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SUMMARY 

Modern industrial systems are now fitted with several sensors for condition 

monitoring. This is advantageous because these sensors can provide mass amounts of data 

that have the potential for aiding in tasks such as fault detection, diagnosis, and prognostics. 

However, the information valuable for performing these tasks is often clouded in noise and 

must be mined from high-dimensional data structures. Therefore, this dissertation presents 

a data analytics framework for performing these condition monitoring tasks using high-

dimensional data. To collect this data, the projects discussed utilize either simulated data 

sets or state-of-the-art, industry-class test-rigs. This enables the validation of data-analytics 

techniques on real-world data. Chapter 1 elaborates on this idea and outlines the proposed 

data-analytics framework for condition monitoring. Furthermore, Chapter 1 discusses 

various challenges with high-dimensional data and introduces the test-rigs used for data 

acquisition. Finally, Chapter 1 introduces the research topics in the dissertation. 

Chapter 2 develops a severity-based diagnosis framework for electric-powered 

vehicle electric systems with multiple, interacting fault modes. This framework leverages 

functional data profiles collected from a 4-cylinder automotive engine test-rig. The profiles 

are collected for various combinations of battery-motor state-of-health. Three regularized 

multinomial regression models are fitted, each using a unique feature extraction technique, 

to map profile features to the fault mode combination. Then ensemble methods are 

proposed that merge the results of these three models to create a more accurate model. The 

space of fault-mode combinations is partitioned into degrees of overall degradation. Thus, 
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predictions of the fault-mode combination can be mapped to the overall system 

degradation. 

Chapter 3 discusses two projects related to the gas turbine combustor. These 

projects utilize industry-class combustors located in the Ben T. Zinn Combustion 

Laboratory at Georgia Tech. The first project involves utilizing a control chart to detect 

precursors to lean blowout, an important operational fault that can cause costly powerplant 

outages and compromise the safety of aircraft passengers. A probability distribution is 

fitted to these precursors to develop a measure of blowout risk that can be utilized by 

turbine or aircraft operators. The second project describes a hierarchical feature selection 

methodology for diagnosing the degradation state of the combustor centerbody, a 

component that provides stability for the combustor flame and protects the hardware of the 

combustor from the flame. This methodology utilizes multi-class logistic regression with 

adaptive group lasso penalty to select an optimal subset of sensors for monitoring. Then 

multi-class logistic regression with adaptive lasso is used to select features from the 

remaining sensors to predict centerbody degradation. The results indicate that the proposed 

methodology is robust to reduction of the size of the training set. 

Chapter 4 discusses two projects related to the gas turbine. These projects utilize 

an industry-class, single-stage gas turbine located at Pennsylvania State University. The 

first project proposes two approaches for predicting sealing effectiveness, the ability of the 

combination of turbine geometry and coolant system to prevent ingestion of hot gas into 

the wheelspace region. The first approach utilizes Linear Regression with Lasso to map 

features from time-resolved pressure signals recorded either near the rim seal or on the 

outer casing to the sealing effectiveness. In the second approach, information regarding the 
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nonlinear relationship between sealing effectiveness and the dominant frequency of the 

pressure signal was utilized to first make a coarse prediction of the sealing effectiveness. 

Then, given the coarse prediction, a more granular prediction is made. The result was a 

much more accurate diagnostic model when utilizing the two-step approach. The second 

project utilizes IR imaging of the gas turbine blade to diagnose faults in the cooling system. 

Various feature extraction techniques are analyzed for their predictive ability. Upon 

analyzing the IR image as a predictor, sparse regions corresponding to hot and cold regions 

of the turbine blade were found to be highly correlated with the cooling system faults. This 

demonstrated potential for optimal placement of more cost-effective sensors for real-world 

implementation. 

Chapter 5 discusses a data analytics framework for predicting remaining useful life 

in systems with multiple failure modes. This framework assumes that the causes of the 

observed failures are unknown. Therefore, an unsupervised model is proposed. Given that 

the cause of failure is known, it is assumed that the natural logarithm of the time-to-failure 

can be modeled as a Gaussian regression problem where the predictors are features 

extracted from the sensor signals. Thus, the marginal distribution of the natural logarithm 

of the time-to-failure can be modeled as a finite mixture of Gaussian regressions. To fit the 

parameters of this model, the log-likelihood is appended with the adaptive group lasso 

penalty and optimized using a proposed Expectation-Maximization method. This method 

enables simultaneous clustering of the failures into separate failure modes and optimal 

sensor selection within each cluster. For prediction of the remaining useful life, a 

supervised mixture of gaussian model is fitted using the cluster labels and Multivariate 

Functional Principal Component (MFPC) scores from the selected sensors. Given the 



 xviii 

diagnosed failure mode, a Linear Regression with Lasso model is fitted to map MFPC 

scores from sensors selected for the diagnosed failure mode to the natural logarithm of the 

time-to-failure. By subtracting the current observation time from the time-to-failure, the 

remaining useful life is predicted. 

Chapter 6 concludes the dissertation by summarizing results and discussing 

opportunities for future research. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Modern industrial systems are comprised of several interdependent components and 

are subject to various failure processes. The complex nature of these systems necessitates 

a systematic framework for detecting anomalies, diagnosing the responsible fault(s), and 

predicting when the fault(s) will propagate to system failure. Condition monitoring is a 

process that utilizes sensor data to aid in performing these tasks. It is a key part of any 

predictive maintenance strategy aimed at reducing cost of downtime from either 

unnecessary maintenance activities or system failures. Modern systems are instrumented 

with hundreds, sometimes thousands of sensors. For example, the Siemens gas turbine 

SGT5-8000H shown in Figure 1.1 is equipped with 3,000 sensors. Several of these sensors 

are responsible for monitoring the gas turbine’s state-of-health (SoH) and performance 

(Ratcliff et al., 2007). 

 

Figure 1.1 – SGT5-8000H Gas Turbine (Admin, 2011) 
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Through these sensors, systems generate datasets with rich, highly informative data 

structures. However, traditional condition monitoring strategies are not equipped to handle 

the challenges presented by these data structures.  

In this dissertation, High-dimensional (HD) data analytics methodologies are 

developed for real-time condition monitoring of complex industrial systems. By 

implementing these methodologies, operators can receive real-time updates regarding the 

system SoH. The foundation of this work is rooted in statistical modeling. Therefore, this 

work enables the migration of theoretical statistical models to the industrial sector through 

the demonstration of these models’ effectiveness at solving system-relevant problems 

using real-world data. This data is generated by industrial-class test-rigs located at the 

Georgia Institute of Technology and Pennsylvania State University. These test-rigs are 

highly instrumented and thus, can produce data that capture system dynamics under various 

fault scenarios. Furthermore, this dissertation expands on the literature regarding sensor 

selection for prognostics by presenting an HD-data analytics framework for optimal 

selection of sensors for systems with multiple failure modes. The remainder of this chapter 

is organized as follows: Section 1.2 discusses the data challenges related to various 

condition monitoring. Section 1.3 describes the industrial systems used to motivate the 

methodologies proposed in this dissertation along with the test-rigs used for data 

acquisition. In Section 1.4, the proposed methodologies to address the challenges in Section 

1.2 are outlined. The chapter concludes in Section 1.5 with a description of the organization 

of the dissertation. 
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1.2 Condition Monitoring and Data Challenges 

In condition monitoring, sensor data (e.g. current, voltage, rpm, temperature, 

pressure, etc.) is collected from a system to assess its SoH. Condition monitoring tasks 

include anomaly detection, fault diagnosis, and prognostics. In this section, the challenges 

of using sensor data for these tasks are discussed. 

1.2.1 Anomaly Detection 

In the context of condition monitoring, anomaly detection consists of identifying 

when a system’s performance deviates from its nominal behavior. Statistical process 

control (SPC) is a tool for anomaly detection that uses quality characteristics derived from 

statistics to monitor a process. SPC is usually performed in two phases. In Phase 1, 

parameters of a statistical distribution are estimated using data recorded while the system 

operates under nominal operating conditions. In Phase 2, the parameters are monitored in 

real-time and an alarm is emitted if the observed parameters breach a set of thresholds 

established in Phase 1.  

Traditional SPC methodologies assume the observed data are independent and/or 

follow a Gaussian distribution with constant mean and variance. However, the sampling 

frequency of modern sensors is quite fast leading to highly autocorrelated observations. In 

Shewhart control charts, building a control chart with autocorrelated data can result in 

narrow control limits, leading to a high false alarm rate. Furthermore, complex processes 

exhibit nonstationary behavior such as trends and heteroskedasticity. An example is shown 

in Figure 1.2 where the fuel-to-air ratio in a gas turbine combustor is reduced simulating 

the process of throttle pullback in a jet engine. 
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Figure 1.2 – Nonstationary Signal from Jet Engine Throttle Pullback 

In Figure 1.2, PMT stands for photomultiplier tube, a sensing technology discussed in 

Chapter 3.1, whereas Equivalence Ratio is synonymous with fuel-to-air ratio. Obviously, 

assumptions of independence and Normality with constant mean and variance are violated 

for this profile. This motivates the need for a robust data curation algorithm that filters 

nonstationary behavior to make the profile suitable for anomaly detection. 

1.2.2 Fault Diagnostics 

Fault diagnosis consists of developing a mapping from the feature space to the fault 

space. These mappings are typically classification models although regression models are 

also applicable. When monitoring a process over time, the samples recorded by the sensors 

may resemble a mathematical function. For example, Figure 1.3 displays the electric 

current and voltage signals recorded during the cranking of a commercial vehicle engine. 
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Figure 1.3 – Electric Current and Voltage of Vehicle-engine Start 

Both signals capture the various steps of the Vehicle-engine Start (VES) process such as 

engagement between the starter motor and the engine flywheel, the draw of current by the 

motor, and the harmonic motion of the engine revolutions. When a fault occurs, it is 

expected to be captured by a deviation in the observed signal. One of the challenges with 

functional data is its high dimensionality. Each signal can consist of thousands of samples 

recorded over a short time span (1-2 seconds). Another challenge is that cycle-to-cycle 

variation in the starting position of system components can result in a misalignment of 

signals as shown in Figure 1.4. 

 

Figure 1.4 – Curve Misalignment 
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In Figure 1.4, the original signal (solid black line) is offset from the average signal profile 

(red). Misaligned features compromise diagnostic accuracy because the signal amplitudes 

at the same time epoch may correspond to different physical phenomena. Therefore, a 

robust feature engineering algorithm for functional data that accounts for misregistration 

is needed for accurate diagnosis. 

Due to being comprised of various components, complex systems can experience 

multiple fault modes. For example, the engine can fail to start because of a faulted battery, 

a faulted starter motor, or due to the combined degradation of both components. The 

interaction between the component fault states impacts the fidelity of the system, and by 

extension, the signal profile generated by the system. For example, consider the plots in 

Figure 1.5 . 

 

Figure 1.5 – Effect of Multiple Faults on System Performance 

Battery degradation is shown from top to bottom whereas starter motor degradation is 

shown left to right. The ability to distinguish between combinations of fault modes is 
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crucial for performing diagnosis on complex systems. The challenge in achieving this 

distinction is compounded by the high dimensionality of the data.  

In HD data scenarios, several sensors are utilized to monitor the SoH of a system. 

Consider the acoustic sensor data recorded during the monitoring of a gas turbine 

combustor flame in Figure 1.6. 

 

Figure 1.6 – Acoustic Sensor Data for Combustor Flame 

Each observation consists of 10 sensors which record over 50,000 data points. The curse 

of dimensionality states that the number of observations needed to distinguish between 

fault states increases with the dimensionality of the data. Therefore, a very large number 

of observations would be needed to separate a dataset into distinct fault states. Furthermore, 
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the time to train a model would be prohibitively large. Another issue is that sensors may 

be redundant with each other or completely uncorrelated with degradation, contributing 

only noise to a prediction. By selecting a subset of informative sensors, it may be possible 

to improve diagnostic accuracy. Therefore, a framework for selecting an optimal subset of 

sensors for diagnosis is valuable for reducing the sensing load on large industrial systems. 

1.2.3 Prognostics 

Prognostics involves predicting the time remaining before the system fails. This time 

is known as the remaining useful life (RUL) of the system. Prognostics is important 

because the RUL predictions inform maintenance decisions designed to maximize 

availability of the system. As discussed previously, complex systems are comprised of 

multiple components. This means that complex systems suffer from multiple failure modes. 

However, developing a prognostics model for systems with multiple failure models is non-

trivial because multiple failure modes affect the physical processes of the system in 

different ways. For example, consider the degradation data in Figure 1.7 for a commercial 

aircraft engine with two failure modes monitored by 21 sensors (Saxena et al., 2008). 
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Figure 1.7 – Aircraft Engine Degradation (Saxena et al., 2008) 

The effect of various failure modes can be seen by the different trends between signals of 

the same sensor. When the actual failure modes are not known, a methodology to 

distinguish between the latent failure modes is necessary. Furthermore, one subset of 

sensors may be sensitive to one failure mode while another (not mutually exclusive) subset 

may be sensitive to another failure mode. The ability to identify these subsets can aid in 
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reducing the sensor load required for accurate prognostics and in reducing RUL prediction 

error. 

1.3 Examples of Complex Systems 

The condition monitoring methodologies developed in this work are motivated by 

failure scenarios common to two industrial systems: the Vehicle-engine Start (VES) system 

and the gas turbine. In this section, the functionality of these two systems is described. 

Then, industry-class test-rigs used for generating data are highlighted. 

1.3.1 VES System 

The first system is the VES system, shown in Figure 1.8. 

 

Figure 1.8 – VES System and its Circuit 

This image is adapted from a video by Valeo United Kingdom and Republic of Ireland 

(2014, 1:11). The VES system is comprised of three main components that constitute an 

engine-start circuit: the battery, starter motor, and engine. When the vehicle key is turned, 

the ignition switch contacts the starting position (𝑆) to close the circuit. This initiates 
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engine cranking by powering both hold-in and pull-in windings within the solenoid, 

creating a magnetic field that moves the plunger to connect the three terminals of the 

solenoid. Once the plunger is in place, hold-in winding remains energized while the pull-

in winding becomes inactive. Through this connection, the starter motor receives power 

from the battery and turns the flywheel, which is connected to the engine. Once the 

cranking is complete, the ignition switch turns to R, thus disconnecting the battery from 

the motor. 

1.3.2 Gas Turbine 

The second industrial system utilized for the development of condition monitoring 

methodologies is the gas turbine. A diagram of the gas turbine is shown in Figure 1.9. 

 

Figure 1.9 – Powerplant Generator Powered by Gas Turbine 

The role of the gas turbine is to convert chemical energy from fuel to mechanical energy 

that is transferred to the generator by a gearbox. The generator uses this energy to create 

electrical energy that is distributed to cities and neighborhoods via the power grid. Gas 

turbines are also used to power aircraft engines. The key components of the gas turbine are 

the compressor, combustor, and turbine, which are labeled in Figure 1.9. Filtered air is 
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ingested through an air intake, from which the compressor funnels the air through multiple 

stages of static compressor vanes and rotating compressor blades to create a high-pressure 

stream. Through this stream, air is transferred to the combustor where it is mixed with fuel 

and ignited. The hot fuel-air mixture is then used to turn the turbine blades before exiting 

through the exhaust. The rotation of the turbine blades turns the drive shaft that links the 

turbine to the generator. For an aircraft engine, rotation of the turbine blades turns the 

propeller fan of the engine. 

1.3.3 Test-rigs 

Four industry-class test-rigs that simulate the systems described were utilized to 

develop condition monitoring methodologies utilizing HD-data analytics. These test-rigs 

include the VES Test-rig, Combustor Test-rig 1 and Combustor Test-rig 2, and the Turbine 

Test-rig. The VES and Combustor Test-rigs are located at the Georgia Institute of 

Technology and the Turbine Test-rig is located at Pennsylvania State University. 

1.3.3.1 VES Test-rig 

The VES Test-rig is displayed in Figure 1.10. 
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Figure 1.10 – VES Test-rig 

It consists of a 4-cylinder engine equipped with an ammeter, voltmeter, thermocouples, 

and rpm sensor. The engine is powered by the VES circuit comprised of a 12-volt battery 

in series with a starter motor. A coiled resistor is placed between this circuit to simulate 

the increase of internal resistance incurred due to battery degradation. Through repeated 

cranking of the engine, the test-rig can perform accelerated life testing on the starter motor. 

The sensors attached to the test-rig sample data at a rate of ~2 kHz. Thus, the system 

can generate functional data over the span of an engine cranking cycle. For real vehicles, 

the starter motor cranks the engine to a certain speed before the fuel source takes over as 

the primary supplier of energy for the engine. Since the test-rig does not contain a fuel 

source, the circuit is programmed to disengage the starter motor from the engine once a 

specified angular speed threshold is reached. 

1.3.3.2 Combustor Test-rigs 

Two test-rigs are utilized for studying the combustor. These are displayed in Figure 

1.11. 
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Figure 1.11 – Combustor Test-rigs (Left: Combustor Test-rig 1, Right: Combustor 

Test-rig 2) 

They are located inside the Ben T. Zinn Combustion Laboratory, an 18,000 square foot 

facility that specializes in combustion experiments. The test-rigs are equipped with 

compressed and heated air, various fuel types, fresh and recirculating water, and exhaust 

hoods. They are capable of replicating combustor faults such as lean blowout, a process 

where the flame is extinguished due to low fuel-to-air ratio. The lab is also capable of 

outsourcing the manufacture of degraded combustor components such as the centerbody, 

which serves to stabilize the flame and prevent it from damaging combustor hardware.  

To monitor the combustion flame, the lab utilizes a photomultiplier tube and acoustic 

sensors. The photomultiplier tube aggregates the light intensity in its field of view into a 

singleton point and has a sampling rate of 10 kHz. The lab also utilizes ten acoustic sensors, 

each with 40 kHz sampling frequency to monitor combustion. Through this sensing 

technology, the test-rig can simulate a multiple-sensor environment for monitoring 

combustor SoH. 
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1.3.3.3 Turbine Test-rig 

The Turbine Test-rig is located in the Steady Thermal Aero Research Turbine 

(START) Lab at Pennsylvania State University. A photograph of the lab is displayed in 

Figure 1.12. 

 

Figure 1.12 – Turbine Test-rig in START Lab 

The Turbine Test-rig is a single-stage (stator vane/turbine blade) gas turbine consisting of 

two air compressors that convert ambient air into a high-pressure stream that is either 

cooled and distributed to various coolant holes in the system or has its temperature raised 

by the heater to simulate the effect of combustion. The heated air is then used to turn the 

turbine blade before passing through the exhaust and exiting the system. This test-rig is 

unique, not only due to its capability to operate at Reynolds and Mach numbers 

representative of real-world gas turbine engines, but because it is instrumented with several 
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pressure and temperature sensors for real-time monitoring of the system. In addition to 

these sensors, infrared imaging is employed to study the effect of upstream faults on the 

temperature distribution of the blade. These upstream faults are simulated by altering flow 

rates and temperatures from the compressors and heaters. Due to the various passages for 

cool air available in the system, the robustness of a condition monitoring methodology to 

different operating conditions can be tested. 

1.4 Research Overview 

In this section, a brief overview of all research presented in this dissertation is 

provided. This research was motivated by current challenges related to power generation 

systems. 

1.4.1 Condition Monitoring of the VES System 

1.4.1.1 Severity-based Diagnosis for Vehicular Electric Systems with Multiple, 

Interacting Fault Modes 

Complex systems are comprised of multiple components that interact in how they 

degrade and fail. Diagnosing active faults and their severity for these systems is a non-

trivial task. Therefore, a data-driven, severity-based diagnosis framework for systems with 

multiple, interacting failure modes is proposed. The framework is applied to components 

of the VES system: the battery and the start-stop motor, a modern starter motor used to 

restart vehicle engines following brief traffic stops. This framework leverages sensor data 

from several component-fault severity combinations. A functional data analysis approach 

is utilized to align the features of the signal profiles for these combinations. Then multiple 
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feature extraction methodologies are employed, and the features are used to fit separate 

classifiers using Regularized Multinomial Regression. Ensemble methods are then utilized 

to combine the inferences of the classifiers for higher diagnosis accuracy. Following 

classification, the component-fault severity combinations are mapped to the system SoH 

via a lookup table that relates the component fault states to system performance. 

1.4.2 Condition Monitoring of the Combustor 

1.4.2.1 Data Analytics Method for Detecting Extinction Precursors to Lean Blowout in 

Spray Flames 

Lean blowout (LBO) of the combustion flame results in costly outages for power 

plants and presents a serious risk to the safety of aircraft passengers. LBO occurs when the 

fuel-to-air ratio in the combustion mixture becomes too low that the flame is extinguished. 

Avoiding this by using a high fuel-to-air ratio is not a viable option as doing so wastes fuel 

and contributes to emissions that harm the environment. Ideally, the engine maintains the 

combustor flame at a fuel-to-air ratio low enough to minimize emission of toxins, but high 

enough to avoid blowout. 

In the LBO literature, the occurrence of extinction/reignition phenomena has been 

observed prior to blowout. However, methods of characterizing these phenomena have not 

been universally accepted. In this work, a data analytics approach to detecting precursors 

to LBO is developed. This approach consists of three steps: data curation, fault detection, 

and an adaptive alarm reliability assessment. In the data curation step, a nonstationary 

signal used to monitor the flame as the fuel-to-air ratio is reduced is filtered using a time 

series model. The variability of the model residuals is then monitored using an 
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Exponentially Weighted Root-Mean Squared Error (EWRMS) control chart. As the engine 

progresses toward blowout, the parameters of the time series model are likely to change, 

eliciting an alarm if the change is large enough. The goal is to imbue each observed alarm 

with a value denoting the probability that the alarm is a precursor to blowout. Since the 

frequency of alarms increases as the flame approaches blowout, the fuel-to-air ratio at the 

time of an alarm is modeled using a 2-parameter Exponential distribution. After a new 

alarm is observed, the probability of a true alarm is updated by conditioning on the fuel-

to-air ratio measured at the time of the alarm. As the flame approaches blowout, the true 

alarm probability increases. Therefore, operators can utilize this true alarm probability to 

gauge the safety of operating the engine at a particular fuel-to-air ratio. 

1.4.2.2 Data-driven Fault Detection of Premixer Centerbody Degradation in a Swirl 

Combustor 

In swirl combustors, the centerbody is an important component that provides both 

stability for the combustor flame and protection of the combustor hardware from flame 

backpropagation. Due to its proximity to the flame, the centerbody incurs thermal wear. 

Within the combustion community, the ability to detect degradation of combustion 

components is limited to visual inspection of the Fourier transform of the raw sensor signal. 

To encourage an HD data analytics approach to solving this problem, ten acoustic sensors 

were placed around Combustor Test-rig 2. Four centerbodies were manufactured to various 

lengths with shorter length representing increased degradation. To diagnose the SoH of the 

centerbody, features from each sensor signal were extracted using the discrete wavelet 

transform, which transforms signals in the time domain to signals in the time-frequency 

domain. Features were engineered by computing the energy within each wavelet 
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decomposition level. After generating features, a hierarchical approach to selecting 

features was utilized. The first step involves selecting an optimal subset of acoustic sensors 

by fitting a Multinomial Regression model with an Adaptive Group Lasso penalty. After 

removing either the redundant or noninformative sensors, a Multinomial Regression model 

with Adaptive Lasso penalty is used to select an optimal subset of features from the 

remaining sensors. This model maps the features selected to one of four degradation 

classes. The model approach was shown to be robust to decreases in the size of the training 

data and to additional noise in the acoustic signals. 

1.4.3 Condition Monitoring of the Turbine 

1.4.3.1 Correlating Time-resolved Pressure Measurements with Sealing Effectiveness 

for Real-time Turbine Health Monitoring 

A hot fuel-air mixture from the combustor is used to rotate the turbine blades and 

power the system. This is shown in the cross-sectional view of the Turbine Test-rig in 

Figure 1.13. 
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Figure 1.13 – Cross-section Diagram of the Turbine Test-rig 

The temperatures for this mixture are very high and can exceed the softening temperature 

of the turbine components. While the components directly exposed to the heat have cooling 

mechanisms installed to protect them from the hot mixture, the same is not true for 

components in the under-platform region. To counter this, the combination of a 

manufactured rim seal and relatively cool purge flow from the upstream compressor (blue 

arrow) is utilized to form a seal that protects these components. The ability to measure the 

effectiveness of the seal from preventing ingress of the hot fuel-air mixture is a challenge 

in the gas turbine community. The literature regarding sealing effectiveness has focused 

on the development of physics-based models that attempt to characterize the functional 

relationship between sealing effectiveness and purge flow rate. However, the applicability 

of these models is limited since these models do not account for regions of inflection that 

occur due to the variability in rim seal geometries. 
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To address the limitations of the physics-based approaches, two data-driven 

methodologies for monitoring sealing effectiveness are proposed. The first methodology 

consists of recording the pressure, either near the rim seal or on the outer casing of the 

turbine, for various sealing effectiveness values. Then, features are extracted from the 

Discrete Fourier Transform of the pressure signal. These features are mapped to the sealing 

effectiveness via Linear Regression with Lasso, which selects a subset of the extracted 

features for predicting sealing effectiveness. The second methodology utilizes domain 

knowledge about a nonlinear relationship between the sealing effectiveness and the 

dominant frequency of the pressure. For this methodology, an initial model is fitted to 

obtain a coarse prediction of the sealing effectiveness. Logistic Regression with Lasso is 

used to map the extracted features to a binary SoH for the seal (either low or high). Then, 

a Linear Regression model with Lasso is fitted using only the first five harmonics of the 

dominant frequency to perform a more granular prediction of sealing effectiveness. This 

model includes a binary variable corresponding to the coarse SoH of the seal. Through this 

second methodology, a sealing effectiveness prediction error reduced by 48.1% and 35.4% 

from the first methodology for the rim seal and the casing respectively. 

1.4.3.2 Applying Infrared Thermography as a Method for On-line Monitoring of 

Turbine Blade Coolant Flow 

Turbine blades are more susceptible to failure when subjected to high temperatures. 

To address this, modern turbine blades are manufactured with cooling holes through which 

cold air from the compressor passes to regulate the temperature of the blade. Therefore, the 

flow of cold air from the compressor to the blade is important to monitor. Infrared imaging 

has recently been implemented for monitoring loss of thermal barrier coating on gas turbine 
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blades. However, the focus of this work is to use infrared imaging of the blade to infer the 

SoH of the cooling systems. The challenge is that the effects of changes in operating 

conditions such as increased main gas path temperature on the image can conflate with the 

changes due to cooling loss. To address this, infrared images for various combinations of 

main gas path temperatures and coolant flow rates are sampled. Three methods of feature 

extraction are utilized: the overall average intensity of the image, column-wise averages of 

the image, and the image itself. For each of these methodologies, Linear Regression with 

Lasso is used to model the coolant flow rate as a function of the image features.  

The effectiveness of each of these feature extraction techniques in estimating the 

coolant flow rate is compared for the cases when the main gas path temperature is known 

and when it is unknown. For the case that the main gas path temperature is unknown, Linear 

Regression with Lasso is used to model the main gas path temperature as a function of the 

image features. Since the correlation between the coolant flow rate and the image features 

is obscured by latent factors that presented themselves during the experiment, models are 

fitted for the original dataset and an ideal dataset consisting of a subset of observations 

where the effect of the latent factors is negligible. To account for these latent factors in the 

original dataset, ancillary measurements are included as predictors in the model. The 

results demonstrate that inclusion of the ancillary measurements can improve accuracy in 

predicting coolant flow rate. However, the accuracy of the model using all pixels in the 

image is only marginally lower than the model using all pixels and the ancillary 

measurements. Furthermore, only marginal improvement in prediction accuracy is 

observed for the model using all image pixels exclusively when increasing the number of 

pixels selected past four. Through analysis of the regression coefficients for the optimal 



 23 

model, the selected features are shown to aggregate in sparse regions of the image. This 

indicates potential for achieving accurate prediction of coolant flow rate by placing sensors 

in these sparse regions. 

1.4.4 Predicting Remaining Useful Life in Complex Systems with Multiple Failure Modes 

Predicting remaining useful life (RUL) in systems with multiple failure modes is an 

important, but nontrivial task. The literature pertaining to multiple failure modes is 

concentrated around developing reliability models for competing risk problems, where 

competing risks are alternative failures that can precede the primary failure mode of 

interest. These models tend to be validated with little to no sensor data. The papers that 

incorporate multiple sensors tend to either not incorporate sensor selection or base their 

sensor selection on visual inspection of the sensor signals. 

This chapter proposes an HD data analytics approach to performing prognostics for 

systems with multiple failure modes. The premise of this approach is that the functional 

relationship between the natural logarithm of the time-to-failure (ln 𝑇𝑇𝐹) and features 

from the sensor data is dependent on the failure mode and can be modeled as a Gaussian 

regression. Therefore, multiple failure modes are modeled using a mixture of Gaussian 

regressions. An added challenge is that the failure modes may not be known a priori. 

Therefore, to fit mixture of Gaussian regression model, a novel Expectation-Maximization 

(EM) algorithm is developed. In the E-step, the observed failures are clustered into their 

predicted failure modes. In the M-step, the parameters of the mixture of Gaussian 

regressions model are estimated. For parameter estimation, Adaptive Sparse Group Lasso 

penalty is incorporated into the optimization problem. Adaptive Sparse Group Lasso is a 
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regularization strategy that ensures a subset of features from a significant sensor have 

nonzero regression coefficients, while all features from a non-significant sensor have all 

zero regression coefficients. The result of the EM algorithm is that the observed failures 

are clustered by failure mode and subsets of sensors are selected to monitor degradation 

for each failure mode. The signals for the selected sensors are then fused using Multivariate 

Functional Principal Component Analysis, a functional data analysis technique that 

transforms the sensor signals into a low-dimensional, but highly informative set of 

predictors. MFPCA is first used on all selected sensors to train a supervised mixture of 

Gaussians model. After monitoring a currently degrading system up to time 𝑡∗, the selected 

sensors’ signals are transformed to MFPC scores and used to diagnose the system fault. 

Given this diagnosis, Linear Regression with Lasso penalty is used to model ln 𝑇𝑇𝐹 as a 

linear function of the MPFC scores extracted from the signals corresponding to sensors 

selected for the diagnosed failure mode. Since not all MFPC scores may be correlated with 

the ln 𝑇𝑇𝐹, the Lasso penalty can remove uninformative MFPC scores from the model. 

This model is then used to predict RUL by calculating the difference between the predicted 

time-to-failure (exp(ln 𝑇𝑇𝐹)) and the current observed time 𝑡∗.  

This methodology is applied to a commercial aircraft engine simulation dataset with 

two failure modes: high pressure compressor and the fan. A comparison of the proposed 

model with alternative models demonstrates that clustering and sensor selection are 

important steps to ensure an accurate RUL prediction. Furthermore, the methodology 

performs comparably to an existing statistics-based modeling approach for multiple failure 

modes in the literature. 
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1.5 Organization of Dissertation 

The remainder of the dissertation is organized as follows. In Chapter 2, the 

development of a severity-based multiple-fault diagnosis algorithm for estimating the SoH 

of the VES system is described. In Chapter 3, two methodologies are presented for 

condition monitoring of the combustor. These methodologies are designed to solve 

problems related to detecting early onset of LBO and selecting sensors for diagnosing 

centerbody degradation. In Chapter 4, two methodologies are presented for condition 

monitoring of the gas turbine. These methodologies revolve around developing statistical 

models to estimate sealing effectiveness (Section 4.1) and to estimate SoH of the blade 

cooling system. In Chapter 5, the methodology for predicting RUL in systems with multiple 

failure modes is proposed. Like in Section 3.2, this methodology employs a sensor 

selection strategy to aid in condition monitoring. The dissertation is concluded in Chapter 

6 with a summary of the dissertation and a discussion of some best practices. 

  



 26 

CHAPTER 2. SEVERITY-BASED DIAGNOSIS FOR 

VEHICULAR ELECTRIC SYSTEMS WITH MULTIPLE, 

INTERACTING FAULT MODES 

2.1 Introduction 

The reliability of engineering systems depends on the health states of their 

constituent components. For example, automotive electric power generation and storage 

(EPGS) systems, which are used for starting the automobile engine, depend on the health 

states of the alternator, battery, and starter motor. It is customary to represent the 

component states of the system as either healthy or faulted. This binary representation is 

sometimes not sufficient because it does not capture the severity of the component faults. 

Due to complex interactions between various system components, system failure will most 

likely depend on the combinations of component-fault severities. Thus, a more precise 

characterization of system failure can be obtained by modeling component health states 

and their interactions. Identifying fault severity and its impact on system performance also 

enables life extension and limits unnecessary part replacements. 

This chapter presents methodology for performing severity-based diagnosis of 

systems with multiple interacting fault modes. One of the main contributions of this 

methodology is the ability to diagnose the presence and severity of multiple, interacting 

fault modes in applications involving high-dimensional data. The proposed modeling 

framework identifies the state-of-health (SoH) of system components and how interactions 

between their fault severity (degradation) levels impact overall system performance. This 
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approach is applicable to conventional time series data and high-dimensional data 

structures, e.g. spectral and profile data, hereafter referred to as functional data. Functional 

data analysis tools such as curve registration and dimensionality reduction are used for 

automatic synthesis and extraction of degradation features from the data. Degradation in 

high-dimensional functional data is unique because it can manifest itself in different ways 

ranging from rising frequency amplitudes to complex phase shifts. In this chapter, the 

proposed methodology is applied to high-dimensional data generated by a Vehicular 

Engine Start (VES) test-rig. This test-rig enables the acquisition of information-rich data 

profiles for a vast array of component-fault states. Through the proposed methodology, the 

utility of these profiles for diagnosis is demonstrated. The importance of developing 

diagnostic frameworks for such systems stems from the fact that approximately 88% of 

Americans own an automobile (Poushter, 2015). Thus, driver dissatisfaction, walk-home 

incidents, and potential accidents that occur due to EPGS faults are serious concerns for a 

vast majority of people. 

The remainder of the chapter is outlined as follows. Section 2.2 provides a review of 

the literature on multiple fault diagnosis. In Section 2.3, the diagnosis methodology is 

described in detail. In Section 2.4, the capabilities of the VES Test-rig are discussed. In 

Section 2.5, the proposed methodology is demonstrated using the VES Test-rig as a case 

study. The chapter concludes in Section 2.6 with a summary of the findings, a description 

of the challenges involved in implementing the methodology, and a discussion regarding 

potential for future work. 
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2.2 Literature Review 

Approaches to fault diagnosis are categorized as either model-based or data-driven. 

Model-based approaches, which rely on physical models of the system, characterize faults 

as deviations of observed system outputs from the outputs predicted by the physical model. 

Stringer et al (2012) provide a review of model-based diagnosis approaches with a focus 

on aerospace transmission systems. The effectiveness of model-based approaches depends 

on the integrity of the physical model. However, developing this model becomes 

challenging as systems become more complex. In contrast, data-driven approaches 

characterize faults via their relationship with sensor data. Jardine et al (2006) classify data-

driven approaches into two categories, artificial intelligence (AI) and statistical learning 

models. Modern AI approaches for diagnosis revolve around deep learning architectures 

such as convolutional neural networks (Chen et al, 2017, Hoang et al, 2017, Wu et al, 

2019), deep belief networks (Tamilselvan and Wang, 2013), and deep autoencoders (Liu 

et al, 2018). Alternatively, statistical learning methods are comprised of tools such as 

clustering techniques (Ghimire et al, 2011) and support vector machines (SVM) (Islam and 

Kim, 2019). Whether to use a model-based or data driven approach is a subjective choice 

that can depend heavily on the application. What truly distinguishes diagnosis approaches 

from one another is the level of complexity of the system they are designed to diagnose. In 

general, diagnosis approaches are designed for the following applications: single fault, 

multiple mutually exclusive faults, and multiple simultaneous faults. 

The literature is rich with diagnosis approaches for single fault applications. For 

example, Zhang, Y. et al (2010) develop a model-based approach to detect belt slip in the 

automotive EPGS system. They establish that for a given set-point voltage, the battery 
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voltage and field duty cycle are linearly related. They detect belt slip by monitoring the 

distance of battery voltage and field duty cycle from the hypothetical line defining their 

relationship. From the data driven perspective, Liu et al (2018) use deep autoencoders to 

fuse time, frequency, and time-frequency features used for classifying gear crack length 

under various operating conditions. As the complexity of industrial systems grows, so does 

the need for diagnosis methodologies that model multiple faults. Multiple Fault Diagnosis 

(MFD) is a popular research area geared toward these complex systems. One framework 

for MFD assumes that faults are mutually exclusive. Zhang, F. et al (2014) diagnose faults 

in rotating machinery by selecting the fault state with minimum Kullback-Leibler 

divergence between the distribution of features within that fault state and the distribution 

of those features combined with the test observation. Li et al (2008) and Scacchioli et al 

(2014) both develop physics-based models for diagnosing mutually exclusive faults in an 

EPGS system. Li et al (2008) utilize an alternator simulation model to diagnose belt-slip, 

rectifier diode, and voltage regulator faults, while Scacchioli et al (2014) develop physics 

models for the alternator, battery, and voltage regulator to create a set of residuals used to 

diagnose belt-slip, diode short, and regulator faults. Kazemi et al (2019) incorporate a 

hybrid model-based and data-driven approach for diagnosing multiple faults in a gas 

pressure regulating station. Principal component analysis (PCA) is applied to data acquired 

from a real station to define a low-dimensional subspace for the normal operating 

condition. Then, fault data acquired from both the real system and their model is projected 

onto this subspace and SVM is used to classify the various fault states. In a data-driven 

approach, Zhang, X. et al (2010) use principal component analysis to develop a set of 

residuals used to diagnose the belt-slip, diode short, and regulator faults.  
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The main limitation of the mutually exclusive assumption is that it assumes the 

presence of only one fault at a time, which can lead to missed detections if multiple faults 

are present simultaneously. Methodologies developed for diagnosing the presence of 

multiple faults include work by Islam and Kim (2019), Wu et al (2019), Jaramillo et al 

(2017), and Kodali et al (2013). Islam and Kim diagnose the presence of multiple faults on 

bearings using multi-class SVM, whereas Wu et al (2019) use a convolutional neural 

network to diagnose various faults in helical and planetary gearboxes. Jaramillo et al (2017) 

use a two-stage data fusion technique via Bayesian inference to estimate the most likely 

fault condition present in the system given the states of diagnostic tests. Kodali et al (2013) 

uses the Dynamic Multiple Fault Diagnosis (DMFD) algorithm, which employs a Factorial 

Hidden Markov Model to estimate the most likely fault sequence given the state of 

observed diagnostic tests, to diagnose multiple faults in an EPGS system. Another 

application of DMFD is for diagnosing multiple faults in the regenerative braking system 

of a hybrid electric vehicle (Sankavaram et al, 2014). In the application to the EPGS, Kodali 

et al (2013) list eleven faults related to the alternator, battery, and control units regulating 

the system outputs. They develop twelve diagnostic tests and demonstrate their relationship 

with the faults in a table referred to as the D-matrix. The derived D-matrix serves as an 

input to the DMFD algorithm. While the D-matrix is often associated with the DMFD and 

its various extensions, Yan et al (2014) integrated the D-matrix with PCA to diagnose 

multiple faults in air handling units of Heating Ventilation and Air Conditioning (HVAC) 

systems. The work in this chapter differs from these methodologies in that it incorporates 

a granular representation of the fault state instead of a binary representation. It also 

accounts for how various combinations of component-fault states interact to impact system 
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performance. This is possible due to the ability to collect data for a dense mesh of 

component-fault severity combinations via the VES Test-rig. While the objective of many 

MFD methodologies is to determine the optimal set of component-fault states, the proposed 

methodology expands on this by relating the inferred fault states to the system operability. 

