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SUMMARY 

This research focuses on air quality and energy use in U.S. urban areas in relation 

to healthy and sustainable communities. Cities are of particular focus here, since they are 

responsible for 70% of all global energy use, despite currently housing 54% of the world’s 

population and covering just 3% of global land mass area. Since urban areas’ energy 

demand and transportation are the main drivers of air pollution, addressing the overarching 

impact on air quality and public health effects health requires an interdisciplinary analysis. 

In large part, urban-area emissions are affected by socio-economic factors, infrastructure 

investments (like housing and transport), regional climate, and public policies. In an effort 

to improve public health and city sustainability, this research explores the relationships 

between city infrastructure, energy, and air quality, by evaluating the impacts of 

environmental regulations, urban layouts, and the transportation sector on air quality and 

energy use.   

Chapter 2’s results show that, while U.S. environmental regulations have curbed 

pollution, as best measured through decreases in fine particulate matter (PM2.5), the 

nation’s PM2.5 particles (almost exclusively aerosols) remain acidic. Aerosol acidity can 

increase the solubility of metal ions (e.g. Manganese (Mn), Iron (Fe), Copper (Cu)), which 

are highly associated oxidative stress and adverse health impacts. Chapter 3 establishes a 

strong statistical relationship between residential energy use (of electricity and natural gas) 

and socio-economic demographic (SED) factors for Zip Code Tabulated Areas (ZCTAs) 

in metropolitan Atlanta, Georgia. However, vast differences in models for both energy 

forms exist. An R2 of 0.95, with a low normalized error of 15% was found between natural 



 xv 

gas and SED factors, while the electricity model had an r2 of 0.8 and normalized error of 

33%. Additional analyses found that electricity use is affected by the urban morphology of 

roadways, with households in neighborhood areas of high road density using more 

electricity. This study also demonstrates the applicability of data transformation and 

machine learning methods in improving statistical regression power. Using Gram Schmidt 

orthogonolization improved the regression model’s predictive power as evidenced by the 

greater ratio of significant predictors compared to other methods. 

Chapter 4 assess the ozone and PM2.5 impacts of the Atlanta Hartsfield Jackson 

(ATL) airport using a fine-scale chemical transport model (CMAQ). The chemical 

transport model (CTM) output is evaluated with three sets of observations, i) an air quality 

monitor for NOx, ii) high resolution satellite-based observations from the TROPOspheric 

Monitoring Instrument (TROPOMI), and iii) two power plants near the Atlanta airport 

whose emissions are continuously measured with high accuracy. A three-dimensional 

airport emission inventory from full flight operations for the modeling domain is developed 

and compared against a base inventory with only surface airport operation emissions 

allocated to ATL. Results show that the magnitude and spatial extent of the airport’s air 

quality effects will be understated if only the base inventory is used for regulatory purposes. 

This work underscores the benefits and capability of satellite observations and measured 

sources in evaluating CTM models.  

Chapter 5, compares the air quality impacts of passenger vehicle fleet 

electrification and automation across the US to a non-automated, conventional-engine 

trend in Year 2050 (with future year gasoline powered passenger cars and power plants 

emitting much lower levels of pollution that present-day automobiles and power 



 xvi 

generators). A mix of of Hybrid, Plug-in-Hybrid, and Battery-only electric vehicles have 

some air quality advantages over future-year gasoline vehicles, although the magnitude 

varies across species (a maximum decrease of 1 ppb was observed for 8-hour maximum 

daily ozone, while a net reduction of 0.1 ug/m3 observed for  PM2.5).  

Dissertation results suggest that policy, technology, demographics, and urban 

building decisions have a compounded effect on the efficacy of environmental regulations, 

air quality and energy use. Multiple factors will need to be considered to designing policies 

promoting equitable, sustainable cities. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Urban areas are expected to grow rapidly in the future, along with energy use which affects 

emissions and thus, impacts air quality. Cities are responsible for more than 70% of anthropogenic 

emissions, which have been linked to climate change as well as poor air quality1. The emissions, 

emitted from these dense urban centers have far reaching and profound effects in many areas 

ranging from human health to global ecosystems2.  Poor air quality, as a result of these emissions 

has been linked by the World Health Organization3 to over seven million premature deaths, 

annually and globally. The Global Burden of Disease4 report finds poor air quality as the number 

one global environmental risk. Since the main driver of urban air pollution is linked to energy 

consumption (both stationary and transportation related sources), addressing the overall impact on 

air quality and its potential effects on health and healthy cities is essential to understanding how 

to design sustainable cities for the future. 

Sources of urban pollution causing emissions and their strengths are driven by socio-

economic factors, infrastructure (i.e. transportation, housing as such), regional climate and public 

policy5. However, delineating specific aspects of these areas to specific adverse effects of urban 

pollution (i.e. human health and social and economic demographic disparities), is not easily done, 

as many of these factors are inextricably interlinked.6, 7 This is especially the case as cities of today 

and the past are largely been affected by both infrastructure, economic base systems and policies. 

For example, the advent of certain social and economic policies, in addition to the influx of the 

automobile, led to urban sprawl and the allocation of industrial and manufacturing jobs in different 

parts of the cities. This changed the economic makeup of the city, influenced the spatial pattern of 
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pollution (via traffic and industry) and the exposure level for different social economic (SES) 

groups. This example illustrates the inextricable links between urban layout, pollution, and energy 

use, on the general populace and disadvantaged SES groups. It also serves to highlight the 

importance of future technologies, continued growth and adopted policies. 

This research quantifies the impacts of specific infrastructure emissions on urban quality. 

Given the lagged ramifications of technological changes, this work also attempts to quantify the 

effects of new and existing transportation technologies on sustainable city development, by 

looking at the influence of city infrastructure and technology improvements. 

1.2 Sustainability framework 

The goal of the work described in this thesis is to add to our understanding of how to enact 

sustainable city design solutions. Sustainability is a broad topic with many facets that affect both 

macroscopic and microscopic systems. While sustainability studies explore many different topics 

related to urban sustainability, my research focus is on the impact of anthropogenic emissions. 

Two overarching issues that are addressed in differing degrees by the research conducted here are:, 

1) As urban populations and the world population continue to increase8, what impact (adverse or 

positive, large or small) will projected emission changes and their sources have in contributing to 

the sustainability of cities? And 2) What linkages are there among regulatory socio-economic 

factors, urban infrastructure, technological changes with air quality and the related health impacts? 

Both of these issues are addressed with a central focus on air quality and energy aspects. 

These issues are addressed using the sustainability conceptual framework depicted in 

Figure 1, which illustrates four key areas (Climate, Land Use, Policy, and Regulations and 

Technology) to explore aspects of urban systems and their ultimate effect on air quality and health. 
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 This framework is designed to delineate the effects of complex urban systems by 

evaluating specific aspects of each focus area one at a time (i.e. microscopic), allowing for the 

separation of dynamic, non-linear interactions between urban systems in the assessment of 

anthropogenic emission effects. The framework differs from previous frameworks and methods 

that favor a holistic systems approach of the combined effect of all four areas in an integrated study 

(macroscopic).9  

 

 

This thesis is comprised of an Introduction, plus Conclusions and Future Research chapters 

sandwiching four chapters detailing the main research projects with emissions and energy use 

being the main inputs driving analyses. Additional related work was conducted as part of this 

research in collaboration with students at other universities (included in Appendix A). Each 

chapter generally relies on different, though often overlapping, sets of analytical tools and 

techniques to garner insightful conclusions and analysis.  

Figure 1-1: Sustainability Framework 
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Each chapter quantifies the impacts of regulation and different infrastructure segments on 

air quality. By evaluating impacts of transportation technology changes, residential energy 

determinants, green infrastructure and anthropogenic emissions on air quality through the use of 

air quality models and statistical analysis. The topics of the four chapters describing the research 

are: 

Chapter 2: Impact of air control regulations on air quality and PM2.5 acidity. 

Chapter 3: Social, economic, and urban infrastructure impact on residential energy. 

Chapter 4: Quantifying effects of airport related emissions on air quality. 

Chapter 5: Impact of electric self-driving vehicles on emissions and air quality. 

These chapters are further detailed in the subsequent section, along with the main 

objectives of the research and a primary hypothesis.  In many cases, additional hypotheses and 

objectives are explored.   

1.3 Research descriptions and objectives 

1.3.1 Chapter 2:  Impact of air control regulations on air quality and PM2.5 acidity. 

The basis for this work is motivated by Servadio et al., (2019)6, an interdisciplinary 

published study included in Appendix A, conducted in collaboration with students at other 

universalities where the relationship between health outcomes among different ethnic 

demographics in greater Atlanta as it relates to air quality, transportation and green infrastructure 

is explored. The study provided evidence that areas with poor air quality, carry a greater burden of 

cardiovascular and respiratory diseases and have greater percentages among African-American 

residents. While the etiologies of these outcomes are unclear, making targeted interventions 

difficult to design and implement, the study makes clear that these populations, burdened by poor 
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air quality, have the highest prevalence of respiratory and cardiovascular disease, which is linked 

with higher PM2.5 exposure. Many studies like the “The Harvard six city”10 link poor health 

outcomes and higher mortality rates to particulate matter exposure. A growing number of studies 

suggest that aerosol acidity plays a role in particulate composition and the solubility of metals, 

which in turn can impact health11.  

Since enactment of the Clean Air Act in 1970 and subsequent 1990 amendments, emission 

reductions have led to notable improvements in air quality over the U.S.  The reduction of 

emissions from transportation and power sectors are noted to be substantial, including large OC, 

CO and NOx reductions from automobiles along with sulfur reductions from power plants. Despite 

these reductions, health disparities and PM2.5 exposure persist, with multiple studies finding 

differences between different socioeconomic status (SES) groups. The combined links between 

higher PM2.5 exposure and adverse health outcomes, and the disproportionate exposures to lower 

SES groups, reinforce the call for targeted interventions and environmental regulations. While 

disproportionate exposure continues to be observed, finding out how particulate matter and aerosol 

acidity (in light of its potential role in PM2.5 toxicity) have responded to these reductions might 

help explain the continued link between PM2.5 exposure and disproportionate adverse health 

outcomes for disadvantaged SES groups.  
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Figure 1-2: Mean annual PM2.5 mass concentration in 1989 and 2007. Adapted from Blanchard et al., (2011)12 

The aim of this chapter is to assess the effects of emission reductions on air quality, 

particularly particulate matter and aerosol (particulate matter) acidity. Here, the specific question 

is: How have emissions reductions impacted ambient air quality and aerosol acidity regionally 

over the continental U.S.? Until the Weber et al., (2016)13 study, a general assumption in terms of 

fine particulate matter PM2.5 characterization was that emission reductions of SO2 would lead to a 

reduction in particulate sulfate and nitrate, and this will lead to a reduction in aerosol acidity and 

an increase in nitrate substitution. The potential increase in nitrate could be mitigated by concurrent 

reductions in NOx emissions. With most of the acidity being associated with the sulfate in the 

particles, as its mass concentration in the particulate continues to decrease, an increase in nitrate 

substitution and a change in aerosol acidity is expected. Though Weber et al., (2016) proved that 

assumption to be incorrect, (i.e. acidity remained high, despite reductions in sulfate), it is uncertain 

if the trend will be observed in other regions since those results were observed at only one site in 

rural Alabama.  
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We proceed then under the original assumption that a reduction in aerosol acidity is linked 

to reductions in emissions in various regions of U.S. This study, conducted on a national scale, 

uses modeling and data analysis assessment of how PM levels and acidity responded to emission 

changes, focusing on particulate matter levels and acidity patterns. It is expected that the findings 

of this study will help inform policy regulations as to what and how regulation impacts future air 

quality and health. The driving hypothesis of this aspect of the thesis work is that emissions 

reductions lead to reductions in aerosol acidity, and that regions respond differently based on their 

location and other emissions. 

1.3.2 Chapter 3: Quantifying the impact of socio-economic and demographic variables on 

residential energy 

Residential energy comprises of a large amount of total energy use within the U.S. (23%)14, 

yet understanding the underlying drivers of the demand poses challenges because demand varies 

widely across demographics, city types and regions. As cities continue to expand and change, 

understanding the demographic factors that influence energy use through energy modeling can 

support decisions in policies or changes in infrastructure that lead to more sustainable cities. 

Developing residential energy models poses some difficulty however, as most energy analyses are 

typically conducted with an engineering focus on building design parameters with just one or two 

social factors (i.e. income, household make up) incorporated15, 16. Such studies focus on 

deterministic factors, but rarely on the role of socio-demographic factors and their potential 

relationship to air quality and health. These factors can play a significant role in energy use, but 

their impact has not been quantified as extensively as urban layout and building design have been. 
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The two main objectives in Chapter 3 are 1) Evaluate which social economic factors play 

a significant role in energy use, and 2) Investigate the application of data transformation techniques 

to improve regression models. In this chapter, a statistical residential energy model using social 

economic demographic factors is developed to explain residential energy use in Atlanta. Energy 

usage to be explored includes 2010 electricity and 2009 natural gas use, with data provided by 

energy generating companies. Social demographic data is collected from the 2010 census. Results 

are analyzed at the Zip Code Tabulated Area (ZTCA) level.  The predictive power of the statistical 

methods is investigated using data transformation techniques like orthogonolization and machine 

learning techniques as well. It is expected that a statistically significant relationship will be 

established between socio-economic variables and residential energy use and that these variables 

will prove to be the main determinant of energy demand.  

1.3.3 Chapter 4: Quantifying effects of airport related emissions on air quality. 

With the projected growth in air travel, characterization of airport impacts is essential to 

understanding the present and future effects travel will have on air quality, health and the 

environment. Airports are often located near lower SES neighborhoods and are regarded as 

hotspots for NOx and particulate matter emissions. Recent work suggests they are of particular 

concern due to ultrafine particle (UFP) emissions from aircrafts.17, 18 Figure 2 depicts the proximity 

of the five busiest airports in the U.S. to downtown areas. The top three busiest airports are under 

30 km away from urban centers, and elevated concentrations of particulate matter and ozone from 

airport activities have been observed up to 20 km away from the airport. The implications is that 

the impact of current and potentially greater airport-related emissions in the future can have a 

notable impact on air quality and on nearby populations.  
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Figure 1-3: The top five busiest US airports and their respective distances to urban centers. Population of nearby 
downtown areas are shown as well. 

Chemical Transport Models (CTMs) are often used to quantify emissions impacts of a wide 

range of sources, including airports. However, an accurate assessment of the impact on local air 

quality is difficult to ascertain with these methods. One of the reasons is that detailed 3D airport 

emission inventories are not widely available for regional transport models. Contributing further 

to the uncertainty of airport impacts is the omission of aircraft cruise emissions (full-flight 

emissions) as most airport inventories consist only of emissions generated from Landing and 

Takeoff operations (LTO) that occur at elevations below 1km19. Most airport emission inventories 

tend to allocate those emissions to the same grid and altitude height as the airport, but this practice 

of allocating the emissions to just the airport grid, without further spatial distribution, could 

potentially minimize or misrepresent the effect of airports within the general vicinity of its 

location20. Furthermore, because LTO emissions only contribute to about 10% of overall emissions 

from airport operations, airport inventories and its effects are probably underestimated.21  
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The effects of airport spatial allocation and air cruise emissions have been evaluated in a 

number of studies, but very few have been conducted at fine scales, which is noteworthy because 

differences in model results occur at different scales22, 23. So far, the findings from these studies 

indicate that full-flight emissions and spatial allocation have minimal effects on surface 

concentrations, which might explain the lack of additional studies in this regard. For instance, 

Vennam et al., (2017) found increases in O3 that ranged from 0.46 -0.69 ppb, both amounting to 

1.3% and 1.9% net increase overall24. Changes in O3 of similar magnitude were also found by Lee 

et al., (2013), where a maximum increase of 1 ppb from full-flight emissions was observed25. The 

Unal et al., (2005) study of the Atlanta Hartsfield-Jackson airport (ATL), where a portion of LTO 

related emissions was spatially allocated a few layers above the airport, found a slight decrease in 

average O3 of about 1 ppb with 3D spatially allocated emissions. Although these studies have 

shown minimal effects by focusing on one or more aspects (i.e. spatial allocation, inclusion of 

cruise emissions and fine scale modeling), results might be different if the key aspects of these 

studies were incorporated into a single study. 

The objective of this work, is to combine satellite observations and chemical transport 

modeling to assess the impact of the Atlanta Hartsfield-Jackson airport (ATL) on air quality, 

particularly on NO2, O3 and particulate matter by exploring the differences between two airport 

inventories; a base inventory which only includes LTO emissions, allocated to the same 

coordinates as the airport, and a 3D airport emission inventory which includes both LTO and full 

flight emissions with horizontal and vertical allocation beyond the airport. A fine scale chemical 

transport model (CMAQ) is used, and the model outputs are evaluated with high-resolution 

satellite observations from TROPOMI and air quality models. It is expected that this study will 
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show that airport emissions are a significant contributor to local and regional air quality, and that 

satellite retrievals and air quality modeling can be used together to explore those impacts. 

 

1.3.4 Chapter 5: Impact of electric self-driving vehicles on air quality   

Self-driving vehicles are expected to gain a majority market share (> 60%) if not a full 

share by 205026. For reasons that range from engineering practically and technological 

advancements to emissions standards and government policies such as tax incentives, these 

vehicles are expected to be wholly electric. The impact of this projection is not only expected to 

change the nature of vehicle ownership in households (which will go down), but could influence 

dynamic ride sharing fleets (DRS), giving vehicle access to social and economic groups that may 

otherwise not have access to such vehicles due to the  high cost of ownership. In addition to 

changing the DRS market, the automation of vehicles is projected to increase the number of vehicle 

miles traveled as well27. As a result, the combination of electric cars in addition to vehicle miles 

traveled is likely to have a significant impact on emissions.  

The impact of electric vehicles (EVs) on energy demand, emissions and air quality has 

been explored in a number of studies, many of which assess EV impacts in the context of various 

energy supply scenarios along with increased demand28. Many, however, do not take into account 

the impact of self-driving vehicles or Autonomous Vehicles (AV) in quantifying EV effects. AV 

utilization is expected to increase significantly in the future, along with electrification of the US 

fleet, which will result in increased vehicle miles traveled (VMT) from Shared Automated 

Vehicles (SAVs), yet its impact on air quality is seldom explored within the EV context. 
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In this chapter, the future effect of EV adoption is assessed under a Relaxed Energy Policy 

(REP) where future aggressive emissions reductions have been relaxed across multiple emission 

sectors. Here, the impact of vehicle electrification on light duty passenger vehicles under a less 

ambitious future energy policy and 2050 projected meteorology under the Representative 

Concentration Pathway 4.5 in the mobile sector is explored along with emission changes across 

other sectors. The electrified scenario is compared with a 2050 scenario where passenger cars emit 

no more than 10% of emissions from present day cars, – indicating that cars in the future are 

essentially clean. The efficacy of electric vehicle adoption along with adoption rates of 

autonomous vehicles in the context of the REP energy policy with future meteorology is assessed. 

It is expected that the findings of this study will demonstrate that electric vehicles will yield 

multiple benefits in different aspects over 2050 clean gasoline cars. The benefits will have 

implications on energy policy, climate and air quality.  

1.4 Thesis outline 

This thesis is organized as follows; Chapters 2 through 5 give a detailed description of the 

background, methods, results, findings and conclusions reached in each study. The chapters will 

be followed by a summary and future work chapter. In the summary, the results findings and 

conclusions in all four chapters will be connected back to the main objectives of the thesis, as 

outlined in this chapter under sections 1.2 and 1.3. Future work is discussed as well. 

1.5 Supporting Information 

Appendix A. Supplementary Information 
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CHAPTER 2. LINKED RESPONSE OF AEROSOL ACIDITY AND 

AMMONIA TO SO2 AND NOX EMISSION REDUCTIONS IN THE 

UNITED STATES 

Adapted from ‘Abiola S. Lawal, Xinbei Guan, Cong Liu, Lucas R.F. Henneman, Petros 

Vasilakos, Vasudha Bhogineni, Rodney J. Weber, Athanasios Nenes, and Armistead G. Russell 

Linked Response of Aerosol Acidity and Ammonia to SO2 and NOx Emissions Reductions in the 

United States. Environmental Science & Technology 2018 52 (17), 9861-9873. DOI: 

10.1021/acs.est.8b00711. 

2.1 Abstract 

Large reductions of sulfur and nitrogen oxide emissions in the United States have led to 

considerable improvements in air quality, though recent analyses in the Southeastern United States 

have shown little response of aerosol pH to these reductions. This study examines the effects of 

reduced emissions on the trend of aerosol acidity in fine particulate matter (PM2.5), at a nationwide 

scale, using ambient concentration data from three monitoring networks – the Ammonia 

Monitoring Network (AMoN), the Clean Air Status and Trends network (CASTNET) and the 

Southeastern Aerosol Research and Characterization Network (SEARCH), in conjunction with 

thermodynamic (ISORROPIA-II) and chemical transport (CMAQ) model results. Sulfate and 

ammonium experienced similar and significant decreases with little change in pH, neutralization 

ratio (f=[NH4
+]/2[SO4

2-]+[NO3
-]), or nitrate. Oak Grove, MS was the only SEARCH site showing 

statistically significant pH changes in the Southeast region where small increases in pH (0.003 to 

0.09 pH units/year) were observed. Of the five regions characterized using CASTNET/AMoN 
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data, only California exhibited a statistically significant, albeit small pH increase of +0.04 pH 

units/year. Furthermore, statistically insignificant (α = 0.05) changes in ammonia were observed 

in response to emission and PM2.5 speciation changes. CMAQ simulation results had similar 

responses, showing steady ammonia levels and generally low pH, with little change from 2001 to 

2011. 

2.2 Introduction 

Atmospheric aerosols, including fine particulate matter (PM2.5), are associated with 

adverse effects on human health and the environment29-35. A key property of aerosol particles is 

its acidity, as it can critically affect heterogeneous chemistry (e.g., secondary aerosol formation, 

metal dissolution and nitrate/nitric acid partitioning), climate forcing, biogeochemical cycles, 

ecosystem productivity, ocean oxygen levels, and has been linked to adverse health effects36-45.   

Aerosol acidity (pH), is a function of its composition, driven largely by humidity, 

temperature, sulfate (SO4
2-), and nitrate (NO3

-), both of which are formed through the oxidization 

of sulfur and nitrogen oxides in the atmosphere46-49. These constituents are neutralized to some 

degree by reactions with ammonia gas (NH3(g)) and the presence of non-volatile cations (e.g. 

Mg2+, Ca2+, K+, Na+) from soil dust. Chloride (Cl-) formed from sea spray and biogenic emissions 

is also known to impact acidity, though these would be considered non-anthropogenic 

contributions to PM2.5. In light of notable decreases in both sulfur (87% reduction from 1990-2016 

of SO2) and nitrogen oxide (56% reduction from 1990-2016 of NOx) emissions50,  the question 

arises as to how aerosol pH has responded to emission changes over time and how it will evolve 

as emissions further change51.   



 15 

Effects of SO2, NOx, and precursor emissions on aerosol acidity and PM2.5 concentrations 

have been studied previously12, 49, 52-59. Saylor et al., (2015)53 reported a decrease in particulate 

ammonium PM2.5 concentrations (NH4
+) and an increase in NH3(g) in response to decreased SO2 

and NOx emissions. Weber et al., (2016)55 conducted thermodynamic analyses of aerosol pH in 

the Southeast and concluded that in spite of significant sulfate decreases, particles remain highly 

acidic and will remain so until sulfate levels decrease to pre-industrial levels. Guo et al., (2017)56 

analyzed pH sensitivity to NH3(g) levels in a variety of locations worldwide, and noted that about 

a 10-fold increase (decrease) in NH3(g) levels is required to force a 1 unit pH increase (decrease). 

In this study, trends in ammonia, speciated aerosol concentrations in PM2.5, and aerosol 

acidity in the United States are examined. The presence of organic compounds have been found to 

have a smaller impact on aerosol pH60, 61 and biogenic VOC emissions are not subject to emissions 

controls, so acidity changes are expected to arise primarily from changes in inorganic aerosol 

precursor emissions. While aerosol pH is not readily measured, a number of thermodynamic 

models such as SCAPE62, AIM63, and ISORROPIA-II64 (used in this study) can be employed using 

concentrations of key constituents within the aerosol-gas system to estimate aerosol pH. Here, data 

obtained from the Ammonia Monitoring Network (AMoN), the Clean Air Status and Trends 

network (CASTNET), and the Southeast Aerosol Research and Characterization network 

(SEARCH) are used as inputs to ISORROPIA-II. The AMoN and CASTNET are nationwide 

networks that measure NH3(g) and speciated PM2.5 concentrations. SEARCH provides similar data 

for eight sites in the Southeastern US.  In addition, a Chemical Transport Model, the Community 

Multiscale Air Quality (CMAQ), was used to provide information over a geographically wide 

domain. Data analysis with thermodynamic modeling, along with air quality modeling are used to 

1) investigate spatial and temporal trends of ammonia and PM2.5 in the United States 2) examine 
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how aerosol acidity has responded to reductions of sulfate and nitrate in the past 3) observe how 

ammonia gas levels responded, given the role ammonia plays in aerosol neutralization and nitrogen 

deposition and 4) better understand how pH will respond to future emissions changes.  

2.3 Data and Methods  

2.3.1 CASTNET and AMoN  

Data from CASTNET and AMoN sites were organized into five regions of the US: 

Southeast (SE), Northeast (NE), Midwest (MW), Rocky Mountains (RK), and California (CA) 

(Figure B-1). The CASTNET database contains long-term records of air pollutant concentrations, 

deposition and the ecological effects of changing air pollutant emissions. At more than 90 sites 

across the U.S. and Canada, weekly ambient measurements were taken for gaseous species (e.g. 

SO2, HNO3(g)) and condensed phase species (e.g. SO4
2-, NO3

-, NH4
+, Mg2+, Ca2+, K+, Na+, Cl-). 

CASTNET also records daily average temperature and relative humidity (RH). Launched in 2007 

and expanded in 2011, AMoN provides long-term records of ammonia gas concentrations across 

the U.S. The lack of gas phase ammonia data from AMoN prior to 2011 limits the detailed study 

period from March 2011 to February 2016. To provide complete ambient measurement input data 

for ISORROPIA-II which requires “total” concentrations (gas and condensed phase) of ammonium 

(TNHx=NH3(g) + NH4
+) and nitrate (TNO3

- = HNO3(g) + NO3
-) in the forward mode, only co-

located CASTNET and AMoN sites were selected for this study. Additional details about the sites 

can be found in Table S1 in the Supporting Information (SI) supplement. 
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2.3.2 SEARCH 

SEARCH was a comprehensive ambient air monitoring network designed to gather long 

term detailed data to characterize the chemical composition, sources of particulate matter and the 

spatial and temporal distributions of PM2.5 in the Southeastern United States. SEARCH consisted 

of eight highly instrumented stations located in four Southeastern states AL, GA, FL and MS, 

consisting of three urban/rural and one urban/suburban paired sites in each state as follows: GA 

(Atlanta-Jefferson Street/JST, Yorkville/YRK), AL (Birmingham/BHM, Centerville/CTR), MS 

(Gulfport/GFP, Oak Grove/OAK), and FL (Pensacola/PNS, Outlying Landing Field/OLF). Further 

site location details and descriptions can be found in (Figure B-2 and Table B-2).  

 Data from SEARCH includes meteorology (temperature and RH), trace gas concentrations 

and particulate compositional data. SEARCH also measured HCl(g) in addition to particulate Cl-. 

Here, we used data from 2008-2015, though not all sites were active for the entirety of the period 

Details of the data availability, along with the sampling frequency and site abbreviations can be 

found in Edgerton et al., (2012)65 and in the SI (Tables B-2 and Table B-3).  

2.3.3 Thermodynamic Modeling 

2.3.3.1 ISORROPIA-II 

ISORROPIA-II is a thermodynamic model that calculates the physical state, composition, 

phase partitioning and pH of inorganic atmospheric aerosol and is generally found to be in good 

agreement with other models and observations66-68. ISORROPIA-II has two run modes, forward 

and reverse. Inputs for the forward mode, which was used in this study, include known quantities 

such as temperature (T), relative humidity (RH), and total (gas + aerosol) concentrations. In this 
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case, constituents that can exist either as gases or particles—namely ammonia, hydrochloric acid, 

and nitric acid—are given as total ammonia (TNHx = NH3(g) + NH4
+), total nitrate (TNO3

- = 

HNO3(g) + NO3
-) and total chloride (TCl = HCl(g) + Cl-), although HCl(g) was not available from 

CASTNET. The remaining constituents—sulfate, and base cations of magnesium, potassium, 

sodium, calcium — are also entered as inputs, although a fraction of some species may not be 

water soluble (e.g. CaSO4). The reverse mode requires similar inputs, except the gas phase 

concentrations are determined by aerosol phase concentrations only.  Measurement errors inherent 

in the latter mode (especially for mildly acidic aerosols) may give unrealistically large gas-phase 

concentrations than the forward mode which ensures more thermodynamic constraints to generate 

a more robust solution68, 69.  In line with previous studies, the aerosol is assumed to be internally 

mixed so bulk properties are used70, 71. This assumption, coupled with the fact that ISORROPIA-

II uses species concentrations as an input, eliminated the need to consider volumetric effects, 

although this study specifically explores one aerosol size: PM2.5.  

Although aerosols consist of organic and inorganic components, ISORROPIA-II only 

models the aerosol’s inorganic constituent’s effect on pH. Organic acids and organic matter do 

have some effect on pH, due to their contribution to water soluble ionic constituents (albeit mostly 

at higher pHs71), and associated liquid water content (LWC). Organics are also purported to affect 

pH by inhibiting NH3(g) uptake61. However, a fair amount of studies have found their contributions 

to LWC and pH to be ineffectual, when compared to contributions from inorganic constituents and 

were therefore, not considered in this study60, 71-77.  We expand upon impacts of organic 

constituents, including organic acids, organonitrates and organosulfates on aerosol pH in greater 

detail within the SI.  
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In ISORROPIA-II, the user can specify the aerosol to be either in a thermodynamically 

stable state, where salts precipitate if saturation is exceeded, or in a metastable state, where salts 

do not precipitate under supersaturated conditions. ISORROPIA-II results in the metastable mode 

have been found to agree better with observations over a wide range of RH (20-95%) according to 

Guo et al., (2016)78. Though Guo et al., (2016) noted relatively large discrepancies at lower RH 

values (20-40%), Song et al., (2018)69 in comparing ISORROPIA-II to E-AIM found relatively 

small differences in pH over a wide range of RH. A boxplot of RH for SEARCH and CASTNET 

(Figures B-3 and B-4) shows generally high values that lie within the acceptable range found in 

Guo et al., (2016), and above the listed mutual deliquescence relative humidity values (MDRH) in 

Table 6 of Nenes et al., (1998)66 and Table 5 in Fountoukis and Nenes (2007)64, although summer 

RH values for California in the CASTNET network were in the low 30s, around the crystallization 

RH of pure ammonium sulfate79. In addition to better model agreement with observations, past 

studies, such as those by Rood et al., (1989)80 show that metastable aerosols, in the range of 2 μm 

are fairly ubiquitous at RH’s between 45 and 75%. Further, recent experiments by Liu et al., 

(2017)81 found that the sub micrometer aerosols were liquid down to relatively low RH, so the 

aerosol particles are likely to be liquid at the RH range used in this study. Thus, in this work, the 

metastable mode was used with the seasonal averages of total species concentrations along with 

temperature and RH from SEARCH and CASTNET/AMoN databases to model the seasonal 

average aerosol pH at each site location for each region. 

2.3.3.2 ISORROPIA-II Model Evaluation 

As pH is difficult to measure, model evaluation of predicted pH is assessed by comparing 

predicted LWC and partitioning ratios among semi-volatile constituents (i.e. NH4
+, NH3(g)) 

between the gas and particle phase against observations. In comparison with other models, 
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ISORROPIA-II performs well, and its performance has been well documented and evaluated in 

several studies64, 71.  Here, we use ISORROPIA II 2.3, which addresses the issue identified Song 

et al. (2018), and includes other algorithmic improvements. The differences between the updated 

version and version 2.1 are small: the average pH for the SEARCH sites changed less than 0.01 

units, and about 0.1 for the CASTNET sites (Table B-4 and B-5).  Additional discussion on model 

evaluation can be found in the SI as well. 

2.3.4 Neutralization ratio f 

While thermodynamic models can estimate pH, other parameters have been employed to 

serve as proxies for in-situ pH to indicate the degree of acid neutralization with ammonia in lieu 

of pH, though the utility of such measures is in question68. One commonly used proxy is an ion 

ratio, otherwise referred to as the “neutralization ratio” of the condensed species of particulate 

ammonium (NH4
+) to sulfate (SO4

2-) and particulate nitrate (NO3
-), although in many cases, the 

latter is omitted71, 82, 83.  

Such proxies are not necessarily a good indicator of pH, as discussed by Hennigan et al., 

(2015)68 and Guo et al., (2016)78. One weakness of this measure is that it does not include the 

presence or role of non-volatile cations, (which are not always available), nor the effects of aerosol 

water variations (from RH changes) on pH.  However, despite these aforementioned short-

comings, these proxies are still used in studies70, 84 to understand aerosol dynamics and acidity 

changes in response to emissions precursors, so we include it here for completion and discuss it 

further in the SI. Of note, the neutralization ratio, f in this study is calculated using observed 

seasonal molar averages of NO3
-, SO4

2-, and NH4
+ as follows:  
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𝑓 =  

[𝑁𝐻4
+]

2[𝑆𝑂4
2−] +  [𝑁𝑂3

−]
 (1) 

 

2.3.5 Chemical Transport Modeling 

 The Community Multiscale Air Quality (CMAQ) Model simulates the formation and fate 

of air pollutants by solving the general atmospheric dynamic equations which takes into account 

atmospheric reactive chemistry in addition to other physical processes (i.e. coagulation, 

deposition)85. ISORROPIA-II was used to calculate pH and inorganic species partitioning in 

CMAQ. Simulations were conducted using CMAQ version 5.0.285 for the Eastern continental US 

for the years 2001 and 2011, with a 12km horizontal grid resolution (Figure B-5). This region 

experienced large reductions in SO2 emissions over this time, which is why the domain was chosen 

for more in depth study59. Emissions were developed using SMOKE, version 6, along with the 

National Emissions Inventory (NEI)86, 87. The Weather Research Forecast (WRF) version 3.6.188 

was employed to generate meteorological fields. Using CMAQ results, seasonal maps in 2001 and 

2011 of pH and gas-phase ammonia were created for the Eastern US.  

