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(p = 0.009). b) Decrease in RR for active group during post-stimulation (p = 0.017). c) 

Decrease in respiration RP for active group during stimulation (p = 0.028). d) Similar to 

(a), active group shows a consistent recovery in PPG amplitude during stimulation (p = 

0.005) and post-stimulation (p = 0.001). e) Decrease in RR during post-stimulation for 

active group (p = 0.007). f) Decrease in SCL slope for speech task during stimulation for 

active group (p = 0.027). ................................................................................................... 76 
Figure 4-6. Simplified representation of noninvasive VNS mechanism of action. The 

understanding of noninvasive VNS kinetics on noninvasively obtained physiological 

parameters may enable optimization of noninvasive VNS delivery in unsupervised 

settings. NTS: nucleus tractus solitarus. ........................................................................... 78 
Figure 4-7. Annotation diagram. The smoothed instantaneous biomarkers (HR, PEP, PPG 

amplitude) were plotted from pre-stimulus to post-stimulus. If at least two of the three 

mentioned changes in the biomarkers occurred, the onset time was marked at the onset of 

the second change. If no eligible change was observed, the annotation was marked as 

“absent”. ............................................................................................................................ 79 
Figure 4-8. Continuous physiological parameters showing tcVNS without traumatic 

stress, for one participant undergoing sham (left) and one participant undergoing active 

tcVNS stimulus (right). Markers represent the extracted data, lines represent the 

smoothed data. Shaded regions represent stimulus delivery. Dashed lines show the 

averages of the measures from pre-stimulus. .................................................................... 80 

Figure 4-9. tcVNS without acute stress: Results for stimulation without acute stress, 

merged from all days. Bars represent the unadjusted mean changes from baseline, error 

bars: 95% CI, values calculated from raw data, * indicates p < 0.05. ß coefficients, 

adjusted CI, effect sizes (d), and p-values were reported in ß (± CI, d, p) format. Active 

tcVNS group experienced the following relative to sham after adjustments: a) The ratio 

of short-term variability to long-term variability (SD1/SD2) increased following 

stimulation by 14.1% (±11.6%, d=0.43, p = 0.019). b) HR decreased following 

stimulation by 2.7% (±2.0%, d = 0.21, p = 0.009). c) PPG amplitude increased during 

stimulation by 43.4% (±43.4%, d = 0.53, p = 0.049) and following stimulation by 73.1% 
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(±63.2%, d = 0.67, p = 0.025). d) PAT increased during stimulation by 2.5% (±2.2%, d = 

0.26, p = 0.026). ................................................................................................................ 92 

Figure 4-10. tcVNS after traumatic stress: Outcomes for stimulation following traumatic 

stress (all six scripts). Bars represent the unadjusted mean changes from baseline, error 

bars: 95% CI, values calculated from raw data, * indicates p < 0.05. ß coefficients, 

adjusted CI, effect sizes (d), and p-values were reported in ß (± CI, d, p) format. Active 

tcVNS group experienced the following relative to sham after traumatic stress after 

adjustments: a) HR decreased during stimulation by 5.6% (± 3.6%, d = 0.43, p = 0.003), 

and following stimulation by 3.9% (± 3%, d = 0.29, p = 0.013). PPG amplitude increased 

during stimulation by 30.8% (± 28.0%, d = 0.41, p = 0.032). c) PAT decreased less 

during traumatic stress by 9.2% (±  3.0%, d = 0.15, p < 0.0001), stimulation by 2.2% (± 

2.2%, d = 0.42, p = 0.045), and following stimulation by 6.2% (± 1.9%, d = 0.57, p  < 

0.0001). ............................................................................................................................. 93 

Figure 4-11. tcVNS after mental stress: Outcomes for stimulation following two types of 

mental stress, public speech and mental arithmetic. Bars represent the unadjusted mean 

changes from baseline, error bars: 95% CI, values calculated from raw data, * indicates p 

< 0.05. ß coefficients, adjusted CI, effect sizes (d), and p-values were reported in ß (± CI, 

d, p) format. Active tcVNS group experienced the following relative to sham after 

adjustments: a) SD1/SD2 increased during stimulation right after speech task by 23.1% 

(± 21.1%, d = 0.71, p = 0.033).  b) Similar to the speech task, SD1/SD2 increased by 

41.2% (± 22.5%, d = 0.44, p = 0.001). c) PEP increased following stimulation after 

speech task by 6.8% (± 5%, d = 0.16, p = 0.009). (D) PP decreased following stimulation 

after mental arithmetic by 9.6% (± 9.7%, d = 0.68, p = 0.049). ....................................... 94 
Figure 4-12. Change in PACAP concentration over three days for active tcVNS and sham 

groups. * indicates p ≤ 0.05 after post-hoc corrections, error bars are standard error of the 

mean. Sham group had a marked increase in PACAP, consistently increasing over the 

course of three days. This elevation was less in active tcVNS group............................. 100 
Figure 4-13. Effects of tcVNS or sham on IL-6 response to stress in patients with PTSD 

and traumatized participants without PTSD. Toward the end of day 1 with repeated 

traumatic stress (TS), there was an increase in IL-6 greater in sham versus tcVNS in 

PTSD patients (*) that occurred 90 minutes after the presentation of the first trauma 

scripts (Timepoints #12 and #14)(p < .05). On day 2 participants underwent a baseline 

blood draw at rest (task #15) and 90 minutes after mental stress (MS) in the form of 

public speaking and mental arithmetic paired with tcVNS or sham (task #18). On day 3, 

participants again underwent a baseline blood draw at rest (task #19) and 90 minutes after 

mental stress (MS) using the same protocol as D2 (task #22). There were no significant 

differences between sham or active on days 2 or 3 with mental stress (MS, public speech 

and mental arithmetic) compared to each days’ baseline in PTSD. Non-PTSD participants 

showed no difference between active or sham for either TS or MS days. Statistical 

analysis showed a significant day by diagnosis by device effect (p < .05), with secondary 

analysis showing a significant increase in IL-6 in sham versus tcVNS in the PTSD group 

with traumatic scripts (Day 1, p < .05). .......................................................................... 106 
Figure 4-14. Effects of tcVNS or sham on IFN-γ response to stress in patients with PTSD 

and traumatized participants without PTSD. Overall there was a marked increase in IFN-

γ in the PTSD but not the non-PTSD participants which was most pronounced after the 

first traumatic script (task #4) and was largely blocked by tcVNS but not sham, resulting 
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in a significant increase in IFN-γ over the three day stress protocol in the sham group 

versus active tcVNS (*, p < .05). .................................................................................... 107 

Figure 4-15. Effects of tcVNS or sham on subjective anger as measured with the Visual 

Analogue Scale (VISAN). There were increases in anger over time from baseline (B) and 

neutral scripts (NS) to trauma scripts (TS) in PTSD that were blunted by pairing with 

active tcVNS. Traumatized participants without PTSD showed less of an anger response 

to scripts and did not show differences between groups................................................. 111 

Figure 4-16. Wearable neuromodulation technologies can interface with noninvasive 

sensing. Ongoing activity acquired from one or more sensors can be utilized to assess 

cardiovascular and peripheral physiological response via signal processing. Events or 

changes in these data streams can then be decoded using machine learning via feature 

extraction, in order to dynamically trigger closed-loop delivery when needed, and to 

quantify patient adherence and stimulation efficacy for at-home therapy. ..................... 112 

Figure 4-17. a) ECG, PPG, SCG, RSP signals were processed and HR, PAT, PEP, PPG 

amplitude, RR, RW, RP were extracted as physiological parameters. b) Using the 

extracted parameters, dataset constructed after normalization, resampling, and 

windowing. c) After standardization, dimensionality reduction methods were applied for 

dataset visualization. Then, feature selection and machine learning were conducted. 

PATF: PATFOOT; PATP: PATPEAK; AO: Aortic opening; PPGA: PPG amplitude. .......... 114 

Figure 4-18. Dimensionality reduction and classification outcomes for separating the 

stimulus types: active tcVNS and sham. a) Dimensionality reduction applied to the high-

dimensional feature matrix using t-SNE constructed from features from ECG and PPG. b) 

Number of Top features selected using ANOVA F-score-based feature selection versus 

receiver operator characteristics (ROC) area under curve (AUC). ROC AUC is robust to 

Top Features from 70 to 88. c) Confusion matrix for the classifier, obtained with LOSO-

CV and minimum number of features (71). d) Receiver operator characteristics (ROC) 

for the classifier. A ROC area under curve (AUC) of 0.96 was obtained. Classification 

outcomes vary minorly with Top Features from 70 to 88. ............................................. 120 

Figure 4-19. Top five features sorted by ANOVA F-values, their histograms, and kernel 

density estimates grouped by classes. The top features were calculated from the full 

feature set obtained from ECG and PPG sensors. The dashed lines indicate the mean of 

the class. .......................................................................................................................... 121 
Figure 5-1. Illustration of reactivity-based objective PTSD assessment scheme. The 

fusion of autonomic reactivity to traumatic reminders and patient demographics could 

help objective diagnosis of PTSD and long-term monitoring of PTSD therapy response. 

Autonomic reactivity information is obtained using noninvasively obtained physiological 

signals germane to wearable sensing devices while the patient is hearing personal 

traumatic memories. ........................................................................................................ 128 

Figure 5-2. Available demographics, psychometric scale, personality scale, visual 

analogue scale, blood pressure, physiological parameters, and categorized trauma details 

for the dataset. The exact numbers were broken into (# available data/51) as the 

forthcoming analyses have different sample sizes due to missing data in some measures.

......................................................................................................................................... 131 

Figure 5-3. The list of features and relevant coding used in machine learning. Dataset 

includes both dynamic (time series) and static (BP, HRV, background demographics) 

features. ........................................................................................................................... 132 

file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644193
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644193
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644194
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644194
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644194
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644194
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644194
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644195
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644196
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644197
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644198
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644198
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644198
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644198
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644199
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644200
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644200
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644200
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644200
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644200
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644201
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644201
file:///C:/Users/Nil/Documents/Dissertation/Gurel_Dissertation_clean_0818.docx%23_Toc48644201


 xix 

Figure 5-4. Signal processing for time series features and static HRV features. ............ 137 
Figure 5-5. Dataset construction for time series features (except EDA as it was excluded 
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SUMMARY 

The brain and the heart share an active and reciprocal dialogue, continuously modulating 

each other's function. For individuals who have experienced traumatic events, the 

reminders of these events affect both the brain and heart due to this intimate relationship, 

and can later develop into posttraumatic stress disorder (PTSD) due to the repeated 

activation of trauma-related neuropathways and autonomic imbalance. Electrical 

stimulation of the vagus nerve —the longest cranial nerve, which regulates the autonomic 

state—using an implantable device is a potential treatment method to address such 

imbalance. Noninvasive vagal nerve stimulation (nVNS) devices offer inexpensive and 

low-risk alternatives to surgical implants, but their effects on the physiology are not well 

understood. Real-time, noninvasively obtained biomarkers are required to tailor therapy 

and to close the loop for automated delivery.  

This dissertation focuses on identifying and developing noninvasive technologies for 

nVNS in the context of PTSD. Identification of noninvasive measures that can diagnose 

and treat PTSD is imperative for at-home usage and for developing closed-loop systems. 

This research first focuses on how noninvasive sensing modalities could be instrumented 

and used in conjunction with signal processing and machine learning methods to quantify 

an individual’s autonomic state. Second, a mechanistic, sham-controlled, randomized, 

double blind study on the use of nVNS for dampening stress response is investigated in 

multiple dimensions: downstream physiological effects and biochemical biomarkers, with 

a particular focus on real-time physiological biomarkers and their potential for closing the 

loop for machine learning guided personalized neuromodulation. The broader impacts of 
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this research cover accessible, low-cost diagnosis and treatment options for patients with 

stress-related neuropsychiatric disorders, which are important public health problems and 

projected to increase due to COVID-19 pandemic. The sensing modalities, algorithms, 

biomarkers, and methodologies detailed in this dissertation lay the groundwork for future 

efforts to objectively diagnose and treat neuropsychiatric disorders remotely, outside of 

clinical settings.
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CHAPTER 1. INTRODUCTION 

The brain and the heart share an active and reciprocal dialogue, continuously modulating 

each other’s function. For individuals who have experienced traumatic events, the 

reminders of these events affect both the brain and heart acutely and longitudinally due to 

this intimate relationship, and can later develop into stress-related psychiatric disorders, 

such as posttraumatic stress disorder (PTSD), and the autonomic imbalance associated with 

it. The standard of care for PTSD includes psychotherapy and/or pharmaceuticals, and 

there is insufficient evidence supporting their efficacy. Neuromodulation is a broad name 

given to non-pharmacological methods involving the delivery of energy to the body to 

modulate nerve activity. Electrical neuromodulation methods –also termed as 

“electroceuticals” – use electricity for this modulation. Artificial electrical stimulation of 

the vagus nerve–the longest peripheral nerve, which regulates the autonomic state–using 

an implanted device (vagus nerve stimulation, VNS) is a potential treatment method to 

address such autonomic imbalance. This dissertation focuses on noninvasive VNS– the low 

cost and non-surgical alternative of VNS– in the context of stress and PTSD. Specifically, 

this dissertation details the understanding, identification, development, and validation of 

biomarkers and technologies that could quantify the stimulation and mitigate the human 

body’s stress response. These inexpensive and potentially ubiquitous technologies could 

help manage stress and stress-related psychiatric disorders at home and improve the quality 

of life for millions of patients. 

1.1 Motivation 
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Lasting disruptions of peripheral autonomic and cardiovascular function after exposure to 

extreme traumas such as the stress of war are best thought of from larger developmental 

and evolutionary perspectives [2]. Behaviors such as hypervigilance, hyperarousal and 

light sleep that had survival value for primitive hunter gatherers thousands of years ago are 

no longer useful for humans who no longer have natural predators [3]. Symptoms of 

anxiety probably served specific purposes: for instance, if there was a pack of lions in the 

area where a band of hunter-gatherers was camped, this could lead to an increase in fear 

and vigilance, which may have made the difference between life and death. These 

symptoms would persist for long periods of time, possibly after the threat had been 

removed. The fight or flight response that was formerly critical to survival holds less 

importance in the modern age when many people in developed countries are rarely under 

actual physical threat. Activation of the fight or flight response involves the peripheral 

autonomic and cardiovascular systems, with the resultant symptoms of rapid heart rate and 

respiratory changes. If these responses become chronic, they can lead to the development 

of cardiovascular disease, or acceleration of the disease process [4]. Similarly, in combat 

arenas soldiers develop behaviors like being easily startled that may have survival value 

especially if there is an ongoing threat of unexpected attack. It is only when the soldier 

returns from the battlefield and is unable to turn off the “combat mind” that he or she runs 

into trouble. Behaviors that were effective and necessary in one environment suddenly 

become not so in another. Chronic stress not adaptive in modern contexts can therefore 

lead to psychiatric symptoms in some individuals, in addition to accelerating the 

progression of cardiovascular disease [4]. Due to this close relationship between the heart 

and mind dynamics, Da Costa’s observations on “Soldier’s Heart Syndrome” describing 
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how soldiers following exposure to combat develop an array of symptoms including 

fatigue, shortness of breath, sighing respirations, palpitations, rapid heart rate, and sweating 

[5] still holds value today under the name “Posttraumatic Stress Disorder (PTSD)” [6]. 

In today’s world, Soldier’s Heart Syndrome and other conditions such as depression and 

anxiety have been clinically recognized by the Diagnostic and Statistical Manual of Mental 

Disorders [7]. PTSD was officially recognized by the American Psychiatric Association in 

1980s and was classified as a “mental disorder”, unofficially representing a separation of 

this condition from the rest of the body [8].  

Stress-related psychiatric disorders, including depression and PTSD are important public 

health problems, and unfortunately PTSD is not limited to combat exposure in modern 

days. Early life stress increases the risk of development of depression in adulthood [9, 10], 

and stressful life events are associated with an increased risk for depressive episodes [11] 

 

Figure 1-1. Causes of PTSD triggers, adapted from [13]. One individual might have 

experienced multiple traumatic events. 
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while PTSD requires exposure to a traumatic stressor as part of the diagnosis [12]. Events 

from sexual assault to accidents, toxic exposure [13], and very likely pandemics such as 

COVID-19, may produce intrusive memories (Figure 1). The intrusive thoughts of the 

event may persist in vulnerable individuals and may eventually lead to PTSD. At any given 

time, 10% of the United States population meets criteria for major depression or other 

mood disorders based on the Diagnostic and Statistical Manual of Mental Disorders [7] 

criteria [14], with an annual cost of lost productivity of $44 billion [15], Similarly, PTSD 

affects 6% of the population at some time in their lives [16]. The cost of treating PTSD and 

co-morbid depression in soldiers returning from the wars in Iraq and Afghanistan has been 

estimated to be $6.2 billion dollars [17], and since PTSD affects a larger total number of 

civilians in the United States than military personnel, the costs for society as a whole are 

likely much higher [18]. The most common cause of PTSD in women is sexual abuse and 

assault in childhood, while for men it is physical assault [19]. On average, women have 

higher occurrence of PTSD compared to men in the civilian population [20, 21]. PTSD is 

characterized by intrusive thoughts, nightmares, avoidance, emotional blunting, negative 

cognitions, hypervigilance, and hyperarousal [22]. Depression is associated with depressed 

mood, loss of appetite, decreased psychomotor activity, and in extreme cases suicidal 

ideation. Other symptoms, such as poor sleep and concentration, negative cognitions, loss 

of interest in things and anhedonia, are common to both conditions, and in fact there is a 

degree of co-morbidity between the two conditions [23-28]. Furthermore, patients with co-

morbid disorders have a worse clinical course, with for instance a higher risk of suicidal 

ideation [29, 30]. 
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The standard of care for PTSD includes psychotherapy and/or medication [31, 32]. 

Psychotherapy treatments for PTSD, however, have drop-out rates as high as 50%, which 

limit their applicability [33, 34]. First-line medication treatments for stress-related 

psychiatric disorders involves the Selective Serotonin Reuptake Inhibitor (SSRI) 

antidepressants [35, 36]. However, as highlighted by a report from the Institute of 

Medicine, there is not sufficient evidence to conclude that they are effective for PTSD [37]. 

In fact, only one third of those suffering from PTSD are able to achieve full remission with 

the current standard of care [35].  Similar limitations exist for treatment of major depression 

[38]. Given limitations of current treatment options, new paradigms are clearly needed for 

the management of stress-related psychiatric disorders. 

Besides the limitations and accessibility issues regarding treatment, PTSD diagnosis itself 

stands as a challenge. PTSD can be difficult to diagnose, because of the subjective nature 

of most of the diagnostic criteria (similar to other neuropsychiatric disorders), and 

symptom overlap with other disorders such as obsessive compulsive disorder, generalized 

anxiety disorder, or substance abuse disorders [39]. There are a number of PTSD screening 

instruments for adults, such as PTSD Checklist for Diagnostic and Statistical Manual of 

Mental Disorders 5th Edition (PCL-C for DSM-5)  [12] and Clinician Administered PTSD 

Scale (CAPS) [40], handled as forms of structured interviews by medical professional, 

lasting approximately for an hour, which makes the accessibility to diagnosis challenging 

for public. Compared to the United States, there seems to be less research in other countries 

prone to political or economic turbulence. For instance, the number of research articles 

indexed at Google Scholar since 2016 in Turkey is 80% lower than the corresponding 

research in the United States. Despite other factors that might influence research output—
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such as number of PTSD researchers or the ecosystem supporting researcher-clinician 

interactions—, limited numbers of PTSD-related reports are counterintuitive given the 

rates of sexual, child abuse, political/economic turbulence, and population density. Public 

stigma on mental health consultation likely adds to the reasons of under-reported PTSD 

cases [41, 42]. There is clearly a need to accelerate diagnosis and potentially to leverage 

wearable sensing, without a physical visit to a clinic needed. 