Thus, the importance of each fault state is comparable. In the next section, a detailed 

explanation of the diagnosis methodology is provided. 

2.3 Methodology for Diagnosing State-of-health of Systems with Multiple, 

Interacting Fault Modes 

In this section, a methodology for diagnosing the SoH of systems with multiple, 

interacting fault modes is developed. This methodology considers complex systems where 

the severity of component faults has a direct impact on system performance. When multiple 

faults are present, each with their own respective severity level, their combined effect on 

system performance manifests itself in profiles acquired from sensors monitoring the 

system. This approach revolves around using these profiles to estimate the severity level 

of each component fault and mapping the estimated component-fault severity combination 

to the system SoH. 

The proposed methodology is comprised of an offline stage and an online stage. The 

offline stage has two principal operations: model fitting and system health-state definition. 

In model fitting, multi-dimensional profile data is acquired for several component-fault 

severity combinations and class labels are assigned to these combinations. The data is 

partitioned into two sets: a training set and a validation set. The training data is used to 

train a classifier that maps features extracted from the profiles to the set of class labels. To 
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extract features, a two-step approach is employed. First, curve registration is used to align 

the salient characteristics of the profiles. In this step, a target function is defined to register 

all other profiles. Then, the following transforms are applied to extract fault-based features 

from the registered profiles: Functional Principal Component Analysis (FPCA), Short-time 

Fourier Transform (STFT), and Discrete Wavelet Transform (DWT). For each of these 

statistical transformations, an individual Regularized Multinomial Regression (RMR) 

model is trained. These RMR models are used to perform classification on the observations 

from the validation set. Several ensemble methods are developed using the classification 

accuracy of the RMR models on the validation set to improve the classification accuracy 

of the individual RMR models.  

The second operation in the offline stage is to define the health states for the overall 

system. First, a system health indicator is identified. Next, hierarchical clustering is 

employed to cluster the component-fault severity combinations according to the system 

health indicator. To define the system health states, the clusters are ranked by their centroid 

value. In the online stage, new observations are sampled from the present state of the 

system. After curve registration and feature extraction, the features of the observations are 

passed through the three RMR models. Then, ensemble methods are used to combine the 

outputs of the three models. To classify the observations, an aggregate form of the 

traditional maximum a posteriori (MAP) criterion is employed. Since the classes refer to 

combinations of component-fault severity states, performing classification is the same as 

estimating the health state of the individual components simultaneously. Once the 

component-fault severity combination is estimated, the system SoH is inferred by 

referencing the ranking of the cluster to which the combination belongs. 
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2.3.1 Offline Stage – Model Fitting 

Consider a system with 𝐶 interdependent components. Let 𝑘𝑐 ∈ {0, 1, … , 𝐾𝑐} denote 

the fault state of component 𝑐, ordered in increasing severity where 𝑘𝑐 = 0 indicates no 

fault. Let 𝒌 = [𝑘1, … , 𝑘𝐶]′ denote the component-fault severity combination. This vector 

characterizes the system SoH in terms of the SoH of each component in the system. The 

number of possible states that 𝒌 can assume is 𝐾 = ∏ (𝐾𝑐 + 1)
𝐶
𝑐=1 . Thus, an integer-valued 

class label 𝓀 ∈ {1,2, … , 𝐾} is assigned to each state. For example, 𝓀 = 1 when 𝒌 =

[0, … ,0]′ and 𝓀 = 𝐾 when 𝒌 = [𝐾1, … , 𝐾𝐶]′. A supervised learning approach is used to 

train the models. First, a training set comprised of multi-dimensional profiles from each 

class is acquired. Suppose the system is monitored by 𝑃 sensors. For the discrete time 

domain 𝒯 = {0,1, … , 𝑇 − 1}, the 𝑛th profile observation at time  𝑡 ∈ 𝒯 is denoted by 

𝒔𝑛[𝑡] = [𝑠𝑛
1[𝑡], … , 𝒔𝑛

𝑃[𝑡]], 𝑛 = 1, … ,𝑁. Let 𝑦𝑛 ∈ {1,2, … , 𝐾} denote the class label for the 

𝑛th observation. The goal is to train a model that receives the multi-dimensional profiles 

as input and outputs a class label. However, profile data often suffers from misregistration 

and high dimensionality. To address these issues, a two-step approach for feature extraction 

is proposed. 

2.3.1.1 Feature Extraction – Curve Registration 

As faults propagate, profiles used for monitoring the system grow out of phase. 

Misregistered profiles are not comparable because their features at a specified time 

represent different system dynamics. Furthermore, misregistration obscures the correlation 

between profile features and faults rendering the extraction of informative features 

difficult. Curve registration is proposed to correct misregistration. Curve registration aligns 



 34 

the salient features of profiles through transformations of time 𝑡 called the warping 

functions.  To perform curve registration for sensor 𝑝, 𝑝 = 1,… , 𝑃, a target function 𝑠∗
𝑝
 is 

defined and all other profiles are transformed so that they are aligned to this target function. 

For profile 𝑠𝑛
𝑝
, the warping function ℎ𝑛

𝑝
 is a monotonically increasing function of time 𝑡 

that is equal to 𝑡 at the boundaries of  𝒯. Registration of profile 𝑠𝑛
𝑝
 is performed by 

evaluating 𝑠𝑛
𝑝(𝑡) at 𝑡 = ℎ𝑛

𝑝(𝑡). 

The warping function is defined by the following general formulation by Ramsay 

and Silverman (2005). 

 
ℎ𝑛
𝑝(𝑡) = 𝐷0

𝑛,𝑝 + 𝐷1
𝑛,𝑝∫ exp𝑊𝑛,𝑝(𝑢)𝑑𝑢

𝑡

0

, 𝑛 = 1,… ,𝑁 (2.1) 

where 𝐷0
𝑛,𝑝 = 0  and 𝐷1

𝑛,𝑝 =
𝑇−1

∫ exp𝑊𝑛,𝑝(𝑢)𝑑𝑢
𝑇−1
0

 because of the properties of ℎ𝑛
𝑝
. 𝑊𝑛,𝑝 is an 

unconstrained function that specifies the warping function. Since 𝑊𝑛,𝑝 is unconstrained, it 

is represented using the following linear expansion 𝑊𝑛,𝑝 = ∑ 𝑤𝑟
𝑛,𝑝𝐵𝑟

𝑅
𝑟=1 , where 𝐵𝑟 , 𝑟 =

1, … , 𝑅 are basis functions. To register 𝑠𝑛
𝑝
 to the target 𝑠∗

𝑝
 the value of 𝒘𝑛,𝑝 = (𝑤1

𝑛, … , 𝑤𝑅
𝑛) 

that minimizes the misregistration between the two profiles is determined. According to 

Ramsay and Silverman (2005), the misregistration is characterized using Principal 

Component Analysis (PCA). Since two profiles perfectly in phase form a straight line when 

plotted against each other, the result of PCA on these two profiles yields a minimum 

eigenvalue of zero. Therefore, the degree of misregistration can be characterized as the 

departure from unidimensionality, which is signified by a nonzero minimum eigenvalue. 

To perform curve registration, define the target function for sensor 𝑝, 𝑝 = 1, … , 𝑃 as the 
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average over all signals, 𝑠∗
𝑝(𝑡) ≔ 𝑁−1∑ 𝑠𝑛

𝑝𝑁
𝑛=1 (𝑡). For observation 𝑛 from sensor 𝑝, the 

curve registration algorithm is initialized by setting 𝒘𝑛,𝑝 = 𝟎 and computing the cross-

product matrix: 

 

𝕋𝑛
𝑝(ℎ𝑛

𝑝) = [
∫{𝑠∗

𝑝(𝑡)}
2
𝑑𝑡 ∫ {𝑠∗

𝑝(𝑡)𝑠𝑛
𝑝 (ℎ𝑛

𝑝(𝑡))} 𝑑𝑡

∫ {𝑠∗
𝑝(𝑡)𝑠𝑛

𝑝 (ℎ𝑛
𝑝(𝑡))} 𝑑𝑡 ∫ {𝑠𝑛

𝑝 (ℎ𝑛
𝑝(𝑡))}

2

𝑑𝑡
] (2.2) 

Misregistration for sensor 𝑝, 𝑝 = 1,… , 𝑃 is computed as the minimum eigenvalue of 

𝕋𝑛
𝑝 (ℎ𝑛

𝑝(𝑡)), 𝑀𝐼𝑁𝐸𝐼𝐺 (𝕋𝑛
𝑝 (ℎ𝑛

𝑝(𝑡))). Next, the value of 𝒘𝑛,𝑝 that minimizes 

𝑀𝐼𝑁𝐸𝐼𝐺 (𝕋𝑛
𝑝(ℎ𝑛)) is found using a method such as Newton’s method or stochastic 

gradient descent. Given the optimal solution 𝒘̂𝑛,𝑝, the warping function is defined by 

Equation 2.1 where 𝑊𝑛,𝑝 = ∑ 𝑤̂𝑟
𝑛,𝑝𝐵𝑟

𝑅
𝑟=1 . A demonstration of curve registration is 

provided in Figure 2.1. 

 

Figure 2.1 – Curve Registration 

Figure 2.1 shows curve registration for a current profile (left) and a voltage profile (right). 

The red curves represent the target functions for each sensor. The solid black curve is the 
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unregistered profile. Due to a component fault, there is a noticeable delay before current is 

drawn. As demonstrated by the dashed black curve, curve registration shifts the profile to 

the left to align it with the target function. 

For 𝑛 = 1,… ,𝑁, the curve registration algorithm starts by setting 𝒘𝑛,𝑝 = 𝟎. 

Therefore prior to curve registration, ℎ𝑛
𝑝(𝑡) = 𝑡 and the feature 𝑀𝐼𝑁𝐸𝐼𝐺 (𝕋𝑛

𝑝(ℎ𝑛)) , 𝑝 =

1, … , 𝑃 represents the amount of misregistration between an initially unregistered profile 

𝑠𝑛
𝑝
 and the target profile 𝑠∗

𝑝
. Let 𝛿𝑛

𝑝
 denote the amount of misregistration for profile 

𝑛, 𝑛 = 1,… ,𝑁 and sensor 𝑝, 𝑝 = 1,… , 𝑃. Since misregistration can occur due to system 

faults, this feature is combined with the features extracted using statistical transforms on 

the profiles. This feature is denoted by the vector 𝜹𝑛 = [𝛿𝑛
1, … , 𝛿𝑛

𝑃]′. 

2.3.1.2 Statistical Transformation of Profile Data 

Functional data introduces modeling difficulties due to its complexity and high 

dimensionality. Therefore, statistical transformations are used to extract potential fault-

based features from the profiles. Computation of the transformations involves projecting 

the profiles onto a selected set of basis functions. For the proposed methodology, the 

eigenfunction, Fourier, and wavelet bases are selected to deploy FPCA, STFT, and DWT 

respectively. These transformations are applied to the set of registered training profiles 

{𝒔̃𝑝
𝑛}
𝑛=1

𝑁
, 𝑝 = 1,… , 𝑃 and combine the extracted features with the misregistration feature 

Δ = [
−𝜹1

′ −
⋮

−𝜹𝑁
′ −

]. 
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Functional Principal Component Analysis (FPCA) 

Functional Principal Component Analysis (FPCA) is a technique for capturing 

dominant modes of variation in functional data. A discussion of FPCA and its application 

to condition monitoring is found in Fang et al (2017). The eigenfunction basis for sensor 

𝑝, 𝑝 = 1,… , 𝑃 is found by first estimating the covariance function as: 

 

𝐶𝑜𝑣̂𝑝[𝑡, 𝑡
′] =

1

𝑁 − 1
∑(𝑠̃𝑝

𝑛[𝑡] − 𝜇̂𝑝[𝑡])(𝑠̃𝑝
𝑛[𝑡′] − 𝜇̂𝑝[𝑡

′])

𝑁

𝑛=1

, 𝑝 = 1,… , 𝑃  (2.3) 

where 𝜇̂𝑝[𝑡] =
1

𝑁
∑ 𝑠̃𝑝

𝑛[𝑡]𝑁
𝑛=1  and 𝑡, 𝑡′ ∈ 𝒯. Using the Karhunen-Loeve decomposition, the 

covariance function is expanded as follows: 

 
𝐶𝑜𝑣̂𝑝[𝑡, 𝑡

′] = ∑ 𝛾𝑝,𝑚,𝜂𝑝,𝑚
[𝑡]𝜂𝑝,𝑚[𝑡

′]

∞

𝑚=1

, 𝑝 = 1,… , 𝑃 (2.4) 

where 𝛾𝑝,1 ≥ 𝛾𝑝,2 ≥ ⋯ are ordered eigenvalues for sensor 𝑝 and 𝜂𝑝,𝑚, 𝑚 = 1,2, … are the 

corresponding eigenfunctions for sensor 𝑝. To obtain the FPC scores, the de-meaned 

profiles are projected onto the eigenfunctions. The FPC score for observation 𝑛 of 

eigenfunction 𝑚 from sensor 𝑝 is 𝜉𝑝,𝑚
𝑛 = ∑ (𝑠̃𝑝

𝑛[𝑡] − 𝜇̂𝑝[𝑡])𝜂𝑝,𝑚[𝑡]
𝑇−1
𝑡=0 . Since 𝜆𝑝,𝑚 → 0 as 

𝑚 → ∞, it is possible to represent the profiles using a finite weighted sum. Given 𝑁 

observations, the maximum number of eigenfunctions is 𝑀𝑝 = max (𝑁 − 1, 𝑇). Let 𝝃𝑝
𝑛 =

[𝜉𝑝,1
𝑛 , 𝜉𝑝,2

𝑛 , … , 𝜉𝑝,𝑀𝑝
𝑛 ]

′

denote the FPC score feature vector for observation 𝑛 from sensor 𝑝. 

The FPCA feature matrix for sensor 𝑝 is the 𝑁 ×𝑀𝑝 matrix: 
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𝐹𝑃𝐶𝐴𝑝 =

[
 
 
 
 − 𝝃𝑝

1 ′ −

− 𝝃𝑝
2′ −

⋮

− 𝝃𝑝
𝑁′ −]

 
 
 
 

, 𝑝 = 1, … , 𝑃  (2.5) 

The 𝑃 FPCA matrices are concatenated with the registration feature vector to form the 

𝑁 × (∑ 𝑀𝑝
𝑃
𝑝=1 + 𝑃) matrix 𝑋𝐹𝑃𝐶𝐴 = [𝐹𝑃𝐶𝐴1| … |𝐹𝑃𝐶𝐴𝑃|Δ]. 

Short-time Fourier Transform (STFT) 

It is common for fault information to be visible in the frequency spectrum of a profile. 

The Short-time Fourier Transform (STFT) is used to evaluate this frequency spectrum as 

the profile changes in time. Thus, it is preferable over the Fourier transform for 

nonstationary profiles. For a detailed discussion on STFT, the reader is referred to Gao and 

Yan (2011). The STFT utilizes a sliding window function centered at specified time epochs 

and computes the Fourier transform on the segment of the profile within this window. The 

STFT of 𝑠̃𝑝
𝑛 evaluated at time realization 𝜏 and frequency 𝜔 is: 

 

𝑆𝑇𝐹𝑇𝑠̃𝑝𝑛
𝑊(𝜏, 𝜔) = ∑(𝑠̃𝑝

𝑛[𝑡]𝒲(𝑡 − 𝜏)) 𝑒−𝑖𝜔𝑡
𝑇−1

𝑡=0

 (2.6) 

where 𝒲(𝑡) = 0.54 − 0.46 cos (2𝜋 (
𝑡

𝑇−1
)) is the Hamming window function and 𝑖 

denotes an imaginary number. For each profile, the STFT is evaluated at 7 time epochs 

equally spaced between 0 and 𝑇 − 1 and 257 frequencies equally spaced between 0 and 𝜋. 

Then, the STFT matrix is reshaped to a column vector and the modulus of the vector 
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elements is computed. Let 𝑆𝑇𝐹𝑇𝑝
𝑛 denote the feature vector for observation 𝑛 from sensor 

𝑝. The STFT feature matrix for sensor 𝑝 is: 

 

𝑆𝑇𝐹𝑇𝑝 =

[
 
 
 
 − 𝑆𝑇𝐹𝑇𝑝

1′ −

− 𝑆𝑇𝐹𝑇𝑝
2′ −

⋮

− 𝑆𝑇𝐹𝑇𝑝
𝑁′ −]

 
 
 
 

, 𝑝 = 1,… , 𝑃  (2.7) 

The 𝑃 STFT matrices are concatenated with the registration feature vector to form the 

𝑁 × (1799 + 1)𝑃 matrix 𝑋𝑆𝑇𝐹𝑇 = [𝑆𝑇𝐹𝑇1| … |𝑆𝑇𝐹𝑇𝑃|Δ]. 

Discrete Wavelet Transform (DWT) 

Like the STFT, the Discrete Wavelet Transform (DWT) yields a time-frequency 

representation of a profile. Unlike the STFT however, the DWT yields a transformation 

with varying frequency resolution. This is achieved through dilations and translations of 

wavelet functions. A full discussion of wavelets can be found in Gao and Yan (2011). 

Given the father wavelet 𝜑, the mother wavelet function is defined as 𝜓(𝑡) = 𝜑(2𝑡) −

𝜑(2𝑡 − 1). A basis can be constructed in the space of square integrable functions by 

scaling and translating the wavelet functions using the equations: 𝜑𝑗,𝔨(𝑡) = 2
𝑗

2𝜑(2𝑗𝑡 − 𝔨) 

and 𝜓𝑗,𝔨(𝑡) = 2
𝑗

2𝜓(2𝑗𝑡 − 𝔨) where 𝑗 and 𝔨 correspond to the dilation and position 

parameters respectively. Assuming the profiles are sampled from the space of square-

integrable functions, 𝑠̃𝑝
𝑛(𝑡) can be approximated as: 

 

𝑠̃𝑝
𝑛(𝑡) =

1

√𝑇
∑ 𝑐𝑗,𝔨

𝑛,𝑝𝜑𝑗,𝔨[𝑡]

 

𝔨∈𝑍𝑗0

+
1

√𝑇
∑∑𝑑𝑗,𝔨

𝑛,𝑝𝜓𝑗,𝔨[𝑡]

 

𝔨∈𝑍𝑗

𝐽

𝑗=𝑗0

 (2.8) 
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where 𝑐𝑗,𝔨
𝑛,𝑝 = ∑ 𝑠̃𝑝

𝑛[𝑡]𝜑𝑗,𝔨[𝑡]
𝑇−1
𝑡=0  are the approximation coefficients and 𝑑𝑗,𝔨

𝑛,𝑝 =

∑ 𝑠̃𝑝
𝑛[𝑡]𝜓𝑗,𝔨[𝑡]

𝑇−1
𝑡=0  are the detail coefficients. 𝐽 = log2 𝑇 is the maximum number of 

decomposition levels permitted, 𝐽 − (𝑗0 − 1) is the number of decomposition levels 

computed, and 𝑍𝑗 is the set of indices for decomposition level 𝑗. To extract features using 

the DWT, a full wavelet decomposition (𝑗0 = 1) is performed on each profile. The order 4 

symlet is selected as the father wavelet. The advantages of this wavelet are its near 

symmetry and the ability to perform a smoother reconstruction of the profile than the Haar 

wavelet. For each level of the decomposition, the energy in that level is quantified by 

computing the sum of squared coefficients: 𝐷𝑊𝑇𝑝
𝑛 =

[∑ [𝑐𝐽,𝔨
𝑛,𝑝]2𝔨∈𝑍𝐽 , ∑ [𝑑𝐽,𝔨

𝑛,𝑝]
2

𝔨∈𝑍𝐽 , ∑ [𝑑𝐽−1,𝔨
𝑛,𝑝 ]

2
𝔨∈𝑍𝐽−1 , … , ∑ [𝑑1,𝔨

𝑛,𝑝]
2

𝔨∈𝑍1 ]
′

. Thus, the DWT feature 

matrix for sensor 𝑝 is: 

 

𝐷𝑊𝑇𝑝 =

[
 
 
 
 − 𝐷𝑊𝑇𝑝

1′ −

− 𝐷𝑊𝑇𝑝
2′ −

⋮

− 𝐷𝑊𝑇𝑝
𝑁′ −]

 
 
 
 

, 𝑝 = 1,… , 𝑃  (2.9) 

The 𝑃 DWT matrices are concatenated with the registration feature vector to form the 

𝑁 × (𝐽 + 2)𝑃 matrix: 𝑋𝐷𝑊𝑇 = [𝐷𝑊𝑇1| … |𝐷𝑊𝑇𝑃|Δ]. 

2.3.1.3 Regularized Multinomial Regression (RMR) Model 

The matrices 𝑋𝐹𝑃𝐶𝐴, 𝑋𝑆𝑇𝐹𝑇 , and 𝑋𝐷𝑊𝑇 serve as design matrices used to fit the RMR 

models. Prior to fitting the model, the columns in each matrix are standardized to zero 

mean and unit variance. A separate model is fitted for each statistical transformation. The 

purpose of these models is two-fold: to select the most informative features via 
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regularization and to perform classification. Recall that 𝑦𝑛, 𝑛 = 1,… ,𝑁 denotes the class 

label for observation 𝑛. For statistical transformation 𝓉, 𝓉 ∈ {𝐹𝑃𝐶𝐴, 𝑆𝑇𝐹𝑇, 𝐷𝑊𝑇}, define 

𝒙𝑛
𝓉  as the 𝑛th row of design matrix 𝑋𝓉. Then, 𝒙𝑛

𝓉 , 𝑛 = 1,… ,𝑁 are a set of observed 

predictors used to train the RMR model for statistical transformation 𝓉.  

Multinomial regression is an example of a general linear model. Thus, it satisfies the 

following conditions: the distribution of the response is a member of the exponential family 

and some function of the expected response is linear in a set of predictors. The response 

variable 𝒀𝑛 for observation 𝑛 can take on one of 𝐾 mutually exclusive classes, 

corresponding to the component-fault severity combinations. It is represented using a “one-

hot vector” where 𝒀𝑛[𝓀] = 1 if 𝑦𝑛 = 𝓀 and 𝒀𝑛[𝓀] = 0 otherwise. Suppose {𝒀𝑛}𝑛=1
𝑁 =

{[𝑦𝑛,1, … , 𝑦𝑛,𝐾]
′
}
𝑛∈{1,…,𝑁}

 

 is a set of independent multinomial distributed random response 

vectors. The distribution of 𝒀𝑛 is 𝕡(𝒀𝑛|𝝆) =  ∏ 𝜌
𝓀

𝑦𝑛,𝓀𝐾
𝓀=1 , where 𝝆 is the mean vector 

whose elements 𝜌𝓀 ≔ ℙ {𝑦𝑛,𝓀 = 1} are nonnegative and sum to unity. Given 𝒙𝑛
𝓉 , the 

conditional mean for the multinomial distribution 𝜌𝓀
𝔱 = ℙ{𝑦𝑛,𝓀 = 1|𝒙𝑛

𝓉} can be rewritten 

using Bayes’ Theorem: 

 
𝜌𝓀
𝔱 =

𝕡(𝒙𝑛
𝓉 |𝑦𝑛,𝓀 = 1)𝜌𝓀

∑ 𝕡(𝒙𝑛
𝓉 |𝑦𝑛,𝑙 = 1)𝜌𝑙

𝐾
𝑙=1

, 𝓀 = 1,… , 𝐾 (2.10) 

For all 𝓀 elements of the conditional mean, the natural logarithm of the numerator is a 

function of the 𝓀th element of mean parameter 𝝆. According to the general linear modeling 

framework, the log of the numerator of 𝜌𝓀
𝔱  is modeled as a linear combination of the 

predictors for all 𝓀 classes: ln[𝕡(𝒙𝑛
𝓉 |𝑌𝑛,𝓀 = 1)𝜌𝓀] = 𝛽0,𝓀

𝓉 + (𝒙𝑛
𝓉)′𝜷𝓀

𝓉 , 𝓀 = 1,… ,𝒦. 
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Taking the exponential of both sides of this equation and substituting into Equation 3.10 

yields: 

 

𝜌𝓀
𝔱 =

𝑒𝛽0,𝓀
𝓉 +(𝒙𝑛

𝓉 )
′
𝜷𝓀
𝓉

∑ 𝑒𝛽0,𝑙
𝓉 +(𝒙𝑛

𝓉 )
′
𝜷𝑙
𝓉𝐾

𝑙=1

, 𝓀 = 1, … , 𝐾 (2.11) 

To solve for parameters {𝛽0,𝓀
𝓉 , 𝜷𝓀

𝓉 }
𝓀=1

𝐾
, the penalized negative log-likelihood of the 

data {(𝒙𝑛
𝓉 , 𝑦𝑛)}𝑛∈{1,…,𝑁}

  shown below is minimized. 

 
ℓ ({𝛽0,𝓀

𝓉 , 𝜷𝓀
𝓉 }
𝓀=1

𝐾
) =  − [

1

𝑁
∑(∑𝑦𝑛,𝓀(𝛽0,𝓀

𝓉 + (𝒙𝑛
𝓉)′𝜷𝓀

𝓉 )

𝐾

𝓀=1

− log∑𝑒𝛽0,𝓀
𝓉 +(𝒙𝑛

𝓉 )
′
𝜷𝑙
𝓉

𝐾

𝑙=1

)

𝑁

𝑛=1

]

+ 𝜆 [
(1 − 𝛼)‖Β𝓉‖𝐹

2

2
+ 𝛼∑‖𝜷𝑑

𝓉‖2

𝐷

𝑑=1

] 

(2.12) 

The penalty term is referred to as the group-lasso term (Simon et al., 2012) as it selects the 

same group of features for each of the 𝐾 classes. The lasso parameter 𝜆 imposes a sparse 

selection of features for modeling and the elastic net parameter 𝛼 ∈ [0,1] accounts for 

correlated features by causing them to either be selected or removed together. ‖Β𝓉‖𝐹
2  is the 

Frobenius norm of the coefficient matrix Β𝓉 ∈ ℝ
𝐷𝓉×𝐾 and 𝜷𝑑

𝓉  is the 𝑑th row vector of Β𝓉 

where the dimension 𝐷𝓉 is the number of features extracted for statistical transformation 

𝓉. Let Β̂𝓉 denote the estimated coefficient matrix for statistical transformation 𝓉, 𝓉 ∈

{𝐹𝑃𝐶𝐴, 𝑆𝑇𝐹𝑇, 𝐷𝑊𝑇}. These matrices are used to map features from newly observed 

profiles to conditional means: 𝝆𝐹𝑃𝐶𝐴
𝔱 , 𝝆𝑆𝑇𝐹𝑇

𝔱 , and 𝝆𝐷𝑊𝑇
𝔱 . Next, ensemble methods that 

combine the conditional means from each statistical transformation with the aim of 

developing more accurate classifiers than the individual RMR models are proposed. 
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2.3.1.4 Ensemble Methods 

When a set of classifiers are accurate and diverse, an ensemble method can produce 

a classifier with higher accuracy than the individual classifiers (Dietterich, 2000). Accuracy 

refers to the ability of a classifier to make the correct estimate at a rate greater than 50% 

whereas diversity is the characteristic where multiple classifiers make different errors on a 

set of new observations. To develop a set of ensemble methods, a validation set of profiles 

is acquired in a similar manner as the training set. Let {𝒔𝑣}𝑣=1
𝑉  denote the set of validation 

profiles and let {𝑦𝑣}𝑣=1
𝑉  denote their class assignments. These profiles are registered to the 

previously defined target function and their features are extracted using the three statistical 

transformations. Let {𝒙𝑣
𝓉}𝑣=1
𝑉  denote the standardized features from the validation set using 

statistical transformation 𝓉. The estimates Β̂𝓉 , 𝓉 ∈ {𝐹𝑃𝐶𝐴, 𝑆𝑇𝐹𝑇, 𝐷𝑊𝑇}, obtained by 

solving the optimization problem in Equation 2.12, are used to map the feature vector 𝒙𝑣
𝓉 

to the conditional mean 𝝆𝑣,𝓉
𝔱 . The maximum-a-posteriori (MAP) estimate is utilized to 

perform classification. The classification accuracy of the validation set using statistical 

transformation 𝓉 is 𝑎𝑐𝑐𝓉 =
1

𝑉
∑ 1{𝑦𝑣

𝓉 = 𝑦𝑣}
𝑉
𝑣=1 . 

The accuracies of the RMR models on the validation set are utilized to develop the 

following four ensemble methods: 

Ensemble Method 1: Most accurate classifier - In this method, the statistical 

transformation 𝓉 that yielded the highest classification accuracy for the validation set is 

selected. 
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 𝝆𝐸𝑛𝑠1
𝔱 = 𝝆𝓉∗

𝔱 ;  𝓉∗ = arg max
𝓉∈{𝐹𝑃𝐶𝐴,𝑆𝑇𝐹𝑇,𝐷𝑊𝑇}

𝑎𝑐𝑐𝓉 (2.13) 

Ensemble Method 2: Average conditional mean over 𝓉 

 
𝝆𝐸𝑛𝑠2
𝔱 =

1

3
(𝝆𝐹𝑃𝐶𝐴

𝔱 + 𝝆𝑆𝑇𝐹𝑇
𝔱 + 𝝆𝐷𝑊𝑇

𝔱 ) (2.14) 

Ensemble Method 3: Weighted average conditional mean – In this method, weights are 

created proportional to the classification accuracy. First, min-max normalization is used to 

scale the accuracies between 0 and 1. Then, the scaled accuracies are normalized to sum to 

unity. Let 𝓌𝓉 denote the weight for transform 𝓉. 

 𝝆𝐸𝑛𝑠3
𝔱 = 𝓌𝐹𝑃𝐶𝐴𝝆𝐹𝑃𝐶𝐴

𝔱 +𝓌𝑆𝑇𝐹𝑇𝝆𝑆𝑇𝐹𝑇
𝔱 +𝓌𝐷𝑊𝑇𝝆𝐷𝑊𝑇

𝔱  (2.15) 

Ensemble Method 4: Most confident classifier – In this method, the conditional mean that 

contains the highest confidence amongst the transformations is selected. For statistical 

transformation 𝓉, let 𝓀𝓉
∗  denote the class with the highest confidence. 

 𝝆𝐸𝑛𝑠4
𝔱 = 𝝆𝓉8

𝔱 ;  𝓉∗ = arg max
𝓉∈{𝐹𝑃𝐶𝐴,𝑆𝑇𝐹𝑇,𝐷𝑊𝑇}

𝝆𝓉
𝔱 [𝓀𝓉

∗] (2.16) 

The development of the ensemble methods concludes the model training operation. Given 

this model, a newly observed profile is mapped to an ensemble method conditional mean. 

Since the classes refer to component-fault severity combinations, this model estimates the 

fault severity of the system components simultaneously. To ascertain the system SoH, it is 

useful to analyze the impact of faults on system performance. 
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2.3.2 Offline Stage – Definition of System Health States 

For the second operation in the offline stage, a function that maps the component-

fault severity combination to the system SoH is defined. First, the space of system health 

states is defined according to the impact of component-fault severity combinations on the 

system performance. To define this space, a system health indicator is identified. This 

indicator should show a decline in performance as the component faults become more 

severe. Bottom-up hierarchical clustering is employed to group the 𝐾 component-fault 

severity combinations. Bottom-up hierarchical clustering starts with an initial set of 

clusters, often the individual data points or a prespecified set of cluster centroids. The 

distance between each cluster is computed and the two closest clusters are merged. The 

merged clusters are removed and replaced with a new cluster representing the merged 

clusters. This is repeated until only one cluster remains. The number of clusters can be 

chosen by placing a threshold on the value of the distance metric. After clustering the 

component-fault severity combinations, the system states are defined by ranking the 

clusters in order of their centroid values. Suppose the component-fault severity 

combinations are represented by a 𝐶-dimensional array. The clustering partitions the array 

into ranked system states. Thus, the array can be seen as a tabular function that maps the 

component-fault severity state to the system SoH. 

2.3.3 Online Stage – Diagnosis of Newly Observed Profiles 

In the online stage, newly observed profiles are used for system diagnosis. Let 

{𝒔𝑟}𝑟=1
𝑅  denote a set of 𝑅 consecutively observed profiles. Feature extraction is performed 

by first registering the profiles to the predefined target functions and then extracting the 
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FPCA, STFT, and DWT features. These features are standardized using the means and 

standard deviations from the training design matrices. After passing the standardized 

features through the RMR models and combining the outputs using an ensemble method, 

the posterior means for the 𝑅 observations 𝝆1
𝔱 , … , 𝝆𝑅

𝔱  are obtained. Define 𝝆_
(∗) as the vector 

with elements: 

 
𝝆 
(∗)[𝓀] =

∏ 𝝆𝒓
𝔱 [𝓀]𝑅

𝑟=1

∑ ∏ 𝝆𝒓
𝔱 [𝑙]𝑅

𝑟=1
𝐾
𝑙=1

, 𝓀 ∈ {1,… , 𝐾} (2.17) 

Once 𝝆 
(∗) is calculated, the maximum a posteriori (MAP) estimate is used to assign the 

group of observations to a component-fault severity combination. This estimate is 

motivated by the possibility that a single observation may be classified to a class with low 

confidence. By taking multiple observations, the uncertainty of one observation can be 

overcome and a more confident estimate can be obtained. Since this estimate aggregates 

the results from multiple observations, it is referred to as Aggregate MAP. Note that if 𝑅 =

1, 𝝆 
(∗)[𝓀] = 𝝆1

𝔱 [𝓀] and Aggregate MAP reduces to the traditional MAP estimate. Once 

the component-fault severity combination is estimated, the system SoH is inferred by the 

tabular function defined in Section 2.3.2. In Section 2.5, the methodology is applied to the 

Vehicle-Engine Start (VES) system. Prior to demonstrating the proposed methodology, the 

VES system and the capabilities of the test-rig are briefly discussed. 

2.4 Vehicle-engine Start (VES) System 

The circuit for the VES system was described in Chapter 1. For the remainder of this 

section, the VES Test-rig and its capabilities are described in further detail. 
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2.4.1 VES Test-rig 

The VES Test-rig, shown in Figure 2.2, was utilized to simulate the engine-cranking 

process. The test-rig consists of a 4-cylinder engine with a 12-volt Li-ion battery and three 

slots for testing multiple motors simultaneously. A coiled resistor is placed between the 

battery and the motor. The resistor simulates battery degradation and allows for testing of 

the motors under various battery-fault severity levels. The time and duration of cranking is 

controlled by the MicroAutobox® prototyping unit. This test-rig is displayed in Figure 2.2. 

 

Figure 2.2 – VES Test-rig 

The test-rig is fitted with thermocouples, an rpm sensor, an ammeter, and a voltmeter that 

measure temperature, engine rpm, current, and voltage respectively. The thermocouples 

are attached to the outer shell of the motors to monitor their temperature as a safety 

precaution. The engine rpm is a measure of overall system performance and system failure 

is defined as failure of the engine to reach an angular velocity of 250 rpm within one second 

of cranking. The speed threshold was determined empirically and was validated using the 

criterion provided by Halderman (1988). The current and voltage profiles are acquired from 
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the ammeter and voltmeter respectively. These profiles capture the electro-mechanical 

activity of the system during engine cranking and are used for modeling. 

2.4.2 VES System Components 

This study focuses on two critical and interdependent components of the VES 

system: the Li-ion battery and the start-stop motor. In contrast to traditional starter motors, 

start-stop motors restart the engine following short idle periods such as stopping at a traffic 

light or during heavy traffic. The start-stop motor has a significant impact on driver 

experience as even a small delay in restarting the engine is considered a very serious fault. 

The fidelity of the motor relies on the thickness of its brushes, which are responsible for 

passing current from the motor wiring to the rotating armature. As the thickness decreases, 

contact between the brush and the armature weakens, compromising the ability of the 

motor to crank the engine. The battery fault level also impacts system performance since a 

faulted battery provides insufficient current to crank the engine. Through the VES Test-

rig, faults in the motor and the battery are induced. By cranking the engine for a significant 

amount of time, the brushes are naturally degraded to increasingly higher levels of fault 

severity. Faulty battery conditions are simulated using the coiled resistor. The resistor 

simulates increased internal resistance, which serves as a measure of battery health (Saxena 

et al, 2012). Using the sensors mounted on the test-rig, current, voltage, and engine rpm 

signals are acquired during the cranking process. The current and voltage profiles when the 

battery and motor are both in their healthy state are displayed in Figure 2.3. 
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Figure 2.3 – Current and Voltage Profiles 

The profiles in Figure 2.3 were recorded during the first second of engine cranking. The 

initial portions of both profiles show the pinion engaging with the flywheel. Once engaged, 

the motor quickly draws a large amount of current from the battery, hence the large peak 

in the current and the subsequent, sharp drop in voltage. The oscillatory portion of the 

profiles represent when the motor is drawing a steady amount of current to crank the 

engine. The oscillations in the profiles are due to the changes in the position of the 

crankshaft as the flywheel turns. Once the motor stops cranking the engine, the current 

drops to zero and the voltage returns to its initial potential. In a real-life scenario, the 

duration of cranking is dependent on how quickly the VES system can crank the engine to 

its target rpm. In this experiment, the target angular speed threshold is set to 250 rpm. 

Natural variability in the process and degradation results in variability in the stopping time 

as shown in Figure 2.4. 
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Figure 2.4 – Variability in Cranking Time 

The left hand column of Figure 2.4 compares two different profiles when the system is in 

a healthy condition. As shown in the bottom left, two rpm signals reach the threshold at 

different times resulting in two different stopping times. The right hand column shows the 

large difference in performance of the system when the components are in their most severe 

fault state. Due to the severe battery condition, the amount of current drawn is significantly 

lower and the amount of time to reach the threshold is much larger. Furthermore, the low 

thickness of the motor brushes causes a long delay from when the pinion engages to when 

the motor draws the current. Therefore, profiles acquired when the motor is faulted are 

likely to be out of phase with profiles collected when the system components are healthy. 