A detailed evaluation of the model and how well it captured trends in PM and gaseous 

species is found elsewhere, along with further discussion in the SI89, 90. In general, the model 

achieved the performance goals set by Emery et al., (2017)91 and captured observed sulfate and 

ammonium trends .   
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2.3.6 Ambient Data analysis 

Species concentrations (TNHx, TNO3
-, TCl, SO4

2-, Mg2+, Ca2+, K+, Na+), average 

temperatures and relative humidity from all three networks were averaged by season to compensate 

for limited years of available data and seasonal effects for the trend analyses conducted here47. 

These seasonal averages for winter (December to February), spring (March to May), summer 

(June-August), and fall (September to November) were used as inputs to ISORROPIA-II to model 

seasonal average aerosol pH at each site and region. The modeled pHs from ISORROPIA-II, along 

with the observation data were compared as seasonal time series trends, (Figures 2-1 to 2-3, Tables 

2-1, 2-2), reflecting spatial and temporal effects. Linear regressions for selected speciated PM2.5 

components, pH, ammonia-gas partitioning ratio RN (RN = [NH3(g)]/ [TNHX]) and f as functions 

of time were performed and the slopes were evaluated for statistical significance. Yearly percent 

changes were estimated from the slopes and intercepts. Throughout this paper, statistical 

significance for these trends is assessed at α = 0.05 (Tables B-6 and B-7). To assess the impact of 

finer temporal scales, monthly averaged species concentrations of the SEARCH sites were 

calculated and used to generate modeled pH with ISORROPIA-II. The results were evaluated 

similarly as the seasonal averages above with trends assessed for statistical significance (Table B-

8).   

For sake of brevity, only a few data tables and plots are shown here while additional figures 

and data tables can be found in the SI. The choice of variables to include in the main text are based 

on the sulfate/nitrate/ammonium aerosol model as these components largely influence PM2.5 pH 

and constitute the bulk of its inorganic mass71, 79, 92.  
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2.4 Results and discussion 

2.4.1 CMAQ and ISORROPIA Modeling Results pH 

ISORROPIA-II calculated aerosol pH was low at the beginning of the observational 

periods (SEARCH: 0.8-2.0. CASTNET/AMoN: 2.3-2.7), with small increases in pH (i.e. < 1 pH 

unit) over time (Table 2-1, Table 2-2, Figures 2-2a and 2-3a). While almost all SEARCH sites 

(except CTR) and CASTNET/AMoN regions (except RK, which has only one collocated network 

site, Figure B-1) exhibited positive trends for pH, only CA and OAK saw statistically significant 

changes and those increases were less than one pH unit over the period of study. 

Similar pH values were found using CMAQ (Figure 2-1) in comparable regions. CMAQ-

derived pHs in the upper Midwest region were typically between 3.5 and 4 in most seasons except 

spring for both years, which matched the MW pH of 3.7 from CASTNET/AMoN. pH for the 

Southeast region from CMAQ were about 1.5-2.0, which agreed well with the overall SEARCH 

site average of 1.8 and is also consistent with observations from Guo et al., (2015)’s study within 

the same region71. The CMAQ simulated pH over the years 2001 and 2011 with CMAQ also 

showed a small, typically positive trend. We discuss reasons for these differences in regional pH 

values in subsequent sections as we look at the impact of different species concentrations on pH. 
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Table 2-1: Results from the linear regression analysis for: pH, sulfate (SO42-), particulate nitrate (NO3-), 
particulate ammonium (NH4+), gaseous ammonia (NH3(g)), total ammonia (TNHx), and ammonia gas molar 
partitioning ratio, (RN=[NH3(g)]/[TNHx]) in all five regions in the CASTNET/AMoN network. Bolded results were 
found to be statistically significant at α=0.05. (Note: Yearly percent changes are estimated from the slope and 
intercept and tabulated) 

Parameter Metric Units NE SE MW RK CA 
pH Slope pH/year 2.2E-2 1.9E-2 2.5E-2 -2.3E-4 3.8E-2 

Intercept pH 2.3 2.5 3.6 2.7 2.9 
% Change %/year 3.9% 3.0% 2.8% -0.03% 5.2% 

SO4
2- Slope ug m-3 /Year -5.3E-2 -6.0E-2 -4.2E-2 -1.2E-2 -1.7E-2 

Intercept ug m-3 2.4 2.6 2.2 0.58 1.1 
% Change %/year -8.7% -9.1% -7.5% -8.3% -6.3% 

NO3
- Slope ug/m3/Year 1.1E-2 -2.7E-3 5.5E-3 -2.0E-3 -4.7E-3 

Intercept ug m-3 0.76 0.71 1.5 0.2 0.87 
% Change %/year 5.6% -1.5% 1.5% -4.0% -2.2% 

NH4
+ Slope ug m-3/Year -1.7E-2 -1.7E-2 -1.1E-2 -4.2E-3 -7.6E-3 

Intercept ug m-3 0.95 0.81 1.0 0.23 0.49 

% Change %/year -7.3% -8.4% -4.4% -7.2% -6.2% 

NH3(g) Slope ug m-3/Year -2.1E-3 2.5E-2 -1.5E-2 -3.6E-3 2.6E-2 

Intercept ug m-3 0.79 0.94 2.1 0.51 2.0 

% Change %/year -1.1% 11% -2.9% -2.8% 5.4% 

TNHX Slope ug m-3/Year -1.9E-2 7.9E-3 -2.6E-2 -7.8E-3 1.9E-2 
Intercept ug m-3 1.7 1.8 3.1 0.74 2.4 

% Change %/year -4.5% 1.8% -3.4% -4.2% 3.1% 

RN  Slope 1/Year 3.8E-3 9.8E-3 6.9E-4 3.8E-3 4.0E-3 
Intercept NA 0.47 0.54 0.68 0.66 0.79 
% Change %/year 3.3% 7.2% 0.4% 2.3% 2.0% 

 

2.4.2 Sulfate (SO4
2-)  

Analysis of the sulfate concentration data showed statistically significant yearly reductions 

in sulfate (SO4
2-) across most CASTNET regions (except CA, Figure 2-2b, Table 2-1 and Table 

B-7), highlighting the effects of reduced SO2 emissions59. SO4
2- across the CASTNET network 

varied regionally with the lowest concentrations (based on trend intercept) seen in RK (0.6 ug/m3) 

and the highest observed in the SE (2.6 ug/m3). 

Comparable SO4
2- results (Figure 2-3b) were observed at all SEARCH sites (except PNS) 

which all saw major reductions. PNS data did not extend past 2009 (Table B-2) and limited data 
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at this site did not allow for capture of sulfate reductions that were observed elsewhere. Significant 

downward trends were noted at CTR, JST, OLF, YRK and BHM with yearly reductions of -7% to 

-12% (Table 2-2). SO4
2- concentrations (from trend intercepts) at SEARCH sites ranged from 

1.6 ug/m3 at PNS to 4.5 ug/m3 at YRK, with an overall average of 3.2 ug/m3, much higher than the 

SE region concentration from CASTNET trend of 2.6 ug/m3. While these differences may be 

attributed to spatial variation and characteristics of the sites in both networks (i.e. climate, source 

apportionment), the median SO4
2- values in both cases had fewer discrepancies (Figure B-6).  

Organosulfates may be present, and there is a possibility that they could lead to artifact 

sulfate in the measurement process, though this is expected to be minimum, particularly in areas 

like CA, as the presence of these compounds are likely to be associated with isoprene oxidation93. 

Further, OS reactions within the aerosol tend to yield other OS compounds which do not contribute 

to inorganic SO4
2,94. 
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Table 2-2: Results from the linear regression analysis for: pH, sulfate(SO42-), particulate nitrate (NO3-), 
particulate ammonium (NH4+), gaseous ammonia (NH3(g)), Total ammonia (TNHx), and ammonia gas molar 
partitioning ratio (RN= [NH3(g)]/[TNHx]) at all SEARCH sites. Bolded results were found to be statistically 
significant at α=0.05. (Note: Yearly percent changes are estimated from the slope and intercept and tabulated) 

 Metric Units CTR GFP JST OAK OLF YRK BHM PNS 

pH Slope pH/yr -2.6E-3 1.7E-2 9.9E-3 9.1E-2 2.7E-3 4.2E-
3 

2.2E-3 9.1E-3 

Intercept pH 1.5 1.7 1.8 0.76 1.6 2.0 1.9 1.8 

% Change %/year -0.70% 3.9% 2.3% 48% 0.69% 0.86% 0.44% 2.0% 

SO4
2- Slope ug m-3 

/Yr 
-6.2E-2 -9.0E-2 -8.7E-2 -7.7E-2 -5.5E-2 -1.3E-

1 
-7.3E-2 8.9E-2 

Intercept ug m-3 3.0 3.1 3.7 2.9 3.0 4.5 3.6 1.6 

% Change %/year -8.4% -12% -9.3% -11% -7.2% -11% -8.1% 22% 

NO3
- Slope ug/m3/

Year 
4.9E-4 4.4E-5 2.6E-3 1.1E-2 6.5E-4 1.0E-

3 
4.8E-3 6.9E-3 

Intercept ug m-3 0.10 0.14 0.21 0.047 0.11 0.20 0.13 0.15 

% Change %/year 1.9% 0.13% 4.8% 92% 2.4% 2.0% 15% 18% 

NH4
+ Slope ug m-

3/Year 
-2.0E-2 -1.3E-2 -2.7E-2 -9.7E-3 -1.2E-2 -4.4E-

2 
-1.9E-2 5.7E-2 

Intercept ug m-3 0.96 0.85 1.3 0.81 0.89 1.6 1.2 0.40 

% Change %/year -8.2% -6.0% -8.3% -4.8% -5.3% -11% -6.4% 56% 

NH3(g) 
 

Slope ug m-

3/Year 
1.4E-3 3.1E-3 4.5E-3 1.5E-2 2.1E-3 -1.2E-

2 
-3.3E-2 -2.5E-2 

Intercept ug m-3 0.19 0.55 1.1 0.12 0.28 1.5 1.9 0.65 

% Change %/year 2.9% 2.3% 1.7% 49% 3.0% -3.1% -7.0% -15% 

TNHX 
 

Slope ug m-

3/Yr 
-1.8E-2 -9.5E-3 -2.3E-2 5.0E-3 -9.7E-3 -5.6E-

2 
-5.2E-2 3.4E-2 

Intercept ug m-3 1.1 1.4 2.4 0.93 1.2 3.2 3.1 1.1 

% Change %/yr -6.4% -2.7% -3.8% 2.1% -3.3% -7.1% -6.8% 12% 

RN  
 

Slope 1/Yr 5.5E-3 5.5E-3 8.1E-3 1.4E-2 5.1E-3 6.1E-
3 

-7.4E-4 -4.1E-2 

Intercept NA 0.17 0.40 0.45 0.14 0.25 0.52 0.62 0.67 

% Change %/yr 13% 5.4% 7.1% 40% 8.2% 4.7% -0.48% -25% 

pH Slope pH/yr -2.6E-3 1.7E-2 9.9E-3 9.1E-2 2.7E-3 4.2E-
3 

2.2E-3 9.1E-3 

Intercept pH 1.5 1.7 1.8 0.76 1.6 2.0 1.9 1.8 

% Change %/year -0.70% 3.9% 2.3% 48% 0.69% 0.86% 0.44% 2.0% 

SO4
2- Slope ug m-3 

/Year 
-6.2E-2 -9.0E-2 -8.7E-2 -7.7E-2 -5.5E-2 -1.3E-

1 
-7.3E-2 8.9E-2 

Intercept ug m-3 3.0 3.1 3.7 2.9 3.0 4.5 3.6 1.6 

% Change %/year -8.4% -12% -9.3% -11% -7.2% -11% -8.1% 22% 

 

 

 



 27 

2.4.3 Particulate Ammonium (NH4
+) 

  Reductions in observed SO4
2- were matched by similar reductions in particulate 

ammonium (NH4
+) in both networks. SEARCH sites with significant decreases in SO4

2- had 

significant decreases in NH4
+ that ranged from -0.012 ug/m3 NH4

+/year at OLF to -0.044 ug/m3 

NH4
+/year at YRK. This trend was consistent with findings in the study by Saylor et al., (2015)53 

and Shi et al., (2017)95. 

CASTNET SO4
2- and NH4

+ results showed comparable trends to SEARCH, albeit some 

minor differences. The highest decrease of NH4
+ (Table 2-1) was in the NE and SE (-0.02 ug/m3 

NH4
+/year) and the lowest decrease was in CA with (-0.008 ug/m3 NH4

+/year). While the RK and 

MW regions saw reductions in SO4
2-, only in the NE, SE and CA regions were reductions in NH4

+ 

statistically significant. 

2.4.4 Particulate nitrate (NO3
-), Total nitrate (TNO3

-), and Nitric acid gas (HNO3)  

Our analysis showed no statistically significant changes in PM2.5 NO3
- concentrations as 

SO4
2- levels fell at CASTNET and SEARCH sites (the observations did not include coarse particle 

nitrate concentrations, which could be substantial in regions with sea salt or high dust loadings). 

In agreement with past studies, the NO3
- concentrations were considerably lower than SO4

2- 

concentrations (Table 2-1, Table 2-2), and remained so throughout the course of the study48, 57, 96. 

These low levels of NO3
-, led to minimal effects on NH4

+ levels in response to observed NOx 

reductions. A general decrease in fine particulate TNO3
- and HNO3(g) was observed (except at 

PNS where monitoring ceased after 2009; See SI Figures B-7, B-8, B-13 and B-14), but only the 

HNO3(g) trends in the NE and SE regions from CASTNET were significant.  
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These observations, when viewed with additional factors (i.e. temperatures) explain, in 

part, why the MW and RK did not have significant reductions in NH4
+ despite high reductions in 

SO4
2-. For instance, besides having the lowest SO4

2- levels in the network, RK winter time 

temperatures were consistently lower than other regions (Figure B-12), providing favorable 

NH4NO3 formation conditions46. In the MW, the combination of low winter time temperatures and 

high NH3(g) concentrations promotes NH4NO3 formation97. Further, pHs in the MW were 

generally higher than in other regions (consistently above three), another favorable condition for 

NH4NO3 formation55. 

To further investigate pH and NO3
- results in the MW, we examined regional cation trends 

(Figure B-9 and Figure B-10) at all CASTNET sites. The MW had higher nonvolatile cation 

concentrations compared to other regions, an observation which can be attributed to contributions 

from dust, as shown in Ivey et al., (2015)98. Elevated nonvolatile cation concentrations led to 

higher pHs and increased portioning to aerosol nitrate. Similar observations have been reported in 

a number of studies which also show that high pH and more nitrate partitioning can be attributed 

to such aerosol components from dust when conducting a bulk analyses, assuming an internal 

mixture74, 95, 99-101. And this conclusion still holds, even if the aerosol is to a degree externally 

mixed. 

While the study by Allen et al., (2015)101 suggests that aerosol NO3
- formation in 

submicron particles could occur as NaNO3 and Ca(NO3)2 as opposed to ammonium nitrate, the 

high NH4
+ concentrations in the MW support NH4NO3 formation, as the available cation data find 

too little of these components to explain much of the nitrate. We conclude this based on the low 

fall-spring temperatures in the MW, the seasons during which high nitrate is found, which would 

likely promote NH4NO3 formation.  Further, when compared to CA trends with similar NH3(g) 
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and cation levels, the lack of cold temperatures did not promote extra NO3
- formation in CA as it 

did in the MW (Figure B-19). Also, the concentrations of NH4
+ and NO3

- in the MW (where NO3
- 

levels were comparable to SO4
2-) tended to be the highest in the entire network. 

 

Figure 2-1: CMAQ-derived pH fields for 2001 and 2011 found using seasonal average compositions 

 

2.4.5 Total Ammonium (TNHx),
 Ammonia gas (NH3(g)), and RN 

As with pH, annually-average NH3(g) concentrations changed very little across the study 

period. CASTNET/AMoN, NH3(g) remained stable, showing statistically insignificant changes at 

the 95% confidence interval in all regions from 2011 to 2015. Results for TNHx were varied, with 

RK, MW and the NE showing yearly decreases of about -4% for all 3 regions, while the SE and 

CA regions exhibited yearly increases in TNHx (+0.008 ug/m3 and 0.02 ug/m3 respectively). 

However, the slope from the linear trends in all regions (except the NE) were insignificant at α = 

0.05.  TNHx peaks for MW (Figure 2-2), showed slightly different patterns than other sites (i.e. 

spring vs. summer peaks) which we attribute to contribution of NH4
+ from NH4NO3 formation at 
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lower temperatures, fertilizer use and increasing volatilization from animal waste in warmer 

months.   

Only CTR, JST, OLF, YRK, BHM SEARCH sites showed statistically significant 

decreases in TNHx ranging from -3%/year to -7%/year, but no statistically significant change in 

NH3(g) concentration was observed except at BHM (-7%/year). This negative downward trend 

result for TNHx was also observed by Saylor et al., (2015), which is in contrast to expected 

increases in emissions102.  However, this trend is explained by both the rapid deposition of NH3(g), 

leading to a pseudo-state state balance between emissions and gas-phase deposition, leading to 

small changes in NH3(g), accompanied by a reduction in aerosol ammonium tied to sulfate and 

nitrate. 

Simulated seasonal and annual CMAQ concentrations of NH3(g) showed relatively steady 

concentrations over the ten-year period (Figure 2-4 and Figure B-20), though wintertime NH3(g) 

concentrations decreased in the upper northern states with smaller changes elsewhere.  

A noticeable and consistent increase in the molar concentration ratio of NH3(g) to TNHx 

(RN=[NH3(g)]/[TNHx]) was observed at all CASTNET/AMoN (Figure 2-2g) and SEARCH 

(except PNS and BHM Figure 2-3g) sites, another trend also noted by Saylor et al., (2015). This 

seasonal trend of increased RN was significant at over 60% of SEARCH sites, CTR, JST, OAK, 

OLF, and YRK and in the SE region from the CASTNET/AMoN network. The slope for RN at 

OAK is substantially higher than at other sites, though the observational period was short.  
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2.4.6 Neutralization Ratio f 

The observed changes in species concentrations had a minor impact on the neutralization 

ratio f (Table B-9) at the CASTNET/AMoN or SEARCH network sites (apart from OLF; Table B-

10). While values obtained for f were similar with other studies, as earlier stated, f  is an inadequate 

proxy for acid neutralization or acidity68, 95. Results from the MW, where the presence of other 

cations besides NH4
+, lead to an elevated pH, illustrate this point. Additional limitations of f are 

discussed further in the SI. 

2.4.7 Fine Temporal Analysis 

A comparison of modeled pH using a finer temporal scale was conducted at SEARCH sites. 

Instead of seasonal averages, monthly averages were used as inputs into ISORROPIA-II. Results 

of monthly modeled pH were statistically the same at all sites except at OAK. However, the p-

values between both temporal scales results were similar, differing only by 0.005 points (Tables 

B-6 and B-8). This difference, which could be attributed to measurement errors does not obscure 

or contradict the overall results from the seasonal average analysis which points to minimal pH 

changes, despite significant reductions of sulfate at all sites. In fact, the statistical analysis results 

for other speciated PM2.5 at this finer resolution mostly matched previous results at all the sites, 

with one or two sites changing (i.e. NO3
-, SO4

2- had same site statistical results, while TNHx results 

changed, with OLF no longer showing statistical significance). 
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Figure 2-2: Linear regression time series trends for CASTNET/AMoN co-located sites labeled as follows, (2a): pH 
(2b): Sulfate (SO42-), (2c): Particulate ammonium (NH4+), (2d): Particulate nitrate (NO3-), (2e): Gaseous 
ammonia (NH3(g)), (2f): Neutralization Ratio (f), (2g): Gaseous ammonia partitioning molar ratio to total 
ammonia (RN), (2h): Total ammonia (TNHx).  (CA: California; NW: Midwest; NE: Northeast; RK; Rocky 
Mountains; SE: Southeast). 

 



 33 

 

Figure 2-3: Linear regression time series trends for SEARCH sites labeled as follows, (3a): pH (3b): Sulfate (SO42-), 
(3c): Particulate ammonium (NH4+), (3d): Particulate nitrate (NO3-), (3e): Gaseous ammonia (NH3(g)), (3f): 
Neutralization Ratio (f), (3g): Gaseous ammonia partitioning molar ratio to total ammonia (RN), (3h): Total  
ammonia (TNHx). (Note: Results of PNS trends for sulfate, ammonium, and ammonia molar fraction are affected 
by limited data). (Note: Abbreviation for sites mentioned in Data and Methods section). 
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Figure 2-4: Seasonal average ammonia concentrations simulated by CMAQ for 2001 and 2011. The respective 
seasons, Winter, Spring, Summer, Fall consider temporal effects 

 

2.5 Implications 

Similar to prior empirical analysis in the Southeast, the results show that neither sulfur nor 

nitrogen oxide emission reductions are substantially impacting aerosol acidity at a national level 

for PM2.5 particles. The two locations with statistically significant—but small—pH trends (< 1pH 

unit yr-1), a near-coast SEARCH site in Mississippi (OAK) and another in California, did not have 

statistically significant SO4
2- reductions (though annual average sulfate levels did decrease), or 

high SO4
2- levels at the beginning of our analysis period as compared to other sites. Due to large 

contributions of PM2.5  from vehicle motors103, California had the second lowest SO4
2- levels 

overall (Figure 2-2b), and also saw higher levels of NH3(g) than most CASTNET/AMoN regions 

(Figure 2-2e). Similarly, OAK had the lowest SO4
2- concentration (except PNS), although not 

considerably lower than CTR, and a high increase rate of NH3(g) and NH3(g) partitioning than 

other SEARCH sites. Thus, the common factor between OAK and California appears to be a 

combination of much lower SO4
2- levels, higher NH3(g) molar fraction increases and the presence 

of other cations. This means that if the contribution of nonvolatile cations doesn’t change 
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significantly over time (as found in this analysis, Figures B-21 to B-23 & Tables B-6 to B-7), much 

lower levels of SO4
2-, in addition to higher NH3(g) concentrations are needed before significant 

changes in pH, or larger degrees of neutralization will be observed. This was also noted in Weber 

et al., (2016). 

For example, the potential coupled effect of low SO4
2- concentrations and high NH3(g) on 

pH is further illustrated by comparing observations from JST, YRK and BHM SEARCH sites, all 

of which had high initial SO4
2- levels and higher NH3(g) concentrations than OAK and showed no 

statistically significant changes in pH. This demonstrates that even if NH3(g) emissions were to 

remain stable or increase slightly as projected by Behera et al., (2013)104 and Paulot et al., 

(2016)102, it would not have a significant influence on acidity as aerosol sulfate levels decrease in 

response to reductions. 

Observed reductions in SO4
2- did not necessarily lead to NO3

- substitution,  as 

hypothesized, or as seen in other studies57, 105. This is because neutralization of SO4
2- solely by 

NH3(g) at current levels did not lead to substantially higher pHs or increases in gaseous ammonia 

which would promote NO3
- formation. This effect of NH3(g) levels on NO3

- formation was also 

discussed in Blanchard et al., (2003) and Weber et al., (2016). 

The NH3(g) partitioning ratio (RN) increased across all regions and most sites (except PNS 

and BHM) due to reduced SO2 and NOx emissions, as evidenced by reductions in PM2.5 sulfate 

concentrations while NH3(g) remained steady for reasons discussed earlier. Similar results 

observed by Saylor et al., (2015) and Shi et al., (2017)95 indicate that this is not unexpected. Even 

in areas like the MW, where high levels of ammonium nitrate did not lead to significant reductions 

in NH4
+, there was still a slight positive increase in NH3(g) partitioning. However, the increased 
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partitioning contributions, along with projected emission increases of NH3(g) did not appear to 

have any statistically significant impact on NH3(g), which is impacted by the  rapid cycle that 

exists between emissions and deposition rates79, 102, 106. This, along with observations noted in Guo 

et al., (2017) show that existing or higher levels of NH3(g) are not likely to impact aerosol pH 

much. Results also show that RN is also not likely to be impacted by NH3(g) projected emissions 

as a result, but more by SO2 and NOx emissions. 

TNO3
- trends were also small, despite NOx reductions57, 79, 107, 108. This is partly impacted 

by the fast deposition of HNO3(g), along with a steady ammonia concentration. These findings in 

this study, would apply specifically to fine particulate nitrate, not coarse mode nitrate. 

The statistically insignificant changes in pH corroborate and extend the findings by Weber 

et al., (2016) and further support that aerosol pH has been impacted little by reductions in sulfur 

dioxide and nitrogen oxide emissions across the US. Despite differences in slope direction of both 

trends due to differences in data (i.e. seasonal trend vs summer), both studies show insignificant 

changes in pH.  The study also shows that reduced NOx emissions had little impact on acidity (high 

or low) and that NH3(g) levels remained stable. Lower sulfate levels with an abundance of 

ammonia, coupled with the presence of nonvolatile cations will be needed to see significant pH 

increases and acidity levels decrease. A thermodynamic analysis on the effects of different levels 

of ammonia on aerosol pH substantiate these findings109. Further, it is clear that earlier assumptions 

that NH4NO3 would increase due to sulfate reductions did not consider that the continued low pH, 

which is unfavorable to NH4NO3 formation in most regions and would prevent substantial 

increases in particulate NH4NO3. What remains unclear, however, is how long it will take to see 

significant changes in aerosol acidity as SO2 and NOx emissions continue to decline, but based on 

the results of the study and others, it is likely to be substantial. While reductions in aerosol acidity 
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may not change much in response to SO2 and NOx emission decreases, this does not mean that air 

quality improvements, in general will not be realized as particulate matter levels will continue to 

decrease in response57, 110, 111. 

Lastly, despite the limited amount of data (i.e. both CASTNET and SEARCH data only 

ranged between four to seven years), the conclusions and observations found are in line with other 

studies focusing on spatially limited data over larger time periods (Saylor et al., 2015; Weber et 

al., 2016). Further, air quality modeling results found in Vasilakos et al., (2017), along with the 

CMAQ results in this study, all of which have longer time and can link the results directly to 

emissions changes, found similar spatial and temporal patterns as the observations. 
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CHAPTER 3. ORTHOGONALIZATION AND MACHINE LEARNING 

METHODS FOR RESIDENTIAL ENERGY ESTIMATION WITH 

SOCIAL AND ECONOMIC INDICATORS 

Adapted from ‘Abiola S. Lawal, Joseph L. Servadio, Tate Davis, Anu Ramaswami, Nisha 

Botchwey, Armistead G. Russell. Orthogonalization and machine learning methods for residential 

energy estimation with social and economic indicators. Applied Energy, 

https://doi.org/10.1016/j.apenergy.2020.116114 

3.1 Abstract 

The objective of this study is to identify the key factors that influence residential energy 

use in energy modeling. In doing so, we explore the impact of data transformations and analysis 

methods in developing residential energy models using social, economic, and demographic 

indicators at the zip code level in Atlanta, GA and for the entire state of Georgia. 

Orthogonalization algorithms, machine learning and variable selection techniques and ordinary 

least squares (OLS) are used to generate models for annual energy use for each zip code. Using 

log transformed yearly electricity estimation with orthogonalization yielded better estimates 

than other transformations [R2=0.80, normalized root mean squared error (NRMSE) =0.33, 

parameters=15] and results for natural gas estimate were better (R2=0.95, NRMSE=0.15, 

parameters=9). As expected, both models showed that socio-demographic factors are significant 

predictors. For natural gas, income and household make-up are the most important factors while 

electricity has a broader variety of indicator types. For electricity, despite the model accounting 

for 80% of electricity variation, the NRMSE was still moderately high (0.33). When electricity 
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use was separated into two clusters (high and low usage), the high use clusters appeared to match 

the interstate infrastructure morphology. These results show that electricity use, unlike natural 

gas use, is influenced by the morphology of the interstate roadway infrastructure and other social 

demographic factors. 

Keywords:  Residential energy estimation, machine learning, predictive models 

3.2 Introduction 

 Energy use within the United States is primarily distributed among four main sectors: 

commercial, transportation, industrial and residential 112, 113, 114. While industrial and commercial 

uses account for over 50% of total US energy consumption, residential consumption alone consists 

of about 23%, a fraction that will likely increase with future projected population increases115. Not 

only is the residential energy sector one of the major sources contributing to greenhouse gases 

(GHGs), it is also affected by climate change. For instance, Wang et al., (2017)116 found that 

residential cooling loads were highly sensitive to climate change and would increase energy 

demand up to 30% in 2050, and the Annual Energy Outlook 2020 report117 from the Energy 

Information Administration (EIA)  projects a noticeable increase in cooling demand due to an 

increase in the number of cooling degree days. Results from these studies and others, show that 

the impact of climate on residential energy consumption could be quite substantial in future years 

to come. 

The direct links between energy utilization, economic growth, and population to GHG 

emissions118 and energy forecast trends show that CO2 will only continue to increase considerably 

without effective mitigation measures 119, 120. As urban cities tend to have highly integrated 

infrastructure systems121 and high projections of population growth, they do and will continue to 
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account for a significant portion of energy demand and hence CO2 emissions 120, 122. 

Understanding the factors that drive energy demand is key to determining how to implement 

strategies for CO2 mitigation, particularly in cities. Given the significance of the residential sector 

on climate (i.e. GHG emissions123) and energy consumption, it is very important to understand the 

critical factors that drive residential demand in order for policy makers to develop effective 

mitigation strategies. However, understanding residential energy use and the influencing factors 

usually starts with knowing and benchmarking actual energy consumption at fine spatial 

resolutions. Unfortunately, privacy concerns among others 15, 124, makes it difficult to obtain high 

resolution residential energy use from energy suppliers, leading many energy estimators and 

modelers to employ a variety of approaches and techniques to develop energy models125. These 

models generally fall under two types, deterministic (engineering) and statistical models124. 

Although we discuss both model types in further detail, this study will primarily employ statistical 

models.  

Energy studies that utilize deterministic models typically employ engineering design 

parameters such as floor space, temperature, building size and occasionally, an estimate of 

occupancy activity as a variable 16, 126. Although these models generally yield good correlations 

and estimates of energy use, they tend to fall short in accurately predicting post-design energy 

consumption as they do not capture actual occupancy characteristics such as behaviors, 

preferences, family size and economic makeup. Thus, these deterministic models tend to be more 

useful in guiding final building design parameters124, and in exploring and evaluating different 

technologies and engineering parameters regarding building efficiency design than to estimate 

actual energy use. Further, another pitfall in using deterministic models is that they typically 

require experts to weigh in on what variables to use127.  
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The latter factor points to one of the key advantages of statistical models. While 

deterministic models require detailed user knowledge, particularly of engineering principles, in 

determining the variables to incorporate, statistical models seek to estimate mathematical 

relationships between selected predictor variables to a response variable under the assumption that 

there is an association that is expressed in the empirical data15. Therefore less expert knowledge is 

needed, and the development and solution of complex engineering approaches are avoided. For 

this reason, statistical models are frequently used, though in many cases they are often combined 

with deterministic models and parameters to form hybrid models 16, 126.   

In the case of deterministic, hybrid and statistical methods, some variables typically 

considered include household size, median income, household income, and gender demographics, 

though the number of these variables types in deterministic models might be limited. Such 

predictor variables relating to occupancy characteristics have been explored in few energy 

residential and commercial building modeling studies 128, 129, 130, 131, 132 and were found to be 

critical to energy use. For statistical and hybrid models, incorporating such variables is a complex 

process as a large amount of predictor variables can be selected. The sheer number of variables 

that can interact as result of many predictors, results in a high data dimensionality problem which 

is typically prone to errors from over fitting or multicollinearity 114, 15, 124, 133, 134, 15, 114, 124, 133-135. 

The challenges of such problems are in selecting the critical variables from the large number of 

predictors that go into the final model. However, whittling down a large number of variables poses 

difficulties and the literature on variable selection techniques for high dimensional feature 

reduction in energy estimation is covered in only a few studies. Methods used in these studies 

include principal component analysis (PCA) or stepwise regression 135, 135, 136. Forward and 

backward selection algorithms are other methods135, though the latter is not possible when the 
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number of predictor variables (p) is greater than the number of observations (n). Other studies 

utilize machine learning methods such as decision tress, artificial neural networks137, 138, 138, 139, 

but these are even fewer in number than the aforementioned methods within this area of study. 

In the development of a residential statistical energy model in this study, we aim to address 

the issue of high dimensional data and variable selection techniques with machine learning 

methodologies and data transformation techniques. We propose an orthogonalization method 

which has been used in some studies 140, 141 with varying degrees of success, but never in an energy 

estimation study. We demonstrate how orthogonalization facilitates variable reduction in high 

dimensional analysis and improves statistical model performance versus other data transformation 

methods. Our overall goal here is to show how these methods can improve statistical estimations 

of energy use and highlight the influencing factors that impact residential energy use. 

3.3 Materials and Methods  

3.3.1 Materials: Data Set  

The area of our analysis includes the Zip Code Tabulated Areas (ZCTA) around and within 

the counties of the Atlanta-Sandy Springs-Roswell GA Metropolitan Statistical Area142, and then 

the remaining ZCTAs in the greater state of Georgia in the United States. The first set of ZCTAs 

mentioned fall within 36 Georgia counties (SI Fig 1), which we refer to as metro Atlanta going 

forward in this study. We rely mainly on the American Community Survey (ACS)143 which is run 

by the Census Bureau for our predictor variable data. Though other studies have utilized other 

databases such as the Public Use Microdata (PUMS) 144, 145,  the Residential Energy Consumption 

Survey (RECS)146 and the Residential Building and Energy Simulation (RBES)147, those databases 

focus more on national and regional trends as opposed to the local and state analysis. Of note, the 
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ACS, which is managed by the United States Census Bureau, is the leading provider of quality 

data regarding the United States population characteristics, and provides the statistical quality 

standards for error estimates which are generally tabulated with each ACS data set. More 

information can be found at www.census.gov 148, 149. 

Information for Georgia is collected for all 737 ZCTAs from the 2010 Decennial ACS and 

2010 5-year estimates143. The ACS 2010 estimates were used in cases where Decennial 2010 data 

was not available for certain variables. 350 derived and primary variables (referred to as predictor 

variables) were gathered for both zip code and census tract spatial domains. Primary variables refer 

to predictor variables that are used directly from the ACS tables without any modification, while 

derived variables refer to those that are derived by combining two or more primary variables. A 

detailed list of all the variables can be found in SI Table C-1 (Appendix C). Overall, there were a 

total of 99 primary variables and 251 derived variables. 151 variables came from the 2010 

Decennial dataset, 197 came from 5 Year estimate Tables and 2 were derived with ACS data and 

2010 land use data from TigerLine Shapefiles, tabulated by the Census Bureau150.  