This dissertation focuses on technologies to quantify a novel and accessible treatment 

targeted at patients with PTSD to mitigate the body’s fight or flight response and methods 

to objectively assess PTSD. This potential treatment has also been validated through serum 

and blood biomarkers and self-reported surveys with a sham-controlled double-blind 

clinical trial. This dissertation lays the groundwork for techniques to translate this potential 

treatment from clinics to homes, and methods to objectively diagnose PTSD using only 

noninvasively measured autonomic nervous system activity information, without the need 

for clinician administered structured interviews.  

1.2 Major Contributions of This Work 

While there are potential behavioral therapy-based treatments for PTSD, access to medical 

professional and side effects of pharmaceuticals limit their applicability. This work focuses 

on a low cost, noninvasive, and non-pharmacological treatment to electrically stimulate the 

longest peripheral nerve [43], a key modulator of the autonomic nervous system activity. 

This treatment have been extensively evaluated in terms of its effects on physiological 

reactivity, blood and serum biomarkers, behavioral data, and noninvasive biomarkers that 

could quantify the stimulation presence and efficacy, in patients with PTSD or without 
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PTSD but with prior trauma exposure as a sham-controlled double blind study. 

Additionally, based on the physiological data obtained from this human subject group, an 

objective PTSD assessment method have been developed that only requires recollection of 

the personal traumatic event. The main contributions of this work are given below: 

1. In a sham-controlled, double blind scheme, this work demonstrated that pairing 

noninvasive vagus nerve stimulation with traumatic reminders in patients with 

PTSD reduces the fight-or-flight response to emotional triggers and thereby could 

provide a completely new mode of treatment. This paradigm also reduces stress 

reactivity to non-personalized mental stress and stress reactivity in human subjects 

without PTSD.  

2. This potential therapy was further validated in acute settings by investigating 

clinically relevant blood and serum biomarkers and self-reported behavioral 

outcomes. 

3. Utilizing signal processing and machine learning, techniques for measuring and 

extracting continuous biomarkers of noninvasive vagus nerve stimulation based on 

non-standard physiological sensing modalities quantifying autonomic reactivity 

were designed and validated.  

4. Leveraging the continuous autonomic biomarkers, a machine learning-guided 

target engagement quantification method was developed based on fusing multiple 

modalities that can be incorporated in wearable technology. 

5. An autonomic reactivity based, objective PTSD assessment scheme was developed 

that predicts the PTSD status, for which the state-of-the-art diagnosis methods rely 

on clinician administered structured interviews and self-reports. 
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1.3 Dissertation Organization 

The rest of this dissertation is organized as follows: Chapter 2 discusses the physiological 

background of stress and PTSD. Chapter 3 discusses noninvasive sensing and signal 

processing methods to quantify autonomic reactivity. Chapter 4 presents the work related 

to noninvasive vagus nerve stimulation in PTSD and non-PTSD human subjects. Chapter 

5 introduces an autonomic reactivity based PTSD diagnosis scheme that only relies on 

objective measures such as physiological stress reactivity, demographics, and background. 

Lastly, Chapter 6 concludes this work and provides directions for future work. 

 

 

 

 

 

 

 

 

 

CHAPTER 2. PHYSIOLOGICAL AND CLINICAL BACKGROUND 
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Stress is associated with activation of sympathetic nervous system (SNS). It can result in 

lasting alterations in autonomic, neurohormonal, brain, and peripheral function, and in 

extreme cases symptoms of PTSD [44]. This chapter provides physiology background for 

stress, PTSD, and vagus nerve that are tied to the findings and methods in the next 

chapters.Neurobiology of Stress and Stress-Related Disorders 

The neurobiology of stress is complex and involves interconnected molecular pathways of 

the sympathetic nervous system, the hypothalamic pituitary adrenal (HPA) axis, 

inflammatory response systems, and other neuropeptidal and neurohormonal systems [44, 

45]. By the introduction of stressful input, a cascade of events take place starting from the 

neural circuitry to downstream events such as motor, inflammatory, hormonal, and 

physiologic responses in a physically healthy individual, as seen Figure 2, adapted from 

[46]. The thalamus acts as the gateway to the brain, filtering sensory input from the outside 

world.  A network of hippocampus, amygdala, and prefrontal cortex are hypothesized to 

function in neural circuitry of fear. The hippocampus (that has a major role in memory and 

learning) has connections with amygdala, which plays role in processing emotions and fear. 

The medial prefrontal cortex is hypothesized to play a role in the extinction of fear 

responses. The operation of this network during sensory input acquisition leads to motor, 

hormonal, and physiological responses. For patients with PTSD, this brain network is 
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dysfunctional: Patients with PTSD have lower hippocampal volume. Medial prefrontal 

cortex, that takes part in the inhibition of fear response, is dysfunctional. This results in a 

failure of extinction in fear response. As a result, they exhibit abnormal/blunted motor, 

hormonal, and physiologic responses. Exposure to events or stress—particularly those with 

salient characteristics related to previously experienced trauma—can elicit symptoms such 

as hyperarousal, intrusive thoughts, avoidance behaviors, and dissociation, and 

dysfunctionalizes this cascade of stress processing [47]. These adverse responses can lead 

to elevated inflammatory marker concentrations, impaired autonomic modulation, memory 

deficits, changes in brain morphology, and increased neural reactivity in emotion-specific 

brain areas [48-56]. Laboratory-produced stress paradigms are known to produce an acute 

stress response and increase SNS activity in previously traumatized individuals with and 

 

Figure 2-1. Neural circuitry of stress. Adapted from [46]. 
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without PTSD [51, 57, 58]. Exposure to stress activates neural areas repeatedly found to 

be altered with PTSD and related psychiatric disorders [51, 59]: the amygdala, prefrontal 

cortex, anterior cingulate, hippocampus, and insula. A summary is provided below 

addressing the physiologic, immune, and cellular responses in stress and PTSD. 

2.1.1 Dysregulated Immune Function in Stress and PTSD 

Dysregulated immune function is associated with stress and PTSD [60, 61]. Mental stress 

in the laboratory in human subjects, including patients with coronary artery disease [62], 

is associated with increases in several inflammatory markers, including interleukin-6 (IL-

6) [63-65], IL-1ß [65], IL-10 [65], and tumor necrosis factor-alpha (TNF-α) [65]. Multiple 

studies show an increase in inflammatory factors at baseline in patients with depression 

[66-70] and early trauma [71-75]. Consistent with these studies, PTSD patients have 

increased inflammation [56], including increased baseline concentrations of leukocytes 

[76-78], IL-6 [60, 79-87], IL1ß [60, 88, 89], TNF-α [60, 80, 83, 86-89], Interferon (IFN)-

γ [60, 85, 89, 90], intercellular adhesion molecule-1 (ICAM-1) [91, 92], vascular cell 

adhesion molecule-1 (VCAM-1) [92], and in one study, IL-2, IL-4, IL-8, and IL-10 [85]. 

Other studies showed no increase in IL-6 [88, 91, 93-95], CRP [87, 89, 92, 93, 95, 96], IL-

4 [88], IL-10 [80, 88, 89], IL-1ß [89], or IFN-γ [93]. One study found increased diurnal 

cerebrospinal fluid (CSF) IL-6 but not plasma IL-6 in PTSD [97]. Other studies showed 

altered genotype in genes modulating immune function in PTSD [98]. Recently, enhanced 

IL-6 response to mental stress involving public speaking in coronary artery disease [62] 

patients with PTSD compared to CAD patients without PTSD [99]. In summary, studies 

implicate altered immune function in PTSD including increased IL-6, TNF-α and IFN-γ.  
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2.1.2 Enhanced Cellular Stress Response in PTSD 

Pituitary adenylate cyclase activating polypeptide (PACAP) is a highly conserved 

neuropeptide that connects these systems and regulates and integrates adaptive responses 

to stress [100]. A growing body of literature has pointed to dysregulation of PACAP along 

with its selective PAC1 receptor in PTSD [100, 101]: Elevated PACAP levels predicted 

symptom clusters categorized as intrusion, avoidance, and hyperarousal in females with 

PTSD. In other studies, PAC1 receptor levels were also correlated with physiological 

measures (increased startle reflex, related to the hyperarousal category of PTSD diagnosis) 

that have been previously associated with PTSD risk [102-108]. Experiments demonstrated 

that PACAP is related to physiological stress responses including those mediated by the 

sympathetic and parasympathetic nervous system [109]. PACAP is released along with 

acetylcholine from nerve terminals in the adrenal gland, and it targets cells that express the 

nicotinic receptor along with PACAP receptors [109]. Accordingly, evidence suggests a 

functional adrenomedullary synapse in which acetylcholine and PACAP act independently 

to cause release of catecholamine [109]. 

Within the brain, PACAP participates in neural circuits relevant to PTSD and other stress 

disorders [110]. In the hypothalamus and hippocampus, PACAP acts as an important 

neuromodulator [111, 112]. Anatomical and physiological studies established the 

importance of PACAP neurotransmission in the amygdala, which underscored the role of 

this peptide transmitter in fear responses and potentially PTSD [109, 113]. In summary, 

studies suggest that PACAP is anxiogenic and may play a role in symptoms of PTSD.  

2.2 Vagus Nerve Stimulation 
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Treatments for PTSD hinge on the mitigation of stress reactivity, including reducing brain 

activity, inflammation, cellular, and physiological responses to stress. Neuromodulation, 

which involves modulating neural state based on external inputs to the body that typically 

are electrical, acoustic, or magnetic, may provide a novel means of mitigating stress 

reactivity if appropriate nerve targets and modulation paradigms are discovered. The vagus 

nerve might be an appropriate target for neuromodulatory therapies in patients with PTSD 

due to its afferent connections to key regions in the brain involved in stress neurobiology, 

and to its efferent signaling to peripheral organs such as the heart.  

The vagus nerve, the longest cranial nerve, is a complex neural structure that contains 

descending efferent fibers that regulate peripheral organs and autonomic nervous system 

activity, and ascending afferent fibers to the brain via the nucleus tractus solitarus (NTS) 

[114]. The NTS projects to other brain areas such as the amygdala, hippocampus, locus 

coeruleus, and prefrontal cortex that play important roles in emotion regulation and have 

been implicated in stress-related mental disorders, including PTSD [115]. Efferent fibers 

modulate cardiovascular function and peripheral autonomic tone, which can also be 

modulated by afferent fibers via brain areas with effects on these parameters including the 

prefrontal cortex and insula [116]. Electrical stimulation of the vagus nerve, using 

implantable devices (direct VNS), has been demonstrated to be efficacious for the 

treatment of epilepsy and refractory major depression, and is approved by the Food and 

Drug Administration (FDA) for the treatment of these disorders [117-121]. The effects of 

direct VNS on autonomic imbalance likely explains much of its efficacy for these 

disorders, as well as its applicability to cardiovascular disorders [122, 123]. The effects of 
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direct VNS on enhancement of memory and neuroplasticity also suggest a role for 

treatment of cognitive disorders, stroke, and other conditions [124-128]. 

2.2.1 Relevance of Vagus Nerve Stimulation and Neurobiology of Stress 

VNS has effects on inflammation that may be beneficial for PTSD. IL-6 and TNF-α are 

modulable by the vagus nerve [129-134]. In animal studies VNS blocks lipopolysaccharide 

(LPS)-induced increases in IL-6, IL-18, IL-1ß and TNF-α, but not IL-10 [131, 135]. Studies 

in patients with epilepsy and implanted VNS devices showed that long-term treatment 

resulted in decreased LPS-induced IL-6 and neurotoxic kynurenic metabolites with no 

effect on IL-6, IL-10, IL-1ß, or TNF-α [136, 137]. 

Besides the relevance of vagus nerve and immune function, cellular stress neuropeptide 

PACAP also has neuroprotective and anti-inflammatory properties and is well-positioned 

for modulation by vagus nerve activity [138, 139]. Of particular interest to the vagus nerve, 

PACAP innervation of the lateral central amygdala is thought to arise from PACAP 

containing neurons in the vagus nerve brainstem complex [113]. Behavioral studies in 

rodents indicate that PACAP exerts an anxiogenic effect via its connections in the bed 

nucleus of the stria terminalis (BNST, also referred as extended amygdala) [140]. A 

growing literature on the anatomical location and physiology of PACAP suggested a close 

association with systems that are also regulated by VNS [141-143]. Therefore, PACAP is 

well-positioned as a mediator in pathways of the cholinergic anti-inflammatory axis and 

its potential modulation by VNS. PACAP may potentially serve as a dynamic and objective 

biochemical biomarker that could measure PTSD severity, hence the longitudinal changes 

in PACAP may indicate therapy response to potential treatments targeted at PTSD. The 
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relationship between PACAP levels, stressful stimuli, and VNS (either direct or 

noninvasive stimulation) has not been examined in humans before. 

In summary, the HPA axis plays an important role in stress, and dysregulation of this 

system is associated with PTSD and depression, and is potentially modifiable by the vagus 

nerve. FDA-approved direct VNS involves surgical implantation with direct electrical 

stimulation of the vagus nerve. VNS has effects that may be beneficial for 

neurophysiological alterations associated with PTSD, including blocking of sympathetic 

and immune function [144-146], and enhancement of cognition [124, 147-151]. The 

requirement for surgical implantation, however, has limited the widespread 

implementation of VNS to psychiatry due to cost, inconvenience [152, 153], and lack of 

reimbursement by Medicare or other insurance companies [154].  

2.2.2 Non-invasive Vagus Nerve Stimulation: Current State of the Art 

Due to the limitations of surgical implants, noninvasive vagus nerve stimulation (nVNS) 

devices have been developed that target the projections of the vagus nerve from the skin. 

Transcutaneous VNS devices noninvasively target vagal projections in the ear (auricular 

branch of the vagus) and neck (cervical branch in the carotid sheath). Auricular tVNS 

(taVNS) devices modulate central and peripheral physiology, as observed with the 

monitoring of peripheral physiological parameters [155-157], inflammatory cytokines 

[158], hormonal indices [159], brain imaging [160-163], and a case study comparing VNS 

implant and taVNS for an epilepsy patient [164]. taVNS also has been shown to ameliorate 

tinnitus [165, 166], atrial fibrillation [167], episodic migraine [162], seizure frequency 

[168], cluster headache [169], and major depression [170, 171], as well as improving vagal 
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tone [157], deactivation of limbic and temporal brain structures, and mood enhancement 

in healthy populations and patients with PTSD and mild traumatic brain injury [172, 173]. 

Fewer studies have looked at cervical tVNS (tcVNS), although they have been shown to 

reliably activate vagal nerve fibers [174-176], produce anti-inflammatory effects [177-

179], reduce neural and physiologic responses to noxious thermal stimuli [180] with 

possible clinical utility in migraine and trigeminal allodyna [181, 182] . The work in this 

dissertation focuses on tcVNS paired with traumatic recall and mental stress tasks in 

individuals with or without PTSD.  

2.3 PTSD Diagnosis: Current State of the Art 

Diagnosis of PTSD requires exposure to at least one event that involved threat of death, 

violence, or injury. An individual could be exposed in one or more ways: direct experience, 

witnessing, learning someone close to the individual faced the event, or repeated exposure 

to traumatic event cues (such as police officers repeatedly exposed to details of child 

abuse). According to DSM-5 [39], the following symptoms are required to be diagnosed 

as PTSD, existence and degree determined after a structured interview: 

• Criterion B: Intrusion symptoms (one required) 

o The traumatic event is persistently re-experienced in the following way(s): 

▪ Unwanted upsetting memories 

▪ Nightmares 

▪ Flashbacks 

▪ Emotional distress after exposure to traumatic reminders 

▪ Physical reactivity after exposure to traumatic reminders 
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• Criterion C: Avoidance (one required) 

o Avoidance of trauma-related stimuli after the trauma, in the following 

way(s): 

▪ Trauma-related thoughts of feelings 

▪ Trauma-related external reminders 

• Criterion D: Negative alterations in cognitions and mood (two required) 

o Negative thoughts or feelings that began or worsened after the trauma, in 

the following way(s): 

▪ Inability to recall key features of the trauma 

▪ Overly negative thoughts and assumptions about oneself or the 

world 

▪ Exaggerated blame of self or others for causing the trauma 

▪ Negative affect 

▪ Decreased interest in activities 

▪ Feeling isolated 

▪ Difficulty experiencing positive affect 

• Criterion E: Alterations in arousal and reactivity 

o Trauma-related arousal and reactivity that began or worsened after the 

trauma, in the following way(s): 

▪ Irritability or aggression 

▪ Risky or destructive behavior 

▪ Hypervigilance 

▪ Heightened startle reaction 
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▪ Difficulty concentrating 

▪ Difficulty sleeping 

• Criterion F: Duration (required) 

o Symptoms last for more than 1 month. 

• Criterion G: Functional significance (required) 

o Symptoms create distress or functional impairment (e.g., social, 

occupational). 

• Criterion H: Exclusion (required) 

o Symptoms are not due to medication, substance use, or other illness. 

In summary, the current state of the art for diagnosing PTSD requires interaction with a 

medical professional and an approximately one hour long structured interview. In addition, 

the interviews rely on the individual’s reporting, thus susceptible to malingering or under-

reporting the specific categories [183, 184]. An objective assessment could potentially help 

in the diagnosis of PTSD. This objective assessment could potentially be achieved through 

noninvasive quantification of the autonomic reactivity to a stressful stimuli. 

This chapter introduced neurobiology of stress and stress-related disorders, and the 

potential of noninvasive vagus nerve stimulation to mitigate stress. Stress-related disorders 

lead to systemic inflammation, enhanced cellular stress response, and autonomic 

imbalance. The neurobiological and physiological targets reviewed in this chapter laid out 

the rationale for investigating noninvasive vagus nerve stimulation in stress and PTSD. 
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CHAPTER 3. QUANTIFYING STRESS REACTIVITY 

3.1 Introduction 

The autonomic nervous system (ANS) is a division of the peripheral nervous system that 

influences the function of internal organs. It acts largely unconsciously and regulates bodily 

functions. Traditional literature suggests that ANS is dominated by two main branches: 

sympathetic (fight-or-flight, SNS) and parasympathetic (rest-and-digest, PNS) branches, 

while polyvagal theories exist that do not limit the dominant branch number to two [185]. 

In many cases, these branches have opposite actions where one system activates a 

physiological response and the other inhibits it, while other cases such as vasovagal 

syncope (i.e., fainting) are also possible [186]. ANS activity plays a critical role in stress 

response, and autonomic imbalance plays an important role in the progression of many 

cardiovascular and nervous system disorders [187-189]. This chapter introduces two works 

related to autonomic nervous system activity quantification in the context of stress [190, 

191]. These works underscore the importance of multimodal autonomic monitoring.  

3.2 Noninvasive Biomarkers of Autonomic Nervous System Activity 

As the ANS affects internal organ functions, noninvasive monitoring of internal organ 

functions is critical in quantifying the ANS activity. These physiological data could be 

collected with off-the-shelf or custom-made sensors. The physiological measurements 

include but not limited to electrocardiography (electrical activity of the heart, ECG), 

respiration (respiratory effort, RSP), seismocardiography (chest wall vibrations of heart, 

SCG), photoplethysmography (blood volume pulse, PPG), electrodermal activity (sweat 
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gland activity, EDA), blood pressure (BP), impedance cardiography (thorax bioimpedance 

modulated by blood ejected from the heart, ICG), and near infrared spectroscopy (relative 

prefrontal cortex oxygenation, NIRS). 

