrete activity necessarily introduces
random spatial inhomogeneity and anisotropic emission of radiation, due to quantization
noise.

We see from Figure 3.1 that when we replace a uniform continuous activity concentration

with a discrete distribution of sources, the finite size and number of the sources necessarily

introduces some stochastic inhomogeneity in the subcellular activity distribution, as well

as some corresponding stochastic anisotropy in the direction of radiation emission. These

phenomena can be viewed as a specific example of the more general phenomenon known

as ‘quantization’ noise [22].
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For alpha particles, the cross dose due to straggling and secondary electron tracks is in

general small enough to be negligible, such that we can reasonably assume the continuous

slowing down approximation (CSDA) with no straggling [23]. As a consequence of this,

emitted alpha radiation can be reasonably assumed to travel in a straight line, with a given

range that increases with energy [24].

Thus, in order to quantify stochastic microdosimetry effects due to nonuniform distribution

of discrete subcellular sources, we set up the Monte Carlo simulation so that, for a given

spatial distribution of cells, the randomness is only in the positions of radionuclide activity

and the direction of alpha particle emission. The remaining propagation of the alpha

particles is assumed to be deterministic, enabling a direct integration of the energy deposited

by the alpha particle in the parts of its track where it intersects with a cell nuclear target.

Explicitly, suppose we start with an initial estimate of a continuous uniform time-

integrated activity in the source nucleus, ÃN . If the rate constant for radioactive decay

is λ, this corresponds to a total number of discrete disintegration ‘source’ radionuclides

Nnuclide = ÃN/λ . (3.1)

From our Monte Carlo simulation, we are looking to calculate the specific energy

deposited in the target nucleus, z, due to all Nnuclide of these sources. We start with setting

z = 0, and initializing a counter variable i = 1. Then proceed as follows:

1. Randomly place a radionuclide, with a uniform probability distribution, at some point

in the spherical source nucleus.

2. Assign a direction of emission for the alpha particle randomly, assuming an isotropic

probability distribution for this direction.

3. Determine if the resulting ‘straight-line’ alpha particle track, as determined from step

2, intersects the central target nucleus. If it does, find renter and rexit, the distances at
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which the particle enters and exits the nucleus. If it does not, set the energy deposited

in the target nucleus by this source to 0, zi = 0, and skip to step 5.

4. Integrate the linear stopping power (using water-based values) from renter to rexit to

get the energy deposited in the target nucleus by this source, and divide it by the

nuclear mass to get the specific energy zi.

5. Add zi to the total tally of specific energy, z → z + zi.

6. If i = Nnuclide, end calculation; otherwise, update i→ i+ 1 and go back to step 1.

This simulation can then be repeated with the same nuclear geometry and parameters

many times to generate a statistical distribution of specific energy (DSE) at the central

target nucleus. Steps 5 and 6 of the above procedure are straightforward, but the first 4

steps merit more detailed explanation.

3.1.1 Random 3D Source Placement

Without loss of generality, and for the sake of simplicity, let us assume the source nucleus

is centered on the origin. We reminder the reader of the definition of spherical polar

coordinates in Figure 3.2. A point in space is defined by a distance from the origin r, a

polar angle θ and an azimuthal angle φ.

In spherical polar coordinates, the volume of our nucleus is defined by the set of points

r ∈ [0, RN ] (3.2)

θ ∈ [0, π] (3.3)

φ ∈ [0, 2π]. (3.4)

We need to sample a point randomly within this volume, in a way such that any point

inside the nucleus is equally likely to be sampled. Naively, once might be tempted to just

sample r, θ, φ uniformly from within their respective intervals. However, this is incorrect,
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Figure 3.2: Recall the convention for spherical polar coordinates, including their relation
to Cartesian coordinates.

as such an approach oversamples points both close to the origin and in the vicinity of the

north and south poles. To understand how to do the sampling properly, it is instructive to

inspect the volume integral for the nuclear sphere. Recall the definition of the differential

volume element in spherical polar coordinates

dV = r2sin(θ)drdθdφ. (3.5)

The volume of the nucleus, then, can be rewritten as

∫ ∫ ∫
dV =

∫ RN

0

r2dr

∫ π

0

sin(θ)dθ

∫ 2π

0

dφ

=

∫ R3
N/3

0

d(r3/3)

∫ 1

−1
d(cos(θ))

∫ 2π

0

dφ. (3.6)

Thus, in order to obtain a true uniform sampling within the sphere, only φ can be simply

set equal to a random number between 0 and 2π as we might have done naively. To sample

r, we must set r3/3 equal to a random number between 0 and R3
N/3 and then solve for r.