We developed models for two residential energy sources: electricity and natural gas. The 

electricity dataset consists of 2010 annual electricity data obtained from Georgia Power, while 

yearly natural gas use was obtained for 2008 from Atlanta Gas Light (SI Tables C-2 and C-3).  

3.3.1.1 Predictor Variables 

The predictors reflect a diverse range of information from social, economic to demographic 

in each ZCTA. For example, a social indicator might refer to the number of households, an 

economic indicator would refer to the median value of houses or household earned income, while 

demographic indicators could refer to the number of females, males, or African American and 

http://www.census.gov/
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Hispanic population in a particular zip code. Except for one discrete variable which was created 

to discretize the decadal age of housing units, all variables are continuous. Generally, the predictor 

variables fall under 7 broad categories (Table 3-1). 

3.3.1.2 Response Variable (Energy Data for Electricity and Gas)  

The electricity data from Georgia Power is for postal zip codes, largely situated in 

metropolitan Atlanta and captures 2010 annual residential electricity use. A total of 220 

observations were collected for this study, although after data cleaning the number dropped to 196 

due to the lack of data for some variables. Data for natural gas, included with the 2008 annual gas 

use was supplied for only 40 postal zip codes. These known energy ZCTAs served as the model 

training set, and the postal zip code for both energy forms were matched with the ACS ZCTAs 

that shared the same zip code identifier. The use of energy provided directly from the providers, 

rather than energy estimates that would have been required, further reduces sources of uncertainty 

and errors.  

3.3.1.3 Spatial Domain.  

With the exception of the energy data, all the predictor data sets cover two different 

regional sizes (i.e. census tracts vs ZCTA). The energy data were only available at the zip code 

spatial resolution for limited number of ZCTAs. Scaling methods (discussed in subsequent 

sections) were used to obtain energy estimates at a wider spatial domain (i.e. metropolitan Atlanta 

ZCTAs vs all Georgia ZCTAs). 
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Table 3-1: Predictor Variables   

Main Category Predictor Type Examples 

Economics Poverty Inequality 

 Income 

Work Force Population 

Monthly Costs 

Income Inequality  

Wealth Resource 

Population Demographics Gender 

Total Population 

Age 

Ethnicity 

Housing Occupancy and 

Tenancy 

 

Owned vs Rented 

Number occupied units 

 

Education 

 

Education Level  

Housing Units and Amenities Year built 

Housing Amenities: No of 

Vehicles   

Housing Amenities: Plumbing 

Housing structure (i.e. 

detached) 

Household Amenities: No of 

Room 

Land Use (Urban Morphology) Population density  

Housing density 

No of Occupied Housing Units 

Vacant Housing Units 

Household characteristics Household Makeup  

Household type 

Household Size 

 

3.3.2 Methods 

The methods, some of which include machine learning, regression and data transformation 

methods are described as follows and were evaluated using a wide range of techniques.  

3.3.2.1 Machine Learning Methods 

One set of methods we utilized to develop predictive energy models were based on machine 

learning. The entire data set (i.e. all 737 ZCTAs) were sorted into different data subsets (predictive 

and model)151. The model data set typically consists of known response variables: residential 
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energy use in this case (gas and electric) along with a full set of predictors and is used to find the 

appropriate variables and regression coefficients. The predictive data set also consists of predictor 

variables, but with unknown response values which will be estimated from the results generated 

from the model data set. The model data set is typically further divided into additional subsets, 

such as training, test, validation and withheld subsets. As in other studies, we use cross validation 

statistical metrics from the withheld and/or test data set to select the best model and the validation 

data set (also taken from model training set) to evaluate final model performance. For our data set, 

the zip codes with given energy use from Georgia Power and Atlanta Gas Light serve as the model 

data set. The remaining ZCTAs were the predictive data sets. 

3.3.2.2 Data transformation 

Developing statistical models usually involves data transformation as a way to improve 

model performance by minimizing the impact of outliers, skewed distributions and differences in 

scaling among predictors 134, 135. This can be the most critical step in development of statistical 

models152 and can drastically affect the results of analyses. Interestingly, few energy modeling 

studies have explicitly investigated the impact of transformations.   

Common data transformation methods include conversion of variables into discrete values 

134, 145, lognormal transformations 139, 139, 153 or z-scores which normalizes according to mean and 

standard deviation  135, 154. The transformation of predictors variables via z-scores and log 

transformations not only mitigates the impact of outliers, but allows for performance and statistical 

diagnostics of the model, such as residual plots and regression coefficient confidence intervals to 

be assessed using normal distribution table properties. Other methods such as principal component 

analysis (PCA), which not only reduces dimensionality within a data set, also eliminates 
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multicollinearity by transforming the predictors into a new set of variables that are orthogonal to 

each other 155, 156, 157, 155-158. However, the new PCA variables (i.e. eigenvectors) do not allow for 

direct relation or association of any observation with each predictor. Therefore, making direct 

inferences of the exact impact a predictor might have in a statistical model that uses PCA is not 

easily done. 

In this study, to address the issue of normality, scaling and multicollinearity, we utilize a 

less commonly used data transformation method known as Gram-Schmidt orthogonalization. 

Gram-Schmidt is an orthogonalization method for converting a set of vectors into an orthonormal 

basis. This method has been used in some large data studies  140, 141, 159 though to a much lesser 

extent in energy modeling studies. In general, an advantage of this type of orthogonalization versus 

other methods like PCA is that unlike the orthogonalized predictor components obtained in PCA 

(i.e. Xnxp vs Vpxp where X is original matrix with n observations and p predictors, and V is the 

transformed matrix with p predictor dimensions), it retains the same vector space dimensions, as 

the original predictor matrix (i.e. Xnxp vs. Vnxp). Thus, each new predictor column is easily 

discerned and can be compared directly to the original observations. Like z-scores, the predictor 

values in this case are unitless and standardized, therefore, the model coefficients in the regression 

are also standardized. Similar to z-scores 160 which can increase the regression predictive analytic 

power by removing the variability in raw values and improving the signal to noise ratio via 

standardization, orthogonalization in this regard does the same thing with an extra advantage of 

having essentially all the variables be orthogonal to each other and uniformly distributed. 

Though other orthogonalization methods (e.g. Householder and Givens transformations) 

exist  161, 162, Gram-Schmidt orthogonalization is more commonly used. Both a Classical (CGS) 
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and Modified Gram-Schmidt (MGS) exist and we assess the performance of both methods. A more 

thorough description can be found in the supplement (Appendix C). 

3.3.2.3 Regression and Improvement techniques 

Statistical regression methods assess the relationship between variables to a response 

variable 135, 147. The most commonly known method for regression is Ordinary Least Squares 

(OLS). The OLS model, as represented by equation 1 shows the expression for a multivariable 

linear regression model (MVR). Here, y is the response variable, X is a predictor variable, theta ϴ 

represents the parameters and ∈ is the error term. The subscript i refers to each observation. 

 𝑦𝑖 = 𝜃0 +  𝜃1 𝑋𝑖1 +  𝜃2𝑋𝑖2 + ⋯ 𝜃𝑝𝑋𝑖𝑝 + ∈𝑖 (2) 

 

Model performance and general diagnostics generated from OLS are analyzed using 

normal probability distributions to test for statistical significance and require certain assumptions 

such as that the error variances are assumed to be equal and are independent for statistical 

significance to be assessed appropriately. Additional assumptions assume that the errors are 

normally distributed with a constant variance ~ N(0, σ2) 135. 

Besides data transformations, there are other ways to improve results of regression models. 

Common techniques utilized in some studies involve clustering methods, to group observations 

into similar classes before regression. For instance, Gao et al. (2014)163 clustered buildings by 

certain features and Hsu (2015)164 separated homes from cold and hot regions to improve 

regression results. However, such methods were impractical for our study as we did not yet have 

a specific set of predictors to cluster with and we could not assume energy use clustering would 
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be effective. So we employed a less commonly used method known as ensemble averaging. A 

description of this method is discussed further in the supplement.  

3.3.2.4 Variable reduction and selection techniques 

As noted in Hsu 15, not many papers discuss in detail, variable selection techniques or the 

complications arising from high dimensional (or big data sets) including the interaction of many 

variables and combinations. As previously mentioned, the danger with multicollinearity that can 

arise from many variables is to cause errors in parameter estimates. Thus, concerted efforts are 

necessary to reduce the dimensionality of variables needed in the final model. 

Variable selection techniques fall under supervised and unsupervised techniques. 

Supervised selection methods typically involve an initial elimination of redundant variables by the 

researcher, using some cut off criterion to perform the variable selection (i.e. Pearson’s correlation 

coefficient or the t-test) 147, 147, 165. 

An unsupervised learning technique on the other hand, can perform variable selection by 

finding patterns not necessarily known or obvious to the researcher. Such methods include the use 

of PCA and variations of it such as Partial Least Square Regression (PLSR)136 among others for 

dimensionality reduction 155, 156, 157, 158 155-158, 166. The advent of machine learning has introduced 

many methods in unsupervised variable selection techniques as well. We investigated such 

methods that included techniques like random forest, regression trees, elastic net and lasso, and 

neural networks, but similar to other cases, the results were varied and were inconclusive 167, 167, 

168. 
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In this study, we used the stepwise fit algorithm for variable reduction. Stepwise fit is an 

interactive algorithm169 which considers all possible combinations for all the variables and selects 

which parameters will remain in the model based on the chosen criteria, in this case a significance 

level. A widely used technique in many studies 151, 163, its implementation and theory has been 

covered extensively in many statistical textbooks  170. 

3.3.2.5 Model Evaluation and Diagnostics 

Many energy use studies, though based on different methods, are similar in their approach 

in assessing the model with statistical metrics 167, 167, 171. Hsu (2015)164 analyzed the stability of 

clusters by evaluating coefficient stability against the number of clusters for each method. Lyu et 

al. (2017)141 conducted a similar analysis to assess the effect of the number of features on 

classification accuracy. Hsu15, in his 2015 energy study used the mean-square error (MSE) of cross 

validation sets to determine the best parameter for different statistical regression techniques and 

parameters.  

In similar fashion here, we use averaged values of tabulated statistics (Table 3-2) from 

cross validation sets to evaluate model performance. In addition, model diagnostics were 

conducted with the residual plots to check normality assumptions and independent distributions 

on error. The t statistic was evaluated to determine the significance of each parameter and the 

Variance Inflation factor (VIF), which tests for multicollinearity was also evaluated. Other model 

diagnostics recommended in other studies include other results such as the prediction intervals172. 
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Table 3-2 Statistical variables for model validation 

Metric  Metric Formula Metric Formula 

SSE_U 
𝜎̂2 =  

∑ 𝑒𝑖
2𝑛

𝑖=1

𝑛 − 𝑝
 =  

𝑆𝑆𝐸

𝑛 − 𝑝
 =

∑ (𝑦𝑖 −  𝑦̂𝑖)
2𝑛

𝑖=1

𝑛 − 𝑝
           

Unbiased Sum 
of residuals 

SSE 
𝜎̂̇2 = ∑ 𝑒𝑖

2

𝑛

𝑖=1

  = 𝑆𝑆𝐸   = ∑(𝑦𝑖 −  𝑦̂𝑖)
2

𝑛

𝑖=1

     
The biased 
estimated 
residual sum 
for a model 
with n 
observations 

MSE 
𝑀𝑆𝐸 =  

𝑆𝑆𝐸  

𝑁
=

1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 
Mean Square 
Error 
 

RMSE 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √
𝑆𝑆𝐸  

𝑁
 = √

1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

           

Root Mean 
Square Error 

NRMSE 

𝑀𝑎𝑔 =  
√𝜎̂2  

𝑦̅𝑖

=
√

1
𝑛 − 𝑝

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑁

𝑖=1

1
𝑁

∑ 𝑦𝑖

 

Normalized 
Root Mean 
Error. 

SSR 
𝑆𝑆𝑅 =  ∑(𝑦̂𝑖 − 𝑦̅𝑖)

2

𝑁

𝑖=1

 

 

Variation of the 
Regression  
 

SST 𝑆𝑆𝑇 =  𝑆𝑆𝐸 +  𝑆𝑆𝑅 Total Sum of 
the variance  
𝑆𝑆𝑇 
 

R2 
𝑅2  =  

𝑆𝑆𝑅

𝑆𝑆𝑇

 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇

 

 

Coefficient of 
Determination 
(Variance 
percentage 
from the 
regression) 

R2 
adjusted 

𝑅2  =  
𝑆𝑆𝑅

𝑆𝑆𝑇

 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇

 
Unbiased 
coefficient of 
determination  
 

NMB 
𝑁𝑀𝐵 =

1

𝑁
∑

(𝑦𝑖 − 𝑦̂𝑖)

𝑦𝑖

𝑛

𝑖=1

  
Normalized 
Mean Bias 
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3.3.2.6 Model Set Up 

One of the main objectives of this study was to explore the impact of different data 

transformation techniques to address multicollinearity in generating statistical models for energy 

use. We focus mainly on orthogonal data transformation techniques and not only incorporate 

variations of Gram-Schmidt orthogonalization methods, but also principal component analysis 

methods for comparison. In addition, as it is widely used, we explore the impact of z-scores as 

well. In total, 5 different transformation techniques are explored (z-score, CGS, MGS, PCA, and 

PLSR) in this study.  

For all five transformation methods, we evaluated at two spatial extents; metropolitan 

Atlanta ZCTAs and all Georgia ZCTAs. In the case of orthogonalization methods (CGS and 

MGS), as the order of orthogonalization affects the output (see supplement), orthogonalization of 

the matrix occurred after the predictor vectors were arranged in descending order with the 

Euclidean norm, denoted as ||v||. 

Annual electricity use ranged from 1.4x104 to 2.8x108 Kwh/year. To reduce the range, as 

in other studies137, we transform the electricity response into a log normal variable using Box-Cox 

log transformation. Here, for the Box-Cox transformation, we use a lambda value of 0.5 on the y 

response as it gave the best results (SI Figure C-14). For natural gas, no transformation was 

necessary and the range here was no more than 2 orders of magnitude. We find this was similar to 

the studies by Chen et al. (2016)153 and Salari et al. (2017)171. 

In total, 196 and 32 observations were used for electricity and natural gas respectively as 

the full model training set for metro Atlanta. The predictive data set for greater Georgia ZCTAs 

were 410 for electricity and 575 for gas use. Using a seeded random generator, an initial validation 
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data set (6% (n = 6) electricity and 5% (n=3) gas) was taken from the full model training data set 

and additional sub sample set was taken for the withheld. A 10 fold and 5 fold cross validation 

(CV) sample set was used for electricity and natural gas respectively, with the CV representing a 

withheld dataset. We describe in further detail within the supplement, the model evaluation 

process. 

3.4 Results 

3.4.1 Data Transformation Method Analysis  

In comparing all methods, we find that the modified orthogonal algorithm (MGS) best 

preserves orthogonality among all the predictors. Unlike MGS, the round-off errors with CGS173 

causes the predictors to lose orthogonality properties as the sequence proceeds. Another benefit of 

MGS is that the matrix rank matches the number of predictor column vectors. All other 

transformation methods, beside MGS yield a matrix with a lower rank (i.e. rank is less than number 

of predictor columns), which is an indication of a low orthogonality among predictors with those 

methods. Figure 3-1 shows how well the MGS method compares with data transformation methods 

using CGS, z-scores and none at all. 
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Figure 3-1: Probability distribution of predictor’s correlation coefficients. 

 

3.4.2 Regression model results 

The results are presented for all the data transformations in Tables 3-3 to 3-6, with details 

of model predictors in Table 3-7 to 3-10. The best performing model or statistically significantly 

predictors are highlighted in emboldened font. The results of all transformation methods for all 

196 metropolitan ZCTAs listed in Table 3 indicate that MGS had the best results overall. The 

original data set and z-score transformation showed evidence of multi-collinearity and similar 

estimation bias (NMB). The CGS method appeared to have comparable results with MGS training 

set R2 values, even with a smaller number of predictors, but it had the highest NMB and NRMSE 

for all 3 data sets (i.e. full, withheld, validation) as compared to other methods. The principal 

component methods (PLSR and PCA) did not appear to offer any significant advantages over the 

MGS, even with more predictors. However, four of the MGS predictors were found to be 

insignificant (Table 3-7). Although the maximum VIF was above the recommend value of 10 for 
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some of the predictors from the MGS method, it was only for two variables and it was not 

substantially higher than the recommended cutoff. As presented in SI Fig C-6, only two predictor 

categories (v5-Number; SEX AND AGE - Male population & v10-Estimate; VALUE - Median 

(dollars)) exhibited high Pearson correlation coefficients with each other and coincidentally, they 

were the same predictors with slightly high variance inflation values above the recommended 

cutoff value of ten171. 

Table 3-3: Differences in model performance among the data transformation techniques for Metropolitan 
Atlanta ZCTAs for electricity use (n = 196), are presented here.  

 Full Ensemble 

No 

 

Data 

Method 

 

Model 

size 

Train 

R2 

Train 

NRMSE 

Train 

NMB 

Train 

Max 

VIF 

Average 

Withheld 

R2 

Avg 

Withheld 

NRMSE 

Avg 

Validation 

NRMSE 

1 None 12 0.77 0.35 -0.68 961 0.69 0.40 0.22 

2 Z scores 12 0.77 0.35 -0.68 961 0.69 0.40 0.22 

3 CGS 6 0.75 0.37 -0.79 1.41 0.68 0.40 0.24 

4 MGS 15 0.79 0.33 -0.61 13 0.75 0.35 0.17 

5 PCA 20 0.77 0.37 -0.70 N/A 0.70 0.39 0.23 

6 PLSR 20 0.78 0.35 -0.65 N/A 0.73 0.36 0.23 

Evaluation of the performance of different transformation techniques on the full data set 

(n=606) was performed (Table C-4). In all cases, the data set was transformed before separating 

the known observations (n = 196 training data set) from the unknowns (n = 410). Selection of the 

final model was based on the measure of the metrics for R2, NRMSE, VIF, and NMB for the 

training, as well as the R2 for the withheld. Similar to previous results, MGS had the best statistical 

performance. 
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Table 3-4: Differences among the data transformation techniques with the training data set in modeling 
electricity use for all Georgia ZCTAs (n = 606) are shown. 

 Full Ensemble 

No 

 

Data 

Method 

 

Model 

size 

Train 

R2 

Train 

NRMSE 

Train 

NMB 

Train 

Max 

VIF 

Average 

Withheld 

R2 

Avg 

Withheld 

NRMSE 

Avg 

Validation 

NRMSE 

1 None 3 0.71 0.40 -0.92 1.3 0.65 0.35 0.30 

2 Z scores 3 0.71 0.40 -0.92 1.3 0.65 0.35 0.30 

3 CGS 6 0.75 0.37 -0.79 1.12 0.75 0.29 0.21 

4 MGS 15 0.79 0.34 -0.55 1.6 0.82 0.25 0.24 

5 PCA 20 0.77 0.37 -0.69 N/A 0.74 0.29 0.24 

6 PLSR 20 0.78 0.35 -0.64 N/A 0.76 0.28 0.23 

 Natural gas (Table 3-5) use in metropolitan ZCTAs in Atlanta was assessed with the same 

setup as electricity, although PCA and PLSR analysis was not conducted here due to the small 

training data set size of only 32 observations. Further, unlike electricity estimates and similar to 

the study by Chen et al. (2016)153, log transformation of natural gas use was not necessary, as seen 

in the Box-Cox plot (SI Fig C-15) 174. Although the MGS model had the best results in terms of 

eliminating multicollinearity, a look at the p-values in the regression models (SI Tables C-9 and 

C-10), as well as the correlation color maps (SI Fig C-22) suggest that the CGS had the most 

statistically significant variables in its model. MGS performance here can be explained, partially, 

by the small size of the training set. It should also be noted here that with MGS, the small training 

set size required a small addition of 1E-7 to the predictors in the training set. This value was also 

added to the other transformation methods to ensure consistency. 
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Table 3-5: Differences in model performance among the data transformation techniques for Metropolitan 
Atlanta ZCTAs for gas use (n=32) are presented here.  

 Full Ensemble 

No 

 

Data 

Method 

 

Model 

size 

Train 

R2 

Train 

NRMSE 

Train 

NMB 

Train 

Max 

VIF 

Average 

Withheld 

R2 

Avg 

Withheld 

NRMSE 

Avg 

Validation 

NRMSE 

1 None 9 0.98 0.08 0.00 11 0.99 0.05 0.17 

2 Z scores 10 0.98 0.09 -0.02 19 1.00 0.04 0.20 

3 CGS 9 0.95 0.15 -0.02 13 0.95 0.11 0.21 

4 MGS 11 0.94 0.17 -0.05 5 0.94 0.13 0.28 

 Utilizing the full data set (n=606) for gas estimation, the data set was transformed before 

separating the known observations (n = 32 training data set) from the unknowns (n = 574). The 

MGS model had the best performance in eliminating multicollinearity among the predictors, which 

were largely significant (Table 3-6; SI table C-17) 

Table 3-6: Differences among the data transformation techniques with the training data set in modeling gas use 
for all  GA ZCTAs  are shown (n=606).  

 Full Ensemble 

No 

 

Data 

Method 

 

Model 

size 

Train 

R2 

Train 

NRMSE 

Train 

NMB 

Train 

Max 

VIF 

Average 

Withheld 

R2 

Avg 

Withheld 

NRMSE 

Avg 

Validation 

NRMSE 

1 None 10 0.98 0.09 0.00 23 0.99 0.06 0.19 

2 Z scores 10 0.98 0.09 0.00 23 0.99 0.06 0.19 

3 CGS 9 0.96 0.13 -0.02 14 0.97 0.11 0.18 

4 MGS 10 0.95 0.15 -0.02 2 0.93 0.13 0.09 

 

3.4.3 Model assessment  

 Overall, the MGS method had the best results for electrical energy usage predictions 

(Tables 3-3 & 3-4) and ensemble averaging improved results, generally for all methods (SI Figs 

C-12 and C-13). While the scatter, residual and quartile plots (SI Figs C-2 TO C-4, C-25 TO C-

27) for all methods look fairly similar, the correlation color maps (SI Figs C-5 & C-6) show that 

orthogonalization is effective in reducing multicolinearity. Most of the predictors in the CGS and 
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MGS models were significant at an alpha level of 0.05 and lower, and correlation between most 

variables was noticeably reduced, when compared to z-scores and untransformed model results. 

For the electricity models, as the diagnostic plots between CGS and MGS were similar, the MGS 

model was selected as the better model as it led to other statistical metrics being improved. The 

proposed order of orthogonality also shows good success as well and the orthogonal models had 

better performance than PCA and PLSR models. Exploring the interaction effects 175, 175, 176 plots 

between the predictors and electricity use of the MGS model (Table C-3) further shows the impact 

of transformation in regression models. Most of the untransformed predictors had little to no 

interaction effect with the dependent variable (SI Fig C-10) than the transformed variables (SI Fig 

C-11) for which most had a strong interaction effect with the dependent variable.  

For metropolitan ZCTAs, results for gas estimation show that the CGS model was the best. 

While diagnostics plots were similar in performance across the board (SI Figs C-18 TO C-20), 

correlation among variables in CGS was better than MGS and the other transformations (SI Fig C-

22). Although the models with no transformation and z-scores did perform better than the 

orthogonalized models based on most of the metrics (Table 3-5), most of the variables were not 

statistically significant at alpha of 0.05.  

A couple reasons explain the poorer performance of MGS over CGS with the metropolitan 

ZCTAs in gas usage estimation. The small size of the training set affected MGS orthogonalization, 

as successful orthogonalization with MGS was not possible without adding a small numerical 

value 1E-7 to the data set when only the 32 metropolitan ZCTAs were used. This value was added 

for all transformations to ensure consistency. Further, in the final step of the variable selection, the 

small training set made it difficult to select the optimum variables, and so it is possible that with a 

larger training set, MGS performance would have improved in comparison to CGS. This 
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assumption is reflected when using all GA ZCTAs (n=606) to orthogonalize and in the correlation 

plots (Table 3-6, SI Figs C-22 and C-32). With a larger data set, the MGS model performed as 

well as the other transformations, but had more significant predictors and lower correlation (SI 

Tables 14 to 17) and so was chosen as the best model. 

Based on the performance of the models, we discuss results of the electricity models using 

MGS results and results for natural gas using the CGS for the metropolitan ZCTAs and MGS for 

all GA ZCTAs in the discussion section. 

3.5 Discussion 

3.5.1 Interpretation of regression results  

Assessing the impact of the predictor coefficients in the MGS and CGS regression models 

will be similar to methods used in z-score interpretation and analysis 177. In z-score models, the 

relative magnitudes of these parameter coefficients, in addition to the p-values emphasizes the 

importance of that predictor on the dependent variable. While the interpretation of orthogonalized 

predicted coefficients is similar, unlike z-scores where the influence of an observation predictor 

value represents the magnitude of deviation away from the mean, the orthogonal predictors do not 

hold the same meaning, although they do reflect an orthogonal reference to other predictors in the 

data set. 

Thus, to assess the regression results and their implication on the social indicators, we 

employ two techniques here. First, we look at the magnitude of the regression coefficients as the 

relative contribution and importance of each predictor together with the significance value on the 

dependent value. As we were able to show higher correlation with ZCTA annual energy use with 
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transformed variables than the data in its original format, this assessment is still insightful. Second, 

as in the case of the electricity model, we conduct principal component analysis to assess the 

variation in variables with energy use. We discuss the results of metropolitan electricity and gas 

use in further detail and include results of the model when all GA ZCTAs are used. 

3.5.1.1 Metropolitan Atlanta ZCTA electricity use 

The results of the MGS orthogonalized model (Table 3-3) were analyzed by assessing the 

impact of each predictor (Table 3-7). Note, all variable numbers in this section are from Table 3-

7 and are denoted with a “v” prefix based on the magnitude of regression coefficient and statistical 

significance. We also map the predicted electricity use by ZCTA alongside actual electricity use 

(SI Fig C-33) with the MGS model, which show similar patterns of spatial distribution. Of note, 

all variables, with exception of median dollar value of the house and male population (the only 

largely two positive transformed variables: SI Fig C-16) were normally distributed with a mean of 

zero. 

The indicators in the model fall into gender, ethnic, education, tenancy and economic 

categories (Table 3-1). Two variables in particular, male population, and median house value had 

high VIFs and represent a significant impact on electricity use as indicated by their regression 

coefficients and p-values. Both also have the largest regression coefficients relative to the others.  

The median house value (v10) with the largest regression coefficient and the most 

significant predictor stands out and highlights the importance of economic resources with energy 

use. The male population (v5) as well as the female population over 18 (v2) were other significant 

variables, though with opposite regression coefficient signs. Although v5 did not specify an age, 

it likely refers to the older male population members, based on the presence of significant variables 
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such as variable 8 which refers to the Percent Tot Male Pop Bachelor and Higher degree/>25yr 

Tot Male Pop. 

Total population (v15) within each ZCTA was significant, unlike the total population per 

number of housing units (v4), indicating that total population as opposed to population density is 

more critical in metropolitan ZCTAs energy models, a finding seen in other studies153. The tenancy 

ratio between renters and owners (v9) showed up as statistically significant along with family 

households (v11) and both essentially had the same regression coefficients and direction, 

indicating that the ratio of renters and owners and family households are similarly connected with 

electricity use.  

The presence of household types (i.e. families and non-families), education, median house 

value and income variables in the statistical model, indicate that household types, education, 

tenancy types and economic resources are significant drivers of electricity use. Of interest, 

population density was not a factor in the final model, meaning that electricity use is not 

necessarily driven by certain demographic land use patterns. 

Lastly, within the population demographics category, ethnicity, specifically the 

demographic of white which includes Hispanic populations (v1) was significant. As all the 

metropolitan Atlanta ZCTAs consists largely of this demographic, any variation of this predictor 

would have a significant influence on estimated energy use. 
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Table 3-7: Linear Regression fit of final model. ZCTA electricity use is the dependent variable.  

Variable  
No 

Variable Name Model 
Coefficient 

p-values 

1 White with Hispanic population -4.1E+04 0.00 

2 Number; SEX AND AGE - Female 
population - 18 years and over 1.9E+04 0.00 

3 Female/Male ratio pop 25 and older  9.3E+03 0.06 

4 Total Population / Number of housing units -8.1E+03 0.11 

5 Number; SEX AND AGE - Male 
population -9.6E+04 0.00 

6 Number; RACE - Total population - One 
Race - Some Other Race -8.8E+03 0.07 

7 100*Owner Occupied by Age < 24/Total 
Owner-Occupied Households 1.1E+04 0.04 

8 Percent Tot Male Pop Bachelor and 
Higher degree/>25yr Tot Male Pop 1.1E+04 0.02 

9 Ratio Renter-occupied housing units to 
Owner-occupied housing units - Some 

college or associate degree -1.3E+04 0.03 

10 Estimate; VALUE - Median (dollars) of 
house 2.8E+05 0.00 

11 Number; HOUSEHOLDS BY TYPE - 
Total households - Family households 

(families) [7] -1.3E+04 0.01 

12 100*No of occupied Housing Units with 
Wood/Total Occupied Housing Units -1.2E+04 0.01 

13 Estimate; INCOME AND BENEFITS (IN 
2011 INFLATION-ADJUSTED DOLLARS) 

- Median nonfamily income (dollars) 3.3E+04 0.00 

14 Percent; EMPLOYMENT STATUS - In 
labor force pop over 16 -7.2E+03 0.10 

15 Number; SEX AND AGE - Total 
population 6.5E+04 0.00 

 

To better interpret the model results and the direction of predictor influence on electricity 

use (i.e. high or low), we applied PCA. Utilizing the k-means algorithm in MATLAB, we saw 

evidence of two prominent clusters for known electricity use (Fig 3-2). A boxplot of both energy 

clusters showed that the areas in the red were categorized as high energy use ZCTAs, while those 

in color blue were considered low energy ZCTAs (see also SI Fig. C-9). For the log transformed 

electricity clusters, a total of 92 ZCTAs fell in the high use with about 104 in the other. 
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Figure 3-2: The spatial distribution of high and low ZCTA electricity use clusters. (Boxcox transformed and un-
transformed clusters.) 

Using the k-mean clusters for grouping between high and low energy use, a principal 

component analysis plot was constructed with the transformed predictors together with log 

transformed electricity use in R using the gg-biplot package178 in Fig 3-3. A summary of the PCA 

components is found in the SI table C-18. 
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Figure 3-3: Model variables distribution of ZCTA electricity use and statistically significant variables along the 
first two principal components 

The plot shows the distribution of the observations into respective energy clusters obtained 

from the k-means algorithm and indicates which significant predictors from the regression 

influences the distribution of the clusters. In the high energy cluster, we find that variables such as 

owner tenancy (v7), female population over 18 (v2), male population (v5), total population (v15), 

income for non-families (v13), male with bachelor degrees (v8), median housing value (v10), are 

associated with high energy use, while variables such as white with Hispanic (v1), rent tenancy 

(v9), family households (v11) are associated with low energy use.  

The results create an interesting profile of electricity distribution with the ZCTA 

demographic makeup reflecting that educated, home owners, non-families, populations with 

economic resources are key drivers of energy use and that ZCTAs with demographics of higher 

proportion of white populations and family households tend to have a lower energy use. 

Conversely, the presence of family households, especially those with children has been shown to 

be associated with higher electricity costs, contradicting some of the associations here179.  
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3.5.1.2 GA ZCTA electricity use  

The predictive model was used to generate electricity estimates for all 606 ZCTAs and we 

find housing median value and median income to be influential predictors in addition to the 

predictors labeled as white with Hispanic population, total population, female population median 

house value, median nonfamily income (SI Table C-12). The percentage of housing units built 

later than 1950 was also significant.  

While both electricity spatial ZCTAs have predictors that fall into similar categories (Table 

3-8), there are some differences among some of the variables. For instance, regarding educational 

attainment, within the metropolitan ZATCs, higher education (i.e. college) are key characteristics 

whereas for the larger ZCTA dataset, education slightly beyond high school was a predictor. 

Household characteristics in rented units for GA ZCTAs came up as significant whereas family 

households for metropolitan ZCTAs were highlighted instead, although in both cases, family 

households were the main drivers. 

Although there were some common significant variables (a total of 4 listed in Table 3-8), 

the vast differences in some of the metrics highlight the difficulty in comparing different regional 

social economic characteristics as they pertain to electricity use.  
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Table 3-8: Electricity model significant predictor variable category. Predictor numbers match those in SI Table C-
1 

Category Metropolitan ZCTAs Georgia ZCTAs 

Economics 161,185 161, 185 

Population Demographics 1,9,18 1, 18, 22, 27 

Housing Occupancy and 

Tenancy 

4,7,9,82,336 67, 103, 201, 319 

Education 296, 336 319 

Housing Units 

And Amenities 

236 152, 201, 209 

Land Use 

(Urban Morphology) 

1 1, 209, 67 

Household characteristics 49 103 

 

3.5.1.3 Metropolitan Atlanta Gas Use 

Here we assess the results of the 32 ZCTAs for gas results (Table 3-9). Although all the 

transformation methods, in addition to MGS and CGS compare fairly well, in terms of 

performance diagnostics, the CGS model performed better with the most significant predictors in 

the model. A side by side map of predicted natural gas use from the CGS model (SI Fig C-34) next 

to that of actual natural gas use shows nearly identical results. 

The results show that income and household demographics reflect gas estimation use. Two 

of the significant economic predictors, household income and per capita income (v7, v8) were as 

important as median house value (v5), the latter which also showed up in electricity models as a 

significant variable, a finding similar to that of Gassar et al., (2019)180. Total population (v3) as 

well as household population (v6) had significant p-values. Along ethnic demographic variables, 

the African American population was the only significant predictor demographic here. 
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Table 3-9: Linear Regression fit of final model. ZCTA natural gas use is the dependent variable.  

Variable  
No 

Variable Name Model 
Coefficient 

p-values 

1 
Number; RACE - Total population - One 
Race - Black or African American -1.60E+04 0.03 

2 

Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Median 
family income (dollars) 1.82E+06 0.17 

3 Number; SEX AND AGE - Total population 1.11E+07 0.00 

4 Number; SEX AND AGE - Male population -3.20E+06 0.00 

5 Estimate; VALUE - Median (dollars) 2.01E+05 0.00 

6 
Number; RELATIONSHIP - Total 
population - In households 2.30E+06 0.01 

7 

Estimate; INCOME AND BENEFITS (IN 
2011 INFLATION-ADJUSTED DOLLARS) - 
Per capita income (dollars) -2.63E06 0.00 

8 

Estimate; INCOME AND BENEFITS (IN 
2011 INFLATION-ADJUSTED DOLLARS) - 
Median household income (dollars) 6.77E+06 0.01 

9 

Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Median 
nonfamily income (dollars) -1.61E+06 0.15 

 

3.5.1.4 GA ZCTAs gas use 

Out of all the models, the MGS model (Table 3-6) was certainly the best and in fact, energy 

estimates using some of the other models (i.e. no transformation and z-score) gave largely 

erroneous natural gas estimates for over half of the 574 ZCTAs, whereas the CGS model had 6 

and the MGS model had 2 (excluded from SI Fig C-35), and in the case of MGS, is likely to 

improve if the training set had been larger. Similar to the metropolitan tracts for gas use, total 

population was a significant predictor but there was slightly more variation with the predictors in 

terms of the categories. We found population demographics such as female population were 

significant, in addition to homes rented by populations over the age of 55 for occupied households. 