3.2.1 Heart Rate  

The instantaneous heart rate (HR), computed from R-R intervals of ECG is a traditional 

measure of stress response. HR is controlled both by SNS and PNS activity. The net effect 

of the ANS on HR is often seen as the net balance between two branches [192]. The 

interplay between the two and additional effects such as baroreflex or chemoreflex 

sensitivity might mask the true sympathetic activation. Regardless, it is a convenient 

measure to obtain from different sensors (ECG, PPG, SCG, ICG) providing heartbeats 

[193]. 

3.2.2 Heart Rate Variability 

Heart rate variability (HRV) is a general name for methods that quantify the variation in 

time intervals between heartbeats. There are a number of frequency and time domain HRV 

measures, popular in clinical literature. HRV measures tend to be non-continuous (not beat 

by beat) as multiple clean beats are required to compute the power of specific frequency 

bands or quantify beat variation [194]. Frequency-domain HRV, the most commonly 

studied method for quantifying the sympathetic and parasympathetic branches of the ANS, 

is obtained from the non-constant R-R intervals from ECG R-peaks [195]. While the power 

in the high-frequency range (HF HRV, 0.15-0.4Hz) is considered a measure of 

parasympathetic activity for humans, the low-frequency portion (LF HRV, 0.04-0.15Hz) 

is mostly used for assessing the changes related to both sympathetic and parasympathetic 
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influences [195]. The ratio of the two power bands (LF/HF) is often considered as a 

measure of sympathetic tone, while there are discrepancies in the literature [196, 197].  

Poincaré method is a less commonly employed HRV measure, obtained from the scatter 

plot of each R-R interval (R-Rn) versus the next R-R interval (R-Rn+1). In this procedure, 

an ellipse is fitted to the line-of-identity of the scatter plot (R-Rn versus R-Rn+1). Three 

indices are established from the fitted ellipse: standard deviation (SD) of points 

perpendicular to the axis of line-of-identity (SD1), standard deviation of points along the 

axis of line-of-identity (SD2), and their ratio (SD1/SD2). SD1 measures short-term HRV 

which correlates with baroreflex sensitivity (BRS, change in the inter-beat interval duration 

per unit change in BP) and HF HRV. SD2 measures short- and long-term HRV and 

correlates with BRS and LF HRV. The ratio SD1/SD2 (the unpredictability of R-R 

intervals) is an indicator of the autonomic balance [198, 199]. 

3.2.3 Amplitude of Peripheral Photoplethysmogram 

The amplitude of the peripheral photoplethysmogram (PPG) signal is known to be affected 

by sympathetic and vasomotor activity [200], and environmental effects such as 

temperature [201]. In our studies described in the current and next chapters, we observed 

that it typically decreases with mental stress perturbations on the autonomic state. 

3.2.4 Pre-Ejection Period of the Heart 

The pre-ejection period, measured by the time delay between the onset of electrical 

depolarization (QRS waveform, obtained from ECG) and aortic valve opening, is 

considered as a non-invasive indicator of cardiac SNS activity [202, 203]. Specifically, 



 22 

decreased PEP is a surrogate measure of increased cardiac contractility, which may change 

acutely due to autonomic influences. In particular, decreased PEP reflects increased cardiac 

β1 receptor stimulation [202]. PEP is an underused measure due to the requirement for a 

second modality in addition to ECG: ICG or SCG to capture the electromechanical activity 

of the heart. A traditional way to measure PEP is through ECG and ICG or ECG and heart 

sounds, and ICG alone requires at least four electrodes on body. Instead of ICG, SCG or 

ballistocardiography (BCG), by giving information on the electromechanical coupling of 

the heart, could provide high quality PEP estimation when combined with ECG [204, 205]. 

3.2.5 Pulse Transit and Arrival Times 

Pulse transit time (PTT) represents the time it takes for the pressure wave to travel from a 

proximal to a distal location along the arterial tree, traditionally measured by two BP 

waveforms [200]. PTT is inversely related to continuous BP through Moens-Korteweg 

equation (Equation 3.1), assuming a constant distance travelled for the arterial tree: 

𝐵𝑃 =
𝐾1
𝑃𝑇𝑇

+ 𝐾2 (3.1) 

Where K1 and K2 are subject-specific parameters that take into account the length of 

measurement site, arterial diameter, and arterial elasticity [206]. As such, changes in PTT 

are related to changes in continuous blood pressure. 

𝑃𝐴𝑇 = 𝑃𝐸𝑃 + 𝑃𝑇𝑇 (3.2) 

A common though inaccurate alternative to PTT is the measurement of pulse arrival time 

(PAT), the timing interval between the R-wave of ECG and the pulse wave at a distal 



 23 

location. PAT is the sum of PEP and PTT (Equation 3.2). Compared to only PTT 

calculation, PAT calculation has advantages in terms of simplicity and ease of use, however 

PAT contains PEP in addition to PTT. PEP could change independently from BP, due to 

changes in cardiac contractility [207, 208]. It should be noted that as PAT includes both 

sympathetic influences due to PEP and vasomotor influences due to BP, it will provide a 

higher net change due to autonomic influences driving the sympathetic and vasomotor 

activity to the same direction. 

3.2.6 Respiratory Measurements 

Slowly varying respiratory activity is modulated by PNS activity [195]. Respiration 

frequencies are around 0.4Hz for humans, respiration activity could be extracted from other 

signals (ECG, SCG, PPG, ICG) with proper low-pass filtering or by the use of a 

piezoresistive belt that captures thoracic expansion and contraction while breathing. The 

characteristics of the respiration cycle (rate or RR, width or RW, prominence or RP) are of 

interest in terms of PNS activity and breathing pattern. 

3.2.7 Electrodermal Activity 

The EDA signal is a measure of sweat gland activity, and composed of two main 

components. The slow tonic component (skin conductance level, SCL) shows the general 

trend of the signal. The faster tonic component (skin conductance response, SCR) is 

superimposed onto the tonic component. EDA is typically taken from palms where large 

number of sweat glands exist [209]. 

3.2.8 Prefrontal Cortex Oxygenation Measurements 
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NIRS is an optical and non-invasive method for monitoring the changes in tissue oxygen 

dynamics. NIRS provides information regarding blood flow to the pre-frontal cortex (PFC) 

by use of the Modified Beer-Lambert Law (MBLL) (Equation 3.3), which allows 

calculation of oxygenation changes from light intensity measurements scattered from 

human forehead, or any other body area [210]. When a tissue is activated due to autonomic 

perturbations, it uses oxygen. Oxygen transport is satisfied by hemoglobin. Hemoglobin 

has useful absorption spectra in near infrared (NIR) spectrum, which can be leveraged to 

monitor relative concentration changes.  

[
∆𝐴𝛌1
∆𝐴𝛌2

] = [
𝜀𝛌1
𝐻𝑏𝑅𝑑 𝜀𝛌1

𝐻𝑏𝑂𝑑

𝜀𝛌2
𝐻𝑏𝑅𝑑 𝜀𝛌2

𝐻𝑏𝑂𝑑
] [∆𝑐

𝐻𝑏𝑅

∆𝑐𝐻𝑏𝑂
] (3.3) 

Where λ1,2 are measurement wavelengths, A is absorbance, c is concentration, HbO is 

oxyhemoglobin, HbR is deoxyhemoglobin, 𝜀𝛌1
𝐻𝑏𝑂, 𝜀𝛌1

𝐻𝑏𝑅, 𝜀𝛌2
𝐻𝑏𝑅, 𝜀𝛌2

𝐻𝑏𝑂
 are extinction 

coefficients at λ1,2 of  HbO and HbR (typically approximated constant), and d is distance 

between light source (NIR, 770-850nm) and detector (matched photodiode). By measuring 

 

Figure 3-1. Protocol description: Each subject completed a series of arithmetic and N-

back tasks with difficulty levels shuffled, each lasting a minute. Before the start of the 

tasks and between each task, subjects rested for three minutes with their eyes-closed. 

MAT: Mental arithmetic, NB: N-back task.  
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A (ratio of input and output light intensity) at λ1,2 and plugging in 𝜀𝛌1
𝐻𝑏𝑂, 𝜀𝛌1

𝐻𝑏𝑅, 𝜀𝛌2
𝐻𝑏𝑅, 𝜀𝛌2

𝐻𝑏𝑂, 

d, one could solve for concentration changes ∆𝑐𝐻𝑏𝑅 and ∆𝑐𝐻𝑏𝑂. 

3.3 Fusing Near-Infrared Spectroscopy with Wearable Hemodynamic 

Measurements Improves Classification of Mental Stress 

This work established an instrumented headband to classify mentally stressful tasks using 

various biomarkers of ANS activity and PFC oxygenation [191]. NIRS is typically used in 

conjunction with electroencephalography [211] [212, 213] with bulky setups to improve 

spatial and temporal information, this work combined central (NIRS) and local 

(cardiovascular and peripheral) responses with an unobtrusive setup with the goal of 

classifying the mentally stressful state. 

3.3.1 Human Subject Study Design 

The human subject study was performed under a protocol reviewed and approved by the 

Georgia Institute of Technology Institutional Review Board. All subjects read and signed 
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a consent form before the data collection. Data were collected from 16 healthy subjects 

without cardiovascular disorders (six females, ten males, ages 26.7 ± 3.2, mean ± SD). 

Figure 3.1 illustrates the experimental protocol and Figure 3.2a shows the test setup for 

each subject. The experiment was divided into six parts that include mental tasks (mental 

arithmetic and N-back), with three-minute breaks in between each task. The arithmetic task 

was chosen due to the high cardiovascular response observed in many clinical studies 

 

Figure 3-2. a) Illustration of the sensing modalities attached to each subject: headband 

PPG, NIRS, ECG, SCG signals were collected throughout the mental stress protocol. b) 

Block-diagrams of each sensing modality. c) Block diagram of signal processing and 

feature extraction. d) Summary of peripherally-measured cardiovascular parameters. 

HR, R-Ao or PEP, PTT, PAT, PPG amplitude were extracted from the peripherally 

measured cardiovascular sensing part. 
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relative to other mental stress tests [214]. The N-back task was chosen because of its 

relevance with PFC activity that could be captured with NIRS [215-217]. All tasks were 

carried out on a laptop and the subjects used a keyboard to interact with custom graphical 

user interfaces (GUIs). The subjects were asked to remain silent, and to minimize posture 

changes during the protocol. Before the start of the experiment, the protocol was explained 

in detail to each subject, and the subjects practiced sample questions from each task. At the 

beginning of the experiment, each subject was instructed to sit comfortably with eyes 

closed for three minutes to obtain baseline rest signals. Then, the subjects underwent a 

series of arithmetic and N-back tasks, with difficulty levels ordered randomly. The 

questions in these tasks were different from the ones in the practice session. The three 

arithmetic tasks included 1-digit, 2-digit, or 3-digit algebraic calculations from a custom 

GUI. A series of arithmetic questions appeared on the screen for each difficulty level, for 

one-minute each, as illustrated in Figure 3.1. The subjects entered the answers using the 

keyboard and pressed a key to progress onto the next question. The subjects were not 

allowed to progress to the next question if they did not enter the right answer. After 

completing the first three tasks that include arithmetic questions, subjects progressed to the 

N-back task. The N-back task is a continuous performance task to measure working 

 

Figure 3-3. Instrumented headband. 
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memory and working memory capacity. In this task, a three-by-three grid was presented to 

the subject on the computer screen via a GUI [19]. A sequence of squares at different spatial 

locations were highlighted consecutively, and the subject pressed a key when the location 

of the current highlighted square matched the one from N-steps earlier in the sequence 

(Figure 3.1). Our protocol included N = 1, 2, 3-back tasks shuffled randomly, each lasting 

for a minute. Each trial (square appearance) was adjusted to last for a maximum of three 

seconds, therefore each N-back task includes approximately 20 trials within a minute. 

To assign the subjective difficulty levels for the classification of each task, the subjects 

filled out the NASA Task Load Index (NASA-TLX) questionnaire at the end of the 

protocol [218]. For each of the six tasks (three arithmetic and three N-back), the total 

workload was divided into six subcategories: mental demand, physical demand, temporal 

demand, performance, effort, frustration. The subjects rated each subscale with a score 

between 0-100, for each task. The ratings from the six subcategories were averaged for 

each task, referred to as RTLX scores. The average score indicates an estimate of overall 

workload for the corresponding task [218]. The use of RTLX objectifies the difficulty 

assignment for each task type, verifying that the protocol was effective. The highest 

difficulty levels were used for the classification. 

3.3.2 Instrumentation 

Figure 3.2a and b show the parts of headband and instrumentation blocks, namely NIRS 

and cardiovascular-peripheral blocks. The NIRS circuit consisted of a multi-chip NIR light 

emitting diode (LED) (MTMD7885T38, Marktech Optoelectronics, Latham, NY), 10 

photodiode-transimpedance amplifier (PD-TIA) chips (OPT101, Texas Instruments, 
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Dallas, TX), 16-channel LED driver (TLC5940, Texas Instruments, Dallas, TX), 16-

channel multiplexer (MUX, CD74HC4067, Texas Instruments, Dallas, TX), and a 

microcontroller (μC, ATmega 2560, Arduino, NY). The multi-chip LED included six 

LEDs, with peak emission wavelengths (λ) of 770nm (x 2), 810nm (x 2), and 850nm (x 2). 

The package had a diameter of 9mm, and all LEDs were separated by 45°. To maximize 

the level of reflections received by the detector, the LED driver was programmed such that 

the LEDs would operate with the maximum forward currents recommended by the 

manufacturer: 50mA for 770nm and 100mA for 810nm and 850nm. The MUX output was 

programmed to sequentially select which detector output would be read by the built-in 

analog-to-digital converter (ADC, 10-bit) of the microcontroller (time division 

multiplexing). A flexible headband was designed in SolidWorks (2016, Waltham, MA), as 

shown in Figure 3.3, with dimensions 140.5mm by 58.5mm by 4.5mm, using thermoplastic 

polyurethane (TPU) filament (NinjaFlex, Manheim, PA). The NIRS LED was placed to 

the center of the headband, and 10 of PD-TIA chips were distributed spatially around the 

NIRS LED. The distances between each source (LED)-detector (PD-TIA) combination 

were set at 1.5cm or 3cm. The distances were chosen due to the known optimal sensitivity 

of NIRS to intracranial brain tissues at these distances, and the NIRS implementations in 

literature [219]. 

In terms of firmware, upon the detection of a trigger signal from a data acquisition system 

(DAQ, MP150, Biopac Systems, Goleta, CA), the NIRS LEDs were programmed to turn 

on sequentially. Once an LED was turned on, the MUX sequentially selected detectors to 

read their output signals. The NIRS signals were transmitted with 2Hz sampling rate. For 

the peripherally measured cardiovascular signals, both custom-built circuits and 



 30 

commercially available components were used to acquire a set of signals that would capture 

at least the following physiological features of relevance for mental stress assessment: HR, 

PEP, PAT, PTT, and PPG amplitude. The goal was to use sensors and electronics for 

measuring these signals that could ultimately be encapsulated in a wearable device, 

possibly even a headband with combined NIRS and cardiovascular signal sensing 

capability. 

The headband contains the head PPG sensors, which include a multi-chip LED and PD 

combination (SFH 7070, OSRAM Optosemiconductors, Regensburg, Germany). The 

package includes two green emitters (λ = 530nm) and a matched PD, with an overall 

dimension of 7.5mm by 4mm by 0.9mm. The forward current through the LEDs were set 

to 20mA, per the datasheet suggestion, using a voltage divider and buffer combination. A 

TIA was designed to read the PD output using an operational amplifier (LT1885, Linear 

Technology, Milpitas, CA) with feedback components (RF =  350kΩ, CF = 10nF), followed 

by a first-order passive low-pass filter (fc = 16Hz). The head PPG signal was acquired using 

the DAQ. To measure SCG signals, a very low-noise 3-axis accelerometer evaluation board 

was used (ADXL354CZ, Analog Devices, Norwood, MA). The accelerometer was placed 

in a 2.8cm by 3cm by 1cm custom-printed rigid acrylonitrile butadiene styrene plastic case. 

It was placed on the mid-sternum of each subject. For ECG data collection, a commercially 

available wireless 3-lead ECG amplifier was used (RSPEC-R, Biopac Systems, Goleta, 

CA). All peripherally measured cardiovascular signals were transmitted through the DAQ 

with 2kHz sampling rate. 

All custom circuits were powered using a benchtop power supply with ±9V rails. For the 

components that require specific power levels (i.e. 3.3V for accelerometer and 5V for LED 
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driver and PD-TIA), low drop-out regulators were used (LT1763, Linear Technology, 

Milpitas, CA). 

3.3.3 Signal Processing and Feature Extraction 

Pre-Processing and Feature Extraction: Data were processed in MATLAB (R2017b, 

MathWorks, Natick, MA). Figure 3.2c gives an overview of the signal processing and 

feature extraction pipeline. The peripherally measured cardiovascular parameters extracted 

are cardiac timing intervals and a signal amplitude, namely: the HR, R-Ao (i.e., PEP), PAT, 

PTT, and head PPG amplitude. NIRS parameters are changes in concentrations of oxy-

hemoglobin (Δ𝐻𝑏𝑂), deoxy-hemoglobin (Δ𝐻𝑏𝑅), and total hemoglobin (Δ𝑇𝑜𝑡𝑎𝑙𝐻𝑏). 

Figure 3.2d shows the parameters computed from the peripherally measured cardiovascular 

signals. ECG, SCG and head PPG signals were filtered with finite impulse response (FIR) 

band-pass filters with cut-off frequencies 0.6-40 Hz, 0.8-20 Hz, and 0.8-10 Hz, 

respectively, to preserve the waveform shape and cancel the noise outside their bandwidths 

[220]. The R-peaks of the ECG signals were detected using thresholding, and were used to 

calculate HR. SCG and head PPG signals were ensemble averaged according to the R-

peaks, using beat lengths of 300ms for SCG and 550ms for the head PPG. These lengths 

were sufficient to detect the fiducial points of each SCG and PPG beats. To reduce the 

effects of motion artifacts on the individually segmented beats, exponentially weighted 

moving ensemble averaging of successive beats was implemented [220]. Exponentially 

decreasing weighting gives more emphasis to the more recent beats, while still providing 

noise reduction based on the averaging. We determined 3-beat and 10-beat time constants 

for SCG and head PPG were sufficiently long to reduce the artifacts while short enough to 

still preserve the transient changes in the signals. Note that for all the parameters described 
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below, the approximate first order derivatives (differences between the adjacent elements) 

were also computed to generate additional parameters. 

PEP: The time interval between the R-peak of the ECG to the second peak of the SCG 

(known as aortic opening point, AO) is known to be highly correlated with PEP [204]. 

Therefore, we used R-Ao as a measure of sympathetic activity. 

PAT, PTT, PPG amplitude: PAT represents the time delay from the electrical 

depolarization of the ventricles to the arrival of the pulse to forehead region, where the 

PPG signal is collected. We also calculated PTT as the time interval between the AO point 

of the SCG signal to the foot of the head PPG signal. As a measure of peripheral 

sympathetic and vasomotor activity, the amplitude of PPG signal was extracted. 

PFC Oxygenation Markers: The changes in oxy-hemoglobin, deoxy-hemoglobin, and total 

hemoglobin concentrations (Δ𝐻𝑏𝑂, Δ𝐻𝑏𝑅, Δ𝑇𝑜𝑡𝑎𝑙 𝐻𝑏) were calculated from NIRS 

signals according to MBLL [210]. The NIRS channel to process with MBLL was chosen 

manually due to interference from hair on forehead and incomplete contact of a few 

detectors for some subjects.  

