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SUMMARY

Black holes have long fascinated both physicists and the general population alike. In

an astrophysical context, black holes participate in interesting interactions with not only

stars, but also other black holes. Moreover, the recent detections of gravitational waves from

both black hole-black hole and black hole-neutron star systems have only served to amplify

excitement in the field of black hole astrophysics. Over the last few decades, numerical

relativity has come to be a versatile tool for studying both of these classes of encounter. In

this thesis, I present a collection of numerical relativity studies of black holes in the context

of binary black hole mergers and tidal disruption events.
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CHAPTER 1

INTRODUCTION

Ever since they were established as a generic prediction of general relativity (GR) in the

1960s, black holes (BHs) have remained at the forefront of astrophysical research. Through

their interactions with each other and with stars, BHs have the capability to produce a wide

variety of highly unique observable events. An example of this is the merger of a binary

black hole (BBH) system, which (in isolation) is not observable electromagnetically because

no matter is evolved. Instead, such events are only observable through gravitational waves

(GWs), which have the ability to shed light on not only the strong-field regime of GR, but

also details about the astrophysical population of BHs.

Beyond just BBH mergers, events that involve the interaction of a BH and a star have

the capability to produce both GWs and electromagnetic (EM) radiation. Such events can be

used to study not only the BHs, but also the stars themselves. For example, GWs from the

merger of a BH and a neutron star have the potential to provide insight into the the equation

of state for neutron stars and more broadly the nucleosynthesis of heavy elements in the

universe. Though less exotic, tidal disruptions of main-sequence stars by supermassive

(& 106M�) BHs can not only shed light on the internal structure of the stars, but also have

the potential to be one of the only viable tools to probe the population demographics of BHs

in nearby galaxies.

In recent years, interest in the field has even further intensified with the successful detec-

tion GWs by Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) [1].

Through the first half of the third observing run (O3), the Advanced LIGO [1] and Ad-

vanced Virgo [2] observatories have reported a total of 50 GW detections as part of their

Gravitational-Wave Transient Catalog (GWTC) [3, 4]. These catalog events (shown in Fig-

ure 1.1) include 46 confident BBH mergers [5, 6], two binary neutron star (BNS) mergers [7,

1



Figure 1.1: Source masses and classifications for the gravitational wave events reported in
the Gravitational-Wave Transient Catalog. Image credit: LIGO-Virgo, Northwestern, Frank
Elavsky, Aaron Geller.

8], and two potential neutron star black hole mergers [9]. Additionally, the LIGO Scien-

tific Collaboration announced the detection of two separate confirmed neutron star black

hole events during the second half of O3 [10]. Over the next two decades, our ability

to detect GWs is expected to drastically improve with the addition of space-based (such

as Laser Interferometer Space Antenna (LISA) [11]) and third generation ground-based

detectors (Einstein Telescope [12] and Cosmic Explorer [13]) to the growing network of

GW observatories.

In order to interpret the rapidly growing number of GW and EM observations of BH

systems, researchers will need to draw upon a strong theoretical understanding of their

dynamics. Unfortunately, relatively few analytical solutions to the Einstein field equations

of GR are known. Even further, those solutions that are known to exist are generally not

appropriate for use in dynamical systems like BBHs and tidal disruption events (TDEs).
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Instead one must turn to the field of numerical relativity (NR), which is based on the idea of

restating of Einstein’s equations with the goal of making them more amenable to numerical

evolution.

In this thesis, I describe a series of numerical relativity studies in black hole astrophysics.

To begin, in the remaining sections of this chapter I describe the foundations of NR and the

MAYA computational framework, which I use to perform these NR simulations.

Following this, in Part I I describe two studies that involve NR simulations of BBH

systems. The first of these, presented in Chapter 2, focuses on the ultimate fate of the

horizons of the two BHs that comprise the binary, and how they evolve after the merger

takes place. In Chapter 3, I focus on the dynamics of the remnant BH horizon itself after

merger and how they correlate to the spatial distribution of the resulting GW emission.

In Part II, I shift my attention to NR simulations of TDEs. To begin, in Chapter 4 I

present a new initial data framework called BOOSTEDSTAR, which I have developed with

the goal of simulating TDEs in mind. Using this new framework, in Chapter 5 I present the

results of a study into the effects of stellar rotation in TDEs, and how it could potentially be

a significant driver of tidal debris circularization.

1.1 Notation and conventions

As is common in NR, throughout this thesis I use geometric units with G = c = 1. For all

numerical simulations, I have chosen units in which the total mass of the system is equal to

unity M = 1. For BBH systems with masses m1 and m2, this means that m1 +m2 = 1 and

the component masses of the binary can be expressed in terms of the mass ratio q = m1/m2.

All TDE systems discussed have mass ratios of mh/m∗ ≥ 105, so effectively M ≈ mh ≈ 1.

Unless stated otherwise, Greek indices (such as µ, ν, ρ, σ, . . .) denote full spacetime

indices from 0 to 3, while Latin indices (such as i, j, k, l, . . .) are spatial and range from 1

to 3. I take the signature of the spacetime metric to be (−, +, +, +).

3



1.2 3 + 1 Numerical relativity

In the traditional formulation of GR, the spacetime metric

ds2 = gµν dx
µ dxν (1.1)

is governed by the Einstein field equations

Gµν = Rµν −
1

2
Rgµν = 8πTµν . (1.2)

Here Tµν is the stress-energy tensor, which encodes the matter content of the spacetime.

The coupling of matter to the field equations will be discussed in Section 1.2.3.

This formulation is manifestly covariant, meaning that the field equations are stated

entirely in terms of tensors and that time and space are placed on equal footing. While this

property is fundamental to the ideas of GR, traditional numerical simulations involve the

dynamical time evolution of some initial data that is specified at a given instant in time. This

means that the field equations of Equation 1.2 must be adapted in some way in order to

approach them with standard numerical methods.

The most common method to accomplish this in NR is the 3 + 1 formalism, in which

four dimensional spacetime is split into three spatial dimensions and one time dimension.

Explicitly, consider a foliation of spacetime into spacelike hypersurfaces Σt (or time slices)

with coordinates xi that are labeled by a coordinate time parameter t. The coordinate or

gauge freedom inherent to GR can be absorbed into two gauge functions: the lapse α and

the shift vector βi. The lapse function dictates the passage of proper time between adjacent

time slices, while the shift vector determines how the coordinate system changes from one

time slice Σt to the next Σt+∆t. Note that α and βi are freely specifiable according to pure

GR, since they encode the gauge choice.

4



With this foliation, the normal vector to a hypersurface Σt can be written as

nµ = α−1 (tµ − βµ) , (1.3)

where tµ = (∂t)
µ is the tangent vector to lines of constant spatial coordinates xi. One can

then define the spatial metric γij as the projection of gµν onto Σt:

γµν = gµν + nµnν . (1.4)

As is clear from this definition, γij is just the projection operator onto Σt. Explicitly, gµν

can be fully expressed in terms of α, βi, and γij as

ds2 = gµν dx
µ dxν = −α2 dt2 + γij

(
dxi + βi dt

) (
dxj + βj dt

)
. (1.5)

In addition to the metric itself, the field equations of Equation 1.2 involve the curvature

of spacetime through contractions of the Riemann tensor

Rα
βµν = ∂µΓανβ − ∂νΓαµβ + ΓαµσΓσνβ − ΓανσΓσµβ , (1.6)

where

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgµρ − ∂ρgµν) (1.7)

are the Christoffel symbols. Under the 3 + 1 formalism, there are two distinct contributions

to the Riemann tensor: the intrinsic and extrinsic curvatures. The intrinsic curvature is fully

specified by quantities on a single time slice and is simply given by the Riemann curvature

tensor for the spatial metric (3)Rα
βµν . On the other hand, the extrinsic curvature Kij is the

result of how Σt is embedded in the full spacetime and must therefore depend on how γij

changes from one time slice to the next, or equivalently how it evolves in time. In terms of

5



the quantities defined above, the extrinsic curvature can be written as

Kij = −γαi γβj∇αnβ = −1

2
Lnγij, (1.8)

where Ln denotes the Lie derivative along the normal vector nµ. To see that Kij encodes

the time evolution of γij , one can expand this Lie derivative using Equation 1.3 to find

∂tγij = −2αKij +Diβj +Djβi, (1.9)

where Di is the covariant derivative associated with the spatial metric γij .

1.2.1 Constraint and evolution equations

Under the 3 + 1 formalism, it is convenient to explicitly decompose the Riemann tensor into

intrinsic and extrinsic curvature contributions:

γαµγ
β
ν γ

δ
ργ

λ
σRαβδλ = (3)Rµνρσ +KµρKνσ −KµσKνρ (1.10)

γαµγ
β
ν γ

δ
ρn

λRαβδλ = DνKµρ −DµKνρ (1.11)

γαµγ
β
ν n

δnλRαβδλ = LnKµν +KµδK
δ
ν + α−1DµDνα. (1.12)

Equations 1.10 and 1.11 are called the Gauss-Codazzi and Codazzi-Mainardi equations,

respectively.

Note that the field equations Equation 1.2 have ten independent components, since Gµν

is a symmetric second rank tensor in four dimensional space. Using Equations 1.10 and 1.11,

four of these components can be found by taking the contractions nµnνGµν and γαµnνGµν

of the Einstein tensor and plugging the result into the field equations. These contractions

6



(respectively) result in the constraint equations

(3)R +K2 −KijK
ij = 16πρH (1.13)

Dj

(
Kij − γijK

)
= 8πSi. (1.14)

Here ρH = nµnνTµν and Si = −γiµnνTµν are the local energy and momentum densities as

measured by Eulerian observers. Equations 1.13 and 1.14 are called the Hamiltonian and

momentum constraints, respectively.

The constraint equations are so called because they do not involve any time derivatives.

Instead, they are four equations (the Hamiltonian constraint and a component of the momen-

tum constraint for each spatial direction) that must be satisfied by γij and Kij in order for

the time slice to be part of a spacetime that satisfies the field equations. For this reason, the

constraint equations lie at the heart of the initial data problem in NR; producing initial data

for a NR simulation boils down to finding a solution to Equations 1.13 and 1.14 that models

the desired physical system. Furthermore, any viable evolution system must conserve the

constraint equations. Namely, if the initial data satisfies the constraints, then so should its

time evolution.

Since α and βi are freely specifiable, and with the evolution equation Equation 1.9 for

γij in hand, all that remains in order to fully describe the dynamics of GR is to find an

evolution equation for Kij from the field equations. This is in fact given by the remaining

six components (ten less the four components used for the constraints) of the field equations.

By expanding the Lie derivative in Equation 1.12 and using Equation 1.10, one can express

the time evolution of Kij as

(1.15)∂tKij = βk∂kKij +Kli∂jβ
k +Kkj∂iβ

k −DiDjα

+ α
[

(3)Rij +KKij − 2KikK
k
j

]
+ 4πα [γij (S − ρH)− 2Sij] ,

where Sij = γαµγ
β
ν Tαβ is the spatial stress tensor as measured by an Eulerian observer,

and S its trace. These evolution equations (Equation 1.9 and Section 1.2.1) along with

7



the Hamiltonian and momentum constraints (Equations 1.13 and 1.14) are known as the

Arnowitt-Deser-Misner (ADM) equations.

1.2.2 The BSSNOK formulation

While they serve as a mathematically complete description of GR, the ADM equations

derived in the previous section are not numerically well-posed (see [14] for details). This is

not a problem fundamental to the 3 + 1 formalism, but rather it can be avoided by restating

the ADM equations in a different form. This can be accomplished by transforming the ADM

equations to different variables and by adding or subtracting multiples of the constraints

(which must vanish for physical spacetimes) to the evolution equations.

One such restatement that is popular in NR is the Baumgarte-Shapiro-Shibata-Nakamura-

Oohara-Kojima (BSSNOK) formulation [15, 14], for which the spatial metric is split into a

conformal metric γ̃ij and a conformal factor φ such that

γij = e4φ γ̃ij. (1.16)

The conformal metric is defined to have unit determinant γ̃ = 1, meaning that the determi-

nant of the spatial metric is given by γ = e12φ. Additionally, the extrinsic curvature Kij is

separated into its trace K and a conformal rescaling of its trace-free part:

Ãij = e−4φAij = e−4φ

(
Kij −

1

3
Kγij

)
. (1.17)

Finally, the BSSNOK formulation also defines the conformal connection functions

Γ̃i = −∂j γ̃ij = γ̃jkΓ̃ijk. (1.18)

8



The equations of motion for the BSSNOK variables are given by

∂tφ = −1

6
αK + βk∂kφ+

1

6
∂kβ

k (1.19)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k (1.20)

∂tK = −γijDiDjα + α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα (ρH + S) + βk∂kK (1.21)

∂tÃij = e−4φ {−DiDjα + αRij + 4πα [γij (S − ρH)− 2Sij]}TF (1.22)

+ α
(
KÃij − 2ÃikÃ

k
j

)
+ βk∂kÃij + Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k (1.23)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k − 2Ãik∂kα (1.24)

+ 2α

(
Γ̃ijkÃ

jk + 6Ãij∂jφ−
2

3
γ̃ik∂kK − 8πe4φSi

)
(1.25)

+ βk∂kΓ̃
i − Γ̃k∂kβ

i +
2

3
Γ̃i∂kβ

k. (1.26)

Alternatively, for spacetimes involving BHs it can be beneficial to formulate the BSS-

NOK equation in terms of χ = e−4φ instead of using φ directly [16].

1.2.3 General relativistic hydrodynamics

When matter is present in a spacetime, it is coupled to the field equations through the

stress-energy tensor Tµν , which takes the form

Tµν = (ρ+ p)uµuν + pgµν (1.27)

for a perfect fluid. Here ρ is the energy density of the fluid, p is the pressure, and uµ is

the four-velocity. As a matter of convenience, the energy density is typically split into

contributions from the rest mass density ρ0 and the specific internal energy ε:

ρ = ρ0 (1 + ε) . (1.28)

9



Additionally, instead of using the four-velocity of the fluid directly one can adopt the

Valencia formulation [17] and define a three-velocity as

vi =
1

α

(
ui/ut + βi

)
, (1.29)

which is the velocity of fluid elements as seen by an Eulerian observer. A perfect fluid is

completely described by (ρ0, ε, p, v
i), which are collectively called the primitive variables.