The two significant economic metrics which were related to monthly housing costs were also 
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significant. We categorize the predictors according to social economic and demographic category 

(Table 3-10). 

Table 3-10: Natural Gas significant predictor variable category. Predictor numbers match those in SI Table C-1 

Category Metropolitan ZCTAs Georgia ZCTAs 

Economics 161,178,184 266, 270 

Population Demographics 1,9,23 1,15 

Housing Occupancy and 

Tenancy 

 87 

Education   

Housing Units 

And Amenities 

 224 

Land Use 

(Urban Morphology) 

1 349 

Household characteristics 37  

 

Overall, the variables for both models (gas and electricity) are similar to the variables 

selected by Salari et al. (2017)171 in terms of critical social economic factors. However, unlike the 

impact of electricity, the variables that impact gas use appeared to be more influenced by 

household makeup and household economics, whereas with electricity, a much wider range of 

variables influence demand.  

3.5.2 Impact of clustering and spatial analysis on electricity use in the metropolitan ZCTAs.  

In this section, we focus on analyzing metropolitan electricity use in further detail. The 

results of the MGS model show a strong statistical relationship between the transformed selected 

predictors and electricity use. However, while electricity use showed evidence of prominent 

clustering (Fig 3-2), not a single transformed predictor (SI Fig C-8) showed evidence of a 

clustering pattern identical to that of electricity clustering. Even predictors such as the median 

value of homes which had a high regression coefficient in the statistical model, did not exhibit any 
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strong sign of similar spatial clustering with electricity. Although one untransformed predictor (v4, 

SI Fig C-7) did appear to match electricity clustering (Table 3-7), Total Population/Number of 

Housing units (referred to as TPH herein), it was a non-significant variable in the statistical model. 

When we did analyze TPH spatial patterns of electricity use per capita for each ZCTA together 

with population further (SI Fig C-36), we found that while population clustering did not have a 

similar pattern with electricity use as mentioned previously, TPH had an inverse associative pattern 

with electricity, with low occupancy units spatially clustered with high electricity use ZCTA and 

vice versa. The inverse relationship seen here between electricity per capita and occupancy was 

also noted in a study by Dar-Mousa et al. (2019)181. Fig 5 of their study showed that electricity per 

capita is higher in lower population density areas, a similar finding here, as measured with TPH. 

These results suggest that total population and density are not the sole drivers of high electricity 

use. As the electricity per capita clusters show, both clusters have essentially similar population 

size (SI Fig C-36g), yet one cluster uses more electricity than the other, showing that there are 

other factors that need to be considered.  

The spatial clustering results showed that none of the significant variables were similar in 

clustering pattern to electricity. In addition, most of the variables themselves, did not present any 

form of clustering in any case, transformed or otherwise (SI Figs C-7 and C-8). In fact, only with 

a few transformed variables, did we see any evidence of clustering, two variables, male population 

and median house value and for both variables, it was only 41 and 33 out of 196 metropolitan 

ZCTAs zip codes for which this was the case respectively. While with untransformed variables, 

two variables, namely median house value and percent of 25-year-old males with bachelor or 

higher with degrees had some clustering with 55 and 30 observations out of 196 respectively. 

Further clustering analysis was conducted to see if all the combined predictors (transformed or 



 70 

original) followed the similar energy spatial clustering pattern shown in Fig 3-4. But none of the 

combined predictors showed similar clustering patterns with electricity, despite evidence of 

clustering of the predictors in PCA (Fig 3-3). 

 

Figure 3-4: Clustering by k-means, plotted spatially with geographical coordinates 

To further assess the impact of clustering, we performed PCA with both transformed 

variables and untransformed significant variables, without electricity as a variable. Results showed 

that while the variability of energy use varies spatially (Figs 3-3 & 3-4), the same cannot be said 

for the demographic variables (Figs 3-4 & 3-5), despite the strong statistical relationships of the 

predictors with electricity use. It was therefore clear that the social demographics could not 

adequately explain the entire variation in residential electricity use. 
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Figure 3-5: bi-plot of components for transformed and untransformed predictors 

With no apparent clustering or spatial pattern found with ZCTA electricity use and the 

variables, we overlaid all the electricity use clusters over a geographical feature map of the 

metropolitan area (SI Fig C-23).  
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Figure 3-6: Electricity high and low clusters mapped along major interstate roadways182. (Map source: Map 
created using ARCGIS® software by ESRI (ESRI 2015183). Note: electricity here is log transformed. 

The results (Fig 3-6, SI Fig C-24) indicate that annual high electricity use ZCTAs are 

largely clustered within the perimeter of the I-285 interstate, while the annual low use ZCTAs are 

outside its perimeter. As the social economic predictors in the final model could not explain this 

spatial clustering, the conclusion here is that the morphology of the city plays a significant role in 

determining electricity use. The impact of city morphology on electricity use has been related to 

the urban heat island (UHI) effect 184, 184, 185, however, not many have been able to quantify the 

actual impact on electricity demand, due to the reasons mentioned earlier. Even if data are 

available, few studies explore the link between the transportation sector and residential electricity 

use. Dar-Mousa et al. (2019)181 attribute the differences in electricity spatial pattern to building 

design and socioeconomic factors, even though the higher electricity per capita areas are closely 

situated near high density roadways.  
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Within the metropolitan ZCTAs, the urban heat island effect could be brought about by a 

number of variables such as impervious, light absorbing, surfaces such as buildings and roadways 

186, 186, 187. There are also parts of urban morphology which tend to mitigate the impact of UHI 

such as green spaces like parks and tree canopy188, 189. Although not the main focus on this study, 

we conduct some preliminary analysis to try to delineate the impact of some of these variables on 

electricity distribution. We explore this by using data which serve as representative proxies for the 

following urban forms: roadway infrastructure, impervious surfaces, pervious surfaces and water 

bodies. To analyze the impact of roadways, we obtained a proxy, by using fine scaled modeled air 

quality data within the metropolitan Atlanta zip codes, as documented in Bates et al. (2018)190. 

The data for impervious surfaces was gathered from the Atlanta Regional Commission (ARC) 

LandPro data set (2012)191 and consists of impervious surfaces like roadways, buildings and other 

categories of the built environment. The last two data sets were for pervious surfaces which 

comprises largely of green spaces and then water bodies and were also gathered from ARC. The 

four data sets were collected for 159 metropolitan ZCTAs within a similar time frame like the 

electricity data. The air quality data was obtained as modeled nitrogen oxide (NOx) 

concentrations190. LandPro data from ARC was utilized by aggregating land cover data by zip code 

for pervious, impervious surfaces, and water bodies. Impervious surface data was calculated by 

aggregating roadways, buildings, and other built infrastructure. Pervious surfaces were calculated 

by aggregating parks, forests, wetland, and other pervious greenspace land cover. Finally, water 

bodies were calculated using the area in each ZCTA covered by lakes, rivers, ponds, and other 

water bodies. The pervious, impervious and water body data were obtained as percentage areas 

within the ZCTAs. 
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Generalized linear regression models using electricity use clusters as factor predictors of 

each urban form were constructed and we explored the sensitivity of the regression by using more 

than two clusters in all models. All regression models were constructed as follows; 

 
𝜂(𝑈𝑟𝑏𝑎𝑛𝐹𝑜𝑟𝑚) = 𝛽0 +  ∑ 𝛽𝑖 𝐸𝑙𝑒𝑐𝐶𝑙𝑢𝑠𝑡𝑖

𝑛

𝑖=1

 (3) 

Here, urban form refers to each of the four urban form variables (pervious surface, 

impervious surface, water bodies and NOx), n refers to the number of clusters in the model and i 

refers to the cluster number. The function 𝜂() refers to the appropriate link function for each 

variable’s model.  NOx concentration was modeled with a natural log link for a lognormal 

regression, and impervious surface, pervious surface and water bodies were modeled with a logit 

link for beta regression. Cluster numbers are designated such that the lower cluster numbers have 

higher mean values of each urban form variable, representing ranks.  The results of the models are 

tabulated in Table 3-11. 

Table 3-11: Results of regression models exploring the relationships between urban forms and electricity 
clusters.  Tabulated here are regression coefficients of the independent variables (i.e. cluster numbers) in the 
model and standard errors. Cluster 1, representing the cluster with the highest electricity use, was the referent 
cluster 

No of clusters 

used in model 

Ranked 

cluster 

number 

NOx 

concentration 

Impervious 

surface 

percent 

Pervious 

surface 

percent 

Water 

bodies 

percent 

Model using 

two clusters 

Cluster 2 -0.51 (0.08) -0.47 (0.16) 1.11 (0.18) -0.60 (0.15) 

Model using 

three clusters 

Cluster 2 -0.47 (0.09) -0.48 (0.20) 0.88 (0.22) -0.35 (0.19) 

Cluster 3 -0.57 (0.09) -0.55 (0.19) 1.30 (0.22) -0.55 (0.18) 

Model using 

four clusters 

Cluster 2 -0.17 (0.13) 0.055 (0.27) 0.56 (0.29) -0.27 (0.25) 

Cluster 3 -0.61 (0.13) -0.35 (0.27) 1.22 (0.30) -0.72 (0.26) 

Cluster 4 -0.69 (0.12) -0.49 (0.27) 1.62 (0.29) -0.76 (0.25) 
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These results indicate that roadway infrastructure has a statistically significant association 

with electricity use, potentially from heat absorption by roadway surface albedo192. Tail pipe 

emissions, which include CO2 (i.e. NOx is a proxy for all mobile emissions)193  could also be a 

contributing factor in increased residential energy electricity demand in a number of ways. For 

instance, higher CO2 levels have also been found to reduce evapotranspiration 194, 195, 196. Contrary 

to expectations, water surfaces also had a positive association with electricity use. Water bodies, 

though typically not as effective as green spaces space 197, 198, 199, are known to have a cooling 

effect in an urban setting, though factors such as geometry, wind speed and surface area play a 

role200. However, some findings have shown that the high heat capacity of water kept the air 

temperature above it high and increased urban heat island intensity respectively201. This would be 

particularly true at night as the skin temperature of hard surfaces drops more quickly.  Wong et al. 

(2012)202 found that high humidity areas and low wind would limit abilities of water surfaces to 

provide adequate cooling and Sun et al. (2012)200 observed that water body geometry could lead 

to a negative impact on urban cooling intensity. Urban dwellings might be a factor here as well. 

Amani-Beni et al. (2018)203 found that a building hampered wind speed and reduced the cooling 

effect of some water bodies. It is clear though that a more thorough evaluation of water body 

cooling in urban settings is required. Pervious surfaces such as tree canopy had the opposite effect 

to roadways as expected  204, 205, 206, 204-207. All impervious surfaces together, while significant, 

was slightly less so than roadway. This was not too surprising as the impervious surface metric 

consisted of roadways and buildings. The magnitude of the effect of buildings here is not so clear, 

even though building albedo does impact on UHI 208. Although we did include some building 

variables in the original set of predictors, these did not appear in any of the resulting statistical 

models, suggesting the importance of roads. 
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3.5.3 Comparison of study methods to other case studies 

 A side by side comparison of model results with other studies is not easily done, mainly 

due to the diversity of models, scenarios, objectives, scope and variables involved in residential 

energy modeling, all of which makes transferability of the results to other scenarios impractical209. 

Further in most cases, as mentioned in the introduction, residential energy studies tend to use 

models that are largely deterministic, relying on physical inputs and engineering principles to 

guide energy design and are primarily intended to be more helpful in construction and design phase 

than post design energy use, which was the main subject of this investigation. To that effect, the 

focus of this section will be on the advantages and disadvantages of the general approaches and 

techniques used here. 

One main notable advantage in the design and set up of this study, was the acquisition of 

actual energy data to validate the accuracy of our model results for both electricity and natural gas, 

unlike the bulk of most studies that generally rely on data from statistical based estimates or bench 

marks15 to validate their results, which can lead to some measure of error in building the model. 

Secondly, the regression techniques (OLS) and variable selection method (stepwise) that were 

chosen are generally accessible, relatively easy to implement by researchers in various disciplines 

and also allows for easier interpretation of model results than other utilized methods such as 

Artificial Neutral Networks210. Thirdly, another advantage of our study approach was to focus 

largely on post energy models which included a large number of social economic and ethnic 

demographics, than pre-design energy use models which are largely based on building stock and 

features. This difference is significant as actual energy consumption is known to deviate 

substantially from energy estimates derived with the latter method15. Thus the models built in this 

study are able to capture the extent of the true variability in energy use.  
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Our approach also allowed us to consider a large amount of predictor variables in 

combination with the variable selection algorithm and cross validation metrics to obtain the best 

model predictors, unlike others studies where the variables would have already been selected 

beforehand211 and could fall short of capturing a significant portion of electricity use variability. 

For instance, Karatasou S. and Santamouris M. (2019), presented an energy model with some pre-

selected social economic variables, but the model only accounted for 42% of energy variation, 

whereas in our case, we were able to account for 80% of electricity use variation and 95% in gas 

use212. However, this was also one of the major drawbacks of the study, in that gathering and 

sorting through a large data set of variables proved to be quite time intensive.  

Of note, a disadvantage of the orthogonal transformation technique used here, was that it 

did require the use of additional tools (i.e. PCA and clustering) for interpretation of model results. 

However, it was those additional methods that were key in elucidating the impact of UHI in 

residential electricity energy use. As a result, we would conclude that the techniques and 

approaches used in this study provided several advantages that far outweighed the few drawbacks 

of our approach. 

Lastly, it is worth noting that utilization of machine learning algorithms in estimating post 

residential energy use have increased substantially in recent publications. While they do have 

advantages over OLS methods, as many such studies report low errors in their estimates213, there 

are still some limitations. For instance, if there are other underlining causes explained by variables 

not considered in the model development, one may not understand the true reasons behind energy 

use variation and the model might still perform poorly as a result. Further, because we used a 

statistical model, unlike a machine learning algorithm, we were able to directly evaluate the 

influential effect of model variables in our models. Studies that employ machine learning 
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algorithms generally have to utilize additional tools, such as a Generalized Linearized Model 

(GLM), or multivariate regression to further evaluate the variables. Essentially a statistical model 

is still needed213,214 to understand model variables and such models(used in this way) might still 

be subject to multicollinearity without some transformation as was done here. Future machine 

learning algorithm based studies, may however benefit from incorporating methods as was done 

here such as PCA and k-means to understand variation in their models if possible.  

3.6 Conclusions 

In general, orthogonalization methods have advantages over other data transformation 

methods, one of which is to eliminate multicollinearity and improve statistical model performance 

for energy estimation. Although there are possibly some limitations of these methods if the data 

set is too small, and model interpretation requires several additional tools, as was the case here, 

the advantages it offers in regard to statistical model stability is noteworthy. In addition to method 

application, we also demonstrate here, the effect of ensemble averaging which reduces the signal 

to noise ratio in regression estimates and proved to have a noticeable advantage over non-ensemble 

techniques. 

The goal of this study was to develop a predictive energy model by determining the social 

indicators that affect residential energy use for natural gas and electricity. The methods and 

techniques utilized here demonstrate the predictive capability of orthogonalization in obtaining 

good energy estimates, particularly in the case of natural gas. Even with a small training data set 

for natural gas, generated estimates for Georgia zip code tabulated areas were statistically better. 

While further evaluation of these and other methods used to estimate gas usage would be useful, 
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the methods outlined here show potential to be utilized in generating even finer spatial scale 

estimates over broader spatial extents, providing all variable data is available. 

Despite the fact that results show that sociodemographic factors play a substantial role in 

energy usage estimation, noticeable differences in model predictors exist between electricity and 

natural gas use. Electricity use is affected by a variety of key demographic variables, including 

income, education and population playing major roles. Income and household make up are key 

determinants of gas usage. Further, while socioeconomic variables comprise of the bulk of the 

determinants in natural gas use, electricity use is highly influenced by more than just these. It was 

observed that the high electricity use clusters did cluster more with urban morphology, in particular 

roadways than with sociodemographic factors. These results suggest urban form and function have 

a notable impact on electricity use.  

Past energy studies have typically focused on improving and assessing building efficiency 

to evaluate electricity use. As it is quite possible that the urban heat island effect can attenuate the 

benefits of building designs on energy demand, it is critical to consider the impact of urban heat 

island in generating accurate energy estimates. Assessing the impact of urban heat island effect in 

cities requires looking at the albedo effect of city infrastructure with a focus on road infrastructure. 

As illustrated in this study, the urban heat island effect from roadway infrastructure morphology 

and its use may impact the distribution of electricity use and demand. This observation might 

explain in part, why some models might fail in post design energy estimation as they do not 

typically capture this phenomenon.  

It is important to note that while this trend was observed for metropolitan zip codes in 

Atlanta Georgia, trends in different climates and city settings may differ. Future studies should 
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consider the impact of urban heat island by incorporating city spatial pattern analysis of energy 

use to determine if this affects electrical energy use.  
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CHAPTER 4. ASSESSMENT OF AIRPORT-RELATED EMISSIONS 

AND THEIR IMPACT ON AIR QUALITY IN ATLANTA, GA USING 

CMAQ AND TROPOMI 

Adapted from ‘Abiola S. Lawal, Armistead G. Russell and Jennifer Kaiser. Assessment of 

Airport-Related Emissions and their Impact on Air Quality in Atlanta, GA using CMAQ and 

TROPOMI.  Currently under review in Environmental Science & Technology’. 

4.1 Abstract 

Impacts of emissions from the Atlanta Hartsfield-Jackson airport (ATL) on ozone (O3), 

ultrafine particulates (UFPs), and fine particulate matter (PM2.5) are evaluated using the 

Community Multiscale Air Quality (CMAQ) model and high-resolution satellite observations of 

NO2 vertical column densities (VCDs) from TROPOMI. Two airport inventories are compared, an 

inventory using the emissions where landing and take-off (LTO) processes are allocated to the 

surface (default), and a modified (3D) inventory that has LTO and cruise emissions vertically and 

horizontally distributed, accounting for aircraft climb and descend rates. The 3D scenario showed 

reduced bias and error between CMAQ and TROPOMI VCDs compared to the default scenario 

[i.e. Normalized Mean Bias: -43%/-46%. Root Mean Square Error: 1.12/1.21 (1015 

molecules/cm2)]. Close agreement of TROPOMI-derived observations to modeled NO2 VCDs 

from two power plants with continuous emissions monitors was found. The net effect of aviation 

related emissions was an increase in UFP, PM2.5 and O3 concentrations by up to 6.5×102 

particles/cm3 (~38%), 0.7 µg/m3 (~8%) and 2.7 ppb (~4%) respectively. Overall, the results show 

1) spatial allocation of airport emissions has notable effects on air quality modeling results and 
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will be of further importance as airports become a larger part of the total urban emissions, and 2) 

the applicability of high-resolution satellite retrievals to better understand emissions from facilities 

such as airports.  

4.2 Introduction 

Airports are often located near urban centers and contribute substantially to severe 

pollution and poor air quality20, 215-217. Airport operations, including landing and take-offs (LTO) 

lead to emissions of particulate matter and ozone (O3) precursors such as nitrogen oxides (NOx), 

which are not confined to the airport. For instance, Hudda et al., (2020)17 found increased UFP 

particle number concentrations (PNC) in residential areas up to 4km downwind of the Logan 

International Airport in Boston, Massachusetts. In an earlier study, Hudda et al., (2014)18 observed 

enhanced particulate matter and NO2 concentrations at distances up to 10km away from the Los 

Angeles International Airport (LAX) in California. The health impacts of ozone and particulate 

matter associated with airport emissions have adverse respiratory and cardiovascular health 

effects218-220. Airports are high emitters of ultrafine and fine particulate matter (UFP and PM2.5), 

which have been shown by a number of studies to have strong associations with adverse health 

outcomes10, 221-223. While emissions of NOx (NOx = NO + NO2) and PM from on-road vehicles and 

electricity generating units (EGUs) have significantly decreased across the United States224, 225, air 

travel and the resultant emissions are growing226, such that airports may have an increased relative 

role in near-future air quality. The adverse effects of these pollutants, in addition to other aviation 

related concerns (i.e. climate, noise) are one of the many reasons why airports are increasingly 

becoming an area of growing concern.  
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Chemical transport models (CTMs), are often used to quantify airport impacts on urban air 

quality. CTMs rely on an accurate representation of emissions, however most inventories for 

regional CTMs tend to represent aircraft emissions as a surface-level source, neglecting the three-

dimensional aspect of air traffic. In a study centered on the Atlanta Hartsfield-Jackson 

International Airport (ATL), Unal et al., (2005)20 demonstrate that allocating landing and takeoff 

(LTO) emissions in three dimensions can decrease average modeled O3 by ~1 ppb compared to 

the two-dimensional default emissions scenario. Woody et al., (2016)227 using a plume treatment 

for the same emissions, showed an increase in particulate matter over traditional methods without 

the plume treatment. Additionally, emission inventories typically include only landing and takeoff 

emissions, omitting emissions at cruising altitude which have some impact20, 21, 228. For example, 

Vennam et al., (2017)24 found increases in daily maximum 8 hour O3 that ranged from 0.46-0.69 

ppb over the Northern Hemisphere. Similarly, Lee et al., (2013)25 found a maximum increase of 1 

ppb for average O3 when including full flight emissions, compared to the default scenario from 

their global model. Finally, choice of model resolution can affect the modeled impact of aviation-

related emissions on ozone and PM concentrations.22, 23 Model evaluation using near-airport 

observations is also limited. 

Although these studies, among others have shown limited effects of using 3-D emissions, 

on air quality by focusing on one or more factors (i.e. spatial allocation of LTO emissions, 

inclusion of cruise emissions, and high- resolution modeling), studies are limited in comparing the 

compounded effect of these factors to default aviation inventories (i.e. that contain only LTO 

emissions, with no spatial allocation beyond the airport) that are used in high-resolution regional 

CTMs for regulatory purposes. Yim et al., (2015)229 focused on quantifying how aviation related 

air quality and health related impacts compare with aviation attributable costs such as climate, 
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while Quadros et al., (2020)230 explored air quality sensitivities to inventory perturbations from 

emission increases or intercontinental transport from other regions.  

Here, we use the Community Multiscale Air Quality model (CMAQ) to evaluate the impact 

of the emissions from the ATL airport on ozone, PM2.5 mass and UFP number concentrations in 

Atlanta during August of 2019. We develop a 3D emission inventory using EPA’s 2016v1 

Emissions Modeling Platform LTO emissions, and cruise emissions from the Aviation Emissions 

Inventory Code (AEICv2.1) emissions repository. We evaluate model results using ground-based 

air quality monitors and high resolution NO2 retrievals from the satellite-based TROPOspheric 

Monitoring Instrument (TROPOMI), and demonstrate the ability of TROPOMI to provide 

constraints on emissions in our modeling domain using two power plants located near Atlanta. We 

assess model assumptions and sensitivities by evaluating the differences in ozone and particulate 

matter using both inventories. Finally, we quantify the impact an increase in ATL emissions would 

have on urban air quality. 

4.3  Methods  

4.3.1 Model Configuration (WRF-SMOKE-CMAQ)  

WRF-SMOKE-CMAQ231-233 was used to simulate air quality in the Atlanta metropolitan 

area during August of 2019. The 244 km × 244 km model domain was centered on ATL, with a 

horizontal resolution of 4 km and 32 vertical layers extending to ~16 km (100 hPa). Boundary and 

initial conditions were taken from a hemispheric CMAQ model, and a 10-day period was used for 

model spin-up234-236. We used CMAQv5.3.2 with the aerosol module AERO7 and the gas-phase 

Carbon Bond 6 (CB6) mechanism235, 237. Data fields from the National Center for Atmospheric 

Research (NCAR)238-240 were used as inputs for the Weather Research and Forecasting (WRF) 
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model version 4.1, with the results processed using the meteorological chemistry interface process 

(MCIP v 5.1)241 to generate meteorological input fields for SMOKE and CMAQ. 

Anthropogenic emissions were calculated using the 2016v1 Emissions Modeling 

Platform77 together with 2019 meteorology. The 2016v1 platform is a comprehensive and detailed 

inventory estimate of annual US emissions from all sources complied by the Environmental 

Protection Agency (EPA) as part of the National Emissions Inventory Collaborative (NEIC)242. 

Data is provided by State, Local, and Tribal air agencies for sources in their jurisdiction and is 

supplemented by data provided by the EPA183. Emission sources include onroad (e.g. cars, trucks), 

point (e.g. power plants, commercial facilities), non-road (e.g. construction, lawn equipment, 

locomotives, aircrafts), nonpoint (e.g. residential heating, asphalt paving), and event sources 

related to wild fires and prescribed burns. Emissions from the power plants were updated using 

Continuous Emissions Monitoring System (CEMS) data from 201919. Lightning NOX emissions 

were calculated using the statistical parameterization method described in Kang et al. (2019)243. 

Emissions from biomass burning were not incorporated and are anticipated to have little impact 

on the analysis here, as the prescribed burning season is not in effect during this time period244. 

We refer to the 2016v1 platform as 2016 National Emission Inventory (2016 NEI) herein. 

4.3.2 Airport Emissions (NEI and AEIC) 

While our model domain includes small regional airports, we focus our analysis on ATL 

which dominates aviation-related emission in the region. We use the NEI as our default inventory 

for airport-related emissions. The inventory includes contributions from Ground Support 

Equipment (GSE) and aircraft LTO cycles.  GSE emissions comprise 11.5% of total NEI ATL 

NOx emissions. NEI LTO emissions include all phases of surface aircraft activity (i.e. landing, 
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take off, taxiing, and idling). The 2016 NEI airport inventory assigns both GSE and LTO emissions 

to two airport grids at ground altitude.   

A modified airport emissions inventory (herein called “3D”) was created using NEI 

GSE+LTO emissions and full-flight emissions from the Aviation Emissions Inventory Code 

(AEICv2.1) emissions repository. AEIC emissions are available at a resolution of 1o × 1o for the 

year 2005245, 246. We determined 2019 cruise emissions by multiplying the ratio of AEIC cruise to 

AEIC LTO emissions (both in years 2005) by 2016 NEI GSE+LTO emissions. Besides the 

inclusion of cruise emissions, no modifications were made to the NEI aircraft emission rates which 

were incorporated into the 3D inventory. A tabulated inventory of the major species can be found 

in Table S1 in the supplement.  

All airport-related emissions were given the same temporal profile as NEI LTO emissions. 

As detailed in the NEI Technical Support Document (TSD)247, all phases of surface aircraft activity 

(i.e. landing, take off, taxiing and idling) are combined in LTO cycles, with no delineation between 

the different phases in each cycle.  Diel activity patterns are derived from the Aviation System 

Performance Metrics data248. Monthly and day-of-week activity profiles are calculated using FAA 

Operations Network Air Traffic Activity data182.  

Total GSE, LTO, and cruise emissions were then allocated vertically and horizontally 

within the modeling domain. First, the fraction of total emissions at each altitude in the AEIC NO2 

emissions profile were used to vertically distribute emissions in the CMAQ vertical grid.  The 

vertical profile distribution of ATL NOx emissions is shown in Figure D-1, and is similar to the 

AEDT derived profiles in Vennam et al., (2017). Emissions were then horizontally distributed 

using plane take off and climb rates to calculate emission locations within the first 8 vertical layers 
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(below ~1000 m.) using an FAA recommended standard Rate of climb (ROC) rate of 200 feet per 

nautical mile249, 250.  In the remaining upper layers (layers 9 to 32, > ~1000 m), the emissions were 

allocated corresponding to the vertical profile in the AEIC (Figure D-2). 

The airport inventories (default and 3D) are combined with the remaining sectors (e.g. 

onroad, point, dust, nonpoint, biogenic etc.) to produce the inventories used in the subsequent air 

quality modeling. Additional details about the inventory development and spatial allocation can 

be found in the supplement. 

4.3.3  Observations 

4.3.3.1 TROPOMI NO2 retrievals 

TROPOMI follows a sun-synchronous orbit with an overpass time near 1:30 pm local solar 

time. We use the offline Level 2 v1.3 TROPOMI NO2 product developed by KNMI163, 251 accessed 

at NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC, 

https://tropomi.gesdisc.eosdis.nasa.gov/). The data is filtered to exclude pixels with solar zenith 

angles greater than 60°, quality flag (qa_value) less than 0.5, and cloud cover fraction (CLCF) 

criterion of less than 0.3. A total of 24 days were available for data downloading, of which seven 

days had to be discarded, due to missing data from pixels needed for analysis, resulting in a total 

of 17 days available for comparison of TROPOMI and CMAQ NO2 VCDs. The level 2 (L2) 

product provides tropospheric vertical column densities (VCDs) and the associated air mass factors 

(AMFs), which are calculated using vertical distributions from the TM5-MP model at 1o×1o. In 

line with Cooper et al., (2020)252, we use the provided averaging kernels and model vertical profiles 

from our higher resolution model to produce alternative AMFs, which are then used to recalculate 

TROPOMI VCDs.  

https://tropomi.gesdisc.eosdis.nasa.gov/
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For all CMAQ-TROPOMI comparisons, TROPOMI L2 data were remapped to the CMAQ 

grid using the oversampling technique developed by Zhu et al., (2017)253 and described in further 

detail by Sun et al., (2017)254. With the oversampling technique, all pixels that intersect a given 

CMAQ grid cell are averaged together, with each observation’s contribution weighted by the 

amount of overlap and observation uncertainty. Uncertainty is calculated as the absolute error of 

the standard deviation of the observation. CMAQ NO2 VCDs are sampled at the times of 

TROPOMI data availability and averaged (i.e., 17 days, 13:00-14:00 LT). 

4.3.3.2 Surface NOx observations 

Hourly surface NOx observations from an EPA urban background monitoring site (Figure 

1) were used to assess model performance255. The site uses a Thermo Environmental 

Chemiluminescence NO-NO2-NOX Analyzer (model 42i)256, 257. Observations are expected to be 

biased high due to interferences of NOz species (i.e. NOz = HNO3, HNO2, PAN)258, 259.  

4.4 Results  

4.4.1 Evaluation of CMAQ and emission inventories with in-situ observations 

Before using CMAQ to estimate impacts of airport-related emissions, we first evaluate 

model performance using ground-based NOx observations and TROPOMI NO2 retrievals. 

4.4.1.1 CMAQ-AQS performance assessment 

Figure 4-1 shows measured and modeled NOx diel cycles. Default and 3D airport emission 

scenarios yield near-identical modeled NOx concentrations at this site. Hourly modeled and 

observed NOx concentrations were well correlated (r = 0.93). Especially in the morning and late 

evening, the model is biased low compared to observations, as has been observed in previous 
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studies260. At the time of TROPOMI overpass, modeled urban NOx concentrations compare well 

with in-situ observations, with a root mean square error (RMSE) of 1.5 ppb.  

 

Figure 4-1: Observed and modeled surface NOx at the South DeKalb monitoring site in August 2019. Shaded 
regions indicate the standard deviation across the study period. The difference between model and observation 
at time of TROPOMI overpass is small 

 

4.4.1.2 CMAQ-TROPOMI agreement assessment 

As documented in previous studies, we find AMFs derived from a high spatial resolution 

CTMs improve TROPOMI-model agreement. TROPOMI VCDs calculated with CMAQ-adjusted 

AMFs (TROPOMICMAQ) showed notably improved agreement over the default TROPOMI NO2 

retrievals, with about 60% increase in VCDs near the airport (Figure D-3). TROPOMICMAQ 

captures enhancements seen in CMAQ, including the hotspots over ATL, and two EGUs, Plant 

Bowen and Plant Scherer (Figure 4-2). Compared to CMAQ, TROPOMICMAQ is biased high in 
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rural areas and low in highly polluted areas. Other studies have similarly reported a low TROPOMI 

bias to modeled and observed NO2 VCDs in densely populated urban areas261, 262. The normalized 

mean bias (NMB) of CMAQ to TROPOMICMAQ over the entire domain is not significantly 

impacted by choice of aviation emission inventory (3% difference in NMB).  

 

 

 

 

 

 

 

 

 



 91 

 

Figure 4-2: Results represent a 17-day average between 1300-1400 (~ 1330) for CMAQ and TROPOMI retrievals. 
a) TROPOMICMAQ NO2 VCD b) CMAQ NO2 VCD (3D inventory) c) TROPOMICMAQ – CMAQ with 3D ATL 
inventory d) TROPOMICMAQ – CMAQ with default ATL inventory. Purple boxes in panel 2a show the areas used 
to compare TROPOMI VCDs with CMAQ VCDs at the labeled sites. 

4.4.1.3 TROPOMI observations near the power plants 

Similar to Goldberg et al., (2019)263, two EGUs (Bowen and Scherer) were used to evaluate 

TROPOMICMAQ accuracy near major NOx emission sources in our domain. Both power plants are 

isolated from other sources, and their NOx emissions are continuously measured and constrained 



 92 

in CMAQ. Good agreement between TROPOMICMAQ and CMAQ in the vicinity of the power 

plants provides confidence in our use of TROPOMI retrievals to assess airport-related emissions, 

which have a higher degree of uncertainty.  

In the 9 grid cells surrounding and including each facility (boxes in Figure 4-2a), biases in 

TROPOMI are much smaller than the bias over the whole domain (Bowen: 6.0 to 9.8%,  Scherer: 

0.5 to 4.5%, SI: Table D-2). To assess how sensitive VCDs are to modeled emissions, emission 

inputs for both EGUs were multiplied by scale factors of 0, 0.5, 1, 1.5, and 2. TROPOMICMAQ was 

then compared with modelled concentrations for all five EGU scale factor scenarios. 

TROPOMICMAQ agreed closely with the 9 grid cell average around Scherer and Bowen with the 

EGU base case (Figure 4-3). This also shows that TROPOMICMAQ VCDs and associated AMFs 

are not significantly affected by sector emission adjustments (except when the source emissions 

are removed), meaning that adjustments of airport emissions will not drastically affect the 

TROPOMICMAQ VCDs. This is shown in Figure 4-4, as choice in inventory has negligible impact 

on near-airport TROPOMICMAQ. 
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Figure 4-3: TROPOMICMAQ and CMAQ NO2 VCDs at different emission scale factors for Bowen and Scherer. 
Results represent a 17-day average at ~1330. 