Normalization and Dataset for Classification: After the difficulty level assignment for 

each task using RTLX, the tasks that resulted in the maximum perceived workload were 

selected to be used in the classification. Specifically, the parameters used for classification 

were extracted from rest (one minute), hard arithmetic (one minute), and hard N-back (one 

minute). Then, peripherally measured cardiovascular parameters were normalized using a 

baseline reference interval. The one-minute reference interval for peripherally measured 

cardiovascular parameters was collected before the protocol started. This interval is 
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different than the rest class interval. NIRS parameters were used as is as MBLL already 

implements normalization. To equalize the length of each parameter within an interval, 

extracted parameters were resampled to the length of the parameter that has the maximum 

length. Then instances were created by using 10-sample sliding windows with 50% 

overlap. The features used in the classification consisted of the mean, standard deviation 

(std), maximum (max), minimum (min), area under curve (auc) and slope of the extracted 

parameters in each window. There was a total of 88 features (33 NIRS features, 55 

peripherally measured cardiovascular features), and the total number of instances were 842 

(333 rest instances, 228 arithmetic instances, 281 N-back instances). 

3.3.4 Machine Learning 

For the classification of mental tasks and rest state, a feature matrix was constructed from 

all extracted features and the corresponding labels as classes (rest, arithmetic, N-back 

classes). This matrix included instances as rows and features as columns, and it was used 

to build the classification model. To eliminate irrelevant features that could decrease the 

accuracy of the classification model, we performed feature selection. Univariate feature 

selection was performed by calculating p-values for each feature using analysis of variance 

(ANOVA), and applying the Benjamini-Hochberg procedure (α = 0.005) for multiple 

comparisons [221]. A univariate statistics-based feature selection method rather than 

manual selection automates the feature selection process, making it possible to treat the 

data blindly without assumptions. To visualize the dataset, we performed the 

aforementioned feature selection on the whole dataset and applied t-distributed stochastic 

neighbor embedding (t-SNE), reducing the dimensionality of the dataset to two [222]. 
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To classify each instance to one of three mental tasks using the selected features, a Random 

Forest classifier was used. A random forest classifier is an ensemble learning method that 

trains multiple decision trees and determines the classification result through a majority 

vote amongst all individual trees. Each tree is trained on a bootstrap sample drawn from 

the dataset, and at each node of the tree, a random subset of the features is considered for 

a split [223]. In our algorithm, we trained 50 trees as a part of the random forest classifier. 

A single hyperparameter of the trees, maximum depth, was tuned using a leave-one-

subject-out cross validation (LOSO-CV) grid search scheme. In this scheme, we first 

defined the parameter grid values between three to ten. For each value on the grid, we 

performed LOSO-CV and found the parameter that maximizes the LOSO-CV accuracy, to 

use that parameter in the final model. The maximum depth parameter controls the 

complexity of each tree in the forest where increased depth corresponds to more 

complicated models. 

Random forests are ensemble learning models that are often hard to interpret, especially 

when they consist of many trees. To get more insight on what the model learned, we 

performed feature importance ranking using a random forest classifier that was trained on 

the whole dataset. This was done by evaluating the improvement in the gini-index metric 

at each node of each tree within the forest. These improvements were accumulated across 

all nodes of all trees within the forest to rank the feature importance, with the most 

important features resulting in the largest improvements in the gini-index [223]. Feature 

selection, classification and t-SNE dimensionality reduction were all implemented using 

the scikit-learn library for Python [224]. 

3.3.5 Model Evaluation 
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We evaluated our algorithm using LOSO-CV. Without this subject’s data, we first 

performed feature selection followed by hyperparameter tuning via grid-search within an 

inner LOSO-CV loop. With the optimal hyperparameters and the selected features, we 

trained our random forest classifier which was then used to calculate the performance 

metrics: accuracy, precision, recall and F1 score for each subject. The final scores were 

calculated by averaging the scores from each CV fold. 

It should be noted that each CV fold implements an inner CV loop on the subjects that are 

not left out, which results in a nested CV protocol [225]. This procedure was performed by 

using only NIRS features, only peripherally measured cardiovascular features and the 

fusion of both sensing modalities. The results were compared using statistical analyses to 

identify which sensing modalities perform better in differentiating among the rest, 

arithmetic, N-back tasks. 

3.3.6 Statistical Analysis 

We performed statistical analyses on the classification results to compare each sensing 

modality alone and their fusion. Specifically, each LOSO-CV fold results in one data point 

(accuracy, precision, recall, or F1 score metrics) per subject. We obtained 16 data points 

for 16 subjects per metric. This scheme was repeated for NIRS alone, cardiovascular 

(cardio) alone, and the fusion of both. These samples were used for statistical testing to 

assess the performance of the sensing modalities. Friedman Test was chosen to detect if 

any difference exists between the performance of the sensing modalities from the outcomes 
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for each subject, using the same classifier model and validation method [226]. A follow-

up multiple comparison based on the Nemenyi Test was performed using the ranks 

generated by the Friedman Test [226]. A similar statistical analysis was performed on the 

RTLX scores as well to understand if the mental tasks induce significantly different 

workloads between the difficulty levels. For all analyses, p-values lower than 0.05 were 

considered statistically significant. 

3.3.7 Results 

 

Figure 3-4. Extracted parameters for a subject transitioning from rest to mental 

stress. Changes in HR, R-Ao, PTT, PAT, PPG amplitude (PPGa), oxyhemoglobin 

(ΔHbO), deoxyhemoglobin (ΔHbR), total hemoglobin (ΔTotal Hb) were observed 

during stress. Data in figure were smoothed with moving average filter for better 

visualization. ΔC: Change in concentration, [M]: Molar. 
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Figure 3.4 shows the extracted parameters for a subject transitioning from baseline rest to 

task. As the task starts, HR increases, R-Ao and PPG amplitude decrease, indicating 

increased cardiac and peripheral sympathetic activity. HbO, HbR, and Total Hb also show 

change during this transition, due to the change in oxygenation levels in the PFC. It should 

be noted that the directions in PTT, PAT, or concentration changes were not necessarily 

identical for each subject. 

NASA-TLX Scores: The reader is referred to Figure 4 in Ref. [191] for RTLX boxplots. 

There are significant differences between the following intervals: easy-medium arithmetic 

(p < 0.05), easy-hard arithmetic (p < 0.001), easy-medium N-back (p < 0.05), medium-

 

Figure 3-5. t-SNE plots for features related to a) NIRS sensing, b) peripherally 

measured cardiovascular sensing, and c) the fusion of both sensing modalities for 

rest, MAT, and N-back classes. 
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hard N-back (p < 0.05), easy-hard N-back (p < 0.001). There is no statistically significant 

difference for task-wise comparisons of the same difficulty level (i.e. hard arithmetic 

versus hard N-back). These results suggest that the protocol was effective on different 

difficulty levels, compared to the rest. 

Dimensionality Reduction from Selected Features: The reader is referred to Figure 5 in 

Ref. [191] for the t-SNE plots for NIRS features alone, cardiovascular features alone, and 

the fusion features to gain intuitive understanding for each sensing modality’s ability to 

separate between classes (clusters). The plots were constructed from the features selected 

 

Figure 3-6. Summary of the performance metrics for classifier 

outputs for each sensing modality. * indicates statistical 

significance, *p < 0.05, **p < 0.001, ***p < 0.0001. Error bars: 

std. 
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by applying the univariate feature selection method to the whole dataset. The total number 

of selected features was 53. There were 23 NIRS features and 30 cardiovascular features.  

Classification Results: Macro-averaged accuracy, precision, recall, and F1 scores for each 

class and sensing modality are shown in Figure 3.6. The fusion results in accuracy scores 

of 85% ± 9%, recall rate of 84% ± 14%, precision of 83% ± 10%, and F1 score of 80% ± 

13% (mean ± SD). According to the Friedman and follow-up Nemenyi tests, accuracy (p 

< 0.0001), precision (p < 0.001), recall rate (p < 0.001), and F1 score (p < 0.001) 

significantly improve when fusion is used, as opposed to only NIRS. Moreover, there is 

significant improvement in precision from using only cardiovascular sensing to the fusion 

(p < 0.05). 

Feature Importance Ranking: Figure 3.7a shows the importance ranking for the top 10 

features. There are four cardiovascular-related features (R-Ao, PAT, HR, PTT), and five 

NIRS-related features (HbO and Total Hb). Figure 3.7b shows the boxplots of these 

features. The medians of the three cardiovascular features show notable difference between 

rest and other tasks (AUC R-Ao, AUC PAT, AUC HR). The 

 

Figure 3-7. a) Feature importance ranking for the top 10 features. b) Boxplots of 

the top 10 features. Error bars: std. 
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3.3.8 Discussion and Conclusion 

In this work, enhancement in separating rest, arithmetic, and N-back tasks through the 

fusion of NIRS and peripherally measured cardiovascular sensing was investigated. Our 

hypothesis was supported through a custom designed NIRS-PPG headband along with 

cardiovascular measurements. Our results indicate that the fusion of sensors results in 

significant improvements in the classification of rest, arithmetic, and N-back tasks. The 

fusion of these sensing modalities looks compatible to merge the advantages of both 

worlds. Peripherally measured cardiovascular sensing represents a more central 

mechanism (due to the inclusion of the electrical activity and the mechanical motion of the 

heart), while NIRS sensing mainly target the PFC, which has an important role in working 

memory [227]. The improvements for accuracy, precision, recall rate, and F1 score from 

either of the sensing modalities to the fusion result from the ability to capture the PFC 

activity together with the central changes.  

The significant enhancement for all performance metrics achieved via sensor fusion was 

particularly notable. Although the NIRS performance might arguably be improved by using 

multiple channels, using a single channel NIRS has its advantages for user convenience: 

multi-channel NIRS devices are often uncomfortable due to the size and high power 

requirements to feed multiple sources. A setup consisting of an accelerometer attached on 

the chest and a 3-lead ECG provide a simpler and practical means of data collection that 

would not block the forehead of the user. 

Another remarkable result was the higher classification performance in all metrics between 

only cardiovascular and only NIRS sensing. Cardiovascular sensing outperformed NIRS 
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in the macro-averaged scores, although not statistically significant. This difference 

suggests that peripherally measured cardiovascular physiology might provide more 

consistent biomarkers of mental stress, compared to PFC activity biomarkers. A downside 

for using only cardiovascular sensing is that other types of stressors (i.e. temperature 

change or physical exercise) elicit cardiovascular responses similar to mental stress, thus, 

cardiovascular reactivity is not reliable across different stressors. For instance, physical 

exercise is shown to increase HR and decrease PEP (R-Ao) by multiple studies, resulting 

in the same directional changes as mental stress [228-231]. The addition of NIRS sensing 

by the fusion might rule out changes due to factors other than mental stress. Additionally, 

our results indicated improved precision from using fusion as compared to only 

cardiovascular sensing, highlighting that the fusion significantly improves the 

classification performance compared to using either of the sensing modalities alone. It 

should be noted that the other performance metrics, accuracy, recall rate, and F1 scores, 

were higher with the fusion, compared to using only cardiovascular sensing, although not 

statistically significant. 

The interpretation of the t-SNE plots and boxplots of top 10 features seem consistent with 

clinical research on cardiovascular mental stress testing and the neuroscience literature: 

arithmetic tasks induce high cardiovascular reactivity [214], therefore cardiovascular 

sensing differentiates this type of stressor well, which appears as different median, 

compared to median of rest class for NIRS. Similarly, there is better separation between 

the medians of arithmetic and N-back NIRS features, when compared to cardiovascular 

features. This might be due to the high oxygenation activity in the PFC during N-back, as 

verified with comparison of multiple stressors in prior work [232]. The difference between 
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the sensitivity of the sensing modalities to each task class might be due to the different 

regions activated in brain during these tasks. Moreover, it could be anticipated that the 

fusion would enhance the classification of each mental task from the rest state (i.e. task 

versus rest classification). As expected from the clear separation in t-SNE plots, our model 

showed high classification scores for rest class. Specifically, we obtained macro-averaged 

scores of 98%, 99%, 98.5% for precision, recall, and f1 respectively. This indicates that 

our model could achieve highly accurate detection of mental stress (arithmetic or N-back) 

from the resting state. 

According to the feature importance rankings, peripherally measured cardiovascular 

features have the highest importance for the classification (R-Ao, PAT, HR). These are 

followed with NIRS features and PTT. HR, a parameter always assumed to be vital in 

mental stress studies, does not have the highest ranking.  

PAT and PTT were also selected in the top features, both of which were obtained by the 

SCG and head PPG signals. Since PAT contains both vasomotor-related (elevated blood 

pressure, decreased PTT) and contractility-related (elevated sympathetic activity, 

decreased PEP) influences, the contribution from both in the same direction might be the 

reason for the higher feature importance for PAT, compared to HR or PTT. Additionally, 

feature importance scores drop to below half for the NIRS features and PTT, highlighting 

the relative importance of the top three features. It should be noted that features related to 

PPG amplitude and Δ𝐻𝑏𝑅 were also among the selected features in each LOSO-CV loop, 

although they are not among the ten most important features. Mental stress affects the 

cardiac, vascular, and autonomic nervous system activity, hence the PPG signal stands as 

a rich source of physiological information as it is influenced by all these activities. Lastly, 
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the appearance of NIRS features (Δ𝐻𝑏𝑂, Δ𝐻𝑏𝑅, Δ𝑇𝑜𝑡𝑎𝑙 𝐻𝑏) in selected features is not 

surprising, as multiple studies pointed out significant changes in the PFC oxygenation 

levels for different types of mental stressors [233]. 

An important strength of our methodology is the use of a statistical feature selection 

method (based on Benjamini - Hochberg p-value correction), for each LOSO-CV loop. 

Unlike manual feature selection, this method automatically selects the most useful features 

in each iteration. Another strength is in our validation scheme based on LOSO-CV, which 

is ideal for assessing future performance with naïve users. There is no need to collect 

calibration signals for a new user based on the methods described here. 

One limitation of our current study is the size and homogeneity in demographics of the 

study population. In future studies, our methods may be validated with larger populations 

of subjects, and also will include persons with cardiovascular and neurological disorders. 

Another limitation is that the instrumentation requires placement of the sensors on multiple 

areas of the body. Future work can investigate the integration of the different sensing 

modalities—including both NIRS and cardiovascular signal acquisition—onto a single, 

head-worn device such as a headband. 

Ease-of-use, accuracy, and length of training period are key criteria for HCI research and 

development. The addition of wearable hemodynamic measurements to NIRS sensing 

provides easy-to-use, higher performance HCIs that require no training for these types of 

mental stressors. HCIs could translate these physiological signals into a control signal for 

an external aid during the presence of such mental stressors, thus resulting in improved 

performance and successful augmentation of the human for challenging tasks. 
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3.4 Comparison of Autonomic Stress Reactivity in Young Healthy versus Aging 

Subjects with Heart Disease 

The autonomic response to acute emotional stress can be highly variable, and pathological 

responses are associated with increased risk of adverse cardiovascular events. In this work, 

we evaluated the autonomic response to stress reactivity of young healthy subjects and 

aging subjects with coronary artery disease to understand how the autonomic stress 

response differs with aging [190]. 

Cardiovascular and behavioral responses to emotional stress have been associated with 

increased risk of primary [234-237] and secondary [238-241] coronary artery disease 

events. Furthermore, acute emotional stress events may trigger myocardial infarction and 

sudden cardiac death, but the mechanisms are not clear. In some studies, exaggerated 

mental stress reactivity is associated with increased future risk [242]. Paradoxically, 

blunted stress reactivity is also associated with increased risk [243]. This underscores the 

need for more research on the stress response in young, healthy groups and aging groups 

with CAD.  

Prior studies have focused on stress-related changes in HR and BP in healthy subjects [228, 

229, 231, 244, 245]. A subset of studies have also evaluated stress-related reactivity of 

specific cardiac markers, including ejection fraction and myocardial blood flow in patients 

with CAD [246-251]. The limitation of these metrics is that they do not provide specific 

autonomic pathways that would yield insight on targeted interventions. Studies which 

examine the physiologic measures specific to both the SNS and PNS changes with mental 

stress may provide more insight with regards to possible receptor-targeted therapeutics.  
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In this study, we examined two separate psychophysiology experiments with similar 

protocols to assess the stress reactivity in two different cohorts to evaluate the influence of 

age and coronary disease on stress reactivity. Aging and coronary disease are considered 

synonymous as they are strongly correlated: CAD is a manifestation of accelerated aging 

[252]. We consider aging as a progressive deterioration of physiological function, defined 

by a spectrum with two extremities: young, healthy subjects on one end, and aging patients 

with heart disease on another end. As CAD is an accelerator of biological age, aging 

patients with CAD and young, healthy subjects will represent the extreme ends of the aging 

spectrum. One cohort consisted of young (<30 years), healthy subjects, and the other cohort 

consisted of older (>55 years) subjects with CAD. In both cases, we examined stress 

reactivity to laboratory-induced arithmetic mental stress using SNS [253] and PNS (HF 

HRV) specific metrics. Additional standard metrics such as BP and HR were also assessed. 

We hypothesized that both PEP and HF HRV would decrease with mental stress in both 

groups to indicate sympathetic activation and parasympathetic inhibition, and the results 

would be exaggerated in the aging cohort vs. the healthy cohort as an indication of their 

worsened health status. 

3.4.1 Human Subject Studies 

Young healthy group: The study was performed under a protocol approved by the Georgia 

Institute of Technology Institutional Review Board (#H13512), at Georgia Institute of 

Technology, Atlanta, GA, between 01/07/2016 to 06/18/2016. A total of 25 adults (mean 

± SD 25.4 ± 4.4 years, 5 females) were recruited through referral and written, informed 

consent was obtained. The subjects were students or staff without clinically apparent CAD 

or traditional risk factors for CAD.  
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Each healthy control subject was asked to relax for 15 minutes in a quiet, temperature-

controlled (22˚C to 24˚C) room, after which the baseline resting signals were obtained. 

Mental stress was induced by a one-minute mental arithmetic test with serial addition 

paradigm, by the research staff. Negative feedback was provided for incorrect answers and 

delayed response times. Physiologic monitoring was conducted with 3-lead ECG, 

impedance cardiogram (ICG) and continuous BP during rest, stress, and recovery. ECG 

and ICG signals were collected using BN-EL50 and BN-NICO Amplifiers, Biopac 

Systems (Goleta, CA). BP was collected using Finapres (Enchede, Netherlands). All 

signals from the group of healthy subjects were collected at 2kHz sampling rate. 

Aging group with CAD: A similar protocol to the healthy subjects was performed in a 

separate study, “Biofeedback in Mental Stress Ischemia” (ClinicalTrials.gov 

#NCT02657382), at Emory University School of Medicine, Atlanta, GA, between 

03/30/2016 to 03/29/2017. A total of 25 adults (mean ± SD 64.8±5.9 years, 8 females) were 

recruited from the “Mental Stress Ischemia Mechanisms and Prognosis” cohort for a 

randomized study evaluating biofeedback vs. waitlist control, and written, informed 

consent was obtained [254]. Details of the inclusion exclusion criteria can be found 

elsewhere [254], but briefly, subjects with any history of CAD based on abnormal 

angiogram (>20% stenosis), nuclear stress test, or myocardial infarction were enrolled. The 

reader is referred to Figure 1 in Ref. [190]  for the Consolidated Standards of Reporting 

Trials (CONSORT) diagram, comorbidities, medical history and medication usage of this 

cohort were listed in Table 1. Subjects who use beta-blockers were asked to hold usage in 

the morning before the procedure. As part of their evaluation in the Biofeedback study, 

mental stress reactivity was assessed during three separate visits, including pre- 



 47 

intervention (vs. waitlist), post-intervention (vs. waitlist) at 8 weeks, and after waitlist 

intervention period (16 weeks), in which the wait-listed subjects received the intervention. 

Only the first per subject visit was evaluated for this analysis to allow for independent 

sampling.  