Similarly, to sample θ, we must set cos(θ) equal to a random number between -1 and 1 and

solve for θ.
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Note that this process is straightforwardly generalizable for arbitary non-spherical geometries.

For example, if we want to constrain our radius to be between two values rmin and rmax,

we would just sample a random number between r3min/3 and r3max/3 before solving for r.

Such a situation would arise, for example, if we wanted to simulate scenarios where the

radiopharmaceutical is not uniformly distributed throughout the entire cellular or nuclear

volume, but is localized near the cell membrane surface.

3.1.2 Random Isotropic Emission

The determination of a random direction of emission, for the most part, follows almost

directly from the logic used in the previous step. We seek to determine a random polar

angle θemission and a random azimuthal angle φemission of emission. So again, we set

cos(θemission) equal to a random number between -1 and 1 and solve for θemission. φemission

meanwhile is just set to a random number between 0 and 2π.

3.1.3 Calculating Intersection with the Target Nucleus

Figure 3.3: The schematic setup for calculating the intersection of an emitted alpha particle
with the nuclear target.

Let us now revert back to our initial coordinate system setup, where the target nucleus is

centered at the origin. Up to this point, we have established a way to determine the specific
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location in space where the alpha emitter is emitted, let us call it the start point, with

coordinates ~rstart = (xstart, ystart, zstart). We also have a framework in place to determine

a random direction of emission, as specified by the pair of angles (θemission, φemission). A

visual illustration of this setup is shown in Figure 3.3.

We note from Figure 3.3 that, in addition to the variables already mentioned above, we

also have an additional new variable, the range of the alpha particle Rrange. To determine

the value of Rrange, we will need to know the energy of the emitted alpha particle. We can

then find the corresponding range using a ‘look-up’ table of energy-range pairs extracted

from the NIST database for CSDA ranges of alpha particles in liquid water [25]. A graph

of this energy-range table is shown in Figure 3.4.

Figure 3.4: Energy-CSDA Range of alpha particles in liquid water, from NIST.

With this setup in place, let us proceed to briefly describe how to determine whether or

not the alpha particle intersects with the target nucleus. We start by specifying a parametric

formula for the alpha particle track
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(x(r), y(r), z(r)) = (xstart, ystart, zstart)+

r(sin(θemission)cos(φemission), sin(θemission)sin(φemission), cos(θemission)) ,

0 ≤ r ≤ Rrange. (3.7)

To determine if this line segment intersects the target, look to identify values of r for

which the distance of (x(r), y(r), z(r)) from the origin equals the nuclear radius Rn,

Rn =
√
x(r)2 + y(r)2 + z(r). (3.8)

We will not go into the detailed algebra of how to solve this equation, but more information

can be found in the code in the Appendix. For now, suffice it to say that we may check to

see if there exist two real solutions to the equation renter ≤ rexit. If so, we can then check

to see if rexit ≤ Rrange, and if so, the alpha particle enters the target at renter and exits at

rexit. If renter ≤ Rrange ≤ rexit, then the alpha particle enters the nucleus, but dissipates

away all its energy before exiting, so we then set rexit = Rrange. Finally, if Rrange < renter,

or if no real solutions exist, then the alpha particle track does not intersect the target, and

the total specific energy deposited is 0.

3.1.4 Linear Stopping Power Integration

Finally, given the entry and exit distances, renter and rexit, along with the initial alpha

particle energy and range Rrange, our remaining step is to integrate the stopping power to

calculate how much energy is deposited in the target nucleus. Rather than do the integration

directly, we will just use a clever conservation of energy argument. When the alpha particle

enters the nucleus, its range at that point is just Rrange − renter. Using the look-up table

and plot in Figure 3.4, we can map any range R, via a one-to-one functional mapping

E(R), onto a corresponding energy E. Thus, the energy of the alpha particle as it enters is
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Eenter = E(Rrange − renter). Via an analogous argument, the energy of the alpha particle

as it exits is Eexit = E(Rrange−rexit). Note that in the case where Rrange = rexit, meaning

the alpha particle stops inside the target, Eexit = E(0) = 0.