 

4.4.2 TROPOMI and CMAQ NO2 VCD sensitivities to airport inventories  

The 3D inventory results in closer CMAQ/TROPOMICMAQ agreement for near-airport NO2 

VCDs compared to the default emissions scenario. Using a cutoff value of 4.5 × 1015 

molecules/cm2 to distinguish between highly polluted and less polluted areas, as was similarly 

done in Ialong et al., (2020), the greatest absolute difference for high NO2 VCDs with the 3D 

airport inventory is 0.93 × 1015 molecules/cm2, compared to 1.4 × 1015 molecules/cm2 in the default 

scenario (Table D-2). The improvement can be attributed in part to the dilution of emissions in the 

3D inventory, which results in less steep gradients in modeled NO2 VCDs near the airport (Figure 

4-4), but also to NOX titration and less nitric acid production as modeled by CMAQ264. Only a few 

metrics for the airport grid points such as the spatial Pearson correlation coefficient were better 

with the default inventory than the 3D (SI: Table D-3).  
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Figure 4-4: TROPOMICMAQ vs CMAQ NO2 VCDs including highlighted results for EGUs and ATL from associated 
grids (see Fig 4-2a). 

 

4.4.3 Airport inventory effects on ozone and particulate (UFP and PM2.5) 

In Figure 4-5 (a-c), we show monthly averages of modeled maximum daily average 8hr 

ozone (MDA8 O3), ultrafine particulate (UFP) particle number concentration, and PM2.5 mass 

concentration using the 3D inventory. We also show monthly averaged differences between a) the 

3D and default emission inventory (d-f), and b) the 3D and simulations without all aircraft 

emissions (g-i). The differences capture the spatial impacts of the airport emissions and effect of 

using the enhanced (3D) inventory. 
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Figure 4-5: Averages for the month of August for Maximum Daily 8hr O3, UFP number concentration and PM2.5 
mass concentration. First row (a to c) shows concentrations using the 3D inventory. The second row (d to f) is 
the difference between the modified and default inventory. The third row (g to i) shows the impact of all aircraft 
emissions 

 

4.4.3.1 MDA8 O3 

Reallocated emissions with the 3D inventory led to MDA8 O3 increases throughout the 

domain (Fig.4-5d). The regional ozone increases are likely attributed to an increase in ozone 

production efficiency (OPE) as more NOx was distributed more broadly to NOx-limited areas, 

accompanied with a reduction in NO2 deposition265. The reduced ground level NOx emissions led 
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to increases up to 6 ppb near the airport because of spatial re-allocation and decreased near-field 

scavenging.  

Setting all airport emissions to zero (using the 3D inventory) led to higher MDA8 O3 at the 

airport, but lower in the surrounding areas (Figure 4-5g) for the 3DAircraft=0 scenario. The higher 

MDA8 O3 at the airport for 3DAircraft=0 is due to reduced scavenging. Downwind of the airport, 

increases as high as 2.7 ppb are found from airport-related emissions for 3D. This increase is 

similar to the difference when using the 3D versus the default inventory and highlights the impact 

using of spatially allocated emissions. 

4.4.3.2 UFP number and PM2.5 mass concentration 

For the particulate matter analysis, we focus on particle number concentration (PNC) for 

UFP and particle mass concentration (PMC) for PM2.5. We use the CMAQ simulated mode particle 

distribution for both species in this study, referring to CMAQ simulated i-mode (Aitken) particles 

as UFPs and i+j-mode particles (accumulation) as PM2.5
266-268. For both inventories, the modeled 

maximum concentrations for both PNC and PMC at ATL were higher than those of nearby sources 

(i.e. mobile and area) (Fig 4-5, b and c). This agrees with previous studies that indicate high 

particulate emissions from aircraft and airport-related activities21, 22, 215, with some reporting up to 

10-fold increases of particulate emissions from landing and take-off cycles (LTO) alone23.  

However, the effect of horizontal and vertical spatial reallocation with the modified 

inventory dilutes the emissions at the airport, resulting in maximum decreases of 0.6 µg/m3 (3.4%) 

in PM2.5, and 6.3×102 particles/cm3 (20%) in UFPs (Figure 4-5 e and f). Conversely in the 

surrounding areas, the 3D inventory led to increases of UFP PNC at distances ~16 km away from 

the airport and beyond in some directions. Although the magnitude of these differences decrease 
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at distances further away from the airport, the increases are seen over most of the metropolitan 

area. PM2.5 PMC exhibits the same spatial pattern.  

Removing all aviation related emissions from the 3D demonstrates the net effect of the 

airport. Here we see substantial impacts in PMC and PNC over the entire modeling domain from 

airport operations (Figure 4-5 h and i). The range of decrease in PNC was 0.04 to 6.52×102 

particles/cm3 (0.002% to 38.6%), while the decreases in PMC ranged from 0.005 µg/m3 to 0.7 

µg/m3 (0.02% to 8.4%). The greater percent change in PNC is an indication that near airport 

activity has a larger effect on number concentration than mass concentration217, 269. Hudda et al., 

(2014)18 measured enhanced PMC at distances 10-16 km away from the Los Angeles International 

Airport, although in this case, airport impacts extend well beyond the ranges reported in their 

study. These results provide further evidence that airports enhance background particulate matter 

concentrations over large distances in appreciable amounts. 

4.4.3.3 Impact of increased emissions on ozone, PM2.5 and UFP  

A sensitivity assessment conducted using the Integrated Source Apportionment Method 

(ISAM) in CMAQ270, 271 indicate that both airports and mobile sources are significant contributors 

to ozone, PM2.5 and UFP. Both contribute up to about 5 ppb for August average O3 and ~15 ppb 

for MDA8 O3 (Fig D-4), though airport impacts are more locally constrained to its immediate 

vicinity, while on-road effects are spatially distributed. Many of the approaches to lowering ozone 

have focused on mobile sources more so than airports. As emissions from cars decrease, an 

increase in aviation could impede efforts to meet the ozone National Ambient Air Quality Standard 

(NAAQS). Air quality monitors in DeKalb and Fulton Counties (Fig D-5) are actively used to 

monitor ozone for compliance as the metropolitan area is in nonattainment272.  



 98 

To evaluate the effect of potential increasing airport operations, airport emissions were 

increased for both default and 3D inventories by a factor of 1.5 to approximate a projected 20-year 

growth, while keeping other sectors at current emission levels226. Source apportionment 

sensitivities showed increases in ozone of almost 3 ppb in areas close in proximity to the air quality 

monitors for both inventories (Fig. 4-6). However, the 3D net increases were greater in magnitude 

and spatial extent than those of the default for both MDA8 O3 (max ΔMDA8 O3: 2.5 vs 1.9 ppb) 

and Daily Maximum O3 (max ΔDMAX O3: 2.8 vs 2.0 ppb). With particulate matter, the spatial 

extent and pattern were similar for both inventories, however the default showed higher net 

increases than the 3D, as result of the dilution effect of spatial allocation. Monthly averaged 

maximum net increases of 2.6 µg/m3 for PM2.5 and 2.1×10-3 particles/cm3 for UFP were observed 

with the 3D, while those of the default were double that of the 3D. Although actual air travel 

growth and demand may not yield such emission increases, these results show that any incremental 

increase is likely to raise ozone and PM levels, off-setting decreases from mobile source 

reductions.  
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Figure 4-6: Monthly averages for Maximum 8hr O3 and daily maximum O3. Each figure represents the difference 
between a 20-year projected increase in emissions to current levels for each inventory and ozone metric. 

 

4.5 Discussion  

This study is unique in its combined use of a three-dimensional aircraft inventory, high 

resolution satellite retrievals and a fine scale air quality model to gain new insights about airport 

effects on air quality. Satellite-based observations have some measurement error and 

uncertainty273, 274 and generally tend to be biased low in high NOx regions, the base case results 

with both EGUs show that TROPOMI and CMAQ observations compared well, supporting the 

use of such observations to evaluate high NOx emitting categories such as airports and aircraft261, 

262 and demonstrating TROPOMI’s reliability in high NOx regions. We minimize some of the 

uncertainty in using satellite retrievals to evaluate model assumptions by using high resolution 



 100 

model-generated vertical profiles to reduce uncertainty in the AMFs. Besides the uncertainties in 

satellite retrievals due to AMFs, an additional source of error in NO2 measurement retrieval can 

be attributed to the uncertainty in precision, which is around 10%151, 273, 275. However, this was 

much lower than the spatial heterogeneity bias (Figure 4-2, Tables D-2 & D-3) observed 

throughout the modeling domain, and had limited impact on our analysis.  

We evaluate the sensitivities of the AMFs and satellite observations to inventory 

perturbations by comparing the satellite retrievals of NO2 vertical column densities with emissions 

from two EGUs that are continuously monitored. The results show that TROPOMI retrievals are 

not affected much by inventory perturbations, lending confidence that changes in the inventory 

will not affect satellite fields much. This analysis illustrates the benefits of including sources with 

measured emissions in model-satellite comparisons, as well as using high resolution models to 

calculate AMFs. It also indicates that TROPOMI can be used in air quality management studies to 

assess the impact of airport emissions. TROPOMI retrievals also did not appear to be impacted by 

choice of airport inventory. 

One of the novelties in our work, is the use of high-resolution satellite observations and 

evaluation with power plants to minimize and quantify the main uncertainties induced by the 

assumptions in this study, which include the estimation of full-flight emissions from AEIC and the 

spatial re-allocation of said emissions. Although power plants have previously been used to 

validate TROPOMI retrievals, as in Goldberg et al., (2019)263, the methods in our study are 

different. For instance, we use a chemical transport model and emissions inputs in our study to 

compare with TROPOMI, while Goldberg et al., (2019) use TROPOMI top-down inventory 

estimates derived via a line integral function to compare directly with EGU inventories. We also 

adjust EGU emissions to demonstrate that the assumptions made in the estimation of the 3D 
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emission inventory do not significantly impact the satellite retrieval analysis, highlighting the 

capability of TROPOMI to constrain emissions. 

The TROPOMI-CMAQ comparison results showed that the 3D inventory had lower biases 

for ATL with NO2 VCDs, so we use the improved inventory (3D) to evaluate airport effects on air 

quality. We also evaluate the sensitivities in our assumptions and model by quantifying the 

differences in ozone and particulate matter responses between the 3D and 2D inventory and further 

test these assumptions by simulating cases where all airport emissions are removed. Of note, the 

differences assessment also minimizes model uncertainty in aerosol formation from semi-volatile 

particulate precursors that would otherwise, affect the conclusions drawn in this study regarding 

PM2.5 and UFP impacts235, 276-280. 

For ozone, the net effect of removing all airport emissions showed that airport operations 

lead to enhanced ozone levels over the entire domain (except at the airport). Our analysis also 

showed that using the standard NEI 2016 would underestimate ATL impacts on ozone. This has 

implications for demonstrating ozone attainment in Atlanta and recommended measures needed to 

meet regulatory standards, as additional emissions increases at ATL are likely to make future 

attainment more difficult. For PM2.5 and UFP, the enhanced (3D) inventory led to simulated 

reductions near the airport, but higher levels elsewhere in the domain. Like ozone, the net effect 

of airport operations resulted in elevated concentrations over the entire domain for both PM2.5 

PMC and UFP PNC. This suggests that the urban population in Atlanta is exposed to higher levels 

of particulate matter due to airport operations, and that projected emission increases from future 

airport travel will continue to elevate such concentrations over the city and general area. These 

findings provide further evidence that as aviation emissions continue to increase, spatial 

reallocation of airport emissions will be necessary to assess the extent of airport effects. Further, 
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given that the results here indicate that estimates of airport effects using default inventories would 

be an underestimate in both magnitude and spatial extent, it will be important to consider using a 

3D inventory in future assessment simulations. 

The use of a 3D allocation of emissions had differing impacts than past studies with 3D 

allocated emissions showed. For instance, in Vennam et al., (2017), modest increases up to 1 ppb 

in annual averaged MDA 8 O3 were noted, while this study found average August MDA 8 O3 

increases as high as 6 ppb near the airport, and up to 2 ppb in the surrounding area of the airport 

(~20 km). Also, in contrast to Unal et al.’s (2005) study of aviation impacts, which was conducted 

for the same airport, at the same spatial resolution and during the same month, our study showed 

an increase in maximum and average ozone instead of a decrease. Differences between our ozone 

results and that of Unal et al.’s, (2005) study could be attributed to differences in inventory 

development and the spatial allocation methods used. For example, they utilized the Emissions 

and Dispersion Modeling System (2001 EDMS version 4.01) which has since been replaced with 

the Aviation Environment Design Tool (2015 AEDT)281, to develop the inventory for gaseous 

pollutants (i.e. SOx, CO, NOx and VOCs). They also had to rely on literature emission factor 

estimates to develop the particulate matter inventory and to assign appropriate spatial and temporal 

inventory profiles to their simulations. Lastly, although the study was conducted using data from 

2000-2001, nearly twenty years ago with a very different emissions mix, the fact that full flight 

emissions were not included in their study cannot be overlooked. Overall, irrespective of the 

different methods, both studies conclude that an accurate airport emission inventory and spatial 

allocation is valuable for air quality modeling. 
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4.6 Implications  

We find airport impacts modeled using a more spatially representative emission inventory 

with full flight emissions are greater than the default NEI inventory indicates. This underscores 

the need to include accurate airport emissions inventories with full flight emissions and spatially 

allocated emissions. The study also demonstrates the ability of TROPOMI observations in 

combination with regional modeling to assess emissions over concentrated sources and provides 

insight into the sensitivity of modeled AMFs to emissions. Modeled ozone, UFP, and PM2.5 

concentrations using the 3D inventory show that aviation impacts extend beyond the airport. The 

effect on ozone is particularly important, not only because the results indicate more exposure to 

larger populations, but also because it could play a role in ozone attainment demonstration, since 

increased demand in air travel will result in more ozone. In a city like Atlanta which is currently 

under a marginal attainment classification, meeting the NAAQS requirements in the future could 

prove difficult if airport emissions continue to increase. 
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CHAPTER 5. THE IMPACT OF VEHICLE ELECTRIFICATION AND 

AUTONOMOUS VEHICLES ON 2050 AIR QUALITY IN THE UNITED 

STATES 

Adapted from ‘Abiola S Lawal, Jooyong Lee, T. Nash Skipper, Huizhong Shen, Ph.D, 

Yilin Chen, PhD, Anu Ramaswami, Ph.D., Kara M. Kockelman, Ph.D., P.E., Armistead G. 

Russell, Ph.D. The Impact of Vehicle Electrification and Autonomous Vehicles on 2050 Air 

Quality in the United States.  (Draft) 

5.1 Abstract 

The impact of electric vehicles (EVs) on energy demand, emissions and air quality has 

been explored in a number of studies, many of which assess EV impacts in the context of various 

energy supply scenarios along with increased travel demand. Most, however, do not take into 

account the impact of self-driving vehicles, otherwise referred to as Autonomous Vehicles (AV) 

or Shared Autonomous Vehicles (SAVs) in quantifying EV effects. In this study, we assess the 

future impact of AVs, SAVs and EVs under an energy policy (EP) where relaxed controls are 

enacted across multiple emission sectors. A moderate climate projection under the Representative 

Concentration Pathways (RCPs) 4.5 is used. The 2050 EV scenario is compared with an alternative 

2050 scenario where passenger cars are gasoline powered. In all cases, the on-road fleet of internal 

combustion vehicles (ICVs) are expected to be more efficient and less polluting than they are at 

present, such that non-tailpipe emissions are a major fraction of the particulate matter emissions, 

limiting the positive impacts of EVs on air quality. Both 2050 future scenarios are also compared 

with the 2011 emission inventory, where passenger cars emitted more pollutants, to assess the 
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impacts of regulations over time. The results for both 2050 RCP 4.5 scenarios presented in this 

chapter for future climate projection scenarios, found significant reductions from 2011 in primary 

and secondary pollutants. Despite the added increase in VMT due to AV and SAV utilization with 

electric vehicles in the 2050 scenario with electrification, the difference between the two 2050 

scenarios (with/without electrification) showed reductions due to fleet electrification in NOx (max 

~0.5ppb), O3 (max~2ppb), and daily maximum 8HR O3 (max~2ppb).  

Keywords: Air quality, Emissions, Fleet electrification, Autonomous Vehicles. 

5.2 Introduction 

The transportation sector has a significant influence on the environment, as it consumes 

about 30%282 of all energy use within the U.S., and is largely responsible for the bulk of emissions 

within cities283, 284. Mobile source emissions from the transportation sector, including particulate 

matter (PM2.5), nitrogen oxides (NOx) and volatile organic compounds (VOCs), are known to have 

adverse environmental impacts and health effects6, 285, 286. The latter two listed pollutants are key 

in the formation of tropospheric ozone (O3), which also has adverse impacts on human health and 

the environment287. Cleaner standards imposed by the federal government on internal combustion 

vehicles (ICVs) have been effective at reducing emissions of these pollutants288, 289. A study by 

Song et al. (2008)290 found that mobile source emission reductions due to federal regulations 

reduced daily maximum hourly ozone by about 10ppb in a number of case runs. While there is an 

ongoing trajectory in regulations for cleaner vehicles, a number of scenarios affect future 

reductions of both primary and secondary pollutants. Firstly, there is the risk that energy policies 

that pushed for reduced emissions could be rolled back, stalled or dismantled in the future by 

policy makers for various reasons291. But more to the point, even in scenarios where stringent 
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policies remain, obtaining a neutral carbon footprint for climate mitigation solutions or obtaining 

zero emissions will be nearly impossible with a fleet of predominantly ICVs. This problem is 

further exacerbated with an expected rise in vehicle miles traveled (VMT) and population 

increases8.  

Many states such as New York292 plan to achieve a zero carbon footprint by 2050, and a 

significant change in auto fleets will be crucial to achieving this goal. A zero-carbon emissions 

footprint in cities can be assisted by using Electric Vehicles (EVs), which consist of Hybrid 

Electric Vehicles (HEVs), Plug-in-Hybrid Electric Vehicles (PHEVs) and Battery Electric 

Vehicles (BEVs). So far, EVs have shown potential for reducing primary pollutant emissions and 

secondary pollutants in a number of studies, although their full effect in the context of tighter 

vehicle emission regulations are somewhat modest. For instance, Nopmoncol et al. (2017)293 

conducted a study where 2030 electrification of the on-road and off-road mobile sector were 

evaluated with noticeable improvements in ozone of 1ppb and PM2.5. However, they found the 

changes were largely attributed to reduced emissions from on-road ICVs, despite using a mix of 

cleaner energy sources for the marginal increase on electricity grid demand (~5%) from EVs. The 

study concluded that most of the improvements with electrification were seen from the off-road 

sector vehicles like lawn mowers and marine vehicles, which had not been subject to the same 

levels of emission reductions, and not from on-road electrical vehicles. 

While there is consensus that primary pollutants are reduced with fleet electrification, its 

effects on ozone and PM2.5, in conjunction with ongoing emission controls make the potential 

benefits less obvious. As noted in Schnell et al. (2019)28, observing appreciable improvements in 

secondary pollutant concentrations like ozone from electrification is further complicated because 

it varies by season, region etc. Therefore, the impact of EV power trains (i.e. HEV, PHEV and 
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BEV) on the aforementioned pollutants might appear to be modest in conjunction with current 

federal policies unless energy generation shifts to renewable or cleaner sources293-295. However, 

even without non-renewable energy sources, under different Representative Concentration 

Pathways (RCPs) and warmer climate scenarios, the impact of EVs might be more noticeable than 

ICVs, particularly in regard to ozone formation255. 

The future effects of EVs will not only be influenced by the energy mix, climate and power 

train, but also by the adoption of AVs, which could lead to an increase in VMT. Although 

automation is not strictly confined to electric cars, electrification does allow for easier 

automation296,  and with automation will come the ability for many people to utilize more traveling 

options through the self-driving feature of AVs and Shared Autonomous Vehicles (SAVs)297. SAV 

in particular, can affect car ownership and price, especially if utilized by ride sharing companies 

like Uber and Lyft who can employ a fleet of SAVs, resulting in an increase of vehicles use by the 

consumer, an increase in vehicle utilization, and therefore lower prices and even more VMTs298. 

Thus, for this reason and others previously mentioned, self-driving vehicles are expected to have 

larger market share (~ 36%)299 of electric vehicles by 205026, 300. The associated impact is not only 

expected to change vehicle ownership by households, but could increase the use of SAVs, and in 

doing so, provide vehicle access to socio-economic groups that may otherwise not have access to 

such vehicles for multiple factors301. As SAV utilization via automation and electrification is 

expected to account for a significant and growing portion of annual VMTs299, the combination of 

electric cars and increased vehicle miles traveled will impact emissions, in part, because non-

tailpipe emissions are a growing fraction of the PM emissions from vehicles. As a result of 

increased VMT, a noticeable increase in the use of electricity and emissions from power plants is 

a secondary effect of electrification and automation. An increased VMT contribution from SAVs 
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could significantly increase energy demands, whereas increased EV demand on electricity 

production has been previously considered marginal295.  

Air quality impacts from increased VMTs by SAVs have not been explored extensively. 

Further, while some look at the impact of electrification with increased VMTs in future years, not 

many address it with the full impact of other sectors (point, area etc.), changes under relaxed 

energy policies, as well as the effect of climate change and projected meteorology. Here, we do a 

full assessment and incorporate a mix of electric vehicle types, unlike other studies that limit their 

focus to one or two types of electric vehicles. We focus on electrification of the light duty vehicle 

(LDV) fleet in the year 2050 with a mix of power train technologies (i.e. HEV, PHEV and BEV). 

We make use of Chemical Transport Models (CTMs) and an EPA mobile emission simulator in 

this study to simulate air quality under two temporal base line scenarios (2011 and 2050 without 

electrification) to compare with 2050 electrification scenarios. We limit the input factors of this 

study to EV adoption and increased travel demand in 2050 under a moderate RCP climate scenario. 

We do not focus on the potential impact of increased electricity demand from EV and AV adoption. 

Our objectives in this study are to answer the following: 

1) How will increased vehicle miles from automation impact air quality in the future? 

2) What will be the impact of electrification and power train of the vehicle fleet on air quality? 

3) What is the impact of improved ICV efficiency on electrification impacts? 

5.3 Methods 

Chemical transport modeling was conducted using CMAQ231, driven by emissions 

developed and processed by SMOKE with meteorological inputs developed from the Weather 

Research and Forecasting (WRF) model231, 302.   
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5.3.1 Emissions.   

The 2011 National Emission inventory (NEI)303 was used for the base case of 2011, while 

2050 projected emissions were scaled up using statistical projections of future energy demand and 

emissions factors. With the exception of the mobile transportation sector, most of the details for 

these emissions scales are found in Shen et al. (2019)304,  and briefly described in subsequent 

paragraphs.  

5.3.1.1 VMT and VPOP projections for 2050 electrification 

2050 projections were developed using the 2011 NEI emission inventory, a national 

household survey and EPA emission factors from MOVES. The survey data is a projection analysis 

of U.S. household adoption rates of electric and autonomous vehicles between 2017 and 2050 as 

well as use of shared autonomous vehicles299, 305. A statistically representative sample of  1414 

U.S. households was used in the survey, and the description of survey data for each household 

covered the annual number of miles traveled if using an autonomous vehicle (AV) or a human 

operated vehicle (HV). Also taken into account was the cost of keeping and not keeping HV 

capabilities in the vehicle. A total of 12 scenarios were performed for 5%, 7.5% and 10% AV 

pricing reduction rates with HV option (i.e. AV with/without HV, AV/HV and 3 price ranges). For 

purposes of our research, the 5% price adjustment with HV capability retention scenario was used. 

In addition to vehicle automation and its impact on adoption rate purchase, the power train makeup 

for the vehicles in the survey, as shown in Figure 5-1, consisted of the following: a) Gasoline, b) 

Diesel, c) Plug in Electric Hybrid (PHEV), d) Hybrid Electric Vehicles (HEV) and e) Battery 

operated vehicles (BEV).  
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Figure 5-1: Power train make-up of electric fleet 

 

The survey results were projected from 2017 to 2050 and included fleet turnover data and 

the number of miles driven with SAVs. The survey showed a general decrease in household VMT 

(personal miles) driven and an increase in miles driven with SAVs. A breakdown of the survey 

data after scaling up to national estimates is shown in Figure 5-2 and additional details can be 

found in Quarles et al. (2018, 2020)299, 300 and Lee and Kockelman (2019)305. 
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Figure 5-2: Break down of VMT per Capita Miles 

Statistical projections of household and national population were used to scale up the 

survey data to obtain a national estimate of vehicle miles traveled (VMT) for the 2050 

electrification scenario. Projected household and population data tables from Statista306, 307, 

together with 2011 NEI data, state motor vehicle registrations from the Federal Highway 

database308 and projections from the Energy Information Administration14 provided VMT and 

Vehicle Population (VPOP) data. The month of July was chosen to evaluate the impact of ozone 

in the summer months, and 2050 was chosen to allow time for sufficient market share of EVs. The 

scaled up VPOP and VMT data were then used as inputs into a mobile emission estimator to 

generate emissions for different pollutants 

5.3.1.2 Emission estimates and scale up factors 

The EPA’s Motor Vehicle Emissions Simulator (MOVES2014b)309 was used to develop 

scale up factors for mobile emissions in the 2050 electrification scenario. The MOVES program 
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has been used in similar studies such as those by Pan et al. (2019)272 and Gunseler et al. (2017)310. 

As described on the EPA website281, MOVES is a “state-of-the-science emission simulator” that 

captures emissions from mobile sources using different emission factors (EFs) for different vehicle 

types (i.e. motorcycles, LDVs) in a variety of automotive processes such as running exhaust or 

evaporative processes. Emission factors are estimated or cataloged by the EPA in MOVES as far 

back to 1960 (although MOVES yearly input starts at 1990) for all vehicle types and power trains. 

The EFs also vary for each vehicle under different driving conditions (i.e. speed and road type) 

and meteorology (i.e. temperature and humidity). Due to emission controls and technological 

improvements, emission factors for all fuel types are expected to improve in future years, and 

MOVES will capture these changes. More information about MOVES can be found on the EPA 

website281. 

Although MOVES is used widely for mobile estimations, one of its short comings, in 

studies such as this as noted by Guensler et al. (2017)310, is that MOVES does not have a source 

category for HEV or PHEV vehicles. Studies utilizing MOVES, follow Guensler et al. (2017)310 

by treating HEVs as gasoline vehicles and, in many cases, treat PHEVs as BEVs. However, while 

HEVs at higher speeds and PHEVs (when not in electric mode) tend to run similarly to gasoline 

vehicles, there is no mechanism in MOVES to account for low speeds when HEVs engage in 

regenerative breaking to run on electric mode or when PHEVs deplete their battery power source 

and switch to gasoline. Another short coming of using MOVES in this study is the lack of fuel 

economy when calculating fuel differences. As noted by Guensler et al., (2017)310, the fuel 

economy for fully electric vehicles and gasoline vehicles are listed as the same in MOVES. 

As MOVES does not have emissions factors for hybrid or plug in hybrid electric cars, but 

it does for BEVs, we develop our own method of categorizing. For HEV vehicles, we split the 
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VMT proportions by speed and road type. We assume that HEVs will run primarily on their electric 

motor below a certain speed threshold and thus simulate the proportion of miles as BEVs for that 

speed range and above that as gasoline cars. With PHEV cars, we use a baseline that a PHEV 

battery can drive up to a certain mile range before the gasoline engine is utilized, and split the 

VMTs based on the number of VMTs driven in households with one or two cars. For one-car 

households, we subtract the yearly average of miles driven for households and place the number 

of miles above battery range as gasoline and assign the VMTs driven for the second car in the 

household as BEV miles traveled. 

We used a slightly different method to approach the final scale up from 2011 to 2050 than 

outlined in Pan et al., (2019)272. Where they modified EFs generated by MOVES to get spatially 

gridded emission input files, we used the calculated VMT and VPOP obtained in the preceding 

steps as direct inputs into MOVES to get 2050 emissions estimates. The MOVES output of 

emissions was then scaled with 2011 NEI summed emissions to obtain emission scale up factors 

used to multiply the Sparse Matrix Operator Kerner Emissions (SMOKE)244 generated 2011 

gridded emission files to get the 2050 gridded input field for the Chemical Transport Model 

(CTM). 

5.3.1.3 Energy and emission projections from other sectors  

The energy projection from other sectors, such as residential, commercial, industrial, and 

power were estimated using the Georgia Institute of Technology’s National Energy Modeling 

System (GT-NEMS) 311-313. GT-NEMS is a computational general equilibrium model based on the 

2018 distribution of the U.S. Energy Information Administration’s (EIA) National Energy 

Modeling System. The estimates were conducted using less stringent Relaxed Energy Policies 
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(REP). Biogenic emissions were estimated with an updated version of the Biogenic Emission 

Inventory System (BEIS)314. To get the future biogenic emissions, BEIS was driven by the 2050 

meteorology. The simulation showed a 13% increase in biogenic emissions compared to current 

levels. Additional details can be found in Shen et al.(in submission)312.  

5.3.2 Meteorology projections 

As outlined in Shen et al. (2019)304, climate and meteorology predictions were made using 

bias-corrected output data from the National Center for Atmospheric Research’s Community Earth 

System Model version 1 (CESM1)315. The data which were spatially downscaled to 36-km 

resolution using the Weather Research and Forecasting Model version 3.8.1302. The climate 

scenario we chose was the Representative Concentration Pathway (RCP) 4.5, being representative 

of a climate scenario with moderate increase in temperature. During the WRF downscaling, 

spectral nudging was applied to temperature, horizontal winds, and geopotential heights, with a 

wave number of 3 in both zonal and meridional directions and a nudging coefficient of 3×10-4 s-1 

for all the variables. 

5.3.3 Air quality modeling with Chemical Transport Models (CTM) 

Similar to the study by Pan et al. (2017)272, we used the SMOKE-WRF-CMAQ231, 244, 290 

set up to model atmospheric concentrations. SMOKE was used together with 2011 NEI emissions 

to generate gridded emissions together with meteorology projections from the Weather Research 

Forecasting Model (WRF)247. Then scale up factors (as outlined in previous sections) were applied 

to the gridded SMOKE emissions to scale up to emissions in 2050 for all the emission sector 

sources like area and point. Scale up factors computed by Shen et al. (2019)304 were used to scale 

up emissions from other sectors in the 2050 REP base case. For the 2050 electrification scenario, 
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the mobile sector was scaled up using computed emission factor results from MOVES. Of note, 

the 2050 REP base case mobile sector does not consider electric vehicles. 

The Community Multiscale Air Quality (CMAQ) modeling system v5.0.2 with Chemical 

Bond (CB) mechanism 5 simulated the impact of atmospheric processes (transport, deposition, 

reactions etc.) and emission changes on air quality. Details for the model are documented in Byun 

et al., (2006)231. The simulation runs were conducted for the month of July at a 36km x 36km grid 

resolution over the entire U.S., using 2050 projected meteorology and 2050 projected BEIS for all 

cases.  

5.3.4 Scenario simulations 

We consider three scenarios (Table 1). 

 Emissions Temporal: 2011 and 2050 (July) 

 Meteorology: 2050 Projected meteorology 

 2050 Energy Policy: 2050 Relaxed Energy Policy (REP) 

 Resolution: 36 km X 36km grid size. 

3 Simulation Cases for emissions 

1. 2011 Emission base case with 2050 projected meteorology and 2050 BEIS. 

2. 2050 Projected Emissions under REP with 2050 projected meteorology, 2050 BEIS, and 

2050 emissions with no fleet power train changes.  

3. 2050 Projected Emissions under REP with 2050 projected meteorology, 2050 BEIS, and 

2050 emissions with increased VMT and fleet power train changes.  

 

5.3.5 Data analysis 

The changes in NOx, SOx, PM2.5 O3-8HRMax, and monthly averaged ozone are assessed 

in this study under the three scenarios. All scenarios are conducted using the same meteorology so 

that the impact of emissions changes can be clearly assessed in the same climate scenario to help 

quantify the effect of potential emission reductions due to electrification. We not only explore the 
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spatial profile of each pollutant, but we also assess the spatial and nominal concentration 

differences among all three scenarios.  

Table 5-1: Scenarios 

Case 1 2 3 

Emissions Scenario Year 2010 2050 2050 

Ref_Base Case 1 1 1/2 

Future Energy policy (REP/Aggressive) N/A REP REP 

Marginal Energy Adjusted for EV Charging on 
the grid 

NA N/A No 

Meteorology  

Climate: Representative Concentration Pathway 

2050 

4.5 

2050 

4.5 

2050 

4.5 

Biogenic emission file BEIS 2050 BEIS 2050 BEIS 2050 

Electrification Scenario None None 5%_with HV 

 

5.4 Results 

Future emissions decrease substantially in 2050, despite increasing travel demand (Figure 

5-3). This decrease reflects the impact of increased efficiency controls and emission regulations in 

all sector sources like point sources (i.e. Electrical Generating Units [EGUs]), to the mobile sector 

and area sector (i.e. residential homes) and replacement of higher emitting vehicles in the fleet. 

The impact of these changes on both mobile and EGUs is particularly noticeable when looking at 

the spatial distribution of NOx emissions (Figures 5-3 a-c).  

The impact of tighter regulations and controls on PM2.5 and SO2 on the EGUs yielded 

improvements in the 2050 scenarios when compared to the 2011 base case (Figures 5-3 d-f, Figures 

5-3 m-o). Most of these changes were observed in the southeastern region of the country (e.g.,  
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Hennerman et al. (2016)90). The regulations also had an impact on ozone, which has been observed 

in studies by Henneman et al.(2017, 2017)90, 265 as well as others316.  

The concentration and spatial distribution of monthly averaged ozone over the region and 

daily averaged 8 hour maximum ozone (O3-8HRMax) show noticeable improvements in 2050 

when compared to the 2011 base case. For the monthly averaged ozone concentration and averaged 

O3-8HRMax, the impact of electrification between the two future scenarios is evident (Figures 5-

4 g-l). Overall, there is a about a 0-1 ppb decrease in daily 8 hour maximum ozone and a decrease 

of about 1-2 ppb in monthly averaged ozone. The direct impact of electrification on ozone here is 

clear, similar to other studies28. 

For NOx, the 2050 REP base case (Figure 5-3) is spatially similar to the 2050 electrification 

scenario but the NOx spatial distribution (Fig 5-4c) captures the impact of an electrified fleet in 

the future year scenario along major interstate roadways. Between the two future year scenarios, 

there are modest reductions of NOx emissions with the electrified fleet scenario cut by as much as 

0.5pbb.  NOx reductions between 2011 and 2050 range from 0 to 1ppb across the country, with the 

highest reductions seen mainly in the Southeast, which reflects the regulation impact on EGUs and 

on transport (Fig.5-4). 
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Figure 5-3: Plots show the simulated, monthly averaged spatial concentrations of NOx, O3, PM2.5, Maximum 
8hr O3 and SO2 for the month of July using 2050 meteorology and 2011 and 2050 emissions. 