While not a primitive variable strictly speaking, it is also useful to define the Lorentz factor

W = −nµuµ = αut =
1√

1− γijvivj
. (1.30)

In addition to the field equations, the fluid is subject to the continuity equation

∇µ (ρ0u
µ) = 0 (1.31)

and the conservation of energy-momentum

∇µT
µν = 0. (1.32)

For the purposes of numerical evolution, it is useful to write these equations in a conservative

form by defining conserved variables (D, Si, τ) as

D =
√
γρ0W (1.33)

Si =
√
γαT 0

i (1.34)

τ =
√
γα2T 00 −D. (1.35)

10



In terms of these variables, Equations 1.31 and 1.32 can be written as

∂tD = −∂j
(√

γD
(
αvj − βj

))
(1.36)

∂tSi = −∂j
(√

γαT ji
)

+
1

2
α
√
γT kl∂igkl (1.37)

∂tτ = −∂j
(√

γ
(
α2T 0i −D

(
αvi − βi

)))
+ α
√
γ
(
T 0k∂kα− αΓ0

klT
kl
)
. (1.38)

Finally, in order to close this system it must be supplemented by an equation of state

F (ρ0, p, ε) = 0 that describes the fluid.

1.3 MAYA infrastructure

All NR simulations in this thesis were completed using the MAYA infrastructure [18, 19,

20, 21, 22, 23], which is the local version of the EINSTEINTOOLKIT code [24] used a

Georgia Tech. At its core MAYA is based on the CACTUS[18] framework, which provides a

modular structure upon which NR code can be built. The computational grid takes the form

of a hierarchy of nested refinement levels, where each level is a uniform three-dimensional

Cartesian grid. Throughout evolution, MAYA relies on the CARPET [25, 26] adaptive

mesh refinement driver to ensure that all regions of the computational domain are properly

resolved.

For spacetime evolution, MAYA uses KRANC[19] to generate highly efficient C code to

evolve the BSSNOK equations described in Section 1.2.2 along with the moving punctures

gauge condition [16, 27]

∂tα = βi∂iα− 2αK (1.39)

∂tβ
i = βj∂jβ

i +
3

4
Bi (1.40)

∂tB
i = βj∂jB

i + ∂tΓ̃
i − βj∂jΓ̃i − 2Bi, (1.41)

which is one of the most popular gauge choices used in NR. Equation 1.39 is called the
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1 + log slicing condition, while Equations 1.40 and 1.41 are collectively called the Gamma-

driver shift condition. 1 + log slicing instrumental to the stability of NR simulations in the

presence of BHs because it ensures that the divergence of the normal vectors nµ vanishes.

As such, it avoids coordinate observers converging to a point leading to the development of

coordinate singularities. The Gamma-driver shift condition acts to control changes in the

shape of volume elements by minimizing changes in the conformal metric γ̃ij .

For hydrodynamical evolution, I use the publicly available ILLINOISGRMHD code [28].

While ILLINOISGRMHD is technically a full general relativistic magnetohydrodynamics

(GRMHD) code, no simulations presented in this thesis involve magnetic fields, so the evolu-

tion reduces to general relativistic hydrodynamics (GRHD) as described in subsection 1.2.3.

MAYA includes the built in capability to generate initial data for quasi-circular BBH

systems. This starts with a script that solves the post-Newtonian equations of motion for

the binary [29, 30] given the mass ratio q = m1/m2 and the spins of the BHs in order to

determine the appropriate spins and momenta at the desired initial binary separation. These

masses and spins are then provided as input to the TWOPUNCTURES code [31], which solves

the Hamiltonian constraint using a Bowen-York extrinsic curvature solution [32]. For TDE

initial data, MAYA uses the BOOSTEDSTAR initial data framework. BOOSTEDSTAR was

developed as part of the work presented in this thesis and is described in detail in Chapter 4.

During the course of evolution, MAYA uses the AHFINDERDIRECT thorn [33] to

locate and analyze apparent horizons (AHs). Additionally, it extracts GW signals from the

simulations by means of the Newman-Penrose scalar Ψ4 [34], which is calculated using the

WEYLSCAL4 thorn of the EINSTEINTOOLKIT.
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Part I

Binary Black Holes
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Overview
The detection of GWs has given birth to a new field of astronomy: GW astronomy. At the

time of this writing, the GWTC [3, 4] contains a total of 50 GW detections of compact object

mergers, including 46 confident BBH mergers. These GW detections provide the opportunity

to strengthen our understanding of compact objects along with their populations [35] and

formation channels [36, 37]. Additionally, they allow us to test the concepts of GR [38, 39,

40] in the strong-field regime. So far, all detections are consistent with the predictions of

GR [41, 42].

To date, all GW observations display a relatively simple chirp morphology [3] consisting

of a monotonic increase of both frequency and amplitude as can be seen in the top left panel

of Figure 3.1. The slow initial increase of both quantities reflects the low frequency and

tightening of the orbit as the two BHs approach each other [43]. This early phase of the

BBH system is known as the inspiral and can be well-approximated using post-Newtonian

methods [29]. Just before merger, the two BHs reach speeds comparable to that of light,

leading to a rapid rise of both frequency and amplitude [43, 44]. Once the they merge, the

initially highly distorted remnant BH settles into a Kerr solution by radiating exponentially

decaying ringdown emission [45, 46, 5, 47].

Despite the numerous recent successes of GW astronomy, detailed observations of the

ringdown emission from a merger remnant still lie beyond the sensitivity of LIGO and Virgo.

It is during this period just after merger that the strong-field regime of dynamical gravity is

on full display. As the sensitivity of both LIGO and Virgo improves and the next generation

of detectors (such as LISA and the Einstein Telescope (ET)) become operational, GWs will

finally provide us with an unprecedented view of this post-merger regime. This will allow us

test fundamental aspects of GR such as the no-hair theorem [39, 47] and quantum properties

of BHs [48] in further detail.

To prepare for these observations, studies that contribute to a deep understanding of the

dynamical properties of BHs in BBH systems and how GW signals encode these properties

14



are of fundamental importance. Furthermore, it is important to investigate how GWs reflect

not only the common properties of BBHs such as BH masses and spins, orbital eccentricity,

and orientation, but also any other fundamental aspects of a dynamical BH that can be

inferred from the morphology of the signal.

To this end, in this part I describe two studies that investigate the properties of dynamical

BHs in BBH systems. In Chapter 2, I describe the evolution and ultimate fate of the two

BHs that comprise the binary system. While these BHs are hidden behind the horizon of

the remnant post-merger, these results provide insight into the dynamics of the remnant BH

which in turn inform the GW emission. Building on this idea, in Chapter 3 I describe the

results of a second study investigating the curvature of the remnant BH horizon and how it

correlates to the spatial distribution of the resulting GW emission.
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CHAPTER 2

PUNCTURE AND TRAPPED SURFACE DYNAMICS

An essential element in NR simulations involving BHs is tracking the location and properties

of the holes. A natural structure to accomplish this would be the event horizon of the BH.

The problem with these horizons is that they are teleological in nature; that is, we require

knowledge of the entire space-time in order to identify their location and dynamics. An

alternative is to track AHs [49] since to find them one only needs the intrinsic metric and

extrinsic curvature of the spacetime hypersurface at a given time. An AH is the outer-most

marginally outer trapped surfaces (MOTSs), and a MOTS is a closed spacelike 2-surface for

which the divergence of its outgoing null normals vanishes. AHs can be used to determine

the mass and angular momentum of the BHs [50]. Once the common AH forms during the

merger, one can also estimate mass and spin multipole moments [51, 52] to quantify the rate

at which the final BH approaches equilibrium and potentially identify when the ringdown

phase begins [53]. In addition, studies [54, 55, 56, 53, 57] have shown that fields at the AH

are correlated with fields in the wave-zone and thus the GW signal itself.

The fate of the common AH resulting from a BH merger has been studied extensively

and is fairly well understood [58, 59, 52, 53]. Generally, after a common MOTS forms it

bifurcates into two surfaces. The outermost of these two surfaces expands and forms the

AH for the final BH, while the innermost surface contracts. Furthermore, the two MOTSs

that were initially the AHs of the two original BHs continue to exist well after the formation

of the common horizon. While these three interior MOTSs have been studied in some

detail [59, 60, 61, 53, 62], their ultimate fate remains uncertain and is the main focus of this

chapter.

Since the interior MOTS are hidden behind the common AH, it is not possible to know

about their dynamics from the GWs emitted. Nonetheless, investigating the final state of the
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punctures and their MOTSs provides insights on the global structure of a strongly nonlinear

and dynamical spacetime geometry, a topic of great interest to numerical and mathematical

relativists.

In this chapter I present a study published in Classical and Quantum Gravity Letters

investigating the dynamics of MOTSs in the head-on collision of BHs for various separations

and mass ratios, with the holes modeled as punctures [63]. We find that the MOTSs of the

merging punctures will in general intersect. For the situations in which they do not intersect,

we show that it is due to the singularity avoidance properties of the moving puncture gauge

condition [16, 27] used in the study. Our simulations are not long enough to show the

ultimate fate of the MOTSs and their punctures. At the same time, the results provide

evidence that the punctures, although close enough to each other to act effectively as a single

puncture, do not merge and the MOTSs do not fully overlap. Section 2.1 provides a review

of the MOTS involved in the evolutions. In Section 2.2, I outline the computational methods

used for the simulations. I present the results of this study in Section 2.3, and provide the

conclusions in Section 2.4.

2.1 Marginally trapped surfaces in a black hole binary

Consider a foliation of spacelike hypersurfaces Σt as described in Section 1.2. The initial

slice Σ0 consists of two BHs at a coordinate separation d0. Depending on the value of d,

Σt could have up to four MOTSs [59, 60, 61, 53, 62]. For large enough d, Σt will have

two non-connected MOTSs S1 and S2, which correspond to the AH of each individual BH.

At some separation dc, a slice Σt will also have a MOTS Sc surrounding S1 and S2. Since

Sc is the outermost MOTS for Σt, the surface is an AH and referred to as the common

AH. After some time, Sc will become the event horizon of the final BH. For separations

d < dc, a fourth MOTS Si peels off from the interior of Sc, shrinking and hugging S1 and S2.

These four MOTSs, S1, S2, Sc, and Si, are slices of four different dynamical horizons [58,

51, 64, 52]. However, for Si this only applies for a short time before the surface becomes

17



timelike [59]. For sufficiently small initial separations, S1 and S2 are at all times nearly null

surfaces [59] and thus they are isolated horizons to good approximation [65].

The primary difficulty in studying the eventual fate of S1 and S2 is that for the coordinate

conditions typically used with punctures in NR simulations, the surfaces shrink after the

formation of Sc, requiring progressively finer spatial resolution to properly resolve them. As

a result, it is challenging to make any definitive statements as to whether or not the MOTSs

exist based solely on the fact that they could not be located numerically.

Many investigations into S1 and S2 have focused on locating them on a series of initial

data slices with varying separations, thereby avoiding the computational cost of performing

high resolution evolutions in time. Jaramillo, Ansorg, and Vasset [60] studied Bowen-

York [32] initial data and found that at decreasing separations, S1 and S2 shrink progressively

smaller and show no indications of intersecting. Instead, Si becomes highly distorted while

S1 and S2 ‘accumulate’ against it. Pook-Kolb et al. [62] studied an analogous series of time

symmetric Brill-Lindquist initial data [66, 67] and found that S1 and S2 intersect and merge

with Si at the exact moment of intersection. Schnetter, Krishnan, and Beyer [59] carried

out simulations of head-on collision of Brill-Lindquist initial data. While they did lose the

ability to track Si rather early due to its high distortion, they made no statements about its

ultimate fate or what happens to S1 and S2. They did however speculate that if these three

surfaces do in fact merge, it is more likely that S1 and S2 merge first to form a new surface

that then merges with Si. This question was recently resolved by Pook-Kolb et al. [68, 69],

who have shown numerically that Si merges with S1 and S2 precisely when they first touch.

2.2 Numerical methods

All simulations in this study use Brill-Lindquist initial data [66, 67] representing two initially

at rest, non-spinning BHs with total mass M = m1 + m2, mass ratio q = m1/m2, and

separated by a coordinate distance d0. During the evolution, we use AHFINDERDIRECT [33]

to locate the MOTSs.
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As S1 and S2 approach each other, they will shrink in coordinate radius. The spatial

resolution required to properly resolve and track them will thus increase accordingly. To

ensure sufficient resolution, we activate additional refinement levels (one level each time

the MOTS radius reduces by half) thereby maintaining roughly the same number of points

across each MOTS. When Sc is first located, S1 and S2 are each completely covered by

three refinement levels, with each level consisting of 603 points. The resolutions for each

refinement are: M/100, M/200 and M/400. By the end of the simulations we use up to

five additional refinement levels, with a resolution of M/12800 at the finest level.

The MAYA code solves the χ formulation of the BSSNOK equations (see Section 1.2.2

for details) and enforces a floor value χ ≥ χε to handle regions where the conformal factor

diverges, e.g. at the punctures or singularities where χ = 0. We carried out a series of q = 1

and fixed d0 simulations in the range 10−3 > χε > 10−6 and found that the time after which

we can no longer locate S1 and S2 varies as tf ∼ χ−0.05
ε . With a floor value of χε = 10−6,

we obtain stable evolutions lasting tf ≈ 20M .