The next section demonstrates how the proposed methodology utilizes these characteristics 

to train the diagnosis models. 
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2.5 Case Study: Vehicle-engine Start (VES) System Diagnosis 

This case study considers delayed engine start as the failure mode of interest. As shown in 

Section 2.4, a delayed start is linked to the health of the battery and the motor. Therefore, 

the VES system is modeled as being comprised of these two components. Implementation 

of the proposed methodology requires data snapshots for the various component-fault 

severity combinations. Through a designed experiment, snapshots are acquired over a fine 

mesh of battery and motor levels. These snapshots consist of current, voltage, and engine 

rpm profiles recorded simultaneously. To define component-fault states, the battery and 

motor levels are clustered using features extracted from the unprocessed profiles. Using 

the defined fault states and the profile data, the diagnosis methodology is demonstrated for 

the VES system. 

2.5.1 Data Acquisition Via Design of Experiments 

For the proposed experiment, faults are seeded into the components of the test-rig 

and data is recorded under various component-fault severity combinations. The resistor 

(labeled G in Figure 2.2) is used to simulate various battery health levels by adding 

resistance to the cranking circuit. Meanwhile, brush degradation in the motor is induced by 

repeated engine cranking. The component levels for the battery and the motor are displayed 

in Table 2.1. 
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Table 2.1 – Battery Levels 

Battery 

Level 

Added 

Resistance 

(Ω) 

Battery 

Level 

Added 

Resistance 

(Ω) 

Battery 

Level 

Added 

Resistance 

(Ω) 

Motor 

Level 

Brush 

Thickness 

(in.) 

Motor 

Level 

Brush 

Thickness 

(in.) 

1 0.000 6 0.013 11 0.027 1 0.401 6 0.221 

2 0.001 7 0.015 12 0.029 2 0.340 7 0.184 

3 0.004 8 0.018 13 0.032 3 0.291 8 0.163 

4 0.007 9 0.021 14 0.035 4 0.255 9 0.136 

5 0.010 10 0.024     5 0.231 10 0.126 

The data acquisition process consists of conducting a two-way factorial experiment where 

factor levels are equivalent to those displayed in Table 2.1. Since the motor level cannot 

be efficiently randomized, the motor level is held constant while the data acquisition for 

the battery level follows a randomized order. For a fixed motor level, current, voltage, and 

engine rpm profiles are sampled for each of the 14 battery levels. This procedure is 

replicated six times before proceeding to degrade the motor to its next fault level. This is 

repeated until motor brush failure, which occurred at the tenth level. 

2.5.2 Hierarchical Clustering for Defining Component States 

As the number of battery/motor fault severity combinations is large (140), bottom-

up hierarchical clustering is employed to group the combinations into homogeneous 

clusters. In all further applications of hierarchical clustering, the distance metric is defined 

as the euclidean distance between cluster centroids where the centroid is the arithmetic 

mean of the points in the cluster. The feature used for clustering is the wavelet feature 

described in Subsection 2.3.1.2, but for the unregistered current and voltage profiles. Since 

battery level has a more prominent effect on the behavior of the profiles than the motor 

levels, the battery levels are clustered first. Then for each battery cluster, the motor levels 

are clustered. For battery level clustering, the number of initial clusters is set to 14. 
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Similarly, the number of initial motor levels is set to 10. The results of hierarchical 

clustering on the battery and motor level are displayed in Figure 2.5. 

 

Figure 2.5 – Hierarchical Clustering (Left: Battery, Right: Motor) 

Figure 2.5 displays the results as a dendrogram. The heights of the vertical lines represent 

distances between the clusters. For example, the distance between levels 8 and 9 is small 

compared to the distance between levels 12 and 13. Horizontal lines represent linkages 

between clusters. Using the dendrogram in the left side of Figure 2.5, three battery states 

are defined: State 0 refers to when the battery level is between 1 and 4 (0Ω – 0.007Ω) , 

State 1 refers to when the battery level is between 5 and 7 (0.007Ω – 0.015Ω), and State 2 

refers to when the battery level is between 8 and 10 (0.015Ω – 0.024Ω). Levels 11 through 

14 are discarded because instances of system failure occur at these levels even when the 

motor is healthy. While the elements of cluster (1, 2, 3, 4) are further apart than those of 

the other two clusters, better clustering performance for the motor levels is observed with 

this configuration than if two separate clusters were defined. Motor clustering is shown on 

the right side of Figure 2.5. For States 0 and 2 of the battery, motor levels 8 and 9 cluster 

together, whereas levels 7, 8, and 9 cluster together for State 1 of the battery. Since level 7 
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is closer to the first six motor levels in two of the three battery states, this level is assigned 

to the healthy motor state. The motor states are defined as follows: State 0 refers to when 

the motor is between levels 0 and 7 (greater than 0.184 in.), State 1 refers to when the motor 

level is between 8 and 9 (0.136 in. – 0.184 in.), and State 2 refers to when the motor level 

is at 10 (less than 0.136 in.). Since the number of component states is three for each 

component, the number of component-fault severity combinations is nine. The class labels 

for these combinations are displayed in Table 2.2. 

Table 2.2 – Class Labels for Component-fault Severity Combinations 

Battery 
Motor 

0 1 2 

0 1 2 3 

1 4 5 6 

2 7 8 9 

Using the results of hierarchical clustering, the VES system is framed as being 

comprised of 𝐶 = 2 interdependent components. Let 𝑐 = 1 denote the index for the battery 

component and 𝑐 = 2 denote the index for the motor component. The highest degree of 

fault severity for both components is 𝐾𝑐 = 2, 𝑐 = 1,2. Thus, 𝑘𝑐 ∈ {0,1,2} for 𝑐 = 1,2. 

Table 5.2 shows how class labels are assigned to each component-fault severity 

combination. For example, when 𝒌 = [1,1]′, the class label is 𝓀 = 5. During one cranking 

cycle, the test-rig generates voltage, current, and engine RPM profiles. The current and 

voltage profiles are used for modeling while the engine rpm profiles are used for defining 

the system health indicator. For the purposes of modeling, one observation is a 2-

dimensional profile where 𝑠𝑛
1 refers to the 𝑛th current profile and 𝑠𝑛

2 refers to the 𝑛th 

voltage profile. Each profile consists of 𝑇 = 2048 points sampled at a 2 kHz rate.  
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In the experiment, six observations are acquired for each combination of factor 

levels. After discarding profiles for battery levels 11-14, the number of observations is 

600. To demonstrate the proposed methodology, the 600 observations are partitioned into 

a training, validation, and testing set. For the training set, half the observations of each 

class are sampled at random without replacement. Due to the clustering, there is an unequal 

number of samples in each class. Therefore, 100 observations are sampled with 

replacement from each of the nine classes to obtain a training set with 𝑁 = 900 

observations. The remaining 300 observations are split into a validation and testing set. 

The validation set has 152 observations and the testing set has 148 observations. The slight 

discrepancy is due to some classes containing an odd number of observations. In the offline 

stage of the proposed methodology, a classifer is trained using the training and validation 

observations and the system health states are defined using the system health indicator. In 

the online stage, diagnosis is achieved by assigning a new observation to one of the classes. 

Then, the estimated class is mapped to the system SoH. The testing set is used to assess the 

online performance of the proposed methodology. In this demonstration, the methodology 

is repeated ten times for random partitions of the data and a graphical summary of the 

performance is reported. 
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2.5.3 Offline Stage – Model Fitting 

2.5.3.1 Feature Extraction – Curve Registration 

Curve registration consists of defining a target function and aligning all profiles to 

this target function. The target function 𝑠∗
𝑝
 for sensor 𝑝, 𝑝 = 1,… , 𝑃 is the mean of all 

profiles in the training set. Recall that to align a profile 𝑠𝑛
𝑝
 to 𝑠∗

𝑝
, a numerical iterative 

method is used to find the warping function that minimizes the misregistration between the 

two profiles. The warping function is specified by 𝒘𝑛,𝑝, the vector of weights from the 

linear expansion of 𝑊𝑛,𝑝. Initially, (𝒘𝑛,𝑝)0 = 𝟎. Thus, (ℎ𝑛
𝑝)
0
(𝑡) = 𝑡 and the initial 

registered profile (𝑠̃𝑛
𝑝)
0
 is equal to 𝑠𝑛

𝑝
. The misregistration criterion is intiailized as 𝛿𝑛

𝑝 = 

𝑀𝐼𝑁𝐸𝐼𝐺 (𝕋𝑛
𝑝((ℎ𝑛)

0)). The set of minimum eigenvlaues 𝜹𝑛 = [𝛿𝑛
1, … , 𝛿𝑛

𝑃]′ serves as the 

first feature extracted for diagnosis. On the first iteration, the weight vector is updated to 

(𝒘𝑛,𝑝)1 and the warping function is updated to (ℎ𝑛
𝑝)
1
. Given this warping function, 

estimating the registered function consists of two steps. First, the inverse warping function 

((ℎ𝑛
𝑝)
−1
)
1
(𝑡) is estimated by interpolating the relationship 𝑡 vs. (ℎ𝑛

𝑝)
1
(𝑡). Second, the 

registered function (𝑠̃𝒏
𝑝)
1
  is estimated by interpolating the relationship (𝑠̃𝒏

𝑝)
0
(𝑡) vs. 

((ℎ𝑛
𝑝)
−1
)
1
(𝑡). Given the target function and the estimated registered function, the 

misregistration criteria is computed as 𝑀𝐼𝑁𝐸𝐼𝐺 (𝕋𝑛
𝑝((ℎ𝑛)

1)). This procedure continues 

iteratively until convergence. The results of curve registration for the current and voltage 

profiles are shown in Figure 2.6. 
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Figure 2.6 – Registered Profiles for All Classes (Top: Current, Bottom: Voltage) 

2.5.3.2 Statistical Transformations of Profile Data 

Following curve registration, features are extracted by applying the three statistical 

transforms to the registered profiles. When computing FPC scores, there were originally 



 58 

𝑁 = 600 observations. Therefore, the number of FPC scores for each sensor is 𝑁 − 1 =

599. The FPC scores are computed prior to the partitioning into training, validation, and 

testing. When combined with the misregistration feature, the FPCA design matrix 𝑋𝐹𝑃𝐶𝐴 

is a 900 × 1200 matrix. To compute the STFT of a profile, the STFT is evaluated at the 

following epochs: 𝜏 = [256, 512, 768, 1024, 1279, 1535, 1791] for 257 equally spaced 

frequency values between 0 and 𝜋. Thus, the STFT matrix is 257 × 7. After taking the 

modulus of the STFT matrix, reshaping it into a vector, and concatenating it with the 

misregistration feature, the STFT design matrix 𝑋𝑆𝑇𝐹𝑇, which has dimension 900 × 3600, 

is formed. For the DWT, the maximum number of decomposiiton levels is 𝐽 = 11. 

Therefore, twelve features are extracted from each current and voltage profile. Thus, the 

DWT design matrix 𝑋𝐷𝑊𝑇 is a 900 × 26 matrix. 

2.5.3.3 Regularized Multinomial Regression (RMR) 

Following feature extraction, the three design matrices are used to train three 

regularized multinomial regression (RMR) models. The elastic net parameter 𝛼 is set to 

0.99 to promote a sparse model. The lasso parameter 𝜆 determines how many parameters 

are retained in the model. This parameter is selected using 10-fold cross-validation. The 

results of cross-validation are shown in Figure 2.7. 
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Figure 2.7 – Cross-validation Plots (Left to Right: FPCA, STFT, DWT) 

For the plots in Figure 2.7, the x-axis contains the ln 𝜆 values. The dotted line on the left-

hand side denotes the choice of 𝜆 that minimizes the multinomial deviance and the top 

horizontal axis refers to the number of features retained by the model for the corresponding 

𝜆 values. The plots indicate that the number of features selected are 149, 191, and 25 for 

the FPCA, STFT, and DWT classifiers respectively. 

2.5.3.4 Ensemble Methods 

After the RMR classifiers are trained, their performance on the validation set is 

analyzed to develop the ensemble methods. First, curve registration is used to register the 

validation profiles to the target profile defined using the training set. Next, the three 

statistical transforms are applied. Note that for FPCA, the validation profiles are projected 

onto the eigenfunction basis computed using the training profiles. Each observation is 

standardized according to the mean and standard deviation of the design matrices from the 

training set. Finally, the standardized features are passed through their respective RMR 

classifier. Over the ten iterations, the average accuracy for the three classifiers is as follows: 

FPCA – 0.738, STFT – 0.774, DWT – 0.844. Thus, the DWT outperforms the other 
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statistical transformations on average. As is shown in Figure 2.8, it outperforms the other 

two over all but one iteration. 

 

Figure 2.8 – Overall Accuracy for Validation Set 

Therefore, Ensemble Method 1 selects the DWT classifier in all but the third iteration. 

When creating weights for Ensemble Method 3, the DWT classifier receives the largest 

weight for all but the third iteration. Conversely, the FPCA classifier has the worst 

performance for all but the fourth iteration. Other than for the fourth iteration, a weight of 

zero is assigned to the FPCA classifier for Ensemble Method 3. The STFT classifier is 

assigned an intermediate weight for eight out of the ten iterations. Before proceeding to the 

online stage, the definition of the system health states is discussed. 

2.5.4 Offline Stage – Definition of System Health States 

To define the system health states, the system health indicator is defined as the time 

(in seconds) for the VES system to crank the engine to its target angular velocity of 250 
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rpm. This feature is extracted from the engine rpm profile. Next, hierarchical clustering is 

performed to group the nine classes defined in Table 2.2 according to the system health 

indicator. The initial centroids are chosen to be the average system health indicator for each 

class. The centroids for each class and the dendrogram are displayed in Figure 2.9. 

 

Figure 2.9 – Dendrogram and Cluster Centroids for Component-fault Severity 

Combinations 

Hierarchical clustering results in the following clusters: (1, 2), (4, 5), (3, 7, 8), (6, 9) color 

coded in Figure 2.9. The clusters are ranked in descending order according to their average 

cranking time. For example, State 1 (white) is the healthy state and consists of classes 1 

and 2. State 2 (green) is the mildly degraded state and consists of classes 4 and 5. State 3 

(yellow) is the highly degraded state and consists of classes 3, 7, and 8. Finally, State 4 

(red) is the system failure state and consists of classes 6 and 9. An interesting result is when 

𝒌 = [0,2]′, the system SoH is not in the system failure state. Despite the low brush 

thickness, this combination resides is in the highly degraded cluster because the spring-

loaded nature of the brushes allows enough current to be drawn to rotate the armature and 

crank the engine if supplied with enough current. At more severe battery levels, the amount 

of current is not enough to overcome the brush fault and the system fails. In practice, the 
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table in Figure 2.9 is used to infer the system SoH once the component-fault severity 

combination has been estimated. The benefit of this approach is that the combinations are 

imbued with physical meaning, and they can be compared based on the direness of their 

impact on system health. 

2.5.5 Online Stage – Diagnosis Using Newly Observed Profiles 

In the online stage, diagnosis is performed by acquiring data for the current state of 

the system. This can be either one observation or a set of consecutive observations. If one 

observation is sampled, the traditional maximum a posteriori (Trad. MAP) criterion is used 

for classification. Otherwise, the Aggregate MAP (Agg. MAP) criterion is used. The 

performance of the proposed modeling framework is analyzed using the testing set. The 

procedure for performing classification on the testing set is the same as with the profiles 

from the validation set, except the ensemble methods are deployed prior to estimating the 

component-fault severity combination. Since these observations are sampled at random, 

Aggregate MAP (𝑅 = 2) is demonstrated on a single observation in the following way. 

For an observation from class 𝓀 ∈ {1,… ,9}, Equation 2.17 is applied to combine this 

observation with each observation from the same class separately. The results of applying 

the criteria are averaged and the combined observations are classified according to the 

MAP criterion. Thus, an expected class assignment of an observation is obtained if it is 

assumed that it was sampled consecutively with another observation. Recall that the 

proposed modeling framework was performed ten times for various partitions of the data 

set. Figure 2.10 displays box and whisker plots for the classification accuracy of eight 

models using both Traditional MAP and Aggregate MAP with 𝑅 = 2. 
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Figure 2.10 – Box and Whisker Plots for Classification Accuracy (Left: Trad. MAP, 

Right: Agg. MAP) 

The eight models displayed in Figure 2.10 include a baseline model, where the raw 

current and voltage profiles are used as feature vectors to train the RMR model, the three 

individual models (FPCA, STFT, DWT), and the four ensemble methods denoted as E.M. 

#. The baseline model is shown to perform the worst for both criteria. The DWT performs 

the best for all individual models, which is consistent with the results in Figure 2.10. 

However, the one instance when the STFT model performed better than the DWT for the 

validation set resulted in Ensemble Method 1 performing slightly worse than the DWT 

model. Outside of that one instance, Ensemble Method 1 performs the same as the DWT 

model. For Ensemble Methods 2 and 4, the performance is quite varied. For example, the 

maximum of both methods is higher than that of all other models. However, their median 

and minimum values fall below that of the DWT model. Ensemble Method 2 averages the 

conditional mean vectors from the three individual models whereas Ensemble Method 4 

selects the conditional mean vector whose element contains the highest confidence. For 

both of these methods, the influence of the worst performing classifier, FPCA, may 

adversely impact the classification accuracy of the ensemble methods. Ensemble Method 

3 uses a weighted average of the conditional mean vectors from the three individual 
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models. Since the min-max normalization removes the impact of the lowest performing 

classifier of the validation set, this results in Ensemble Method 3 having the highest median 

classification accuracy of the ensemble methods. Furthermore, its median value is greater 

than all the individual models. 

As shown on the right-hand side of Figure 2.10, the Aggregate MAP criterion 

improves the classification accuracy of all the models. In general, the conclusions from the 

Traditional MAP criterion carry over to the Aggregate MAP criterion. The primary 

difference is that the median value of Ensemble Method 2 is greater than that of the DWT. 

However, the minimum of Ensemble Method 2 is lower than that of the DWT. The median 

value of Ensemble Method 3 is equal to that of Ensemble Method 2, but its minimum is 

higher than that of Ensemble Method 2 and is equal to that of DWT. DWT has a slightly 

higher third quartile than Ensemble Method 3, but its maximum is less than that of 

Ensemble Method 3.  

Both the classification accuracy of the models and the performance of the classifiers 

at assigning observations to the correct system state are analyzed. In Figure 2.9, the classes 

are partitioned into system states-of-health. An observation is deemed correctly assigned 

if its estimated class falls into the correct ranked cluster. For example, if an observation is 

from class 3, it is deemed correctly assigned if the estimated class is 3, 7, or 8 since these 

classes all encompass the highly degraded state, State 3. Since the system states are ranked, 

incorrectly assigned observations are penalized by squaring the deviation between the 

assigned state and the actual state. For all models, the mean squared error (MSE) and 

average over all iterations are computed. Table 2.3 displays the average MSE for all models 

over the ten iterations. 



 65 

Table 2.3 – Mean Squared Error for Estimating System SoH 

Model 

State 1 State 2 State 3 State 4 Total 

Trad. 

MAP 

Agg. 

MAP 

Trad. 

MAP 

Agg. 

MAP 

Trad. 

MAP 

Agg. 

MAP 

Trad. 

MAP 

Agg. 

MAP 

Trad. 

MAP 

Agg. 

MAP 

Benchmark 0.067 0.008 0.090 0.033 0.151 0.109 0.046 0.028 0.353 0.178 

FPCA 0.051 0.003 0.060 0.015 0.130 0.083 0.043 0.032 0.284 0.133 

STFT 0.042 0.000 0.045 0.009 0.093 0.048 0.039 0.037 0.218 0.094 

DWT 0.053 0.001 0.052 0.004 0.058 0.008 0.030 0.014 0.193 0.027 

E. M. 1 0.055 0.001 0.050 0.005 0.061 0.009 0.035 0.016 0.201 0.030 

E. M. 2 0.020 0.000 0.032 0.002 0.074 0.016 0.034 0.016 0.159 0.034 

E. M. 3 0.047 0.000 0.049 0.003 0.056 0.011 0.032 0.016 0.184 0.030 

E. M. 4 0.028 0.000 0.035 0.006 0.066 0.014 0.040 0.014 0.170 0.034 

On average, the total MSE is lowest for Ensemble Method 2 when using Traditional MAP 

and for DWT when using Aggregate MAP. For Traditional MAP, the STFT has a lower 

MSE than the DWT for States 1 and 2. Since the Ensemble Methods 2-4 incorporate the 

STFT, they also have lower MSE than the DWT for States 1 and 2. The DWT has lower 

MSE than the other individual models for States 3 and 4. In Ensemble Method 3, the weight 

for the DWT is highest for all but one repeated trial. Therefore, it has higher MSE than 

Ensemble Methods 2 and 4 for States 1 and 2, but lower MSE than the other Ensemble 

Methods for States 3 and 4. The effect of Aggregate MAP removes much of the error in 

the DWT for States 1 and 2 resulting in the differences in total MSE to be dependent on 

States 3 and 4 where the DWT performs strongest. Of the Ensemble Methods, Ensemble 

Method 3 has the lowest total MSE, which is very close to that of DWT. 

2.6 Conclusion 

In this chapter, a methodology for diagnosing the presence and severity of multiple, 

interacting faults in complex industrial systems was proposed. This methodology consisted 

of training multiple models and combining their performance using ensemble methods. 



 66 

The methodology was demonstrated using VES Test-rig. Using the traditional maximum-

a-posteriori (MAP) criterion, the most accurate individual model was the DWT. Ensemble 

Method 1, which selects the most accurate individual model for the validation set, selected 

the DWT for all but one iteration. Thus, Ensemble Method 1 performed equal to DWT in 

all but one instance. Ensemble Method 3 outperformed the DWT in terms of median overall 

classification accuracy. When inferring the system SoH, Ensemble Methods 2-4 had less 

error than the individual models. The application of Aggregate MAP greatly improved the 

overall classification accuracy for all models. While Ensemble Methods 2 and 3 had 

slightly higher median overall classification accuracy, their error in inferring the system 

SoH was slightly higher than the DWT. 

While the proposed methodology is designed to be applicable to common industrial 

systems, it does require some domain knowledge to identify both important and 

diagnosable faults and a system health indicator. Tools such as Failure Mode and Effect 

Analysis (FMEA), the Pareto chart, and the Ishikawa diagram are useful for identifying 

these faults, but knowledge of how to induce seeded faults is also necessary. For 

applications such as bearings, techniques to induce seeded faults are widely known. For 

other applications, domain expertise on the degradation process of the system components 

is likely needed. In the automotive industry however, it is common to record data snapshots 

of the system for various levels of component-health states during the preproduction stage. 

Therefore, there exists the ability to record data following a designed experiment like ours 

in the case study. Thus, the proposed methodology can be highly impactful for the 

automotive industry. 
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In future work, validation of the proposed methodology for the case of more than 

two fault modes is planned. Furthermore, high-dimensional sensors such as infrared 

cameras are being used for monitoring complex industrial systems. These sensors produce 

images and video streams which may contain more fault information but are of higher 

dimension than signal profiles. Therefore, extensions of the proposed methodology to 

account for these advanced data structures are planned. 
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CHAPTER 3. CONDITION MONITORING OF THE 

COMBUSTOR 

Traditional methodologies for turbine condition monitoring attempt to map changes 

in the properties of the main gas path to component degradation. However, these 

methodologies are ineffective for monitoring combustor degradation because this type of 

degradation does not significantly affect the gas path properties (Tahan et al., 2017). 

Instead, various sensors (acoustic, vibration, optical, etc.) are recommended for condition 

monitoring of the combustor. In this chapter, two methodologies for combustor condition 

monitoring are proposed. The first methodology involves detecting early precursors to lean 

blowout, a serious operational fault for both terrestrial gas turbines and turbines for 

aviation. For terrestrial turbines, lean blowout can result in costly outages. In aviation, lean 

blowout poses a significant risk to the health of the passengers. Since lean blowout is 

related to the equivalence (fuel-to-air) ratio, the proposed methodology leverages the 

relationship between the alarm frequency and the equivalence ratio to determine a true 

alarm probability. This probability can aid the operator in controlling the equivalence ratio 

to maintain a steady flame. The second methodology utilizes acoustic sensors for 

monitoring centerbody degradation. The centerbody is a component of the combustor that 

provides stability for the flame while protecting the combustor hardware from the flame. 

For the proposed methodology, features are mapped from the acoustic signatures to the 

degradation level of the centerbody. Furthermore, regularization techniques that address 

the problem of model overfitting and aid in the selection of a subset of informative sensors 

for monitoring are introduced. 
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To develop these condition monitoring methodologies, experiments were conducted 

at the Ben T. Zinn Combustion Laboratory located in the Georgia Institute of Technology. 

An arial view of this laboratory is displayed in Figure 3.1. 

 

Figure 3.1 – Arial View of Ben T. Zinn Combustion Laboratory 

These experiments utilized two combustor test-rigs. The first test-rig, displayed in Figure 

3.2, operates similarly to an aviation combustor. 

 

Figure 3.2 – Combustor Test-rig 1 
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Diagrams of this test-rig published by Rock et al. (2019) are displayed in Figure 3.3. 

 

Figure 3.3 – Diagrams of Combustor Test-rig 1 (Rock et al., 2019): a) Air 

Preparation and Routing Diagram, b) Schematic of the Experimental Combustor, c) 

Bulkhead Instrumentation Placement Schematic, d) Schematic of the Swirler and 

Fuel Injector Configuration 

Figure 3.3a displays the air flow system. For this system, the air compressor provides an 

air stream with pressure up to 20 atm (2,026 kPa). The air heater raises the temperature of 

the air to a value between 350-750 K. This temperature is measured at the location labeled 

in Figure 3.3b and is continuously monitored. A portion of the air is cooled to 320 K by 

the heat exchanger, which then distributes the cold air around the liner to keep it cool. The 

combustion products and cool air then mix downstream and exit the system through the 

exhaust. To maintain pressure in the combustion chamber, an orifice plug is installed at the 

exhaust exit.  

The liner, displayed in Figure 3.3b, is comprised of a 30.5 cm long, 105 mm inner 

diameter quartz section with a stainless-steel wall called the “bulkhead” located on its back 

end. The bulkhead, displayed in Figure 3.3c, contains both a fuel ignitor and thermocouples 
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for measuring the temperature. The liner is housed in the combustion chamber, which 

consists of four quartz windows with the following dimensions: 20.3 × 10.8 × 5.1 cm. 

These windows are located on the front, back, top, and bottom surfaces of the chamber. 

The front and top window are visible in Figure 3.2. These windows enable optical access 

to the combustor flame. Details of the sensing technology are discussed in Section 3.1. A 

mixture of fuel and air enters the liner through the nozzle, a configuration comprised of 

both the swirler and the fuel injector. The nozzle is displayed in Figure 3.3d, where it is 

rotated 270°. In the nozzle, air travels through two swirler passages: the inner and outer 

passage. The fuel is injected through the Pressure Atomizer Orifice. The air and fuel are 

then mixed so they can be used for combustion. 

The second test-rig along with its schematic are shown in Figure 3.4. 
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Figure 3.4 – Combustor Test-rig 2 (Kumar et al., 2020) 

Combustor Test-rig 2 consists of a premixed combustor that simulates combustion for 

terrestrial gas turbines used in power plants. Premixing refers to the fuel and air being 

mixed prior to combustion instead of at the point of combustion to reduce emissions of 

toxins into the environment. The test-rig is a laboratory scale, unwrapped annular 

combustor and it consists of a combustion chamber with dimensions 1.16 m × 0.4 m × 

0.15 m. An air compressor provides pressurized air at 862 kPa, which is then heated by a 

flow heater. The combustor burns natural gas that is sourced at 172 kPa at atmospheric 

conditions. Quartz windows enable optical access of the combustor flame. The test-rig is 



 73 

fitted with 10 acoustic sensors. Details related to these sensors are provided in Section 3.2 

when discussing the experiment. 

The benefit of these test-rigs is they enable the acquisition of turbine-representative 

data sets for the development of condition monitoring methodologies for the combustor. 

The remainder of this chapter describes these methodologies. In Section 3.1, control charts 

are used to detect precursors to lean blowout and the distribution of the alarms is used to 

imbue future alarms with a true alarm probability. In Section 3.2, general linear modeling 

is utilized to map features extracted from the acoustic sensors to the degradation level of 

the centerbody. Section 3.3 contains the references from the previous two sections. 

3.1 Data Analytics Method for Detecting Extinction Precursors to Lean Blowout in 

Spray Flames 

3.1.1 Introduction and Literature Review 

Lean blowout (LBO) is a critical operational fault for both terrestrial and aviation 

gas turbines. For terrestrial gas turbines, the need for lean operation to prevent toxic 

emissions of carbon monoxide (CO) and nitrogen oxide (NOx) increases the risk of LBO, 

which results in costly outages. For aviation, the throttle pullback of a jet engine can result 

in LBO if too much fuel is reduced. It is imperative that this is avoided as LBO threatens 

the safety of the aircraft passengers. For both applications, the risk of LBO is inversely 

proportional with the fuel-to-air ratio, or equivalence ratio (𝜙). Therefore, the equivalence 

ratio at LBO (𝜙𝐿𝐵𝑂) sets the lean operation limit of a combustor. However, there is high 

variability in 𝜙𝐿𝐵𝑂 even when the operational conditions are static. A preset threshold on 

𝜙 could result in the turbine burning too rich in some instances, while experiencing LBO 
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in other instances. Therefore, a methodology that can detect when LBO is imminent in real-

time aids turbine operators in adaptively setting 𝜙 to a level that is sufficiently lean while 

accounting for the risk of LBO. 

Shanbhogue et al. (2009) described LBO as the two-stage process illustrated in 

Figure 3.5. 

 

Figure 3.5 – Conceptual Schematic Blowoff Model (Shanbhogue et al., 2009) 

At high 𝜙, the flame is stable. However, it is using up excessive amounts of fuel and 

emitting a high amount of toxins. As 𝜙 reduces, the flame enters Stage 1 where intermittent 

local extinction/reignition events are observed. However, the shape and structure of the 

flame is consistent with the stable flame. As the equivalence ratio is reduced, the flame 

enters Stage 2, where fundamental changes in the flow field occur. These changes were 

also observed by Nair and Lieuwen (2007). For an explanation of the physical basis of this 

phenomenon, the reader is referred to Erickson and Soteriou (2011) and Emerson et al. 

(2012). To identify precursors to LBO, several researchers have correlated features of OH* 

chemiluminescence emissions to the described phenomena in the combustion flame prior 

to blowout. Nair and Lieuwen (2005) placed thresholds on wavelet coefficients of the OH* 
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data. At high 𝜙, the wavelet coefficients do not cross the thresholds. However, as 𝜙 is 

reduced, the frequency of threshold crossings increases. In their dissertation, 

Thiruchengode (2006) presented a double threshold for detecting local 

extinction/reignition events, defined as a crossing of the lower threshold and a return 

crossing of the upper threshold. This is designed to filter out false alarms that occur from 

crossings of the upper threshold. Thiruchengode (2006) showed that the frequency of 

extinction/reignition events increased as LBO approached. This double threshold 

methodology was also utilized by Prakash et al. (2006), Zhang et al. (2010), and Rock et 

al. (2020). Other monitoring methods include the work of Yi and Gutmark (2007) who 

monitored the normalized root mean squared error of the filtered OH* chemiluminescence 

signal and Unni and Sujith (2016) who monitored the recurrence plot of pressure signal 

with length 𝑁. The recurrence plot is an 𝑁 × 𝑁 matrix whose (𝑖, 𝑗)th element equals one if 

the amplitudes of the time series at times 𝑖 and 𝑗 are within a threshold and zero otherwise. 

These plots are shown to exhibit unique patterns as blowout approaches.  

The challenge in implementing these monitoring strategies is the arbitrariness in 

determining appropriate thresholds. Furthermore, the thresholds do not account for the 

effect of autocorrelation and nonstationarity on the false alarm rate. Therefore, this section 

proposes a Statistical Process Control (SPC) approach for identifying LBO precursors. 

First, the data curation step utilizes time series modeling to transform raw OH* 

chemiluminescence signals to zero mean signals with constant variance. This model is 

fitted while the flame is in Phase 1. As the flame approaches LBO, the time series model 

parameters change. To detect these changes, an Exponentially Weighted Root-Mean 

Squared Error (EWRMS) control chart is utilized. The control limits (thresholds) of this 
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monitoring scheme are determined by a false alarm rate specified prior to implementation. 

Precursors to LBO are identified as instances when the EWRMS test statistic breaches the 

control limits. As a novel contribution, each precursor is imbued with a probability that the 

observed alarm is a true indicator of LBO. This probability can be used by turbine operators 

as an indicator of LBO risk. The remainder of this section is organized as follows. In 

Subsection 3.1.2, the experiment to collect the OH* chemiluminescence data is discussed. 

Subsection 3.1.3 discusses the data analytics methodology. This includes the steps of data 

curation, LBO detection, and adaptive alarm reliability. Subsection 3.1.4 concludes the 

LBO portion of the chapter. 

3.1.2 Data Acquisition 

The OH* chemiluminescence measurements analyzed in this study were acquired in the 

pressurized spray combustor described in the Chapter 3 introduction. The photomultiplier 

tube (PMT) was used to monitor the OH* chemiluminescence emission as the flame 

transitioned from Phase 1 to LBO. The PMT integrates all light intensity in its field of view 

and outputs a singleton point value. This data was sampled at 10 kHz over a 50 second 

interval. As previously mentioned, studies have shown that extinction/re-ignition physics 

are known to change significantly based on differences in the air inlet temperature (Rock 

et al., 2020). Therefore, the blowout detection methodology was applied to data recorded 

at two different air inlet temperatures: 300 K and 450 K. This enables the quantification of 

the physical differences between these two air temperatures. Ten PMT samples were 

acquired at air inlet temperatures of 300 K and 450 K. The Hamamatsu H5784-04 PMT 

was stored inside of a box during data acquisition to prevent background light from 

interfering with the chemiluminescence measurements. A Newport spectral filter with a 
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center frequency of 310 nm and a half width of 10 nm was used to reject emission that was 

not associated with the OH* radical. Further details about the PMT measurements can be 

found in Rock et al. (2020). 

3.1.3 Methodology 

This subsection proposes a data analytics framework for detecting precursors to LBO. 

This framework consists of three major activities. First, an automated data curation 

framework is used to transform the PMT signal to a white noise process, i.e., an 

uncorrelated process with zero mean and constant variance. This step is important because 

it filters nonstationary behavior and serial correlation from the PMT signal that would 

otherwise cause a high frequency of false alarms to be detected. Next, a detection algorithm 

designed to detect changes in the behavior of the PMT signal as the equivalence ratio is 

reduced toward the blowout limit is employed. Finally, alarms emitted from the detection 

algorithm are imbued with a probability of denoting a true LBO event. This probability is 

calculated in an adaptive fashion to incorporate a knowledge of previously observed 

alarms. 

3.1.3.1 Data Curation 

The data curation framework consists of an offline phase and an online phase. In the 

offline phase, five of the ten experimental realizations were set aside for model training. 

Using these realizations, a time series model is trained. This model captures the dynamics 

of the PMT signal while the flame is in Phase 1 operation. In the online phase, the fitted 

model is used to forecast future values of the PMT signal. A simple transformation of the 

forecast errors is assumed to follow a white-noise process. 
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The time series model used in this methodology is the ARIMA(2,1,1)-IGARCH(1,1). Its 

formulation is shown below: 

 ∇𝑋𝑖 = 𝜇 + 𝜙1∇𝑋𝑖−1 + 𝜙2∇𝑋𝑖−2 + 𝜃1𝑎𝑖−1 + 𝑎𝑖 

𝑎𝑖~𝑁(0, 𝜎𝑖
2) 

𝜎𝑖
2 = 𝑉𝑎𝑟(𝑎𝑖|𝑎𝑖−1) = 𝛼0 + 𝛼1𝑎𝑖−1

2 + 𝜂1𝜎𝑖−1
2 , 𝛼0 > 0, 𝛼1, 𝜂1

≥ 0, 𝛼1 + 𝜂1 = 1 

(3.1.1) 

The first line in Equation 3.1.1 denotes the Autoregressive Integrated Moving Average 

(ARIMA) portion of the model. In this equation, ∇𝑋𝑖 ≔ 𝑋𝑖 − 𝑋𝑖−1 is the difference in the 

PMT signal at consecutive epochs. Since a single differencing operation is performed on 

the raw data, the I term is 1. The AR term refers to the dependence of ∇𝑋𝑖 on its previous 

two epochs and the MA term refers to the dependence of ∇𝑋𝑖 on the model residual at 

epoch 𝑖 − 1. The order of the model was selected via the Hyndman-Khandakar algorithm 

(Hyndman and Khandakar, 2008). To account for the increasing signal-to-noise ratio in the 

PMT signal, the conditional variance of the model residuals 𝑎𝑖, 𝑖 = 1,2, … is modeled using 

an Integrated Generalized Autoregressive Conditional Heteroscedasticity (IGARCH) 

process of order (1,1). Normally, the GARCH model is used to model processes with short 

bursts of increased variation. By imposing the constraint that the coefficients sum to one, 

the IGARCH can model processes with a trend in the variability. In this framework, an 

ARIMA-IGARCH model is fitted to the portions of the training PMT signals when the 

flame is in Phase 1. A special case of this model, the ARMA-GARCH, was used by Pham 

and Yang (2010) for estimating the wear and fault state of a methane compressor in a 
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petrochemical plant. The parameters of the ARIMA-IGARCH are averaged over all 

training realizations to construct a global time series model. Using this model, one step 

ahead forecasts on the differenced PMT signal and the conditional variance are performed. 

This is shown in , where the dark gray portion reflects the part of the signal used for 

modeling and the light gray portion reflects the remainder of the signal. 

 

Figure 3.6 – ARIMA-IGARCH Fit 

The black curve on the top plot demonstrates the one-step ahead forecast of ∇𝑋𝑖, whereas 

the bottom plot displays the conditional variance estimation. Finally, the middle plot 

displays the residuals from predicting the differenced PMT signal. Now, suppose 𝜎𝑖
2 is a 

known quantity. Then 𝑍𝑖 =
𝑎𝑖

𝜎𝑖
~𝑁(0,1). Therefore, by estimating the conditional variance 
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of 𝑎𝑖, the model residuals are transformed into a zero mean, uncorrelated process with 

constant variance. This is shown in Figure 3.7. 

 

Figure 3.7 – Standard Normal Process 

Following the transformation from the differenced PMT signals to 𝑍𝑖 , 𝑖 = 1,2, …, the data 

has been properly curated and can be used to develop an LBO detection algorithm. 