Similar to the healthy group study, each aging group subject was asked to relax in a 

temperature-controlled room. A three-minute math serial subtraction paradigm was 

conducted with negative feedback, by the research staff. ECG and ICG were collected 

using the VU AMS Ambulatory Monitoring System (Amsterdam, Netherlands), at a 

sampling rate of 1 kHz. Noncontinuous systolic/diastolic BP values were collected using 

an automatic Omron BP monitor in every 0, 5, 25 and 30 minutes of rest and each one 

minute of stress. 

For this group of subjects, the relationship of CAD severity and stress reactivity was also 

quantified using Gensini scores on their last angiogram. The Gensini scores quantify CAD 

burden from the extent and severity of the coronary artery involvement [255, 256]. The 

Gensini scores were computed by assigning a severity score to each coronary stenosis 

according to the degree of luminal narrowing and its importance based on location. Linear 

models estimated the change in physiological measures with stress that corresponded to 

the Gensini scores for each respective subject. 

3.4.2 Signal Processing 

All signals were processed using MATLAB 2016a (Natick, MA). The ECG was bandpass 

filtered (10–25 Hz, linear, finite impulse response (FIR)) to exaggerate QRS complex for 

feature extraction and noise reduction. Similarly, the ICG (dZ/dt) was bandpass filtered 
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(0.8- 20Hz, linear, FIR) for noise reduction. Since all subjects had normal sinus rhythm, 

ECG R-peaks were detected with thresholding to calculate HR and HRV, and edited, if 

needed, for erroneous peak detection due to noise. For HRV, the non-constant R-R 

intervals were interpolated using piecewise cubic hermite interpolating polynomial to 

obtain constant intervals between R-peaks, to be able to compute power spectral density 

(PSD). The area under the PSD curve from 0.15 Hz-0.4 Hz was extracted as HF HRV. The 

standard deviation of HR (std HR) was also calculated as a secondary measure. PEP 

measurement started with the detection of the onset of myocardial depolarization. This 

onset was used as a reference for the beginning of each myocardial heartbeat cycle. The 

filtered ECG signal exaggerated the onset of R-peak and S-peaks, such that the QRS 

complex was distinguishable with two negative peaks that correspond to R-peak onset and 

S-peak, respectively. To detect the onset, first the filtered ECG signal was inverted, and 

both R-peak onset and S-peak were found by thresholding (two peaks per beat). Then, the 

odd-numbered peaks were selected, which correspond to the onset. Manual review of peak 

detection was also performed to exclude areas with artifact. The R-peak onsets were used 

to segment all the signals into individual beats. 

To reduce the effects of motion artifacts on the individual, segmented ICG beats, 

exponential moving averaging of successive beats was implemented with a 10-beat time 

constant. 

PEP was calculated as the difference between the onset of myocardial depolarization and 

the opening of aortic valve. The B-point on the dZ/dt waveform corresponds to the opening 

of aortic valve, however, its mathematical detection is not well-defined in the literature. 

Although it is a physiological event occurring in every single cardiac cycle, the notch or 
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inflection point defining the B-point is not always apparent [257, 258]. Several 

mathematical algorithms have been developed for the automatic estimation of B-point 

[257], and there are discrepancies between methods in different experimental conditions 

[259]. Recently, three popular B-point detection algorithms have been compared, and the 

algorithm based on the third derivative of ICG was validated to perform significantly better 

[260]. Therefore, in this work, the third derivative approach was used to detect B-point. 

Specifically, the global maxima (dZ/dtmax) was first calculated (C-point), which represents 

maximum left ventricular flow. Then, the maximum of the third derivative (dZ3/dt3) of the 

ICG signal before the C-point was calculated as the B-point. Therefore, PEP was calculated 

as the difference between the ECG myocardial depolarization onset and ICG B-point. 

Continuous BP signal was not smoothed further, since BP device applies post-processing. 

Continuous BP physiological markers were calculated by first ensemble averaging the BP 

beats, referenced by the R-peak onset. The peaks and valleys of each beat correspond to 

systolic (SBP) and diastolic (DBP) blood pressures, respectively. Pulse pressure (PP) was 

calculated by measuring the difference between SBP and DBP. 

3.4.3 Statistical Analysis 

Stress reactivity was evaluated by comparing the first minute of stress with a one-minute 

rest period that started five minutes prior to stress-onset. Only one minute was evaluated 

for both cohorts, because the stress duration in the healthy cohort was one minute. To 

affirm whether significant hemodynamic changes occur from the first minute of stress to 

warrant its use for the aging group with CAD (instead of the mean for the entire stress 

period), a supplementary analysis was performed using the vital measures HR, SBP, DBP, 

PP to evaluate changes from baseline to the first minute of stress and mean overall stress, 
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detailed in [190]. Statistical significance was tested with a one-way ANOVA for normally 

distributed data, or Kruskal-Wallis for non-normal data. Later, follow-up parametric or 

non-parametric multiple comparisons tests based on Tukey-Kramer honest significant 

difference criterion were performed to understand which intervals significantly differ from 

each other. Stress reactivity was measured by subtracting stress values from rest values. A 

paired t-test was used to compare stress versus rest. Cohen’s distance was calculated using 

the mean of two states for each group, and converted to effect size. A two-sample t-test for 

unequal variances was used to compare the stress-to-rest ratios between the cohorts. The 

evaluation for covariate effects was limited due to the small sample sizes. Nonetheless, 

because of the potential role of sociodemographic and health factors, an exploratory 

analysis was performed to evaluate for group differences by risk factor. Linear regression 

models were performed to adjust for age, sex, beta-blocker usage, angiotensin-converting-

enzyme (ACE) inhibitor usage, and antidepressant usage when calculating group-level 

differences. The proportion of subjects whose physiological values increased or decreased 

with stress was also tabulated as a secondary method of evaluating stress reactivity; for 

this, Chi-square or Fisher’s exact test was used to detect group differences, where 

appropriate. For all statistical analyses, p-values less than 0.05 were considered significant. 

All statistical analyses were carried out using MATLAB Statistics and Machine Learning 

Toolbox. 

3.4.4 Results 

In the healthy group, 80% were male and the mean (SD) age was 25.4 (4.4) years. In the 

aging group, 68% were male and the mean (SD) age was 64.8 (5.9) years. Table 3.1 

presents the mean, standard error of the mean, percent changes, confidence intervals (CI), 
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p-values, effect sizes of the physiological markers extracted from ECG, ICG, and BP 

signals for each study, for rest and stress states. Due to device malfunction one subject, BP 

signals were collected from 24 patients. As the primary outcomes, PEP decreased 

significantly for both groups, while HF HRV decreased significantly only in the aging 

group.  

The healthy group showed 50% higher PEP decrease (9.6ms) than the aging group (6.4ms) 

during mental stress. In total, five physiological markers (HR, PEP, SBP, DBP, PP) were 

found to be significantly different between stress and rest for the healthy cohort (n = 25). 

Five physiological markers (HR, PEP, SBP, PP, HF HRV) were also found to be 

significantly different between stress and rest for the aging cohort (n = 24 for BP levels, n 

= 25 for other markers).  

No statistically significant or large effect size difference (r < 0.4) in stress reactivity was 

found between groups, regardless of adjustment for age, sex, beta-blocker usage, ACE 
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inhibitor usage, or antidepressant usage. We also explored the possibility of gender-related 

bias in healthy population: within the young group, there is no statistically significant or 

meaningful effect size difference between the stress responses between young men and  

young women in any of the measured parameters. Table 3.2 compares the directionality of 

physiological changes from rest to stress. For the healthy cohort, 72%, 88%, and 56% of 

the subjects showed increased HR, decreased PEP, and decreased HF HRV, respectively. 

Table 3-1. Data for both groups: Rest, stress and mean of differences. 

 Healthy Group (n = 25) Aging Group (n = 25¶) 

Rest Stress S-R 95% CI P r Rest Stress S-R 95% CI P r 

HR 

[bpm] 

92.9 

(2.5) 

101.3 

(3.4) 

8.4* (3, 13.7) <0.01 0.28 62 (1.8) 69.4 

(2.5) 

7.4* (4.1, 10.6) <0.001 0.32 

PEP  

[ms] 

109.3 

(3.9) 

99.7 

(4.3) 

-9.6* (-14.2, -

5.1) 

<0.001 0.23 80.9 (4.3) 74.5 

(3.8) 

-6.4* (-10.9, -2) <0.01 0.16 

HF HRV 

[log-ms2] 

2 

(0.1) 

1.9 

(0.1) 

-0.1 (-0.4, 0.2) 0.71 0.1 2.6 (0.2) 2.3 

(0.2) 

-0.4* (-0.6, -0.1) 0.01 0.21 

SBP 

[mmHg] 

117.4 

(3.5) 

128.5 

(3.9) 

11* (8.3, 13.7) <0.001 0.29 130.4 

(3.7) 

147.4 

(6.1) 

17* (10.7, 

23.2) 

<0.001 0.22 

DBP 

[mmHg] 

75.9 

(1.7) 

81.6 

(1.8) 

5.7* (4.3, 7.1) <0.001 0.31 74.8 (2) 77.8 

(2.7) 

3 (-0.2, 6.2) 0.09 0.08 

PP 

[mmHg] 

41.6 

(2.1) 

46.9 

(2.4) 

5.3* (3.5, 7.2) <0.001 0.23 55.6 (2.9) 69.6 

(4.4) 

14* (9, 19) <0.001 0.3 

std HR 

[bpm] 

5.6 

(0.9) 

5.9 

(0.5) 

0.2 (-1.4, 1.9) 0.79 0.49 4 

(0.5) 

3.8 

(0.5) 

-0.1 (-1.1, 0.9) 0.82 0.02 

Values represent mean (SEM). * Denotes change in feature from rest to stress is 

significant, P ≤ 0.05. ¶Denotes n = 24 for SBP, DBP, PP. S-R: Mean of differences 

between states, calculated by stress-rest for each subject for the corresponding feature. 

95% CI: 95% Confidence Interval (Lower bound, Upper bound). P: P-value. r: Effect 

size. 

 

Table 3-2. Comparison of ANS activity biomarkers. 

ANS Activity Indicators Healthy  

(n = 25) 

Aging  

(n = 25) 

Difference 

HR increase 72% 80% 8% 

PEP decrease 88% 80% 8% 

HF HRV decrease 56% 80% 24% 

Values represent the percentages of each population (n = 25 healthy subjects, n = 

25 aging subjects). 
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The corresponding percentages were all 80% for the aging cohort. The proportion of 

subjects with a decrease in HF HRV was 24% less in the healthy cohort compared to the 

aging cohort (p = 0.08).  

Figure 3.8 summarizes the distributions of the stress-minus-rest values for HF HRV and 

PEP. Most subjects in both groups showed decreases in both values, consistent with 

increase in SNS and decrease in PNS during stress. No statistically significant differences 

were found between groups in individual quadrants. 

3.4.5 Discussion and Conclusion 

This study represents the first attempt, to our knowledge, of assessing cardiac SNS and 

PNS mental stress reactivity in healthy versus aging subjects with CAD; to our surprise, 

we found a large proportion (44%) of subjects in the healthy group had paradoxical 

 

Figure 3-8. Changes in HR HRV and PEP responses, shown as ΔHF HRV vs. ΔPEP. 

Values show difference between stress and rest, as stress-rest. Each quadrant shows 

the number of aging and young/healthy subjects. 
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increases in HF HRV, a marker of PNS activity, and a 20% of subjects in the aging group 

demonstrated decreases in PEP, a marker of SNS reactivity. While the differences between 

 groups were not statistically significant, the nature of this study was exploratory. Overall, 

this study warrants further evaluation of physiologic stress reactivity as it relates to aging 

and disease, and supports the notion that, in many cases, the expected increase in SNS and 

decrease in PNS with mental stress challenge do not occur. This may be related to 

pathological reasons, like myocardial ischemia (which would increase PEP) or reflexive 

PNS activation (which would decrease HF HRV).  

The increased PNS activity in response to mental stress that was largely noted in the healthy 

group is potentially adaptive. It may be a compensatory autonomic reflex to the 

sympathetic stress response, as a way to buffer against the pathophysiologic effects of 

sympathetic activation. Such mechanisms may perhaps be disrupted in subjects with CAD 

and explain the lower proportion of CAD subjects who demonstrated an increase in PNS: 

cardiac PNS activity was previously studied to decrease with age [261], and it is known 

that there are histological and functional reductions in sinus node during aging [262-264]. 

Aging populations are more likely to have sinus node dysfunction, which decreases their 

PNS regulation ability through sinus node [265], as they are more susceptible to stress 

effects. Young people, on the other hand, would have better PNS regulation through sinus 

node as there is not as much deterioration.  

The increased PNS activity in some young healthy adults might be due to this respiratory-

activated PNS activity. Young individuals may also have more intact baroreflex 

mechanisms, which activate the PNS in response to increased blood pressure. This may 
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have occurred since the younger group was observed to have a hypertensive response 

during stress. Aging group with CAD experienced significant decrease in HF HRV likely 

because the sinus node activity or baroreflex mechanisms were impaired.  Although 

mean PEP decreased, a small percentage of each group showed increased PEP with stress. 

In the aging cohort who had decreased HF HRV to indicate PNS withdrawal, prolonged 

PEP may be a consequence of impaired mechanical contraction secondary to ischemia, 

transient conduction disease, or other causes [266-268]. Impaired baseline left ventricular 

function was also noted in one of the subjects in the aging group with increased PEP. It 

may also suggest that the arithmetic challenge did not induce significant mental stress. 

Overall, these paradoxical PEP increases during mental stress warrants further 

investigation and may suggest increased risk.  

The reasons for potential differences cannot be attributed to any single factor. The aging 

group had high prevalence of hypertension (68%), dyslipidemia (80%) and diabetes (40%); 

48% of this cohort also had history with smoking. These conditions, in addition to CAD, 

may have contributed to the decrease in HF HRV with mental stress as well. Medications 

may also explain a difference in HF HRV between groups, although the aging group was 

asked to withhold beta-blockers in the morning before the procedure, which are one of the 

main potential confounders.  

Differences in baseline blood pressure and its stress reactivity were noted, with higher 

values in the aging group. Such differences are consistent with prior literature [269-271]. 

The group difference in pulse pressure are the most notable; the mean change from stress 

to rest (14mmHg) in the aging group was nearly three-fold higher than the mean change in 

healthy group (5mmHg). In multivariable models, the differences were not significant after 



 56 

adjustment for age and sex, however. Short-term changes in blood pressure are mainly 

controlled by the baroreflex, which is one of the major determinants of SNS activity [192]. 

Aging subjects have higher blood pressure (SBP, DBP, PP) during baseline and mental 

stress, compared to the young healthy group, and their stress responsivity in terms of SBP 

and PP is higher, consistent with previous studies [272]. The three-fold difference in PP 

between groups signal that age-related changes in baroreceptors increase sympathetic 

responsivity to mental stress.  

This study is subject to limitations. We compared stress reactivity from two independently 

conducted studies in an exploratory analysis. We felt this was justified because both 

utilized arithmetic stressor tasks, and the majority of the findings are in agreement with the 

literature and credible biological concepts. We restricted our analysis to the first minute of 

stress only, and this was justified by findings that stress reactivity was consistently higher 

in the first minute compared to the entire stress period. The reader is referred to S1 Table 

in Ref. [190] . As per Table 3.1, HR and SBP responses between groups were similar 

between studies, which suggest a similar overall net stress responsivity with regards to 

some summative measures. On the other hand, differences in DBP reactivity can be 

explained by differences in vascular stiffness that occur as a part of aging [273]. 

Confounding from CAD may have also played a role, although we found that within the 

aging group, CAD burden (Gensini score) did not associate with stress reactivity, and 

therefore unlikely to be a confounder. S2 Table in [190] shows the related data. 

Nonetheless, the results could be strengthened if the study included an older group without 

CAD. Data on such subjects have been published elsewhere; a group of older participants 

with mean (SD) age of 67 (1) underwent Trier Social Stress Test and demonstrated a similar 
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heart rate response [274]. In another study of CAD patients versus healthy controls, CAD 

status did not associate with changes in heart rate reactivity to stress [275]. Although our 

older group has CAD and other comorbidities, as well as medication exposures, our sample 

size does not adequately allow comparisons between groups or within groups. Therefore, 

we describe the differences between groups due to aging, which is nonspecific, but 

nonetheless summarizes the large number of comorbidities that are usually associated with 

the aging process (such as hypertension) [276]. Despite the small sample size, working 

between two extremities in age/health status increases the likelihood of capturing the group 

differences. Another limitation is that all women in the aging group were post-menopausal, 

and as such we could not evaluate the effects of this specifically. Menopause is an 

important aspect of aging in women, and may have had an independent effect on stress 

reactivity in the women of the aging group response (i.e. increase in stress response as 

observed by) [274]. We were able to only report minimal HRV metrics because of the 

minimum ECG signal length for the spectral analysis of HRV. Frequency-domain HRV 

analysis requires approximately one minute of ECG recording for assessing high frequency 

HRV (> 6 cycles), and two minutes of recording for assessing LF HRV [195]. HF HRV 

reflects changes in the PNS activity, whereas LF HRV is influenced by both SNS and PNS 

activity. The ratio of both powers, LF/HF HRV, is widely adopted in the literature to be an 

indicator of sympathetic tone, however multiple studies proved its inconsistency to reflect 

sympathetic control on the heart [196, 203]. As we were primarily interested in PNS 

influences during the one-minute mental stress testing in our study, we only reported HF 

HRV results. 
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Our findings underscore the need for multiple physiologic monitoring methods to assess 

the effects of acute mental stress on cardiovascular physiology. Although ECG is 

commonly measured, ICG is less commonly employed. For ambulatory studies, this can 

be more difficult, although new devices allow for real-time monitoring of stressful 

situations. PEP is an underused measure in clinical studies due to the requirement for ICG, 

however its use to reflect the SNS activity was studied by many groups: a comparison of 

PEP and LF/HF HRV showed that PEP outperforms LF/HF for conditions that are known 

to increase sympathetic activity, or LF/HF is specifically shown unable to reflect changes 

in SNS activity, such as mental stress [277], exercise [278], and beta-

adrenergic/cholinergic blockade [279].  

In summary, we performed an analysis of SNS and PNS responses to acute mental stress 

in healthy and aging subjects. PEP decreases with stress regardless of health and age status, 

as anticipated. Contrary to what we expected, we found that many (44%) healthy subjects 

did not experience vagal withdrawal, and 20% of aging subjects demonstrated paradoxical 

increases in PEP. The differences between groups are not statistically significant as our 

sample size is limited. The fundamental limitation of our study is small sample size, but 

the utility of the study is the preliminary data that it provides for the larger investigation 

that is based both on the data, and the fundamental aspects in biology. The results highlight 

possible limitations of these measures in psychophysiology studies, as well as the need to 

include multiple complementary autonomic measurement modalities in clinical 

investigations.  

This chapter highlighted approaches to quantify autonomic nervous system activity and 

validated these approaches by reporting three independent datasets related to mental stress 
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in human subjects with or without heart disease. These methodologies laid the groundwork 

for investigating the effects of nVNS in stress in human subjects, which is detailed in 

Chapter 4. 
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CHAPTER 4. TRANSCUTANEOUS CERVICAL VAGUS NERVE 

STIMULATION AS A NOVEL THERAPY FOR STRESS AND PTSD 

4.1 Introduction 

This chapter discusses the techniques and methods used for a sham-controlled double blind 

randomized human subjects study that investigates the effects of transcutaneous cervical 

vagus nerve stimulation (tcVNS) in stress and PTSD. The study was designed as a multi-

dimensional study, with investigations in physiological effects, biochemical biomarkers, 

and brain imaging. The scientific outcomes focus on different investigations with various 

analyses, and engineering outcomes focus on real time physiological biomarkers of tcVNS 

and their potential for closing the loop for personalized neuromodulation and titration of 

therapy. These biomarkers could be instrumental in a machine learning guided 

neuromodulation scheme, applicable outside of clinical settings. 