2.3 Ultimate fate of S1 and S2

Figure 2.1 shows the parameter space q vs. d0 of the simulations, where q is the mass ratio

and d0 the initial coordinate separation. There are two distinct regions: one in the lower

right corner (shaded gray) in which S1 and S2 do not intersect and the rest of parameter

space in which they do. The boundary separating these two regions is given by

q ≈ 1.135 +
√

4.065 (d0/M)− 6.674. (2.1)

Since all the simulations are head-on collisions with the punctures separated along the

z-axis, we track the coordinate separation between S1 and S2 with ∆z = z1 − z2 where

z1 and z2 are respectively the z-components at the surfaces of S1 and S2 that face each

other (as seen in Figure 2.2). The coordinate origin is set at the center of mass of the initial
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Figure 2.1: Parameter space of simulations. Simulations are characterized by mass ratio
q and initial coordinate separation d0. Cases for which S1 and S2 intersect are denoted by
filled circles and non-intersecting by open boxes. In gray is the region of non-intersecting
simulations.
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Figure 2.2: Definition of the coordinate separation ∆z between S1 and S2.

configuration. Initially z1 > 0 and z2 < 0, thus when the two surfaces intersect we have

z1 < z2 and ∆z becomes negative. Figure 2.3 shows |∆z| as a function of coordinate time

t for a few equal-mass (q = 1) configurations. The left panel shows three cases in which

S1 and S2 intersect. The time axis has been shifted so the cases align when the surfaces

intersect at time t∗, which depends on d0. The right panel shows three cases in which

S1 and S2 do not intersect. From these two panels it is clear that, at late times, both the

separation for the non-intersecting cases and the overlap for the intersecting cases decrease

as |∆z| ∼ e−t/λ. The same exponential decay extends to the unequal-mass (q > 1) cases.

For all configurations, we find that λ ≈ 2M . The exponential decay in the surface separation

is also present in the coordinate separation d of the two punctures. Beginning shortly after

the formation of Sc, we find again that d ∝ e−t/λ with λ ≈ 2M .
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Figure 2.3: Coordinate separation |∆z| between S1 and S2 for a few q = 1 examples as a
function of coordinate time t. The left panel depicts three intersecting cases aligned at the
time of intersection. The right panel shows three non-intersecting cases. Solid dots denote
the time at which the common AH appears.

2.3.1 Collapse of the lapse

To understand the exponential decay in both the separation between S1 and S2 and the

distance between the two punctures, recall that in the moving puncture gauge the lapse

function α satisfies the 1 + log type slicing condition

(
∂t − βi∂i

)
α = −nαK, (2.2)

where βi is the shift vector, K the trace of the extrinsic curvature, and n a constant. As is

customary, we choose n = 2. With this choice, stationary slices of a single Schwarzchild

puncture are given by a family of trumpet slices [70], for which the surface of zero isotropic

radius (the trumpet surface) has a non-zero areal radius. Furthermore, the lapse on the

trumpet surface vanishes thereby avoiding the singularity at the puncture. With the moving

puncture gauge, the positions of the punctures xi1,2 are found by integrating [16].

∂t x
i
1,2 = −βi1,2. (2.3)
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Figure 2.4: Lapse at the coordinate origin α0 for q = 1 and d0/M = 1, 2. The left panel
shows how α0 changes as a function of coordinate time t. The right panel shows how α0

changes with ∆z. For d0/M = 2, by the time ∆z = 0, the lapse has already collapsed.
In contrast, for d0/M = 1, ∆z = 0 is reached when α0 ≈ 0.25. After this point, as α0

collapses, ∆z reaches a minimum and at late times ∆z → 0.

For Schwarzchild trumpet slices, βr = r/λ near the puncture [70, 71]. As a result, the

radial coordinate distance to each puncture is given by r1,2 ∝ e−t/λ, with the decay rate λ

computed from

λ2 =
1

r
βr∂rβ

r. (2.4)

Substituting the solution for 1 + log trumpet slices found by Hannam et al. [72] into this

expression yields

(λ/M)2 ≈ (R0/M)3

(2−R0/M)
, (2.5)

where R0 ≈ 1.3124M . This gives a decay rate of λ ≈ 1.82 M , which is consistent with the

numerical value from our simulations. The minor disagreement is easily explained by the

fact that our numerical simulations do not reach full stationarity before completion and the

shift vector is evaluated slightly away from the puncture.

To demonstrate how the lapse function is connected to the observed behavior of S1 and

S2, in Figure 2.4 we show the lapse function at the origin α0 as a function of coordinate

time t (left panel) and as function of ∆z (right panel). Two cases are plotted: one in which

the surfaces do not intersect (d0/M = 2) and another in which they do (d0/M = 1). From
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Figure 2.5: Left panel shows proper time τ∗ (crosses) at the origin when S1 and S2 intersect
at time t∗ for q = 1 as a function of d0. Included is also a quadratic fit τ̂∗ and in gray the
90% confidence interval. With solid dots are the proper time τf elapsed at the origin by the
end of the simulations for three non-intersecting cases. The right panel shows τ̂∗ − τ0 as a
function of t for those three non-intersecting cases.

the left panel it is clear that, that in both cases, the lapse eventually collapses and thus

halts the evolution. The difference in how the collapse proceeds in each case and how this

affects the final outcome is more evident in the right panel. We see in this panel that at

∆z ≈ 0.42 both cases have the same value of α0, shown as solid dots in the left panel. For

the non-intersecting case (d0/M = 2) , α0 is already starting to collapse at this separation.

On the other hand, for the intersecting case (d0/M = 1), α0 is still growing; thus, the

evolution lives longer and the surfaces are able to intersect before the end of the simulation.

It is also interesting to note that the degree of intersection or surface overlap reaches a

maximum and then decreases as the lapse enters collapse. Later in this chapter, I will show

that this is only a coordinate effect.

2.3.2 Proper time to intersection

To further support the importance of lapse collapse to the behavior of S1 and S2, we calculate

the the proper time elapsed at the origin since the beginning of the simulation

τ0(t) =

∫ t

0

dt′ α0(t′). (2.6)
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Figure 2.6: Proper separation |∆z̄| between S1 and S2 for a few q = 1 examples as a
function of proper time τ0 measured at the origin of the coordinate system. The left panel
depicts three intersecting cases aligned at the time of intersection. The right panel shows
three non-intersecting cases. Solid dots denote the time at which the common AH appears.

In the left panel of Figure 2.5 we denote with crosses τ∗ ≡ τ0(t∗), where t∗ is the coordinate

time when S1 and S2 intersect. Also plotted is a quadratic fit

τ̂∗/M = 0.337 (d0/M)2 + 1.170 (d0/M) + 0.417 (2.7)

along with the 90% confidence interval in gray. The inset shows an extrapolation of τ̂∗/M

beyond the intersecting cases, along with three solid dots denoting τf = τ0(tf ) for non-

intersecting cases, where tf is the time at the end of the simulation. Notice that in all

non-intersecting cases τf < τ̂∗, meaning that none of these simulations reached the time

at which we would expect S1 and S2 to intersect. The right panel in Figure 2.5 shows the

remaining proper time before the two surfaces are expected to intersect τ̂∗ − τ0 as a function

of coordinate time t for the three non-intersecting cases, which tends towards a positive

constant as the lapse collapses, signaling that the progression of proper time has halted.

2.3.3 Invariant length measures

As mentioned previously in this chapter, tracking the separation or overlap of S1 and S2

using coordinate distances comes with the complication that the outcome is influenced
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by the choice of gauge. To circumvent this, in Figure 2.6 we show the proper distance

separation |∆z̄| as a function of proper time τ0 corresponding to the cases in Figure 2.3. The

left panel depicts the intersecting cases, with time shifted by the time at intersection τ∗. The

right panel shows three non-intersecting cases with the time also shifted but in this case by

τ̂∗ from the fit shown in Figure 2.5. It is clear from both panels that for τ0 − τ∗ < 0 and

τ0− τ̂∗ < 0, the proper separation is independent of d0. Also, if we were to combine the data

from both panels, it would show that for these times all cases lie on top of each other; thus,

there is no difference between intersecting and non-intersecting cases. Therefore, here again

the data suggest that if the evolutions for the non-intersecting cases were able to proceed,

then the surfaces would eventually intersect. The differences in |∆z̄| with d0 only arise

when τ0 > τ∗, namely after the surfaces overlap. The left panel shows that at late times S1

and S2 reach a constant proper overlap, with smaller values of d0 corresponding to larger

final overlaps. Furthermore, we find that the final overlap volume is never large enough to

contain the punctures; they remain in the non-overlapping regions.

To gain further insight about the final state of the MOTSs and punctures, in Figure 2.7

we plot the evolution of the areal radius R =
√
A/4π (where A the area of the MOTS) for

a few equal-mass intersecting cases with. It is clear that toward the end of the simulation,

the surfaces S1 and S2 reach a constant areal radius and thus become isolated horizons [49].

This, together with the finding that S1 and S2 have a constant proper overlap, strongly

suggests that the configuration is effectively frozen and the punctures will not merge.
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Figure 2.7: Evolution of the areal radius of S1 for intersecting cases with q = 1. The areal
radius of S2 is the same as that for S1 since the holes have equal masses.
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2.4 Conclusions

In this chapter I have presented results from a two-parameter study (mass ratio q and initial

separation d0) of head-on collisions of BHs. The focus was on the ultimate fate of the

MOTSs S1 and S2 that initially were the AHs of the colliding BHs. Depending on the

values of q and d0, once inside the common AH the surfaces S1 and S2 intersect if the

lapse function α0 takes longer to collapse before the end of the simulation. The collapse

of the lapse is fundamental to the singularity avoidance properties of the moving puncture

gauge condition [16, 27] used in the simulations. We show that for all configurations in

this study, at late times the coordinate separation of the BH punctures and of the MOTS

surfaces S1 and S2 decays as e−t/λ with λ ≈ 2M . When the separation of S1 and S2 is

measured using proper distances, we find that all cases exhibit the same behavior as a

function of proper time at early times. The data suggest that if it were not for the collapse of

the lapse, all configurations would intersect. Furthermore, the intersection or overlap of the

two surfaces freezes at late times. Similarly, the areal radii of S1 and S2 become constant at

late times, implying that the surfaces become isolated horizons. Together these two facts

(the freezing of the areal radius and the overlap) strongly suggest that the punctures do not

merge. However, since this occurs at very small separations, (|∆z|∼ 10−4M ), for practical

purposes, the two punctures act as a single puncture, namely the singularity of the final BH.
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CHAPTER 3

POST-MERGER CHIRPS FROM BINARY BLACK HOLES

Even though all current GW observations present with the chirp morphology described

earlier in this part, general GW signals can be far more intricate. The complex GW strain

emitted in a direction (ι, φ) on the sky of a BBH can be written as a superposition of modes

h`,m(ι, φ; t): [73]

h(t) = h+(t)− ih×(t) =
∑

`≥2

m=∑̀

m=−`

Y −2
`,m(ι, φ)h`,m(t). (3.1)

Here h+ and h× denote the two GW polarizations, Y`,m are the spin−2 weighted spherical

harmonics and (ι, φ) are the polar and azimuthal angles (respectively) of a spherical coor-

dinate system centered on the binary. In this context, ` and m are not spatial indices. The

coordinates are defined such that ι = 0 (face-on) denotes the direction of the orbital angular

momentum, while the orbital plane of the binary is located at ι = π/2 (edge-on).

When the binary is nearly equal-mass and viewed face-on, the emission is dominated by

the (2,±2) quadrupole modes [73] and therefore the frequency of the GW signal is twice

the orbital frequency, to good approximation. Highly symmetric binaries such as these

produce GWs that present the canonical single chirp morphology described at the beginning

of this part. In contrast, asymmetric BBHs (with unequal masses or spinning BHs) also

produce strong GW emission in the sub-dominant higher order modes during merger and

ringdown [74, 45, 75, 76], allowing for GWs signals with non-trivial morphologies [77, 75,

76] that may shed light on novel features of the post-merger dynamics.

The connection between horizon dynamics and GW emission has been widely studied

using a variety of approaches. For example, examining correlations between far-field

signals and local fields near the horizon reveals close connections between the horizon

29



geometry, the GW flux, and strong-field phenomena such as anti-kicks [78, 79, 80, 81].

Alternatively, directly examining the strong-field dynamics that ultimately cause these

correlations produces insight into the generation of GWs [82, 83, 84, 85, 86]. However,

none of these previous studies describe a direct link from the horizon geometry to the to the

GW strain observed by detectors.

In this chapter I present a study published in Communications Physics in which we

expand upon the approach of [78, 79, 80, 81] in order to correlate a concrete, observable

feature of the GW strain to geometric properties of the remnant BH horizon. Using a

series of NR simulations that I performed using the computational infrastructure outlined

in Section 1.3, we demonstrate that multiple post-merger frequency peaks (or chirps) can

be measured near the orbital plane of unequal-mass binaries 1. We then show that these

chirps correlate to the line-of-sight passage of strongly emitting regions of the remnant BH

with both large mean curvature gradient and locally extremal Gaussian curvature. These

strongly emitting regions cluster around a cusp-like defect on the dynamical AH surface

itself. Conversely, frequency minima in the GW signal correspond to the passage of the

smoother region of the AH opposite the cusp, where curvature gradients are smaller.

3.1 Apparent horizon surface and curvatures

Throughout this chapter I use index notation that is a variation on that described in Sec-

tion 1.1. As in the rest of the thesis, the indices i, j, k, l to refer to the spatial coordinates

xi = (x, y, z) on a time-slice Σt, however indices a, b, c, d to refer to the angular coordinates

ya = (θ, φ) on the horizon surface S.

Consider a spacelike hypersurface Σt with 3-metric γij and associated covariant deriva-

tive operator Di, as described in Section 1.2. The spatial metric on an AH surface S ∈ Σt is

1In this work we only consider non-spinning BHs, therefore asymmetric binaries and unequal-mass binaries
are effectively synonymous within the scope of this chapter.
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simply given by the metric induced on S by γij

qij = γij − ninj, (3.2)

where ni is the outward-pointing unit normal to S.

The mean curvature of the apparent horizon surface is given by the divergence of the

surface normals

H = Din
i. (3.3)

The mean curvature is extrinsic to the surface S , meaning that it depends on the metric and

its derivatives in the neighborhood of the horizon, not just on the surface itself. As a result,

the amount of output data required to calculate H during post-processing is prohibitively

large. Instead I calculate the mean curvature at run time using the AHFINDERDIRECT thorn,

which already constructs interpolations of the metric and its derivatives near S in the process

of locating it. On the other hand, the Gaussian curvature K of S is intrinsic to the surface

and can therefore be calculated using only the metric induced metric and its derivatives on

the horizon. I have modified the AHFINDERDIRECT thorn to output qij on S in order to

calculate K in post-processing.