 

Primary differences of particulate matter emissions show a spatial pattern different than 

NOx between future years and the 2011 base year (Figure 5-4). In the Southeast, we see an obvious 

reduction in PM2.5 in orders of 2 ug/m3 for PM2.5 and a negligible change overall in other areas of 

the country between the 2011 and 2050 scenarios. Between the 2050 scenarios, electrification 

shows a decrease in primary pollutants, which was expected. However the change was miniscule, 

reflecting the efficiency in motor vehicle emission regulations. The reduction in PM2.5 from 

electrification covered a broader spatial extent and was not restricted to roadways, which 

highlights a positive impact in secondary particulate matter.  

Changes in sulfur dioxide spatial concentrations between the 2010 base year and future 

years are observed. Notable reductions in SO2 levels are found in the Southeast from regulations 

on power plants emissions. Between the two 2050 future scenarios, there is a slight increase in 

SO2 concentrations in the electrification scenario. SO2 was the only pollutant to show an increase 

in concentration with the electrification scenario over the 2050 REP base case however, this 

change is negligible (~ 0.005 ppb). 
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Figure 5-4: Plots show the differences in simulated, monthly averaged spatial concentrations of NOx, O3, PM2.5, 
Maximum 8hr O3 and SO2 for the month of July using 2050 meteorology and 2011 and 2050 emissions 

5.5 Discussion  

Similar to previous studies, modest decreases in pollutant species were observed with 

electrification except for SO2, although this increase was small. We did not consider the 

incremental demand on electricity consumption from PHEVs and BEVs here, although with a less-

clean energy mix, the increased electricity demand of the electrified fleet could increase SO2 

emissions and possibly NOx and PM2.5
317. While studies by Pan et al., (2019)272 and Nichols et 

al.,(2015)295, showed increases in energy demand from EVs are expected to be miniscule, a study 

by Li et al., (2016)318 which incorporated incremental energy demand showed an increase in 

primary pollutants of SO2 and NOx from power plants with a less clean energy mix. Future work 

would incorporate the added demand load from EVs, and SAVs on electricity charging to evaluate 

the impact of different energy mixes. 

The 2011 and 2050 reductions for NOx, SO2 and PM2.5 are largely noted in the Southeast, 

as a result of tighter regulations on the energy centers located in the region. The effect of fleet 

electrification in 2050 can be seen with NOx along the interstate roadways and urban centers. 

Substantive ozone improvements between 2011 and 2050 appear to happen both in the Southeast 

and West Coast and there is a noticeable decrease in daily maximum 8Hr O3 throughout the 

country. The electrification effect on ozone is evident (Figure 5-4). While ozone is lower in both 
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future scenarios over 2011, electrification yielded further reductions of about 1 ppb to 2 ppb. 

Reductions in daily average maximum ozone are noted with an improvement of about 1ppb in 

most areas in the electrification scenario. Schnell et al. (2019)28 also found modest reductions with 

ozone in conjunction with electrification. PM2.5 reductions from fleet electrification are generally 

more spatially spread out in the Southeast, highlighting the impact of dispersion and particulate 

formation in the atmosphere. The magnitude of the reduction is limited (~ 0.1 ug/m3), because tail 

pipe emissions from ICVs are also expected to be quite low in the future.  

The projections of the future years, show that EVs will have a noticeable, albeit minimal 

impact with respect to current emission regulations in all sectors and with highly efficient ICVs 

on primary pollutants. Similar results were also observed by Brady et al., (2011)319, who concluded 

that overall changes were minimal. However, given the current energy mix or less renewable mix 

if marginal electricity increments were taken into account, the results could be that EV adoption 

might further increase the amount of emissions, as has been noted in a few studies, although this 

is also highly dependent upon the EV power train as well294. This becomes important if all the cars 

eventually become fully electric and will be powered by the electric grid. Under a relaxed energy 

policy scenario, this might result in more pollution, although it is likely to be concentrated near 

the power energy sources. 

Under different energy scenarios (i.e. renewable/non-renewable), warmer meteorological 

and climate projections with different RCP pathways could show an advantage of EVs over ICV 

vehicles, especially in regard to secondary pollutants like ozone and particulate matter. The spatial 

distribution of ozone and PM2.5 (Figures 5-4 f and 5-4 i) under the electrified scenario highlight 

this potential effect. In a warmer climate and with cleaner fuel sources, there is a bigger potential 

for EV cars to reduce the number of peak ozone days under NOx limited scenarios320. Therefore, 
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the impact of EV adoption on air quality under more carbon intensive RCPs is likely to be 

significant given that studies by Shen et al. (2019)304 and Zhang et al. (2017)255 show that greater 

ozone level exceedances is expected under warmer climates. The spatial distribution of positive 

ozone abatement (Figure 5-4 i) in the electrified scenario highlights the benefits of minimizing 

NOx on roadways. Therefore, EVs can be effective in mitigating ozone exceedances in a more 

adverse climate.  

Lastly, while the study finds that the 2050 fleet scenario presented here, comprising of a 

mix of electric car types (HEVs, PHEVs, and BEVs) have some advantages over future gasoline 

vehicles in terms of improving air quality, the results suggest that moving to a fleet of Battery 

Electric Vehicles (BEVs) is where larger impacts might be realized.  

The results here demonstrate EVs potential in improving air quality through reduction of 

primary and secondary pollutants. However when evaluated in the context of a life cycle 

assessment study, the mitigation effect from the use phase of EVs is not enough to offset the 

greenhouse gas (GHG) emissions from the production phase if less renewable sources are used321. 

It is for this reason that studies like Dillman et al., (2020)322, urge that de-carbonization measures 

should be prioritized over electrification. 

While GHG mitigation is a priority in the life cycle assessment studies of EVs, the full 

measure EV efficacy also needs to consider the impact of materials and natural resource depletion, 

as well as the recycle and end of life phase. There also needs to further analysis that includes 

impact of primary and secondary pollutants during the entire life cycle (“cradle-to-grave”) that 

goes beyond quantification of net increases, but includes air quality modeling as was done in this 

study to quantify the effects during the use phase of the vehicle. Only by including the full impact 
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of embodied emissions associated with EVs, can their efficiency over fuel powered vehicles be 

effectively assessed. 

5.6 Conclusions 

When compared with the 2050 REP base year, electrification found reductions in all 

primary pollutants except SO2. However, due to continuing emissions reductions in EGUs and 

ICVs with current standards, the benefits are modest. EV impacts are likely to be more noticeable 

for secondary pollutants like ozone and particulate matter, particularly under warmer climate 

conditions. It is also worth noting that EVs, unlike aging ICVs that can become high emitters due 

to emissions-equipment failures, are still much cleaner. Further, EVs become cleaner as the 

nation’s power plant investments evolve away from coal, and even away from natural gas, toward 

a much greater share of nearly-zero-emission renewable feed stocks. Thus EVs stand poised to 

make significant improvements to 2050 air quality in the U.S. than currently projected, however, 

a full life cycle analysis that incorporates embodied emissions associated with EVs should also be 

considered. 
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CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE 

RESEARCH 

6.1 Overview 

Impacts of various city infrastructure elements, such as transportation and residential 

buildings that support human activities and society can be both beneficial and adverse. Given the 

limited resources available, the current focus is on identifying how to make our societies more 

sustainable (i.e., support current and future well-being, including human and environmental 

health). In this thesis, we focus on the linkages between specific energy consuming infrastructure 

components and air quality, recognizing that exposure to air pollution (particularly particulate 

matter and ozone) is the largest risk factor associated with disability-adjusted life years lost 

(DALYs: a metric used to quantify adverse impacts of disease factors). The work described in this 

thesis quantified linkages between various infrastructure components and air quality.  This work 

has led to both general and specific conclusions and, as most research does, areas ripe for future 

study.  Here, general insights from the research are identified, and proposals for future work are 

suggested. Most of the work here has been published, in review or in preparation for submission. 

We discuss the conclusions here in the context of societal and environmental policy, implications 

using the sustainability framework introduced in Chapter 1.  

6.2 Conclusions 

The research described in this thesis investigated how infrastructures and the policies that 

regulate the emissions from those infrastructures affect air quality. Each study used different sets 
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of tools to investigate various linkages, resulting in individual sets of conclusions as detailed in 

subsequent sections.   

6.2.1 Chapter 2: Decades of progressive environmental policies are needed to reverse the impact 

of anthropogenic emissions on air quality. 

In Chapter 2, ambient data was compiled from three national monitoring networks, 

(AMoN, CASTNET & SEARCH) to assess the effect of emissions controls and related policies 

on aerosol acidity. Gaseous and particulate matter composition served as inputs for ISORROPIA, 

a thermodynamic equilibrium model that calculates particle thermodynamics, including 

composition and acidity (pH) from species concentrations in both phases (gas and solid/aqueous 

particulate). Data were available over a span of 5 to 8 years, depending on the network. Spatial 

mapping (2001 and 2011) of CMAQ-modeled acidity outputs were found to be largely consistent 

with observations.  Aerosol acidity is due to acidic components present in the aerosol, which in 

this case is mainly sulfate and nitrate. The presence of sulfate drives aerosol acidity low (pH < 2). 

Its effect is buffered by the presence of cations, such as ammonium and non-volatile cations (e.g., 

sodium and calcium) and low temperatures, which allows for increased ammonium and nitrate 

aerosol partitioning to the condensed phases at slightly elevated pH values (i.e. > 3).  

The same trends observed in Weber et al., (2016) were found to be true nationwide, as 

estimated aerosol acidity failed to change despite significant reductions in emissions and sulfate. 

Further, because the aerosol particles are highly acidic, nitrate substitution was limited. The results 

show that particles will remain acidic, both in rural and in urban sites, for decades to come. This 

trend as seen across the U.S., has the following implications: 1) aerosol acidity remains high and 

will likely continue to affect PM2.5 toxicity, 2) despite large reductions in PM2.5 mass 
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concentrations, disadvantaged socio-economic groups (SES), typically comprised of low-income 

and minority populations, will continue to be exposed to poor air quality and particulate matter 

with high acidity, possibly linking the disproportionate health outcomes observed with PM2.5 more 

than any other pollutant, and 3) while air regulations have had a significant impact on air quality, 

it will take a substantially long time to see the restoration of atmospheric particle acidity to pre-

industrial levels.  

6.2.2 Chapter 3: The link between urban morphology and energy use is quantified 

In Chapter 3, the relationships between socio-economic and demographic (SED) variables 

and energy are found between two types of residential energy use, electricity, and natural gas. A 

statistical residential energy model that uses socio-economic demographic factors to explain 

energy use is developed for Zip Code Tabulated Areas (ZCTAs) in metropolitan Atlanta for both 

residential natural gas consumption and electricity consumption. Residential energy use for 

electricity (2010) and natural gas consumption (2009) from energy providers to those ZCTAs was 

provided. Most of the SED data was obtained from the 2010 American Survey. With the sheer 

volume of variables considered (> 330), a number of techniques were employed to facilitate 

variable selection and address multicollinearity. Data transformation and machine learning 

methods to improve statistical regression power were explored. For data transformation methods, 

Z-scores, principal component analysis and two orthogonalization methods were investigated. Of 

those choices, the Modified Gram Schmidt orthogonalization method proved to be effective at 

improving the predictive power of the models and minimizing multicollinearity among variables. 

A number of machine learning regression tools (i.e. random forest, regression trees) and regression 

models (i.e. logistic regression) performed poorly and were set aside in favor of training and cross-
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validation sets with linear regression. A stepwise algorithm facilitated variable selection and pared 

down the number of variables to be more manageable. 

For both models, we expected to see a strong link between the SED variables and certain 

elements of building type (i.e., house with amenities, apartment vs single-family home). The 

prevailing presumptions at the start, were that post-design energy use is mostly driven by SED 

factors, and a statistical model accounting for a large range of variables would be able to establish 

that link sufficiently. While natural gas use was predicted very well with socio-demographics, 

electricity use proved to be more complex. An r2 of 0.95, with a low normalized error of 15% was 

found for the model relating natural gas use and SED factors, and the electricity model had an r2 

of 0.8, but a higher normalized error (33%). Both models were able to account for high variability 

in energy use, but the electricity model had a high bias in prediction while natural gas did not. 

Further analysis using principal component, geospatial mapping and additional regression 

modeling showed that urban morphology, particularly near roadways, plays a significant role in 

electricity use, with ZCTAs in high road density areas using more electricity. 

The differences between the natural gas and electricity use models highlight that city 

infrastructure is as critical as socio-economic factors in affecting energy use. This study illustrates 

that policies regarding city layout and infrastructure choice can inadvertently create more issues 

and that efficient building designs might not be enough to address increasing energy use and 

demand. Lastly, although the urban heat island (UHI) effect on energy use has been studied 

extensively, this is one of the few studies that quantifies the impact of that effect by using energy 

use data directly from energy providers, as opposed to using an estimated energy value. This 

reduced the uncertainty in our model and can benefit studies of the impact of infrastructure on UHI 

and UHI on electricity consumption. 
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6.2.3 Chapter 4: Airport emission related impacts on air quality are underestimated with 

regulatory emission inventories. 

In Chapter 4, the effects of airport emissions (in this case the Atlanta Hartsfield-Jackson 

airport [ATL]) on air quality are explored. This airport has consistently been the busiest in the 

world (though COVID changed that this past year).  Here, a fine scale chemical transport model 

(CTM), in this case the Community Model of Air Quality (CMAQ), along with satellite and 

ground-based observations are employed to link airport related activities to air quality. CMAQ is 

used by regulatory agencies, such as the Georgia Department of Natural Resources (GaNDR) and 

the U.S. EPA, to develop emission control strategies, and the enabling of regulatory policies, to 

achieve their air quality goals. The research here quantified the differences between the use of two 

different inventories, a 3D inventory with both surface and cruise emissions spatially allocated 

(horizontally and vertically), and the base inventories with only surface airport operation emissions 

allocated at the same altitude and location as their associated airports. The base inventory has the 

landing and takeoff (LTO) emissions allocated only to the surface and was obtained from the 

EPA’s 2016v1 Emissions Modeling Platform77 (2016 NEI). The 3D emissions is developed by 

combining the LTO emissions from the 2016NEI with estimated cruise emissions from the 

Aviation Emissions Inventory Code (AEICv2.1) emissions repository. Both inventories are 

combined with emissions from other sectors (e.g. onroad, point, non-road) in the 2016 NEI to serve 

as inputs for the CMAQ model.  

The CMAQ results are evaluated using ground-based and high-resolution satellite-based 

observations from the TROPOspheric Monitoring Instrument (TROPOMI). Model evaluation with 

observations is generally limited, as near-airport monitors are sparse. Although temporally limited, 

the satellite data provides a significant advantage with a more complete spatial coverage of 
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observations, albeit only at the overpass time. We minimize some of the uncertainty introduced by 

our assumptions regarding spatially allocated airport emissions by evaluating the differences 

between the 3D and base inventory in ozone and particulate matter concentrations, and by 

comparing model outputs with TROPOMI observations. We also minimize the uncertainty of how 

satellite-based observations are transformed to estimated NO2 vertical column densities (VCDs) 

derived using air mass factors, replacing default AMFs with those derived from CMAQ, and  

assessing TROPOMI’s ability to provide consistent VCDs with CMAQ modeled results around 

two power plants whose emissions are continuously measured. 

The results show that if base inventories are used in regulatory assessments, airport effects 

would be underestimated both in spatial extent and magnitude, with a low bias for ozone and a 

potentially locally high bias for PM (but low bias regionally). For instance, a 6 ppb net increase in 

maximum daily ozone is seen when looking at the 3D-base inventory differences. Additional 

increases in ATL emissions also led to more ozone. Simulated PM2.5 and UFP were locally lower 

using the original inventory that concentrates emissions at the airport, but higher levels elsewhere 

in the domain with the 3D inventory. We also observed that the net effect of airport operations 

resulted in elevated concentrations of ozone and particulate matter over the modeling domain. 

The findings show that urban populations are exposed to elevated concentrations of ozone 

and particulate matter due to airport operations and that additional increases in airport emissions, 

will result in more ozone. Also, an increase in airport emissions could present difficulties in the 

future for metropolitan Atlanta to demonstrate ozone attainment, even with cleaner automobiles in 

the mix. The overall conclusion of this study is that accurate airport emission inventories with 

spatially allocated emissions are valuable for air quality modeling. 
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6.2.4 Chapter 5: Electric cars have advantages over gasoline vehicles in mitigating pollution.  

One aspect of the work detailed in this thesis assessed the potential efficacy of an electric 

automated fleet of passenger cars on 2050 air quality in the US. The study in Chapter 5 examined 

a future where gasoline powered passenger cars emit much lower levels of pollution than present 

day automobiles, and considered the likely air quality impacts of going from a largely gasoline-

fueled automobile fleet to one with increasing levels of automated, electric vehicles and VMTs. 

The chemical transport model CMAQv5.0.2 ran at 36km over the U.S. for the month of July. The 

EPA’s 2011 National Emission Inventory (2011 NEI) served as the base data for all emission 

sectors, catalogued in the NEI for the CMAQ simulations. Two future (2050) emission inventories 

were developed by scaling the 2011 NEI while 2050 projected emissions scale factors, developed 

using statistical projections of future energy demand and emissions factors from Georgia Institute 

of Technology’s National Energy Modeling System (GT-NEMS)311-313. A base 2050 emission 

inventory with mostly internal combustion vehicles (ICEVs) was developed by multiplying the 

2011 NEI by the projected 2050 GT-NEM scale factors for 2050. This case represents the scenario 

with cleaner gasoline powered vehicles. In the alternate 2050 emission inventory, most of the 

passenger cars were replaced with electric vehicles. Both future scenarios consider the same 

relaxed energy policy and climate (i.e. RCP45).  

The 2050 electrified scenario found reductions in ozone and particulate matter, compared 

to the case with a pure gasoline fleet, though the benefits are modest due to continuing emission 

reductions in ICVs. ICVs in 2050 are expected to have low primary emissions of PM2.5 and NOx, 

such that the benefits for those species were small. However, EV impacts were more noticeable 

for secondary pollutants like ozone. Even with the increased VMTs, Dynamic Ride Sharing (DRS), 
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between the two 2050 scenarios (with/without electrification), the electrified fleet scenario led to 

appreciable reductions in O3. 

Benefits of EV use increase if the nation’s mode of generating electricity evolves away 

from coal to natural gas and, to a greater share of nearly early-zero-emission renewable feed stocks. 

This becomes increasingly important as the fraction of VMT becomes fully electric and all 

transport is powered by the electric grid. Thus EVs stand poised to make significant improvements 

to 2050 air quality in the U.S., and their use in autonomous vehicles that have higher annual VMT 

may be particularly attractive. 

6.3 Synergistic effect of urban infrastructure, technology and policy 

The studies show how policy, urban infrastructure, transportation and city layout impact 

energy and air quality. We see the effectiveness of environmental regulations in curbing emissions, 

but disadvantaged communities are still disproportionately exposed to high levels of pollution, a 

result of urban infrastructure, transportation, city layout and regulatory policies. Efforts to curb 

energy use have led to the development of energy efficient buildings and appliances. However, 

poor urban infrastructure and layout could offset some of the gains made with these improvements. 

Regulations have led to dramatic reductions in emissions in Atlanta, but emissions associated with 

the airport and residential energy use will contribute to total ozone and PM levels in the future. 

Further, while emissions from cars on a-per-mile basis may be dropping, VMT is increasing and 

mobile sources will continue to be a major contributor to air pollution. The move to electric 

vehicles will bring substantial benefits on pollution, but these benefits may be smaller than 

expected as the result of regulations that will see increasingly cleaner cars in the future.  
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While gains have been made through the enactment of environmental regulations and 

innovation, a strategy that considers infrastructure, technology and policy together might be more 

effective, than implementing plans that focus on one aspect of infrastructure at a time. Such a 

solution for example would combine battery powered electric vehicle adoption with a 100% 

renewable energy source for power generation. A multilayered method might therefore be worth 

considering, in planning for the evolution of cities to be more efficient, sustainable and equitable.   

6.4 Contributions to science: expands our knowledge of how the built environment impacts 

air quality 

This thesis quantifies how aspects of urban infrastructures impact air quality. While this 

work has focused on just a few components of the multiple infrastructures that help our cities 

function, it shows that multiple factors must be taken into account to address urban sustainability 

and human well-being. It further demonstrates that the compounded effects of urban 

infrastructures, play a significant role in the effectiveness of mitigation measures. For example, 

the potential role of the proximity and layout that multiple elements of city infrastructure have on 

air quality is not often directly considered, thus leading to areas of relatively high pollutant levels 

and areas that will not respond as planned to controls. The compounded effect can actually lead to 

worsening air quality, or in regulations having muted impacts. This is a potentially significant 

underlying factor and future polices and targeted intervention will benefit if these factors are 

considered.  

Overall, the findings from this study indicate that the integrated application of a wide range 

of techniques and topics (i.e. air quality modeling, energy analysis, statistics, machine learning, 
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satellites, data visualizing) was effective at elucidating and delineating the complex, non-linear 

synergistic interactive effects of urban infrastructure. 

6.5 Sustainably focus and policy suggestions 

6.5.1 Chapter 2: Progressive policies, targeted intervention and city planning are needed  

Aerosol acidity remains high, except in areas where crustal elements and colder 

temperatures will lead to significantly lower aerosol acidity in response to controls. This means 

targeted interventions may be required to mitigate the effects on disadvantaged communities that 

are exposed to elevated levels of PM2.5. Because aerosols are likely to remain acidic for decades, 

long term planning should consider more measures to reduce PM2.5 and aerosol acidity. A move 

toward zero emission cities that includes electric cars and renewable feed stock for electric 

generating units will go a long way to reducing the burden experienced by disadvantaged SES 

groups. Urban infrastructure layout and access to green spaces can also help mitigate the adverse 

effects in areas with higher air pollution exposure.  

6.5.2 Chapter 3: A closer look at urban infrastructure is needed to mitigate energy use. 

Per capita energy use has historically been higher in urban areas, and that is expected to be 

the case in the future as well. This contributes to higher pollution levels. As cities continue to 

expand and change, understanding the key demographic factors and the role of city infrastructure 

could help guide policy decisions to develop healthier and sustainable solutions.  

6.5.3 Chapter 4: Airport locations and different modes of transportation need to be considered 

Airports are generally located near urban areas and are hotspots of NOx and particulate 

matter emissions. Tank farms and vehicles going to and from airports can also be significant 
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contributors to VOC emissions as well. The impact of the future growth of airports can have a 

notable impact on air quality and on urban populations, particularly those living in the immediate 

vicinity, though the impacts can be widespread. Not all airport-related emissions are as readily 

controlled as automobiles, which now have effective on board controls, and further reductions are 

being found from the increasing use of EVs. Solutions here should consider converting onroad 

modes of transportation to mass transit near airports or fleet electrification. 

6.5.4 Chapter 5: EVs could lead to zero-emission cities more quickly than other sectors. 

Currently, the traffic sector is responsible for a large fraction of the air pollutant emissions 

within cities and 29% of all energy use within the U.S. (Energy Information Administration)27. As 

cities continue to expand, along with projected population increases and vehicle miles traveled 

increases, motor emissions will continue to have a large impact on city air quality. A significant 

change in auto fleet make up could have a considerable impact on this component. However, EV 

adoption alone is not enough, because sources of electric also need to be considered. Moving to 

low or zero-emitting renewable sources would support an electrified transportation infrastructure 

and healthier cities.  This will go a long way toward reducing the burden of disease experienced 

by disadvantaged communities, particularly those that live near major roadways. 

6.6 Future work 

From the results in Chapter 2, further investigation is needed to develop causal 

relationships between geography and infrastructure to racial disparities in health and pollution 

exposure. Quantifying the spatio-temporal dependencies of city-health linkages requires a lot of 

ambient air data, but unfortunately the scarcity of air quality monitors poses barriers to conducting 

such studies. In lieu of that, a few studies are beginning to incorporate readily accessible, fine-
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scale, satellite-based observations from instruments like TROPOMI as was done in Chapter 4 of 

this thesis. The wide spatial coverage TROPOMI offers can be used in a proposed study to link 

spatial and racial disparities with pollution exposure and infrastructure. 

Another suggested study would be to expand upon the “Harvard six city” study, which 

linked PM2.5 exposure to mortality by using metrics such as particulate composition and acidity. 

Data fusion techniques that interpolate both air quality monitor data with modeled fields from 

chemical transport models as in Senthilkumar et al., (2019)323 provide reasonably accurate 

particulate speciated data over large domains, though that data is not always readily accessible, 

and takes an inordinate amount of resources to develop. This proposed study would focus on 

disadvantaged social economic groups (SES), typically comprised of low-income and minority 

populations that tend to be disproportionately exposed to poor air quality and more adverse health 

outcomes. The objective would be to compare the particulate composition and pH in different 

urban areas with mortality rates from select geographic regions. Questions that could be asked and 

answered here include: 1) Is there a change in the leading causes of mortality linked to air quality 

as the composition of aerosols changed? 2) Is there a causal link between pH and particulate 

composition to the health and exposure disparities across cities? The study would utilize health 

prevalence data at the census tract level as the response variable to link city infrastructure and 

health with ethnic social demographics. Mortality and morbidity data could be obtained from the 

National Center for Health Statistics, a database maintained by the Center for Disease Control 

(CDC).324 Exposure to air pollution and prevalence rates would be quantified across social 

demographics to understand the impact of speciation of particulate matter and acidity.  

The research described in Chapter 3, which was conducted at the ZCTA level, could be 

expanded by conducting energy estimations at finer spatial scales, like the census tract level for 
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instance. Given the impact of infrastructure, another modeled approach could consider including 

more of those features (i.e. green space) into the mix as well. The statistical model could be 

combined with computational models like the Urban Canopy Model325, which uses an integrated, 

multiscale urban modeling system to simulate effects such as urban heat islands that create unique 

urban micro-climates. Another suggestion would be to expand the work of Chapter 3 by including 

multiple cities and examining the patterns of energy use, urban layout and climate across these 

municipalities. The study could also incorporate seasonal effects that were not considered in 

Chapter 3.  

For the study in Chapter 4, where airport related emission impacts were assessed, a future 

study could consider incorporating other sectors, such as the onroad sector to explore interaction 

effects with airport emissions. A closer look at the 2020 Covid period, combined with observations 

from air quality monitors and satellites, would be a good starting point to explore these interactive 

effects and could supplement the findings in Chapter 4. Another idea would be to include airports 

other than Atlanta. The techniques for vertical and horizontal allocation used in the 3D inventory 

can also be improved by including flight path and activity data.  

In Chapter 4, satellite observations were used to evaluate our assumptions about the 

spatially allocated inventory.  However, care must be taken to minimize the amount of uncertainty 

associated with these measurements. In the chapter, we discussed how we minimized the 

uncertainty in TROPOMI observations, by substituting default vertical profiles with those derived 

from the fine scale air quality model (CMAQ). A study could explore the sensitivities of model-

derived AMFs to the planetary boundary layer height in the model. Future work could also focus 

on ways to validate, or quantify the uncertainty in satellite-derived VCDs by getting measurements 

of NO2 vertical profiles to compare with TROPOMI, as is being done in the Kaiser and Russell 
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group here at Georgia Tech. Expanding the validation technique used in this thesis between 

TROPOMI and power plants’ NO2 VCDs to other U.S. sites could also prove useful in further 

demonstrating TROPOMI’s capabilities and quantifying the uncertainties.  

Lastly, the deployment of TEMPO, the first space-based instrument to monitor air 

pollutants hourly across the U.S.326, offers an opportunity to incorporate finer scale satellite 

observations (i.e. ~1 km TEMPO vs ~ 4km TROPOMI) with similarly scaled chemical transport 

modeled simulations in air quality studies. TEMPO provides an opportunity to continue the 

overarching work in this study to delineate the interactive effects of urban infrastructure with air 

quality, but at much finer scales. Combined with the increased temporal resolution (i.e. 12hrs 

TEMPOS vs ~ 1hr TROPOMI), this will increase our understanding of how the built environment 

affects air quality and the efficacy of regulations.  

The study in Chapter 5 could be developed further by considering additional scenarios 

than what has been done so far in this thesis. In the chapter, the efficacy of EVs over gasoline 

passenger cars, under a relaxed energy policy in a moderate climate, was explored. A future study 

could consider a different energy fuel mix for the charging sources of these EVs, and it could also 

assess the electrification of the entire onroad fleet, including buses and trucks.  This could be done 

under different climate scenarios as well (i.e. RCP 8.5 and RCP 4.5).  A modest EV automation 

adoption scenario was considered here, as evidenced with the net increase in VMTs over the base 

case, but different adoption rates of automation should be considered in a future study because 

automation will be a substantial share of VMTs in the future.  
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The current study limits its assessment to air quality metrics, but does not consider health 

benefits or the reverse. A mortality assessment should be included when considering the efficacy 

of EV adoption.  

Chapter 5 looks at two 2050 scenarios, however, some form of electrification could be 

considered in the present day fleet. It provides an opportunity to look at the synergistic effect of 

multiple modes of transportation in an urban area. For instance, electrification of half of the 

passenger car fleet today could change some of the results arrived at in Chapter 4. EVs also provide 

an opportunity to assess the effects of urban infrastructure with policies (i.e. a policy stating only 

renewable fuels for EGUs can have different effects if EVs are considered). EVs clearly provide 

an opportunity to assess what kind of policies should be enacted. 

Lastly, although EVs are likely to improve urban air quality, the “cradle-to-grave” aspect 

of the batteries needs to be considered as well. From the resources used for manufacturing, to the 

environmental cost, to their final deposition, their lifecycle needs to be explored. This analysis is 

necessary for us to understand the ways EVs can affect our lives, and whether or not they offer a 

sustainable or viable option for the next 50 to 100 years. 
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APPENDIX B.  SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

B.1 Impact of organonitrates and organosulfates 

The observations used in this analysis are from both filter-based and on-line 

measurements, neither of which have been thoroughly evaluated as to how organonitrates and 

organosulfates may interfere with what is reported as “nitrate” and “sulfate” aerosol.  On the 

other hand, the filter-based and on-line measurements compare quite well (Edgerton et al., 

(2012)65, and have been evaluated for precision.   

Despite the lack of quantification of organonitrates, its impact on pH is at best uncertain 

as their mechanisms, rates and fates in particulate matter are still indeterminate327. Further, as 

Lee et al., (2016)328 point out, their contribution to organic mass (OM) fraction is very small 

(less than 8%).  In addition, as found in this study (Table 1, Table 2), overall contribution of 

nitrate to PM2.5 is very low, particularly in the Southeastern region. Thus based on its minimal 

contribution it is unlikely that these constituents will have a substantial impact on pH, as 

corroborated by Vasilakos et al., (2018)329. 

Of note, contributions of organosulfates to inorganic sulfate are expected to be minimum, 

especially in areas with minimal biogenic volatile organic compounds (BVOCs), like California, 

as the presence of organosulfates compounds are likely to be associated with isoprene 

oxidation93. Further, as observed with organonitrates, organosulfates are likely to contribute 

more towards organic matter, not inorganic sulfate94.  

However, as studies by Song et al., (2018)69, Vasilakos et al., (2018)329, Pye et al., 

(2018)60 and Nah et al., (2018)330  show, any contributions to aerosol organic mass by 
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organosulfates and organonitrates are not expected to have a significant on aerosol pH as organic 

matter is not found to have a big impact. 

B.2 Impact of organics on pH 

A fair number of studies, such as those by Wang et al (2018, 2016)97, 331 and Silvern et al., 

(2017)61 have discussed the impact of organic and organic acids on aerosol acidity as significant. 

However, studies by Pye et al., (2018)60  and Vasilakos et al., (2018)329, paint a different picture. 

Pye et al., (2018) show that when organic and inorganic phases are mixed or exist in the same 

phase, there is only a 0.1-unit increase in median aerosol pH. Such a mixture between organic and 

inorganic compounds, they note, would likely happen in the presence of inorganic compounds 

such as bisulfate, which would be indicative of a low pH mixture. They observe that the only time 

pH with organic components were noticeably higher than ISORROPIA results, was when the 

organic phase was deemed immiscible. Even in that scenario, the predicted pH increase was only 

a fraction of one pH unit. 

 These results are similar to what Vasilakos et al., (2018)329, and Song et al., (2018)69 

both found; an increase in organic acids to the base case scenario with no organic acids in E-

AIM showed minimal impact on aerosol pH. Both studies assume that the components are 

miscible and consist only of one phase as the aerosol is assumed to be metastable phase with no 

liquid phase separation. This theory is supported by observations noted in Marcolli et al., 

(2004)332 and Liu et al., (2017)81 which shows that fine particulate aerosols are likely to be liquid 

and miscible. Further, in the study conducted by Losey et al., (2018)84, it was found that both 

WSOM and inorganic constituents are likely to exist in the same liquid phase at very low relative 

humidity (RH) values when the ammonium to sulfate ratio is low, which would also be 

indicative of high acidity, as was found in our study.  
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Therefore, under these assumptions, the impact of organic acids on aerosol pH is likely to 

be low. 

Wang et al., (2018)331 bring up the point that water contributions from water soluble 

organic matter (WSOM) plays a significant role in estimating pH, however, Guo et al., (2015)71 

and Song et al., (2018)69 show that the aerosol water associated which organic species had little to 

no impact on predicted pH value for fine particulate matter. Furthermore, Song et al., (2018) also 

explored the impact of their contribution to aerosol water content (AWC), and found it to be 

insignificant in their study.  

Similar findings in terms of contributions to aerosol water content (AWC) by organics were 

noted in by Dick et al., (2000)76. In their study, they found that the water content associated with 

organics is considerably smaller than that associated with sulfate. Other experimental 

measurements conducted by Nah et al., (2018)330 found that water soluble organic acids such as 

oxalic, formic and acetic acid only comprised on average, 6% of total organic matter and even less 

(4%) of the water soluble organic matter. This observation by Nah et al., (2018) is a clear contrast 

to what Wang et al., (2018) observed in their study, where a large part of AWC and WSOM mass 

was attributed to oxalic acid. This discrepancy only serves to highlight the difficulties in drawing 

direct comparisons between different regions and pollutant sources.   

Nah et al., (2018) and Dick et al., (2000) discuss the minimal contribution of organics to 

AWC, but don’t explore the impact of increased organics like Song et al., (2018) and Vasilakos et 

al., (2018)329. Their results however show that their impact on pH, even when increased to large 

proportions of aerosol mass is still negligible. 