3.1.3.2 LBO Detection Algorithm 

In Figure 3.7, the variability appears to increase as the flame nears blowout. 

Therefore, a control chart for detecting changes in the process variance is used for detecting 

LBO precursors. Two commonly used control charts for monitoring variance are the 𝑅 

chart, which monitors the range of samples, and the 𝑆 chart, which monitors the sample 
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standard deviation of samples. A detailed discussion of these control charts is provided by 

Montgomery (2009). One drawback of these control charts is they do not incorporate any 

memory of previous observations, i.e. state of the process is completely specified by the 

most recently observed sample. This makes the 𝑅 chart and 𝑆 chart insensitive to small 

changes in the process that can be caused by incipient faults. Therefore, this section 

proposes the use of the Exponentially Weighted Root Mean Squared-error (EWRMS) 

control chart developed by MacGregor and Harris (1993). Even after fitting a time series 

model, the residuals may still be slightly autocorrelated. Therefore, rational subgroups of 

size 𝑏 are collected and the average of each subgroup is recorded to compute the quality 

characteristic. Let 𝑍̅𝑘 = 𝑏−1∑ 𝑍𝑖
𝑏𝑘
𝑖=𝑏(𝑘−1)  denote the average of the 𝑘th rational subgroup 

of size 𝑏. The quality characteristic at batched index 𝑘 is computed as follows: 

 
𝑆𝑘 = √(1 − 𝛾)𝑆𝑘−1

2 + 𝛾𝑍̅𝑘
2, 𝑘 = 1,2, … , ⌈𝑏−1𝑇𝑛⌉ (3.1.2) 

where 𝛾 is a constant (0 < 𝛾 ≤ 1) that determines the amount of weight placed on the 

memory of the quality characteristic and ⌈∙⌉ is the ceiling operator that rounds the input to 

the smallest integer larger than the input. By assumption, 𝑍𝑖 , 𝑖 = 1,2, … , 𝑏 are normally and 

independently distributed with zero mean and unit variance. Using the property that 

𝑉𝑎𝑟(𝑏−1∑ 𝑍𝑖
𝑏
𝑖=1 ) = 𝑏−2∑ 𝑉𝑎𝑟(𝑍𝑖)

𝑏
𝑖=1 = 𝑏−1, the quality characteristic is initialized to 

𝑆0 = 𝑏−1. To determine the control limits, the quality characteristic is computed when the 

flame is in Phase 1. For a predetermined false alarm rate 𝛼, the upper and lower control 

limit are equal to the 100(1 − 𝛼)th and 100𝛼th percentiles of the quality characteristic, 

respectively. The control chart parameters are: 𝛾 = 0.2, 𝑏 = 10, and 𝛼 = 0.0027, where 
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𝛾 = 0.2 was chosen by inspecting the sensitivity of the control charts to changes in the 

variability. As 𝛾 approaches one, the detectability of the control chart decreases, whereas 

the control chart becomes more sensitive as 𝛾 approaches zero. The choice of 𝛾 = 0.2 

protects against a high frequency of alarms when the equivalence ratio is high but also 

enables detectability of significant changes in the flame dynamics. The rational subgroup 

size is selected to be the smallest that removes the remaining autocorrelation. Finally, the 

false alarm rate 𝛼 = 0.0027 is selected to be equivalent to that of Shewhart control charts. 

The control charts monitoring the training realizations for air temperatures 300 K and 450 

K are displayed in Figure 3.8 and Figure 3.9, respectively. 

 

Figure 3.8 – EWRMS Control Charts of Training Realizations for 300 K Air 

Temperature 
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Figure 3.9 – EWRMS Control Charts of Training Realizations for 450 K Air 

Temperature 

The control chart alarms are highlighted by open circles. In the 450 K case, the quality 

statistic decreases prior to increasing near blowout. This is due to overestimation of the 

conditional variance of error process 𝑎𝑖, which results from a decrease in the rate of growth 

of the variability in 𝑎𝑖 following the transition from Phase 1 to Phase 2. For the 300 K case, 

the rate of growth stays constant. Thus, the control charts do not exhibit the same behavior. 

As blowout is approached, the ARIMA portion of the time series model begins to forecast 

new observations poorly, leading to large residuals. This is reflected by the large quality 

characteristic values near blowout. 
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3.1.3.3 Adaptive Alarm Reliability 

The final step of the LBO detection framework is to imbue alarms from the control chart 

with a measure of confidence that the alarms are true indicators of blowout. For both air 

temperatures, the equivalence ratios of the alarms from the training cases are used to fit a 

probability distribution. There are two challenges to fitting this distribution. The first is 

that there is variability in the equivalence ratio at blowout between cases of the same 

operating conditions. If the distribution is fitted for too wide a domain, then the ability to 

detect blowout instances which occur at equivalence ratios higher than the average 

equivalence ratio at blowout is compromised. To address this issue, a lower bound is set as 

the median blowout equivalence ratio of the training cases. Thus, the equivalence ratios of 

alarms occurring below this threshold are raised to the threshold. The second challenge is 

that the flame stability for some cases is more sensitive to LBO precursors than other cases, 

causing the less sensitive cases to have little impact on the fitted distribution. This 

challenge is addressed as follows. First, the domain of the equivalence ratio is partitioned 

into a set of bins. For each training case, the proportion of alarms in each bin relative to the 

total number of alarms for the case is computed. By using proportions, the less sensitive 

cases have equal influence on the fitted distribution. These proportions are then averaged 

over all training cases. For 𝑚 = 1,2,… ,𝑀, let 𝑝𝑚 denote the average proportion of alarms 

that occur within bin 𝑚. To fit a distribution, a random sample of size 𝐿 is generated by 

sampling 𝐿𝑝𝑚 random points from bin 𝑚 for all 𝑀. Since the rate of alarms is expected to 

grow as the equivalence ratio approaches its lower bound, a 2-parameter exponential 

distribution is fitted to the random sample. The probability density function (PDF) for the 

2-parameter distribution is: 
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𝑓(𝜙; 𝜈, 𝛿) =

1

𝜈
exp (−

1

𝜈
(𝜙 − 𝛿)) , 𝜈 > 0, 𝜙 ≥ 𝛿 (3.1.3) 

where 𝜈 is the scale parameter, which reflects the dispersion in the distribution, and 𝛿 is 

the threshold parameter that places a lower bound on the domain of the equivalence ratio 

𝜙. Model fitting consists of estimating the scale and threshold parameters using maximum 

likelihood estimation. For the 2-parameter exponential distribution, the maximum 

likelihood estimates are 𝛿 = min
𝑚=1,…,𝑀

𝜙𝑚 and 𝜈̂ = 𝑀−1∑ 𝜙𝑚
𝑀
𝑚=1 − 𝛿. The fitted 

distributions for both air temperatures are compared in Figure 3.10. 

 

Figure 3.10 – Fitted Distributions for Air Temperatures 300 K and 450 K 

In these histograms, observed equivalence ratios are partitioned into six bins. The height 

of each bar represents the percentage of data accounted for by each bin. The two 

distributions demonstrate that the lower threshold on equivalence ratio is reduced for 

increased air temperature. 
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The LBO detection framework is applied by first using the global time series model 

to perform a one-step ahead forecast of the PMT signal. After observing the true value, the 

residual and the conditional variance are estimated and used to obtain 𝑍𝑖. After a rational 

subgroup is collected, the EWRMS control chart is constructed and used to monitor the 

blowout process. When one of the control limits is breached, an alarm is emitted. Each 

alarm is imbued with a value denoting the probability of a true LBO event. To compute 

this value, the fitted PDF is discretized into 50 equally spaced bins spanning the 

equivalence ratio range of 0.3 to 0.5. For bin 𝒷, 𝒷 = 1,2, … ,50, the amplitude is calculated 

as follows: 

 
𝒻𝒷
′ =

1

0.004
∫ 𝑓(𝜙; 𝜈̂, 𝛿)𝑑𝜙
0.5−0.004(𝒷−1)

0.5−0.004𝒷

 (3.1.4) 

The amplitudes are then normalized to sum to unity. 

 
𝒻𝒷 =

𝒻𝒷
′

∑ 𝒻𝕓
′50

𝕓=1

 (3.1.5) 

Now suppose an alarm is observed at 𝜙 = 0.41. This equivalence ratio falls into bin 23. 

Since new alarms can only occur at equivalence ratios less than 0.41, only the density in 

bins 23-50 is considered. Therefore, the updated probability of an alarm in bin 23 being 

caused by a true LBO event is 𝒻23 =
𝒻23
′

∑ 𝒻𝕓
′50

𝕓=23

. Through this adaptive method, the probability 

of a true LBO event is assured to approach 1 as the equivalence ratio approaches the fitted 

threshold 𝛿. To demonstrate this method, the control charts of the testing cases and the 

probability of a true LBO event are displayed in Figure 3.11. 
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Figure 3.11 – Control Charts for 300 K (Top) and 450 K (Bottom) Test Cases 

The blowout probability plots on the right of Figure 3.11 indicate that there is a smooth 

increase in true LBO alarm probability as the equivalence ratio is increased. A threshold 

designed to balance the risk of LBO with emissions standards can be incorporated to alert 

the operator of impending blowout. If incorporated as a controller, this could aid aviation 

operators in avoiding a blowout while landing. 
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3.1.4 Conclusion 

Since many of the existing methodologies for forecasting lean blowout (LBO) 

involve a high level of arbitrariness, this section presents a data analytics framework for 

predicting LBO. It applies statistical modeling to chemiluminescence measurements that 

were taken during the lean blowout process by a photomultiplier tube (PMT). The key 

component of this methodology is that the false alarm rate is prespecified and thresholds 

are intrinsically linked to the false alarm rate. The novel contribution of this methodology 

is the imbuement of alarms emitted by the control chart with a probability of denoting a 

true LBO event. This probability is updated adaptively with every observed alarm. While 

this methodology was applied using the photomultiplier tube, it is not restricted to this 

sensing technology. Time series modeling can be applied to time series data from any 

source (e.g. acoustic sensor data). The key is to identify trends such as drift, periodicity, 

and heteroskedasticity and adjust the time series model accordingly. 

The methodology developed in this section has value for both the research and 

applied combustion communities.  There has been considerable interest recently in 

understanding the lean blowout process of alternative fuels with various physical and 

chemical properties. Thus, there are plans to extend this methodology to multiple fuels with 

the goal of studying the effects of fuel properties on LBO performance. Furthermore, the 

focus of future work is to develop a control system that allows combustor operating 

conditions to be mapped to an LBO boundary without bringing the combustor to complete 

blowout. This can be accomplished by leveraging this methodology to determine the 

probability that an alarm is indicative of LBO and adjusting the combustor when flame 

stability becomes threatened. 
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3.2 Data-driven Fault Detection of Premixer Centerbody Degradation in a Swirl 

Combustor 

3.2.1 Introduction and Literature Review 

The implementation of new standards to reduce the emission of NOx and CO has 

resulted in a transition from non-premixed combustion to lean premixed combustion. 

While this transition has the impact of reducing emissions, it also leaves the gas turbine 

more susceptible to operational faults such as lean blowout and combustion instability. The 

former was discussed in Section 3.1. However, the latter also bears attention because it can 

result in degraded combustor components, which negatively impacts combustor 

performance. Furthermore, this degradation can result in debris that propagates 

downstream and damages more expensive turbine components. Therefore, the ability to 

monitor combustor hardware is valuable to the maintainability of the gas turbine. In this 

section, a condition monitoring strategy is proposed for detecting degradation of combustor 

components. 

The literature for condition monitoring for gas turbines has primarily been focused 

on gas turbines in general. Tahan et al. (2017) presented a review of condition maintenance 

methodologies for gas turbines. These methodologies can be categorized as performance-

based and non-performance based. Performance-based methods utilize gas-path analysis 

to identify causes of reduced engine efficiency such as debris in axial compressors, erosion, 

and blade corrosion. Tahan et al. (2017) note that this type of analysis is not appropriate 

for combustion components as their degradation is not a primary source of performance 

deterioration and therefore, would not be detected through gas path analysis. An alternative 
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class of methodologies are non-performance-based methods, which utilize analysis of oil 

samples, vibration sensors, and acoustic sensors to monitor mechanical faults such as 

misalignment, bearing faults, and loss of lubrication. These methodologies hold more 

promise since models can be trained to learn relationships between changes in component 

degradation and changes in sensor features. For example, Madhavan et al. (2014) used 

blade-tip timing to measure blade vibration and related vibration anomalies to blade 

damage. 

Compared to the turbine components, methodologies for condition monitoring of 

combustor components are very sparse. These methodologies typically revolve around 

analyzing changes from a baseline Fourier spectrum that occur due to combustor faults. 

For example, the Calpine Turbine Maintenance Group (Sewell et al., 2005) and Power 

Technology (Goy et al., 2005) reported success in detecting faults using the discrete Fourier 

transform for a series of case studies. Sewell et al. (2005) identified three types of 

combustion instabilities: low-, midrange-, and high-frequency dynamics. Low-frequency 

dynamics (LFD) refer to the 10-50 Hz frequency range. Oscillations in this range are called 

cold tones as their amplitudes are inversely proportional to flame temperature. An example 

of a fault resulting in a cold tone shift is debris being lodged in the swirler which elicited 

an alarm at 23.75 Hz. Conversely, midrange-frequency dynamics (MFD) refer to the 100-

250 Hz frequency range and are called hot tones because their amplitude rises with flame 

temperature. Examples of faults eliciting hot tone alarms are pilot-nozzle cracks (156 Hz) 

and transition-piece failures (225 Hz). High-frequency dynamics (HFD), called screech, 

are rare but cause rapid deterioration. Examples of HFD-induced failures include cracks in 

combustor cans and liners (Goy et al., 2005).  
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An assumption of the case study methodologies is that the correlation between the 

spectral signatures and the component faults are invariant to temporal effects such as 

changes in ambient conditions, seasonal effects, or degradation. However, to maintain 

emissions standards, turbine operators tune modern turbines to account for these temporal 

effects. As Emerson et al. (2018) mention, these tuning processes can mask fault signatures. 

Noble et al. (2019) presented a methodology to improve robustness of detection algorithms 

to these temporal effects via a historical database that can be queried to find signatures in 

line with the current operating conditions. This methodology, patented by Angello et al. 

(2017), was used to detect combustor faults in the combustor such as damage to the 

combustor liner and the pilot nozzle. Furthermore, it could detect instrumentation faults 

such as those highlighted by Emerson et al. (2018). 

The proposed methodology differs from these studies in two fundamental ways. 

First, data is transformed using a discrete wavelet transform (DWT) instead of a discrete 

Fourier transform. The DWT decomposes the raw signal into frequency ranges of various 

bandwidths. This enables a systematic method for extracting features by computing the 

energy content within each of these frequency bins. Second, instead of simply detecting 

that a fault has occurred, this algorithm detects the severity of degradation of the fault. To 

demonstrate the methodology, the case study of the combustor centerbody is used. The 

centerbody is a vital component that provides stability for the combustor flame and protects 

combustion hardware from the flame. Due to its proximity to the flame, the centerbody is 

exposed to thermal stresses. To simulate degradation, four centerbodies were manufactured 

to various lengths as shown in Figure 3.12. 
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Figure 3.12 – Manufactured Centerbodies of Different Lengths 

To detect centerbody degradation, a real-time machine learning-based classification 

framework is utilized using acoustic pressure sensor signals. The framework utilizes Multi-

class Logistic Regression to train and test a classification model using this signal data. The 

study aims to identify the state of degradation in the centerbody amongst 4 possible 

degradation levels. 

The remainder of this section is organized as follows. Subsection 3.2.2 discusses the 

experimental setup. Subsection 3.2.3 introduces the data analytics-based framework for 

fault diagnosis. It revolves around a feature engineering framework that processes the high-

dimensional sensor data into a manageable set of features for training the diagnosis model. 

Finally, the results of applying the proposed methodology to the problem of centerbody 

diagnosis are evaluated in Subsection 3.2.4. The section concludes in Subsection 3.2.5 with 

a summary of the results and a description of the scope for future work. 
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3.2.2 Experimental Setup 

This study utilized Combustor Test-rig 2 displayed in Figure 3.4. For this test-rig, 

acoustic sensors were mounted at the ten locations marked by red circles. The sensors are 

broken into two groups: transverse sensors that are located ~2.54 cm from the combustor 

side wall and longitudinal sensors, which are mounted on the premixer tubes ~23.5 cm 

upstream of the dump plane – 2 sensors per tube. While the transverse sensors are more 

sensitive to degradation, they have a lower operational temperature range than the 

longitudinal sensors. 

Centerbody degradation was simulated by manufacturing centerbodies of four 

different lengths – 87.4 mm, 76.2 mm, 63.5 mm, and 50.8 mm as shown in Figure 3.12. 

During this study, only the center nozzle was operated. The nozzle settings were 𝜙 = 0.8 

and 𝑢𝑏𝑢𝑙𝑘 = 35 m/s, with a preheat temperature of 𝑇𝑝ℎ = 500 K. For each observation, a 

centerbody was installed and the flame was monitored for 5.1 seconds while the acoustic 

sensors recorded data at a 40 kHz sampling frequency. Ten observations were recorded for 

each of the centerbody lengths to provide enough samples for training the machine learning 

model. 

3.2.3 Data-driven Diagnosis Methodology 

3.2.3.1 Data Curation 

Sensors mounted on commercial systems are exposed to extreme conditions and can 

sometimes fail. Similarly, the data acquisition system and read-write operations can 

sometimes generate unintended errors that result in outliers and/or missing data. Data 
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curation ensures that a reasonable level of data quality is maintained. This is achieved by 

studying the characteristics of historical sensor data (e.g., standard deviation, mean, range 

of outputs, etc). Based on the historical sensor characteristics of the 10 mounted sensors, 2 

sensors were found to be malfunctioning and were removed from the analysis. 

3.2.3.2 Feature Engineering 

Raw sensor data, especially high-dimensional data such as spectral data require 

statistical transformations to help extract unique signal features. In this study, this is 

accomplished using the Discrete Wavelet Transform (DWT). The DWT has been used in 

previous studies to perform condition monitoring of wind turbines (Yang et al., 2010, 

Watson et al., 2010, García Márquez et al., 2012) and mechanical tools (Li et al., 2000, Li 

et al., 1999, Velayudham et al., 2005, Zhu et al., 2009). In addition to providing a 

systematic method of aggregating the spectral information of the signal, the DWT provides 

a more informative representation of nonstationary signals than the Fourier transform. It 

works by decomposing a signal into distinct frequency bands, thus enabling a robust 

partitioning of the frequency domain. This allows for the representation of signals by their 

energy content in each frequency band (Tobon-Mejia et al., 2012, Zarei and Poshtan, 

2007). The following subsection provides mathematical details of how to construct the 

features that are used for modeling. 

Feature Extraction 

Feature extraction is a prerequisite for any diagnosis methodology. It serves to 

represent a sensor signal using a small number of features relative to the length of the 

signal. In this framework, the sensor signals are first decomposed using the DWT with the 
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Daubechies 3-type wavelet (Daubechies, 1992). The DWT decomposes the standardized 

acoustic pressure signal into a weighted sum of wavelet basis functions as follows: 

 

𝑎𝑔(𝑡) = ∑ 𝑐𝒿0,𝓀
𝑔
𝜙𝒿0,𝓀(𝑡)

𝓀∈𝒦𝒿0

+ ∑ ∑ 𝑑𝒿,𝓀
𝑔
𝜓𝒿,𝓀(𝑡)

𝓀∈𝒦𝑗

𝒥−1

𝒿=𝒿0

 (3.2.1) 

where 𝑡 = 0,1, … , 𝑇 − 1. Each signal consists of 𝑇 = 204,000 points. Therefore, a full 

wavelet decomposition (𝑗0 = 0) applied to one of the signals allows for  𝒥 = ⌊log2 𝑇⌋ =

17 decomposition levels. Each level corresponds to a particular frequency range. For 

example, if a signal is sampled at 40 kHz, the Nyquist frequency is 20 kHz. When 𝒿 = 16, 

the vector of detail coefficients 𝒅16
𝑔
= (𝑑16,0

𝑔
, 𝑑16,1

𝑔
, … )

𝑇
represents the signal information 

in the frequency range of 10-20 kHz. When 𝒿 = 15, the vector 𝒅15
𝑔

 represents the signal 

information in the frequency range of 5-10 kHz. Thus, the frequency range is repeatedly 

halved for every level of the decomposition. After exhausting all levels of the 

decomposition, the vector of approximate coefficients 𝒄0
𝑔
= (𝑐0,0

𝑔
, 𝑐0,1
𝑔
, … )

𝑇
 represents the 

signal information in the frequency range of 0-0.152 Hz. 

The wavelet coefficients for sensor 𝑔 are represented by vector 𝒒𝑔 =

(𝒒1
𝑔𝑇
, 𝒒2

𝑔𝑇
, … , 𝒒𝒥+1

𝑔 𝑇
)
𝑇

 where 𝒒1
𝑔
= 𝒄0

𝑔
 and 𝒒𝒿+2

𝑔
= 𝒅𝒿

𝑔
 for 𝒿 = 0,1, … , 𝒥 − 1. To 

construct features, the energy associated within the 𝑚th frequency band is calculated as the 

mean squared value of the coefficients in 𝒒𝑚
𝑔
, 𝑚 = 1,2, … , 𝒥 + 1. The vector of these 

energies is denoted as the component feature vector 𝒛𝑔 = (𝑧1
𝑔
, 𝑧2
𝑔
, … , 𝑧𝒥+1

𝑔
)
𝑇
 

corresponding to signal 𝒂𝑔 where 
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𝑧𝑚
𝑔
=

‖𝒒𝑚
𝒈
‖
2

2

𝑙𝑒𝑛𝑔𝑡ℎ(𝒒𝑚
𝒈
)
 (3.1.2) 

By repeating this process for all working sensors, the composite feature vector =

(𝒛1
𝑇 , 𝒛2

𝑇 , … , 𝒛𝐺
𝑇)𝑇 can be constructed. In Figure 3.13, the amplitudes of the extracted features 

for each of the eight active sensors in the combustor test rig are displayed. Since there are 

18 features per sensor signal, the total number of features is 𝑝 = 144. 

 

Figure 3.13 – Component Feature Vectors 

In the following subsections, a demonstration on how to reduce the number of model 

feature further is provided. However, this is preceded by an introduction to the diagnosis 

model. 
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3.2.3.3 Multiclass Logistic Regression for Diagnosis 

For diagnosis, a ML-based classifier, namely multiclass logistic regression (MLR), is used 

to identify the severity of the degradation state of the centerbody. Multiclass logistic 

regression is a generalization of traditional linear regression to multinomial response data 

(discrete number of possible outcomes). It has been used for diagnosing degradation states 

in automotive electric power generation and storage systems (Peters et al., 2020). Consider 

a training set consisting of the following: {(𝒙𝑖 , 𝒚𝑖)}𝑖=1
𝑁 , where 𝒙𝑖 is the 𝑖th observed 

composite feature vector of length 𝑝 and 𝒚𝑖 is a vector whose elements 𝑦𝑖,𝑘  equal one if 

observation 𝑖 belongs to class 𝑘 and zero otherwise. In MLR, the conditional probability 

that an observation belongs to class 𝑘 given an observed composite feature vector 𝒙𝑖 is 

modeled as follows: 

 

𝑃(𝑌𝒊 = 𝑘|𝑿𝑖 = 𝒙𝑖) =
∏ (𝑒𝛽0𝑘+𝜷𝑘

𝑇𝒙𝑖)
𝑦𝑖,𝑘𝐾

𝑘=1

∑ 𝑒𝛽0𝑙+𝜷𝑙
𝑇𝒙𝑖𝐾

𝑙=1

 (3.2.3) 

where 𝛽0𝑘 is the 𝑘th intercept coefficient and 𝜷𝑘 is the 𝑘th vector consisting of 𝑝 regression 

coefficients. 

The model is trained using maximum likelihood estimation, where the goal is to find 

the parameters (i.e. {𝛽0𝑘, 𝜷𝑘}𝑘=1
𝐾 ) that maximize the conditional distribution of 𝑌𝑖 given 𝑿𝑖 

using the training data {(𝒙𝑖, 𝒚𝑖)}𝑖=1
𝑁 . Assuming the observations are independently and 

identically distributed, the likelihood function is formulated as 
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ℒ({𝛽0𝑘, 𝜷𝑘}𝑘=1
𝐾 ) =∏𝑃(𝑌𝒊 = 𝑘|𝑿𝑖 = 𝒙𝑖)

𝑁

𝑖=1

 (3.2.4) 

Maximizing the natural logarithm of the likelihood function, or log-likelihood, is often 

more tractable and results in the same optimal solution (Bishop, 2006). Regularization is 

employed to select features. Regularization is a Machine Learning tool that penalizes the 

magnitudes of the parameters to reduce model complexity especially when there are too 

many predictor variables and when some predictors are highly correlated. 

Let 𝒫({𝜷𝑘}𝑘=1
𝐾 ) denote the penalty. Subtracting this penalty from the log-likelihood 

yields the following optimization problem: 

 

max
{𝛽0𝑘,𝜷𝑘}𝑘=1

𝐾

1

𝑁
[∑(∑𝑦𝑖,𝑘(𝛽0𝑘 + 𝜷𝑘

𝑇𝒙𝑖) − log (∑𝑒𝛽0𝑘+𝜷𝑘
𝑇𝒙𝑖

𝐾

𝑘=1

)

𝐾

𝑘=1

)

𝑁

𝑖=1

]

−𝜆𝒫({𝜷𝑘}𝑘=1
𝐾 ) 

(3.2.5) 

Fitting the MLR model is equivalent to solving this optimization problem for {𝛽0𝑘, 𝜷𝑘}𝑘=1
𝐾 . 

An algorithm for solving Equation 3.2.5 is provided by Friedman et al. (2010). K-fold 

cross-validation is employed to select the tuning parameter 𝜆. Observations are partitioned 

into K groups of equal size called folds. Setting one of the folds aside, the remaining data 

is used to train the model and its accuracy is tested on the remaining fold. This is repeated 

for each fold and the average over all folds is computed. For MLR, the performance metric 

is the Multinomial Deviance (MD) computed as follows: 
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𝑀𝐷 = −2∑∑𝑦𝑖,𝑘 log (
𝑃(𝑌𝒊 = 𝑘|𝑿𝑖 = 𝒙𝑖)

𝑦𝑖,𝑘
)

𝐾

𝑘=1

𝑁

𝑖=1

 (3.2.6) 

The optimal 𝜆 is the value of 𝜆 that minimizes the average cross-validated Multinomial 

Deviance. In the next subsection, the methodology of utilizing this general MLR model 

within a hierarchical framework for feature selection is discussed. 

3.2.3.4 Hierarchical Feature Selection 

Recall that the signal energy content within each frequency represents the signal 

features extracted from the raw sensor data. These signal features are still large in number 

and therefore present challenges when training conventional ML algorithms, namely model 

overfitting. Model overfitting occurs when a model is trained too closely to a dataset that 

it cannot be generalized to other datasets. This happens when uninformative sources of 

variation (e.g. noise) are treated as primary elements of the model structure. To address 

this challenge, a hierarchical feature selection approach that utilizes regularization is 

proposed. The hierarchical feature extraction approach consists of two steps. The first step 

selects the most informative sensors that should be used for diagnosis. A byproduct of this 

step can be viewed as optimal sensor placement, especially in scenarios involving 

redundant sensors. Once the most informative sensors are selected, the second step focuses 

on extracting the key signal features generated by the DWT. The signal features retained 

from the selected sensors are then used to train the classifier. 

Prior to sensor selection, initial parameter estimates {𝛽0𝑘
𝑟𝑖𝑑𝑔𝑒

, 𝜷𝑘
𝑟𝑖𝑑𝑔𝑒

}
𝑘=1

𝐾
 are obtained 

by solving the problem in Equation 3.2.5 with 𝒫({𝜷𝑘}𝑘=1
𝐾 ) =

1

2
∑ ∑ 𝛽𝑘,𝑗

2𝐾
𝑘=1  𝑝

𝑗=1 . This is 
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known as the ridge penalty and the parameter estimates are denoted as the ridge estimates. 

The ridge penalty is used to avoid problems with optimizing the nonpenalized log-

likelihood function such as trivial solutions (all parameters are zero) or nonunique 

maximizers (when some parameters are infinite) (Bishop, 2006). Next, the Adaptive Group 

Lasso (Least Absolute Shrinkage and Selection Operator) (Friedman et al., 2010, 

Tibshirani, 1996, Pencer, 2016, Zou, 2006) is used to perform sensor selection. This 

technique leverages the group structure of the composite feature vector 𝒙𝒊 where 𝒥 + 1 

features are extracted from each sensor signal. Adaptive Group Lasso penalizes the 

parameters of all features within a group together. Thus, if a group is noninformative, all 

parameters within this group are reduced to zero and the group is removed from the 

analysis. In the context of this problem, a group refers to the signal features associated with 

a single sensor. That is, reducing the group to zero implies removing the respective sensor 

from the analysis. To implement Adaptive Group Lasso, a weight for each of the 𝐺 groups 

is calculated as follows: 

 
𝑤𝑔 =

1

∑ √∑ (𝛽𝑘,𝑗
𝑟𝑖𝑑𝑔𝑒

)𝐾
𝑘=1

2

𝑗∈𝑔𝑟𝑜𝑢𝑝 𝑔

, 𝑔 = 1,2, … , 𝐺 
(3.2.7) 

Using these weights, Adaptive Group Lasso is performed by solving Equation 3.2.5 with 

the penalty term defined as follows: 

 

𝒫({𝜷𝑘}𝑘=1
𝐾 ) = ∑𝑤𝑔 ∑ √∑𝛽𝑘,𝑗

2

𝐾

𝑘=1𝑗∈𝑔𝑟𝑜𝑢𝑝 𝑔

𝐺

𝑔=1

 (3.2.8) 
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After removing the noninformative sensors, Adaptive Lasso (Bishop, 2006, Zou, 

2006) is used to select a subset of features for fitting the diagnostic model. Let 𝒢 =

{1,2, … , 𝐺} denote the set of sensors and 𝒢𝑟 denote the subset of 𝒢 consisting of sensors 

remaining after sensor selection. Furthermore, let 𝒙𝑟 denote the composite feature vector 

containing only features from the 𝒢𝑟 sensors and {𝜷𝑘
𝑟}𝑘=1
𝐾  denote the vectors of parameters 

associated with the sensor features. Replacing 𝒙𝑖 and {𝜷𝑘}𝑘=1
𝐾  in Equation 3.2.5 with 𝒙𝑖

𝑟 

and {𝜷𝑘
𝑟}𝑘=1
𝐾  respectively, the parameters are initialized by solving Equation 3.2.5 with the 

ridge penalty. Using estimates {𝛽̂0𝑘
𝑟 , 𝜷̂𝒌

𝑟}
𝑘=1

𝐾
, the weights are computed for each individual 

feature as follows: 

 
𝑤𝑗 =

1

√∑ (𝛽̂𝑘,𝑗
𝑟 )

2𝐾
𝑘=1

, 𝑗 = 1,2, … , 𝑝′ 
(3.2.9) 

where 𝑝′ is the number of remaining features after sensor selection. Adaptive Lasso 

penalizes the parameters for each feature individually, resulting in parameters for 

noninformative features being reduced to zero. To perform adaptive Lasso, Equation 3.2.5 

is solved with the penalty term defined as follows: 

 

𝒫({𝜷𝑘
𝑟}𝑘=1
𝐾 ) =∑𝑤𝑗√∑(𝛽𝑘,𝑗

𝑟 )
2

𝐾

𝑘=1

𝑝′

𝑗=1

 (3.2.10) 

Figure 3.14 and Figure 3.15 display the results of sensor selection and individual feature 

selection respectively. In both figures, the green bars denote features that were removed 

from the model. 
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Figure 3.14 – Component Feature Vectors Showing the Selected Sensors (Blue) and 

Rejected Sensors (Green) 

Figure 3.14 demonstrates that Adaptive Group Lasso resulted in sensors 1, 2, 3, and 7 being 

selected and the remaining sensors being removed. Of these, only one (upper right) 

transverse sensor was selected. This may be explained by the proximity of the longitudinal 

sensors from the combustor flame. Figure 3.15 demonstrates the results of Adaptive Lasso. 

This penalty removes most of the remaining features from the model. Thus, diagnosis of 

the centerbody requires the monitoring of only a small subset of features. 
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Figure 3.15 – Component Feature Vectors, 𝒛𝒊, Showing the Selected Features (Blue) 

and the Rejected Features (Green) Corresponding to Each Sensor 

Let {𝛽0𝑘
∗ , 𝜷𝑘

∗ }𝑘=1
𝐾  denote the solution from performing Adaptive Lasso. To perform 

diagnosis, Equation 3.2.4 with {𝛽0𝑘, 𝜷𝑘}𝑘=1
𝐾 = {𝛽0𝑘

∗ , 𝜷𝑘
∗ }𝑘=1
𝐾  is used to estimate the 

probability that a new observation belongs to class 𝑘 for all 𝐾 classes. Diagnosis is 

performed by assigning the observation to the class with the largest probability. The 

following subsection presents the results of the diagnosis step and several studies to 

determine the robustness and accuracy of the proposed methodology. 

3.2.4 Results 

To evaluate the proposed methodology, an experiment was conducted where the 

combustor was monitored under four centerbody degradation states (𝐾 = 4). One 

observation consists of 𝐺 = 8 signals of length 𝑇 = 204,000. As previously discussed, the 

feature extraction methodology results in 18 features per signal for a total of 𝑝 = 144 
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features. Ten observations were recorded for each centerbody length. The dataset was 

divided into two halves: training and testing. For each degradation state, five observations 

were sampled without replacement for training and the remaining observations are used for 

testing. Thus, the number of observations in the training set is 𝑁 = 20. To estimate the 

average performance of the proposed methodology, 100 iterations of the model with 

different partitions of the data were performed. 

To demonstrate the effectiveness of the proposed hierarchical feature selection approach, 

its performance is compared to a baseline MLR model using only the ridge penalty, 

which does not remove any features from the model. The performances of the baseline 

model and the model with hierarchical feature selection are summarized in Table 3.1 and  

Table 3.2 respectively. 

Table 3.1 – Confusion Matrix (Baseline) 

P
re

d
ic

te
d
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ta

te
 

(m
m

) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0.01 0 0 

76.2 0 0.98 0.008 0.032 

63.5 0 0.01 0.992 0.002 

50.8 0 0 0 0.966 

 

Table 3.2 – Confusion Matrix (Hierarchical Feature Selection) 

P
re

d
ic

te
d

 S
ta

te
 

(m
m

) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 1 0 0 

63.5 0 0 1 0 

50.8 0 0 0 1 

The performance of each classifier is presented as a confusion matrix, a table used to 

describe how a classifier performs on test data with known class labels. The values on the 

diagonal represent the rate of true positives for each class. For example, in Table 3.1, the 
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rate of true positives for a centerbody of length 76.2 mm is 0.98. Similarly, the true 

negative, false positive, and false negative rates for each class can be defined. Using the 

76.2 mm class as an example, the true negative rate for this class is the rate at which an 

observation with length other than 76.2 mm is classified as having length other than 76.2 

mm. The false positive rate for this class is the rate at which an observation with length 

other than 76.2 mm is classified as having length 76.2 mm. Finally, the false negative rate 

for the 76.2 mm class is the rate at which an observation with length 76.2 mm is classified 

as having a length different from 76.2 mm. A summary of the true positive rate (TPR), true 

negative rate (TNR), and false positive rate (FPR) for all classes for both models are 

displayed in Table 3.3. 

Table 3.3 – Classifier Metrics for Baseline Model (BL) and Hierarchical Feature 

Selection (HFS) 

Class 87.4 76.2 63.5 50.8 

Model BL HFS BL HFS BL HFS BL HFS 

TPR 1 1 0.980 1 0.992 1 0.966 1 

TNR 0.997 1 0.987 1 0.996 1 1 1 

FPR 0.003 0 0.013 0 0.004 0 0 0 

3.2.4.1 Reduced Training Size Study 

Table 3.1,  

Table 3.2, and Table 3.3 show that the model employing the hierarchical feature 

selection approach achieves a perfect classification. This is likely due to training the model 

on 50% of the data. To test the robustness of the proposed methodology, the accuracy of 

the proposed approach is evaluated for varying sample sizes. In Table 3.4, the accuracy of 

the baseline model is compared with the model using hierarchical feature selection when 

using 50% (𝑁 = 20), 40% (𝑁 = 16), 30% (𝑁 = 12), and 20% (𝑁 = 8) of the recorded 
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data for training. An equal number of observations were sampled from each degradation 

state to ensure all model classes were equally represented. The number of observations per 

class are shown in parentheses in Table 3.4. 

Table 3.4 – Classification Accuracy for Models Using 𝑵 Total Observations for 

Training 

𝑵 (# Obs/Class) 

Model 

Baseline 

model 

Hierarchical 

Feature 

Selection 

20 (5) 0.985 1.000 

16 (4) 0.974 0.999 

12 (3) 0.961 0.994 

8 (2) 0.882 0.956 

The results in Table 3.4 demonstrate that for all choices of 𝑁, the hierarchical feature 

selection approach improves on the baseline model. Furthermore, while the baseline model 

accuracy decreases steadily as the size of the training data decreases, the accuracy for the 

hierarchical model stays consistently high. While both models show a sharp decline when 

reducing the sample size from 𝑁 = 12 to 𝑁 = 8, the accuracy of the hierarchical model 

remains above 95%. 

To supplement the above results, Table 3.5, Table 3.6, and Table 3.7 display the 

confusion matrices of the hierarchical feature selection model for each sample size. 