For a two-dimensional surface the Riemann tensor has only one independent component

and is therefore completely determined by the Ricci scalar. The Gaussian curvature of S is

half of the Ricci scalar and is related to components of the Riemann tensor as

Rabcd = K(qacqdb − qadqcb). (3.4)

While this equation is valid for any component Rabcd, here I use the Rθφθφ component.

In this work we only consider curvatures in the orbital plane of the binary, where the

complexity of Equation 3.4 is significantly reduced due to the symmetry properties of qab.

With our focus limited to the curve formed by the intersection of the orbital plane and the
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horizon surface it is natural to compute derivatives with respect to the arc-length s along

this curve, which is related to the azimuthal angle φ as

ds

dφ
=

√
qij
dxi

dφ

dxj

dφ
=
√
qrr (∂φR)2 + qφφ + 2qrφ (∂φR) , (3.5)

where R denotes the coordinate radius of the horizon. The spherical components of qij are

related to the Cartesian components output by AHFINDERDIRECT by

qrr = cos2(φ)qxx + sin2(φ)qyy + sin(2φ)qxy

qφφ = r2
(
sin2(φ)qxx + cos2(φ)qyy − sin(2φ)qxy

)

qrφ =
1

2
sin(2φ)(qxx − qyy) + cos(2φ)qxy

(3.6)

3.2 Post-merger chirps

Figure 3.1 shows the GW strain and the corresponding spectrograms2 as measured by

observers at various locations (or viewing angles), which have been extracted from NR

simulations. The green vertical lines denote the formation of the common AH. Some time

after the common horizon forms, each of these signals show a clear drop in frequency

followed by a secondary peak or post-merger chirp. The top row of Figure 3.1 shows the

waveforms for q = 3 and various different observer locations indicating that, depending on

the location of the observer, the post-merger chirps occur at different times and involve dif-

ferent frequencies and intensities. As expected, when observed face-on (leftmost panel) the

signal presents the simple chirp structure that is consistent with current GW observations [3,

6].

It is illustrative to compare the signals observed in the direction of the GW recoil [77,

76] of the final BH (kick-on) to those observed in the opposite direction (kick-off). While

the kick-on observer records a secondary chirp with larger amplitude and peak frequency

2All spectrograms shown in this chapter were generated by performing a wavelet decomposition of the
signals using PYCWT [87].
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Figure 3.1: The GW strain h(t) extracted from NR simulations (white background) and the
corresponding spectrograms (black background). The green vertical lines denote the time
at which the remnant AH is first located in the simulations. The top row shows the q = 3
case for four different viewing angles (left to right): face-on, kick-off, kick-on, and 55◦

away (in the direction of the orbit) from the kick direction. The last of these is the viewing
angle for which the double-chirp feature is most prominent. The bottom row shows five
different cases with mass ratios q = 1.1, 2, 5, 6, and 10 again in the direction that maximizes
the double-chirp.

33



than the first, the converse is true for the kick-off observer. We find that the intensity of

the second chirp is maximized when observed in a direction ' 55◦ away from the kick, as

measured along the direction of the original orbit. This signal observed at this viewing angle

is shown in the rightmost panel, showing a pronounced double-chirp. Notably, we find that

this viewing angle maximizes the intensity of the second chirp irrespective of the mass ratio.

We will refer to observers at this viewing angle as maximal-chirp observers. In the bottom

row of Figure 3.1, we show the signals for mass ratios of q = 1.1 − 10 as measured by

maximal-chirp observers, which clearly demonstrate that the double-chirp structure becomes

more pronounced as the binary becomes more asymmetric (higher mass ratio). A similar

non-trivial post-merger emission, visible in the time-domain, was described by González et

al. [77] in terms of the Newman-Penrose scalar Ψ4. However its frequency content, which is

the departing point of our study and the motivation behind the double-chirp name, was not

shown.

Analytically, these complex and observer-dependent post-merger waveform morpholo-

gies can be explained by the asymmetric interaction of the higher-order quasi-normal modes

beyond the in different directions around the binary. These modes are excited during the

merger and ringdown of asymmetric binaries and are known to be more prominent for

highly inclined binaries [74, 76, 88]. However, the remarkable clarity of the double-chirp

morphology suggests a connection to some underlying post-merger feature, analogous to

how the increase of the frequency during the inspiral is connected to the increasing frequency

of the binary. In the remainder of this chapter, I argue that this underlying feature is the

existence of regions of locally extremal curvature that are distributed non-uniformly on

the dynamical horizon surface of the remnant BH. Three of these regions cluster around

a global curvature maximum (cusp), together forming a trident. The fourth can be found

on the opposite (back) side of the horizon. These four regions all coincide with regions of

maximal GW emission. Maintaining some of the original orbital angular momentum of the

binary, this geometric structure continually rotates while the final BH relaxes, sweeping
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Figure 3.2: Panel a shows a snapshot of |Ψ4| (which encodes the GW emission) in the orbital
plane of a q = 3 binary 52.3M after the merger. I have also marked the location of the
kick-on and kick-off observers, along with the separation ∆R ∼ 20M between the wave
fronts traveling towards each observer. Panel b shows the corresponding spectrogram as seen
by both the kick-on and kick-off observers. Note that the time elapsed ∆t ∼ 20M between
frequency peaks (chirps) is consistent with the separation of the arriving wave fronts seen in
a. Two strong wave fronts reach the kick-on observer and produce a prominent double-chirp,
however the second front to reach the kick-off observer is much weaker, leading to a weaker
second chirp.

across all observers on the orbital plane as it fades away. We also show that after the cusp

(back) of the horizon crosses the line-of-sight, frequency maxima (minima) are recorded at

a time consistent with the GW travel time determined by the distance to the observer.

3.2.1 Far-field emission profile

In order to develop a qualitative understanding of how the spectrogram of the signal relates

to the spatial structure of the GW emission, in Figure 3.2a I show a snapshot of the GW

emission in the orbital plane of the q = 3 binary after the waves have traveled far from

the source (52.3M after merger). To visualize the GW emission I use the absolute value

of the Newman-Penrose scalar |Ψ4| [89], which is related to the second time derivative

of the GW strain. Based on the distribution of wavefronts in Figure 3.2a, it is clear that

the observed frequency content of the GW signal depends on the viewing angle. This is
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confirmed in Figure 3.2b, which shows the markedly different spectrograms measured by

the kick-on and kick-off observers.

Furthermore, Figure 3.2a shows that there is a pair of wavefronts traveling towards

each observer, with the two fronts being separated by ∆r ∼ 20M . The propagation

time across this separation is consistent with the time delay ∆t ∼ 20M between chirps

seen in Figure 3.2. In addition, the relative intensities of the wave fronts approaching

each observer in Figure 3.2a are in qualitative agreement with the intensities of the chirps

in Figure 3.2b. The two wave fronts that reach the kick-on observer have similar intensities

and therefore produce a prominent double-chirp, whereas the second front to arrive at the

kick-off observer is significantly less intense than the first, resulting in a second chirp that is

barely visible.

3.2.2 Horizon geometry and the near-source radiation fields

With this connection between post-merger chirps and the far-field GW emission profile in

mind, we can now shift focus to the near-horizon region to investigate how the emission

relates to the post-merger horizon dynamics. The snapshots shown in Figure 3.3e-h show

the structure of Ψ4 near the horizon at four selected times tframe during its evolution. In the

first snapshot (Figure 3.3e) soon after the horizon forms, Ψ4 shows a distinctly asymmetric

pattern. All four arms of the structure described at the beginning of this section are visible,

with the most prominent central arm of the trident aligned with the cusp on the horizon.

Note that this structure does not form abruptly at merger, but instead arises smoothly from

the existing structure of Ψ4 that results from the inspiral of the two BHs. The next three

snapshots (Figure 3.3f-h) show how this structure rotates and begins to fade away as the

remnant BH relaxes. During this rotation, all four arms of the Ψ4 structure sweep across the

line-of-sight of every observer multiple times.

In Figure 3.3a-d we show both Ψ4 and the GW strain h measured by the kick-on and

kick-off observers along with the corresponding spectrograms. Note that the time axis along
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Figure 3.3: Panels a and b show the GW strain h (white background) and the corresponding
spectrograms (black background) as recorded by the kick-on and kick-off observers, respec-
tively, extracted at a distance of rext = 75M from the source. Panels c and d show the same
for Ψ4 instead of h. The upper time axis shows the retarded time tframe − rext, whereas the
lower time axis has been shifted such that the (2, 2) mode reaches peak amplitude at t = 0.
The four vertical lines indicate the retarded times corresponding to the four snapshots of
log |Ψ4| in the orbital plane of a q = 3 binary shown in panels e-h. Bright yellow denotes
large values of |Ψ4|, while dark purple regions denote zeroes. The snapshots also show the
horizon surfaces in black. As can be clearly seen in the inset of panel e, the remnant BH is
initially highly asymmetric. In the same frame, the trident structure of |Ψ4| can be seen on
the bottom right side of the horizon with its most prominent arm aligned with the cusp. The
black arrow points along the kick-on direction.
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Figure 3.4: The main panel shows |Ψ4| on the intersection of the orbital plane and the
common apparent horizon, along with the magnitude of the derivative of the mean curvature
|dH/ds| of the horizon along the same curve for a q = 3 binary 5M after the horizon
forms. Both are shown as a function of the azimuthal angle φ. The parameter s denotes the
arc-length along the equator, ad described in Section 3.1. The inset shows the corresponding
snapshot of |Ψ4| in the orbital plane.

the top shows the retarded time tframe − rext, where rext is the distance from the extraction

surface to the emission source. When the arms of the trident Ψ4 structure (particularly the

central arm) cross the line-of-sight of an observer, that observer measures a chirp signal

at a time rext later. This effect is also noticeable in the time series for h and Ψ4 in the

form of a short wavelength signal, consistent with the separation between wavefronts seen

in Figure 3.2. Similarly whenever the back side of the horizon crosses the line-of-sight, it is

followed by a frequency minimum after a time delay of rext. These observations strongly

indicate that far-field GW signals, and particularly chirps and frequency minima, are directly

connected to the line-of-sight passage of the arms of the Ψ4 structure.

The alignment of the Ψ4 central arm structure with the cusp on the apparent horizon

suggests a relationship between Ψ4 and the curvature of the horizon surface. To investigate

this, we compare the value of Ψ4 on the horizon surface and calculate both the mean

curvature H and the Gaussian curvature K of the surface. Figure 3.4 shows Ψ4 along with

the magnitude of the derivative of the mean curvature |dH/ds| along the equator 5M after
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Figure 3.5: The correlation between Ψ4 and dH/ds; similar to Figure 3.4, but shown at
four different times: 5M , 10M , 17.3M , and 35.4M after the formation of the common
apparent horizon. Additionally, the φ-axis has been shifted by φcusp so that maximum of Ψ4

(i.e. the central arm) is at φ− φcusp = 0.

the common horizon has formed. The parameter s denotes the arc-length along the horizons

equator (see Section 3.1 for a detailed description of both the arc-length parameter and the

two curvatures H and K). The four local maxima of |Ψ4| in the main panel correspond to

the four arms of the emission structure, which is shown in the inset Ψ4 snapshot. Clearly

there is a close correlation between |dH/ds| and |Ψ4|. All four of the local maxima of |Ψ4|

match up with the four local maxima of |dH/ds|. Each of the three Ψ4 arms correspond to

a nearby region of large |dH/ds| that spans a similar angular size, with the maximum of

|dH/ds| (the cusp) matching up to the maximum of |Ψ4| (the central arm).

As can be seen in the four panels of Figure 3.5, this connection between Ψ4 and dH/ds

is not unique to any one moment in time. Based on the lower right panel (35.4M after

merger), we observe that this correlation degrades slightly long after the common horizon

has formed. At late times the horizon has almost fully relaxed to equilibrium so the curvature

is nearly uniform, with small dH/ds across the horizon surface. Emission is very weak for
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Figure 3.6: Values of Ψ4 and the Gaussian curvature K on the intersection of the orbital
plane and the final common horizon of a q = 3 binary as a function of the azimuthal angle
φ. The panels a-d show times 5M , 10M , 17.3M , and 35.4M after the common horizon
forms, respectively.

the same reason, meaning that this degradation is easily attributed to numerical artifacts.

Note that here we have chosen to plot Ψ4 and −dH/ds, as opposed to taking their absolute

values as in the previous figure, in order to show that the correlation holds smoothly over

all φ. We chose to use the absolute values for the previous figure simply to facilitate visual

comparison between the plot and the simulation snapshots.

As shown in Figure 3.6, the Ψ4 arms also match with regions of locally extremal

Gaussian curvature K, which, unlike the mean curvature, is coordinate independent and

intrinsic to the horizon surface. Together, Figure 3.5 and Figure 3.6 provide compelling

evidence that the rotation of the Ψ4 corresponds precisely to the movement of extremal

curvature regions on the horizon surface of the newly formed black hole.

Though I have only shown data from a q = 3 binary up until this point, we find that

the correlations shown in Figure 3.5 and Figure 3.6 hold all of the mass ratios shown
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Figure 3.7: The panels on the left show the same as Figure 3.4, while the panels on the right
show the same as Figure 3.6. The top two rows show the q = 2 case for two different gauge
conditions, while the bottom row shows the q = 10 case.
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in Figure 3.1, namely q = 1.1, 2, 5, 6 and 10. To demonstrate this, in the bottom row

of Figure 3.7 we show results for the most extreme mass ratio q = 10. Moreover, while

even the coordinate location of the apparent horizon itself depends on the gauge choice, we

find that these results also hold in an alternative gauge. In the top two rows of Figure 3.7, I

show results for the q = 2 case obtained using two different coordinate gauge conditions:

the standard moving puncture gauge condition [16, 27] and a gauge with a dynamical shift

condition [90] that is more appropriate for large mass ratios. The moving puncture gauge

uses a Gamma-driving shift condition that depends on a damping parameter η with units

of inverse mass. The range of appropriate values for η is a function of the BH masses, and

thus for large mass ratios there is no one value that would lead to stability near both BHs. In

this case we use position-dependent value of η to define a dynamical shift condition that is

stable for larger mass ratios.