4.2 Sham-Controlled Double Blind Randomized Human Subjects Study 

4.2.1 Human Subjects Study 

The study was performed under a protocol approved by the institutional review boards of 

Emory University (#IRB00091171), Georgia Institute of Technology (#H17126), The 

Space and Naval Warfare (SPAWAR) Systems Center Pacific, and the Department of Navy 

Human Research Protection Program. The study took place in Emory University School of 

Medicine between May 2017 and October 2019 (ClinicalTrials.gov #NCT02992899). 

Participants included physically healthy adults between ages 18-65 with a history of 

psychological trauma. For the investigation of physiological biomarkers, participants who 
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met criteria for PTSD were analyzed separately from participants who did not meet criteria 

for PTSD (Non-PTSD). For blood biomarker investigations, analyses were completed as 

either together or separate, where appropriate, due to limited sample size. Exclusion criteria 

were: pregnancy; meningitis; traumatic brain injury; neurological disorder; organic mental 

disorder; history of loss of consciousness greater than one minute; alcohol abuse or 

substance abuse based on the Structured Interview for DSM (SCID) [280],  within the past 

12 months; current or lifetime history of schizophrenia, schizoaffective disorder, or 

bulimia, based on the SCID; a history of serious medical or neurological illness, such as 

cardiovascular, gastrointestinal, hepatic, renal, neurologic or other systemic illness; 

evidence of a major medical or neurological illness on physical examination or as a result 

of laboratory studies; active implantable device (i.e. pacemaker); carotid atherosclerosis; 

cervical vagotomy. CAPS was administered to evaluate for presence and severity of both 

possible current and lifetime PTSD [40]. The protocol consisted of three subsequent days 

 

Figure 4-1. Protocol timeline depicting neutral and trauma scripts, HR-PET scans 

(first day), mental stress (second and third day), and blood draws (all days). 
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for each participant, Figure 4.1 presents the details for each day. Participants were 

instructed to withhold any stimulant (i.e. coffee) throughout the entire protocol. Each 

participant was asked to write their traumatic events; later, personalized voice recordings 

based on these scripts were prepared. The first day included six traumatic recall scripts and 

six neutral scripts presented audibly through headphones to participants inside a high-

resolution positron emission tomography (HR-PET) scanner at 20°C temperature, starting 

approximately at 8AM. On day 1, participants were prepared with noninvasive sensing 

modalities, dedicated neuromodulation devices, and a headphone by the researchers. The 

protocol started when they lay down in a high-resolution positron emission tomography 

(HR-PET) scanner bed (head inside the scanner) for 14 scans, each took approximately 

eight minutes. Before the scans started, baseline physiological data were collected in the 

same posture. In the first two scans, “neutral” pleasant scenery recordings (for imaging 

purposes, without stimulation) were delivered audibly. In scans three and four, traumatic 

stress recordings were delivered immediately followed by stimulation. In scans five and 

six, stimulation was applied in the absence any acute stressor. From scans seven to ten, two 

neutral recordings (no stimulation) and two traumatic stress recordings followed by 

stimulation were applied. Then, the participants took a 90-minute break. After the break, 

four more scans were taken that included two neutral recordings and two traumatic stress 

recordings followed by stimulation, respectively.  In short, the first day included audible 

delivery of six neutral scripts, six traumatic stress scripts followed by stimulation, and two 

stimulations without acute stress in 14 HR-PET scans. All neutral/traumatic recordings 

were approximately one minute in duration. The second and third days were the same as 

each other: they did not include brain imaging and they focused on non-personalized 
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mental stressors. Baseline signals were recorded from the participants, and they underwent 

a public speech and a mental arithmetic task, both immediately followed by stimulation. In 

the public speech task, the participants were given two minutes preparation time to prepare 

a defense statement in a scenario they were accused of theft at a shopping mall. Their 

speech was immediately followed by stimulation. Following eight minutes in silence after 

stimulation stopped, the participants were required to answer a series of arithmetic 

questions as fast as possible for three minutes. Immediately after the arithmetic task, 

another stimulation was applied, and the participants waited for eight more minutes in 

silence (post-stimulation period). For both mental stress tasks, negative feedback was 

provided for incorrect answers and delayed response times to exaggerate the stress effect. 

After this mental stress paired with stimulation paradigm, a 90-minute break was given. 

After the break, a third stimulation was applied without any acute stressor. All days 

included baseline and protocol blood draws, as indicated in Figure 4.1. 

4.2.2 Baseline Assessments 

Each subject informed, provided written consent, after which they underwent a 

psychological and health assessment. Sociodemographic factors (age, sex, race/ethnicity, 

marital status, education level) and clinical information (current medications, medical 

history, SCID) were collected. Psychological assessment was performed using structured 

interviews and relevant questionnaires, including PTSD Checklist-Civilian Version (PCL-

C) [281], PTSD Symptom Scale (PTSD-SS) [282, 283], Clinician-Administered PTSD 

Scale (CAPS, only patients diagnosed with PTSD qualifies for CAPS) [40], early trauma 

inventory (ETI) [284], adulthood trauma inventory (ATI) [285], Hamilton Anxiety Scale 

(HAM-A) [286], Hamilton Depression Scale (HAM-D) [287], Beck Depression Inventory 
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(BDI) [288], Social Support (ESSI) [289], and Physical Activity (Baecke Questionnaire’s 

Work, Sports, Leisure indices, respectively) [290]. 

4.2.3 Blinding 

The participants were randomized into either active tcVNS or sham stimulus groups with 

an online randomizer using simple randomization. The devices were pre-numbered by the 

manufacturer who were not involved in the research, and random allocation was conducted 

by an individual who did not take part in enrollment, data collection or analysis. Enrollment 

was done by clinical staff. The participants and clinical staff were blinded to the stimulus 

type, and each of the participants received only one type of stimulus. The researchers, who 

were also blinded to the stimulus type, conducted the questionnaire assessments, data 

collection, signal processing, and parameter extraction. Stimulus grouping (active or sham) 

was un-blinded for the interpretation of statistical analysis. 

4.2.4 Active and Sham Stimulation 

Both active tcVNS and sham stimuli were administered using hand-held devices 

(GammaCore, ElectroCore, Basking Ridge, New Jersey) with identical placement and 

operation. tcVNS or sham was applied using collar electrodes on the left side of the neck. 

The treatment area on the neck was located by finding the pulse on the carotid artery for 

each participant (Figure 4.2). Conductive electrode gel (GammaCore, ElectroCore, 

Basking Ridge, New Jersey) was used to maintain good contact between the skin and the 

electrodes. Active tcVNS devices produce an AC voltage signal consisting of five 5kHz 

sine pulses, repeating at a rate of 25Hz. Sham devices produce an AC biphasic voltage 

signal consisting of 0.2Hz square pulses that delivers a mild buzzing sensation similar to 
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the active device. Both active and sham device operation stops automatically after 120 

seconds. The stimulation intensity was adjustable using a roll switch that ranged from 0 to 

5a.u. (arbitrary units) with a corresponding peak output ranging from 0 to 30V (~ 0 to 

60mA) for active tcVNS, and from 0 to 14 V (~0 to 60mA) for sham device. During each 

application, the stimulation intensity was increased to the maximum the participant could 

tolerate, without pain. At the start of stimulation, the intensity was increased gradually until 

each participant instructed to stop. The stimulation continued at the selected intensity. 

 

Figure 4-2. Data collection and signal processing summary. a) Non-invasive sensing 

modalities shown on participant, active or sham stimulation was applied from left 

neck. b) Representation of relative locations of left carotid arteries and left vagus 

nerve. tcVNS electrodes were placed onto the area where the carotid pulsation was 

located. c) Signal processing and feature extraction summary. 
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4.2.5 Active versus Sham Stimulation Rationale 

High frequency voltage signals (such as the active stimulus) pass through the skin with 

minimal power dissipation due to the low skin-electrode impedance at kHz frequencies; in 

contrast, lower frequency signals (such as the sham stimulus) are mainly attenuated at the 

skin-electrode interface due to the high impedance [291]. Accordingly, the active device 

operating at higher frequencies can deliver substantial energy to the vagus nerve to 

facilitate stimulation, while the voltage levels appearing at the vagus would be expected to 

be orders of magnitude lower for the sham device and thus vagal stimulation is highly 

unlikely. Nevertheless, since the sham device does deliver relatively high voltage and 

current levels directly to the skin, it activates skin nociceptors, causing a similar feeling to 

a pinch. This sensation is necessary for blinding of the participants, and was thought as a 

critical detail by the researchers for the valuation of the potential treatment in psychiatric 

populations. In the current study, no participant reported an absence of sensation for any 

application. In another study, an active stimulation amplitude higher than 15V using the 

studied device was reported to create vagal somatosensory evoked potentials associated 

with vagal afferent activation reliably, that are also activated with VNS implants [175].  

4.2.6 Physiological Monitoring 

Physiological data were collected by the measurement of ECG, PPG, SCG, EDA, RSP, 

and BP, Figure S3a details the electrode placement for each participant. Wireless 3-lead 

ECG and piezoresistive strap-based RSP were collected through RSPEC-R amplifiers; 

transmissive, index finger-based PPG and inner palm-based EDA were collected through 

PPGED-R amplifiers from Biopac Systems (Goleta, CA). A low noise 356A32 
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accelerometer (PCB Electronics, Depew, NY) was taped with a Kinesio tape on mid-

sternum for SCG monitoring, with Z-axis surface touching the sternum, aligning with the 

dorsoventral movement of the heart. For EDA measurement, an isotonic electrode gel 

(GEL101) and pre-gelled isotonic electrodes (EL507) were used (Biopac Systems, Goleta, 

CA). Continuous ECG, PPG, SCG, EDA, and RSP data were simultaneously transmitted 

to a 16-bit MP150 data acquisition system at 2kHz sampling rate (Biopac Systems, Goleta, 

CA). Non-continuous, cuff-based SBP and DBP values were recorded periodically with an 

Omron blood pressure cuff for baseline, stress, stimulation, and post-stimulation intervals. 

4.2.7 Signal Processing and Parameter Extraction 

The signal processing and parameter extraction were carried out in MATLAB (R2017b, 

Natick, MA). The following parameters were extracted: heart rate (HR), pre-ejection 

period [253], amplitude of PPG, PAT (PATFOOT, PATPEAK), RR, RW, RP, LF HRV, HF 

HRV, SCL, SCR, frequency of non-specific skin conductance responses (fNSSCR), and 

latency of skin conductance response (LSCR). Figure 4.2c shows sections from collected 

physiological signals from a participant and the parameters computed from these signals. 

The ECG, SCG and PPG signals were filtered with finite impulse response band-pass 

filters, with cut-off frequencies 0.6-40Hz for ECG, 0.6-25Hz for SCG, and 0.4-8 Hz for 

PPG, respectively, to preserve the waveform shape and cancel the noise outside their 

bandwidths. The phasic component of EDA (for computing the parameters related to skin 

conductance response) was obtained using an FIR 0.15 Hz equiripple high-pass filter. The 

slowly varying RSP signal was used as is, as the module applies 10Hz low-pass filter 

internally. The R-peaks of the ECG signals were detected using thresholding, and were 

used to calculate HR, HRV. SCG and PPG signals were ensemble averaged according to 
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the R-peaks, using beat lengths of 150ms for SCG and 600ms for PPG. These lengths were 

sufficient to detect the fiducial points of each SCG and PPG beats. To reduce the effects of 

motion artifacts on the individually segmented beats, exponentially weighted moving 

ensemble averaging of successive beats was implemented for some parameters described 

below.  

Pre-Ejection Period: R-Ao (i.e., PEP) values were computed following a three-beat 

exponential moving averaging procedure for noise reduction. 

PPG Amplitude and Pulse Arrival Times: As a measure of peripheral sympathetic activity 

and vasomotor activity at the area of signal collection (index finger), the amplitude of each 

PPG beat was extracted. Second, PAT was calculated from two reference points with a 

time constant of five beats [85]. The first reference point was the foot of PPG signal, which 

was located by finding the maximum of the second derivative of the pulse wave before the 

maxima (PATFOOT). The second reference point was the peak (maxima) of the PPG signal 

(PATPEAK). 

Respiratory Measures: Due to the loosening of the respiration belt over time while the 

participant was inside the PET scanner, the respiration signal occasionally had a DC offset. 

To remove this offset, a sixth order polynomial was fit to the signal in each interval (i.e., 

rest or stress), and the signal was detrended. From the detrended signal, the peaks 

representing inhalation and exhalation were located using thresholding. The rate of the 

peak appearance was extracted as RR. For RW, the width of each peak was computed as 

the distance between the points to the left and right of the peak, where the descending signal 

intercepts a horizontal reference line. The reference line was positioned beneath the peak 
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at a vertical distance equal to half the peak prominence. The points themselves were found 

by linear interpolation. RP measured the prominence of a peak, i.e. how much the peak 

stands out due to its intrinsic height and its location relative to other peaks. It was calculated 

as the minimum vertical distance that the signal descends on either side of the peak before 

either climbing back to a level higher than the peak or reaching an endpoint. 

Heart Rate Variability Measures: Two techniques were used to extract multiple HRV 

measures: Frequency-domain analysis and joint time-frequency analysis (Poincaré 

method). For both frequency-domain HRV and Poincaré analyses, ECG signals from the 

start and end of the days (longer than five minutes), ECG signals during stress (one to three 

minutes), stimulation (two minutes), and post-stimulation (two to eight minutes) were used. 

For each interval, the ECG signal was inspected visually to avoid ectopic, noisy beats and 

arrhythmias. Here for HRV analysis, we used a MATLAB-based open source HRV toolbox 

that was previously validated with a variety of HRV measurement techniques and 

platforms to calculate LF HRV, HF HRV, LF/HF HRV, SD1, SD2, SD1/SD2 [194]. 

Electrodermal Activity Measures: Electrodermal activity parameters extracted were SCL, 

SCL slope, SCR, fNSSCR, LSCR [92]. For SCL, the DC level of EDA signal was extracted 

and the mean, minimum, maximum, standard deviation, slope of the first order polynomial 

fit (SCL slope), and area under curve properties were derived. SCR was analyzed in a 

similar manner to SCL. The peaks in SCR were located by thresholding, and the number 

of peaks per interval was computed to calculate fNSSCR, excluding the first peak in the signal 

which corresponds to a specific event (i.e. stress start instance). For LSCR, the latency from 

the start of the interval to the first peak appearance was calculated. The determination of 

the minimum peak amplitude was required to define the response occurrence. Although a 
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minimum of 0.05μS is common with hand scoring of SCR responses, this threshold is 

largely task- and subject-specific, and can be as low as 0.01μS [209]. We determined the 

minimum peak amplitude to be two times the rest SCR mean amplitude for each 

participant, resulting in a mean of 0.06 ± 0.03μs for this study. 

4.2.8 Blood Biomarker Assays 

We performed two analyses on blood biomarkers: 1. Serum cytokine analyses for all 

timepoints, 2. PACAP analyses on select timepoints. PACAP analyses were kept 

exploratory due to budget constraints. For serum cytokines, we performed multiplex assays 

to measure IL-1ß, IL-2, IL-6, TNF-α, and IFN-γ (Meso Scale Discovery, Rockville, MD). 

For PACAP, competitive enzyme-linked immunosorbent assay (ELISA) kits were used 

(LS Bio, Seattle, Washington). Intra-assay coefficient of variation (CV) was 9.89%, and 

limit of detection (LOD, sensitivity) was 0.288 pg/ml. All experimental operations were in 

accordance with standard protocols. R2s of the standard curves for each plate were greater 

than 0.999.  

4.2.9 Self-Reported Mood and Distress Scales 

Throughout the protocol, visual analog scores (VISAN) representing current mood in five 

dimensions (nervousness, anxiety, fear, anger, highness) and subjective units of distress 

(SUDS) were obtained during baseline, after each six neutral recordings, and after each six 

traumatic stress recordings followed by stimulation. The SUDS is a measure of subjective 

distress widely used in cognitive behavioral therapy [292]. The SUDS are VISAN are used 

to assess the level of stress attained in the stress challenges, to verify that the procedure is 

stressful for the subjects. 
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4.3 Acute Physiological Biomarkers of tcVNS: Non-PTSD Traumatized Population 

We first examined the physiological responses to stress in non-PTSD individuals by 

processing data from wearable sensing modalities [293]. This sample (collected between 

May 2017 and October 2018) included 24 participants including 12 females. Ref. [293] 

presents the CONSORT diagram, and provides demographic data for this sample. Mean 

age of the participants was 31 (± 9 SD). The active group and sham group participants were 

similar in age and sex. The active group participants (n = 12) had a mean age of 29 (± 7 

SD) and included five females; sham group participants (n = 12) had a mean aged of 32 (± 

11 SD), with seven females. In this sample, four (17%) met criteria for past depression, 

one (4%) for past PTSD, two (8%) for generalized anxiety disorder, one (4%) for past panic 

disorder, two (8%) for past alcohol abuse or dependence, and one (4%) for a past history 

of history of drug abuse or dependence. The tcVNS amplitude levels participants received 

were 18V (± 4.8 SD) for active tcVNS, and 12.6V (± 2.8 SD) for sham stimulus. 

4.3.1 Statistical Analysis 

We compared participant characteristics between active and sham group using student t-

tests (for normal continuous variables), Wilcoxon rank-sum tests (for non-normal 

continuous variables), and chi-squared tests (for categorical variables), as shown in Table 

S2. To understand the relative changes in the physiological parameters, data were separated 

into intervals reflecting the baseline of the corresponding day, stress, stimulation (active or 

sham), and post stimulation. Absolute and percent changes from the baseline state for each 

interval were computed and compared between-group differences across the intervals. For 

physiological parameter intervals (except HRV), data from one minute of baseline rest, 
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first 30 seconds of stress, last minute of stimulation, and one minute from post-stimulation 

(three minutes after the stimulation stops) were used. For speech and mental arithmetic 

tasks which corrupt the respiration waveform due to vocalization, the respiration beats just 

before the subjects start speaking were extracted as respiratory data during these stressors. 

These intervals correspond to the end of speech preparation (just before the subject starts 

speaking after two-minute preparation), and the interval just after the subjects heard the 

first mental arithmetic question (before answering). For non-continuous BP analyses, 

similarly SBP, DBP, PP values measured during baseline, stress, stimulation, and post-

stimulation were used. Longer intervals for HRV measures were used to comply with the 

standards. The extracted parameters were evaluated with respect to the corresponding 

baseline values for each day, either as a ratio with baseline (percent changes) or subtraction 

from the baseline (absolute changes), for each interval. HRV indices were also evaluated 

as raw values for each interval. Data in bar plots were represented as mean ± 95% CI plotted 

from the raw unadjusted values. To evaluate if device type (active vs. sham) was associated 

with changes in parameters from the baseline value, we used mixed models with repeated 

measures that included random effect for each participant using unstructured correlation 

matrix (i.e., multiple traumatic scripts from the first day, two stimulations without acute 

stress on the first day, two stimulations without acute stress after a 90-minute break on the 

second and third days, two stimulations followed by two public speech or two mental 
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arithmetic tasks), and adjusted for age in the models. In a sensitivity analysis, we also tested 

the significance of the interaction between device type and time variable. Statistical 

analyses on both percent and absolute changes were carried out in all the models. The beta 

coefficients (ß) from the mixed models indicate the adjusted average percent or absolute 

differences in the changes of parameters from the corresponding rest values, comparing 

active vs. sham device types. ß were reported along with 95% CI and P-values in results 

and figure captions. A two-sided p < 0.05 denoted statistical significance. All statistical 

analyses were performed using SAS 9.4 (SAS Institute, Cary, NC) and MATLAB 

(R2017b, Natick, MA). 