By conservation of energy, then, the difference in energy between entry and exit equals

the energy deposited in the target, ∆E = Eenter−Eexit. To convert this to a specific energy,

we just divide by the mass of the nucleus,mN . If we take nucleus as having a uniform mass

density ρN (often taken to be the value of water, 1 g/cm3), then mN = ρN(4πr3N/3) and

the specific energy deposited is ∆E/mN .

Once this is repeated for all the radionuclides, we then tally the specific energy deposited

in the target nucleus. This simulation can then be repeated with the same initial geometry

and parameters many times to generate a statistical distribution of specific energy (DSE) at

the central target nucleus.

3.2 Single-Nucleus Calculation and Comparison with MIRD-CELL

In the limit of averaging over many replicates, the average specific energy should agree well

with the predicted deterministic absorbed dose, as based on the MIRD-CELL formalism.

To validate this, we run a simple test calculation simulating the alpha decay of an Ac-

225 radiopharmaceutical, which emits an alpha particle with energy 5.93 MeV with a half

life of 10 days, or equivalently a rate constant of 0.0693 days−1. We assume localized

uptake of the radiopharmaceutical with uniform probability to a single source nucleus with

radius Rn= 5 microns. For simplicity, let us also assume that the source nucleus and target

nucleus are identical - in other words, Rsep = 0. A concise table summarizing all these

specific parameters is shown in 3.1.

We run calculations with total numbers of alpha decays (or transitions) ranging from

0 to 2000, in increments of 250. This corresponds to initial activities ranging from 0 to

1.6*10−3 Bq, in increments of 2*10−4 Bq. For each activity, we run 1000 simulation

replicates to get the distribution of specific energy, from which we can extract the average
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Table 3.1: Parameters for single nuclear source Monte Carlo simulation, assuming an Ac-
225 alpha decay scheme.

Parameter Value Units

Alpha Energy 5.93 MeV
Rate Constant λ 0.0693 day−1

Nuclear Radius Rn 5 Microns
Nuclear Mass Density ρn 1 g/cm3

Source-Target Separation Rsep 0 Microns

specific energy 〈z〉 and corresponding standard error.

The results of this calculation are shown in Figure 3.5, where we also show the corresponding

results calcuated using MIRD-CELL. MIRD-CELL, being a deterministic code, does not

give a distribution of specific energy, but instead reports an absorbed dose per cellular

nucleus, which is equivalent to the average specific energy in our Monte Carlo calculation.

Figure 3.5: Scaling of the average specific energy, for Monte Carlo in-house calculations,
with the total initial activity absorbed in the nucleus. For comparison we show the
corresponding ‘absorbed dose per nucleus’ as extracted from MIRD-CELL. Note that
standard error bars are present on the Monte Carlo data points, but are so small as to not be
visible to the naked eye.
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We see from this result that the Monte Carlo code agrees with the MIRD-CELL in that

the average specific energy scales linearly with time-integrated activity. Furthermore, the

magnitude of this slope is almost identical to the corresponding slope from MIRD-CELL.

However, we do note that there is a slight difference. We suspect that this discrepancy might

be due to the fact that we are using a different, more up-to-date set of energy-range data

for the alpha particles, and that we are using a direct gridded interpolation fit of energy

to range, while MIRD-CELL uses a parametric approximation to this fit. Nevertheless,

the disagreement is small and inconsequential enough that we can safely conclude that the

result serves as an initial validation of our method. With this in hand we can now proceed to

analyze some more sophisticated scenarios with more complex multicellullar geometries.

3.3 Monte Carlo Simulation of a Multicellular Aggregate

Having established the working principles of our Monte Carlo calculation, we will now

apply it to analyze the radiobiological effects of stochasticity, particularly at low specific

activity.