3.2.3 Observability of secondary chirps

For a GW signal h(D; t) emitted by a source at distance D to be observable by a detector,

it must have a high enough signal-to-noise ratio (SNR) to be considered a statistically

significant deviation from the detector noise. The optimal SNR of the signal is defined as

ρopt(D; t) =
√
〈h(D; t)|h(D; t)〉, (3.7)

where

〈a|b〉 = 4 Re

(∫ fcut

fmin

df
ã(f)b̃∗(f)

Sn(f)

)
(3.8)

denotes the inner product [91]. Here ã(f) denotes the Fourier transform of a(t), an asterisk

denotes complex conjugation, Re denotes the real part, and Sn(f) is the one-sided power

spectral density of the detector noise.

If the SNR is ρopt = 5, this guarantees that the observed signal is a 5σ outlier from

Gaussian noise. However, general long-duration realizations of LIGO detector noise are
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both non-stationary and non-Gaussian. In addition to slow and smooth variations of the

overall noise level over time, detector data can present with more abrupt noise glitches that

may appear similar to transient astrophysical signals [92]. To overcome this, an SNR of

∼ 10 for the entire merger signal is usually required in order to claim a GW detection [3].

In contrast, for shorter duration signals the detector noise is typically well approximated

as both stationary and Gaussian [92]. For this analysis we are only concerned with the

observability of the secondary chirp within a previously detected BBH signal. Such a signal

is short enough that the noise may safely be assumed to be Gaussian. Furthermore, we can

assume that signal is free of glitches since it has already passed the rigorous event validation

process. As a result, the observable (at 5σ) distance Do is given by the source distance at

which h(Do; t) has an SNR of ρopt = 5.

In order to calculate the SNR of only the second chirp and not the entire signal, we cut

our waveforms in the time domain at the post-merger frequency minimum according to the

spectrograms. We then apply an aggressive window of width ∼ 10M to the beginning of

the cut signal in order to avoid Gibbs phenomena in the Fourier transform due to the abrupt

start. As a result, our estimates of ρopt are fairly conservative. We use a lower frequency

cutoff of f = 0.015/M , which is well below the lowest frequency for which the second

chirp has support based on Figure 3.1.

In Figure 3.8, I show the distance at which the secondary chirp would be observable

at 5σ under the above assumption that it is part of a longer, confirmed GW observation.

Here we consider four families of BBHs with varying mass ratio and total mass. We assume

two Advanced LIGO detectors working at both current (solid) and design sensitivities

(dashed) [93]. We also assume that the source has optimal sky-location, with the detector

sitting in the orbital plane 55◦ away from the final kick direction, thereby maximizing

the intensity of the secondary chirp. As a result, the observable distance curves shown

in Figure 3.8 give an optimistic upper bound for sources with arbitrary sky-location.

The stars in Figure 3.8 denote the 10 BBH detections reported in GWTC-1 [3] (covering
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observing runs O1 and O2). Of these events, GW170729 has the largest total mass and is

consistent with a mass ratio q = 2 [3, 94]. While the observed signal does not present a

secondary chirp, we find that such a chirp would be observable at design sensitivity for an

optimally oriented copy of GW170729. Heavier asymmetric sources with M = 300M�

would also present visible secondary chirps up to distances of ∼ 6Gpc. Future work should

extend this analysis to the events recently reported in GWTC-2 [4] (covering the first half

of observing run O3), which includes 36 additional BBH detections with a wider range of

mass ratios.

3.3 Conclusions

Observations of the merger and ringdown stages of BBHs have the unique ability to grant us

access to the strongest regime of gravity, in which the most fundamental phenomenology

of GR is on display through the dynamics of the highly distorted horizon of the remnant

BH. Various connections between these dynamics and the observable GWs have been

proposed and investigated [80, 79, 81, 78, 82, 83, 84, 85, 86], however to date, no explicit,

concrete, observable GW features have been described. In this study, we propose the first

such connection. We have shown that secondary chirps, which are non-trivial features of

the post-merger GW emission of edge-on, asymmetric BBH mergers, are fundamentally

connected to the presence of asymmetrically distributed extremal curvature regions on the

dynamical horizon of the remnant. Furthermore, while post-merger chirps may resemble

the signature of BH echoes [48], they have the important distinction not requiring anything

more exotic than the standard BHs of GR.

To make this connection, we show that an asymmetric emission pattern emerges in the

vicinity of the remnant BH horizon, with a three-armed trident structure on one side opposite

a single arm on the other. These arm structures rotate along with the newly formed horizon,

and their passage through an observers line-of-sight closely corresponds to the appearance

of post-merger chirps, after accounting for GW propagation time. Finally, we show that
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these arm structures coincide with locally extremal regions of the Gaussian curvature K and

the mean curvature gradient dH/ds on the dynamical horizon, with the most prominent arm

aligning with the globally extremal curvature region, or the cusp.

For all the mass-ratios we have considered, we find this feature is more prominent on

the orbital plane of the binary, ∼ 55◦ from the kick direction measured along the direction

of the original orbit. Nevertheless, we assume that this will be subject to change if spinning

BHs are considered [95, 96].

Finally, we show that Advanced LIGO detectors working at their design sensitivity

would be able to observe post-merger chirps for a correctly oriented copy of the BBH

GW170729 [3, 94], suggesting that such an observation may be feasible before the arrival

of third generation detectors.
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Part II

Tidal Disruption Events
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Overview
Observations of TDEs have the potential to be a powerful tool to probe the demography

of BHs in nearby galaxies. In galaxies with quiescent BHs, TDE signatures should be

readily identifiable due to the absence of accretion-powered nuclear activity. In fact, in

some cases TDEs may be the only way to determine the demographics of their central black

holes. Observational evidence for TDEs is rapidly accumulating in UV [97, 98, 99, 100],

X-ray [101, 102, 103, 104, 105], and visible band [106, 107] surveys. Some observations

have shown indications of radio jet launching [102, 103, 108], while others have paved

the way for new theoretical investigations by providing indications of structure in the light

curve beyond the expected t−5/3 power-law [104] or presenting spectra that do not match

the properties expected of a simple TDE accretion disk [100, 109]. The work presented in

this part is motivated by the increasing need for more simulations in order to interpret the

rapidly growing number of potential TDE observations.

The foundation for TDE modeling was originally established by Rees [110], Phin-

ney [111], and Evans and Kochanek [112]. Consider a star of mass m∗ and radius r∗

approaching a BH of mass mh, most likely in a highly eccentric or parabolic orbit [110,

113]. The star will be tidally disrupted if it approaches the BH within the tidal radius rt,

defined as the separation at which the tidal force on the star is larger than its self gravity.

Using a Newtonian approximation, the tidal radius is given by

rt = r∗

(
mh

m∗

)1/3

. (3.9)

It is customary to characterize the strength of a TDE encounter by the penetration factor β,

which is defined as

β ≡ rt
rp

=
r∗
rp

(
mh

m∗

)1/3

, (3.10)

where rp is the separation of the star and the BH at periapsis passage. Along with the

gravitational radius of the BH rg = Gmh/c
2 (half the horizon radius for a non-spinning BH
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and the full horizon radius for a maximally rotating BH), the quantities r∗, rp, and rt fully

define the length scales of the TDE.

In Figure 3.9, I have included snapshots from two TDE simulations that provide an

overview of a typical disruption event. The top panel shows a star passing just within the

tidal radius (β = 1), while the bottom panel shows a much closer encounter (β = 5). As the

star passes within the tidal radius of the BH it experiences tidal stretching along the line that

connects the two objects. Meanwhile, the star experiences concurrent tidal compression in

the direction normal to the orbital plane that depends strongly on the strength of the TDE

encounter. Analytical estimates [114, 115, 116] suggest that under the influence of tidal

compression the maximum temperature of the star scales as β2. For a polytropic equation of

state (p = KρΓ
0 ) this indicates that the maximum density scales as β2/(Γ−1).

Tidal stretching leads to the formation of a quadrupole distortion of the star, which

experiences a gravitational torque due to the fact that the line connecting the star and the

BH rotates along the orbit. This torque induces a spread in the specific binding energy of

the stellar material which has a half-width given by [117]

∆e ' Gmhr∗
r2
t

' Gm2/3
∗ r−1

∗ m
1/3
h . (3.11)

The characteristic fallback time for the most tightly bound material (emin = −∆e) to return

to the BH is given by

tmin '
2πGmh

(2|emin|)3/2

' π√
2G

r3/2
∗ m−1

∗ m
1/2
h . (3.12)

It is generally assumed [112] that the post-disruption distribution of mass per specific

49



Figure 3.9: Schematic figures showing the disruption of a main sequence star by a BH. In
the top panel I have overlaid snapshots of the disrupted star at five points on the shallow
(β = 1) parabolic orbit (white line) around the BH (white circle). The bottom panel shows
three individual snapshots of a close encounter (β = 5) thirty seconds before pericenter
passage, at pericenter, and thirty seconds after (respectively, from left to right).
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binding energy is uniform

dm

de
' m∗

2∆e
' m∗

(2πGmh)
2/3

t
2/3
min. (3.13)

For a parabolic orbit 〈e〉 = 0 so roughly half of the material remains bound to the BH after

disruption. This assumption, along with the Keplerian relation

de

dt
=

1

3
(2πGmh)

2/3 t−5/3 (3.14)

provides an estimate for the accretion rate

ṁh ≡
dmh

dt
=
dm

de

de

dt
' ṁmax

(
t

tmin

)−5/3

, (3.15)

where ṁmax ≡ m∗/(3tmin). The t−5/3 power law decay of Equation 3.15 is widely consid-

ered to be a trademark signature of TDEs [110, 112, 118, 119].

The difficulty involved in performing numerical simulations of TDEs primarily stems

from the physical length and time scales involved in the encounters. The four length scales

(r∗, rp, rt, and rg) described above must all be properly resolved and are only commensurate

for a small subset of encounters. Furthermore, at least several orbits are required after

disruption for the debris to circularize. As a result, simulations must continue for at least

tcirc ∼ 10 tmin [112] in order to capture the formation of the accretion disk. For the

typical example of the disruption of a solar-type star by a 106 M� BH, this corresponds to

tcirc ∼ 1 year. Ultra-close encounters (rp ∼ rg) come with even more significant challenges,

starting with the requirement of a fully relativistic treatment of gravity. One must also ensure

that extreme tidal compression can be properly resolved.

To overcome these challenges, many previous studies have used smoothed particle hy-

drodynamics (SPH) methods, which by their nature overcome issues of scale and resolution.

SPH has been used to investigate the t−5/3 power-law decay of the accretion rate [112, 120],
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disruptions of solar-type stars [118] and the stripped helium cores of giant stars [121] by

supermassive black holes (SMBHs), disruptions of white dwarf stars by intermediate mass

black holes (IMBHs) [119], and the disruption of rotating [122, 123] and magnetized [124]

stars.

While SPH methods are a powerful tool for studying TDEs, fully coupling the particles

to general relativity is still an open problem. As such, most SPH codes use a fixed spacetime

background combined with Newtonian self-gravity for the fluid particles. In order to

investigate ultra-close TDE encounters under full GR, one must use codes that are capable

of solving the full set of Einstein’s equations of GR coupled to GRHD or GRMHD. In the

past, these fully coupled simulations have been used to study ultra-close disruptions of white

dwarf stars by IMBHs and the potential for nuclear ignition due to tidal compression [20,

125].

In this part, I investigate TDEs using the computational infrastructure outlined in Sec-

tion 1.3. In Chapter 4 I present BOOSTEDSTAR, a new initial data framework designed

specifically with TDEs systems in mind. I describe the initial data method in detail in Sec-

tion 4.2 followed by a series of code validation tests and their results in Section 4.3. Using

this initial data framework, in Chapter 5 I present a study of the effects of stellar rotation in

TDEs. In Section 5.1 I show that the tidal torque experienced by a prograde-rotating star

can be much larger (by as much as a factor of two) than that experienced by a non-spinning

or retrograde-rotating star. With these results in mind, in Section 5.2 I describe an analysis

that provides preliminary indications that the effects of stellar rotation could be a significant

driver of tidal debris circularization.
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CHAPTER 4

BOOSTEDSTAR INITIAL DATA FRAMEWORK

In contrast to the majority of systems typically studied using NR, parabolic TDEs are

somewhat unique in that they are not fully bound. While this presents its own complications

during time evolution, it also allows for simpler methods of initial data construction. For

example, if the initial separation between the star and the BH is sufficiently large, then the

gravitational interaction between the two can be ignored to good approximation. Conse-

quently, the initial data problem for the system is reduced to finding solutions for the star

and BH in isolation and superimposing the two. While this can also be done with bound

systems (such as BBHs), it would require such large initial separations that the resulting

inspiral time would be impractical for NR simulations.

In practice, initial data for the BH is much easier to construct than that for the star. Given

that mh � m∗ for typical TDEs, the BH will be stationary since it is effectively the center

of mass of the system. This means that all BH solutions permitted by GR are (in the absence

of electric charge) spanned by four parameters: mass mh and the spin angular momentum

components J i. These solutions have been studied extensively [67, 32, 31], and can be

easily produced using the well established implementation of TWOPUNCTURES described

in Section 1.3.

On the other hand, the space of potential solutions for an isolated star is vast and

diverse. The simplest and most commonly used example is the time-invariant and spherically

symmetric TOV star [126], which even still can produce significantly different structures

for different equations of state. Solutions for isolated rotating stars [127, 128, 129] are also

widely used in NR, though typically for rapidly rotating neutron stars. Beyond the solution

itself, the star must be injected into a parabolic orbit around the BH, typically at relativistic

(∼ 0.1 c) speeds, without significantly disturbing hydrostatic equilibrium. It is difficult to
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overstate the importance of this last point because nearly all aspects of TDEs that are worth

studying numerically, such as extreme tidal compression or the energy distribution of stellar

debris, depend sensitively on hydrostatic equilibrium remaining intact.

In this chapter, I describe the BOOSTEDSTAR initial data framework that I have created

to construct TDE initial data using the above outlined approach. The framework constructs

initial data for the star by applying a Lorentz boost transformation to the stationary source

description defined in Section 4.1. BOOSTEDSTAR is highly generalizable in that it makes

minimal assumptions about the isolated stellar model, requiring only the 3 + 1 description

of the source that would be required to as initial data for a stationary star. As examples, I

outline the stationary source descriptions for TOV solutions and rotating RNS solutions

in Sections 4.1.1 and 4.1.2, respectively.