It is important to note however, that Wang et al., (2016, 2018)97, 331 and Silvern et al., 

(2017)61 studies were run under a set of different conditions than those of Nah et al., (2018), 

Song et al., (2018) and Vasilakos et al., (2018) and focused on different objectives. For instance, 
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Silvern et al., (2017) focused mainly on the inhibiting properties of organic matter coating to 

ammonia uptake in the aerosol, while Wang et al., (2016, 2018) explored the impact of pH on 

reaction mechanics. However, the conditions that form the crux of the crucial arguments in 

Wang et al., (2016, 2018) studies are vastly different than those in this study and others earlier 

mentioned. For instance, both studies of Wang et al., (2016, 2018) essentially explore and draw 

crucial conclusions about the possible mechanisms of NO2 mediated Secondary Organic Aerosol 

(SOA) formation and hygroscopic particle growth results at higher pHs. At those higher pH 

values, it is likely that sulfate is almost fully neutralized. As such, drawing direct inferences 

about impacts of organics on pH from those higher pH studies to others conducted at lower pH 

would result in large discrepancies.  

B.3 Neutralization Ratio 

 Though f represents the degree of neutralization for SO4
2- and NO3

- with NH3(g), the ability 

of NH3(g) to neutralize both constituents can be complicated by other processes. In addition to 

those mentioned in Hennigan, et al. (2015)68, a study by Silvern et al., (2017)61, suggested that 

organic matter could inhibit neutralization by reducing NH3(g) uptake into aerosols,333, 334. 

However, this was cast to doubt by the role of nonvolatile cations in Guo et al., (2017)100 and in 

the conclusion summary by Pye et al., (2018)60.  Other studies such as those by Sakalys et al., 

(2016)83 where reported decreases in NH3(g) uptake with particle size was observed are also worth 

considering.  Results from other studies that revealed formation of amines and organic matter with 

NH3(g) via competing reactions might also be considered as factors here for inadequate 

neutralization97, 335, 336, though thermodynamic studies show that incomplete neutralization can be 

expected at the NH3(g) levels typically found109.    



 146 

Additional theories that explain neutralization complexities can be found in the study by 

Huang, et al. (2011)49. In the study, Huang, et al. observed that at molar ratios of NH4
+/SO4

2- 

greater than 1.5, kinetic rates of SO4
2- neutralization slowed down significantly while rates for 

NH4NO3 formation increased rapidly, meaning SO4
2- neutralization above 1.5 was largely 

suppressed by NH4NO3 formation. It is fair to note however, that the study took place in China, 

where the concentration profile in the ambient air could have different effects on the results and 

whether nitrate is higher in those cases is unclear.  While similar observations have been 

observed by Kumar et al. (2016)337, it is important to note that aerosol pH, in some parts of 

China are substantially higher than in most US regions as shown in Guo et al., (2017)109, and 

might have considerable bearing on such observations. In this study however, there is no 

evidence from our trends that excess production of NH4NO3 took place as the results show that 

the concentration of NH4
+ was affected by the presence of SO4

2- not NO3
- (except in MW). 

Furthermore, as pointed out by Weber et al. (2016)55, NH4NO3 formation is largely unaffected at 

pH below three, and since the intercept for the mean pH trends show all sites with substantially 

low pH (except MW), no NH4NO3 formation is likely to be taking place, so there is no reason to 

suppose that the exact same phenomenon is happening here. 

B.4 Further California pH analysis 

While no significant decrease in SO4
2- or NO3

- were observed in California, the 

significant increase in pH coupled with the significant decrease in NH4
+ could indicate the 

reduction of other components besides sulfate or nitrate. The study by Shi et al. (2017), showed 

that high pH can be attributed to other aerosol components such as dust95, which could also 

explain the California results. Figure S51 shows high mass proportions of dust components in 

that region.  
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B.5 ISORROPIA-II evaluation to other inorganic thermodynamic models 

Many studies have evaluated the differences between inorganic thermodynamic models. 

Zhang et al., (2000)338 conducted an evaluation of five different thermodynamic inorganic 

models and found that all the models tend to agree remarkably well when one is very careful to 

show that different conditions might favor a particular inorganic thermodynamic model over 

another.  Ansari and Pandis (1999)67 evaluated 4 models and recommended ISORROPIA as the 

model of choice based on its computational efficiency and general agreement with other 

benchmark models.  

Both studies highlighted various reasons for differences in model performance. In some 

scenarios, differences in predicted pH tended to occur under special cases such as low RH64 or in 

estimations of activity coefficients, which can have significant effects as noted in Kim et al., 

(1993)339. Errors in input variables, including the list of electrolytes taken into consideration in 

each model, computational methods or differences in predicted aerosol water content were 

discussed as other factors that could impact predicted aerosol pH between models. 

 Most model evaluations are typically conducted by comparing how well the model’s 

predicted gas-aerosol partioning fractions of inorganic constituent’s measures against 

observations64, 67, 68. Such comparisons are typically used as a gauge to determine how well the 

model predicts pH64, 71. In this regard, ISORROPIA-II has been found to have fairly good 

agreement with observation measurements and with other models.  

Guo et al., (2015)71 found ISORROPIA-II’s predicted aerosol liquid water content 

correlated fairly well with observations with an R2 of 0.74 In that same study, comparisons of 

observations with predicted NH3(g) gas partition fraction from ISORROPIA-II resulted in ratios 
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near 1. Nowak et al., (2006)340 also got good agreement with observed NH3(g) results from 

ISORROPIA-II.   

As stated earlier, ISORROPIA-II was found to have fairly good agreement with other 

models. In Hennigan et al., (2015)68, E-AIM and ISORROPIA-II showed fairly good pH 

agreement when the forward mode (as used in this study) was employed.  Results of studies 

conducted by Vasilakos et al., (2018)329 and Song et al., (2018)69,  showed that any differences 

between these different inorganic thermodynamic models, under the conditions of this study 

would not be significant; differences were relatively small (a fraction of a pH unit).  

In terms of uncertainty, under certain scenarios, uncertainty in modeled pH can increase 

or decreases. For instance, Guo et al., (2015) found that higher relative humidity (RH) values and 

temperatures in the summer resulted in higher uncertainty estimates. In Fountoukis and Nenes 

(2007)64, differences between ISORROPIA-II and SCAPE results occurred at low RH values.  

However, under the conditions of this study, ISORROPIA-II in the forward, metastable 

mode was found to provide the best results and agreement with observations, provided RH 

values were not in the extreme ranges69, 78.  

B.6 CMAQ Model Evaluation 

The performance of photochemical grid models like the Community Multiscale Air 

Quality model (CMAQ) is typically assessed within a 4-tier frame work. The first component of 

this frame work, as outlined in Dennis et al., (2010)341 is an operational evaluation assessment. In 

this aspect, the model is evaluated to see how well it performs in comparison to ambient air 

observations and lab measurements. A number of statistical metrics such as Pearson’s correlation 

coefficient (R2), Normalized Mean Bias (NMB), and Normalized Mean Error (NME) is used in 

this evaluation. The dynamical evaluation component of the 4-tier frame work evaluates how 
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well the model captures changes in concentrations in response to emissions and meteorology, 

while the diagnostic evaluation explores model performance in capturing atmospheric dynamic 

reactions, dealing more with the processes within the model, variability and sensitives to model 

inputs. Lastly, the probabilistic evaluation component utilizes a combination of statistical 

methodologies and metrics (i.e. confidence interval analysis, ensemble averaging) to assess 

model uncertainty in matching observations.  

Many studies have used part or all aspects of these frame works to assess CMAQ 

performance, but as results can vary regionally and across varying spatial scales and other 

domains, it is critical to use consistent criteria and benchmarks to assess performance. The 

criteria and bench mark goals for key gaseous and aerosol species (e.g. NH4
+, SO4

2-, PM2.5) as 

outlined in Emery et al., (2017)91 provides a consistent, reproducible and useful assessment in 

this regard.  

An application of these bench marks was used by Henneman et al., (2017)90 to capture 

the operational, dynamic and diagnostic evaluation of CMAQ in response to emission and 

meteorological changes in the Eastern part of the United States. Within the operational 

evaluation component of the study, Henneman et al., (2017) found that most of the PM2.5 species 

met the metrics goals set by Emery et al., (2017). The diagnostic component of the study 

captured CMAQ sensitivity changes in emissions and meteorology. The results of the diagnostic 

evaluation showed that CMAQ results were influenced more by changing emissions than 

metrology over the decade of interest. In addition, Henneman et al., (2017) also compared the 

performance of CMAQ with statistical modeling to evaluate the result of the diagnostic 

evaluation and found consistent results between both methodologies. 

The use of CMAQ in this study focused primarily on capturing spatial and temporal 

dynamic trends of pH and ammonia gas in response to gaseous precursor emission changes. 
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Dynamic evaluation can provide impact of emission changes over a longer time period which 

was the focus here. Within the dynamic evaluation component in Henneman et al., (2017) 

CMAQ model results met the criteria bench mark goals for all PM2.5 species except Organic 

Carbon (OC).  

CMAQs efficacy has been evaluated in many studies with results showing similar 

performance in capturing CMAQ’s performance in regard to operational and dynamic 

components. Cohan et al., (2014)342 captured the ability of CMAQ and other photo grid models 

to assess modeled attainment tests and found an 94.8% success rate for predictions with 110 

monitors in meeting NAAQS design values for attainment.  Dennis et al., (2010)341 found 

CMAQ was able to capture trends of NOx and CO (albeit some difference in magnitude) in 

response to emissions fairly well in both operational and probabilistic evaluations. Godowitch et 

al., (2010)343 was able to demonstrate the ability of CMAQ to capture NOx change with observed 

NOx concentration and Marmur et al., (2009)344 captured CMAQs ability to match profiles of 

primary species in particulate matter at SEARCH sites. 

The results of these studies, highlights CMAQ’s ability to capture responses to emissions 

changes fairly well, and the use of such models continues to be critical in light of future 

emissions controls. 
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Table B-1: Co-located CASTNET and AMoN sites by regions. CASTNET site measurements follow the start date of 
co-located AMoN site. The Longitude and Latitude refers to the location of the CASTNET sites. Data collected at 
these sites during the time period: March 2011 to February 2016 

 

 

Amon  CASTNET  Region State CASTNET Site  Longitude Latitude 

CA67 JOT403 California CA Joshua Tree NP 34.069569 -116.38893 

CA83 SEK430 California CA Sequoia NP - Ash Mountain 36.489469 -118.82915 

CA44 YOS404 California CA Yosemite NP - Turtleback Dome 37.713251 -119.7062 

IL46 ALH157 Midwest IL Alhambra 38.869001 -89.622815 

IL11 BVL130 Midwest IL Bondville 40.051981 -88.372495 

IL37 STK138 Midwest IL Stockton 42.287216 -89.99995 

OH54 DCP114 Midwest OH Deer Creek 39.635888 -83.260563 

KS31 KNZ184 Midwest KS Konza Prairie 39.10216 -96.609583 

WI35 PRK134 Midwest WI Perkinstown 45.206525 -90.597209 

NE98 SAN189 Midwest NE Santee Sioux 42.829154 -97.854128 

CT15 ABT147 Northeast CT Abington 41.84046 -72.010368 

PA00 ARE128 Northeast PA Arendtsville 39.923241 -77.307863 

NY67 CTH110 Northeast NY Connecticut Hill 42.400875 -76.653516 

PA29 KEF112 Northeast PA Kane Exp. Forest 41.598119 -78.767866 

NJ98 WSP144 Northeast NJ Wash. Crossing 40.312303 -74.872663 

MD99 BEL116 Northeast MD Beltsville 39.028177 -76.817127 

CO88 ROM206 Rocky 
Mountains 

CO Rocky Mtn NP Collocated 40.278129 -105.54564 

NC06 BFT142 Southeast NC Beaufort 34.884668 -76.620666 

AR03 CAD150 Southeast AR Caddo Valley 34.179278 -93.098755 

KY98 CDZ171 Southeast KY Cadiz 36.784053 -87.85015 

NC26 CND125 Southeast NC Candor 35.26333 -79.83754 

NC25 COW137 Southeast NC Coweeta 35.060527 -83.43034 

FL11 EVE419 Southeast FL Everglades NP 25.391223 -80.680819 

GA41 GAS153 Southeast GA Georgia Station 33.181173 -84.410054 

FL19 IRL141 Southeast FL Indian River Lagoon 27.849215 -80.455595 

KY03 MCK131 Southeast KY Mackville 37.704678 -85.048706 

WV18 PAR107 Southeast WV Parsons 39.090434 -79.661742 

VA24 PED108 Southeast VA Prince Edward 37.165222 -78.307067 

AL99 SND152 Southeast AL Sand Mountain 34.289001 -85.970065 

TN01 GRS420 Southeast TN Great Smoky NP - Look Rock 35.633482 -83.941606 
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Table B-2: List of SEARCH sites, location, name and type (i.e. urban, residential). The “Data Collection Start/End 
Date” reflects the seasons during which SEARCH data for base cations (Mg2+, Na+, Ca2+ and K+) are available. 
Certain ion data are unavailable during seasons shown in “Seasons with insufficient data” 

State/ 
Site Name 

City Location Type 
Site Operating 
Timeline 
Start-End Date 

Data collection 
Start /End Date 

Seasons 
with insufficient 
data 

No. of  
Seasons 
with data 

GA/JST 
Atlanta 
Jefferson St 

Urban 8/01/98-NA Spring ‘08/Winter ‘15 
Spring ’12, 
Summer ’12, 
Fall ‘12 

 
 
25 

GA/YRK Yorkville Rural 5/6/98-NA Spring ‘08/Winter ‘15 
 
N/A 

 
28 

AL/BHM 
N. 
Birmingham 

Urban 10/23/98-NA Spring ‘08/Winter ‘14 
 
N/A 

 
24 

AL/CTR Centreville Rural 5/11/98-NA Spring ‘08/Winter ‘14 
Spring ‘11 
Summer ‘11 
Fall ‘11 

 
21 

MS/GFP Gulfport Urban 4/13/99-NA 
Summer ‘08/Winter 
’11 

Fall ‘08 10 

MS/OAK Oak Grove Rural 
5/16/98-
12/13/10 

Summer ‘08/Winter 
‘11 

 
N/A 

 
11 

FL/PNS Pensacola Urban 
2/01/99-12-13-
09 

Summer ‘08/Winter 
‘10 

Spring ‘08 
 

6 

FL/OLF 
Outlying 
Landing Field 
#8 

Suburb 1/4/99-NA Spring ‘08/Winter ‘15 

Spring ‘11 
Summer ‘11 
Fall ‘11 
All 2012 
Winter ‘13 

 
 
 
 
20 

 

 

Table B-3: Details of the data available along with the sampling frequency at SEARCH 

Class Analyte Sample Device Substrate Measurement 
Frequency 

PM2.5 

Mass FRM Teflon, 47mm Daily 
Anions PCM Teflon, 47mm 3-day 

Cations PCM Teflon, 47mm 3-day 
Vol-nitrate PCM Nylon, 47mm 3-day 

Trace Gases  
 

NH3 
NH3 
HNO3 

denuder Citric acid coated 3-day 
Hourly 
Hourly 
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Table B-4: Tabulated results of the linear regression analysis for pH, calculated for all eight sites in the SEARCH 
network with original ISORROPIA-II code, and modified ISORROPIA-II code. Bolded results were found to be 
statistically significant at α=0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metric Site Old Code Code with Corrections 

pH site 
Averages 

CTR 1.5 1.5 

GFP 1.8 1.8 

JST 1.9 1.9 

OAK 1.4 1.4 

OLF 1.6 1.6 

YRK 2.0 2.0 

BHM 2.0 2.0 

PNS 1.9 1.9 

p Values 

CTR 0.715 0.753 

GFP 0.592 0.582 

JST 0.260 0.250 

OAK 0.047 0.047 

OLF 0.484 0.458 

YRK 0.604 0.574 

BHM 0.839 0.864 

PNS 0.817 0.794 

Slope 

CTR -2.6E-03 -2.3E-03 

GFP 1.7E-02 1.7E-02 

JST 9.9E-03 1.0E-02 

OAK 9.1E-02 9.1E-02 

OLF 2.7E-03 2.9E-03 

YRK 4.2E-03 4.6E-03 

BHM 2.2E-03 1.8E-03 

PNS 9.1E-03 1.0E-02 

Intercept 

CTR 1.5 1.5 

GFP 1.7 1.7 

JST 1.8 1.8 

OAK 0.8 0.8 

OLF 1.6 1.6 

YRK 2.0 2.0 

BHM 1.9 2.0 

PNS 1.8 1.8 
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Table B-5: Tabulated results of the linear regression analysis for pH, calculated for all eight sites in the CASTNET 
network with original ISORROPIA-II code, and modified ISORROPIA-II code. Bolded results were found to be 
statistically significant at α=0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metric Site Old Code Code with Corrections 

pH site 
Averages 

RK 2.7 2.7 

CA 3.3 3.0 

MW 3.8 3.6 

NE 2.5 2.6 

SE 2.9 2.8 

p Values 

RK 0.990 0.989 

CA 0.025 0.147 

MW 0.122 0.802 

NE 0.219 0.215 

SE 0.081 0.051 

Slope 

RK -2.3E-04 -2.5E-04 

CA 3.8E-02 2.7E-02 

MW 2.5E-02 -8.8E-03 

NE 2.2E-02 2.3E-02 

SE 1.9E-02 3.1E-02 

Intercept 

RK 2.7 2.7 

CA 2.9 2.8 

MW 3.6 3.7 

NE 2.3 2.3 

SE 2.5 2.6 
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Table B-6: Tabulated statistical results of the p-values from the linear regression analysis for all SEARCH sites 
using seasonal mean concentrations. Bolded results were found to be statistically significant at α=0.05 

Critical Variables CTR GFP JST OAK OLF YRK BHM PNS 

pH 0.715 0.592 0.260 0.047 0.484 0.604 0.839 0.817 

Na+ 0.649 0.342 0.032 0.530 0.050 0.809 0.155 0.351 

SO4
2- 0.001 0.106 0.001 0.137 0.001 0.004 0.003 0.595 

TNHx 0.001 0.479 0.008 0.760 0.027 0.000 0.013 0.621 

TNO3
- 0.770 0.742 0.745 0.230 0.470 0.736 0.993 0.522 

Cl- 0.811 0.944 0.285 0.570 0.103 0.002 0.836 0.483 

Ca2+ 0.003 0.099 0.117 0.327 0.179 0.065 0.003 0.479 

K+ 0.805 0.699 0.509 0.622 0.066 0.301 0.011 0.440 

Mg2+ 0.335 0.929 0.754 0.715 0.145 0.739 0.000 0.361 

Relative Humidity 0.935 0.311 0.520 0.411 0.643 0.970 0.205 0.098 

Temperature 0.440 0.434 0.523 0.377 0.526 0.431 0.372 0.293 

NH4
+ 0.000 0.237 0.000 0.376 0.001 0.001 0.002 0.330 

NH3(g) 0.552 0.787 0.465 0.093 0.256 0.212 0.040 0.284 

NO3
- 0.816 0.996 0.666 0.223 0.650 0.846 0.370 0.833 

HNO3(g) 0.517 0.636 0.910 0.247 0.104 0.298 0.131 0.272 

f 0.675 0.352 0.976 0.235 0.043 0.274 0.174 0.078 

RN 0.014 0.437 0.000 0.037 0.001 0.030 0.697 0.120 

Total Cations 0.849 0.644 0.063 0.615 0.098 0.079 0.001 0.837 

Total Cations-Na+ 0.21 0.50 0.78 0.92 0.700 0.027 0.001 0.473 

. 
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Table B-7: Tabulated statistical results of the p-values from the linear regression analysis for all CASTNET/AMoN 
regions, using seasonal mean concentrations. Bolded results were found to be statistically significant at α=0.05 

Critical Variables RK CA MW NE SE 

pH 0.990 0.025 0.122 0.219 0.081 

NO3
- 0.401 0.643 0.883 0.632 0.772 

NH3(g) 0.721 0.588 0.550 0.821 0.225 

NH4
+ 0.054 0.041 0.301 0.022 0.000 

f 0.997 0.474 0.757 0.057 0.270 

SO4
2- 0.050 0.252 0.006 0.004 0.001 

TNHx 0.517 0.712 0.231 0.048 0.701 

TNO3
- 0.351 0.480 0.568 0.721 0.195 

HNO3(g) 0.454 0.628 0.112 0.007 0.001 

Na+ 0.332 0.817 0.938 0.210 0.102 

Cl- 0.741 0.602 0.518 0.083 0.797 

Ca2+ 0.192 0.817 0.325 0.900 0.272 

K+ 0.279 0.812 0.206 0.346 0.022 

Mg2+ 0.178 0.585 0.216 0.893 0.032 

Relative Humidity 0.851 0.945 0.521 0.961 0.481 

Temperature 0.723 0.943 0.539 0.506 0.497 

Total Cations 0.193 0.786 0.253 0.342 0.042 

Total Cations-Na+ 0.191 0.775 0.298 0.801 0.070 

RN 0.211 0.127 0.888 0.410 0.014 
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Table B-8: Tabulated statistical results of the p-values from the linear regression analysis for all SEARCH sites 
using monthly average concentrations. Bolded results were found to be statistically significant at α=0.05 

Critical Variables CTR GFP JST OAK OLF YRK BHM PNS 

pH 0.186 0.628 0.183 0.052 0.077 0.717 0.723 0.851 

Na+ 0.418 0.763 0.025 0.446 0.147 0.838 0.019 0.207 

SO4
2- 0.000 0.334 0.000 0.410 0.001 0.000 0.000 0.480 

TNHx 0.000 0.882 0.006 0.422 0.076 0.000 0.000 0.418 

TNO3
- 0.218 0.739 0.680 0.193 0.126 0.456 0.402 0.872 

Cl- 0.818 0.409 0.139 0.598 0.400 0.001 0.987 0.194 

Ca2+ 0.000 0.049 0.206 0.193 0.042 0.009 0.000 0.248 

K+ 0.268 0.682 0.158 0.346 0.043 0.927 0.000 0.741 

Mg2+ 0.051 0.926 0.409 0.730 0.203 0.757 0.000 0.281 

Relative Humidity 0.752 0.787 0.922 0.748 0.713 0.793 0.072 0.092 

Temperature 0.768 0.970 0.495 0.513 0.829 0.500 0.448 0.503 

NH4
+ 0.000 0.513 0.000 0.934 0.004 0.000 0.000 0.334 

NH3(g) 0.322 0.641 0.212 0.066 0.388 0.091 0.007 0.742 

NO3
- 0.384 0.506 0.384 0.164 0.766 0.986 0.516 0.673 

HNO3(g) 0.133 0.895 0.688 0.269 0.004 0.092 0.006 0.420 

f 0.528 0.607 0.503 0.338 0.101 0.020 0.104 0.087 

RN 0.000 0.474 0.000 0.066 0.008 0.002 0.709 0.201 

Total Cations 0.000 0.000 0.044 0.000 0.050 0.129 0.000 0.007 

Total Cations-Na+ 0.000 0.000 0.344 0.000 0.156 0.040 0.000 0.000 
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Table B-9: Tabulated results of the linear regression analysis for the neutralization ratio, calculated for all five 
regions from the CASTNET/AMoN network using seasonal mean measured concentrations. Bolded results were 
found to be statistically significant at α=0.05. The ‘t’ represents time as seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Neutralization Ratio 

Northeast Northeast f = -4.1E-03*t + 0.84 

Southeast Southeast f = -1.8E-03*t + 0.69 

Midwest Midwest f = -8.2E-04*t + 0.79 

Rocky Mountains Rocky Mountains f = 1.5E-05*t + 0.86 

California California f = -2.8E-03*t + 0.75 
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Table B-10: Tabulated results of the linear regression analysis for the neutralization ratio, calculated for all eight 
sites in the SEARCH network using seasonal mean measured concentrations. Bolded results were found to be 
statistically significant at α=0.05. The ‘t’ represents time as seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Neutralization Ratio 

CTR AL f = -8.8E-04*t + 0.86 

GFP MS f = 1.2E-02*t + 0.74 

JST/GA f = 6.1E-05*t + 0.93 

OAK/MS f = 1.1E-02*t + 0.74 

OLF/FL f = 4.1E-03*t + 0.78 

YRK/GA f = -2.2E-03*t + 0.98 

BHM/AL f = 3.4E-03*t + 0.86 

 

f = 4.1E-03*t + 0.78 

 

PNS/FL f = 4.8E-02*t + 0.56 
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Figure B-1: Spatial map of the CASTNET and AMoN sites, including the co-located CASTNET and AMoN sites used 
in this study. Specific site locations are provided in Table S1. SEARCH sites were located in the Southeast. (Map 
source: Map created using ARCGIS® software by ESRI, in conjunction with US EPA data) (ESRI 2015183 and US EPA 
2017345).  
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Figure B-2: SEARCH sites SEARCH sites were located in the Southeast. (Map source: Created using R’s map source 
library346, 347 in conjunction with data from https://my.usgs.gov/gcmp/site/list/943855348) 
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Figure B-3: SEARCH plot for Relative Humidity 

 

 

Figure B-4: CASTNET plot for Relative Humidity 
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Figure B-5: CMAQ simulation domain with spatial resolution of 12km 

 

FIGURE S6 

 

Figure B-6: CASTNET/AMoN and SEARCH plots for SO4
-2. BOXPLOT FOR SEARCH and CASTNET/AMoN MONITORS 
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TREND FIGURES FOR CASTNET REGIONS 

 

                      Figure B-7: TNO3-=HNO3(g)+NO3                                    Figure B-8: HNO3(g) 

 

Figure B-9: Trends for total cations without Na+             Figure B-10: CASTNET trends for total cations  
                        Cations = K+ + Mg2+ + Ca2+                                                        Total Cations = K+ + Mg2+ + Ca2+ + Na+ 
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Figure B-11: CASTNET trends for Cl    Figure B-12: CASTNET trends for Temperatur 
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TREND FIGURES FOR SEARCH SITES 

Figure B-13: SEARCH trends for TNO3
-=HNO3(g)+NO3

-                       Figure B-14: SEARCH trends for HNO3(g) 

Figure B-15: SEARCH trends for total cations without Na+           Figure B-16: SEARCH trends for total cations  
Cations = K+ + Mg2+ + Ca2+                                                     Total Cations = K+ + Mg2+ + Ca2+ + Na+ 
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         Figure B-17: SEARCH trends for Cl-                                            Figure B-18: SEARCH trends for Temperature  
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Figure B-19: CASTNET/AMoN and SEARCH plots for NO3

- 

BOXPLOT FOR SEARCH and CASTNET/AMoN MONITORS  

 

 

  

2001 2011 
 

                     
 

 

Figure B-20. Annual averaged ammonia emission (moles/s) simulated by SMOKE at 2001 and 

2011.Emission trend of NH3_CMAQ 2001 and 2011. 
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Figure B-21: CASTNET/AMoN pie charts 

Depicting annual mass concentration for inorganic constituents 
 

 

 

 

 



 170 

 

 

 

Figure B-22: SEARCH site pie charts.  

Depicting annual mass concentration for inorganic constituents 
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Figure B-23: SEARCH site pie charts 

Depicting annual mass concentration for inorganic constituents 
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APPENDIX C. SUPPLEMENTAL MATERIAL FOR CHAPTER 3  

 

Adapted from ‘Abiola S. Lawal, Joseph L. Servadio, Tate Davis, Anu Ramaswami, Nisha 

Botchwey, Armistead G. Russell. Orthogonalization and machine learning methods for residential 

energy estimation with social and economic indicators. Applied Energy, 

https://doi.org/10.1016/j.apenergy.2020.116114 

 

Table C-1 can be found in supplement (link below), labeled as Table S1 

https://ars.els-cdn.com/content/image/1-s2.0-S0306261920315336-mmc4.docx 

Orthogonalization and machine learning methods for residential energy estimation with social and 

economic indicators - ScienceDirect 

 

 

 

 

 

 

https://ars.els-cdn.com/content/image/1-s2.0-S0306261920315336-mmc4.docx
https://www.sciencedirect.com/science/article/pii/S0306261920315336
https://www.sciencedirect.com/science/article/pii/S0306261920315336
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Geographical Description of Area for Energy Estimation 

Training Data from Atlanta Metropolitan Statistical Area in red 

Geographic distribution (36 counties out of 159 counties in GA) 

Number of GA 2010 ZCTAS: 735 

Number of GA Postal Zip codes: 951 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig C-1: Map of counties in GA. Metropolitan counties are in light brown.  

(Map source: Map created using ARCGIS® software by ESRI (ESRI 2015183)248. 

 



 174 

 

Table C-2: Descriptive Statistics for Electricity Use from Georgia Power. 

196 Training Data Set observations 

Metrics Electricity 

Log Transformation 

Electricity 

Kwh/year 

Min 233 1.4E4 

1st Quartile 6376 1.0E7 

Median 13189 4.3E7 

Mean 14548 7.3E7 

3rd Quartile 21903 1.2E8 

Max 33280 2.8E8 

 

 

Table C-3: Descriptive Statistics for Natural Gas Use from Atlanta Gas Light 

32 Training Data Set observations 

Metrics 
Natural Gas 

Log Transformation 

Natural Gas 

KJ/year 

Min 4.5E5 5.2E10  

1st Quartile 1.1E6 2.9E11 

Median 1.4E6 4.9E11 

Mean 1.4E6 5.2E11 

3rd Quartile 1.7E6 7.1E11 

Max 2.1E6 10.8E11 
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Results of Metropolitan ZCTA electricity estimations 

Table C-4:  Results from training data set for metropolitan ZCTAs electricity use for all 

transformation techniques. Results reflect the best performing model from each technique. 

 

Table C-5:  Results from training data set for metropolitan ZCTAs electricity use in Atlanta with 

Principle Component Analysis (PCA). Results reflect the number of components included  

.  

 

 

 

 

 

 

METRICS 

NO 

TRANSFORMATI

ON 

 

Z-

SCORES 

 

CGS  

 

 

MGS 

FULL TRAIN R2 0.77 0.77 0.75 0.79 

FULL NRMSE 0.35 0.35 0.37 0.33 

FULL NMB -0.68 -0.68 -0.79 -0.61 

FULL MAX VIF 961 961 1.40 13 

WITHHELD R2 0.69 0.69 0.68 0.75 

WITHHELD 

NRMSE 

0.40 0.40 0.40 0.35 

VALIDATION 

NRMSE 

0.22 0.22 0.24 0.17 

MODEL SIZE 12 12 6 15 

Metrics PCA 

Full Train R2 0.62 0.73 0.74 0.76 0.77 
Full NRMSE 0.49 0.39 0.38 0.37 0.37 

Full NMB -0.96 -0.81 -0.77 -0.74 -0.70 
Withheld R2 0.41 0.62 0.63 0.66 0.70 

Withheld NRMSE 0.55 0.44 0.43 0.41 0.39 
Validation 

NRMSE 
0.43 0.17 0.20 0.21 0.23 

Model size 2 5 10 15 20 
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Table C-6:  Results from training data set for metropolitan ZCTAs electricity use in Atlanta with 

Partial Least Squares (PLSR). Results reflect the number of components included.  

 

 

 

 

 

 

 

 

 

 

 

Metrics PLSR 

Full Train R2 0.66 0.74 0.76 0.77 0.78 
Full NRMSE 0.46 0.37 0.36 0.36 0.35 

Full NMB -0.91 -0.82 -0.74 -0.68 -0.65 
Withheld R2 0.49 0.64 0.68 0.72 0.73 

Withheld NRMSE 0.51 0.43 0.40 0.38 0.37 

Validation 

NRMSE 
0.34 0.20 0.21 0.23 0.23 

Model size 2 5 10 15 20 
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Table C-7:  Model variable predictors results as seen in SI Table 4 for model built with MGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable numbers here can be matched with the variables in SI Table C-1. 

Variable 
No 

Variable Name Regression 
Coefficient 

p_values VIF 

22 White with Hispanic -40968 9E-14 1 

18 Number; SEX AND AGE - Female 
population - 18 years and over 

19483 8E-05 1 

305 Male/female ratio pop 25 and older of 
Total Housing 

9342 6E-02 1 

59 Total Population / Number of housing 
units 

-8123 1E-01 1 

9 Number; SEX AND AGE - Male population -95907 3E-03 13 

31 Number; RACE - Total population - One 
Race - Some Other Race 

-8767 7E-02 1 

82 100*Owner Occupied by Age < 24/Total 
Owner-Occupied Households 

10866 4E-02 1 

296 Percent Tot Male Pop Bachelor and 
Higher degree/>25yr Tot Male Pop 

10685 2E-02 1 

336 Ratio Renter-occupied housing units to 
Owner-occupied housing units - Some 

college or associate's degree 

-12924 3E-02 1 

161 Estimate; VALUE - Median (dollars) 279945 5E-12 11 

49 Number; HOUSEHOLDS BY TYPE - Total 
households - Family households (families) 

[7] 

-12829 1E-02 1 

236 100*No of occupied Housing Units with 
Wood/Total Occupied Housing Units 

-12449 9E-03 1 

185 Estimate; INCOME AND BENEFITS (IN 
2011 INFLATION-ADJUSTED DOLLARS) - 

Median nonfamily income (dollars) 

32968 2E-07 2 

167 Percent; EMPLOYMENT STATUS - In labor 
force pop over 16 

-7206 1E-01 1 

1 Number; SEX AND AGE - Total population 65325 6E-25 1 
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Fig C-2: Results of predicted electricity use plotted against known electricity use in the 

metropolitan ZCTAs for the full model training set (n = 196).  These are the results from the 

selected model as tabulated in Table C-4 of the SI. Note: Electricity use here (originally in Kwh/yr) 

is log transformed. 
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Fig C-3: Model residuals for all transformation method in metropolitan ZCTAs for the full model 

training set (n = 196) for electricity estimation.  These are the results from the selected model as 

tabulated in Table C-4 of the SI. Note: Electricity use here (originally in Kwh/yr) is log 

transformed. 
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Fig C-4: Residual quartile plots for all transformation method in metropolitan ZCTAs for the full 

model training set (n = 196) for electricity estimation.  These are the results from the selected 

model as tabulated in Table C-4 of the SI. Note: Electricity use here (originally in Kwh/yr) is log 

transformed. 
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Fig C-5: Correlation matrix plotted as a color map of the selected electricity predictors of each 

model generated for metropolitan ZCTAs. Plot reflects correlation of variables as untransformed.  

 

 

Fig C-6: Correlation matrix plotted as a color map of the selected electricity predictors of each 

model generated for metropolitan ZCTAs. Plot reflects correlation of variables when transformed 

according to model.  
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Fig C-7: Clustering of the predictor variables from the MGS model results for electricity model 

for metropolitan ZCTAs. Predictor variables here are untransformed. This evaluates if the 

clustering of predictor variables is similar to electricity use clustering. 