4.3.2 Results 

tcVNS has a similar effect on SNS activity both in the presence and absence of stress. 

 

Figure 4-3. Results from physiological signal analyses for stimulation without acute 

stress from the second and third protocol days. Bars represent the unadjusted mean 

changes from baseline, error bars: 95% CI, values calculated from raw data, * 

indicates p < 0.05. a) Active tcVNS group experienced an increase in PPG amplitude 

during stimulation (p = 0.049) and post-stimulation (p = 0.021) compared to the 

sham group. b) Active tcVNS group experienced an increase in pre-ejection period 

during the post-stimulation interval (p = 0.035) compared to the sham group. c) 

Active tcVNS group experienced a decrease in SCL slope during the post-

stimulation interval (p = 0.014) compared to the sham group. 



 74 

To understand the physiological changes induced only by active or sham stimulation, the 

protocol included two stimulation administrations in the absence of traumatic scripts or 

mental stress (mental arithmetic and public speech) tasks, after a 90-minute break from the 

mental stress protocol on the second and third days (Figure 4.3 shows the data from the 

unadjusted raw changes from the baseline state during stimulation and post-stimulation 

intervals, results were expressed as mean values, 95% confidence intervals, p-values 

obtained after adjustments). Stimulation without stress tasks resulted in differences in 

physiological biomarkers associated with sympathetic tone: PPG amplitude (Figure 4.3a, 

measurement of peripheral vasoconstriction, inversely related to peripheral sympathetic 

activity) increased (indicating relative vasodilation and decreased sympathetic activity) 

during stimulation by 78.6% (95% CI, 0.5-156.7%, p =  0.049), and following stimulation 

by 95% (15.7-174.2%, p = 0.021) after adjustments in the active tcVNS group relative to 

the sham group. PEP (Figure 4.3b, inversely related to cardiac sympathetic activity) 

increased following stimulation by 3.3ms (0.2-6.3ms, p = 0.035) after adjustments in the 

active group compared to the sham group, indicating a decrease in cardiac contractility and 

sympathetic activity. SCL slope (Figure 4.3c, related to sympathetic activity) decreased 

during post-stimulation by -0.013μS/s (-0.024 - -0.003μS/s, p = 0.014) after adjustments in 

the active tcVNS group relative to the sham group. 

tcVNS modulates autonomic tone following exposure to personalized traumatic scripts  

Stimulation following exposure to personalized traumatic scripts revealed marked changes 

in autonomic reactivity between the active and sham groups. Figure 4.4a-c illustrates 

changes in physiological parameters from the baseline state for the three intervals: 

traumatic stress, stimulation, and post-stimulation, data shown from unadjusted raw values. 
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There were no significant differences in peripheral vasoconstriction measured by PPG 

amplitude during traumatic scripts between groups. There was an increase in PPG 

amplitude (indicating relative vasodilation and decreased peripheral sympathetic activity) 

during stimulation delivered immediately at the termination of traumatic scripts which 

persisted after the end of stimulation in the active versus the sham group. PPG amplitude 

was 43.7% higher (3.1%-84.3%, p = 0.036, Figure 4.4a) during active versus sham 

stimulation and 47.9% higher (1.4%-94.5%, p = 0.044) in the post-stimulation interval after 

adjustments. As for PEP, there were no significant differences in PEP during traumatic 

scripts and during stimulation between groups. In the post-stimulation interval, an increase 

in PEP (indicating decreased cardiac sympathetic activity) was observed in the active 

versus sham group with an adjusted difference of 4.2ms (1.6-6.8ms, p = 0.003, Figure 

 

Figure 4-4. Results from physiological signal analyses for stimulation following 

traumatic stress. Bars represent the unadjusted mean changes from baseline, error 

bars: 95% CI, values calculated from raw data, * indicates p < 0.05. a) The active 

tcVNS group experienced a greater increase compared to sham in PPG amplitude 

during stimulation (p = 0.036) and post-stimulation (p = 0.044). b) The active tcVNS 

group experienced an increase in pre-ejection period during post-stimulation (p = 

0.003) compared to sham. c) Sham group experienced increase in respiratory rate 

(RR) during post-stimulation (p = 0.002). 
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4.4b). RR was similar between tcVNS and sham groups during traumatic scripts and 

stimulation, with an adjusted decrease in the active group relative to sham of -9% (-14.3%- 

-3.7%, p = 0.002, Figure 4.4c) during post-stimulation indicating a release of 

parasympathetic activity. 

 

Figure 4-5. Results from physiological signal analyses for stimulation following two 

types of mental stress, public speech and mental arithmetic. Bars represent the 

unadjusted mean changes from baseline, error bars: 95% CI, values calculated from 

raw data, * indicates p < 0.05. a) Increase in PPG amplitude for active group during 

post-stimulation (p = 0.009). b) Decrease in RR for active group during post-

stimulation (p = 0.017). c) Decrease in respiration RP for active group during 

stimulation (p = 0.028). d) Similar to (a), active group shows a consistent recovery in 

PPG amplitude during stimulation (p = 0.005) and post-stimulation (p = 0.001). e) 

Decrease in RR during post-stimulation for active group (p = 0.007). f) Decrease in 

SCL slope for speech task during stimulation for active group (p = 0.027). 
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Effects of tcVNS on PPG amplitude and respiration rate following mental stress 

There were no statistically significant differences during the public speech task between 

the active and sham groups in PPG amplitude, RR, RP, SCL slope (Figure 4.5a-c, f). PPG 

amplitude increased during post-stimulation in the active group compared to sham by 

61.3% (17.3%-105.3%, p = 0.009, Figure 4.5a) after adjustments. RR decreased in the post-

stimulation in active versus sham by an adjusted difference of -11.3% (-20.3%- -2.3%, p = 

0.017, Figure 4.5b). RP decreased during stimulation in active versus sham by -25.4% (-

47.9%- -3%, p = 0.028, Figure 4.5c) after adjustments. Lastly, SCL slope decreased during 

stimulation in active versus sham by -0.014μS/s (-0.026- -0.001μS/s, p = 0.027, Figure 

4.5f) after adjustments. 
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Similar to public speech, there were no difference between active and sham groups during 

the mental arithmetic stress task in PPG amplitude or RR. Active stimulation relative to 

sham resulted in an adjusted increase in PPG amplitude of 95.8% (32.3%-159.2%, p 

=0.005), with a post-stimulation adjusted increase of 70.4% (30.8%-110%, p = 0.001) 

(Figure 4.5d). Following active tcVNS there was a decrease in RR of -14.6% (-24.8%- -

4.3%, p = 0.007, Figure 4.5e) after adjustments. Increased PPG following mental stress 

tasks and tcVNS indicates decreased peripheral sympathetic activity while decreased RR 

suggests a decrease in parasympathetic withdrawal. As for the two administrations without 

acute stress on the first day, PEP in active group compared to sham increased by 7.2ms (p 

= 0.027) after adjustments following stimulation. There were no other marked differences 

in HR, SBP, DBP, PP, RW, HF HRV, LF HRV, LF/HF HRV, SD1, SD2, SD1/SD2, PAT, 

 

Figure 4-6. Simplified representation of noninvasive VNS mechanism of action. The 

understanding of noninvasive VNS kinetics on noninvasively obtained physiological 

parameters may enable optimization of noninvasive VNS delivery in unsupervised 

settings. NTS: nucleus tractus solitarus.  
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other parameters related to electrodermal activity, such as SCL, fNSSCR, and LSCR that could 

distinguish active tcVNS and sham stimulation. 

4.3.3 Stimulation Onset Investigation 

tcVNS devices have the potential for widespread applicability in improving the quality of 

life, however, questions regarding response time, “dosage,” or optimal treatment 

paradigms remain open. We next investigated the latency of stimulation as seen in the 

physiological responses from 233 administrations on 24 human participants, with and 

without immediately preceding acute traumatic stress [294]. Determining the latency from 

tcVNS initiation to downstream physiological effects (Figure 4.6) serves as a step toward 

closing the loop with higher temporal resolution for personalized neuromodulation. 

 

Figure 4-7. Annotation diagram. The smoothed instantaneous biomarkers (HR, 

PEP, PPG amplitude) were plotted from pre-stimulus to post-stimulus. If at least 

two of the three mentioned changes in the biomarkers occurred, the onset time was 

marked at the onset of the second change. If no eligible change was observed, the 

annotation was marked as “absent”.  
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Based on the physiological parameter results, HR, PEP, and PPG amplitude were 

considered as the most consistent real time biomarkers of stimulation. The anticipated 

changes following stimulation compared to the period before stimulation were: i) decrease 

in HR (i.e., decrease in sympathetic tone or increase in parasympathetic tone), ii) increase 

in PEP (i.e., decrease in cardiac contractility and cardiac sympathetic activity), and iii) 

increase in PPG amplitude (i.e., decrease in peripheral sympathetic activity). As multiple 

sensing modalities were used, occasional noisy measurements existed. Therefore, 

observing the occurrence of all three of these changes following each tcVNS administration 

was not expected. Thus, as indicated in in Figure 4.7, we located the first datapoint that 

satisfied two of the three aforementioned criteria and marked this time point as the onset 

 

Figure 4-8. Continuous physiological parameters showing tcVNS without traumatic 

stress, for one participant undergoing sham (left) and one participant undergoing 

active tcVNS stimulus (right). Markers represent the extracted data, lines represent the 

smoothed data. Shaded regions represent stimulus delivery. Dashed lines show the 

averages of the measures from pre-stimulus.  
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time. These criteria were established and agreed upon prior to any manual labeling to 

ensure guidelines were not contorted to match desired results a posteriori. To find the 

corresponding onset of action, we subtracted the tcVNS start time from the labeled onset 

time. If only one of the three signals experienced noticeable change, the onset of action 

was marked as “absent.” Likewise, if no changes at all were observed or if all changes were 

relatively insignificant compared to noise and normal variation, the corresponding onset of 

action was marked as “absent.” To allow for independent sampling, we averaged the counts 

of absent onsets for each participant. Additionally, all annotations were independently  

performed by the three researchers to later assess the inter-annotator agreements for 

validation purposes. These were calculated as follows: pairwise agreements between the 

annotators were calculated in seconds (absolute difference between each onset time 

annotation) and in counts (agreement percentage for absent onsets). The final agreement 

results reported are the overall average absolute difference in annotated onset times and the 

average percent agreement in absent onsets. 

The continuous physiological parameters from two representative participants in the 

presence of traumatic stress are shown in Figure 4.8 one participant undergoing sham and 

Table 4-1. Onset of action and absent onset counts. Values represent mean ± SD. 

tcVNS administrations Onset of Action [seconds]  

tcVNS with traumatic stress (n = 72 administrations) 16 ± 9 

tcVNS without stress (n = 48 administrations) 18 ± 7 

Device groups (p = 0.006) Absent Onsets 

 [counts per subject] 

Active tcVNS (n = 12 subjects) 2 ± 2 

Sham (n = 12 subjects) 5 ± 2 
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the other undergoing active tcVNS. The pre-stimulus values for each of the biomarkers are 

shown with dashed lines to give a reference for the predicted deviations. Table 4.1 lists the 

onset of action for active tcVNS for both with and without traumatic stress, as well as the 

absent onset counts comparing the active and sham device groups. Based on the 

physiological biomarkers used, the effects of tcVNS were observed 18 ± 7 seconds from 

the start of tcVNS without stress. When tcVNS was applied after traumatic stress (six 

traumatic stress scripts followed by six tcVNS per participant, n = 12 participants), effects 

were observed on the biomarkers in a similar latency, resulting in 16 ± 9 seconds.  As for 

the absent onset counts (tcVNS administrations that had not met the criteria), there is a 

significant difference between the device groups: there were 5 ± 2 absent onsets per 

participant for the sham group, significantly higher than the active group’s 2 ± 2 absent 

onset counts (p = 0.006). There were 24 and 65 absent onset counts for 120 active tcVNS 

and 113 sham administrations, respectively. The overall average of inter-annotator 

agreements resulted in a 4 ± 1 seconds difference between the labeled onset times and a 90 

± 5.5% agreement in absent onset counts. 

4.3.4 Discussion and Conclusion 

We demonstrated the feasibility and utility of quantification of cardiovascular and 

peripheral autonomic nervous system function using wearable sensing devices in 

conjunction with administration of tcVNS and a sham control and stressful tasks. tcVNS 

minimized sympathetic activation and/or withdrawal of parasympathetic tone following 

exposure to stress based on a range of physiological parameters. This was observed for 

different kinds of stressors, including exposure to recordings of personalized traumatic 

memory scripts, and “neutral” or “mental stress” tasks including mental arithmetic and 
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public speech stress tasks. The findings suggest that wearable sensing devices could be 

used as real-time non-invasive physiological biomarkers of tcVNS to predict treatment 

efficacy and/or provide empirical evidence of proper tcVNS administration. 

tcVNS shows effects in multiple physiological biomarkers 

Active tcVNS compared to the sham group resulted in a decrease in peripheral and cardiac 

sympathetic activation for tcVNS alone as measured by increased PPG amplitude, 

increased PEP, and decreased SCL slope. There was also a reduction in peripheral 

sympathetic activation with tcVNS applied after both traumatic script and mental stress 

tasks as measured by increased PPG amplitude, and decreased cardiac sympathetic 

activation after traumatic scripts (but not mental stress) based on increased PEP. In a 

complementary manner, tcVNS resulted in reduced parasympathetic withdrawal after both 

traumatic scripts and mental stress tasks based on reduced RR. tcVNS also decreased SCL 

slope when followed by public speech task (but not arithmetic or traumatic stress). The use 

of various stressors revealed task-specific changes in autonomic nervous system activity: 

while an increase in PEP was observed for tcVNS when applied following a traumatic 

stressor, an increase in PEP was not observed upon stimulation for mental stressors. 

Similarly, reduction in SCL slope was observed for stimulation without acute stress and 

stimulation following public speech only. On the other hand, tcVNS resulted in increases 

in PPG amplitude and decreases in RR when applied after both traumatic script and mental 

stress tasks. Thus, there is not a single biomarker of tcVNS, rather its efficacy could be 

revealed from signals that are related to different pathways of autonomic reactivity to 

different types of stressors.  
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Changes in PPG-amplitude versus lack of changes in blood pressure 

Increased PPG amplitude with tcVNS was one of the most consistent results across the 

various stressful tasks in this study. However, a myriad of factors is involved in affecting 

the amplitude of PPG signals, and thus associating changes in PPG amplitude changes with 

a particular underlying physiological origin is not straightforward. To the first order, the 

two main factors influencing PPG amplitude are pulse pressure and arterial compliance 

[295]. Thus, it is important to note that in this study we did not observe differences between 

the active tcVNS and sham groups in systolic, diastolic blood pressure, and pulse pressure 

for any of the intervals – this indicates that the changes in PPG amplitude that were 

significant, and quite substantial, were linked to local changes in arterial tone associated 

with vasoconstriction and vasodilation. Accordingly, the effects of tcVNS on PPG 

amplitude may be attributed to sympathetic regulation of vascular tone.  

No effects of tcVNS on HRV  

The current study did not find significant differences between the active tcVNS and sham 

groups in ECG-based measurements of heart rate variability (HRV) either for short 

intervals during and after stimulation, or for whole day measurements. 

Effects of tcVNS on HR and electrodermal activity (EDA)  

In this sample, HR measurements are not significantly different between active and sham 

groups for any of the intervals analyzed. While this non-PTSD sample did not reach to 

statistical significance, a larger sample (taken later for increasing the blood data sample) 

resulted in decrease in HR. Our findings are also consistent with studies observing no HRV 
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or EDA changes following auricular VNS in combination with subjectively measured fear 

and anxiety [296-298]. A recent study on the effects of tcVNS with a noxious stressor 

(thermal stimuli) reported difference in EDA-related changes in active and sham group, 

specifically in SCL slope and LSCR [180]. Our analysis has shown difference for SCL slope, 

but not for latency of SCR. 

Use of seismocardiography (SCG) in the assessment of effects of tcVNS on peripheral 

autonomic function 

The current study found PEP, a measure of sympathetic activity, to be useful in the 

assessment of the effects of tcVNS on autonomic function. PEP has been studied as a 

measure of cardiac sympathetic activity (or cardiac contractility), along with comparisons 

with HRV, EDA, and plasma catecholamines [202, 277, 279, 299-302]. We observed in 

our study that tcVNS administration creates electrical stimulation artifacts on ICG signal 

as the stimulation bandwidth and ICG signal bandwidth coincide with each other. 

Supplementary Figure S4 in Ref. [293] shows SCG versus ICG during tcVNS and noise 

hiding the fiducial point to extract the PEP (known as B-point, representing the opening of 

aortic valve) [202]. SCG is a viable option to calculate PEP in clinical studies that use 

tcVNS as it is a mechanical signal reflecting the chest-wall vibrations of the heart, hence 

the electrical stimulation does not affect the waveform shape. Beat-by-beat analysis during 

the treatment is possible with SCG-derived PEP. SCG also does not require electrodes, 

unlike ICG.  

Limitations 
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The following limitations should be noted for this study. Prior animal studies initiated 

direct VNS or sham before the initiation of the fear-related stimulus [145, 303]. Other 

studies in human subjects initiated taVNS or sham before or during the stimuli [172, 296, 

298]. Therefore, stimulation prior to stress and concurrently with stress appear to improve 

the pathological response based on previous studies. This study employs a reactive acute 

treatment approach as stimulation administrations were applied right after the stressors 

ended. Subjects were instructed, however, to form an image from the traumatic scripts in 

their mind and hold it, and stimulation was applied immediately at the end of the script. 

Our prior experience with traumatized subjects including those with PTSD demonstrated 

that upsettedness typically continues after the termination of the script, stress- or fear-

related task [51, 304]. Therefore, we believe that the stimulation was applied at the peak of 

the behavioral effects of the task. Future studies should investigate the effects of 

preemptive versus reactive stimulation in the context of traumatic stress.  

Due to the clinical nature of this study, the target engagement of the cervical vagus nerve 

could not be validated directly. This study relies on previous literature that reported the 

ability to reach the vagal afferents using tcVNS [174, 176]. We replicated the stimulation 

application reported in [174] throughout the protocol, by locating the carotid artery as an 

anatomical reference. Although variation exists regarding the location and topographical 

anatomy of the cervical vagus nerve, a recent cadaveric study reports that cervical vagus 

nerve can be visualized in a 35 × 35 mm distance lateral of the laryngeal eminence and 

posterior to the skin of the neck, which typically falls under the area the electrodes are 

placed [305]. 
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A natural restriction of this study is the possibility of therapeutic effects from traumatic 

exposure (traumatic stress rehearsal) [306]. Figure 4.4 combines data from all six traumatic 

stress scripts per subject, showing increases only in RR during traumatic stress. To show 

how the subjects respond to traumatic stress initially, we also analyzed only the first 

traumatic script responses for the primary outcome variables, excluding all other 

repetitions, for each subject, as supplementary information in Ref [293]. It is seen that HR 

and RR increase, PPG amplitude decreases during traumatic stress. The lower stress 

reactivity in Figure 4.4 might be due to the therapeutic effects of the repetitions as the data 

were merged from six traumatic scripts per subject (repetition numbers were included in 

our statistical analyses). Nevertheless, as our study focuses on tcVNS effects on stress, our 

main consideration was whether the active and sham groups received comparable amounts 

of stress. We did not observe significant differences in stress responses. Therefore, 

although repeated exposure might change stress reactivity over the time, the reactivity 

remained similar between the active and sham groups, which facilitated comparison of the 

effects of active and sham stimulation. 