In Section 4.2, I describe how to use the stationary source description to produce 3 + 1

initial data for a star moving with the required velocity to be injected into a parabolic orbit

around the BH. I generate the components of BOOSTEDSTAR that implement this process

using NRPY+ [130], which is a Python package that uses a computer algebra system to

generate highly optimized C code from symbolic equations.

The final component of BOOSTEDSTAR pipeline superimposes this boosted star solution

with a stationary BH solution to produce initial data suitable for TDEs. BOOSTEDSTAR

uses the existing implementation of the TWOPUNCTURES[31] spectral code in MAYA to

produce a BH solution for a given mass and spin. Since they model isolated objects, both of

these solutions are asymptotically flat, meaning that they approach flat space far from the

star (BH):

γij → δij (4.1)

Kij, α, β
i, ∂tα, ∂tβ

i → 0. (4.2)

If the fields for the two solutions are simply added, then the resulting initial data will clearly
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not be asymptotically flat. Instead, BOOSTEDSTAR expresses the 3 + 1 fields as deviations

from flat space and superimposes those. For example, the combined spatial metric is given

by

γij = δij︸︷︷︸
flat space

+
(
γ

(∗)
ij − δij

)

︸ ︷︷ ︸
star−flat space

+
(
γ

(h)
ij − δij

)

︸ ︷︷ ︸
BH−flat space

. (4.3)

While this process still does not generally yield a result that analytically satisfies the con-

straint equations, it produces consistently superimposed initial data with minimal constraint

violations at separations typical to TDE simulations. To demonstrate this and evaluate the

validity of BOOSTEDSTAR initial data, in Section 4.3 examine the constraint violations for

TOV and RNS stars and show that they fall well within acceptable limits

4.1 Stationary source description

Let S (unprimed indices) denote the reference frame in which the star is stationary, and S ′

(primed indices) the frame in which it is boosted. In order to be used in BOOSTEDSTAR,

an isolated star solution must be provided as a stationary source description, which is

comprised of a complete 3 + 1 description of the solution on the entire computational

domain in S. Explicitly, the following fields must be specified:

• Spatial metric and its spatial derivatives: γij and ∂lγij

• Extrinsic curvature: Kij

• Gauge variables and their spatial derivatives: α, βi, ∂kα, and ∂kβi

• Hydrodynamical primitives: ρ0, p, ε, and vi

Beyond this, BOOSTEDSTAR only enforces two further restrictions on the source solu-

tion: it must be both asymptotically flat and time-symmetric. The first restriction stems from

the procedure (described in the previous section) used to superimpose the two solutions,

which is only valid if both are asymptotically flat. On the other hand, the second restriction
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is fundamental to the construction of the boosted star itself. As detailed in Section 4.2.2

below, the boosted NR initial data in S ′ must specify all of fields at a single coordinate

time xµ′ =
(
0, xi

′), meaning that the corresponding points xµ = Λµ
µ′x

µ′ in S are not

simultaneous. As a result, the boosted initial data will not be consistent if the source is not

time-symmetric.

Presently BOOSTEDSTAR includes the capability to generate source descriptions for TOV

stars and rotating RNS solutions with the implementations detailed in the two subsections

below. Both make use of existing external solvers, so entail a two step process. The

first makes the appropriate calls to the external solver and stores the results as auxiliary

grid functions that can be used by BOOSTEDSTAR. Neither the TOV or RNS solvers

directly provide all the fields required for a source description, but instead produce auxiliary

fields (such as metric potentials) from which the source description can be calculated. The

second step is to perform this calculation, which I have implemented by symbolically

mapping the auxiliary fields to the source description and then using NRPY+ to generate

the implementation code.

For both the TOV and RNS solutions, I will exclusively use a polytropic equation of

state for which the pressure and internal energy density are given by

p = KρΓ
0 (4.4)

ε =
KρΓ−1

0

Γ− 1
. (4.5)

4.1.1 TOV star

BOOSTEDSTAR uses the existing TOV solver included in MAYA, which was developed

by Michael Clark and detailed in his thesis [131]. The TOV metric is both spherically

symmetric and conformally flat, so it takes the form [22]

ds2 = −α2(r) dt2 + Φ4(r)
(
dr2 + r2dΩ

)
, (4.6)
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where r is the radial coordinate centered on the star. For a given equation of state, TOV

solutions are uniquely parameterized by the central density ρc of the star. The solver

numerically integrates the constraint and continuity equations for the metric in Equation 4.6

1

r2
∂r
(
r2∂rΦ

)
= −2πΦ5ρH (4.7)

1

r2
∂r
(
r2∂rΘ

)
= 2πΘΦ4 (ρH + 6p) (4.8)

∂rp = − (ρH + p)

(
∂rΘ

Θ
− ∂rΦ

Φ

)
. (4.9)

to produce a TOV solution in terms of p(r), Φ(r), and Θ(r) = α(r)Φ(r). These solutions,

along with ∂rΘ and ∂rΦ, are then interpolated on to the Cartesian grid and stored as auxiliary

grid functions.

The fluid source description is fully defined by p(r) along with vi = 0, with ρ0 and ε

determined by the equation of state (Equations 4.4 and 4.5). In terms of the auxiliary fields

provided by the TOV solver, the metric source description is given by

γij = Φ4 δij (4.10)

Kij = 0 (4.11)

α = Θ/Φ (4.12)

βi = 0. (4.13)

4.1.2 RNS star

BOOSTEDSTAR uses the publicly available RNS [129] code (version 2.0) to generate

solutions for uniformly rotating stars. In spherical coordinates centered on the star, the

metric for these solutions takes the form [132]

ds2 = −eγ+ρ dt2 + eγ−ρr2 sin2 θ (dφ− ω dt)2 + e2α
(
dr2 + r2 dθ2

)
, (4.14)
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where the metric potentials ρ, γ, α, and ω are functions of r and θ that are computed by

RNS. These solutions are both stationary and axisymmetric, with Killing vectors ∂t and

∂φ = −y ∂x + x ∂y, respectively. For a given equation of state, RNS solutions are uniquely

parameterized by the central density ρc of the star and oblateness, which is the ratio of the

polar radius to the equatorial radius rp/re.

The RNS calculates the solution on a uniform numerical grid using a compactified radial

coordinate s and an angular coordinate µ defined by

r = re

(
s

1− s

)
(4.15)

µ = cos θ, (4.16)

where re is again the equatorial radius of the star. This data is then interpolated onto the

Cartesian grid and stored as auxiliary grid functions. During the interpolation process, all

first derivatives of the solution with respect to s and µ are calculated and stored as well. In

terms of these, derivatives with respect to the Cartesian coordinates are calculated using the

chain rule with

∂is =
re

(r + re)
2 ∂ir (4.17)

∂iµ =
1

r
(δiz − µ ∂ir) . (4.18)

Typically the goal is not to find an RNS solution with a specific oblateness, but rather a

specific angular velocity Ω∗ as measured by an observer at rest at infinity. To accomplish this,

BOOSTEDSTAR iterates over RNS solutions to find the oblateness that gives the desired Ω∗

using a method originally implemented in MAYA by Tanja Bode. Starting with a spherical

solution, it first decreases the oblateness in decrements of 0.05 until it finds a star with

Ω > Ω∗. This allows it to bracket the desired solution, which can then found using Ridder’s

method [133].
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For the metric source description in Cartesian coordinates, the spatial components of the

metric shown in Equation 4.14 are

γij = gij =




(x2e2α + y2eσ) /r2 xy (e2α − eσ) /r2 0

xy (e2α − eσ) /r2 (x2eσ + y2e2α) /r2 0

0 0 e2α



, (4.19)

where σ = γ − ρ and r =
√
x2 + y2 is the distance to the axis of rotation. Similarly

α =
(
−gtt

)−1/2
= eρ+σ/2 (4.20)

βi = α2gti = − ω ∂φi. (4.21)

Finally, rewriting Equation 1.9 I calculate the extrinsic curvature using

Kij =
1

2α
(Diβj +Djβi − ∂tγij) , (4.22)

with Equations 4.19 to 4.21, along with the fact that ∂tγij = 0.

For uniform rotation, the fluid four-velocity can be written as a linear combination of

the two Killing Vectors [134]

uµ =

(
e−σ

e2ρ − (Ω− ω)2r2 sin2 θ

)1/2

(∂t
µ + Ω ∂φ

µ) , (4.23)

where again Ω = uφ/ut is the angular velocity of the fluid as measured by an observer at

rest at infinity and the prefactor results from normalization uµuµ = −1. Transforming to

Cartesian coordinates and using the lapse and shift shown in Equations 4.20 and 4.21, this

corresponds to an Eulerian fluid velocity

vi = (Ω− ω) e−(ρ+γ)/2 ∂φ
i. (4.24)
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The hydrodynamical description of an RNS solution is provided in terms of the pressure

p along with the energy density and enthalpy, which are given by

e = ρ0 (1 + ε) (4.25)

H =

∫ p

0

c2dp′

e+ p′
, (4.26)

respectively. For a polytropic equation of state (Equations 4.4 and 4.5), Equation 4.26

integrates to

H = log

(
1 +

(
ΓK

Γ− 1

)
ρΓ−1

0

)
. (4.27)

The rest mass density ρ0 and internal energy density ε can be expressed in terms of the

provided quantities (p, e, and H) as

p = p (4.28)

ρ0 = (e+ p) e−H (4.29)

ε =
p

ρ0 (Γ− 1)
. (4.30)

4.2 Construction of boosted star solution

In this section I describe how the BOOSTEDSTAR framework applies a Lorentz boost to a

stationary star and uses the transformed solution it to construct initial data in which the star

moves with velocity ξi with respect to a stationary observer. A high level overview of this

process can be seen in Figure 4.1.
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3 + 1 source description

Boosted 3 + 1 initial data

γij

∂kγij

βi

∂kβ
i

α

∂kα
Kij

Γσµνgµνgµν ∂σg
µν

Λµ′
ν Λµ

ν′ Λµ′
ν Λµ

ν′ Λµ′
ν Λµ

ν′

Γσ
′
µ′ν′gµ

′ν′gµ′ν′ ∂σ′g
µ′ν′

Ki′j′γi′j′ βi
′

α′ ∂t′α
′∂t′β

i′

Figure 4.1: Overview of the process used by BOOSTEDSTAR to produce initial data for a
boosted star from a stationary source description.
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This section is organized into four subsections, each describing a step in the boosted star

construction:

1. Section 4.2.1: Reconstruct gµν , gµν , ∂σgµν and the connection Γσµν

2. Section 4.2.2: Transform to S ′ using the boost transformation Λ

3. Section 4.2.3: Evaluate the boosted 3+1 fields from the transformed metric quantities

(a) Decompose gµ′ν′ into γi′j′ , α′, and βi′

(b) Calculate ∂t′α′ and ∂t′βi
′ from ∂σ′gµ′ν′

(c) Calculate Ki′j′ from α′ and Γt
′

i′j′

4. Section 4.2.4: Calculate the hydrodynamical fields in S ′

4.2.1 Reconstruction of the four-metric and its connection

In terms of the 3 + 1 metric and gauge quantities γij , α, and βi, the four-metric is given by1

gµν =



−α2 + γijβ

iβj γijβ
j

γijβ
i γij


 (4.31)

and its inverse by

gµν =



−1/α2 βi/α2

βj/α2 γij − βiβj/α2


 , (4.32)

1See Section 1.2 for details.
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where I have obtained γij by numerically inverting γij . Similarly, the Christoffel symbols in

S can be expressed as [135]

Γttt = α−1 (∂tα + βm∂mα− βmβnKmn) (4.33)

Γtti = α−1 (∂i − βmKim) (4.34)

Γtij = −α−1Kij (4.35)

Γktt = αγki
(
∂iα− 2βjKij

)
− βkΓttt + ∂tβ

k + βiDiβ
k (4.36)

Γkit = −α−1βk
(
∂iα− βjKij

)
− αγkjKij +Diβ

k (4.37)

Γkij = (3)Γkij + α−1βkKij, (4.38)

where

(3)Γkij =
1

2
γkm (∂iγjm + ∂jγim − ∂mγij) (4.39)

are the connection coefficients for the spatial metric.