 

 

 

 

 

 

 



 183 

 

Fig C-8: Clustering of the predictor variables from the MGS model results for electricity model 

for metropolitan ZCTAs. Predictor variables here are transformed. This evaluates if the clustering 

of predictor variables is similar to electricity use clustering. 
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Fig C-9: Electricity boxplots of k-means clustering results of metropolitan ZCTAs. 
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Fig C-10: Interaction effects plot showing how untransformed predictors in final MGS model 

interact with electricity use. Results are for the metropolitan ZCTAs 175, 176.  
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Fig C-11: Interaction effects plot showing how the transformed predictors in final MGS model 

interact with electricity use. Results are for metropolitan ZCTAs 175, 176.   
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Fig C-12: Effect of Ensemble averaging of the regression coefficients from different sample 

populations. For each metric, the first is the result of using the regression coefficients for each 

population sample. The second plot is the result of using the ensemble average to generate the 

estimates. The results shown here are for electricity estimation, for metropolitan ZCTAs and the 

MGS method. 
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Fig C-13: Effect of Ensemble averaging of the regression coefficients from different sample 

populations. For each metric, the first is the result of using the regression coefficients for each 

population sample. The second plot is the result of using the ensemble average to generate the 

estimates. The results shown here are for natural gas estimation, for metropolitan ZCTAs and the 

MGS method. 
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Fig C-14: Recommend transformation for electricity use model development174. 
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Fig C-15: Recommend transformation for natural gas use model development174. 

 



 191 

Fig C-16: Clustering of the electricity predictor variables from the MGS model results for 

electricity model for metropolitan ZCTAs. Plot reflects variables as transformed.  
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Fig C-17: Clustering of the electricity predictor variables from the MGS model results for 

electricity model for metropolitan ZCTAs electricity. Plot reflects variables as untransformed.  
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Results of Metropolitan ZCTA gas estimations 

Table C-8:  Results from training data set for metropolitan ZCTAs gas use for all different 

transformation techniques. Results reflect the best performing model from each technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
METRICS 

NO 
TRANSFORMATION 

 
Z-SCORES 

 
CGS  

 

 
MGS 

FULL TRAIN R2 0.98 0.98 0.95 0.94 
FULL NRMSE 0.08 0.09 0.15 0.17 
FULL NMB 0.00 -0.02 -0.02 -0.05 
FULL MAX VIF 11 19 13 5 

WITHHELD R2 0.99 1.00 0.95 0.94 
WITHHELD NRMSE 0.05 0.04 0.11 0.13 
VALIDATION NRMSE 0.17 0.20 0.21 0.28 
MODEL SIZE 9 10 9 11 
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Table C-9:  Model variable predictors results as seen in SI table C-8, for model built with CGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

23 Number; RACE - Total population - One 
Race - Black or African American 

-1602703 0.03 1 

183 Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Median 
family income (dollars) 

1822286 0.17 1 

1 Number; SEX AND AGE - Total population 11132596 0.00 2 
9 Number; SEX AND AGE - Male population -3196000 0.00 3 

161 Estimate; VALUE - Median (dollars) 20144155 0.00 13 
37 Number; RELATIONSHIP - Total population 

- In households 
2298321 0.01 2 

184 Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Per 
capita income (dollars) 

-2628039 0.00 1 

178 Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Median 
household income (dollars) 

6768871 0.01 8 

185 Estimate; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - Median 
nonfamily income (dollars) 

-1605688 0.15 4 
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Table C-10:  Model variable predictors results as seen in SI table C-8, for model built with MGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

1 Number; SEX AND AGE - Total population 2504289 0.04 2 
11 male Population younger than 18 -12113427 0.00 3 
17 Female Population younger than 18 16607338 0.00 5 
96 100*Owner occupied: - 3-person 

household/Total Owner Occupied House 
units 

912717 0.74 2 

272 100*Number of Housing Units Built 2000 
to 2004 or later/Total Housing Units 

-2903753 0.00 1 

229 Cumulative Percentage of Housing units 
with zero to 3 bedrooms 

1032002 0.55 3 

141 Hispanic mortgage free occupied 
units/Total Hispanic Occupied units 

-1438486 0.12 1 

177 Percent; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - 
$200,000 or more 

3007565 0.01 1 

76 100* No of Family Type Households/Total 
Households 

4522850 0.00 3 

296 Percent Tot Male Pop Bachelor and Higher 
degree/>25yr Tot Male Pop 

1980080 0.05 2 

234 100*No of occupied Housing Units with 
Fuel oil Kerosene/Total Occupied Housing 
Units 

-1188039 0.22 1 
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Fig C-18: Results of predicted natural gas use plotted against known natural gas use in the 

metropolitan ZCTAs for the full model training set (n = 32).  These are the results from the selected 

model as tabulated in Table C-8 of the SI.  
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Fig C-19: Model residuals for all transformation methods in metropolitan ZCTAs for the full 

model training set (n = 32) for natural gas estimation.  These are the results from the selected 

model as tabulated in Table C-8 of the SI.  

 

 

 

 

 

 

 

 



 198 

 

Fig C-20: Residual quartile plots for all transformation methods in metropolitan ZCTAs for the 

full model training set (n = 32) for natural gas estimation.  These are the results from the selected 

model as tabulated in Table C-8 of the SI.  
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Fig C-21: Correlation matrix plotted as a color map of the selected gas predictors of each model 

generated for metropolitan ZCTAs. Plot reflects correlation of variables as untransformed.  

 

 

Fig C-22: Correlation matrix plotted as a color map of the selected gas predictors of each model 

generated for metropolitan ZCTAs natural gas. Plot reflects correlation of variables when 

transformed according to model.  
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Figure C-23: Interstate mapping of I-75 and I-285 around metropolitan Atlanta. 

Map source: Map and data created using ARCGIS® software by ESRI (ESRI 2015349). 
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Fig C-24: Log transformed electricity mapping of clusters by k-means for metropolitan ZCTAs. 

Red indicates high electricity use clusters, while blue indicates low electricity use clusters (See SI 

Figure 9 for actual cluster averages). The dark lines represent the major interstate highways 

through Atlanta182. (Map source: Map created using ARCGIS® software by ESRI (ESRI 2015) 
183. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 202 

Results of GA ZCTA electricity estimations 

Table C-11: Results after separating the training set (n=196), from the full data set (i.e. GA ZCTAs 

(n = 606)) for all different transformation techniques for electricity estimation. Results reflect the 

best performing model from each technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METRICS 

NO 

TRANSFORMATI

ON 

 

Z-

SCORES 

 

CGS  

 

 

MGS 

FULL TRAIN R2 0.71 0.71 0.75 0.79 
FULL NRMSE 0.40 0.40 0.37 0.34 
FULL NMB -0.92 -0.92 -0.79 -0.55 
FULL MAX VIF 1.3 1.3 1.12 1.6 
WITHHELD R2 0.65 0.65 0.75 0.82 
WITHHELD 

NRMSE 

0.35 0.35 0.29 0.25 

VALIDATION 

NRMSE 

0.30 0.30 0.25 0.24 

MODEL SIZE 3 3 6 15 
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Table C-12:  Model variable predictors results as seen in SI table C-11, for model built with MGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

 
VARIABLE 

NO 
VARIABLE NAME REGRESSION 

COEFFICIENT 
P_VALUES VIF 

209 100*Housing units built later than 1950 with 
complete plumbing with <1 occupant per 
room/Total Housing units with complete 
plumbing 

24421 0.01 4 

22 White with Hispanic -55656 0.00 2 
229 Cumulative Percentage of Housing units with 

zero to 3 bedrooms 
-20705 0.07 5 

201 100*Rented with complete facilities/Total 
housing units 

21365 0.01 3 

67 100*Pop in Renter Occupied housing 
units/Population 

-22200 0.03 4 

1 Number; SEX AND AGE - Total population 78633 0.00 2 
18 Number; SEX AND AGE - Female population - 

18 years and over 
21629 0.00 2 

319 100*Owner-occupied housing units: - High 
school graduate (including equivalency)/Tot 
Occupied housing units 

-29024 0.00 4 

103 100*Renter occupied: - 3-person 
household/Total Rent Occupied House units 

-29906 0.00 4 

152 Percent; UNITS IN STRUCTURE - 1-unit, 
attached of Total Housing Units 

22598 0.01 3 

27 Number; RACE - Total population - One Race 
- Native Hawaiian and Other Pacific Islander - 
Native Hawaiian 

17501 0.03 3 

161 Estimate; VALUE - Median (dollars) 208670 0.00 2 
185 Estimate; INCOME AND BENEFITS (IN 2011 

INFLATION-ADJUSTED DOLLARS) - Median 
nonfamily income (dollars) 

43299 0.00 4 

17 Female Population younger than 18 -9273 0.32 3 
198 100* Total occupied with incomplete 

facilities/Total housing units 
14768 0.19 3 
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Fig C-25: Results of predicted electricity use plotted against known electricity use for the training 

set, after separating the training set (n=196), from the full data set (i.e. GA ZCTAs (n = 606)).  

These are the results from the selected model as tabulated in Table C-11 of the SI. Note: Electricity 

use here (originally in Kwh/yr) is log transformed. 
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Fig C-26: Model residuals with all transformation methods for the training set, after separating the 

training set (n=196), from the full data set (i.e. GA ZCTAs (n = 606)).  These are the results from 

the selected model as tabulated in Table C-11 of the SI.   
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Fig C-27: Residual quartile plots for all transformation methods for the training set, after separating 

the training set (n=196), from the full data set (i.e. GA ZCTAs (n = 606)).  These are the results 

from the selected model as tabulated in Table C-11 of the SI.  
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Results of GA ZCTA gas estimations 

Table C-13: Results after separating the training set (n=196), from the full data set (i.e. GA ZCTAs 

(n = 606)) for all different transformation techniques for gas estimation. Results reflect the best 

performing model from each technique. 

 

 

 

 

 

 

 

 

 

METRICS 

NO 

TRANSFORMATI

ON 

 

Z-

SCORES 

 

CGS  

 

 

MGS 

FULL TRAIN R2 0.98 0.98 0.96 0.95 
FULL NRMSE 0.09 0.09 0.13 0.15 
FULL NMB 0.00 0.00 -0.02 -0.02 
FULL MAX VIF 23 23 14 2 
WITHHELD R2 0.99 0.99 0.97 0.93 
WITHHELD 

NRMSE 

0.06 0.06 0.11 0.13 

VALIDATION 

NRMSE 

0.19 0.19 0.18 0.09 

MODEL SIZE 10 10 9 10 
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Table C-14: Model variable predictors results as seen in SI table C-13, for model built with no 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

177 Percent; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - 
$200,000 or more 

-44902 0.09 21 

119 Percent Owner occupied: - 5-person 
household over total occupied units 

-48036 0.21 10 

7 Older (44+) 577 0.00 5 
161 Estimate; VALUE - Median (dollars) 9 0.00 23 

61 Number; HOUSING OCCUPANCY - Total 
housing units - Vacant housing units 

208 0.01 3 

236 100*No of occupied Housing Units with 
Wood/Total Occupied Housing Units 

-2719997 0.03 2 

221 100*No of Housing units with 1 
bedroom/Total Housing Units 

-23657 0.13 3 

42 Number; RELATIONSHIP - Total population 
- In group quarters - Institutionalized 
population 

-287 0.19 1 

286 1980s -347936 0.96 2 
225 100*No of Housing units with >=5 

bedroom/Total Housing Units 
-10865 0.27 9 
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Table C-15: Model variable predictors results as seen in SI table C-13, for model built with z-score 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

177 Percent; INCOME AND BENEFITS (IN 2011 
INFLATION-ADJUSTED DOLLARS) - 
$200,000 or more 

-154985 0.09 21 

119 Percent Owner occupied: - 5-person 
household over total occupied units 

-77832 0.21 10 

230 Cumulative Percentage of Housing units 
with zero to 4 bedrooms 

45882 0.27 9 

7 Older (44+) 3143926 0.00 5 
161 Estimate; VALUE - Median (dollars) 669601 0.00 23 

61 Number; HOUSING OCCUPANCY - Total 
housing units - Vacant housing units 

168012 0.01 3 

236 100*No of occupied Housing Units with 
Wood/Total Occupied Housing Units 

-6864004 0.03 2 

221 100*No of Housing units with 1 
bedroom/Total Housing Units 

-136333 0.13 3 

42 Number; RELATIONSHIP - Total population 
- In group quarters - Institutionalized 
population 

-140597 0.19 1 

286 1980s -170058 0.96 2 
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Table C-16: Model variable predictors results as seen in SI table C-13, for model built with CGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

264 Cumulative Percentage of Owner-
Occupied Housing units with monthly 
costs =< $899 

9316859 0.01 3 

1 Number; SEX AND AGE - Total population 31734660 0.00 4 
18 Number; SEX AND AGE - Female 

population - 18 years and over 
10003211 0.00 2 

270 Estimate; Median monthly housing costs -1.6E+07 0.03 14 

161 Estimate; VALUE - Median (dollars) 34221603 0.00 4 
95 100*Owner occupied: - 2-person 

household/Total Owner-Occupied House 
Units 

-7454718 0.11 4 

80 Ratio of young age Non-Family 
householder to old age Non-Family 
householder >44 

-1.4E+07 0.06 14 

49 Number; HOUSEHOLDS BY TYPE - Total 
households - Family households (families) 
[7] 

2947833 0.15 1 

21 Number; RACE - Total population - One 
Race 

13757488 0.00 2 
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Table C-17: Model variable predictors results as seen in SI table C-13, for model built with MGS 

transformation. Tabulated here are predictor descriptions, regression coefficients and VIF values. 

The variable number here can be matched with the variables in SI Table C-1. 

VARIABLE 
NO 

VARIABLE NAME REGRESSION 
COEFFICIENT 

P_VALUES VIF 

1 Number; SEX AND AGE - Total population 21128432 0.00 1 
270 Estimate; Median monthly housing costs -20146603 0.00 1 

15 Number; SEX AND AGE - Female 
population 

6778619 0.00 1 

349 Population density -9400355 0.00 2 
87 100*Rent Occupied by Age >55/Total Rent 

Occupied Households 
-10325700 0.01 1 

245 100*Total Number of Owner-Occupied 
Households with monthly costs from $400 
to $499/Total Owner-Occupied Housing 
Units 

7201781 0.14 2 

224 100*No of Housing units with 4 
bedroom/Total Housing Units 

7998777 0.00 1 

266 Cumulative Percentage of Owner-
Occupied Housing units with monthly 
costs =< $1499 

11888735 0.00 1 

33 Total Hispanic all races -4529811 0.21 1 
91 100*Rent Occupied by Age < 24/Total 

Households 
3452658 0.42 1 
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Fig C-28: Results of predicted natural gas use plotted against known natural gas use for the training 

set, after separating the training set (n=32), from the full data set (i.e. GA ZCTAs (n = 606)). These 

are the results from the selected model as tabulated in Table C-13 of the SI.  

 

 

Fig C-29: Model residuals with all transformation for the training set, after separating the training 

set (n=32), from the full data set (i.e. GA ZCTAs (n = 606)).  These are the results from the selected 

model as tabulated in Table C-13 of the SI.  



 213 

 
 

 

Fig C-30: Residual quartile with all transformation methods for the training set, after separating 

the training set (n=32), from the full data set (i.e. GA ZCTAs (n = 606)). These are the results from 

the selected model as tabulated in Table C-13 of the SI.  
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Fig C-31: Correlation matrix plotted as a color map of natural gas predictors of each transformation 

model generated for the training set, after separating the training set (n=32), from the full data set 

(i.e. GA ZCTAs (n = 606)). Plot reflects correlation of variables as untransformed.  
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Fig C-32: Correlation matrix plotted as a color map of natural gas predictors of each transformation 

model generated for the training set, after separating the training set (n=32), from the full data set 

(i.e. GA ZCTAs (n = 606)). Plot reflects correlation of variables when transformed according to 

model.  
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Table C-18: Principle components with significant predictors and electricity use variables 

DESCRIPTION PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 
STANDARD OF DEVIATION 1.57 1.26 1.11 1.05 1.03 1.01 1.00 0.93 0.87 0.84 0.43 0.19 

PROPORTION OF VARIANCE 0.21 0.13 0.10 0.09 0.09 0.08 0.08 0.07 0.06 0.06 0.02 0.00 
CUMULATIVE PROPORTION 0.21 0.34 0.44 0.53 0.62 0.70 0.79 0.86 0.92 0.98 1.00 1.00 
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Fig C-33: Electricity mapping for metropolitan ZCTAs. Figure on the left represents estimates generated for 196 ZCTA with the MGS 

model, while the figure on the right represents actual electricity use from Georgia power for the same ZCTAs. Map source: Map created 

using ARCGIS® software by ESRI (ESRI 2015) 183, 350.   
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Fig C-34: Natural gas mapping for metropolitan ZCTAs. Figure on the left represents model estimates generated for 32 ZCTA with the 

CGS model, while the figure on the right represents actual natural gas use from Atlanta Gas Light for the same ZCTAs. Map source: 

Map created using ARCGIS® software by ESRI (ESRI 2015) 183,350.  
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Fig C-35: Natural gas estimate mapping (where values were positive) for Georgia ZCTAs (n = 604) using the MGS model as noted in 

Table 3-7 from the manuscript. Map source: Map created using ARCGIS® software by ESRI (ESRI 2015) 183,350.  
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Fig C-36: Figures show how Electricity use per capita, total population in each metropolitan ZCTA and Occupancy tenancy vary 

spatially 
 Electricity per Capita Population Occupancy  

Details a b c 

Figures 36a-c here represent 

the spatial distribution of 

clusters for three variables 

respectively: 

1) Electricity per capita 

2) Population by ZCTA 

3) Population by 

Housing units in ZCTA    

 d e f 

Figures 36d-f here represent 

the boxplots for all three 

variables respectively by 

cluster: 

1) Electricity per capita 

2) Population by ZCTA 

3) Population in 

Housing units in ZCTA    

 g h i 
Figures 36g-i here show the 

boxplots as follows: 

1) Population by 

Electricity per capita cluster 

2) Electricity per capita 

by ZCTA population cluster. 

3) Electricity per capita 

by Population in Housing 

units in ZCTA cluster. 
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Discussion: We evaluate the spatial correlation between total electricity per capita, total population for each ZCTA and occupancy levels 

(i.e. ZCTA Population normalized by the number of housing units in each ZCTA). As shown in figures C-36a, b, c, yearly electricity use 

per capita was similar in clustering pattern to occupancy levels, but not with ZCTA population. The box plot in figure 36g shows that 

while there are relatively the same number of people in each electricity cluster, those in the inner spatial cluster use more electricity per 

capita (Figure C-36d). This is also matched by results in figures C-36f and C-36i which also show that lower occupancy units have more 

electricity use than higher occupancy units.  
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Orthogonolization 

 

Comparison of Classical Gram Schmidt and the Modified Gram Schmidt 

 

Classical Gram Schmidt Orthogonalization Methods: Classical Gram Schmidt, otherwise 

referred to as CGS herein, is a sequential method, where each column vector Vk (k = 1:p) 

in matrix Xnxp, is made orthogonal to each of the k-1 previously orthogonalized column 

vectors in a series of steps 351, 352. The formula for orthogonalization of matrix X of 

dimension (nxp) using CGS is follows in Table 2. However, although commonly used, one 

disadvantage of the classical Gram Schmidt is that it is highly prone to round off errors 

which results in a loss of orthogonality and an ill conditioned matrix173. 

 

Modified Gram Schmidt Orthogonalization Methods: The Modified Gram Schmidt (MGS) 

orthogonalization method is considered to be numerically more stable than CGS 173, 353. 

The main difference between the two methods is that where CGS orthogonalizes the kth 

vector from the original matrix X, to all previously orthogonalized k-1 vectors, MGS 

orthogonalizes each k+1 vector against only the immediate recently orthogonalized k 

vector. In essence, MGS orthogonalizes normalized k vectors from V against un-

orthogonalized and un-normalized k+1 vectors in X. The algorithm for MGS is also shown 

in Table 19. 

Table C-19: CGS and MGS algorithms 

MGS CGS 

For matrix: Xnxp 

         V = X 

 

for k = 1:p-1 

 

       𝑒𝑘 =
𝑣𝑘

∥ 𝑣𝑘 ∥
 

  

    for j = k+1:p 

      vj = vj – (vj ek) ek 

    end 

end 

𝑒𝑝 =
𝑣𝑝

∥ 𝑣𝑝 ∥
 

 

For matrix: Xnxp 

          V = X 

 

𝑒1 =
𝑣1

∥ 𝑣1 ∥
 

 

for k = 2:p 

 

    for  j = k-1:1 

        vk = vk – (vk ej) ej 

    end 

 

𝑒𝑘 =
𝑣𝑘

∥ 𝑣𝑘 ∥
 

 

end 
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Orthogonalization order 

One critical criteria in these orthogonalization methods here is that the order of 

orthogonalization matters in these procedures352. Different order permutations results in 

different orthogonal vectors and ultimately can yield different results. While there is no 

clear method listed in literature, we use the Euclidean norm for each vector of the 

untransformed predictors as the metric for sorting in a descending order and to 

orthogonalize in that sequence. The reason for this is that as the initial step in such 

orthogonalization methods is a projection of one vector onto another, projecting a larger 

vector against a vector with a smaller Euclidean norm could result in errors. We found that 

projecting the succeeding vectors against the largest vector in the data set gave the best and 

most consistent results. 

 

 

 

 

 

 

 

 

 

 

 

 



 224 

Ensemble Averaging 

To illustrate, take the general regression mathematical representation as follows. 

 

𝑌 = 𝑋𝜃𝑇+ ∈       (1) 

There are certain assumptions that model 1 has to follow and one of them is that the errors 

are normally distributed with a zero mean. This assumption holds true especially if the 

errors are due to random noise caused by measurement errors which are consistent across 

all observations134. 

  

𝑌 = 𝑋𝜃𝑇 + ∈𝑛𝑜𝑖𝑠𝑒+  ∈𝑚𝑜𝑑𝑒𝑙       (2) 

As shown in model 2, the source of noise error could come sources like random 

noise in measurements, or sampling variation/error (i.e.  ∈𝑛𝑜𝑖𝑠𝑒=  ∈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 +
 ∈𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛. ) Assuming  ∈𝑚𝑜𝑑𝑒𝑙 is minimized by choosing the best fit in the 

regression method and variables from equation C-1, the estimate for Y can be obscured if 

the noise error is larger than the error coming from the model. In this case, one can assume 

that ∈𝑛𝑜𝑖𝑠𝑒 is background noise, which is always consistent and always present. Therefore, 

if one were to employ ensemble averaging by running multiple simulations to estimate Y, 

and taking the average, using the data set from the simulations, then in theory the more 

simulations run, the lower the impact noise error will have on the estimate. 

 

lim
𝑛→∞

1

𝑁
∑ ∈𝑛𝑜𝑖𝑠𝑒

𝑁
𝑖=1 = 0      (3) 

As we average out the noise, we will also average the theta estimates from each 

simulation set as follows 𝜃 =
1

𝑁
∑ 𝜃𝑖

𝑇𝑁
𝑖 . The 𝜃 becomes a better estimate which has 

minimum contribution from noise. We employ ensemble averaging here to help eliminate 

noise variability in the final estimate. 
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Model evaluation procedure 

After the random sample for the validation set was removed, about 5% of the 

remaining observations from the model training were then removed for further withholding 

and the remaining 95% (reduced training set) kept for variable selection and estimation of 

model regression coefficients. To conduct ensemble averaging and capture variation in 

population sampling, this step was repeated several times (total ensembles =10). For each 

ensemble run, the reduced model training dataset (withheld and validation data set 

removed) was randomly mixed before being stratified into 10 cross-validation sets for 

electricity (90% train/10% test split) and 5 cross validation sets for gas use (80% train/20% 

test split) for input into the variable selection phase. In total, 10 withheld data sets, 100 

different training and test cross-validation sets were used for electricity and 10 withheld 

sets, 50 different training and test cross-validation sets were used for gas use in the 

ensemble runs.  

For each ensemble, the reduced model training data was used as input into a 

stepwise fit algorithm to select the variables. The stratification with the cross-validation 

sets helped capture differences in sampling population dynamics and yielded better results 

overall for the stepwise fit algorithm. Due to the large data set two sequential stepwise fit 

algorithms (at α = 0.01) were set up to generate an intermediate set of predictor variables, 

and statistical metrics were generated for all test sets for both electricity and gas models. 

Each ensemble run generated a different set of predictor variables which were all then 

complied into one array. 

At the end of the stepwise fit run, the 10-withheld and un-stratified reduced model 

training data sets were used to generate statistical metrics with the selected predictors for 

final variable selection. For final model selection of predictors, two options were 

considered. The first was to sort out the predictors that gave the best MSE using the 

withheld or test data sets from the previous step. The second option was to compile all 

predictors from the stepwise algorithms, and then using the reduced model training set for 

each ensemble, regress them and select out the predictors that were statistically significant 

based on a particular significance value from the regression equation. In the end, the second 

methodology was followed as it gave better results. For electricity final variable selection, 

five levels of significance were used (0.001, 0.005, 0.01, 0.05, 0.1] while for natural gas, 

only four levels of significance where chosen (0.05, 0.1, 0.15, 0.2) as a result of the small 

size of the gas use training data set. 

For each significance level, the chosen predictors were used to generate a final 

regression equation using the reduced model training data set and withheld data set from 

each simulation and the overall validation data set to develop statistical metrics and 

diagnostics. The level of significance that yielded the best statistical metrics across all three 

data sets was chosen as the final model selector. Ensemble averaging of the regression 

coefficients, generated for all ten ensemble data sets in this step were used as the final 

regression coefficients for the chosen model. 
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 The best results for each transformation method were compiled and further 

analyzed in the discussion section. The results of the final model and impact of 

transformation models in generating the final statistical model are also discussed. To ensure 

an accurate comparison, we use the same data set and sample set for all simulations and 

transformation methods. 
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APPENDIX D. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

                                                              

Figure D-1. ATL emission profiles for the 3D inventory. NOx emissions are totaled for simulation period 

(August). The plots show the vertical distribution of NOx emissions below1km and entire vertical height in 

the model domain. 
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Figure D-2. The cumulative proportion of emissions as allocated both horizontally (distance from airport) 

and vertically (altitude) is shown. 

 

     

Figure D-3: NO2 vertical column densities 

a) TROPOMI NO2 default AMF        b) TROPOMI NO2 CMAQ_AMF 
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Figure D-4. Results from CMAQ’s ISAM source apportionment module270, 271. Figures show 

apportionment contributions of both on road and ATL to ozone for 8hr max, daily max and average ozone 

for August 2019.  
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Figure D-5. Location of air quality monitors at Fulton and DeKalb counties and their proximity to the 

Atlanta Hartsfield Jackson airport (ATL) in the modeling domain.  
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Equations 

Evaluation metrics with CMAQ base cases  

𝑁𝑀𝐷 = 100% ×
∑ (3𝐷𝑖 − 2𝐷𝑖)𝑛

𝑖

∑ 2𝐷𝑖
𝑛
𝑖

 

 

 

       𝑅𝑀𝑆𝐸 = √ ∑ (3𝐷𝑖− 2𝐷𝑖)2𝑁
𝑖=1

𝑁
 

 

Note: 3Di (CMAQ predicted values with 3D inventory), 2Di (CMAQ predicted values with default 

inventory)  

 

Evaluation metrics with CMAQ and observations 

𝑁𝑀𝐵 = 100% ×
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

 

       𝑅𝑀𝑆𝐸 = √ ∑ (𝑃𝑖− 𝑂𝑖)2𝑁
𝑖=1

𝑁
 

 

Note: Pi (CMAQ predicted values), Oi (AQS or TROPOMI)  

 

NMD: Normalized Mean Difference 

RMSE: Root Mean Square Error 

NMB: Normalized Mean Bias 
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Table D-1. Speciated emissions from both inventories at a) ATL, and b) model domain for 

both inventories. Emissions are totalized for the month of August 2019. Totals are in moles. 

The Normalized Mean Difference (NMD) of the 3D inventory compared to the default is 

shown as well. ATL emissions for the 3D inventory are biased low when compared to the 

default, but biased high when tabulated over the entire domain 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

ATL 

Species Default 

(moles) 

3D 

(moles) 

NMD 

NOx 1.10 × 107 8.24 × 106 -24.9% 

SO2 1.41 × 106 1.02 × 106 -27.5% 

CO 6.64 × 107 5.23 × 107 -21.2% 

VOC 7.44 × 108 5.31 × 108 -28.7% 

All model grids 

Species Default 

(moles) 

3D 

(moles) 

NMD 

 

NOx 1.25 × 107 3.66 × 107 192.1% 

SO2 1.52 × 106 4.50 × 106 194.9% 

CO 7.83 × 107 2.43 × 108 209.8% 

VOC 7.85 × 108 2.41 × 109 206.4% 
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Table D-2. Tabulated quantitative metrics of NO2 vertical column densities for both 

inventories across the domain. Results were tabulated for the 17 selected simulation days. 
Inventory Data cut 

off 

NMB 

 

 

% 

Absolute 

Difference 

1015 

molecules/ 

cm2 

Mean 

CMAQ 

1015 

molecules/ 

cm2 

Mean 

TROPOMI 

1015 

molecules/ 

cm2 

Slope Pearson 

Correlation 

RMSE 

1015 

molecules

/ cm2 

No of 

Data 

Points 

Default 

 

All Data -46 -1.13 1.4 2.5 0.74 0.79 1.21 2665 

< 4.5 -47 -1.15 1.3 2.5 0.92 0.82 1.45 2644 

>= 4.5 29 1.36 6.1 4.7 0.19 0.48 4.09 21  

3D 

All Data -43 -1.04 1.4 2.5 0.76 0.81 1.12 2665 

< 4.5 -44 -1.05 1.4 2.5 0.88 0.82 1.25 2644 

>= 4.5 22 0.93 5.5 4.6 0.17 0.29 2.63 21 

  

 

Table D-3. Tabulated quantitative metrics of NO2 vertical column densities for ATL, 

Bowen and Scherer. Results were tabulated using the represented number of grid points 

(Fig S1) for the 17 selected simulation days. 

 

 

 

 

 

Temporal, Horizontal and Vertical Distribution of airport emissions 

Inventory Sector NMB 

 

 

% 

Absolute 

Difference 

1015 

molecules/ 

cm2 

Mean 

CMAQ 

1015 

molecules/ 

cm2 

Mean 

TROPOMI 

1015 

molecules/ 

cm2 

Slope Pearson 

Correlation 

RMSE 

1015 

molecules/ 

cm2 

No of 

Data 

Points 

Default Airport 1.8 0.08 4.9 4.8 0.13 0.35 1.76 25 

3D -9.9 -0.52 4.3 4.8 0.14 0.25 1.33 25  
Default Bowen -9.8 -0.24 3.8 4.1 0.16 0.83 1.98 9 

3D -6.0 -0.09 3.9 3.99 0.16 0.84 1.97 9  
Default Scherer 0.5 0.00 3.64 3.64 0.10 0.29 1.77 9 

3D 4.1 0.12 3.71 3.58 0.10 0.29 1.78 9 
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The base inventory consisted of Landing and Take Off (LTO) emissions from the EPAs 

2016 National Emission Inventory (NEI)228. The development of the 3D inventory included 

(1) adding cruise emissions using the AEIC inventory245, 246 and (2) horizontally and 

vertically allocating total emissions. Each of these modifications are described in further 

detail below.   

 

Adding cruise emissions and vertical allocation:  

1. The AEIC inventory is linearly interpolated to the CMAQ vertical grid. This 

new emissions profile is called AEICCMAQ. 

 

 

2. We calculate the ratio between LTO and cruise emissions in AEICCMAQ. 

The NEI specifies that it accounts for LTO emissions up to 3000 ft., so we 

use 914 m in the associated calculations. 

 

𝐿𝑇𝑂

𝐶𝑟𝑢𝑖𝑠𝑒𝐴𝐸𝐼𝐶𝐶𝑀𝐴𝑄

=
∑ 𝐸𝑖𝑗

914𝑚
𝑖=0

∑ 𝐸𝑖𝑗
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑒𝑖𝑔ℎ𝑡
𝑖= >914𝑚

 

 

Where i = respective height at domain layer, j = species, E = emission rates;  

 

 

3. The ratio is multiplied by the default inventory (EPA NEI 2016) to obtain 

NEI cruise emissions, which is then added to the LTO. 

𝑁𝐸𝐼𝑐𝑟𝑢𝑖𝑠𝑒 =
1

𝐿𝑇𝑂
𝐶𝑟𝑢𝑖𝑠𝑒𝐴𝐸𝐼𝐶𝐶𝑀𝐴𝑄

 ×  𝑁𝐸𝐼𝐿𝑇𝑂 

 

𝑁𝐸𝐼𝑓𝑢𝑙𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  𝑁𝐸𝐼𝑐𝑟𝑢𝑖𝑠𝑒 +  𝑁𝐸𝐼𝐿𝑇𝑂 

 

 

 

Horizontal allocation of the inventory 
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We treat the horizontal allocation as follows: 

Vertical classification: AEICCMAQ emissions are separated into two vertical categories, 

emissions below 914 m and above, which corresponds to the lowest to eight layers, and 

layers 9 to 32 respectively. Two different horizontal allocation schemes are used for these 

two categories.  

 

Horizontal allocation: At altitudes below ~1km, for each vertical layer, we calculate the 

horizontal distance between the airport and a departing plane, using the standard FAA rate 

of climb rate of 200 feet per nautical mile249, 250, 354, which is equivalent to 30.5 horizontal 

meters per vertical meter. The total emissions for that layer are then distributed along a 

circle above the airport with a radius equal to the horizontal travel distance. The maximum 

horizontal extent of LTO emissions (emissions below 914 m) are 28 km from the airport 

center. For the upper layers (> ~ 1km), the vertical distribution of emissions is taken from 

the AEIC. We apply the same method as above, but we use the vertical profile in the AEIC 

to allocate the emissions (Figure D-2).  

 

Impact of the NEI temporal aggregation on the spatial allocation methods 

Because there was no temporal or operational delineations of the NEI LTO 

processes, the same treatment had to be applied in the spatial allocation of the 3D emissions 

inventory, meaning there was no distinguishing between landing, cruising and climb out 

processes. The temporal profile of airport activity, established with the LTO cycles was 

applicable as climb, cruise, and landing operations of a full-flight cycle would be 

coincident with LTO operations. The lack of separation of the processes also meant that to 

account for both landing and takeoff operations of the aircraft, the ROC rates for both 

respective vertical regimes were kept constant. 
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