We perform our calculations in the context of a 3D multicellular aggregate. Each cell in

the aggregate consists of two concetric spheres, the inner spherical radius being that of the

nucleus and the outer spherical radius being that of the entire cell. A multicellular aggregate

is then represented as a random packing of non-overlapping spherical cells, placed inside a

3D cubic simulation volume. This is illustrated schematically via a 2D projection in Figure

3.6

The parameters for the multicellular aggregate Monte Carlo simuation are listed in

Table 3.2, where just as before, we assume an Ac-225 type decay. We choose 100 cells

in a (128 µm)3 box in order for the cells to have a volumetric packing density of 0.2, with

a box size sufficiently large relative to the range of the alpha particle so that the dose to

the central target cell nucleus is an accurate representation of the ‘bulk’ dose, without

being modified by finite-size artifacts. Note that, in addition to parameters describing
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Figure 3.6: (Left) A single cell in the simulation is represented as a sphere (here just a
circular cross sectin is shown) with a corresponding concentric inner sphere representing
the nucleus. (Right) In a multicellular aggregate, a given number of cells are packed inside a
cubic simulation volume (here just a square cross section is shown), and for the purposes of
calcuating the distribution of specific energy and survival, we look at the energy deposited
at a central ‘target’ nucleus at the center of the simulation box.

the radioactive decay and multicellular geometry, we also have two LQ radiobiological

parameters α and β (which is typically safely assumed to be zero for alpha particles)

describing how cell survival depends on the specific energy and specific energy squared,

respectively. Quantitatively,

SF = e−α∗z−β∗z
2

(3.9)

where SF is the survival fraction and z is the specific energy. This exponential relationship

will be important when analyzing the effects of stochasticity on the survival fraction distribution.

Note that the above analysis assumes that only the direct damage to the cell nucleus causes

cell death, neglecting various indirect DNA damage effects that may arise due to damage

to non-cell nuclear targets, such as the mitochondria or cell surface.

We run three different simulations, representing distinct types of uptake scenarios, as

illustrated schematically in Figure 3.7:

1. Uniform uptake within the nuclear volume.
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Table 3.2: Parameters for multicellular Monte Carlo simulation, assuming an Ac-225 alpha
decay.

Parameter Value Units

Energy 5.93 MeV
Rate Constant λ 0.0693 day−1

Nuclear Radius Rn 5 Microns
Cell Radius Rcell 10 Microns
Number of Cells 100 N/A

Simulation Box Length 128 microns
Nuclear Mass Density ρn 1 g/cm3

α 1.0 Gy−1

β 0 Gy−2

2. Uniform uptake within the entire cellular volume.

3. Uniform uptake on the cell membrane.

Figure 3.7: The three different patterns of radiopharmaceutical uptake considered.

These different scenarios can be viewed as approximately simulating the effects of

altered chemistry of the delivery vehicle. Antibodies sometimes preferentially attach to

the surface, for example, while nanoparticles sometimes localize directly to the nuclear

target. For each different simulation scenario, we consider varying levels of time-integrated

activity per cell. At each time-integrated activity, 1000 Monte Carlo replicates are performed

in order to calculate a distribution of specific energies and survival fractions.
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CHAPTER 4

RADIOBIOLOGICAL SIGNATURES OF STOCHASTICITY

4.1 Effects of Nonuniform Stochastic Uptake on Cell Survival

Figure 4.1: Histogram results showing the distribution of specific energy (DSE) and
survival fraction (SF). For comparison, scatter point plots of the average DSE (i.e., the
absorbed dose), the average SF and the SF evaluated at the absorbed dose are also
displayed.

The primary results of the multicellular simulation are shown in Figure 4.1. This plot

illustrates how the distribution of specific energy (DSE), and corresponding distribution of

survival fraction (SF) based on the LQ model, change with the time-integrated activity.
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Results are shown for each of the three uptake scenarios considered: uniform nuclear

uptake, uniform cellular uptake and uniform surface uptake.

The results show that the DSE displays the same qualitative behavior that was observed

for the single-nucleus simuation, with its average value scaling linearly with activity. The

SF, meanwhile displays more complex nonlinear behavior. In part, this complex nonlinearity

is due simply to the fact that LQ survival is an exponential function, so when the average

specific energy, 〈z〉, if we relabel it the absorbed doseD, decreases, the LQ survival fraction

at this average absorbed dose, e−αD, would naturally be expected to decrease exponentially.

However, a more careful analysis reveals that the average absorbed dose D is not the

whole story. In particular, the stochastic fluctuations in the specific energy induce a nonzero

overall shift in the average survival fraction. Mathematically,

〈SF〉 = 〈e−αz〉 6= e−α〈z〉 = e−αD, (4.1)

and thus the magnitude of the stochastic shift can be quantified by defining the Jensen

Gap [26], JG,

JG = 〈SF〉 − e−αD. (4.2)

And indeed, if we calculate 〈SF〉 and e−αD from the MC data and plot them, as shown

in Figure 4.1, we see a systematic nonzero shift.