Even though only ∂σgµν is needed, it is actually simpler to calculate ∂σgµν from Equa-

tion 4.31 and use it to calculate ∂σgµν than to do so directly from Equation 4.32, given that

the goal is to express the result terms of the given 3 + 1 fields and their derivatives. This is

most apparent for the time derivatives

∂tgtt = βiβj∂tγij (4.40)

∂tgti = βj∂tγij (4.41)

∂tgij = ∂tγij, (4.42)

which all depend on the extrinsic curvature through Equation 1.9.
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The remaining spatial derivatives are given by

∂kgtt = −2α∂kα + βiβj∂kγij + 2γijβ
i∂kβ

j (4.43)

∂kgti = γij∂kβ
j + βj∂kγij (4.44)

∂kgij = ∂kγij. (4.45)

These can be used to calculate the necessary components by differentiating the identity

gµαg
αν = δµν to find

∂σg
µν = −gµαgνβ∂σgαβ. (4.46)

4.2.2 Lorentz boost transformation

The Lorentz boost transformation is fully specified by the boost parameter ξi, which is

equivalent to the velocity of the boosted star in S ′. Keep in mind that the boost parameter is

a symbol and not a true vector as it appears, since it cannot be transformed between reference

frames. Rather, I will define all of the symbols

ξi = ξi
′
= ξi = ξi′ (4.47)

to be equivalent. As a result, special care must be taken with indices on ξ in order to maintain

consistency. To satisfy Equation 4.47, indices of ξ must be raised, lowered, and contracted

with the Kronecker delta δ instead of the metric. Furthermore, I extend the Kronecker delta

to allow mixed indices (from S and S ′) by treating the corresponding components (i.e. z

and z′) as the same

δi′j = δij, (4.48)

meaning that δx′x = δxx = 1, while δx′y = δxy = 0. For example, it is convenient to define

the Lorentz factor of the boost

γb =
1√

1− ξ2
, (4.49)

64



where the contraction is given by

ξ2 = ξiξ
i = δijξ

iξj. (4.50)

For a given boost parameter ξi, the transformation matrix is given by [136]

Λµ′
ν =




γb γb ξx γb ξy γb ξz

γb ξ
x′ 1 + ξx

′
ξx(γb−1)
ξ2

ξx
′
ξy(γb−1)

ξ2
ξx
′
ξz(γb−1)
ξ2

γb ξ
y′ ξy

′
ξx(γb−1)
ξ2

1 + ξy
′
ξy(γb−1)

ξ2
ξy
′
ξz(γb−1)
ξ2

γb ξ
z′ ξz

′
ξx(γb−1)
ξ2

ξz
′
ξy(γb−1)

ξ2
1 + ξz

′
ξz(γb−1)
ξ2




(4.51)

and its inverse by

Λµ
ν′ =




γb −γb ξx′ −γb ξy′ −γb ξz′

−γb ξx 1 +
ξxξx′ (γb−1)

ξ2
ξxξy′ (γb−1)

ξ2
ξxξz′ (γb−1)

ξ2

−γb ξy ξyξx′ (γb−1)

ξ2
1 +

ξyξy′ (γb−1)

ξ2
ξyξz′ (γb−1)

ξ2

−γb ξz ξzξx′ (γb−1)

ξ2
ξzξy′ (γb−1)

ξ2
1 +

ξzξz′ (γb−1)

ξ2




(4.52)

By construction, the center of mass of the star is at the same coordinate location in both

frames xi∗ = xi
′
∗ , which is not necessarily the origin of the coordinate system. To ensure this,

and to minimize coordinate deformation of the star, the boost transformations are applied

relative to xi∗. Explicitly,

xµ = xµ∗ + Λµ
ν′

(
xν
′ − xν′∗

)
, (4.53)

where xµ′∗ =
(
0, xi

′
∗
)
. Also note that the NR initial data in S ′ needs to specify all of the fields

on a single space-like hypersurface with constant coordinate time, or at coordinates xµ′ =
(
0, xi

′). The corresponding points in S will not be simultaneous with xµ = (t(xi), xi), but

this can generally be ignored since the star is stationary in S.
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The metric, its derivative, and the connection can then be transformed according to

gµ′ν′ = Λµ
µ′Λ

ν
ν′ gµν (4.54)

gµ
′ν′ = Λµ′

µΛν′
ν g

µν (4.55)

∂σ′g
µ′ν′ = Λσ

σ′Λ
µ′
µΛν′

ν∂σg
µν (4.56)

Γσ
′

µ′ν′ = Λσ′
σΛµ

µ′Λ
ν
ν′Γ

σ
µν . (4.57)

Note that while gµν and gµν are both tensors, ∂σgµν and Γσµν are not. However, for this

specific transformation both will transform as tensors due to the linearity of Λ. In gen-

eral, Equations 4.56 and 4.57 do not hold for arbitrary coordinate transformations.

4.2.3 Decomposition into 3 + 1 quantities

Using Equations 4.31 and 4.32 in the frame S ′, I then decompose the transformed four-metric

as

γi′j′ = gi′j′ (4.58)

α′ =
(
−gt′t′

)−1/2

(4.59)

βi
′
= (α′)2gt

′i′ . (4.60)

While I assume that the time derivatives derivatives ∂tα and ∂tβi vanish in S, this is

generally not the case in S ′. After differentiating Equations 4.59 and 4.60, these are given

by

∂t′α
′ =

1

2
(α′)

3
∂t′g

t′t′ (4.61)

∂t′β
i′ = 2α′gt

′i′∂t′α
′ + (α′)

2
∂t′g

t′i′ . (4.62)
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Finally, to calculate the extrinsic curvature in S ′ consider the Christoffel symbols

Γσ
′

µ′ν′ =
1

2
gσ
′ρ′ (∂µ′gν′ρ′ + ∂ν′gµ′ρ′ − ∂ρ′gµ′ν′) . (4.63)

In terms of 3 + 1 quantities, the Γt
′

i′j′ component satisfies

−α′Γt′i′j′ =
1

2α′
(Di′βj′ +Dj′βi′ − ∂t′γi′j′) , (4.64)

which along with Equation 1.9 gives

Ki′j′ = −α′Γt′i′j′ . (4.65)

4.2.4 Calculation of the hydrodynamical quantities in S ′

The hydrodynamical quantities ρ0, p, and ε are all scalars, so the fields in S ′ are simply

given by the fields at the corresponding points xi = xi
(
xi
′) in S. For the fluid velocity, I

first reconstruct the four-velocity using Equations 1.29 and 1.30

ut = α−1
(
1− γijvivj

)−1/2 (4.66)

ui = ut
(
αvi − βi

)
, (4.67)

which transforms as a vector. The Eulerian fluid velocity and Lorentz factor in S ′ are then

also given by Equations 1.29 and 1.30

vi
′
=

1

α′

(
ui
′
/ut

′
+ βi

′
)

(4.68)

W ′ = α′ut
′
. (4.69)
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4.3 Code validation

In order to be used for TDE simulations, BOOSTEDSTAR initial data must not only satisfy

the Hamiltonian and momentum constraints to an acceptable degree of approximation, but

it must also model a hydrodynamically stable star with a center of mass velocity that is

consistent with the boost parameter ξi. In this section, I describe a series of tests that

demonstrate that BOOSTEDSTAR meets these expectations.

These code validation tests fall into two distinct categories: initial data only and time

evolved. Since time evolution is not required to investigate constraint violations of the

initial data, these tests are initial data only. On the other hand, validation of velocity and

hydrodynamic stability of the star fundamentally requires time evolution.

All initial data test cases that follow are variations on a TDE system with a (non-spinning)

106M� BH and a solar-type with a polytropic equation of state (Γ = 4/3, K = 0.364M
2/3
� ).

The BH is placed at the origin and the star on the −x axis. A parabolic β = 10 encounter

for this system would require the star to have v/c ≈ 0.16 if injected into orbit at a distance

of 1.5 rt. The full computational domain extends out to 214 rg with a coarse resolution of

2.4 rg. Both the star and the BH are covered by nine levels of refinement, with the finest

level having a resolution of 0.01 rg ≈ r∗/50. Some of the test cases will include only the

BH and not the star. For consistency, this grid structure (including the additional refinement

levels covering where the absent star would be) will be the same for all initial data only

tests.

For the time evolved tests, the ultimate goal is to measure the properties of the boosted

star solution in the absence of any disruption by a BH. In this case, tests are based on the

same solar-type star but rescaling the units to 1M = 105M� so that the simulation length

scales are more appropriate to r∗ ≈ 4.7M . The full computational domain extends out to

181 rg with a corse resolution of 2.5 rg. The star is initially at the origin and covered by five

levels of refinement, with the finest level having a resolution of 0.08 rg ≈ r∗/50. The boost
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Figure 4.2: Snapshots of the constraint violation for five BOOSTEDSTAR initial data config-
urations. The top row shows the Hamiltonian constraint violation, while the bottom shows
the momentum constraint.

parameter ξi is directed along the +x axis for all time evolved tests.

For all cases involving RNS stars, the star rotates at 10% of the breakup angular velocity

with the stellar rotation axis aligned with the z-axis.

As explained at the beginning of this chapter, BOOSTEDSTAR initial data will not be

an exact solution to the Hamiltonian and momentum constraints. In order to gain a better

understanding these constraint violations in the context of TDE simulations and determine

whether or not they fall within an acceptable range, I consider here five different variations

of the initial data configuration described above: BH only, TOV only, RNS only, BH with

a TOV star, and BH with a RNS star. Figure 4.2 shows snapshots of the Hamiltonian (top

row) and momentum (bottom row) constraint violation in the orbital plane for each variation.

While only the last two of these model an actual TDE system, by looking at the BH and

star solutions individually I can develop a better qualitative understanding of how these

constraint violations arise. All configurations including a star use the boost parameter

|ξi| = 0.16 corresponding to the β = 10 encounter mentioned above.

First, consider the BH solution in isolation (leftmost column). The momentum constraint

is trivially satisfied since the BH is stationary and non-spinning. The Hamiltonian constraint

violation shows clear indications of two distinct features: one delineated along the refinement
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Table 4.1: L2− and L∞-norm constraint violations for five BOOSTEDSTAR initial data
configurations.

Constraint BH TOV RNS BH + TOV BH + RNS
|H|2 1.64× 10−10 4.23× 10−13 3.00× 10−10 1.38× 10−9 1.41× 10−9

|H|∞ 2.21× 10−6 2.08× 10−7 6.52× 10−5 2.56× 10−4 2.87× 10−4

|Mx|2 0 9.52× 10−14 2.96× 10−11 1.35× 10−10 1.38× 10−10

|Mx|∞ 0 4.61× 10−8 1.62× 10−5 2.53× 10−5 4.11× 10−5
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Figure 4.3: Constraint violations for BOOSTEDSTAR initial data at various separations
and boost velocities. In the left panel the constraints are shown relative to their value at
d = 100M , and in the right panel they are shown relative to ξ = 0.16.

boundaries and the other extending radially from the BH. The former is simply due to finite

differencing truncation error, while the latter results from translating the BH solution from

the coordinate system used by TWOPUNCTURES (see [31] for details) to the Cartesian grid.

Consequently, both of these features will also be present in the superimposed data.

Moving next to the isolated star configurations, the constraint violations for TOV and

RNS solutions appear qualitatively similar. For both, violations are most significant within

a well-localized region centered on the stars while also appearing again near refinement

boundaries. In addition, the RNS solution also shows increased violation (at a level similar

to the truncation error) of the Hamiltonian constraint on a series of rings centered on the star.

These features result from interpolating the RNS solution from the uniform grid (si, µi)

(defined in Equation 4.15) to the Cartesian grid, with the radius of each ring corresponding

to a value of s exactly halfway between two grid points si and si+1.

Finally, the two rightmost columns of Figure 4.2 correspond to superimposed BOOST-
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EDSTAR initial data for TDEs. In addition to those from the star and BH in isolation, the

Hamiltonian constraint violation displays additional features resulting from the superpo-

sition process. This is most evident along the x-axis between the two objects where the

gravitational interaction between the two is the most non-linear.

Looking at the entire grid, Table 4.1 lists the L2- and L∞-norm constraint violations for

each of these five configurations. The TOV is the most accurate of the isolated solutions,

with both |H|2 and |Mx| falling about three orders of magnitude below the other two

(disregarding the vanishing BH momentum constraint). For the Hamiltonian constraint, the

RNS solution is commensurate with the BH.

Relative to this base configuration (d = 100M , ξ = 0.16), Figure 4.3 shows how

the constraint violations change with decreasing separation binary separation d (left) and

boost parameter ξ (right). As expected, violations become larger at shorter separations since

gravitational interactions are ignored by the superposition process. Unsurprisingly, violations
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also decrease with smaller ξ as the solutions approach those of an isolated stationary star.

Finally, the time evolved tests show that both the boosted TOV and RNS stars are stable

and have the appropriate velocity. Over a period of 600M , both stars maintained a center of

mass velocity with |v/ξ − 1| ≤ 10−4. Furthermore, in Figure 4.4 I show the central densities

of the two stars during time evolution. In both cases the central density drops initially by

∼ 2.5% and then levels out, indicating that the boosted stars are hydrodynamically stable.

Across all of the BOOSTEDSTAR initial data considered in this section, including

configurations suitable for TDE simulations, the constraint violations fall within |H|2 ≤

2.3× 10−9 and |Mx|2 ≤ 2.3× 10−10.
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CHAPTER 5

TIDAL DISRUPTION EVENTS AND STELLAR ROTATION

The large variety of TDE observations is no doubt due in part to the diverse population

of stars available for disruption in galactic centers. As demonstrated by Guillochon and

Ramirez-Ruiz [137], stellar structure plays a central role in the observational properties of a

TDE.

The internal structure of a star depends not only on its mass, composition, and evolution-

ary stage, but also the stellar spin. For early-type stars specifically, observations indicate

that a non-negligible fraction have significant stellar rotation [138]. Young stars have no

mechanism to shed excess angular momentum due to the fact that magnetic breaking occurs

on timescales on the order of the stellar lifetime [139]. Given the strong bias towards

post-starburst galaxies as hosts for TDE observation [140], it is reasonable to expect a

significant number of disruptions involving stars with high spins.

Additionally, there are many opportunities for a star to be spun-up in a nuclear star

cluster. Through soft hyperbolic tidal encounters with other stars in the cluster, a solar-type

main-sequence star can be spun-up to ∼ 10%− 30% of the breakup rate over the course of

its lifetime [139].

Stars that enter the loss cone through the diffusive regime can be spun-up further by

the tidal field of the BH over many orbits before full disruption actually occurs [123]. This

occurs because the tidal field induces a quadrupole distortion [110] of the star that lags

behind the direction to the BH, causing it to experience a tidal torque. Rough analytical

estimates of this spin-up process indicate that it can result in a stellar spin that is on the

order of the breakup rate [112], but the details of this process depend on the details of both

the stellar structure and the encounter, and have not yet been fully investigated.

Our current understanding of TDE observations relies on the circularization timescale

73



being much shorter than the fallback timescale for bound debris, however the mechanism

for this remains unclear at best [141]. Shock dissipation at the nozzle (lower mass BHs),

relativistic precession (rp ∼ rg), and dissipation through the magneto-rotational instability

are all commonly proposed dissipation mechanisms which, even together, are not enough to

ensure sufficiently fast circularization in some cases [142].

In this chapter, I investigate the role of stellar spin in TDEs using GRHD simulations

performed with MAYA. I consider a β = 1 disruption of a main-sequence star with m∗ =

1.8M� and r∗ = 1.8R� by a 106M� BH. The star is initially a distance of 1.5 rt ≈ 100 rg

from the BH and modeled as an RNS solution using a polytropic equation of state with

Γ = 4/3. The rotation rate of the star varies across simulations and is described in terms of

the breakup velocity

ΩK =

√
Gm∗
r3
∗
≈ 1.3 1/hr. (5.1)

I use the BOOSTEDSTAR framework described in Chapter 4 for initial data.