Table 3.5 – Confusion Matrix for 𝑵 = 𝟏𝟔 (Hierarchical Feature Selection) 

P
re

d
ic

te
d
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(m
m

) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 1 0 0.003 

63.5 0 0 1 0 

50.8 0 0 0 0.997 
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Table 3.6 – Confusion Matrix for 𝑵 = 𝟏𝟐 (Hierarchical Feature Selection) 

P
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ic
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d
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(m
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) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0.001 0.001 0 

76.2 0 0.994 0.003 0.014 

63.5 0 0.004 0.996 0 

50.8 0 0 0 0.986 

Table 3.7 – Confusion Matrix for 𝑵 = 𝟖 (Hierarchical Feature Selection) 

P
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d
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te
d

 

S
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m
m

) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 0.990 0.013 0.009 0.015 

76.2 0.010 0.960 0.036 0.039 

63.5 0 0.015 0.951 0.023 

50.8 0 0.013 0.004 0.924 

Table 3.4 and the confusion matrices in Table 3.5, Table 3.6, and Table 3.7 show that 

the hierarchical model is robust to changes in the sample size until 20% of the data is used 

for training. While the classification accuracy is still high for this case, several observations 

are misclassified to degradation states far from the actual value. Thus, training with 30% 

of the data appears to be the bottom threshold for achieving reliable diagnosis of the 

centerbody. To further demonstrate this, the TPR, TNR, and FPR are reported in Table 3.8 

for the confusion matrices in Table 3.5, Table 3.6, and Table 3.7.  
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Table 3.8 – Classifier Metrics for Hierarchical Feature Selection for Different 

Sample Sizes 

Class N TPR TNR FPR 

8
7
.4

 

m
m

 16 1 1 0 

12 1 0.999 0.001 

8 0.990 0.988 0.012 

7
6
.2

 

m
m

 16 1 0.999 0.001 

12 0.994 0.994 0.006 

8 0.960 0.972 0.028 
6
3
.5

 

m
m

 16 1 1 0 

12 0.996 0.999 0.001 

8 0.951 0.988 0.013 

5
0
.8

 

m
m

 16 0.997 0.986 0.924 

12 1 1 0.995 

8 0 0 0.005 

3.2.4.2 Reduced Sensor Study 

As a final test of the proposed methodology, the analysis was carried out by only 

considering the longitudinal and transverse acoustic sensors. The longitudinal group 

consisted of five working sensors and the transverse group consisted of three working 

sensors. As demonstrated previously, it was found that the hierarchical model had 

significantly better performance than the baseline model. Therefore, subsequent results are 

only shown for the former. 

Longitudinal Sensors 

Table 3.9 shows the confusion matrix for the hierarchical feature selection approach 

using only the longitudinal sensors, using 50% (𝑁 = 20) of the recorded data for training. 

With an overall accuracy of 99.75%, the model with only longitudinal sensors is marginally 

less accurate than the model with all sensors (100%). 
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Table 3.9 – Confusion Matrix for 𝑵 = 𝟐𝟎 (Longitudinal Sensors – Hierarchical 

Feature Selection) 
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) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 0.996 0.006 0 

63.5 0 0.004 0.994 0 

50.8 0 0 0 1 

Once again, the high accuracy can be attributed to the large training size used. A 

similar investigation with decreasing training size was performed using 40% (𝑁 = 16) and 

30% (𝑁 = 12) of the recorded data for training. These results are shown in Table 3.10 and 

Table 3.11. 

Table 3.10 – Confusion Matrix for 𝑵 = 𝟏𝟔 (Longitudinal Sensors) 

P
re

d
ic

te
d

 S
ta
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(m
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) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 0.992 0 0 

63.5 0 0.008 1 0 

50.8 0 0 0 1 

Table 3.11 – Confusion Matrix for 𝑵 = 𝟏𝟐 (Longitudinal Sensors – Hierarchical 

Feature Selection) 
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) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 0.991 0.005 0.001 

63.5 0 0.009 0.995 0.006 

50.8 0 0 0 0.993 

The method appears to be robust to the decreasing training size with the overall accuracy 

never falling below 99%. 
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Transverse Sensors 

In a similar fashion, Table 3.12 shows the confusion matrix for the hierarchical 

feature selection approach using only the transverse sensors, using 50% (𝑁 = 20) of the 

recorded data for training. While all 8 sensors and the purely longitudinal sensors had 

overall accuracies of 100% and 99.75% respectively, the purely transverse sensor study 

performed poorly with an overall accuracy of 85.6%. This suggests that the longitudinal 

sensors are possibly better suited to the detection of faults presented in this work, which is 

supported by 75% of the selected sensors coming from the longitudinal group. 

Table 3.12 – Confusion Matrix for 𝑵 = 𝟐𝟎 (Transverse Sensors – Hierarchical 

Feature Selection) 

P
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 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 1 0 0 0 

76.2 0 0.826 0.280 0.068 

63.5 0 0.170 0.714 0.048 

50.8 0 0.004 0.006 0.884 

Once again, the model was subjected to the decreasing training size study to evaluate the 

limits of its performance. These results are shown in Table 3.13 and Table 3.14. 

Table 3.13 – Confusion Matrix for 𝑵 = 𝟏𝟔 (Transverse Sensors – Hierarchical 

Feature Selection) 
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) 

 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 0.992 0.002 0.007 0.003 

76.2 0.007 0.782 0.358 0.052 

63.5 0.001 0.213 0.623 0.042 

50.8 0 0.003 0.012 0.903 
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Table 3.14 – Confusion Matrix for 𝑵 = 𝟏𝟐 (Transverse Sensors – Hierarchical 

Feature Selection) 
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 Actual State (mm) 

 87.4 76.2 63.5 50.8 

87.4 0.98 0 0 0.007 

76.2 0.02 0.739 0.401 0.084 

63.5 0 0.254 0.584 0.049 

50.8 0 0.007 0.015 0.86 

As expected, the performance gets worse as the training size is decreased with the overall 

accuracies for the 𝑁 = 16 and 𝑁 = 12 cases dropping to 82.5% and 79% respectively. 

3.2.5 Conclusion 

This section introduced a data-driven diagnosis methodology to estimate premixer 

centerbody degradation in a swirl stabilized combustor. The methodology is capable of 

processing high-resolution signals recorded by multiple sensors simultaneously. It consists 

of a feature engineering framework where the DWT is used to construct features for 

modeling. Through a hierarchical approach, a subset of features correlated with the 

degradation of the centerbody are selected. These features are used to fit an ML-based 

classifier to estimate centerbody degradation. The degradation of the centerbody was 

modeled by manufacturing centerbodies of different lengths and data was collected on a 

laboratory scale combustor test-rig. 

The hierarchical model successfully estimated the level of centerbody degradation in 

the combustor as it yielded a 0.015-0.074% improvement in accuracy from the baseline 

model.  Furthermore, classification accuracy stayed consistent for the hierarchical model 

when reducing the size of the training set down to 30% of the recorded observations. 

However, the accuracy of the baseline model reduced by an average of 0.012 points per 4 
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total observations when reducing the sample size to 30%. It was found that the transverse 

sensors on their own were not strong predictors for centerbody degradation as the 

longitudinal sensors outperformed them in terms of classification accuracy. This 

observation was consistent across both the baseline model and the hierarchical feature 

selection model – the latter however performed better than the former in all tested cases. 

The longitudinal sensors performed very well in terms of the fault detection and were also 

robust to the decreasing size of the training set. Overall, the proposed methodology has 

been shown to perform at high accuracy rates by monitoring just a few features. This 

suggests a high potential for direct integration into existing condition monitoring systems 

for easy and efficient monitoring.  

Practical challenges associated with the manufacturing and assembly of the 

centerbody in the test rig limited the number of degradation levels that could be tested. 

Plans for future work include testing the proposed methodology with more granular 

changes in the centerbody length and applying the methodology to other systems (e.g. spray 

combustion rigs and bluff body rigs) and to other types of combustion faults. Other future 

work includes studying the changes in the flame dynamics due to degradation and its 

relationship with the acoustic pressure. 
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CHAPTER 4. CONDITION MONITORING OF GAS TURBINE 

Following combustion, a hot fuel-air mixture enters the turbine through the main gas 

path (MGP) where it turns the turbine blades before being expelled through an exhaust. 

Rotation of the turbine blades causes the connected power shaft to turn, generating 

mechanical power for the system attached (e.g. generator or propeller fan). While a hot 

fuel-air mixture is important for ensuring efficient turbine operation, the temperature of the 

fuel-air mixture can exceed the material softening point of the turbine components (Bunker, 

2017). To avoid degradation of the turbine components, cooling mechanisms have been 

incorporated into the design of modern gas turbines. Examples of these cooling 

mechanisms are visible in Figure 4.1, which displays a diagram of a turbine stage 

consisting of a stator vane and rotating blade (Owen, 2010a). 

 

Figure 4.1 – Turbine Stage (Owen, 2010a) 
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In Figure 4.1, the MGP passes through the nozzle guide vane and turbine blade. Cooling 

holes and thermal barrier coatings are used to prevent damage to these components. 

However, these techniques are only applicable to the components in the MGP. The under-

platform components such as the stator, wheel-space, and turbine disk are vulnerable to 

ingress from the MGP. To protect these components, sophisticated rim seal geometries and 

the pumping of cooling air from the compressor (called purge flow) are incorporated. 

The literature on condition monitoring of these cooling mechanisms is quite limited. 

For the rim seal, the literature has primarily focused on understanding the flow physics 

surrounding the rim seal to improve the design of rim seal/purge flow configurations. 

Physics-based models have been proposed for monitoring the effectiveness of the seal to 

prevent ingress. However, the applicability of these models is limited because they cannot 

account for the variability in flow physics between different rim seal geometries. For the 

components in the MGP, the literature has focused primarily on using sensors to monitor 

degradation of the turbine blade. More recently, infrared imaging has been incorporated 

for condition monitoring. However, the health of the components in the MGP is 

intrinsically linked to the rate at which coolant air can be pumped through these 

components. Therefore, a methodology of inferring coolant flow rate from the temperature 

distribution of the blade is valuable.  

In this chapter, data-driven methodologies are proposed for condition monitoring of 

these cooling systems. In Section 4.1, two models for predicting sealing effectiveness are 

proposed. Both models rely on sensor data for inference. The primary difference is that one 

of the models incorporates domain knowledge into its formulation, whereas the other is 

purely data driven. In Section 4.2, infrared imaging of the turbine blade is used to predict 
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the coolant flow rate for a variable MGP temperature. The accuracy of various feature 

extraction techniques in predicting coolant flow rate are analyzed and the tradeoff between 

accuracy and sensing capability is evaluated. 

The models presented in the chapter were fitted and validated using data generated 

by the Turbine Test-rig housed in the Steady Thermal Aero Research Turbine (START) 

facility at Pennsylvania State University. A diagram of the facility is displayed in Figure 

4.2. 

 

Figure 4.2 – START Lab 

The START facility operates continuously to emulate operation of a real-world gas turbine 

engine. While the facility can induce transient operations, the work in this chapter is 

conducted under steady operating conditions. The facility utilizes an open-loop flow path 

that begins with two 1.1 MW compressors that intake air with a maximum flow capacity 
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of 11.3 kg/s at 480 kPa. The compressors raise the air temperature to approximately 380 K 

upon exiting the compressor. From the compressor, the air splits into two paths. Most of 

the air proceeds to a natural gas heater chamber that provides high-temperature MGP flow 

to the turbine (675 K at nominal flow rate). The remainder of the air is diverted to a heat 

exchanger that cools the air to about 273 K. This air is then distributed through various 

cooling paths to the turbine, providing coolant to the blades and purge flow to the rim seal. 

The high-temperature MGP flow then enters the test section comprised of a single-stage 

turbine. After passing through the test section, the hot fuel-air mixture exits the system 

through the exhaust. There are several sensors placed within the test-rig to monitor 

temperatures, pressures, and flow rates. These sensors are described later in the chapter as 

they become relevant to the proposed condition monitoring methodologies. 
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4.1 Correlating Time-Resolved Pressure Measurements with Sealing Effectiveness 

for Real-time Turbine Health Monitoring 

4.1.1 Introduction and Literature Review 

The reliability of turbine components is important because they impact engine 

performance and are costly to replace (Tahan, 2017). While several sensing technologies 

exist to monitor turbine components in the MGP, the same is not true for the under-platform 

region. While it is possible to place sensors on the static components in the under-platform 

region, this is infeasible for the rotating components which also experience the effects of 

MGP ingress (Bohn et al., 1995) Since direct sensing of under-platform component 

temperatures is not feasible, the development of a methodology for quantifying sealing 

effectiveness is vital for maintaining the health of critical turbine components in the under-

platform region. Most of the research regarding sealing effectiveness has focused on 

understanding the physical dynamics of flows into and out of the under-platform region to 

aid in the design of more effective rim seal/purge flow configurations. For example, 

Johnson et al. (1994) provided a summary of various physical process that drive rim seal 

ingress. In their summary, Scobie et al. (2016) categorized factors for ingress as externally 

induced (EI), rotationally induced (RI), or a combination of external and rotational (CI). 

While rim seal/purge flow configuration design is important for efficient turbine operation, 

there remains a demand for a methodology to perform real-time condition monitoring on 

the rim seal effectiveness once a design is implemented. 

Quantification of the sealing effectiveness has been primarily accomplished using 

the gas concentration method (Clark et al., 2006), which uses a tracer gas (such as carbon 
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dioxide) to distinguish between purge flow and MGP flow. While this methodology can be 

implemented in experimental rigs, it is not practical for fielded turbines. Fortunately, a 

functional relationship between sealing effectiveness and purge flow rate has been 

observed. Therefore, research efforts have focused on formalizing this functional 

relationship. In a two-part paper, Owen modeled the rim seal as an orifice with passages 

for ingress and egress. In these papers, the author derives a set of “orifice equations” for 

RI ingress (Owen, 2010a) and both EI and CI ingress (Owen, 2010b). These orifice 

equations demonstrate how the sealing effectiveness depends primarily on the purge flow 

rate. Sangan et al. utilized these equations to derive “effectiveness equations” for EI ingress 

(Sangan et al., 2012a) and for RI ingress (Sangan et al., 2012b). These equations include 

parameters that can be estimated through statistical methods applied to experimental data. 

Given these parameter estimates, the sealing effectiveness can be extrapolated by inputting 

known engine conditions into the effectiveness equations. A comparison of theoretical 

results with experimental results from applying the effectiveness equations was provided 

by Owen (2012). 

Using the link between the test-rig and engine conditions, Owen et al. (2014) 

developed a methodology for predicting sealing effectiveness using pressure 

measurements. This methodology is very useful as it only requires a few pressure 

measurements. However, challenges in implementing this methodology include extensive 

experimentation and simulation. Furthermore, this methodology along with the other 

physics-based models assume that the sealing effectiveness increases smoothly with 

increasing purge flow rate. However, for some rim seal geometries, inflection points in the 
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sealing effectiveness have been observed. For example, consider the relationship between 

sealing effectiveness and purge flow rate graphed in Figure 4.3. 

 

Figure 4.3 – Sealing Effectiveness vs. Normalized Purge Flow Rate 

In Figure 4.3, 𝜀 is the sealing effectiveness whereas 
𝑚̇𝑝

𝑚̇𝑝,𝑚𝑖𝑛,𝐴
 is the purge flow rate 

normalized by the minimum purge flow rate required to prevent ingress into the under-

platform region. The rate at which 𝜀 increases starts to slow until the normalized purge 

flow rate reaches 0.6 where the rate increases again. While Scobie et al. (2016) 

demonstrated accurate predictions of sealing effectiveness using the model by Owen et al. 

(2014), Clark et al. (2018) showed that the orifice model was not sufficient for capturing 

the inflection point since it does not account for the complex flow physics that occur in 

some rim seal geometries. Therefore, application of the model by Owen et al. (2014) for 

gas turbines with certain rim seal geometries is likely to yield large prediction errors.  

Due to the variety of rim seal/purge flow configurations, it is very challenging to 

develop a generalizable physics-based model. Therefore, this section presents two data-

driven methodologies for predicting sealing effectiveness. The advantage of these 
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methodologies is that they are robust to different rim seal/purge flow configurations. 

Furthermore, they can be implemented with one pressure sensor located outside rim seal 

cavity. This contrasts with the physics-based model by Owen et al. (2014) that required 

multiple sensors, including one in the wheel-space region. While a critique of data-driven 

models is their lack of interpretability, this critique is addressed using regularization, a 

machine learning technique that can select a subset of informative features for modeling. 

Thus, the proposed modeling strategies can quantify the importance of features from the 

pressure signal for predicting sealing effectiveness. The methodologies presented are both 

inherently data driven. However, the second methodology incorporates domain knowledge 

into the formulation of its models. Since it requires the fitting of two models, the second 

methodology is labeled two-step (2S) whereas the first methodology is labeled data-driven 

(DD), The data used to develop these methodologies was acquired through an experiment 

using the Turbine Test-rig. This experiment is described in Subsection 4.1.2. 

4.1.2 Experimental Methodology 

The Turbine Test-rig is used to generate a dataset for studying the relationship 

between sealing effectiveness and pressure sensor data. A cross-section view of the Turbine 

Test-rig is displayed in Figure 4.4. 
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Figure 4.4 – Cross-section View of Single-stage Turbine Test-rig 

For this experiment, data was collected under two turbine operating points, where an 

operating point is defined by a unique combination of turbine settings. These settings 

include the inlet absolute total pressure (𝑃𝑖𝑛), total pressure ratio (𝑃𝑖𝑛/𝑃𝑜𝑢𝑡), mass flow 

rate of the fuel-air mixture (𝑚̇𝑀𝐺𝑃), rotating speed of the blade (𝑅𝑃𝑀), and the inlet 

temperature (𝑇𝑖𝑛). While the exact values for these settings cannot be disclosed for 

proprietary reasons, the relative difference between the operating points can be seen in 

Table 4.1. 
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Table 4.1 – Operating Conditions for OP2 

Parameters OP2 

Inlet Absolute Total Pressure, 𝑃𝑖𝑛 0.9×OP1  

Total Pressure Ratio, (𝑃𝑖𝑛 𝑃𝑜𝑢𝑡⁄ ) 0.82×OP1 

Mass Flow Rate, 𝑚̇𝑀𝐺𝑃 0.88×OP1 

Rotating Speed, RPM 0.88×OP1 

Inlet Temperature, 𝑇𝑖𝑛 1×OP1 

For each operating point, the purge flow rate (𝑚̇𝑃) was set to a value less than or equal to 

the minimum purge flow rate required to fully seal the rim cavity at sensor 𝑃𝐴 (𝑚̇𝑃,𝑚𝑖𝑛,𝐴). 

At each of these set points, pressure signals were sampled at a non-dimensional frequency 

of 𝑓𝑠/𝑓𝐷 ≈ 600 for 500 revolutions. The signals were sampled from two locations: the rim 

seal (𝑃𝐴) and the outer casing (𝑃𝐺).  

To determine the sealing effectiveness, the gas concentration method utilizing a 

carbon dioxide tracer gas was used to determine the hot fuel-air mixture concentration at 

the inlet (𝑐𝑀𝐺𝑃), the rim seal (𝑐𝐴), and at the purge flow location (𝑐𝑃). The sealing 

effectiveness is thus calculated using Equation 4.1.1 

 𝜀 =
𝑐𝐴 − 𝑐𝑀𝐺𝑃
𝑐𝑃 − 𝑐𝑀𝐺𝑃

 (4.1.1) 

In total, nine different purge flow rates are utilized. The relationship between the purge 

flow rate and the sealing effectiveness is displayed in Figure 4.3, where the purge flow rate 

is normalized by 𝑚̇𝑃,𝑚𝑖𝑛,𝐴. 9 samples of pressure signals were recorded for each purge flow 

rate for OP1 and 18 samples were recorded for each purge flow rate for OP2. There are 

two exceptions for OP2, where the first purge flow rate has 14 samples and the final purge 
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flow rate has 16 samples. In this study, two methodologies for modeling sealing 

effectiveness using the pressure signals are proposed. These methodologies are first 

developed for Operating Point 1 (OP1). After comparison of the two methodologies, the 

sensitivity of the more accurate methodology to the settings of OP2 is analyzed. 

4.1.3 Data-driven Methodology 

The data-driven methodology starts with performing initial preparation of the raw 

pressure signal for analysis. A low pass filter is applied to remove frequency content above 

30 𝑓/𝑓𝐷 because most of the salient information lies below this frequency and because the 

blade pass frequency needed to be removed for proprietary reasons. To extract features 

from the pressure signal, a fast Fourier transform (FFT) is performed and the energy 

content within consecutive frequency intervals centered at integer values of the 

nondimensional frequency (𝑓/𝑓𝐷 ) is aggregated. Following feature extraction, the 81 

observations are randomly partitioned into training and testing sets. For the training set, 

Linear Regression with Lasso is used to select informative frequency bands and to fit a 

predictive model. Then, the sealing effectiveness is predicted for the test observations. To 

assess the general performance of this methodology, the partitioning of the data into 

training and testing was repeated 250 times and the median and range of the prediction 

error are reported. 

4.1.3.1 Feature Extraction Using Discrete Fourier Transform 

Let 𝑃̃[𝑡], 𝑡 = 0,1, , … , 𝑁 − 1 denote the time-resolved pressure signal following 

application of the low-pass filter to the raw sensor signal, where 𝑁 is the length of the 

signal. The filtered pressure signal is displayed in Figure 4.5. 
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Figure 4.5 – Filtered Pressure Signal Recorded at Rim Seal 

To extract features, the data in Figure 4.5 is transformed using the FFT. The FFT is a 

computationally efficient algorithm that performs a discrete Fourier transform of a time-

resolved signal, transforming the signal into the frequency domain. This is an appropriate 

strategy because the signal does not exhibit any apparent nonstationary behavior, which is 

expected as the pressure sensor is monitoring rotational movement under static operating 

conditions. The equation for the discrete Fourier transform is shown below: 

 

𝑦 [
𝐹𝑠
𝑁
𝑘] =  ∑ 𝑃̃[𝑡] exp (−𝑗

2𝜋

𝑁
𝑘𝑡)

𝑁−1

𝑡=0

, 𝑘 = 0,1, … , 𝑁 − 1 (4.1.2) 

The discrete Fourier transform for the filtered pressure signal is displayed in Figure 4.6 

where amplitude equals the absolute value of 𝑦 [
𝐹𝑠

𝑁
𝑘]. 
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Figure 4.6 – Discrete Fourier Transform of Filtered Pressure Signal Recorded at 

Rim Seal 

Due to the filtering in the Data Preparation step, the nondimensional frequency range is 

truncated at 𝑓/𝑓𝐷  = 30. Features are extracted by creating frequency bands of length 

Δ(𝑓/𝑓𝐷)  = 1 centered at discrete nondimensional frequency values. For example, the 

frequency band for feature 1 consists of frequencies between 0.5 and 1.5. Within this 

frequency band, the energy of the discrete Fourier transform amplitudes is calculated as 

the sum of squared amplitudes. This is formalized as follows: 

 

𝑥𝑙 = ∑ |𝑦 [
𝐹𝑠
𝑁
𝑘]|

2𝑙+0.5

𝐹𝑠
𝑁
𝑘=𝑙−0.5

, 𝑙 = 1,2, … ,29 (4.1.3) 

Given these features and the observed sealing effectiveness values, the diagnostics model 

is trained. 
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4.1.3.2 Train Linear Regression with Lasso Model 

Following feature extraction, the data is randomly partitioned into a training and test 

set. A 75-25 percent split where 75% of the data is selected for training and the remaining 

25% is used for testing. This corresponds to 7 samples per purge flow rate setting used for 

training and the remaining 2 samples used for testing. 

The diagnostics model used is a Linear Regression with Lasso model. Lasso is a 

regularization strategy used to improve prediction accuracy by shrinking the regression 

coefficients, reducing the variance of the model at the cost of incurred bias (Tibshirani, 

1996). Since the regression coefficients of some predictors are reduced to zero, Lasso can 

perform variable selection. Prior to fitting the model, the predictors are standardized. Since 

this ensures that all predictors are of equal scale, the amplitude of the regression 

coefficients reflect the relative importance of the features to predicting sealing 

effectiveness. Let 𝑀 denote the total number of samples. Standardization is performed as 

follows: 

 
𝑥̃𝑖,𝑙 =

𝑥𝑖,𝑙 − 𝑥̅𝑙
𝑠𝑙

, 𝑙 = 1,2, … ,29 (4.1.4) 

where 𝑥̅𝑙 =
1

𝑀
∑ 𝑥𝑖,𝑙
𝑀
𝑖=1  and 𝑠𝑙 =

1

𝑀−1
∑ (𝑥𝑖,𝑙 − 𝑥̅𝑙)
𝑀
𝑖=1  are the sample mean and sample 

standard deviation respectively. Let 𝜀𝑖 denote the 𝑖th observed sealing effectiveness and 

𝒙̃𝑖 = (𝑥̃𝑖,1, 𝑥̃𝑖,2, … , 𝑥̃𝑖,29)
𝑇
 denote the 𝑖th vector of predictors. To fit Linear Regression with 

Lasso, the following optimization problem is solved. 
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𝑀𝐷 = −2∑∑𝑦𝑖,𝑘 log (
𝑃(𝑌𝒊 = 𝑘|𝑿𝑖 = 𝒙𝑖)

𝑦𝑖,𝑘
)

𝐾

𝑘=1

𝑁

𝑖=1

 (4.1.5) 

In Equation 4.1.5, 𝛽0 ∈ ℝ and 𝜷 ∈ ℝ29 are the bias term and the vector of regression 

coefficients respectively. Solving the optimization problem in Equation 4.5 involves 

finding (𝛽̂0, 𝜷̂) that minimizes the objective function given the tuning parameter 𝜆 ∈ ℝ≥0. 

In practice, 𝜆 is selected via 10-fold cross-validation. The problem in Equation 4.1.5 is 

convex and therefore can be solved via coordinate descent. 

4.1.3.3 Predicting Sealing Effectiveness Using Linear Regression with Lasso 

Once the model is fitted, the sealing effectiveness can be monitored by sampling the 

pressure signal, extracting the frequency band features, and using the features as inputs into 

the Linear Regression with Lasso model. The sealing effectiveness is predicted as follows: 

 𝜀̂ = 𝛽̂0 + 𝒙̃∗𝜷̂ (4.1.6) 

where 𝜀̂ is the predicted sealing effectiveness for standardized input predictors 𝒙̃∗ with 

estimated regression coefficients 𝛽̂0 and 𝜷̂. To evaluate the performance of the proposed 

modeling approach, the root mean squared error (RMSE) between the actual sealing 

effectiveness and the values predicted by the model is computed. Since this error can 

depend on the random partitioning of the data into training and testing, the random 

partitioning and model fitting is repeated 250 times and descriptive statistics on the errors 

are reported. In Figure 4.7, the median RMSE over all 250 iterations along with the range 

of the RMSE are displayed for both sensor locations. 
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Figure 4.7 – Distribution of RMSE for Two Sensor Locations 

The first observation from Figure 4.7 is that the rim seal sensor provides higher accuracy 

in predicting sealing effectiveness than the outer casing. The errors also have less 

variability for the rim seal sensor than for the outer casing sensor. This is expected since 

the rim seal sensor is closer to the source of purge flow than the outer casing sensor. The 

rim seal Linear Regression model is capable of distinguishing between the following 

intervals of sealing effectiveness: [1.2 × 10−4, 0.22], 0.36, [0.44,0.48], 0.55,0.82, and 

[0.93,0.99]. This can be seen in Figure 4.8 by analyzing the boxplots of predictions at each 

sealing effectiveness setpoint. 
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Figure 4.8 – Predicted 𝜺 at Rim Seal for DD Methodology 

From Figure 4.8, it can also be seen that the locations with the lowest accuracy are near the 

boundaries of the sealing effectiveness. For comparison, Figure 4.9 displays the sealing 

effectiveness predictions made using sensor data from the outer casing. The predictions for 

the outer casing sensor are more accurate than the rim seal predictions for the low sealing 

effectiveness values. However, the predictions are not very precise as there is strong 

overlap between boxplots for different sealing effectiveness values. Therefore, stratifying 

the sealing effectiveness into distinct intervals is much more difficult with the outer casing 

predictions than the rim seal predictions. 
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Figure 4.9 – Predicted 𝜺 at Outer Casing for DD Methodology 

From analyzing Figure 4.8 and Figure 4.9, the data-driven model can capture the inflection 

in the relationship between the sealing effectiveness and the purge flow rate that the 

physics-based models were not capable of doing. 

In Figure 4.10, the average regression coefficients over all 250 partitions are 

displayed. 
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Figure 4.10 – Average Regression Coefficients Over All 250 Partitions 

By analyzing the regression coefficients, it can be seen that 𝑥̅5 has a zero coefficient. The 

lack of significance of this feature is interesting given that 𝑓/𝑓𝐷  = 5 is the dominant 

frequency in Figure 4.6. By plotting the sealing effectiveness vs. 𝑥̅5 in Figure 4.11, the lack 

of significance is shown to be a result of the nonlinear relationship between the two 

variables. 
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Figure 4.11 – Nonlinear Relationship Between Sealing Effectiveness and Frequency 

Band 5 

The dominant frequency is caused by rotating flow structures that increase in strength as 

the purge flow increases. However, these rotating flow structures begin to weaken once the 

purge flow reaches a normalized value of about 0.55. Therefore, while the feature 𝑥̃5 is not 

linearly correlated with the sealing effectiveness, there are distinct regions of strong 

correlation. In the two-step methodology this domain knowledge of the physics regarding 

this feature is leveraged to improve prediction accuracy. 

4.1.4 Two-step Methodology 

Through the feature extraction step, the two-step methodology is identical to the data-

driven methodology. After partitioning the data into a training and test set, two models are 

trained. The first model is designed to obtain a coarse prediction of the sealing 

effectiveness. More specifically, Logistic Regression with Lasso is fitted. This model maps 
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the 29 frequency band features to one of two states: 𝜀 ≥ 0.5 and 𝜀 < 0.5. To fit this model, 

the following optimization problem is solved: 

 

min
(𝜃0,𝜽)∈ℝ29+1

− [
1

𝑀
∑𝑧𝑖(𝜃0 + 𝒙̃𝑖

𝑇𝜽) − ln (1 + 𝑒𝜃0+𝒙̃𝑖
𝑇𝜽)

𝑀

𝑖=1

] + 𝜂‖𝜽‖1 (4.1.7) 

where 𝑧𝑖 = 1 if 𝜀𝑖 ≥ 0.5 and 𝑧𝑖 = 0 otherwise. Solving this problem involves finding the 

parameters (𝜃0, 𝜽̂) that minimize the objective function in Equation 4.1.7 given the tuning 

parameter 𝜂 ∈ ℝ≥0. Like with 𝜆 in the Linear Regression with Lasso model, 𝜂 is selected 

via 10-fold cross-validation. The objective function in Equation 4.1.7 is convex and so the 

problem can be solved via coordinate descent. 

In the second model, a model is fitted to obtain a more granular prediction of the 

sealing effectiveness given that whether 𝜀 ≥ 0.5 or 𝜀 < 0.5 is known. The model fitted is 

a Linear Regression with Lasso using 𝑥̃5, 𝑥̃10, 𝑥̃15, 𝑥̃20, 𝑥̃25 and the natural logarithm of 

these features as predictors. These features represent the first five harmonics of the 

dominant frequency. The use of the natural logarithm is to account for the curvature seen 

in Figure 4.10. Included in the Linear Regression with Lasso model is the binary variable 

𝑧, which equals 1 if the sealing effectiveness is greater than or equal to 0.5 and equals 0 

otherwise. For this problem, following optimization problem is solved: 
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min
𝛾0,𝜔0,{𝛾𝑘,𝜔𝑘,𝜙𝑘,𝜓𝑘}𝑘=1

5 ∈ℝ22
∑(𝜀𝑖 − 𝛾0 − 𝜔0𝑧𝑖 −∑(𝛾𝑘 + 𝑧𝑖𝜔𝑘)𝑥̃𝑖,5𝑘

5

𝑘=1

𝑀

𝑖=1

−∑(𝜙𝑘 + 𝑧𝑖𝜓𝑘) ln 𝑥̃𝑖,5𝑘

5

𝑘=1

)

2

+ 𝜌(|𝜔0| +∑(|𝛾𝑘| + |𝜔𝑘| + |𝜙𝑘| + |𝜓𝑘|)

5

𝑘=1

) 

(4.1.8) 

Like with the previous two models, solving Equation 4.1.8 involves finding the parameters 

𝛾0, 𝜔̂0, {𝛾𝑘, 𝜔̂𝑘, 𝜙̂𝑘, 𝜓̂𝑘}𝑘=1
5

 that minimize the objective function in Equation 4.1.8 given 

the tuning parameter 𝜌 ∈ ℝ≥0. Like with 𝜆 and 𝜂, 𝜌 is determined by 10-fold cross-

validation. The objective function is convex and can be solved using coordinate descent. 

Once the two models are fitted, the sealing effectiveness is predicted by first 

sampling the pressure signal and extracting the 29 frequency band features. These features 

are used to infer whether 𝜀̂ ≥ 0.5 (𝑧̂ = 1) or 𝜀̂ < 0.5 (𝑧̂ = 0) using the following decision 

rule: If 
𝑒𝜃̂0+𝒙̃𝑖

𝑇𝜽̂

1+𝑒𝜃̂0+𝒙̃𝑖
𝑇𝜽̂
> 0.5, 𝑧̂ = 1, otherwise 𝑧̂ = 0. Next, only 𝑥̃5, 𝑥̃10, 𝑥̃15, 𝑥̃20, 𝑥̃25 and the 

natural logarithm of these features from the sampled pressure signal are utilized along with 

the inferred sealing effectiveness state 𝑧̂ to predict the sealing effectiveness. If 𝑧̂ = 0, the 

sealing effectiveness is predicted using the following equation: 

 

𝜀𝑖̂ = 𝛾0 +∑𝛾𝑘𝑥̃𝑖,5𝑘

5

𝑘=1

+∑𝜙̂𝑘 ln 𝑥̃𝑖,5𝑘

5

𝑘=1

 (4.1.9a) 

Conversely, if 𝑧̂ = 1, the sealing effectiveness is predicted using Equation 4.9b. 
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𝜀𝑖̂ = (𝛾0 + 𝜔̂0) +∑(𝛾̂𝑘 + 𝜔̂𝑘)𝑥̃𝑖,5𝑘

5

𝑘=1

+∑(𝜙̂𝑘 + 𝜓̂𝑘) ln 𝑥̃𝑖,5𝑘

5

𝑘=1

 (4.1.9b) 

As with the data-driven methodology, the two-step methodology is analyzed by performing 

250 random partitions of the data into training and testing, fitting the two models with the 

training set, and predicting sealing effectiveness with the test set. The descriptive statistics 

of the RMSE for the two-step methodology are displayed alongside that of the data-driven 

methodology for both the rim seal and outer casing in Figure 4.12. 

 

Figure 4.12 – Comparison of Distribution of RMSE between DD and 2S 

Methodologies 

From Figure 4.12, the two-step methodology greatly improves the model accuracy. For the 

rim seal, the two-step model results in a 48.7% reduction in median RMSE whereas the 

casing model experiences a 35.1% reduction in median RMSE using the two-step model. 

In addition to analyzing the overall accuracy, the distribution of predictions at each purge 

flow rate are shown in Figure 4.13 and Figure 4.14 for the rim seal and outer casing 

respectively. 
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Figure 4.13 – Predicted 𝜺 at Rim Seal for 2S Methodology 

 

Figure 4.14 – Predicted 𝜺 at Outer Casing for 2S Methodology 
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For predictions made at the rim seal, the deviations at the boundaries in the data-driven 

methodology have been corrected. Furthermore, for each purge flow rate, there are no 75th 

percentile values of predicted sealing effectiveness that overlap with the 25th percentile of 

the succeeding purge flow rate. This indicates that there is strong distinction between 

predictions made at different purge flow rates. For predictions made at the outer casing, 

only the predictions made at normalized purge flow rate of 0.427 show significant 

deviation from the actual sealing effectiveness. Otherwise, the predicted sealing 

effectiveness at the outer casing are distinctive as well. 

4.1.5 Application of Methodology to Other Operating Points 

The results observed thus far have demonstrated that the two-step methodology is 

capable of accurately predicting the sealing effectiveness. Thus far, the model has only 

been assessed at one operating point. However, the applicability of this methodology to 

other operating points is also analyzed. Table 4.1 displayed the relative difference between 

OP1 and OP2. The two-step methodology was performed using the data from OP2 and the 

results are compared to those from OP1. The comparison utilized the predictions made 

using the outer casing sensor since this is more likely to be feasible in a real-world scenario. 

Furthermore, both datasets were combined into one and a combined model is trained. Since 

the frequencies are nondimensionalized by the disk rotating frequency, the features are 

comparable between operating points despite OP2 operating at a slower rpm. Figure 4.15 

displays the comparison between these three models. 
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Figure 4.15 – Comparison of 2S Model for Different Operating Points 

Figure 4.15 shows that the median error for OP2 is nearly double that of OP1. Furthermore, 

the combined model has a similar median RMSE as OP2. The actual sealing effectiveness 

vs.  predicted sealing effectiveness plot in Figure 4.16 shows that the functional 

relationship between the sealing effectiveness and the purge flow rate for OP2 is different 

from that of OP1. Furthermore, the increase in median RMSE for the outer casing is due 

to large errors when predicting low sealing effectiveness, the region where the functional 

relationship is most different. However, the predictions at the other purge flow rates are 

accurate. 
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Figure 4.16 – Comparison of 2S Model at OP2 for Outer Casing (Left) and Rim Seal 

(Right) 

The right-hand side of Figure 4.16 shows that modeling with the rim seal yields very 

accurate results. In fact, the median RMSE for OP2 using the rim seal is 0.013, about half 

the median RMSE for OP1 using the rim seal. This indicates that the increase in error for 

the outer casing is a result of attenuation of the dominant frequency from the rim seal to 

the outer casing obscuring the correlation between the sealing effectiveness and the 

dominant frequency. This can be seen from the scatterplot of the sealing effectiveness vs. 

the dominant frequency 𝑥̃5 displayed in Figure 4.17. 
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Figure 4.17 – Scatterplot of Sealing Effectiveness vs. Dominant Frequency (OP2) 

In Figure 4.17, the rate of growth in the sealing effectiveness is higher for the outer casing 

than the rim seal. However, in the experiment, the purge flow is being altered and the 

pressure signal changes in response to the corresponding change in sealing effectiveness. 

Therefore, the steep rise in sealing effectiveness indicates that the outer casing is not 

capable of detecting the change in sealing effectiveness due to the purge flow rate changing 

from 0.104 to 0.200. This compromises model adequacy and results in high prediction 

errors. Due to its proximity to the purge flow, the rim seal sensor is more responsive to this 

change and thus, achieves very accurate results. This indicates that the two-step 

methodology is sound and is only limited by the outer casing sensor’s lack of 

responsiveness to the impact of a different operating point on the functional relationship 
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between the purge flow rate and the sealing effectiveness. While application to other 

operating points is needed for a full study on the robustness of the methodology, these 

results are positive indicators that the two-step methodology can be applied for different 

operating points.   

4.1.6 Conclusion 

In this study, two methodologies were developed for performing real-time 

monitoring of sealing effectiveness in an industry-class gas turbine. These methodologies 

were trained using time-resolved pressure sensors generated by the Turbine Test-rig at 

engine-relevant conditions and with engine-relevant hardware. Two pressure sensors, one 

located at the rim seal near the purge flow and the other located on the outer casing were 

installed to monitor the system under various purge flow rates. The signals from these 

pressure sensors were utilized to develop two methodologies for predicting sealing 

effectiveness. 