4.1.1 Estimating the Jensen Gap Distribution with Boostrapping

While the results just described are a good qualitative first look at the effects of stochasticity,

we would ultimately like to have a more rigorous quantification of the JG, including both its

expected value and its uncertainty. In the language of statistics, we would like to estimate

the sampling distribution of the JG.

A general way to do this is to use bootstrapping [27], as illustrated in Figure 4.2.

Bootstrapping essentially works by taking a given sample of data, and resampling it with
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Figure 4.2: Visual explanation of bootstrapping to estimate the sampling distribution of a
statistic. Reprinted with Open Access permissions from [27].

replacement over many replicates. At each replicate, a separate value of a desired sample

statistic, whether it be mean, standard deviation, or in our case, the JG, is calculated.

Repeating this over many replicates one may then estimate the sampling distribution.

We apply bootstrapping to our MC data for the multicellular simulation, doing 1000

bootstrap replicates, each with 1000 different resampled data points, and calculate the JG

distribution accordingly. The corresponding bootstrap distribution of the JG is illustrated

in Figure 4.3.

We see that the JG is always positive, meaning the average survival is always greater

than the survival at the average dose. Mathematically, this is due to the convexity of the

expoential function, and is entirely deducible as a consequence of a mathematical theorem

known as Jensen’s inequality [28]. Physically, it can be understood as arising from the

fact that a nonuniform dose distribution results in some cells being overdosed, leading to

an ‘overkill’ effect, while others are underdosed and correspondingly ‘underkilled’ [29],

leading to a net overall increase in survival.

Analyzing the behavior of the JG, we see that its magnitude initially increases for very

low activity, reaches a max, and then falls off. This is easy to understand by considering the

extremes. At low activities, the SF is almost always 1, and thus stochasticity has trivially no

effect, so the JG will be 0. At very high activity, the stochastic effects are also negligible,

but this time because the deterministic approximation is increasingly exact in the limit of
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Figure 4.3: Bootstrap distributions of the Jensen Gap (JG) for varying activities and uptake
patterns. 27



large numbers. Extrapolating between the two extremes we see that the gap must increase

before it can decrease, so it is maximum at an intermediate level of activity.

We also see that uptake pattern has demonstrable consequences for differences in cell

survival. Specfically, the more localized the uptake is towards the cell nucleus, the greater

the effective cell kill per radionuclide decay. This can be understood as arising from the

increased contribution of ‘self-dose’, which has a relatively high probability of cell kill,

compared to ‘cross-dose’, which is more uncertain [30, 31, 32]. Thus, uptake by the

cell nucleus is the most potent delivery, followed by whole cell uptake and finally surface

uptake.

4.2 Effects on Generalized Equivalent Uniform Dose (gEUD)

The results for cell survival, while illuminating, ultimately must be related to therapeutic

outcome, whether that be tumor control probability (TCP) or normal tissue complication

probability (NTCP). At a fundamental, mechanistic level, understanding TCP and NTCP

from the distribution of surviving cells is a question of understanding whether or not a

certain critical fraction of the multicellular organ is destroyed. Such a de novo description

is beyond the scope of this thesis. However, at a phenomenological level, we can gain some

insight by analyzing the generalized equivalent uniform dose (gEUD), a commonly used

empirical surrogate for TCP and/or NTCP [13]. gEUD is defined as

gEUD = (
∑
i

viD
n
i )1/n (4.3)

where vi is the fractional volume of an organ or tumor that receives dose Di, and n is a

structure-specific ‘volume’ parameter that measures how serial or parallel the structure is.

If n < 1 the organ has a parallel architecture, meaning that the individual subvolumes are

somewhat independent of each other. Thus, to disable the entire organ, it is sometimes

necessary to disable all of its constitutent parts separately. A tumor is an extreme example
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of a highly parallel ‘organ’ - disabling the tumor, or in other words controlling its spread,

often requires killing each individual tumor cell separately. If n > 1, the organ instead has

a serial architecture, and disabling one or a few substructures can be enough to disable the

entire organ. A classic example of a serial organ is the spinal cord, where destroying any

one ‘link in the chain’ can be enough to cause paralysis.