In Section 5.1 I calculate the tidal spin-up during weak/partial disruptions and show

that the effect is stronger if the star already has a prograde rotation, thereby amplifying the

population of spinning stars that can undergo full disruption. In Section 5.2 I show that when

a prograde spinning star undergoes disruption, there are strong indications that the bound

debris undergoes more self-intersections than if the star were not spinning, which would

lead to an additional source of dissipation to speed up circularization. Finally, in Section 5.3

I describe the limitations of this analysis and propose a direction for future studies.

5.1 Tidal Spin-Up

During a TDE, the star will experience a torque due to the action of the tidal field on the

deformed star. Based on the order of magnitude estimation of Evans and Kochanek [112],

over the course of the encounter the star is spun up to acquire a prograde specific angular

momentum of `s ∼
√
r∗m∗β

3/2. While this estimation depends only on r∗, m∗, and β, the
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Figure 5.1: Tidal bulge axis (red) and line-of-sight to the BH (white) during disruption. All
angles shown in this figure are measured counter-clockwise from the positive x-axis. In this
snapshot, the lag angle is δ = 48.25 deg.

reality of this spin-up process depends sensitively on the structure of the star and how it is

deformed by the tidal field.

In order to see this, one can approximate the deformed star during disruption as a prolate

spheroid [143] with average radius R and ellipticity ε = (re − rp)/R, where re and rp are

the equatorial and polar radii, respectively. The deformed star is assumed to be symmetric

about the polar axis, which is aligned with the tidal bulge. Note that R is not the same as r∗,

but is instead a result of the tidal deformation.
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One can then expand the Newtonian gravitational potential of the star in muiltipoles

φ∗(r, θ) =
Gm∗
R

∑

n

Jn

(
R

r

)n+1

Pn (cos θ) (5.2)

Jn = − 1

m∗Rn

∫
dV rnPn (cos θ) ρ(r, θ), (5.3)

where θ is the polar angle from the tidal bulge. Now consider a point during the disruption

when the orbital separation is d and the lag angle between the tidal bulge and the BH

line-of-sight is δ. To first order in the ellipticity, the gravitational potential of the star is

given by

φ∗(r, θ) = −Gm∗
r

+
J2

2

Gm∗R
2

r3

[
3 cos2 (θ + δ)− 1

]
+O

(
ε2
)
. (5.4)

This setup is illustrated in Figure 5.1. The polar angle θ is measured clockwise from the

tidal bulge axis (shown in red), and the angle δ is measured counter-clockwise from the tidal

bulge axis to the line-of-sight to the BH (shown in white).

Using Equation 5.4, one can calculate the torque exerted on the BH by the gravitational

field of the star as−mh
∂φ∗
∂θ

∣∣
θ=0,r=d

, which, by the conservation of angular momentum, must

be equal and opposite to the torque exerted on the deformed star by the BH. This leads to a

specific torque on the star of

τ∗ = −3

2
J2
GmhR

2

d3
sin (2δ) +O

(
ε2
)
. (5.5)

Note that for a prolate spheroid J2 < 0 and therefore τ∗ > 0 meaning that the star will

acquire a prograde spin, as expected.

From Equation 5.5 one can see that, to first approximation, τ∗ depends on the stellar

structure through R, J2, and the lag angle δ. Different stellar structures (i.e. different density

profiles ρ(r, θ)) will generally lead to different values for R and J2, but also indirectly
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Figure 5.2: Specific rotational angular momentum of the star `s during disruption for the
non-spinning case and the prograde/retrograde-spinning cases (Ω∗/ΩK = ±0.5).

control how the star deforms during disruption and therefore how R and J2 evolve with time.

These results indicate that a spinning star should experience a different tidal torque than its

non-spinning counterpart. In Figure 5.2 I show simulation data for the specific rotational

angular momentum throughout disruption for an initially non-spinning star, and for stars

with Ω∗/ΩK = ±0.5. The data indicate that the tidal torque experienced by the star does

indeed depend on the initial stellar rotation, with the prograde-spinning star experiencing

nearly double the torque compared to its non-spinning and retrograde counterparts.

These numerical simulations can also shed some light on what exactly causes this

difference in tidal torque. I find that the mean radius R and lag angle δ evolve nearly

identically across all three cases, meaning that the difference has to stem from the multipole

moment J2. In Figure 5.3 I have plotted the value of |J2| for each case throughout the

disruption. Initially, the moments for Ω∗/ΩK = ±0.5 are very similar to each other but

different from the non-spinning case. This is to be expected based on the density profiles of

the initial stars. However, after pericenter passage the tidal disruption begins to significantly

enhance |J2| for the prograde spinning star as compared to the other two cases. Ultimately

this disparity grows to nearly a factor of two, which accounts for the increased tidal torque

experienced by the prograde-spinning star.

In fact, this enhancement of |J2| stems from the same physical process described by

Kagaya, Yoshida, and Tanganyika [122] and Golightly, Coughlin, and Nixon [123]: all
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Figure 5.3: Evolution of the multipole moment J2 for a non-spinning star and the
prograde/retrograde-spinning cases Ω∗/ΩK = ±0.5.

other things being equal, a prograde-spinning star is more easily disrupted than its non-

spinning or retrograde-spinning counterparts, and will therefore result in a debris distribution

that is less spatially compact. Based on these simulations, the maximum density of the

debris is ≈ 5 − 10% lower for the prograde-spinning case as a result of the disruption.

From Equation 5.3 it is clear that a more extended matter distribution will have a larger |J2|

due to the r2 weighting of the density in the integrand.

5.2 Disruption of Rotating Stars

The generally accepted model of TDE emissions relies on the fact that the tidal debris circu-

larizes much faster than the fallback timescale. Traditional pictures of debris circularization

generally involve debris stream self-intersections due to relativistic precession, however

these effects are not very strong unless pericenter passage is sufficiently close to the BH.

Another possible driver of circularization relies on the fact that the initial orbital energy-
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Figure 5.4: Distribution of specific orbital energy e and specific orbital angular momentum `
of a star in a β = 1 orbit at a distance of 100 rg from the BH. Panel (a) shows a non-spinning
star, while panels (b) and (c) show stars with Ω∗/ΩK = +0.5 and −0.5, respectively.

momentum distribution of the stellar material depends on the stellar rotation Ω∗, as is shown

in Figure 5.4. Here the specific orbital energy e (horizontal axis) is shown as a fraction of

the Newtonian energy spread ∆eN (Equation 3.11) expected in a TDE encounter, and the

specific orbital angular momentum ` (vertical axis) is given as a relative deviation from the

center of mass value `0. The leftmost panel shows the distribution for a non-spinning star,

for which the energy falls in the range e/∆eN ∈ (−0.5 0.5) and the angular momentum

deviates from `0 by no more than 1%. The material on the side of the star closer to the BH

is more bound and has lower orbital angular momentum, with the opposite being true on the

other side.

When the star has a prograde rotation of Ω∗/ΩK = +0.5, the material closer to the BH

is moving more slowly relative to the BH than in the non-rotating case, since the rotational

motion opposes that of the center of mass. This leads to material that is more bound with

lower orbital angular momentum. On the far side of the star, the rotational motion is in

the same direction as that of the center of mass, leading to less bound material with larger

orbital angular momentum. In total, the prograde stellar rotation acts to stretch out the

non-spinning energy-momentum distribution of Figure 5.4a to cover a larger range of both

e and `, as shown in Figure 5.4b. Here the energy falls in the range e/∆eN ∈ (−1, 1) and

the angular momentum deviates from `0 by up to 1.5%. When this is the case, the fluid
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Figure 5.5: Schwarzchild geodesics of particles extracted from tidal debris. The left panel
shows geodesics for an initially non-spinning star, while the right panel shows those for a
star with Ω∗/ΩK = +0.5.

elements that return to the BH have a larger velocity spread and therefore a higher collision

rate. Qualitatively, this should lead to a faster rate of dissipation and circularization.

Note that this effect is not present for retrograde stellar rotation, as can be seen in Fig-

ure 5.4c. In this case, the rotational motion acts to distort the energy-momentum distribution

so that more tightly bound material has a higher orbital angular momentum. This leads to a

more compact distribution in e and `, and consequently a smaller spread in velocity for the

material that returns to the BH. In this case the specific orbital energy is e/∆eN ∈ (−0.3, 0.3)

and ` deviates from `0 by less than 0.6%. As a result, in this section I will only consider

non-spinning stars and those with prograde rotation.

In an effort to quantify this effect on circularization, I start by evolving the full GRHD

simulations until well after the star completes pericenter passage, when it travels back out

to a distance of 1.5 rt. At this point, I extract discrete particles from each of the fluid cells

to be evolved ballistically until they return to the BH and undergo their second pericenter

passage after a time t ≈ 106mh ≈ 60 days.

I perform the ballistic (geodesic) evolution on a Schwarzchild background in units with

mh = 1:

ds2 = − (1− 2/r) dt2 + (1− 2/r)−1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (5.6)
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The radial coordinate r is related to the isotropic simulation coordinates as r = (2ri + 1)2 /4ri.

The geodesics are governed by a first order system of differential equations for r, θ, φ, and

the four components of the four velocity uµ = dxµ

dτ
:

ṙ = ur/ut (5.7)

θ̇ = uθ/ut (5.8)

φ̇ = uφ/ut (5.9)

u̇t = −2Γttru
r (5.10)

u̇r = −
(
Γrtt(u

t)2 + Γrrr(u
r)2 + Γrθθ(u

θ)2 + Γrφφ(uφ)2
)
/ut (5.11)

u̇θ = −
(
2Γθrθu

ruθ + Γθφφ(uφ)2
)
/ut (5.12)

u̇φ = −2uφ
(

Γφrφu
r + Γφθφu

θ
)
/ut (5.13)

Here dots indicate time derivatives, and Γσµν are the Christoffel symbols for the Schwarzchild

metric in Equation 5.6. Some of the geodesics resulting from this evolution process can be

seen in Figure 5.5.

With the geodesics for each extracted particle in hand, I then decompose the domain into

uniform bins of width ∆x. Each of these bins contains a list of velocity vectors ~vi. Whenever

a geodesic trajectory crosses one of the bins, I append the velocity of the trajectory during

the crossing to the bin. Once I have processed all of the particles in this way, I look at each

bin individually and consider each pair of velocities vi and vj as a colliding debris stream

and calculate the energy lost for each collision.

In order to calculate these collisional energy losses, I use a similar approach to Bonnerot,

Rossi, and Lodato [144] and assume that collisions are completely inelastic. I depart from

this previous approach by dropping the assumption that the colliding streams have nearly

the same speed. While this assumption was appropriate in the original work, the same does

not hold true in this context. If the two incoming streams have velocities ~v1 and ~v2, then the
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specific energy lost in the collision is given by

∆ess =
1

8
(~v1 − ~v2)2 =

1

8

(
v2

1 + v2
2

)
− 1

4
v1v2 cos Ψ12, (5.14)

where Ψ12 is the angle between ~v1 and ~v2.

As it is defined in Equation 5.14, the numerical value of ∆ess is effectively meaningless.

For one, the number of particles that crosses each bin np is highly sensitive to both the

bin resolution ∆x and the original resolution of the GRHD simulation from which the

particles were extracted. Furthermore, the particle energy for each geodesic is not updated

to reflect collisional losses. As a result, any measure of total energy loss derived from

∆ess is meaningless. More importantly, the value of ∆ess does not take into account any

temporal information about the particle geodesics. This means that not all of the velocity

pairs used in Equation 5.14 represent true collisions. Rather, bins with large values of ∆ess

just indicate locations in space that are crossed by debris streams with varying orientations.

To derive meaning from ∆ess, I instead look at the average energy loss per collision

∆ess/nc, where the number of collisions is given by the number of unique velocity pairs ~vi

and ~vj (i, j < np)

nc =
np!

2 (np − 2) !
. (5.15)

In this way, I avoid ambiguity as to whether or not a collision actually occurs in a bin.

Instead, bins with large values of ∆ess/nc show locations in space with high potential for

collisional energy loss.

In Figure 5.6 I show the average energy lost per collision for an initially non-spinning

star (left) and one with prograde stellar rotation (right). For the non-spinning star, the outline

of the resulting accretion disk can be easily seen as the elliptical void centered on the origin

with a semi-major axis of ≈ 200R�. In this case, there are two primary regions with large

energy losses: at the edge of the accretion disk and along the left edge of the returning debris

stream (as seen in Figure 5.5). This is exactly what you would expect if the collisional losses
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Figure 5.6: Average specific energy loss per collision ∆ess/nc of returning tidal debris. The
leftmost panel shows an initially non-spinning star, while the rightmost shows a star with
Ω∗/ΩK = +0.5.

are largely driven by relativistic precession. The losses near the edge of the disk are caused

by the precession of the material in the disk, while those along the returning debris stream

are caused by precession of the less tightly bound material.

For the star with prograde rotation, even larger average energy losses can be seen in the

same regions as in the non-spinning case. This is also to be expected since, based on the

energy-momentum distributions in Figure 5.4, the prograde spinning star has material that

is more tightly bound than the non-spinning star, which would undergo more pronounced

relativistic precession.

The rotating case departs from the non-spinning most significantly within the returning

debris streams. For the non-spinning star in the left panel of Figure 5.6, there is a prominent

void in the average energy loss within the streams, which is to be expected if nearby debris

streams are primarily traveling in the same direction. For the prograde spinning star, the

debris has a larger spread in orbital angular momentum which results in a larger range in the

direction of motion for nearby streams and more pronounced collisional energy losses.

5.3 Future work

While the analysis presented in the previous section provides strong indications that stellar

rotation may play a significant role in tidal debris circularization, it leaves much to be
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desired when it comes to quantitative predictions. The primary source of this deficit is my

approximation of the trajectories of the extracted particles as geodesics. This is appropriate

before the particles approach the second pericenter passage, since the debris streams are

diffuse far from the BH. However, as the debris approaches the BH and is focused into

the nozzle, hydrodynamical forces within the fluid are fundamental to understanding the

circularization process. Instead of calculating ballistic trajectories, future work should

evolve the tidal debris using SPH methods in order to fully quantify the effects of stellar

rotation on collisional energy losses.
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