The first methodology (DD) utilized a Linear Regression with Lasso model to 

directly model the sealing effectiveness as a linear function of frequency features extracted 

from the pressure signal. The second methodology consists of a two-step approach (2S) 

that incorporates domain knowledge. First. Logistic Regression with Lasso with all features 

is used to obtain a coarse prediction of the sealing effectiveness and then Linear Regression 

with Lasso is performed using only the dominant frequency and its harmonics as predictors 

to perform a more granular prediction. Both methodologies demonstrated the capability of 

accurately predicting the sealing effectiveness. However, the two-step approach was 
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capable of reducing the median RMSE of the predictions by 48.7% and 35.1% for the rim 

seal and outer casing sensor respectively. 

Due to its higher accuracy, the two-step methodology was tested on another 

operating point. The conditions of this operating point altered the functional relationship 

between the sealing effectiveness and the purge flow rate, compromising the outer casing’s 

ability to detect sealing effectiveness changes when it is low. This resulted in the median 

RMSE almost double that of OP1. However, the outer casing is capable of distinguishing 

between higher sealing effectiveness values. Implementing the two-step methodology for 

OP2 using the rim seal resulted in higher accuracy than for OP1. Therefore, the two-step 

methodology using the rim seal sensor can perform real-time health monitoring the turbine 

sealing effectiveness. 
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4.2 Applying Infrared Thermography as a Method for Online Monitoring of 

Turbine Blade Coolant Flow 

4.2.1 Introduction and Literature Review 

To ensure efficient turbine operation, modern gas turbines operate with inlet 

temperatures surpassing 1673 K (Bogard and Thole, 2006). This is greater than the 1588.7 

K incipient melting temperature for nickel-based turbine blades (Koff, 2004). The high 

temperatures render the turbine blades susceptible to faults such as: high cycle fatigue, 

oxidation, sulphidation, hot corrosion, creep, and erosion (Meher-Homji and Gabriles, 

1998). To mitigate the risk of these faults, gas turbines are equipped with a combination of 

external and internal cooling mechanisms. Externally, cold air from the compressor is 

routed to the turbine section to cool the turbine components. The blades themselves are 

designed with internal cooling passages that deliver coolant to the blade surface via film 

cooling holes. Koff (2004) demonstrated that turbine blades designed with these cooling 

mechanisms enable operation at inlet temperatures over 588 K greater than the incipient 

melting temperature. Since inlet temperature is intrinsically linked to turbine efficiency, 

the integrity of turbine cooling mechanisms is important for ensuring high turbine 

efficiency. 

Despite the importance of the cooling flow to turbine blade health, gas turbine health 

monitoring methodologies in the literature do not focus on monitoring blade coolant. 

Instead, condition monitoring efforts have focused on degradation of the turbine blade. For 

example, vibration sensors have been used to detect both geometric and structural turbine 

blade faults. Cox et al. (2015) utilized offsets in the peaks of a sinusoidal vibration signal 
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to detect bending in the turbine blade. Meanwhile, Lim and Leong (2010) used wavelets to 

obtain a time-frequency representation of the vibration spectrum, enabling discrimination 

of creep rub and eccentricity rub in the turbine blade. Blade tip clearance data has also been 

utilized for monitoring turbine blade health. For example, Goel et al. (2008) proposed 

percentile ranking of the sample mean of blade tip clearance data to detect blade tip 

degradation. While these techniques can detect turbine faults, their suitability for detecting 

coolant flow faults is limited since the techniques would only capture the resulting effect 

of a coolant flow loss. Conversely, infrared imaging has been shown to detect losses in 

thermal barrier coating, which is used in conjunction with the cooling mechanisms 

(LeMieux, 2005, Markham et al., 2014). Therefore, this section studies the efficacy of 

infrared imaging as a tool for monitoring coolant flow. 

To assess the efficacy of infrared imaging, various models are proposed that map 

features extracted from the infrared image of the blade to the Coolant Flow Rate. To test 

the robustness of the models to changes in the Main Gas Path (MGP Temperature, an 

experiment is conducted where infrared images are recorded for various combinations of 

MGP Temperature and Coolant Flow Rate. During the experiment, the correlation between 

the MGP Temperature and the Coolant Flow Rate was affected by latent factors. To control 

for these factors, additional measurements were recorded and included in the model and 

the difference in accuracy of predicting the Coolant Flow Rate with and without the 

additional measurements is analyzed. To conclude, the potential for thermal imaging to 

inform placement of more cost-effective thermal sensors is assessed. The remainder of this 

section is organized as follows. Section 4.2.2 describes the experimental approach and data 

collection while Section 4.2.3 describes how features are extracted from the thermal 



 145 

images. In Section 4.2.4, the regression model that forms the foundation for all models 

proposed is formulated. Section 4.2.5 details the results of the various modeling 

approaches. The findings are summarized in the conclusion in Section 4.2.6. 

4.2.2 Experiment 

For this project, data acquisition was conducted as follows. An infrared camera was 

used to record images of the gas turbine blade. A diagram of this can be seen in Figure 

4.18. 

 

Figure 4.18 – Cross-section View of Turbine with Camera (Left), 3D Diagram of 

Camera and Blade (Right) 

Images were recorded for various combinations of MGP Temperature (𝑇𝑀𝐺𝑃) and Coolant 

Flow Rate (𝑚̇𝑐𝑜𝑜𝑙). In total, four values of 𝑇𝑀𝐺𝑃 and five values of 𝑚̇𝑐𝑜𝑜𝑙 were considered. 

The number of samples for each combination are displayed in Table 4.2. 
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Table 4.2 – Number of Samples for Each 𝑻𝑴𝑮𝑷/𝒎̇𝒄𝒐𝒐𝒍 Combination 

Coolant Flow Rate 
Main Gas Path Temperature 

Lv 1. 0.966 Lv. 2. 1.395 Lv 3. 1.778 Lv 4. 2.114 Lv 5. 2.314 

Lv 1. 1.324 4 4 23 8 8 

Lv 2. 1.391 0 0 16 8 8 

Lv 3. 1.428 4 4 4 4 4 

Lv 4. 1.445 4 8 16 15 11 

Measurements were not all recorded on the same day. Therefore, the effect of lurking 

variables was observed in the data. To account for this, three ancillary sensor measurements 

were included with the thermal images. These sensors were the Coolant Temperature 

(𝑇𝑐𝑜𝑜𝑙) and the rate of change at the time of measurement of the temperature measured at 

the inner diameter near the rim seal (
𝑑𝑇𝐼𝐷

𝑑𝑡
) and at the outer diameter of the turbine (

𝑑𝑇𝑂𝐷

𝑑𝑡
). 

Ideally, the coolant temperature would be constant, and the rates of change would be zero. 

However, regulating these parameters is not a trivial task. For example, a positive rate of 

change in the temperature indicates that the turbine is heating due to an increase in 𝑇𝑀𝐺𝑃 

or a decrease in 𝑚̇𝐶𝑜𝑜𝑙. While an operator may assume that the temperatures in the turbine 

have reached a steady state, minor differences in the rate of change of the temperature may 

still have significant effects on the images. Therefore, these additional sensors can aid in 

estimating the Coolant Flow Rate in the presence of minor transients. 

4.2.3 Feature Engineering 

In this study, infrared images are used to predict Coolant Flow Rate. The sampled images 

for the extreme combinations of 𝑇𝑀𝐺𝑃 and 𝑚̇𝐶𝑜𝑜𝑙 are provided in Figure 4.19. 
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Figure 4.19 – Sample Infrared Image 

It should be noted that these are not the true images. Instead, these are contour plots formed 

by concatenating normalized image columns. The true images are not sharable for 

proprietary purposes. The color maps are scaled equally across all images. While the 

scaling obscures the contours of the individual images, it allows for contrasts to be visible 

between the different operating modes. For example, when both 𝑇𝑀𝐺𝑃 and 𝑚̇𝐶𝑜𝑜𝑙 are at 

their lowest values, the image is a neutral light blue. However, an increase in 𝑚̇𝐶𝑜𝑜𝑙 to its 

highest value reduces the temperature sharply, resulting in a dark blue image with 

somewhat visible contours. Conversely, an increase in 𝑇𝑀𝐺𝑃 sharply increases the 

temperature resulting in a bright yellow image with dark yellow accents. These accents are 



 148 

due to the cooling holes in the turbine blade. They become more visible when both 

operating conditions are at their highest values. 

To predict Coolant Flow Rate using these images, the following three feature 

extraction techniques are employed. 

- 2D Avg: Overall average pixel intensity, 𝑥2𝐷 

- ID Avg: Column-wise pixel averages, 𝒙1𝐷 = (𝑥1𝐷,1, … , 𝑥1𝐷,30)
𝑇
 

- Image: Individual pixels, 𝒙𝐼𝑚𝑎𝑔𝑒 = (𝑥1,1, 𝑥2,1, … , 𝑥63,1, … , 𝑥63,63)
𝑇
 

The overall average pixel intensity is representative of a pyrometer with a focal area 

equivalent to that of the infrared camera. The column-wise pixel averages have been used 

for studying the functional relationship between cooling and downstream distance. 

Therefore, it is worth investigating as a potential predictor for predicting Coolant Flow 

Rate. The final technique utilizes the entire image, treating each pixel as an individual 

feature. In this study, the ability of each of these techniques along with the ancillary sensors 

(𝑇𝐶𝑜𝑜𝑙,
𝑑𝑇𝐼𝐷

𝑑𝑡
,
𝑑𝑇𝑂𝐷

𝑑𝑡
) in predicting Coolant Flow Rate is evaluated. 

4.2.4 Linear Regression with Lasso 

All models evaluated in this chapter were fitted using Linear Regression with Lasso. As 

explained in Section 4.1, Lasso can perform variable selection because it causes some 

regression coefficients to shrink to zero. To fit this model, the following optimization 

problem is solved: 
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min
(𝛽0,𝜷)∈ℝ𝑷+𝟏

1

𝑁
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2
𝑁

𝑖=1

+ 𝜆‖𝜷‖1 (4.2.1) 

Here, 𝑦𝑖 ∈ ℝ is the 𝑖th observed Coolant Flow Rate and 𝒙𝑖 ∈ ℝ
𝑃 is the corresponding 

vector of 𝑃 standardized predictors. Since the objective function is convex, this can be 

solved using coordinate descent given the tuning parameter 𝜆 ≥ 0, which is determined by 

10-fold cross-validation. To train the models presented in this chapter, half of the data for 

each 𝑇𝑀𝐺𝑃/𝑚̇𝐶𝑜𝑜𝑙 combination was selected for training and the other half was used for 

testing the model. Linear Regression with Lasso was fitted using the training set and the 

parameters (𝛽̂0, 𝜷̂) were estimated. For observations in the test set, the Coolant Flow Rate 

is predicted using the equation: 

 𝑦̂𝑖 = 𝛽̂0 + 𝒙𝑖
𝑇𝜷̂ (4.2.2) 

The accuracy of the model is determined by computing the Root Mean Squared Error 

(RMSE) for test observations. Like the sealing effectiveness study, the data was partitioned 

into training and testing 250 times and the median and range of the RMSE values were 

reported. Therefore, all models fitted are analyzed according to the distribution of the 

RMSE. 

4.2.5 Analysis of Coolant Flow Rate Predictions Using Linear Regression with Lasso 

Two datasets are utilized for this analysis. The first dataset consists of all samples 

recorded in the experiment described in Subsection 4.2.2. The second dataset is a 

downsampled version of the first dataset. This downsampling is designed to remove the 
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influence of lurking variables. This is accomplished by selecting samples where the 

ancillary sensor measurements (𝑇𝐶𝑜𝑜𝑙,
𝑑𝑇𝐼𝐷

𝑑𝑡
,
𝑑𝑇𝑂𝐷

𝑑𝑡
) have little variability. The purpose of 

this is to test the Linear Regression with Lasso model on an “ideal” dataset sampled when 

no lurking variables are present. The effect of downsampling on the distribution of the 

ancillary features is shown in Figure 4.20. 

 

Figure 4.20 – Histograms of Ancillary Factors 
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Figure 4.20 draws a comparison between the distributions of the ancillary sensor 

measurements for the original dataset and the ideal dataset. The variability in the ancillary 

sensor measurements is reduced through the downsampling. In Subsection 4.2.5.1, the 

accuracies of the proposed models are analyzed for the ideal dataset. 

4.2.5.1 Comparison of 𝑚̇ Estimation Using Ideal Dataset with or without 𝑇𝑀𝐺𝑃 

As can be seen in Figure 4.19, changes in the MGP Temperature significantly affect 

the temperature distribution on the surface of the blade. This study compares the 

performance of each feature extraction technique when including 𝑇𝑀𝐺𝑃 as a known 

measurable quantity with the performance of each feature extraction technique on their 

own. The predictor variables and response variable for each model are shown in Table 4.3 
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Table 4.3 – Summary of Modeling Approaches with and without 𝑻𝑴𝑮𝑷 as a 

Predictor 

Model Training Predictors Response, 𝒚 

2D Avg without 

𝑇𝑀𝐺𝑃 

𝑥2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

1D Avg without 

𝑇𝑀𝐺𝑃 
𝒙1𝐷
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

Image without 𝑇𝑀𝐺𝑃 𝒙𝐼𝑚𝑎𝑔𝑒
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

2D Avg with 𝑇𝑀𝐺𝑃 𝑥2𝐷 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝑥2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

1D Avg with 𝑇𝑀𝐺𝑃 𝒙1𝐷
𝑇 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝒙1𝐷

𝑇  𝑚̇𝐶𝑜𝑜𝑙 

Image with 𝑇𝑀𝐺𝑃 𝒙𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝒙𝐼𝑚𝑎𝑔𝑒

𝑇  𝑚̇𝐶𝑜𝑜𝑙 

The comparison in RMSE between the models with and without 𝑇𝑀𝐺𝑃 as a predictor is 

shown in Figure 4.21. 

 

Figure 4.21 – Median and Range of RMSE for Estimating 𝒎̇ with and w/o 𝑻𝑴𝑮𝑷 
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From Figure 4.21, the RMSE is much lower for the 1D Avg and the Image features than 

the 2D Avg feature. This is expected because the 1D Avg and Image are more informative 

than the 2D Avg. When compared with each other, the 1D Avg and Image have comparable 

accuracy. While the accuracy for the 1D Avg and the Image features does not significantly 

improve when including 𝑇𝑀𝐺𝑃 as a predictor, the same is not true for the 2D Avg. Including 

𝑇𝑀𝐺𝑃 into the model greatly improved the ability of the 2D Avg to predict Coolant Flow 

Rate. However, this inclusion assumes that 𝑇𝑀𝐺𝑃 is a measurable quantity, which may not 

be realistic. Therefore, whether similar improvement in accuracy is possible if 𝑇𝑀𝐺𝑃 is 

inferred from the infrared image features is tested. 

Linear Regression with Lasso is used to generate three models where 𝑇𝑀𝐺𝑃 is 

modeled as a function of the infrared image features. Table 4.4 displays the MGP 

Temperature models. 

Table 4.4 – Summary of MGP Temperature Models 

Model Training Predictors Response 

2D Avg 𝑥2𝐷 𝑇𝑀𝐺𝑃 

1D Avg 𝒙1𝐷
𝑇  𝑇𝑀𝐺𝑃 

Image 𝒙𝐼𝑚𝑎𝑔𝑒
𝑇  𝑇𝑀𝐺𝑃 

The distributions of the RMSE for these models are shown in Figure 4.22. 
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Figure 4.22 – Modeling 𝑻𝑴𝑮𝑷 Using Infrared Image Features 

The RMSE when predicting 𝑇𝑀𝐺𝑃 is low, demonstrating that the features are strong 

predictors for predicting MGP Temperature. This is not surprising given that the MGP is 

acting directly on the blade. However, it is important to assess the utility of the inferred 

𝑇𝑀𝐺𝑃 as a predictor for Coolant Flow Rate. Since significant improvement in Coolant Flow 

Rate prediction only occurred for the 2D Avg, the analysis is limited to this case.  

The methodology consists of modeling the Coolant Flow Rate using the 2D Avg 

along with the measured 𝑇𝑀𝐺𝑃. The Coolant Flow Rate is modeled as follows: 

 𝑦 = 𝛽0 + 𝛽𝑥 + 𝛾𝑇𝑀𝐺𝑃 + 𝜃𝑥𝑇𝑀𝐺𝑃 (4.2.3) 



 155 

where 𝑦 is the Coolant Flow Rate, 𝑥 is the 2D average, and {𝛽0, 𝛽, 𝛾, 𝜃} are model 

parameters. Linear Regression with Lasso is used to fit the Coolant Flow Rate model. Then, 

𝑇𝑀𝐺𝑃 is modeled using individual Linear Regression with Lasso models for each feature 

extraction technique. 𝑇𝑀𝐺𝑃 is inferred for the test data for each of these regression models. 

The inferences for 𝑇𝑀𝐺𝑃 are used along with the infrared image features to predict Coolant 

Flow Rate. The RMSE for the Coolant Flow Rate models with 𝑇𝑀𝐺𝑃 as an inferred value 

are shown in Figure 4.23. For comparison, the result if 𝑇𝑀𝐺𝑃 is known is shown. 

 

Figure 4.23 – Prediction of Coolant Flow Rate with Inferred 𝑻𝑴𝑮𝑷 

The results in Figure 4.23 indicate that using an inferred value of 𝑇𝑀𝐺𝑃 is also useful for 

predicting Coolant Flow Rate as the median RMSE values when inferring 𝑇𝑀𝐺𝑃 using 1D 
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Avg or Image features are comparable to using the actual 𝑇𝑀𝐺𝑃. Figure 4.23 also indicates 

that using 2D Avg to infer 𝑇𝑀𝐺𝑃 and then using this inferred value with the 2D Avg to 

predict Coolant Flow Rate results in poor accuracy. The reason is that the inferred 𝑇𝑀𝐺𝑃 is 

a function of the 2D Avg and therefore, no new information is added to the model by its 

inclusion.  

Up to this point, all analysis has been conducted on the ideal data set. It is important 

to determine how well these models perform on data with more variability in the ancillary 

factors. Therefore, application of these models to the original dataset is the topic of the next 

subsection. 

4.2.5.2 Estimating 𝑚̇ Using Original Dataset 

In this subsection, the ability for the models fitted using the three feature extraction 

techniques to predict the Coolant Flow Rate when using the original dataset is analyzed. 

First, the performance of the models trained and tested on the ideal dataset are compared 

with those trained and tested on the original dataset. For all three feature extraction 

techniques, the accuracy of the model fitted with only the extracted features is compared 

with the accuracy of the model fitted with both the extracted features and 𝑇𝑀𝐺𝑃. When 

testing the models, the 𝑇𝑀𝐺𝑃 and the ancillary sensor measurements (𝑇𝐶𝑜𝑜𝑙,
𝑑𝑇𝐼𝐷

𝑑𝑡
,
𝑑𝑇𝑂𝐷

𝑑𝑡
) are 

assumed to be observable. Table 4.5 displays the predictors and response variables for each 

model. The tilde operators indicate that the model uses observations from the original 

dataset. 
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Table 4.5 – Comparison of Models between Ideal and Original Datasets 

Model Training Predictors Response 

2D Avg, Train 

Ideal, Test Ideal 
𝑥2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

2D Avg, Train 

Ideal, Test Ideal 

with 𝑇𝑀𝐺𝑃 

𝑥2𝐷 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝑥2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

2D Avg, Train 

Original, Test 

Original 

𝑥̃2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

2D Avg, Train 

Original, Test 

Original with 

𝑇𝑀𝐺𝑃 

𝑥̃2𝐷 , 𝑇̃𝑀𝐺𝑃 , 𝑇̃𝑀𝐺𝑃𝑥̃2𝐷 𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train 

Ideal, Test Ideal 
𝒙1𝐷
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train 

Ideal, Test Ideal 

with 𝑇𝑀𝐺𝑃 
𝒙1𝐷
𝑇 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝒙1𝐷

𝑇  𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train 

Original, Test 

Original 
𝒙̃1𝐷
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train 

Original, Test 

Original with 

𝑇𝑀𝐺𝑃 

𝒙̃1𝐷
𝑇 , 𝑇̃𝑀𝐺𝑃 , 𝑇̃𝑀𝐺𝑃𝒙̃1𝐷 𝑚̇𝐶𝑜𝑜𝑙 

Image, Train 

Ideal, Test Ideal 
𝒙𝐼𝑚𝑎𝑔𝑒
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

Image, Train 

Ideal, Test Ideal 

with 𝑇𝑀𝐺𝑃 

𝒙𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑇𝑀𝐺𝑃 , 𝑇𝑀𝐺𝑃𝒙𝐼𝑚𝑎𝑔𝑒

𝑇  𝑚̇𝐶𝑜𝑜𝑙 

Image, Train 

Original, Test 

Original 

𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇  𝑚̇𝐶𝑜𝑜𝑙 

Image, Train 

Original, Test 

Original with 

𝑇𝑀𝐺𝑃 

𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑇̃𝑀𝐺𝑃 , 𝑇̃𝑀𝐺𝑃𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇  𝑚̇𝐶𝑜𝑜𝑙 

The results are shown in Figure 4.24, where only the median RMSE is reported. 
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Figure 4.24 – Comparison of 𝒎̇ Prediction Accuracy Between Ideal and Original 

Dataset 

The bar chart in Figure 4.24 demonstrates that the prediction accuracy is lower when 

training and testing a model on the original dataset than when training and testing on the 

ideal dataset. This is expected due to heterogeneity in the ancillary factors. The 

improvement in the accuracy for the 2D Avg due to including 𝑇𝑀𝐺𝑃 in the model is 

consistent for the ideal and the original dataset. However, this improvement is very 

minimal for the 1D Avg and Image features across both datasets. To account for the lower 

accuracy in predicting Coolant Flow Rate for the original dataset, the sensor measurements 

from the ancillary factors are incorporated into the models. To account for the complex 

relationship between the covariates and the temperature distribution of the blade, all 

possible interaction terms are included in the models and the Lasso penalty to determine 
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which interactions are significant. Let 𝑥2 = 𝑇̃𝑀𝐺𝑃 , 𝑥3 = 𝑇𝐶𝑜𝑜𝑙, 𝑥4 =
𝑑𝑇𝐼𝐷

𝑑𝑡
, 𝑥5 =

𝑑𝑇𝑂𝐷

𝑑𝑡
 . 

Table 4.6 and Table 4.7 show the predictors and the response variable for the additional 

models shown in Figure 4.25. Here, ancillary sensor measurements are called covariates 

(Cov). 

Table 4.6 – Models with Ancillary Sensor Measurements 

Model Training Predictors Response 

2D Avg, Train Original, 

Test Original with Cov 

𝑥̃2𝐷 , 𝑥3, 𝑥4, 𝑥5,
𝑥3𝑥̃2𝐷, 𝑥4𝑥̃2𝐷, 𝑥5𝑥̃2𝐷,
𝑥3𝑥4, 𝑥3𝑥5, 𝑥4𝑥5,
𝑥3𝑥4𝑥̃2𝐷, 𝑥3𝑥5𝑥̃2𝐷,
𝑥4𝑥5𝑥̃2𝐷, 𝑥3𝑥4𝑥5,
𝑥3𝑥4𝑥5𝑥̃2𝐷

 𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train Original, 

Test Original with Cov 

𝒙̃1𝐷
𝑇 , 𝑥3, 𝑥4, 𝑥5,

𝑥3𝒙̃1𝐷
𝑇 , 𝑥4𝒙̃1𝐷

𝑇 , 𝑥5𝒙̃1𝐷
𝑇 ,

𝑥3𝑥4, 𝑥3𝑥5, 𝑥4𝑥5,

𝑥3𝑥4𝒙̃1𝐷
𝑇 , 𝑥3𝑥5𝒙̃1𝐷

𝑇 ,

𝑥4𝑥5𝒙̃1𝐷
𝑇 , 𝑥3𝑥4𝑥5,

𝑥3𝑥4𝑥5𝒙̃1𝐷
𝑇

 𝑚̇𝐶𝑜𝑜𝑙 

Image, Train Original, Test 

Original with Cov 

𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥3, 𝑥4, 𝑥5,

𝑥3𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 , 𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 ,

𝑥3𝑥4, 𝑥3𝑥5, 𝑥4𝑥5,

𝑥3𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥3𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 ,

𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥3𝑥4𝑥5,

𝑥3𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇

 𝑚̇𝐶𝑜𝑜𝑙 
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Table 4.7 – Models with MGP Temperature and Ancillary Sensor Measurements 

Model Training Predictors Response 

2D Avg, Train 

Original, Test 

Original with 𝑇𝑀𝐺𝑃 

and Cov 

𝑥̃2𝐷 , 𝑥2, 𝑥3, 𝑥4, 𝑥5,
𝑥2𝑥̃2𝐷, 𝑥3𝑥̃2𝐷, 𝑥4𝑥̃2𝐷, 𝑥5𝑥̃2𝐷,
𝑥2𝑥3, 𝑥2𝑥4, 𝑥2𝑥5, 𝑥3𝑥4,

𝑥3𝑥5, 𝑥4𝑥5, 𝑥2𝑥3𝑥̃2𝐷, 𝑥2𝑥4𝑥̃2𝐷 , 𝑥2𝑥5𝑥̃2𝐷,
𝑥3𝑥4𝑥̃2𝐷, 𝑥3𝑥5𝑥̃2𝐷 , 𝑥4𝑥5𝑥̃2𝐷, 𝑥2𝑥3𝑥4,
𝑥2𝑥3𝑥5, 𝑥2𝑥4𝑥5, 𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝑥̃2𝐷,
𝑥2𝑥3𝑥5𝑥̃2𝐷 , 𝑥2𝑥4𝑥5𝑥̃2𝐷, 𝑥3𝑥4𝑥5𝑥̃2𝐷 ,

𝑥2𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝑥5𝑥̃2𝐷

 𝑚̇𝐶𝑜𝑜𝑙 

1D Avg, Train 

Original, Test 

Original with 𝑇𝑀𝐺𝑃 

and Cov 

𝒙̃1𝐷
𝑇 , 𝑥2, 𝑥3, 𝑥4, 𝑥5,

𝑥2𝒙̃1𝐷
𝑇 , 𝑥3𝒙̃1𝐷

𝑇 , 𝑥4𝒙̃1𝐷
𝑇 , 𝑥5𝒙̃1𝐷

𝑇 ,
𝑥2𝑥3, 𝑥2𝑥4, 𝑥2𝑥5, 𝑥3𝑥4,

𝑥3𝑥5, 𝑥4𝑥5, 𝑥2𝑥3𝒙̃1𝐷
𝑇 , 𝑥2𝑥4𝒙̃1𝐷

𝑇 , 𝑥2𝑥5𝒙̃1𝐷
𝑇 ,

𝑥3𝑥4𝒙̃1𝐷
𝑇 , 𝑥3𝑥5𝒙̃1𝐷

𝑇 , 𝑥4𝑥5𝒙̃1𝐷
𝑇 , 𝑥2𝑥3𝑥4,

𝑥2𝑥3𝑥5, 𝑥2𝑥4𝑥5, 𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝒙̃1𝐷
𝑇 ,

𝑥2𝑥3𝑥5𝒙̃1𝐷
𝑇 , 𝑥2𝑥4𝑥5𝒙̃1𝐷

𝑇 , 𝑥3𝑥4𝑥5𝒙̃1𝐷
𝑇 ,

𝑥2𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝑥5𝒙̃1𝐷
𝑇

 𝑚̇𝐶𝑜𝑜𝑙 

Image, Train 

Original, Test 

Original with 𝑇𝑀𝐺𝑃 

and Cov 

𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥2, 𝑥3, 𝑥4, 𝑥5,

𝑥2𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥3𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 , 𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 ,
𝑥2𝑥3, 𝑥2𝑥4, 𝑥2𝑥5, 𝑥3𝑥4,

𝑥3𝑥5, 𝑥4𝑥5, 𝑥2𝑥3𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥2𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 , 𝑥2𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 ,

𝑥3𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥3𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 , 𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥2𝑥3𝑥4,

𝑥2𝑥3𝑥5, 𝑥2𝑥4𝑥5, 𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 ,

𝑥2𝑥3𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 , 𝑥2𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒

𝑇 , 𝑥3𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇 ,

𝑥2𝑥3𝑥4𝑥5, 𝑥2𝑥3𝑥4𝑥5𝒙̃𝐼𝑚𝑎𝑔𝑒
𝑇

 𝑚̇𝐶𝑜𝑜𝑙 

The results for these models are displayed in Figure 4.25. 
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Figure 4.25 - Comparison of 𝒎̇ Prediction Accuracy after Including Covariates 

The results in Figure 4.25 indicate that including both 𝑇𝑀𝐺𝑃 and the ancillary factors in the 

model provide more accurate predictions of the Coolant Flow Rate than when just using 

the ideal dataset. This is likely due to variability still present in the sensor values of the 

ancillary factors within the ideal case. Of course, the accuracy gained by incorporating 

these sensor measurements comes with the cost of increased sensing requirements. 

Furthermore, the optimal model requires knowledge of 𝑇𝑀𝐺𝑃. However, focusing on the 

models using all the image pixels as predictors, there is little difference between the model 

trained on the original dataset without 𝑇𝑀𝐺𝑃 and covariates (yellow) and the model trained 

on the original dataset with covariates but without 𝑇𝑀𝐺𝑃 (green). While the model trained 

on the original dataset with just the image features is not the most accurate overall, it is the 
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most accurate of the models trained on the original dataset that do not include 𝑇𝑀𝐺𝑃 or 

ancillary factors. Therefore, this model is investigated further in the next subsection. 

4.2.5.3 Investigation of 𝑚̇ vs. Image Model 

Let 𝒳𝑖 , 𝑖 = 1,… ,𝑁 denote the 𝑖th sampled infrared image of the turbine blade, where 

 
𝒳𝑖 = [

𝑥𝑖,1 ⋯ 𝑥𝑖,694
⋮ ⋱ ⋮

𝑥𝑖,63 ⋯ 𝑥𝑖,756
] (4.2.4) 

since for this experiment, the images are 63 × 12. Let 〈𝒳𝑖 , ℬ〉 = ∑ 𝑥𝑗𝛽𝑗
756
𝑗=1 , then the Linear 

Regression with Lasso model can be reformulated as: 

 

min
𝛽0,ℬ

1

𝑁
∑(𝑦𝑖 − 𝛽0 − 〈𝒳𝑖 , ℬ〉)

2

𝑁

𝑖=1

+ 𝜆‖ℬ‖1 (4.2.5) 

In Equation 4.2.5, the regression coefficients are arranged into a 63 × 12 matrix whose 

elements correspond with the elements of the observed image 𝒳𝑖. Thus, solving Equation 

4.14 is akin to estimating this coefficient matrix. Since Lasso performs variable selection, 

this coefficient matrix is expected to be sparse. These sparse regions can indicate potential 

locations for placement of less expensive telemetry such as pyrometers. In Figure 4.26, the 

contour plot of the regression coefficient matrix is displayed for the 𝑚̇ model trained on 

image features using the original dataset. 
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Figure 4.26 – Contour Plot of Regression Coefficient Matrix 

In Figure 4.26, most of the coefficients are zero apart from a few sparse regions. This 

indicates that an entire infrared image is not necessary for estimating Coolant Flow Rate. 

Instead, focus only needs to be paid to areas of the blade corresponding to these sparse 

regions. Further investigation of Figure 4.26 shows that the locations selected refer to 

coldest (blue) and hottest locations (yellow) on the blade. 

Although Linear Regression with Lasso revealed sparse regions for monitoring, the 

number of pixels being monitored is 33. To determine the tradeoff between the number of 

features retained in the model and the accuracy in estimating the Coolant Flow Rate, 

consider the following sequence of tuning parameters: 𝜆(1), 𝜆(2), … , 𝜆(10), …, where 𝜆(𝑝) is 
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the largest value of the tuning parameter such that Linear Regression with Lasso selects 𝑝 

features for modeling. These values are obtained by performing 10-fold cross-validation 

and analyzing the sequence of tuning parameters for the number of features retained in the 

model. For each tuning parameter in the sequence, Linear Regression with Lasso is 

performed.  This is repeated 250 times for various partitions of the original data into 

training and testing. The median RMSE values are reported up through 𝜆(10) along with 

the median RMSE for the optimal model in Figure 4.27. 

 

Figure 4.27 – Prediction Error of 𝒎̇ as a Function of Number of Features in Model 

The asterisk indicates that model 11 refers to the optimal model and not the model with 11 

features. Figure 4.27 shows that once four features are used, the rate of improvement in the 
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prediction error diminishes. Therefore, an accurate estimate of the Coolant Flow Rate can 

be obtained using only four features. This offers opportunities for alternative, more 

affordable sensing technology that focuses on localized regions of the blade to diagnose 

Coolant Flow Rate (e.g. single-point pyrometers). 

4.2.6 Conclusion 

This section demonstrated several regression models for predicting Coolant Flow 

Rate using infrared imaging. This is important as no studies had been developed for 

monitoring the health of the coolant system. This methodology enables turbine operators 

to detect faults in the coolant even under various MGP temperatures. However, lurking 

variables had influence on the correlation between Coolant Flow Rate and the infrared 

images. Downsampling was employed to reduce these effects. Three techniques for 

extracting features from the images were evaluated and the 1D Avg and Image features 

were shown to perform better than the 2D Avg. The 2D Avg was shown to be a strong 

predictor of Coolant Flow Rate if the MGP Temperature was measurable. When including 

the observations from the original dataset, there was a reduction in accuracy from the ideal 

dataset. However, this reduction in accuracy was mitigated by including ancillary sensor 

measurements in the model. This demonstrates the importance of experimental design in 

removing the effect of lurking variables. 

In the analysis of the regression coefficients for the model using the image as a 

predictor, the estimated coefficients were shown to be sparse. A study was conducted 

where the number of features in the model was progressively increased and the decrease in 

prediction error was observed. After four features, there was only marginal improvement 
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in the prediction error. Therefore, accurate prediction of the Coolant Flow Rate can be 

accomplished by sensing local regions of the gas turbine blade instead of the whole blade. 

This provides a cost effective solution to monitoring the health of the coolant system. 
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CHAPTER 5. PREDICTING REMAINING USEFUL LIFE IN 

COMPLEX SYSTEMS WITH MULTIPLE FAILURE MODES 

5.1 Introduction and Literature Review 

Modern industrial systems are comprised of multiple components with complex 

degradation processes. To address this complexity, modern systems are equipped with 

several sensors for condition monitoring, a process that utilizes sensor data for predicting 

the system’s remaining useful life (RUL), where the RUL is the time remaining before 

system failure.  This prognostics task is important because it drives maintenance decisions 

that aim to reduce downtime and prevent potentially catastrophic failures. However, 

prognostics is challenging for complex systems due to the large volume of data collected 

by these sensors and because complex systems are subject to multiple failure modes. High-

dimensional (HD) data analytics holds potential for enabling the development of robust 

prognostics frameworks for complex systems due to its ability to process the large data 

structures generated by these sensors. Therefore, this chapter focuses on the development 

of an HD data analytics framework for predicting RUL in complex systems with multiple 

failure modes. 

Traditionally, the literature on condition-based prognostics has revolved around 

modeling a single degradation signal. For example, Gebraeel et al. (2005) used an 

exponential model with random coefficients, Chen et al. (2015) modeled heterogeneous 

degradation signals using an inverse Gaussian process with a random drift parameter, and 

Shu et al. (2015) modeled cumulative degradation with random jumps using a Levy 
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process. These methodologies leverage their respective degradation models to develop 

closed-form RUL distributions. However, applying these methodologies to complex 

systems likely results in low prediction accuracy since a single sensor may not be sufficient 

for capturing the failure dynamics of a system. This was demonstrated by Chehade et al. 

(2018) when comparing their sensor fusion methodology to a methodology using only one 

sensor. Therefore, access to multiple sensors is valuable for effective prognostics. 

According to Fang et al. (2017), multiple sensor applications tend to fuse all available 

sensor data using techniques such as neural networks and health index models. However, 

groups of sensors may be redundant with other sensors, while other sensors may have no 

correlation with the underlying degradation. Fusing redundant or noninformative sensors 

may lead to reduced RUL prediction accuracy. Therefore, a robust algorithm for selecting 

a subset of informative sensors for predicting RUL is necessary for improving prediction 

accuracy. Fang et al. (2017) combined location-scale regression models with group non-

negative garrote penalty to select an optimal subset of informative sensors. They then fused 

this subset of sensors using a functional data analysis approach. The methodology by Fang 

et al. (2017) is designed for systems with one failure mode. Additional singular failure 

mode models can be found in comprehensive literature reviews by Jardine et al. (2006) and 

Sikorska et al. (2011). However, complex systems often suffer from multiple failure 

modes.  Large RUL prediction errors are expected if a prognostics methodology fails to 

account for the possibility of alternative causes of failure. Therefore, this methodology 

explicitly considers multiple failure modes in its development. 

Compared to the research on prognostic models for single failure modes, the research 

on multiple failure modes is relatively sparse. Prognostics approaches for multiple failure 
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modes can be characterized as model-based and data-driven. Model-based approaches 

attempt to develop mathematical models that characterize the underlying physics of the 

system. Examples of these include papers by Thumati et al. (2014) and Yu and Wang 

(2014). The advantages of these approaches are that their development does not depend on 

extensive historical data and that closed form analytic expressions are derived for modeling 

degradation and predicting RUL. However, their use is limited to the systems for which 

such expressions can be developed. A general prognostics approach for complex systems 

using graph theory and stochastic models was proposed by Blancke et al. (2018). In that 

paper, interdependencies between failure modes are captured by a directed acyclic graph 

developed using expert knowledge of the system dynamics. Though for general use, the 

accuracy of this model depends on the quality of available expert knowledge. Common to 

all model-based approaches is that their fidelity relies on an accurate representation of the 

physics of failure. However, as system complexity continues to grow, so too does the 

difficulty in mathematically characterizing the physics of failure processes of these 

systems. 

Data-driven approaches are alternatives to model-based approaches that utilize 

combinations of observed times-to-failure, performance metrics, and sensor data to 

develop prognostics models. The advantage of data-driven approaches is that they are 

flexible to various types of systems since they do not require analytical expressions of the 

system dynamics. Instead, they rely on the statistical analysis of the data to predict RUL. 

Many of these approaches are focused on developing reliability models. The reliability 

literature consists of probabilistic models for systems comprised of components in series, 

parallel, or in various combined arrangements. Theoretical models for state-dependent 



 170 

systems where the transition of one component from a healthy state to a faulted state 

increases the failure rate of the other component have also been developed (Ebling, 2010). 

These methods typically use time-to-failure (TTF) data to fit reliability distributions for 

system components individually and then use Markov analysis to derive system reliability. 