It is straightforward to apply the definition of gEUD to illustrate the stochastic microdosimetry

effect. Here, we have a DSE, which can be viewed as a histogram of different specific

energy levels zi, each occuring with relative probability pi. These can replace Di and vi,

respectively, in Equation 4.3. Doing so, we see that

gEUD = (
∑
i

piz
n
i )1/n = 〈zn〉1/n (4.4)

In other words, the gEUD is completely determined by the DSE, specifically by various

moments of its distribution! And just as we used bootstrapping to quantify the sampling

distribution of the JG statistic, so too can we use such an approach to estimate the sampling

distribution of the gEUD. As in the case of JG, we run 1000 bootstraps with 1000 resamples

per bootstrap. Results are shown in Figure 4.4, for a highly parallel case (n = -10), a

reference ‘mean dose’ case (n = 1) and a highly serial case (n = 10).

4.2.1 Implications for Tumor Control and Normal Tissue Complication

It is informative to compare Figure 4.4 to the corresponding DSE plots shown in Figure

4.1. We see that for parallel (n = -10), mean-dose-weighted (n = 1) and serial (n = 10)

architectures, the gEUD behaves, to a first approximation, like the minimum, mean and

maximum values of the DSE, respectively. While the n = 1 case is somewhat generic, the

other two merit some more commentary.

For a strongly parallel organ, such as a tumor, breakdown of the entire unit requires

breakdown of every individual functional subunit. So, the probability of tumor control
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Figure 4.4: Bootstrap distributions of various gEUDs, as a function of specific activity and
uptake pattern.
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is only as good as the smallest probability of killing an individual cell. In other words,

the efficacy is limited by the coldest spot in the dose distribution. For sufficiently large

time-integrated activity, the concentration of radionuclides and resulting dose distribution

is large and homogeneous enough to make this effect negligibly small. However, as the

time-integrated activity decreases, the chances of at least one cell randomly getting zero

specific energy increases, causing the gEUD to somewhat abruptly drop to near zero. Note

that, just as we saw when analyzing the behavior of SF, the magnitude of this dip in gEUD

is somewhat alleviated the more ‘nuclear-localized’ the radionuclide uptake pattern is.

For a strongly serial organ, on the other hand, the situation is reversed. Now, the toxicity

of the treatment is determined by the maximum dose to an individual functional subunit, as

it is the hot spots that determine the likelihood of any one link in the chain breaking down.

Here, the effects of stochasticity manifest themselves as a slight increase in the gEUD at

low specific activity. Indeed, as we see in Figure 4.4, a small nonzero activity leads to a

disproportionately large increase in gEUD.
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CHAPTER 5

CONCLUSIONS

In this thesis, we have developed and implemented a simple Monte Carlo model to investigate

the effects of stochasticity in TAT dosimetry at the level of 3D multicellullar aggregates. We

find that at low levels of time-integrated activity, the nonuniformity of the dose distribution

leads to a Jensen Gap (JG), where the average survival fraction (SF) is greater than the

expected SF at the average dose. Furthermore, when analyzing the generalized equivalent

uniform dose (gEUD), we see that stochasticity manifests itself in an anomalously low

gEUD for parallel organs and an anomalously high gEUD for serial organs.

We also found in simuations that the magnitude of this effect is strongly dependent

on the localization and uptake pattern of the radionuclide. Uptake of radionuclides by

the cell nucleus displays the least sensitivity to this stochasticity, since the ‘self-dose’ to

the DNA target from the short-range alpha particles is the dominant variable responsible

for cell death. For whole-cell uptake, the survival probability depends more on ‘cross-

dose’ from adjacent cells, where the short range of the alpha particles and the discreteness

of the multicellular geometry increase the importance of dose inhomogeneity. Finally,

cell-surface uptake, which has the smallest contribution from ‘self-dose’ and the largest

contribution from ‘cross-dose’, has the greatest sensitivity to stochastic effects.

These results indicate that uptake pattern significantly influences cell death and RBE.

We can understand this pattern to be modulated by the chemical makeup of the radionuclide

delivery vehicle. To a first approximation, if we consider two different types of drug

carriers, antibodies and nanoparticles, antibodies can be viewed as preferentially localization

at the cell surface, and nanoparticles can be viewed as preferentially localizing throughout

the entire cellullar cytoplasm. However, in general, each new delivery vehicle needs to be

separately characterized to more precisely define the pattern of subcellular localization.
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function DSE = totalTally(nReplicates,nCells, Width, CellRadius, nSources, 
rMin,rMax, nuclearRadius, energy) 
% INPUT: 
%   nReplicates: number of monte carlo replicates 
%   nCells:  Number of cells 
%   Width:  Dimension of 3d box as [1 x 3] double vector in microns 
%   CellRadius: Cell radii microns 
%   nSources:  Number of radionuclide sources 
%   rMin, rMax: range within cell where source could be (e.g., 0 to r_N is 
%   nuclear localizatin, 0 to r_cell is whole cell localization, r_cell 
%   wall to r_cellsurface is say cell surface localization) 
%   nuclearRadius: Radius of spherical nucleus at the center (in microns) 
%   energy: energy in MeV which can be used to estimate CSDA range of alpha 
emissions 
% OUTPUT: 
%   DSE:      distributon of specific energy, in gray 
DSE = []; 
  
[~,~,energyRangeData] = xlsread('AlphaInWaterCSDARange.xlsx'); 
  
sampleEnergiesMeV = cell2mat(energyRangeData(2:end,1)); 
sampleRangesMicrons = cell2mat(energyRangeData(2:end,3)); 
  
energyToRangeInterpolant = griddedInterpolant(sampleEnergiesMeV, 
sampleRangesMicrons); 
rangeToEnergyInterpolant = griddedInterpolant(sampleRangesMicrons, 
sampleEnergiesMeV); 
  
for i = 1:nReplicates 
    sourceCoordinates = 
RandomSourcePositioning(nCells,Width,CellRadius,nSources,rMin,rMax); 
    P = 0; 
    for i = 1:nSources 
        P = P + 
Tally(sourceCoordinates(i,:),nuclearRadius,energy,energyToRangeInterpolant,ra
ngeToEnergyInterpolant); 
    end 
     
    % to convert to specific energy in gray: 
    % assume mass density 1 g/cm^3 = 1E-15 kg/micron^3 
    % and 1 MeV = 1.60281E-13 J 
     
    DSE = horzcat(DSE,(P/((4*pi/3)*(nuclearRadius^3)))*(160.281)); 
end 
  
end 
 

function P = Tally(sourceCoord, nuclearRadius, 
energy,energyToRangeInterpolant,rangeToEnergyInterpolant) 
% INPUT: 
%   sourceCoord:  The position of the alpha emitter, in Cartesian coordinates 
(micrometer units) such 
%   that the tally nucleus is at the center/origin. 
%   nuclearRadius: Radius of spherical nucleus at the center (in microns) 



%   energy: energy in MeV which can be used to estimate CSDA range of alpha 
emissions 
% OUTPUT: 
%   P:      energy deposited in nucleus 
  
% extract initial x,y,z coords of the source 
xStart = sourceCoord(1); 
yStart = sourceCoord(2); 
zStart = sourceCoord(3); 
  
range = energyToRangeInterpolant(energy); %get range 
thetaRand = acos(2*rand - 1); %random polar angle, from 0 to pi radians; 
phiRand = 2*pi*rand; %random azimuthal angle, from 0 to 2pi radians; 
  
startingDistanceFromCenter = sqrt(xStart^2 + yStart^2 + zStart^2); 
  
% now need to solve for entry radius rEnter and exit radius rExit 
% (xStart + r*sin(thetaRand)*cos(phiRand))^2 +  (yStart + 
% r*sin(thetaRand)*sin(phiRand))^2 + (zStart 
% +r*cos(thetaRand))^2 = nuclearRadius^2 
        
% r^2 + 2*(xStart*sin(thetaRand)*cos(phiRand) + 
% yStart*sin(thetaRand)*sin(phiRand) + zStart*cos(thetaRand))*r +  
% (xStart^2 + yStart^2 + zStart^2 - nuclearRadius^2) = 0 
  
% r^2 + B*r + C = 0, C < 0 
% B = 2*(xStart*sin(thetaRand)*cos(phiRand) + 
yStart*sin(thetaRand)*sin(phiRand) + zStart*cos(thetaRand)) 
% C = startingDistanceFromCenter^2 - nuclearRadius^2 
  