Another class of reliability models for systems with multiple failure modes are competing 

risk models. A competing risk is an alternative failure that occurs prior to the failure mode 

of interest. Therefore, the competing risk literature focuses on developing system reliability 

models for scenarios such as a single sudden failure superseding failure due to gradual 

system degradation (Bocchetti et al., 2009), multiple sudden failures competing both with 

each other and with the gradual system degradation (Couallier, 2008; Liu et al., 2013), and 

multiple degradation processes competing against each other while experiencing sudden 

shocks (Wang and Pham, 2012). However, these methodologies either validate their 

methodology using univariate sensor signals or with no sensor data. 

Recently, HD data analytics have been incorporated into multiple failure mode 

prognostics models. Ragab et al. (2019) utilized time-series and wavelet features from a 

vibration signal to predict RUL in rotating machinery. In their methodology, the authors 

utilize Compensation Distance Evaluation Technique (CDET) to select informative 

features from the vibration signal. However, modern systems are equipped with multiple 

sensors for monitoring degradation. Compared to single sensor applications, the literature 

on multi-sensor applications is quite sparse. Hajiha et al. (2020) utilized multiple sensors 

for monitoring degradation and dynamic operating conditions in systems with competing 

degradation processes. Zhang et al. (2014) used multiple sensors to model the system 

failure density as a mixture of Weibull proportional hazard models. Chehade et al. (2018) 
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developed a sensor fusion methodology for predicting RUL in systems with multiple 

failure modes, whereas Kim and Liu (2020) developed a Bayesian deep learning 

framework that performs interval estimates of RUL of complex systems. These 

methodologies either utilize all available sensors or use visual inspection to remove 

uninformative sensors. However, information salient to degradation may only be 

embedded in a subset of the sensors, while the other sensors only contribute noise. 

Therefore, a robust sensor selection algorithm is developed. In this algorithm, an optimal 

subset of sensors for monitoring is selected for each failure mode. However, the subsets 

are not mutually exclusive, meaning that the same sensor can be used for monitoring 

various degradation processes. 

Our prognostics methodology consists of two steps: sensor selection and RUL 

prediction. In the first step, a historical training set comprised of both complete multivariate 

sensor signals and observed failure times is utilized to develop a sensor selection algorithm 

that identifies optimal subsets of sensors for each failure mode. In this algorithm, it is 

assumed that each system fails independently and that its failure is dominated by one of 𝐾 

possible failure processes. Furthermore, it is assumed that the relationship between the TTF 

and the sensor signals is dependent on the failure mode. Since various failure modes each 

impact the shape of the sensor data, the distribution of the TTF given the observed signals 

is multimodal. This motivates the use of a mixture model for modeling the distribution of 

the TTF. To ensure that the TTF is positive, the functional relationship between the natural 

logarithm of the time-to-failure (ln 𝑇𝑇𝐹) and the sensors is modeled as a mixture of 

Gaussian regressions (MGR). Since degradation signals are high-dimensional, features are 

extracted from the individual degradation signals and these features are used in the MGR 
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model. To perform sensor selection, the MGR model is combined with a regularization 

term. Städler et al. (2012) proposed combining MGR with adaptive lasso, which enables 

individual feature selection. However, their method does not account for the inherent group 

structure present due to multiple sensors. Therefore, the MGR model is combined with a 

regularization term that performs group variable selection: adaptive sparse group lasso 

(ASGL). This approach is labeled MGR-ASGL The ASGL penalty ensures that the 

regression coefficients for informative sensors have nonzero l2-norm, while the 

coefficients for uninformative sensors are zero. To fit this model, a novel Expectation-

Maximization (EM) algorithm that first determines the responsibility of each failure mode 

on observed failures and then selects an optimal subset of sensors for each failure mode is 

proposed. This algorithm is unique in that it can perform diagnosis and sensor selection 

simultaneously. Since the EM algorithm searches for a local optimum, the solution to 

which the algorithm converges depends on the initial solution provided. To provide an 

initial clustering of the raw signals, Dynamic Time Warping (DTW) is combined with 

hierarchical clustering. DTW is a tool that measures distances between data structures of 

various lengths. Therefore, it is a valuable tool for clustering degradation signals that vary 

in length due to failure time variability. 

In the second step, the RUL is predicted by first intelligently combining the 

information in the sensor signals selected via the sensor selection algorithm. This is 

achieved using Multivariate Functional Principal Component Analysis (MFPCA). MFPCA 

is a method for capturing dominant modes of variation for data structures where a single 

observation is a multivariate functional profile (Ramsay and Silverman, 2005). In MFPCA, 

multivariate profiles are represented as weighted combinations of multivariate 



 173 

eigenfunctions. Through these weights, the MFPC scores, very high-dimensional data can 

be represented with a much smaller number of features. Fang et al. (2017) utilized MFPCA 

to fuse sensor signals selected via a penalized log-location scale regression model. This 

method differs in that MFPCA is first used to fuse the selected sensors across all failure 

modes to fit a supervised adaptive mixture of Gaussian classifier where the clustering from 

the MGR-ASGL model informs the labels for the classifier. The model is adaptive in that 

it is refitted every time new degradation is observed. For a degrading system, the classifier 

is used to map the MFPC scores extracted from the observed degradation data to one of the 

failure modes. Given this failure mode, MFPCA is used on the subset of sensors 

corresponding to the diagnosed fault. Using the MFPC scores, an adaptive penalized least 

squares model is fitted using training observations that failed due to the diagnosed fault. 

This model is used to map MFPC scores extracted from the observed degradation data to 

the ln 𝑇𝑇𝐹. The RUL is then estimated by subtracting the current observed time from the 

predicted TTF. 

The primary contribution of this paper is a generalizable prognostic methodology 

that automatically identifies a subset of sensors associated with each degradation mode, 

detects which failure mode is active, and predicts and updates the RUL in real time. The 

sensor selection algorithm revolves around modeling the ln 𝑇𝑇𝐹 using a penalized mixture 

of regressions model named MGR-ASGL. To estimate the parameters of this model, ]a 

novel EM algorithm is presented. This algorithm enables a simultaneous diagnosis of the 

failures in the training set and selection of optimal sensors for each failure mode.  The 

failure mode labels and selected sensors inform an adaptive approach to predicting RUL 

that includes extracting informative features by fusing the selected sensors using MFPCA 
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and developing a classification and regression model using the MFPC scores. The 

remainder of the paper is outlined as follows. In Section 5.2, the sensor selection algorithm 

consisting of feature extraction and fitting of the MGR-ASGL model using the novel EM 

algorithm is presented. In Section 5.3, the fusion of informative sensors to diagnose faults 

and predict RUL is discussed. In Section 5.4, the methodology is demonstrated through a 

case study using the aircraft turbofan dataset created by NASA. The chapter is concluded 

in Section 5.5 with a summary of findings and discussion of some potential for future 

research. 

5.2 Sensor Selection Algorithm 

The salient information in high-dimensional (HD) data is often embedded in a few 

dimensions. For a multiple sensor setting, this means that a subset of the available sensors 

suffices for characterizing system degradation, while the other sensors only contribute 

noise. The question of which sensors are significant is made more challenging in a multiple 

failure mode setting since the behavior of sensor data can vary drastically in response to 

different active degradation processes. Therefore, this section focuses on the development 

of a sensor selection algorithm for systems whose failure is governed by multiple 

degradation processes. For this algorithm, it is assumed there exists a historical repository 

of multivariate sensor data used to monitor the health of a fleet of independent and identical 

systems from the moment an incipient fault occurs up to system failure. Furthermore, it is 

assumed that raw sensor signals can be synthesized into degradation signals. Finally, 

failures in the observed historical repository are assumed to be due to one of 𝐾 failure 

modes, where 𝐾 is known. This algorithm consists of three steps. First, the raw degradation 

signals are clustered using a combination of Dynamic Time Warping (DTW) and 
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hierarchical clustering. After clustering, the features are extracted from the degradation 

signals of each sensor by fitting their curves to an appropriate function. Since degradation 

signals can take on various forms, various degradation models in the literature are 

highlighted. Finally, the relationship between the failure times and the extracted failures is 

modeled using mixture of Gaussian regressions with adaptive sparse group lasso (MGR-

ASGL). The model parameters are estimated using the novel Expectation-Maximization 

(EM) algorithm through which the failures in the dataset are clustered and an optimal 

subset of sensors is selected for each failure mode. This EM algorithm is initialized using 

the results of DTW and hierarchical clustering. The following subsection discusses the 

initial clustering. 

5.2.1 Initial Clustering via DTW and Hierarchical Clustering 

Due to unit-to-unit variability in degradation rates, the lengths of degradation signals 

are typically quite different, and their features are often misaligned. This creates a 

challenge when attempting to measure the distance between two degradation signals. DTW 

is a tool that measures the distance between two signals of varying lengths by first creating 

a lattice of pairwise distances. Then it finds the path through the lattice that minimizes the 

accumulated distance subject to constraints on both the direction the path can travel and on 

the starting and ending positions of the path. To formalize DTW, consider a training set 

consisting of 𝑁 units monitored by 𝑃 sensors. For unit 𝑖, 𝑖 = 1,… ,𝑁, let 𝒔𝑖[𝑡] =

(𝑠𝑖,1[𝑡], 𝑠𝑖,2[𝑡], … , 𝑠𝑖,𝑃[𝑡])
𝑇
 denote the vector of sensor observations for system 𝑖 at time 

𝑡 ∈ {0,1, … , 𝑇𝑖 − 1} where 𝑇𝑖 is the time-to-failure (TTF) of system 𝑖. To compute a 
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distance between the degradation signals of units 𝒾 and 𝒿, 𝒾, 𝒿 ∈ {1,2, … ,𝑁}, the following 

matrices are constructed: 

 𝕊𝒾 = [𝒔𝒾[0] … 𝒔𝒾[𝑇𝒾 − 1]]

𝕊𝒿 = [𝒔𝒿[0] … 𝒔𝒿[𝑇𝒿 − 1]]
 (5.2.1) 

Then, the Euclidean distance between signals 𝕊𝒾 and 𝕊𝒿 at time 𝑡 and 𝑡′ respectively is 

denoted as: 

 𝑑𝑡,𝑡′(𝕊𝒾, 𝕊𝒿) = ‖𝒔𝒾[𝑡] − 𝒔𝒿[𝑡
′]‖

2

2
, 𝑡 ∈ [0,1, … , 𝑇𝒾 − 1], 𝑡

′

∈ [0,1, … , 𝑇𝒿 − 1] 

(5.2.2) 

After computing distances for all pairwise points, the lattice matrix is constructed as 

follows: 

 

[
 
 
 
 
𝑑0,𝑇𝒿−1(𝕊𝒾, 𝕊𝒿)

 
|
 

𝑑0,0(𝕊𝒾, 𝕊𝒿)

 

 
\
 
/
 

 

−
 

𝑑𝑡,𝑡′(𝕊𝒾, 𝕊𝒿)
 
−

 

 
/
 
\
 

 

𝑑𝑇𝒾−1,𝑇𝒿−1(𝕊𝒾, 𝕊𝒿)
 
|
 

𝑑𝑇𝒾−1,0(𝕊𝒾, 𝕊𝒿) ]
 
 
 
 

 (5.2.3) 

DTW works by finding the minimum path from 𝑑0,0(𝕊𝒾, 𝕊𝒿) to 𝑑𝑇𝒾−1,𝑇𝒿−1(𝕊𝒾 , 𝕊𝒿) where 

only right horizontal moves (𝑡, 𝑡′) → (𝑡 + 1, 𝑡′), upward vertical moves (𝑡, 𝑡′) → (𝑡, 𝑡′ +

1) and upper-right diagonal moves (𝑡, 𝑡′) → (𝑡 + 1, 𝑡′ + 1) are allowed. The warping 

distance is then determined by adding all distances along the optimal path 𝑃𝑎𝑡ℎ𝑂𝑝𝑡. 
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 𝑑𝒾,𝒿 = ∑ 𝑑𝑡,𝑡′(𝕊𝒾, 𝕊𝒿)

𝑡,𝑡′∈𝑃𝑎𝑡ℎ𝑂𝑝𝑡

 (5.2.4) 

Given these distances, the observations can be clustered using bottom-up hierarchical 

clustering. To start, all 𝑁 observations are treated as separate clusters. The two observations 

with the smallest distance are clustered together and the overall number of clusters reduces 

to 𝑁 − 1. This continues until the number of clusters is equal to 𝐾. The cluster assignments 

are to be used for obtaining an initial solution to the optimization problem used to perform 

sensor selection. However, informative features need to be extracted from the raw 

degradation signals. 

5.2.2 Feature Extraction 

Since degradation signals monitor the health of systems through their lifetime, the 

length of degradation signals can be quite large. Therefore, it is advantageous to extract 

salient features from these degradation signals. In Fang et al. (2017), Functional Principal 

Component Analysis was utilized for feature extraction. This method assumes that 

degradation signals are realizations of a stochastic process with a uniform mean function. 

However, different failures modes may elicit different trends in the sensor data. For 

example, one failure mode may cause the pressure to rise, while another failure mode may 

cause the pressure to drop. Therefore, the sensor data has different mean profiles for each 

failure mode and thus, the uniform mean assumption is not valid. Furthermore, since the 

failure modes are assumed to be unknown, it is challenging to estimate the multimodal 

mean function. Therefore, a proposition is to model the degradation signals individually by 

fitting them to an appropriate growth function. Several examples in the literature have been 
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proposed to model degradation data. These include linear models (Bae and Kvam, 2008), 

quadratic models (Chehade et al., 2018), exponential models (Gebraeel et al., 2005), and 

the Duane Growth Model (Ebling, 2010). In general, each degradation signal from each 

sensor is fitted individually using an appropriate model. The parameters of this model are 

then used as features for the MGR-ASGL model. As an example, suppose the degradation 

signals are modeled as quadratic in time. 

 𝑠𝑖,𝑝[𝑡] = 𝕩𝑖,𝑝,0 + 𝕩𝑖,𝑝,1𝑡 + 𝕩𝑖,𝑝,2𝑡
2 + 𝜖𝑖,𝑝[𝑡], 𝑡 ∈ {0,1, … , 𝑇𝑖 − 1} (5.2.5) 

where 𝜖𝑖,𝑝[𝑡], 𝑡 ∈ {0,1, … , 𝑇𝑖 − 1} are independent Gaussian random variables with mean 

0 and variance 𝜎𝑖,𝑝
2 . For sensor 𝑝 of unit 𝑖, 𝕩𝑖,𝑝 = (𝕩𝑖,𝑝,0, 𝕩𝑖,𝑝,1, 𝕩𝑖,𝑝,2)

𝑇
is extracted and then 

standardized to obtain: 𝑥𝑖,𝑝 = (𝑥𝑖,𝑝,0, 𝑥𝑖,𝑝,1, 𝑥𝑖,𝑝,2)
𝑇
. Here, the standardized variables are 

used as features in the MGR-ASGL model. The standardization serves to enable 

interpretable regression coefficients in the MGR-ASGL model since the amplitude of the 

coefficients would represent the significance of the corresponding feature. 

5.2.3 Sensor Selection Using MGR-ASGL 

To perform sensor selection, the conditional distribution of the ln 𝑇𝑇𝐹 given that a 

set of features from the degradation signals is observed is modeled. It is assumed that given 

the observed sensor features, the observed failure times are independent. Let 𝑇𝑖 = exp(𝑌𝑖) 

denote the random variable corresponding to the TTF of system 𝑖. Then 𝑌𝑖 = ln(𝑇𝑖). 

Furthermore, let 𝒁𝑖 denote a “one-hot” random vector where 𝒁𝑖[𝑘] = 1 if system 𝑖 failed 

due to failure mode 𝑘, 𝑘 = 1,… , 𝐾 and equals zero otherwise. Also by assumption, given 
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that system 𝑖 failed due to failure mode 𝑘, the conditional probability density function 

(PDF) of 𝑌𝑖|𝑿𝑖,1, … , 𝑿𝑖,𝑝 is the Gaussian PDF as follows: 

 

𝑓𝜗𝑘(𝑦𝑖|𝒙𝑖,1, … , 𝒙𝑖,𝑃, 𝒛𝑖[𝑘] = 1) =
1

√2𝜋𝜎𝑘
2
exp(−

1

2𝜎𝑘
2 (𝑦𝑖 − 𝛽0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝜷𝑝,𝑘

𝑃

𝑝=1

)

2

) (5.2.6) 

where 𝜗𝑘 = {𝛽0,𝑘, 𝜷1,𝑘, … , 𝜷𝑃,𝑘, 𝜎𝑘
2} are the model parameters consisting of the regression 

coefficients and variance respectively for component 𝑘. Using the Law of Total 

Probability, the marginal distribution of 𝑌𝑖|𝑿𝑖,1, … , 𝑿𝑖,𝑝 is obtained as follows: 

 

𝑓𝜗(𝑦𝑖|𝒙𝑖,1, … , 𝒙𝑖,𝑃) = ∑𝜋𝑘 (
1

√2𝜋𝜎𝑘
2
exp (−

1

2𝜎𝑘
2 (𝑦𝑖 − 𝛽0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝜷𝑝,𝑘

𝑃

𝑝=1

)

2

))

𝐾

𝑘=1

 (5.2.7) 

where  

𝜗 = {{𝛽0,𝑘, 𝜷1,𝑘, … , 𝜷𝑃,𝑘}𝑘=1
𝐾

, 𝜎1
2, … , 𝜎𝐾

2, 𝜋1, … , 𝜋𝐾−1} ∈ ℛ
𝐾(∑ 𝑞𝑝

𝑃
𝑝=1 +1) ×ℛ>0

𝐾 × Π and  

Π = {𝜋: 𝜋𝑘 > 0 for 𝑘 = 1,… , 𝐾 − 1 and ∑ 𝜋𝑘
𝐾−1
𝑘=1 < 1}, 𝜋𝐾 = 1 − ∑ 𝜋𝑘

𝐾−1
𝑘=1 . In Equation 

5.2.7, 𝜋1, … , 𝜋𝐾 are the mixing coefficients and they represent the probability that 𝒁𝑖[𝑘] =

1 for 𝑘 = 1,… , 𝐾. Furthermore, 𝑞𝑝 are the number of features extracted from sensor 𝑝. 

Therefore, ℛ𝐾(∑ 𝑞𝑝
𝑃
𝑝=1 +1) is the set of real numbers in dimension 𝐾(∑ 𝑞𝑝

𝑃
𝑝=1 + 1). ℛ>0

𝐾  is 

the set of positive real numbers in dimension 𝐾. This is the PDF for the MGR model. From 

Städler et al. (2010), a scale-invariant form of the MGR model is achieved by introducing 

𝜌𝑘 = 1/𝜎𝑘, 𝜓0,𝑘 = 𝛽0,𝑘/𝜎𝑘 and 𝝍𝑝,𝑘 = 𝜷𝑃,𝑘/𝜎𝑘 for 𝑘 = 1,… , 𝐾 and 𝑝 = 1,… , 𝑃. This 

alternative form enables the development of a convex optimization problem, which 
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simplifies parameter estimation. The reformulated mixture of Gaussian regressions is as 

follows: 

 𝑌𝑖|𝑿𝑖,1, … , 𝑿𝑖,𝑝 independent for 𝑖 = 1,… ,𝑁 

𝑌𝑖|𝑿𝑖,1 = 𝒙𝑖,1, … , 𝑿𝑖,𝑃 = 𝒙𝑖,𝑝~ℎ𝜃(𝑦𝑖|𝒙𝑖,1, … , 𝒙𝑖,𝑃)𝑑𝑦𝑖 for 𝑖 = 1,… ,𝑁 

ℎ𝜃(𝑦𝑖|𝒙𝑖,1, … , 𝒙𝑖,𝑃) = ∑𝜋𝑘
𝜌𝑘

√2𝜋
exp(−

1

2
(𝜌𝑘𝑦𝑖 −𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2

)

𝐾

𝑘=1

 

𝜃 = {{𝜓0,𝑘, 𝝍1,𝑘, …𝝍𝑃,𝑘}𝑘=1
𝐾

, 𝜌1, … , 𝜌𝐾 , 𝜋1, … , 𝜋𝐾−1}

∈ ℛ𝐾(∑ 𝑞𝑝
𝑃
𝑝=1 +1) ×ℛ>0

𝐾 × Π 

Π = {𝜋: 𝜋𝑘 > 0 for 𝑘 = 1,… , 𝐾 − 1 and ∑ 𝜋𝑘

𝐾−1

𝑘=1

< 1} , 𝜋𝐾 = 1 −∑ 𝜋𝑘

𝐾−1

𝑘=1

 

(5.2.8) 

Based on this formulation, the incomplete-data log-likelihood (IDLL) is constructed as 

follows: 

 

ℓ(𝜃; 𝒀) =∑ln∑𝜋𝑘 (
𝜌𝑘

√2𝜋
) exp(−

1

2
(𝜌𝑘𝑦𝑖 − 𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2

)

𝐾

𝑘=1

𝑁

𝑖=1

 (5.2.9) 

Equation 5.2.9 is incomplete because the cause of the observed failures is unknown. 

To perform variable selection, Städler et al. (2010) appended the IDLL with the adaptive 

lasso penalty. This penalty enables modeling the response variable with a sparse selection 
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of predictors. However, features are extracted from each sensor. The features extracted 

from a particular sensor represent a group since combined they form a low-dimensional 

representation of the signal generated from the sensor. To account for this group structure, 

the use adaptive sparse group lasso (ASGL) penalty is proposed. This penalty ensures that 

features from important sensors will have nonzero l2-norm whereas features from 

unimportant sensors will have zero l2-norm and thus, regression coefficients of zero. The 

adaptive part of the penalty accounts for both the number of features extracted for each 

sensor and the mixing coefficient for each failure mode. After including the penalty, the 

objective function to maximize is: 

 

ℒ(𝜃; 𝒀) − 𝜆∑𝜋𝑘∑√𝑞𝑝 [(1 − 𝛼)‖𝝍𝑝,𝑘‖2 + 𝛼‖𝝍𝑝,𝑘‖1]

𝑃

𝑝=1

𝐾

𝑘=1

 (5.2.10) 

Here 𝜆 > 0 and 𝛼 ∈ [0,1] are tuning parameters. The ASGL penalty is a compromise 

between adaptive lasso (𝛼 = 1) and adaptive group lasso (𝛼 = 0). Intermediate values of 

𝛼 enable a sparse selection of sensors within each group, which is useful because its 

plausible that not all features within a group are correlated with the response. 

Maximization of the objective function in Equation 2.10 is equivalent to minimizing 

the objective function with a sign change. Therefore, the optimization problem to solve to 

fit the MGR-ASGL model is: 
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min
𝜃
−∑ln∑𝜋𝑘 (

𝜌𝑘

√2𝜋
) exp(−

1

2
(𝜌𝑘𝑦𝑖 − 𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2

)

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆∑𝜋𝑘∑√𝑞𝑝 [(1 − 𝛼)‖𝝍𝑝,𝑘‖2 + 𝛼‖𝝍𝑝,𝑘‖1]

𝑃

𝑝=1

𝐾

𝑘=1

 

(5.2.11) 

Due to the summation within the logarithm in Equation 5.2.11, the objective function is 

nonconvex, thus the function in Equation 5.2.10 is nonconcave. Therefore, an Expectation-

Maximization (EM) algorithm is developed to find a local maximum to Equation 5.2.10 by 

finding the local minimum to the problem in Equation 5.2.11. Let 𝒀 = (𝑌1, … , 𝑌𝑁) denote 

the observed ln 𝑇𝑇𝐹 and ℤ = (𝒁1, 𝒁2, … , 𝒁𝑁) denote the set of independent binary random 

variables representing the unknown failure mode for all observations. The first part of the 

EM algorithm is to construct the complete-data log-likelihood (CDLL). Compared to the 

IDLL, this function assumes knowledge of the underlying causes of failure. The CDLL is 

shown below: 

 

ℓ𝐶(𝜃; 𝒀, ℤ) = ∑∑𝑍𝑖[𝑘] ln 𝜋𝑘 (
𝜌𝑘

√2𝜋
) exp(−

1

2
(𝜌𝑘𝑦𝑖 − 𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2

)

𝐾

𝑘=1

𝑁

𝑖=1

 (5.2.12) 

The benefit of the CDLL is that now, the logarithm is inside the summation and thus, 

Equation 5.2.12 is convex in the parameters 𝜃. While the underlying cause of failure is 

unknown, the expectation of Equation 5.2.12 can be formulated and optimized instead. 

This is known as the E-step of the EM algorithm and it is described below. 

5.2.3.1 E-step 
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In the E-step, the expectation of Equation 5.2.12 is computed with respect to the 

posterior distribution of ℤ given 𝒀 and 𝜃𝑜𝑙𝑑, where 𝜃𝑜𝑙𝑑 are the parameter estimates from 

the previous iteration. Let 𝒬(𝜃|𝜃𝑜𝑙𝑑) = −𝐸𝜃𝑜𝑙𝑑[ℓ𝐶(𝜃; 𝒀, ℤ)|𝒀] denote the negative 

expectation of the CDLL. The only term in the CDLL that depends on ℤ is 𝑍𝑖[𝑘]. Therefore, 

to compute 𝒬(𝜃|𝜃𝑜𝑙𝑑), 𝛾𝑖,𝑘 = 𝐸𝜃𝑜𝑙𝑑[𝑍𝑖[𝑘]|𝒀], which represents the responsibility of failure 

mode 𝑘 to observation 𝑖, is computed using Bayes’ formula. 

 

𝛾𝑖,𝑘 =
𝜋𝑘
𝑜𝑙𝑑𝜌𝑘

𝑜𝑙𝑑 exp (−
1
2 (𝜌𝑘

𝑜𝑙𝑑𝑦𝑖 − 𝜓0,𝑘
𝑜𝑙𝑑 − ∑ 𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘
𝑜𝑙𝑑𝑃

𝑝=1 )
2
)

∑ 𝜋𝑙
𝑜𝑙𝑑𝜌𝑙

𝑜𝑙𝑑 exp (−
1
2 (𝜌𝑙

𝑜𝑙𝑑𝑦𝑖 − 𝜓0,𝑙
𝑜𝑙𝑑 − ∑ 𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑙
𝑜𝑙𝑑𝑃

𝑝=1 )
2
)𝐾

𝑙=1

 (5.2.13) 

A key outcome of the E-step is the clustering of observed failures into their respective 

failure modes. This results in class labels for the training set, which are leveraged when 

developing models for predicting RUL. 

5.2.3.2 M-step 

For the M-step, the ASGL penalty is appended to 𝒬(𝜃|𝜃𝑜𝑙𝑑) resulting in the following 

optimization problem: 

 

min
𝜃
−∑∑𝛾𝑖,𝑘 ln 𝜋𝑘 (

𝜌𝑘

√2𝜋
) exp(−

1

2
(𝜌𝑘𝑦𝑖 − 𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2

)

𝐾

𝑘=1

𝑁

𝑖=1

+ 𝜆∑𝜋𝑘∑√𝑞𝑝 [(1 − 𝛼)‖𝝍𝑝,𝑘‖2
+ 𝛼‖𝝍𝑝,𝑘‖1]

𝑃

𝑝=1

𝐾

𝑘=1

 

(5.2.14) 
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Solving this optimization problem requires minimizing the objective function with respect 

to each of the parameters. 

a) Improvement with respect to 𝝅 

To update the mixing coefficients, the following problem is solved for 𝑘 = 1,… , 𝐾: 

 

min
𝜋𝑘

−∑𝛾𝑖,𝑘 ln 𝜋𝑘

𝑁

𝑖=1

+ 𝜆𝜋𝑘∑√𝑞𝑝 [(1 − 𝛼)‖𝝍𝑝,𝑘‖2 + 𝛼‖𝝍𝑝,𝑘‖1]

𝑃

𝑝=1

 

𝑠. 𝑡.∑𝜋𝑙

𝐾

𝑙=1

= 1 

(5.2.15) 

Using a Lagrange multiplier 𝜂, the problem to solve becomes: 

 

min
𝜋𝑘

−∑𝛾𝑖,𝑘

𝑁

𝑖=1

ln 𝜋𝑘 + 𝜆
′𝜋𝑘 − 𝜂 (∑𝜋𝑙

𝐾

𝑙=1

− 1) (5.2.16) 

Differentiating the objective function with respect to 𝜋𝑘 and setting it equal to zero yields: 

 

𝜋𝑘(𝜂 − 𝜆
′) = −∑𝛾𝑖,𝑘

𝑁

𝑖=1

 (5.2.17) 

Summing over 𝑘 on both sides of the equation yields = 𝜆′ − 𝑁. Then, substituting 𝜂𝑘 in 

Equation 5.2.17 with 𝜆′ − 𝑁 yields: 
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𝜋𝑘
𝑛𝑒𝑤 =

1

𝑁
∑𝛾𝑖,𝑘

𝑁

𝑖=1

 (5.2.18) 

Therefore, the mixing coefficients are updated as the average of the 𝑁 responsibilities. 

b) Improvement with respect to 𝝆 = (𝜌1, … , 𝜌𝐾) and Ψ = {𝜓0,𝑘, {𝝍𝑝,𝑘}𝑝=1
𝑃

}
𝑘=1

𝐾

 

Equation 5.2.14 decouples into 𝐾 distinct optimization problems of the form: 

 

min
𝜌𝑘,𝜓0,𝑘,{𝝍𝑝,𝑘}𝑝=1

𝑃
−(∑𝛾𝑖,𝑘

𝑁

𝑖=1

) ln𝜌𝑘 +
1

2
∑𝛾𝑖,𝑘 (𝜌𝑘𝑦𝑖 − 𝜓0,𝑘 −∑𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘

𝑃

𝑝=1

)

2
𝑁

𝑖=1

+ 𝜆𝜋𝑘
𝑛𝑒𝑤∑√𝑞𝑝 [(1 − 𝛼)‖𝝍𝑝,𝑘‖2

+ 𝛼‖𝝍𝑝,𝑘‖1]

𝑃

𝑝=1

, 𝑘

= 1,… , 𝐾 

(5.2.19) 

For each 𝑘, this is solved using the convex optimizer in MATLAB. 

To summarize, an EM algorithm is developed for finding a local maximum to Equation 

5.2.10. Through this algorithm, failure diagnosis and sensor selection for each failure mode 

can be achieved simultaneously. Diagnosis is performed in the E-step where Equation 

5.2.13 is used to compute the expectation of the CDLL. Then in the M-step, sensor 

selection is performed by updating the parameter estimates through minimization of 

Equation 5.2.14. First, 𝝅 is updated using the average of the responsibilities obtained in the 

E-step. Then for 𝑘 = 1,… , 𝐾, the convex optimizer is used to estimate the model 

parameters: {𝜌𝑘, 𝜓0,𝑘 , {𝝍𝑝,𝑘}𝑝=1
𝑃

}. Successive iterations of the EM algorithm are performed 

until the model converges. For 𝑘 = 1, … , 𝐾, the sensor groups whose coefficients have 

nonzero Euclidean norm are said to be significant for failure mode 𝑘. 



 186 

5.3 Signal Data Fusion, Diagnosis, and RUL Prediction 

In this section, the cluster labels and sensor selection from the previous step is 

leveraged to develop both an adaptive classifier and adaptive regression model that are 

used together to 1) detect the failure mode most likely contributing to the degradation and 

2) predict the system RUL.  The degradation of a fielded system is monitored using the 

sensors selected by the MGR-ASGL model. After observing degradation up to some time 

𝑡∗, two data fusion techniques are implemented, both incorporating Multivariate Functional 

Principal Component Analysis (MFPCA), a functional data analysis technique that 

captures dominant modes of variation in multivariate signal data. Using the training set, an 

MFPCA model is fitted to all the multivariate degradation signals that have survived up to 

time 𝑡∗. The MFPC scores are used to fit a supervised mixture of Gaussians model, which 

serves as the classifier. Still using the training set, a functional regression model for each 

failure mode is then developed, where the signals from the sensors selected for that failure 

mode are used as a multivariate functional predictor. Using MFPCA, the functional 

regression model is reduced to a traditional multiple linear regression model where the 

predictors are the MFPC scores. The regression model is appended with the lasso penalty 

to select the most informative MFPC scores for predicting RUL. For a fielded system, the 

MFPCA model fitted with all the sensors is used to extract MFPC scores. Then, 

classification is performed by selecting the Gaussian component most likely to have 

generated the MFPC scores. Following classification, the MFPC scores are extracted using 

the MFPCA model for the diagnosed failure mode. These scores are used as inputs into the 

corresponding regression model to predict the RUL. Prior to fitting these models, data 

quality issues that could compromise the effectiveness of this methodology are addressed. 
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5.3.1 Data Curation 

Sensor data is often corrupted by noise and outliers caused by intermittent sensor faults. 

If not addressed, these data quality issues can compromise the diagnostic and prognostic 

accuracy of the methodology. Therefore, a data curation strategy that addresses data quality 

issues is important. For this methodology, the problem of noise and intermittent outlier is 

addressed by smoothing the sensor data using Robust Locally Weighted Regression 

(Cleveland, 1979). In this methodology, points that largely deviate from the smoothed 

signal are assigned a weight of zero and the smoothing is repeated with updated weights. 

Successive iterations of this procedure are performed until there are no detected outliers. 

The details of Robust Locally Weighted Regression are as follows: let {𝑠𝑖,𝑝[𝑡]}𝑡=0
𝑇𝑖−1

 denote 

the noisy degradation signal recorded by sensor 𝑝, 𝑝 = 1,… , 𝑃 from unit , 𝑖 = 1,… ,𝑁. 

Robust Locally Weighted Regression uses kernel functions as weights to perform 

smoothing. Define 𝑢𝑖,𝑝
𝑣 ≔

𝑣−𝑡

𝜔𝑖,𝑝
 as the input into a kernel function, where 𝜔𝑖,𝑝 is the 

bandwidth parameter for the kernel function, 𝑣 ∈ {0,1, … , 𝑇𝑖 − 1} is a time epoch at which 

the signal is sampled, and 𝑡 is the time epoch at which the kernel function is evaluated. A 

kernel function 𝒦(𝑢𝑖,𝑝
𝑣 )  is defined by the following properties: 

1. ∫ 𝒦(𝑢𝑖,𝑝
𝑣 )𝑑𝑢𝑖,𝑝

𝑣∞

−∞
= 1 

2. 𝒦(−𝑢𝑖,𝑝
𝑣 ) = 𝒦(𝑢𝑖,𝑝

𝑣 ) 

3. ∫ (𝑢𝑖,𝑝
𝑣 )2𝒦(𝑢𝑖,𝑝

𝑣 )𝑑𝑢𝑖,𝑝
𝑣∞

−∞
< ∞ 

Local kernel quadratic smoothing is performed at time 𝑡 by solving the following 

optimization problem: 
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{𝑏̂𝑖,𝑝
𝑎 (𝑡)}

𝑎=0

2
= arg min

{𝑏̂𝑖,𝑝
𝑎 (𝑡)}

𝑎=1

2
∑𝒦(𝑢𝑖,𝑝

𝑣 ) {𝑠𝑖,𝑝[𝑣] −∑𝑏𝑖,𝑝
𝑎 (𝑡)𝑣𝑎

2

𝑎=0

}

2𝑇𝑖−1

𝑣=0

 (5.3.1) 

Then for 𝑡 ∈ {0,1, … , 𝑇𝑖 − 1}, 𝑠𝑖,𝑝[𝑡] is estimated as: 

 

𝑠̂𝑖,𝑝[𝑡] = ∑ 𝑏̂𝑖,𝑝
𝑎 (𝑡)𝑡𝑎

2

𝑎=0

 (5.3.2) 

Given this formulation, Robust Locally Weighted Regression is implemented as shown in 

Algorithm 1. 

Algorithm 1: Robust Locally Weighted Regression (Cleveland, 1979) 

Input: 𝑠𝑖,𝑝[𝑡], 𝑡 = 0,1,… , 𝑇𝑖 − 1, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

Output: 𝑠̂𝑖,𝑝[𝑡], 𝑡 = 0,1, … , 𝑇𝑖 − 1 

𝑖𝑡𝑒𝑟 = 1  

Choose a bandwidth parameter and a kernel function and perform local kernel polynomial 

smoothing for 𝑡 = 0,1,… , 𝑇𝑖 − 1 

While 𝑖𝑡𝑒𝑟 ≤ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do 

1. Calculate the residuals of the smoother 𝑟𝑖,𝑝[𝑡] = 𝑠𝑖,𝑝[𝑡] − 𝑠̂𝑖,𝑝[𝑡] for 𝑡 = 0,1, … , 𝑇𝑖 − 1 

2. Compute the robust weights for each data point within the bandwidth 

𝛿(𝑡) =

{
 

 
(1 − (

𝑟𝑖,𝑝[𝑡]

6𝑀𝐴𝐷
)

2

)

2

   |𝑟𝑖,𝑝[𝑡]| < 6𝑀𝐴𝐷

0                                       |𝑟𝑖,𝑝[𝑡]| ≥ 6𝑀𝐴𝐷

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖,𝑝[0]|,… , |𝑟𝑖,𝑝[𝑇𝑖 − 1]|)  

3. Smooth the data again using Equations 3.1 and 3.2 but replacing 𝒦(𝑢𝑖,𝑝
𝑣 ) with 

𝛿(𝑡𝑖,𝑗)𝒦(𝑢𝑖,𝑝
𝑣 ) 

4. 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

End 

This algorithm is applied to all selected sensor signals for all observations in the training 

set. It is also applied to signals from fielded systems by replacing 𝑇𝑖 − 1 with 𝑡∗ − 1. By 
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removing the noise and intermittent outliers from the signals, highly informative features 

can be extracted from the sensor data. This is accomplished using MFPCA as discussed in 

the following subsection. 

5.3.2 Sensor Fusion via Multivariate Functional Principal Component Analysis 

MFPCA is a functional data analysis tool for capturing dominant modes of variation 

in multi-dimensional functional data. It works by projecting multi-dimensional signals onto 

an orthonormal basis comprised of multi-dimensional eigenfunctions of the signals’ 

covariance function. For this application, MFPCA serves two primary purposes. First, it 

provides a means for fusing important degradation signals into a low-dimensional, but 

highly informative set of MFPC scores that can be used to predict RUL (Fang et al, 2017). 