B = 2*(xStart*sin(thetaRand)*cos(phiRand) + 
yStart*sin(thetaRand)*sin(phiRand) + zStart*cos(thetaRand)); 
C = startingDistanceFromCenter^2 - nuclearRadius^2; 
  
rplus = (-B + sqrt(B^2 - 4*C))/2; 
rminus = (-B - sqrt(B^2 - 4*C))/2; 
  
if(imag(rplus) ~= 0) % complex r+/r- means it doesnt intersect sphere 
    P = 0; 
elseif(rplus < 0) % if r+ < 0 then it does not intersect in the direction of 
emission 
    P = 0; 
elseif (rminus > range) % if r- > range, then it dissipates away before 
entering nucleus 
    P = 0; 
elseif(rminus < 0) % if r- < 0 when r+ > 0, it means that the source emits 
from within the target 
    P = energy - rangeToEnergyInterpolant(range - rplus); % if by chance 
range > r+, this will equal energy automatically 
else % now only possibility is that it starts outside the nucleus but enters 
it before dissipating away 
    P = rangeToEnergyInterpolant(range - rminus) - 
rangeToEnergyInterpolant(range - rplus); 
  
End 



function P = RandomSoucePositioning(nCells, Width, CellRadius, nSources, 
rMin,rMax) 
% INPUT: 
%   nCells:  Number of cells 
%   Width:  Dimension of 3d box as [1 x 3] double vector 
%   CellRadius: Cell radii 
%   nSources:  Number of radionuclide sources 
%   rMin, rMax: range within cell where source could be (e.g., 0 to r_N is 
%   nuclear localizatin, 0 to r_cell is whole cell localization, r_cell 
%   wall to r_cellsurface is say cell surface localization) 
  
% OUTPUT: 
%   P:      [nSource x 3] matrix, source coordinates 
  
cellCoordinates = GetRandomSpheres(nCells, Width, CellRadius); 
P = []; 
  
for i = 1:nSources 
     
    randomCellCenter = cellCoordinates(randi(nCells),:); % random cell that 
this source goes in 
    randomDistance = rMin + (rMax-rMin)*(rand)^(1/3); % random distance of 
source from cell center 
    thetaRand = acos(2*rand-1); %random polar angle, from 0 to pi radians; 
    phiRand = 2*pi*rand; %random azimuthal angle, from 0 to 2pi radians; 
     
    % extract central x,y,z coords of the cell 
    xStart = randomCellCenter(1); 
    yStart = randomCellCenter(2); 
    zStart = randomCellCenter(3); 
     
    % use the random theta and phi, along with random distance to specify 
    % source coordinates , converting spherical to Cartesian 
    x = xStart + randomDistance*sin(thetaRand)*cos(phiRand); 
    y = yStart + randomDistance*sin(thetaRand)*sin(phiRand); 
    z = zStart + randomDistance*cos(thetaRand); 
     
    P = vertcat(P,[x-Width/2,y-Width/2,z-Width/2]); %note, shifting it all so 
that the center of the box is at the origin 
  
end 
 

function P = GetRandomSpheres(nWant, Width, Radius) 
% INPUT: 
%   nWant:  Number of spheres 
%   Width:  Dimension of 3d box as [1 x 3] double vector 
%   Radius: Radius of spheres 
% OUTPUT: 
%   P:      [nWant x 3] matrix, centers 
P = zeros(nWant, 3); 
P(1,:) = [Width/2,Width/2,Width/2];            % start with one sphere/cell 
at the center 
R2     = (2 * Radius) ^ 2;   % Squared once instead of SQRT each time 
W      = Width - 2 * Radius; % Avoid interesction with borders 



iLoop  = 1;                  % Security break to avoid infinite loop 
nValid = 1; 
while nValid < nWant && iLoop < 1e6 
  newP = rand(1, 3) .* W + Radius; 
  % Auto-expanding, need Matlab >= R2016b. For earlier versions: 
  % Dist2 = sum(bsxfun(@minus, P(1:nValid, :), newP) .^ 2, 2); 
  Dist2 = sum((P(1:nValid, :) - newP) .^ 2, 2); 
  if all(Dist2 > R2) 
    % Success: The new point does not touch existing sheres: 
    nValid       = nValid + 1;  % Append this point 
    P(nValid, :) = newP; 
  end 
  iLoop = iLoop + 1; 
end 
% Stop if too few values have been found: 
if nValid < nWant 
  error('Cannot find wanted number of points in %d iterations.', iLoop) 
end 
end 
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