Second, it enables the reduction of functional regression to multiple linear regression. The 

details of this are described in Section 5.3.4. Without loss of generality, redefine the sensor 

index as {1,2, … , 𝒫}, where 𝒫 is the number of sensors selected across all failure modes 

using the MGR-ASGL model. Furthermore, the index 𝑖 is replaced with (𝑖) to denote the 

training signals being sorted in descending order of their TTFs. In MFPCA, the multi-

dimensional signal model is as follows: 

 
𝒔̂(𝑖)[𝑡] = 𝝁[𝑡] +∑ 𝜁(𝑖),𝓀𝝕𝓀[𝑡]

∞

𝓀=1

+ 𝝐(𝑖)[𝑡], 𝑡 = 0,1, … , 𝑡
∗ − 1 (5.3.3) 

Here, 𝝁[𝑡] = (𝜇1[𝑡], … , 𝜇𝒫[𝑡])
𝑇 ∈ ℛ𝒫 is the mean vector at time 𝑡, 𝝐(𝑖)[𝑡]~𝑁(𝟎, 𝜚

2𝕀𝒫×𝒫) 

are independent Gaussian errors with variance 𝜚2, and 𝝕𝓀[𝑡] is a 𝒫-dimensional function 

evaluated at time 𝑡. 𝝕𝓀 is the 𝓀th eigenfunction of the covariance function 
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 ℂ[𝑡, 𝑡′] = 𝐸[(𝒔̂[𝑡] − 𝝁[𝑡])(𝒔̂[𝑡′] − 𝝁[𝑡′])𝑇], 𝑡, 𝑡′ = 0,1, … , 𝑡∗ − 1 (5.3.4) 

corresponding to the 𝓀th ordered eigenvalue 𝜒𝓀, where 𝜒1 > ⋯ > 𝜒𝓀 > ⋯. Here, the 

covariance function is a 𝒫 × 𝒫 block matrix whose elements are the cross-covariance 

functions. 

 

ℂ[𝑡, 𝑡′] = [

ℂ1,1
 [𝑡, 𝑡′] ⋯ ℂ1,𝒫

 [𝑡, 𝑡′]

⋮ ⋱ ⋮
ℂ𝒫,1
 [𝑡, 𝑡′] ⋯ ℂ𝒫,𝒫

 [𝑡, 𝑡′]
] (5.3.5) 

where ℂ𝑝,𝑝′
 [𝑡, 𝑡′] = 𝐸 [(𝑠̂𝑝[𝑡] − 𝜇𝑝[𝑡])(𝑠̂𝑝′[𝑡

′] − 𝜇𝑝′[𝑡
′])

𝑇
]. The MFPC scores, 

𝜁(𝑖),𝓀, 𝓀 = 1,2, … ,𝒦 can be found by projecting the mean subtracted signals onto the first 

𝒦 eigenfunctions where 𝒦, the number of MFPC scores can be chosen using fraction of 

variance explained criteria. The equation for computing the MFPC scores is: 

 

𝜁(𝑖),𝓀 = ∑(𝒔̂(𝑖)[𝑡] − 𝝁[𝑡])
𝑇
𝝕𝓀[𝑡]

𝑡∗−1

𝑡=0

, 𝓀 = 1,2, … ,𝒦 (5.3.6) 

In practice, MFPCA is performed by concatenating the smoothed degradation signals from 

all selected sensors into a single vector and performing Principal Component Analysis 

(PCA) on these observations. In this application, Singular Value Decomposition is used to 

obtain the eigenfunctions. Suppose the number of surviving units at time 𝑡∗ is 𝑁𝑡∗ . Let  
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𝑺 = [

(𝒔̂(1) − 𝝁)
𝑇

⋮

(𝒔̂(𝑁𝑡∗) − 𝝁)
𝑇
] 

denote the matrix whose row vectors are the mean subtracted signals with 𝒔̂(𝑖) =

(𝑠̂(𝑖),1[0], … , 𝑠̂(𝑖),1[𝑡
∗ − 1],… , 𝑠̂(𝑖),𝒫[0], … , 𝑠̂(𝑖),𝒫[𝑡

∗ − 1])
𝑇
 and 𝝁 = (𝜇1[0], … , 𝜇1[𝑡

∗ −

1], … , 𝜇𝒫[𝑡
∗ − 1], … , 𝜇𝒫[𝑡

∗ − 1])𝑇. The Singular Value Decomposition of 𝑺 is shown 

below: 

 𝑺 = 𝕌Σ𝕎𝑇 (5.3.7) 

Here, 𝕌 is an 𝑁𝑡∗ × 𝑁𝑡∗  matrix whose columns are the orthogonal left singular vectors of 

𝑺, Σ is a 𝑁𝑡∗ × 𝑡
∗𝒫 rectangular diagonal matrix of the singular values of 𝑺, and 𝕎 is a 

𝑡∗𝒫 × 𝑡∗𝒫 matrix whose columns are the concatenated discretized eigenfunctions. Using 

only the first 𝒦 eigenfunctions, The MFPC scores can be computed as: 

 Ζ = (𝜻1, … , 𝜻𝒦) = 𝑺𝕎𝒦 (5.3.8) 

where 𝜻𝓀 = (𝜁1,𝓀, … , 𝜁𝑁𝑡∗ ,𝓀)
𝑇
 and 𝕎𝒦 is comprised of the first 𝒦 columns of 𝕎. The 

mean signal 𝝁 is estimated by computing the sample average of the 𝑁𝑡∗ degradation signals. 

5.3.3 Classification Using Supervised Mixture of Gaussians 

For a system monitored up to time 𝑡∗, MFPCA is first performed on all sensor signals 

selected by the MGR-ASGL model. Then, the failure mode most likely contributing to the 

observed degradation is diagnosed. To perform diagnosis, the MFPC scores are used to fit 
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a mixture of Gaussians model. Since the features are updated after every time epoch, the 

model is fitted in an adaptive fashion. For the mixture of Gaussians model, the marginal 

distribution of 𝜻(𝑖) is modeled as follows: 

 

𝑓(𝜻(𝑖)|{𝜋𝑘
′ , 𝝁𝑘

′ , Σ𝑘
′ }𝑘=1
𝐾 ) = ∑𝜋𝑘𝒩(𝜻(𝑖)|𝜇𝑘

′ , Σ𝑘
′ )

𝐾

𝑘=1

 (5.3.9) 

where 𝒩(𝜻(𝑖)|𝝁𝑘
′ , Σ𝑘

′ ) is the PDF of the multivariate Gaussian distribution with mean 𝜇𝑘
′  

and covariance Σ𝑘
′ . Let 𝜃′ = {𝜋𝑘

′ , 𝝁𝑘
′ , Σ𝑘

′ }𝑘=1
𝐾 . Since the cluster assignments are known due 

to the sensor selection algorithm in Section 5.2, the complete-data log-likelihood for the 

mixture of Gaussians can be formulated as follows: 

 

ℒ(𝜃′; 𝜻(1), … , 𝜻(𝑁𝑡∗)) = ∑ ∑𝒁(𝑖)[𝑘] ln (𝜋𝑘𝒩(𝜻(𝑖)|𝝁𝑘
′ , Σ𝑘

′ ))

𝐾

𝑘=1

 

𝑁𝑡∗

(𝑖)=1

 (5.3.10) 

Let 𝑁𝑘 denote the number of training observations that fail due to failure mode 𝑘, 𝑘 =

1, … , 𝐾. The model parameters are estimated using the Maximum Likelihood estimates as 

follows: 

 

𝜋̂𝑘
′ =

1

𝑁𝑘
∑ 𝒁(𝑖)[𝑘]

𝑁𝑡∗

(𝑖)=1

, 𝝁̂𝑘
′ =

1

𝑁𝑘
∑ 𝒁(𝑖)[𝑘]𝜻(𝑖)

𝑁𝑡∗

(𝑖)=1

, Σ̂𝑘
′

=
1

𝑁𝑘
∑ 𝒁(𝑖)[𝑘](𝜻(𝑖) − 𝝁̂𝑘

′ )(𝜻(𝑖) − 𝝁̂𝑘
′ )
𝑇

𝑁𝑡∗

(𝑖)=1

 

(5.3.11) 
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To perform diagnosis, first extract MFPC scores for the fielded system using Equation 

5.3.6. Let 𝜻∗ denote the MFPC scores for the fielded system. Using these scores, the failure 

mode 𝑘 with the maximum likelihood given the observed scores is determined using the 

following equation: 

 𝑘∗ = arg max
𝑘=1,…,𝐾

𝜋𝑘𝒩(𝜻∗|𝝁𝑘
′ , Σ𝑘

′ ) (5.3.12) 

Given the diagnosis, a model for predicting the system RUL is developed. 

5.3.4 Remaining Useful Life Prediction Using Functional Regression 

A functional regression model that maps multivariate sensor signals to the ln 𝑇𝑇𝐹 is 

used to predict the RUL. While the sensor signals selected across all failure modes were 

used for classification, only use the sensors selected for the diagnosed failure mode are 

used for prognostics. Without loss of generality, let {(1)𝑘
∗
, (2)𝑘

∗
, … , (𝑁𝑡∗)

𝑘∗} denote the 

indices of training set of units that both survived up to time 𝑡∗ and failed due to failure 

mode 𝑘 ranked in descending order of their TTFs.. Let 𝒔̂𝑖
𝑘∗[𝑡] ∈ 𝒫𝑘∗ denote the vector of 

smooth degradation signals selected for estimated failure mode 𝑘∗ and sampled at time 𝑡 ∈

{0,1, … , 𝑡∗ − 1}. Here, 𝒫𝑘∗ is the number of sensors selected for estimated failure mode 

𝑘∗. To fit a functional regression model, the following least squares problem is solved. 

 

min
𝜙0,{𝝓[𝑡]}𝑡=0

𝑡∗−1
∑ (𝑦𝑖 − 𝜙0 − ∑ 𝝓[𝑡]𝑇𝒔̂𝑖

𝑘∗[𝑡]

𝑡∗−1

𝑡=0

)

2(𝑁𝑡∗)

𝑖=(1)

 (5.3.13) 
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where 𝑦𝑖 = ln(𝑇𝑖), 𝜙0 is the bias term, and 𝝓[𝑡] ∈ ℛ𝒫𝑘 is the multivariate coefficient 

function of dimension 𝒫𝑘∗ sampled at time 𝑡. In MFPCA, the discretized multivariate 

eigenfunctions of the signals’ covariance function form an orthonormal basis in ℛ𝑡∗×𝒫𝑘∗ . 

Let 𝝕𝓀
𝑘∗[𝑡] ∈ ℛ𝒫𝑘∗  denote the 𝓀th eigenfunction sampled at time 𝑡 for the estimated failure 

mode 𝑘∗. An orthonormal expansion is used to represent the regression coefficient function 

in Equation 5.3.13 as a weighted sum of the 𝒦𝑘∗ eigenfunctions, where 𝒦𝑘∗  are the number 

of MFPC scores selected for the estimated failure mode 𝑘∗. 

 

𝝓[𝑡] = ∑ 𝑐𝓀
𝑘∗𝝕𝓀

𝑘∗[𝑡]

𝒦𝑘∗

𝓀=1

 (5.3.14) 

Likewise, the multivariate sensor signal is expanded using the eigenfunctions. 

 

𝒔̂𝑖
𝑘∗[𝑡] = 𝝁𝑘

∗
[𝑡] +∑ 𝜁𝑖,𝓀

𝑘∗𝝕𝓀
𝑘∗[𝑡]

𝒦𝑘∗

𝓀=1

 (5.3.15) 

Since the eigenfunctions are orthonormal, substituting Equations 3.14 and 3.15 into 3.13 

yields: 

 

min
𝑐0
𝑘∗ ,𝑐1

𝑘∗ ,…,𝑐𝒦𝑘∗
𝑘∗

∑ (𝑦𝑖 − 𝑐0
𝑘∗ −∑ 𝜁𝑖,𝓀

𝑘∗ 𝑐𝓀
𝑘∗

𝒦𝑘∗

𝓀=1

)

2(𝑁𝑡∗)

𝑖=(1)

 (5.3.16) 

where 𝑐𝑖,0
𝑘∗ = 𝜙0 + ∑ ∑ 𝑐𝓀

𝑘∗𝝕𝓀
𝑘∗[𝑡]𝑇𝝁𝑘

∗
[𝑡]

𝒦𝑘∗

𝓀=1
𝑡∗−1
𝑡=0 . Since not all MFPC scores may be 

informative, the objective function in Equation 5.3.16 is appended with the lasso penalty 

to select a subset of MFPC scores for prediction. Thus, the following problem is solved: 



 195 

 

min
𝑐0
𝑘∗ ,𝑐1

𝑘∗ ,…,𝑐𝒦𝑘∗
𝑘∗
∑(𝑦𝑖 − 𝑐0

𝑘∗ −∑ 𝜁𝑖,𝓀
𝑘∗ 𝑐𝓀

𝑘∗

𝒦𝑘∗

𝓀=1

)

2𝑁𝑡∗

𝑖=1

+ 𝜆∑|𝑐𝓀
𝑘∗|

𝒦𝑘∗

𝓀=1

 (5.3.17) 

MFPCA enables the reduction of the functional regression problem to a multiple linear 

regression problem. Therefore, instead of estimating 𝑡∗𝒫𝑘∗ + 1 parameters, only 𝒦𝑘∗ + 1 

parameters need to be estimated, which is much less computationally expensive. Lasso 

regression is a well-studied problem (Tibshirani, 1996) that can be solved using Least 

Angle Regression (LARS) algorithm (Efron et al., 2004). After fitting the regression 

coefficients, the MFPC scores for the test signal  𝜁∗,1
𝑘∗ , … , 𝜁∗,𝒦𝑘∗

𝑘∗  are extracted. These scores 

are then used to predict the RUL using the formula: 

 

𝑅𝑈𝐿∗ = exp(𝑐̂0
𝑘∗ +∑ 𝜁∗,𝓀

𝑘∗ 𝑐̂𝓀
𝑘∗

𝒦𝑘∗

𝓀=1

) − 𝑡∗ (5.3.18) 

To summarize, the MGR-ASGL model was used to cluster the failures in the training set 

and to select optimal subsets of sensors for each failure mode. To predict RUL at time 𝑡∗, 

MFPCA is first performed using the smooth training signals from sensors selected across 

all failure modes. The MFPC scores along with the cluster assignments are used to train a 

mixture of Gaussians model in a supervised fashion. Then, the eigenfunction basis from 

MPCA is used to transform the sensor signals from the system currently degrading to a 

small number of MFPC scores. Using the mixture of Gaussians model, the cause of 

degradation in the system is diagnosed. Following this, MFPCA is performed again, but 

only using the signals from sensors selected for the diagnosed failure mode. Furthermore, 

only units that failed due to the diagnosed failure mode are included in the analysis. To 
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predict the TTF, a functional regression model is fitted. It was demonstrated that through 

MFPCA, the functional regression model can be transformed to a multiple linear regression 

model. Using this model, the MFPC scores extracted from the currently monitored system 

are mapped to the RUL via Equation 5.3.18. In the next section, the proposed methodology 

is demonstrated using a dataset from an aircraft engine failure simulation. 

5.4 Case Study – Turbofan Engine 

In this paper, a methodology for predicting RUL in systems with multiple failure 

modes was developed. To demonstrate the proposed methodology, a simulated aircraft 

turbofan engine dataset generated by the Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS) at NASA is utilized. This is a tool designed to realistically simulate 

the dynamics of a commercial turbofan engine of 90,000 lb. thrust class (Saxena et al., 

2008). A diagram of the engine components is shown in Figure 5.1. 

 

Figure 5.1 – Simplified Diagram of Engine Simulated in C_MAPSS (Saxena et al., 

2008) 
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Four publicly available datasets have been generated using this simulation. For this work, 

C-MAPSS dataset 3 is utilized. In this dataset, the engine has two failure modes: the high-

pressure compressor (HPC) and the fan. The role of the compressor is to compress air into 

a high-pressure stream that mixes with fuel and combusts providing a very hot fuel/air 

gaseous mixture that turns the turbine blades, powering the engine. Most of this power is 

used to turn the fan, which acts a propeller for aircraft. A smaller proportion of power is 

used to power the various compressor stages. A damaged compressor may result in a 

temporary loss of power or complete loss of compression. Meanwhile, a fan can experience 

cracks and chips which act as shrapnel that propagate into the engine and damage key 

turbine components. Failure of an engine aircraft incurs major economic and personal loss. 

Therefore, there is high value in the ability to predict the RUL of these engines. 

In the simulation, the engines are monitored by 21 sensors. The names of these 

sensors along with their functionality is displayed in Table 5.1. 
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Table 5.1 – C-MAPSS Sensors 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet Psia 

P15 Total pressure in bypass duct Psia 

P30 Total pressure at HPC outlet Psia 

Nf Physical fan speed Rpm 

Nc Physical core speed Rpm 

epr Engine pressure ratio (P50/P2)  

Ps30 Static pressure at HPC outlet Psia 

Phi Ratio of fuel flow to Ps30 Pps/psi 

NRf Corrected fan speed Rpm 

NRc Corrected core speed Rpm 

BPR Bypass ratio  

farB Burner fuel air ratio  

htBleed Bleed enthalpy  

Nf_dmd Demanded fan speed Rpm 

PCNfR_dmd Demanded corrected fan speed Rpm 

W31 HPT coolant bleed Lbm/s 

W32 LPT coolant bleed Lbm/s 
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Figure 5.2 – C-MAPSS Sensor Signals 

Figure 5.2 depicts the complimentary signals of the sensors present in the system. Note that 

T2, P2, P15, farB, NF_dmd, and PCNfR_dmd show virtually no trend or variation. To test 

the robustness of our sensor selection methodology to the presence of noninformative 

sensors, independently and identically distributed white noise with unit variance is added 

to these sensors.  
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This dataset consists of a training set and a test set. The training set includes 100 

samples of degradation signals and the TTF for these observations is inferred from the 

length of the signal. However, the cause of failure is unknown. The test set also includes 

100 samples. However, the test set only includes partially degraded systems and the RUL. 

Like with the training set, the failure mode is also unknown. For each test engine, the goal 

is to predict the RUL given the degradation history of the system. 

The first step of the proposed methodology is to utilize the sensor selection algorithm 

to cluster the data and select an optimal subset of sensors for each failure mode. Fitting this 

model requires initial cluster assignments and features on which to regress the ln 𝑇𝑇𝐹. 

Note that clustering and feature extraction can be done in parallel. To obtain initial cluster 

assignments, DTW, as described in Section 5.2.1, is used to compute a distance between 

all pairs of multidimensional signals. These distances are used by the hierarchical 

clustering algorithm. Since there are two failure modes in the dataset, the number of failure 

modes is 𝐾 = 2. The result of initial clustering is shown in Figure 5.3. 
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Figure 5.3 – Hierarchical Clustering of Sensor Signals 

To extract features from these signals, a quadratic regression model is fitted to each 

individual signal as described in Section 5.2.2. The relationship between the ln 𝑇𝑇𝐹 and 

the quadratic regression coefficients is shown in Figure 5.4. 
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Figure 5.4 – 𝐥𝐧 𝑻𝑻𝑭 vs. Quadratic Regression Coefficients 

After obtaining initial cluster assignments and extracting features, the ln 𝑇𝑇𝐹 is 

regressed on the quadratic regression coefficients using the MGR-ASGL model described 

in Section 5.2.3. To fit the model, the E-step is initialized using the cluster assignments 

from hierarchical clustering. Based on these assignments, the model parameters are 

estimated using the M-step equations. The algorithm requires an initial estimate of the 

regression coefficients which can be a matrix of random numbers whose number of rows 

is equal to the number of predictors in the model plus one and whose number of columns 

is equal to the number of failure modes. For this case study, the matrix is 64 × 2 since 

three features are extracted per sensor and there are 21 sensors. There is also the bias term 

for each cluster. Successive iterations of the EM algorithm are performed until the decrease 

in the expected complete data log-likelihood is less than 1. To select the tuning parameters 

𝛼 and 𝜆, 3-fold cross-validation is employed, where the combination of tuning parameters 

that minimizes the average cross-validated mean squared error between the actual failure 
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times and the predicted failure times obtained using the MGR-ASGL model is used. The 

ln 𝑇𝑇𝐹 is predicted using the expectation of the marginal distribution of 𝑌: 

 

𝑦∗ =∑𝜋𝑘
𝑛𝑒𝑤 (

(𝜓0,𝑘
𝑛𝑒𝑤 + ∑ 𝒙𝑖,𝑝

𝑇 𝝍𝑝,𝑘
𝑛𝑒𝑤𝑃

𝑝=1 )

𝜌𝑘
𝑛𝑒𝑤 )

𝐾

𝑘=1

 (5.4.1) 

Then, the TTF is computed by evaluating exp (𝑦∗). 

The tuning parameters tested were 𝛼 ∈ {0, 0.25, 0.5, 0.75, 1} and 𝜆 ∈

{1, 4.22, 7.44, 10.67, 13.89, 17.11, 20.33, 23.56, 26.78, 30}. The results of cross-

validation are shown in Figure 5.5. 

 

Figure 5.5 – Cross-validation Error 

The minimum average MSE occurs when 𝜆 = 1 and 𝛼 = 0.25. However, the small penalty 

term results in a dense model. Therefore, the One Standard Error Rule, which selects the 

most parsimonious model with an average MSE at most one standard error greater than the 

minimum average MSE, is utilized. For 𝛼 = 0.25, this is achieved at 𝜆 = 7.44. To compare 
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the sensor selection using both the minimum average MSE and One Standard Error Rule, 

the l2-norms of the coefficients for each of the 21 groups are displayed in Table 5.2. The 

pink highlights indicate sensors with an l2-norm greater than 0.001. All other sensors are 

noninformative. 

Table 5.2 – l2-norm of Sensor Group Coefficients 

Sensor, p 
FM 1 FM 2 

min AvgMSE 1SE min AvgMSE 1SE 

T2 0.347 0.000 0.087 0.000 

T24 0.411 0.000 0.339 0.482 

T30 1.061 0.720 0.866 0.182 

T50 1.166 0.248 10.743 1.522 

P2 0.810 0.000 0.576 0.000 

P15 1.060 0.000 0.250 0.000 

P30 0.493 0.000 1.239 0.000 

Nf 0.000 0.213 2.400 0.000 

Nc 1.135 0.068 2.058 0.000 

Epr 0.463 0.000 0.345 0.000 

Ps30 1.668 1.219 1.926 0.723 

Phi 0.000 0.000 0.000 0.000 

NRf 5.646 0.381 4.449 0.000 

NRc 0.000 0.000 0.000 0.000 

BPR 3.227 0.497 1.422 0.023 

farB 0.014 0.000 0.285 0.056 

htBleed 0.979 0.246 1.929 0.440 

Nf_dmd 0.526 0.000 1.169 0.000 

PCNfR_dmd 0.457 0.000 0.494 0.000 

W31 0.350 0.000 1.068 0.000 

W32 0.046 0.000 0.383 0.000 

From Table 5.2, it can be seen that only phi (ratio of fuel flow to Ps30) and NRc (corrected 

fan speed) are completely removed when using the minimum average MSE model. 

However, using the One Standard Error Rule results in a much more parsimonious model 

with sensors T30, T50, Nf, Nc, Ps30, NRf, BPR and htBleed being selected for cluster 1 

and sensors T24, T30, T50, Ps30, BPR, farB, and htBleed being selected for cluster 2. Note 
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that there is strong overlap in the sensor selection indicating that some sensors are capable 

of monitoring multiple degradation processes. Furthermore, only one of the noninformative 

sensors (htBleed: bleed enthalpy) was selected as significant using the One Standard Error 

Rule. The clustering of the relationship between the ln 𝑇𝑇𝐹 and the sensor features is 

shown in Figure 5.6. 

 

Figure 5.6 – Clustering via MGR-ASGL 
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In Figure 5.6, blue points are those assigned to cluster 1, while the red points are those 

assigned to cluster 2. Each graph displays the relationship between the ln 𝑇𝑇𝐹 and the 

quadratic regression coefficients from Section 5.2.2 (labeled for the htBleed row). There 

are large regression coefficients in amplitude for Ps30, the static pressure at the HPC outlet. 

Furthermore, a high degree of curvature in the overall trend between the ln 𝑇𝑇𝐹 and the 

quadratic regression coefficient 𝑥0 is noticed. Based on the clustering, the algorithm 

converged to a solution that captured this curvature as opposed to a solution that separated 

the data by failure mode. However, clustering and sensor selection can also be performed 

as a two-step approach. It is clear by visual inspection that the failure modes can be 

identified by bisecting the ln 𝑇𝑇𝐹 vs. 𝑥0 relationship at 𝑥0 = 0 for the BPR (Blade Pressure 

Ratio). These approaches are compared when predicting RUL using the methodology 

outlined in Section 5.3 to alternative approaches that do not address the attributes of 

complex systems. 

The proposed methodology performs clustering and sensor selection using the MGR-

ASGL model. Following the clustering, MFPCA is performed to fuse the selected sensors 

into informative predictors. However, the data is first smoothed using Robust Locally 

Weighted Regression as described in Algorithm 1. The choice of kernel utilized is the Bi-

square kernel defined as follows: 

 
𝒦(𝑢𝑖,𝑝

𝑣 ) = {
(1 − 𝑢𝑖,𝑝

𝑣 2
)
2
, for |𝑢𝑖,𝑝

𝑣 | < 1

0, for |𝑢𝑖,𝑝
𝑣 | ≥ 1

 (5.4.2) 
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Consider a window with a width where 𝑢𝑖,𝑝
𝑣 ≔

𝑣−𝑡

𝜔𝑖,𝑝
, with 𝜔𝑖,𝑝 equaling the absolute distance 

between 𝑡 and its ℎth nearest neighbor. For this application, the number of points in the 

window is equal to 25% of the total length of the signal. If the signal is 100 time epochs 

long, then 𝜔𝑖,𝑝 is the distance between 𝑡 and the 25th closest time epoch. After smoothing, 

the classification and regression models are implemented as described in Section 5.3. 

To compare the results of the proposed methodology, first consider the effect of 

sensor selection and incorporating clustering. Two alternative models are proposed. The 

first does not implement the MGR-ASGL model. Instead, the initial clustering is used to 

label the training set. All 21 sensors are used in the methodology described in Section 5.3 

to predict RUL. The second model treats all observations like they are in the same cluster. 

Multiple linear regression with ASGL penalty is utilized to perform sensor selection and 

the methodology described in Section 5.3 is used for predicting RUL. The average relative 

errors for these two models along with the proposed methodology are shown in Figure 5.7. 

The relative error is calculated as follows: 

 
𝐸𝑟 =

|𝑅𝑈𝐿𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑅𝑈𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡|

𝑇𝑇𝐹
 (5.4.3) 
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Figure 5.7 – Avg. Relative Error for Prognostics Models 

In Figure 5.7, the abscissa displays 5 ranges of RUL. For the category 𝑅𝑈𝐿 ≤ 25, 

the average relative prediction error is computed for all testing units with RUL less than 

25. The plot shows that outside of the units farthest from failure, ignoring multiple failure 

modes results in larger errors than if multiple failure modes are accounted for. Furthermore, 

the proposed sensor selection method results in lower average errors than not using sensor 

selection for all but the 50 < 𝑅𝑈𝐿 ≤ 75 category. This indicates that improved prediction 

error can be obtained through a simultaneous clustering and sensor selection methodology.  

The proposed methodology is also compared to the case where the cause of failures 

in the training set are known a priori, or they can be trivially diagnosed. For this, consider 

two alternative models. The first is a supervised approach of the MGR-ASGL model. In 

this case, we the CDLL can be formulated and optimized with respect to the model 

parameters without performing an E-step. Diagnostics and prognostics are performed using 

the methodology outlined in Section 5.3. The other alternative is a signal fusion 
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methodology proposed by Chehade et al. (2018). In their methodology, the authors used 

trends from HPC failures in the C-MAPSS 1 dataset to distinguish between HPC and Fan 

failures. To select sensors, they remove any sensor from the C-MAPSS 3 dataset that does 

not have a discernable trend. This leaves 14 sensors, whose signals they use to fuse into a 

health index that can be used to diagnose failure modes and predict RUL. The average 

relative errors for these methodologies are shown in Figure 5.8 below. 

 

Figure 5.8 – Comparison of Avg. Relative Error with Failure Modes Known 

The MGR-ASGL (blue) and supervised (green) methodologies both perform 

comparatively to each other. The root mean squared error of the test set for the MGR-

ASGL is 34.49 whereas it is 33.60 for the supervised model, a 2.65% difference. However, 

this difference is primarily due to a large outlier in the MGR-ASGL model for the region 

where RUL is between 51-75. If the outlier is removed, the MGR-ASGL model has a root 

mean squared error 0.43% less than that of the supervised approach (MGR-ASGL: 33.45, 

Supervised: 34.60). The advantage of the MGR-ASGL is that it achieves this improvement 
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without a priori knowledge of the historical failure modes. However, classifying 

observations in the test set consists of assigning degradation signals to a cluster that may 

not map one-to-one with the actual cause of failure. Thus, diagnostic interpretation may be 

limited. The supervised approach alleviates this concern by defining the clusters based on 

the actual failure modes. Of course, this requires knowledge of the failure modes, which 

may not be trivially inferred in general. When comparing with Chehade et al. (2018), first 

note that both the MGR-ASGL and supervised approaches have lower root mean squared 

error for the test set (MGR-ASGL: 34.49, Supervised: 33.60, Chehade et al. (2018): 35). 

In comparing the mean relative errors for each range of RUL, it can be seen that the 

proposed methodologies perform better in the early stages of the system’s life, but worse 

as failure becomes more imminent. However, upon looking at the median values in Figure 

5.9, a different trend is noticed. 

 

Figure 5.9 – Comparison of Median Relative Error with Failure Modes Known 
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This difference is due to the presence of outliers in the MGR-ASGL model that inflate the 

average. Suppose the smallest and largest errors for each RUL range of all three 

methodologies are removed. The effect on the average relative errors is shown in Figure 

5.10. 

 

Figure 5.10 – Comparison of Avg. Relative Error with Extreme Values Removed 

Figure 5.10 demonstrates that the average relative error for the MGR-ASGL methodology 

is on par with the methodology by Chehade et al. (2018) when the true RUL is less than or 

equal to 50. When the true RUL is between 51 and 75, the MGR-ASGL is prone to larger 

errors than the other two models. However, for ranges where the true RUL is greater than 

76, the MGR-ASGL methodology has an average relative error no less than 5.49 

percentage points lower than Chehade et al. (2018). For the supervised version, the errors 

when the true RUL is between 51 and 75 are 3.31 percentage points less than the MGR-

ASGL methodology and only 0.40 percentage points more than the methodology by 

Chehade et al. (2018). However, it is the least accurate model when the true RUL is 
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between 26 and 50. Once the true RUL is less than 26, the average relative error for the 

supervised model is only 0.01 percentage points less than the methodology by Chehade et 

al. (2018). Like with the MGR-ASGL, the supervised approach has higher accuracy for 

true RUL greater than 75. However, it is less accurate than the other two methodologies 

when the true RUL is greater than 125. While both the MGR-ASGL and the supervised 

approach can provide improvements in accuracy in some true RUL intervals, there are 

other intervals where the performance is not as strong. However, the advantage of these 

methodologies is that they reduce the sensor load while still providing comparable 

accuracy within true RUL intervals and better accuracy overall. 

5.5 Conclusion 

The problem of predicting RUL for systems with multiple failure modes is important, 

but also challenging. Instrumenting a system with several sensors provides the benefit of 

highly informative data. However, processing this data is also challenging. In this paper, a 

prognostics methodology that utilizes signals from multiple sensors to predict the RUL of 

systems with multiple failure modes is proposed. The methodology consisted of modeling 

the ln 𝑇𝑇𝐹 using a mixture of Gaussian regressions model with adaptive sparse group lasso 

penalty. To fit the MGR-ASGL model, a novel EM algorithm that simultaneously clusters 

the sensor data and selects optimal subsets of sensors for each cluster is utilized. However, 

the clustering algorithm did not separate the dataset into distinct failure modes. Instead, the 

algorithm seemed to converge to a model that captures nonlinear relationships between the 

ln 𝑇𝑇𝐹 and the signal features. This could be due to the presence of homogenous, but 

nonlinear trends being present in some sensor features. 
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To predict RUL, the smoothed signals from the selected sensors are fused into 

informative predictors using MFPCA. The proposed modeling approach is more accurate 

than approaches that either do not consider multiple failure modes or do not perform sensor 

selection. The proposed methodology is also compared to the case where the failure modes 

in the training set are known a priori. For this, the proposed methodology is implemented 

in a supervised fashion where cluster assignments are determined by visual inspection of 

one of the Blade Pressure Ratio signal features. Both these methodologies had comparable 

accuracy with a signal fusion methodology published in the literature. The advantage of 

the proposed methodology is that similar accuracy can be achieved with a smaller number 

of sensors which could reduce the cost of collecting condition monitoring data. For future 

work, the approach to performing clustering and sensor selection simultaneously can be 

addressed. In the proposed approach, an optimization problem that seeks to minimize the 

error between the mixture of regressions model and the observed data is developed. This 

optimization problem may need to be amended to account for the goal of simultaneous 

clustering and sensor selection. However, the proposed methodology still performed 

comparably to the supervised approach in terms of prediction accuracy. 

  



 214 

CHAPTER 6. CONCLUSION 

This dissertation presents a framework for monitoring the SoH of complex industrial 

systems. The fundamental idea behind this framework is that for high-dimensional data, 

information salient to condition monitoring is often embedded in a low-dimensional space. 

Therefore, the framework combined statistical transforms with regularization techniques 

to isolate a sparse selection of features to perform condition monitoring tasks such as fault 

detection, diagnosis, and prognostics.  

A key motivation for the topics discussed in this dissertation is to unite technical 

communities, such as gas turbine experts, that have a firm understanding of the physical 

dynamics of industrial systems with statisticians that develop generalized theoretical 

models for these systems. A benefit of this union is that the efficacy of statistics models 

for condition monitoring of real-world systems can be assessed. Furthermore, the modern 

challenges associated with these systems can motivate the development of new condition 

monitoring methodologies. For technical communities, the statistical models developed 

can provide physically interpretable models that can enable learning how degradation 

affects system dynamics, determine optimal sensor placement, and perform diagnostics and 

prognostics accurately. 

For the remainder of this chapter, the contributions related to each topic are briefly 

summarized and the potential for future work is discussed. 
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6.1 Severity-based Diagnosis for Vehicular Electric Systems with Multiple, 

Interacting Fault Modes 

The primary contribution of this chapter is a methodology that diagnoses both the 

presence and the severity of multiple, interacting fault modes in applications involving 

high-dimensional data. A vehicle-engine start test-rig is leveraged to collect time-resolved 

current and voltage profiles during the engine-cranking process. To process these 

functional data profiles, a data-analytics framework that consists of aligning the features 

of the profiles through curve registration, performing statistical transforms on the data for 

feature extraction, and then developing classifiers that utilize regularization to select a 

subset of these features for diagnosis was developed. Furthermore, this chapter presents a 

methodology for mapping the inferred fault states of the individual component severity 

levels to an overall system degradation level. Potential for future work would involve 

including more than two fault modes.  

6.2 Condition Monitoring of Combustor 

The transition from nonpremixed combustion to lean premixed combustion has 

rendered the gas turbine combustor susceptible to operational faults such as lean blowout 

and combustor instability that results in degradation to combustor components. This 

chapter presented a data curation algorithm that transforms a nonstationary signal to a white 

noise process. The characteristics of this white noise process are monitored using an 

EWRMS control chart. The alarms emitted from this control chart are imbued with a 

measure of risk of a blowout event. This measure of risk can be used by engine operators 

to inform decisions regarding how lean to operate. Future work is focused on the 
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development of a controller that automatically adjusts the fuel-to-air ratio based on this 

risk measure. 

This chapter also presented a hierarchical feature selection algorithm that can be used 

to select a subset of optimal sensors for monitoring degradation of the combustor 

centerbody. The results indicated that this methodology had higher classification accuracy 

than a baseline methodology that utilized no variable selection. The hierarchical variable 

selection approach was also found to be more robust to reduction in the sample size of the 

training set. Furthermore, the sensors mounted on the premixer tubes were found to be 

more effective at classifying the degradation of the centerbody than the transverse sensors 

mounted on the tubes attached to the lab wall. Future work would include attempting to 

diagnose more granular levels of degradation than those used in the study. Furthermore, an 

alternative to hierarchical variable selection is to combine Adaptive Sparse Group Lasso 

(used in Chapter 5) and Multi-class Logistic Regression to select optimal sensors and 

optimal features for the selected sensors for classification. 

6.3 Condition Monitoring of Turbine 

This chapter presents data analytics methodologies for addressing challenges related 

to cooling mechanisms of the gas turbine. These mechanisms include the combination of 

rim seal geometry and cooling flows to create a seal to protect the wheel space from 

ingestion from the main gas path and coolant holes manufactured into the turbine blade. 

To predict sealing effectiveness, two methodologies using time-resolved pressure signals 

recorded either near the rim seal or on the outer casing were proposed. These 

methodologies included a data-driven approach and a two-step approach that leveraged 
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expert knowledge. The latter methodology was shown to be more accurate at predicting 

sealing effectiveness. Future work includes migrating this modelling effort from the 

laboratory to a real-world gas turbine. 

Coolant holes are manufactured into the blade to prevent the blade temperatures from 

exceeding material melting points. This chapter proposed the novel idea of monitoring the 

coolant system through infrared imaging of the blade. The efficacy of this monitoring 

strategy was demonstrated for various feature extraction techniques. A key finding is that 

sparse regions corresponding to cold and hot regions in the turbine blade were found to be 

highly correlated with Coolant Flow Rate. This indicates there is potential for installing a 

small number of more cost-effective thermocouples at these locations for monitoring. A 

future step is to test this hypothesis by comparing the accuracy of sensing in sparse 

locations with the accuracy of using the infrared imaging. 

6.4 Predicting Remaining Useful Life in Complex Systems with Multiple Failure 

Modes 

This chapter presents a data analytics methodology for predicting remaining useful life in 

complex systems with multiple failure modes. The primary contribution of this 

methodology is that it identifies a subset of sensors associated with each failure mode, 

detects which failure mode is active, and predicts and updates the remaining useful life in 

real time. This is achieved by first modelling the conditional distribution of the natural 

logarithm of the time-to-failure given the sensor features as a mixture of Gaussian 

regression. Then, the log-likelihood is formulated and appended with the adaptive sparse 
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group lasso penalty to perform sensor selection. Finally, an EM algorithm is proposed to 

estimate the parameters of the model. 

When applying the methodology to a simulated dataset, the clustering did not occur 

in an intuitive way. One hypothesis is that the presence of sensors whose relationship 

between the time-to-failure and sensor features appear to be homogenous may be 

interfering with the clustering. Therefore, future work is to address this issue. One potential 

solution is to partition the sensors into those that are useful for clustering and those that are 

not. Then, a joint likelihood between the time-to-failure and the set of useful for clustering 

sensors can be fitted. While the proposed methodology did not properly cluster the data, it 

did result in higher prediction accuracy than when treating the data as homogeneous. 

Furthermore, the proposed methodology had comparable prediction accuracy as a two-step 

approach that first clusters the data and then performs sensor selection. 
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