The functional relevance of the PPG amplitude results could be attributed to changes in 

total peripheral resistance (TPR) or pulse pressure (PP), however there is no direct linear 

correlation to either. The PPG signal is an optical measurement, the amplitude of which is 

determined by the Modified Beer-Lambert Law [295]. PPG amplitude reflects the 

expansion and contraction of the vessel diameters in the region (index finger) being 

illuminated by the light source. This expansion and contraction of vessel diameter is 

proportional to both PP and arterial compliance. Compliance is the change in a vessel’s 

volume for a given change in PP. Thus, while directional relationships between PPG 



 88 

amplitude changes and TPR can be quite informative, the attribution of a given change in 

amplitude to a particular change in TPR is complex. Nevertheless, the study did not find 

remarkable differences in non-continuous BP measures (SBP, DBP, PP), or PAT. This is 

an interesting result considering the relationship of PPG and BP waveforms [200, 206]. 

PPG measurements (hence the extracted PPG amplitude and PAT) were continuous, and 

thus beat-by-beat assessment was feasible —a desirable measurement for the acute 

characteristics of this study. BP measurements were taken through a blood pressure cuff, 

and hence BP changes at beat-by-beat level could not be assessed.  Future studies should 

examine whether continuous BP is affected by tcVNS. 

While assessing the mental stress reactivity to tcVNS, it is important to clarify that the 

active and sham groups reacted similarly to mental stressors, which permits the comparison 

of stress response upon stimulation between the groups. The public speech task is a version 

of Trier Social Stress Test [307]. Traumatic stress protocol, public speech, and mental 

arithmetic tasks have been verified multiple times to induce significant psychobiological 

and cardiovascular responses on human subjects [190, 308-310]. In this study, similar 

responsivity between the groups were seen in the measures analyzed during the stressors. 

The groups showed no significant difference during stress intervals in any of the 

cardiovascular, peripheral, electrodermal activity measures.  

tcVNS affects physiological signals in >10 seconds 

Our findings from 233 administrations suggest pertinent timing considerations germane to 

the design of effective clinical studies involving physiological effects of tcVNS. Wearable 

cardiovascular and peripheral biomarkers —HR, PEP, and PPG amplitude— were 
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modulated in 18 ± 7 seconds for tcVNS without stress and in 16 ± 9 seconds for tcVNS 

following traumatic stress with significant difference in the absent onset counts between 

active and sham groups. The utility of this work is to eliminate ambiguity of the 

physiological outcomes for tcVNS studies. The findings of this study have applications in 

clinical studies that use tcVNS in tandem with or without stress; as well as in the design of 

wearable systems that combine sensing and stimulation. For instance, the timing of the 

stimulation appears to be important in the outcomes of multiple studies that test the 

differences in cognitive functioning, memory functioning, psychomotor functioning, or 

executive functioning with VNS application [124, 149, 153, 311-314]. The outcomes of 

onset investigation could be used to design effective clinical studies for tcVNS devices. 

From the wearable sensing standpoint, the results could be instrumental for decision 

making algorithms, such as the determination of stimulation timing or the effectiveness of 

the stimulation. The inclusion of the sham group and multi-day protocol presented in this 

study provides unique, continuous wearable sensing data to consider for physiological 

outcomes of similar studies. 

Conclusion 

In summary, our investigation demonstrates that tcVNS has effects on peripheral 

autonomic function that can be feasibly and reliably measured with wearable sensing 

devices. Specifically, tcVNS both in isolation and following exposure to stress reduces 

sympathetic and enhances parasympathetic function, leading to a modulation in autonomic 

tone. These physiological biomarkers may be useful for long-term monitoring of tcVNS in 

the home setting to assess adherence and accuracy of neuromodulation treatments and to 

provide subject-specific dosage recommendations for tcVNS therapy. tcVNS also 
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minimizes sympathetic activation in response to stress, which suggests that it may have 

clinical applications to stress-related psychiatric disorders characterized by increased 

sympathetic activity that is correlated with symptoms of these disorders [282, 283, 315-

318]. The fact that tcVNS reduces or blocks sympathetic arousal associated with exposure 

to personalized traumatic scripts suggests a clinical application to patients with PTSD in 

the context of modulation of indelible traumatic memories and possible enhancement of 

neuroplasticity and/or facilitating extinction of conditioned responses to reminders, which 

were previously studied in preclinical literature through direct VNS with implantable 

devices [145, 303, 319]. Although not assessed in the current study, emerging findings of 

the beneficial effects of direct VNS on cognition and memory suggest other possible 

benefits of tcVNS for patients with stress-related psychiatric disorders [124]. tcVNS could 

have a potentially broad impact in the domains of human performance and mood 

improvement, and wearable sensing devices can be used to quantify the stimulation. This 

could be applicable to other clinical and neuroscience research environments and in general 

wearable bioelectronic medicine, for patients with or without psychiatric disorders. 

4.4 tcVNS Reduces Sympathetic Responses to Stress in PTSD 

With the same experimental protocol, we analyzed data from patients with PTSD (n = 25).  

Preprint [320] (under review as of 7/4/2020) details the CONSORT requirements and 

details of the study sample used in this analysis. 

4.4.1 Patients with PTSD 

The mean age was 35 (± 13 SD) with 19 females. The active group participants (n = 13) 

had a mean age of 33 (± 12 SD) and included 12 females; sham group participants (n = 12) 
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had a mean age of 38 (± 13 SD), with seven females. Upon SCID evaluation, 13 (52%) met 

criteria for major depressive disorder (MDD, 6 current, 7 past), eight (32%) for generalized 

anxiety disorder, four (16%) for panic disorder, two (8%) for social phobia, two (8%) for 

current obsessive compulsive disorder, one (4%) for agoraphobia without panic disorder, 

one (4%) for body dysmorphia, three (12%) for past alcohol abuse or dependence, and one 

(4%) for a past substance induced anxiety disorder. In terms of stimulation amplitude, 

active group received 20.3V (± 7.5 SD), and sham group received 13.6V (± 1.4 SD) 

averaged across all uses over three days. 

4.4.2 Signal Processing, Parameter Extraction, and Statistical Analysis 

We carried out the same signal processing and statistical analysis for PTSD sample to allow 

for comparison of findings with non-PTSD sample as a future investigation. Results were 

reported as ß values, 95% CI, effect sizes, and p-values. 
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4.4.3 Results 

tcVNS consistently decreases SNS in absence of stress over multiple days. 

 

 

Figure 4-9. tcVNS without acute stress: Results for stimulation without acute 

stress, merged from all days. Bars represent the unadjusted mean changes from 

baseline, error bars: 95% CI, values calculated from raw data, * indicates p < 0.05. 

ß coefficients, adjusted CI, effect sizes (d), and p-values were reported in ß (± CI, 

d, p) format. Active tcVNS group experienced the following relative to sham after 

adjustments: a) The ratio of short-term variability to long-term variability 

(SD1/SD2) increased following stimulation by 14.1% (±11.6%, d=0.43, p = 0.019). 

b) HR decreased following stimulation by 2.7% (±2.0%, d = 0.21, p = 0.009). c) 

PPG amplitude increased during stimulation by 43.4% (±43.4%, d = 0.53, p = 

0.049) and following stimulation by 73.1% (±63.2%, d = 0.67, p = 0.025). d) PAT 

increased during stimulation by 2.5% (±2.2%, d = 0.26, p = 0.026). 
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Figure 4.9 presents the raw values for autonomic (SD1/SD2), cardiovascular (HR), and 

vascular (PPG Amplitude and PAT) tone.  Compared to sham, active tcVNS increased 

SD1/SD2 (Figure 4.9a, post-stimulation, ß (± CI, d, p) 14.1% (± 11.6%, d=0.43, p = 

0.019)), decreased HR (Figure 4.9b, following stimulation, 2.7% (± 2.0%, d=0.21, p = 

0.009)), increased PPG amplitude (inversely associated with peripheral sympathetic 

activity, Figure 4.9c, during stimulation, 43.4% (± 43.4%, d=0.53, p = 0.049); following 

stimulation 73.1% (± 63.2%, d = 0.7, p = 0.025)), and increased PAT (inversely associated 

with peripheral sympathetic activity, Figure 4.9d, during stimulation, 2.5% (± 2.2%, d = 

0.26, p = 0.026)).  

tcVNS reduces sympathetic tone following exposure to personalized traumatic scripts  

 

Figure 4-10. tcVNS after traumatic stress: Outcomes for stimulation following 

traumatic stress (all six scripts). Bars represent the unadjusted mean changes from 

baseline, error bars: 95% CI, values calculated from raw data, * indicates p < 

0.05. ß coefficients, adjusted CI, effect sizes (d), and p-values were reported in ß 

(± CI, d, p) format. Active tcVNS group experienced the following relative to 

sham after traumatic stress after adjustments: a) HR decreased during stimulation 

by 5.6% (± 3.6%, d = 0.43, p = 0.003), and following stimulation by 3.9% (± 3%, 

d = 0.29, p = 0.013). PPG amplitude increased during stimulation by 30.8% (± 

28.0%, d = 0.41, p = 0.032). c) PAT decreased less during traumatic stress by 

9.2% (±  3.0%, d = 0.15, p < 0.0001), stimulation by 2.2% (± 2.2%, d = 0.42, p = 

0.045), and following stimulation by 6.2% (± 1.9%, d = 0.57, p  < 0.0001). 
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Stimulation following exposure to personalized traumatic scripts resulted in marked 

changes in autonomic reactivity, similarly to stimulation without stress. Figures 4.10a-c 

illustrate changes in from the baseline state for the three intervals: traumatic stress, 

stimulation, and post-stimulation, merged from all six traumatic stressors. Relative to 

sham, active tcVNS decreased HR (Figure 4.10a, during stimulation, 5.6% (± 3.6%, d = 

0.43, p = 0.003); following stimulation, 3.9% (± 3.0%, d = 0.29, p =  0.013)), increased 

 

Figure 4-11. tcVNS after mental stress: Outcomes for stimulation following two 

types of mental stress, public speech and mental arithmetic. Bars represent the 

unadjusted mean changes from baseline, error bars: 95% CI, values calculated from 

raw data, * indicates p < 0.05. ß coefficients, adjusted CI, effect sizes (d), and p-

values were reported in ß (± CI, d, p) format. Active tcVNS group experienced the 

following relative to sham after adjustments: a) SD1/SD2 increased during 

stimulation right after speech task by 23.1% (± 21.1%, d = 0.71, p = 0.033).  b) 

Similar to the speech task, SD1/SD2 increased by 41.2% (± 22.5%, d = 0.44, p = 

0.001). c) PEP increased following stimulation after speech task by 6.8% (± 5%, d 

= 0.16, p = 0.009). (D) PP decreased following stimulation after mental arithmetic 

by 9.6% (± 9.7%, d = 0.68, p = 0.049).  
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PPG amplitude (Figure 4.10b, during stimulation, 30.8% (± 28.0%, d = 0.41, p = 0.032)), 

increased PAT (Figure 4.10c, during combined traumatic stress, 9.2% (± 3.0%, d = 0.15, p 

<  0.0001); during stimulation, 2.2% (± 2.2%, d =  0.42, p =  0.045); following stimulation, 

6.2% (± 1.9%, d = 0.57, p < 0.0001)), indicating attenuation in the elevated autonomic tone 

due to stress. These effects were not initially observed, as no differences (p > 0.05) were 

found between active and sham during the first traumatic script.  

tcVNS affects cardiac contractility and heart rate variability following mental stress. 

Figures 4.11a-d summarize the effects of tcVNS when applied after two different mental 

stress tasks: public speech and mental arithmetic on the second and third days. SD1/SD2 

increased during stimulation right after speech task (Figure 4.11a, inversely related to 

sympathetic activity, during stimulation, 23.1% (± 21.1%, d = 0.71, p = 0.033)) and after 

mental arithmetic test (Figure 4.11b, during stimulation, 41.2% (c 22.5%, d = 0.44, p =  

0.001)). 

Active tcVNS increased PEP (Figure 4.11c) following stimulation compared to sham 

(6.8% (± 5%, d = 0.16, p = 0.009)), indicating a decrease in cardiac contractility and 

sympathetic activity. Active tcVNS also decreased PP following stimulation after the 

mental arithmetic task compared to sham (9.6% (±9.7%, d = 0.68, p = 0.049); Figure 3D), 

indicating a decrease in vascular reactivity 

4.4.4 Discussion and Conclusion 

This study showed that tcVNS modulates autonomic, cardiovascular, and vascular 

measures in PTSD with or without exposure to traumatic and mental stress. The broad 
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interpretation of the changes due to tcVNS are similar to the sample involving non-PTSD 

controls (i.e., reduction of sympathetic tone at baseline and blocking sympathetic responses 

to stress) [293]. Additionally, the effects of tcVNS on vascular measures (i.e., PPG 

amplitude) persist as markers of autonomic changes with tcVNS independent of disease 

status.   

Active tcVNS decreased sympathetic arousal as measured by autonomic, cardiovascular, 

and vascular measures across multiple days and types of stressors. Results were seen on 

the first day after multiple exposures to personalized traumatic script stress, and on the 

afternoons of the second and third days after exposure to mental stress challenges (public 

speaking, mental arithmetic) in the morning. PPG amplitude was a persistent biomarker of 

stimulation regardless of the disease status. We found greater SD1/SD2 response to tcVNS 

than sham, while the other frequency domain metrics were not affected by tcVNS. While 

the biological significance of this measure/finding is not clear, it is complemented by 

auricular VNS studies in which frequency-domain HRV improved [156, 157, 177]. 

SD1/SD2 is a non-linear Poincaré-based HRV, which is less studied in literature, although 

another study noted that it is negatively associated with diabetes [321]. Hemodynamic 

measures (BP, HR) have been studied more, and been mixed throughout tcVNS studies: 

tcVNS decreased HR in humans [177] and rats, albeit only momentarily [181]. Other 

studies, however, have not observed any autonomic or cardiovascular changes [182]. 

tcVNS improved recovery from traumatic stress (reduced HR, increased PAT) and 

decreased peripheral sympathetic activity (decreased PPG amplitude). The results except 

PPG amplitude (HR and PAT) differ from the non-PTSD cohort results for traumatic stress. 

Additionally, no difference in PEP or EDA were noted for the PTSD cohort. With the 
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merged data (Figure 4.10c), sham group experienced more reactivity to stress. Patients with 

PTSD fail to habituate to repeated exposure of stress [322, 323]. The therapeutic potential 

of tcVNS is shown by its effect in decreasing stress reactivity. These results suggest that 

repeated tcVNS enhances resilience in the face of repeated stress in patients with PTSD.  

Active tcVNS improved cardiac contractility recovery following the speech task. PEP is 

an index of effort-related cardiac activity [324], with greater PEP indicated decreased effort 

and cardiac sympathetic activation. PEP is responsive to tasks requiring effortful active 

coping [324], similar to the speech task, potentially indicating tcVNS mitigates effort 

during the speech task. PEP has been shown previously to respond differently to challenge 

or threat conditions, specifically resulting in decreases with challenge and minimal changes 

with threat [325]. In the current study, PEP decreased with the speech task in both groups, 

and the decrease was mitigated with active tcVNS. The traumatic stress perhaps could be 

regarded as threat for patients with PTSD. PEP outcomes for speech tasks and (the lack of) 

PEP outcomes for traumatic stress might be due to the perceptional differences for 

challenge versus threat [326]. A comparison of previous works in PTSD notes more than 

double cortisol release with cognitive challenge [327], compared to the cortisol levels with 

traumatic stress [328]. Although there is no direct statistical comparison between these 

studies, the magnitude differences in cortisol levels are apparent.  

Several aspects of this study might limit the generalization of the results. The active group 

was female-dominated due to the small sample size. However it is important to note that 

PTSD is twice more prevalent in females than males [20]. The timing of the stimulation is 

also relevant to consider in the interpretation of our results. Prior animal and human studies 

initiated the stimulation before or during the stimuli [145, 172, 296, 297, 303]. In our study, 
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we stimulated immediately at the end of the exposure to stress in terms of listening to 

scripts or performing mental stress [50, 51]. Given instructions to hold images of trauma 

in the mind, and based on our prior work showing that physiological indicators of stress 

persist after termination of the task, we feel that this timing corresponds to the peak period 

of stress as experienced by the individual. Our findings on the effects of tcVNS using this 

protocol on autonomic function, however, are consistent with prior preclinical and clinical 

studies of VNS using various stimulation timings and protocols [144, 145, 156, 172, 319]. 

Future studies should compare stimulation before, during, and at the termination of stress 

protocols. 

In summary, using a multimodal sensing approach, we found that tcVNS at rest and paired 

with various stressors modulates the autonomic nervous system and cardiovascular 

reactivity. We demonstrated feasibility of use of wearable sensing devices for measurement 

of novel physiological markers in patients with PTSD. These modalities can be used in a 

home setting to assess target engagement and treatment efficacy for personalized 

neuromodulation. Future work should focus on methods to evaluate longitudinal outcomes 

and parameter determination studies for selective modulation of autonomic tone and to 

utilize these modalities in assessment of response to neuromodulation treatments in PTSD 

[155, 329].   

4.5 tcVNS Mitigates Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 

Response to Stress 

We also investigated relevant serum cytokines and cellular stress biomarkers. This part of 

the work was in collaboration with Bradley D. Pearce’s research group (Yunshen Jiao and 
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Allison Hankus) at Rollins School of Public Health, Department of Epidemiology at Emory 

University. This part of the work is currently under review as a journal paper. Blood 

samples were processed at Bradley D. Pearce’s lab. I evaluated the effect of tcVNS by 

comparing PACAP concentration across timepoints spanning three days from the analyzed 

blood data.  Due to budget constraints, a limited number of blood draws (baseline and end 

of each day, timepoints 0, 14, 18, 22 in Figure 4.12) were processed. We also investigated 

PACAP concentration with baseline psychological assessments. 

4.5.1 PACAP Analysis Sample 

A total of 36 subjects who completed or at least partly completed the trauma tasks were 

involved in these analyses. Subject groups were similar in age, body mass index (BMI), 

race, education level and marital status. Although subjects were randomly assigned to the 

tcVNS treatment or sham treatment groups, only female PTSD patients received tcVNS 

treatment. The gender proportion in the other groups was similar. The average age of this 

population was 30.3 (SD = 9.0) years, and the average BMI was 26.6 (SD = 5.6) kg/m2. 

Among all the 36 subjects, 21 (58.3%) were female, 18 (50%) White / Caucasian, 21 

(58.3%) had a Bachelor’s or higher degree, and 24 (66.7%) had never married.   

4.5.2 Statistical Analysis 

Since the distribution of PACAP concentration was skewed, log-transformation was 

applied to PACAP concentrations to achieve normality and better interpretation in all the 

subsequent analyses. These (log) PACAP data were confirmed to be normal using Shapiro-

Wilk test. Initially, we computed partial correlations between (log) PACAP concentration 

(baseline, maximum, quartiles (lower (Q1, 25th percentile), medium (Q2, 50th percentile), 
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upper (Q3, 75th percentile)) for each subject) and psychometric scales, controlling for age, 

sex, BMI, race, and education and reported correlation coefficients (rho, ρ) and p-values. 

To assess the trajectory of PACAP concentration over time, we computed the delta (from 

baseline) at each timepoint. We used a linear mixed model to regress the delta PACAP 

values on timepoints (0, 14, 18, 22), PTSD status (yes/no), device type (active 

tcVNS/sham), as well as other covariates (BMI) with subject-specific random intercepts to 

account for within-subject correlations. When a significant main effect or interaction was 

present, pairwise post-hoc comparisons with Bonferroni-Holm corrections were used to 

determine location of differences. For this analysis, an a priori planned comparison 

 

Figure 4-12. Change in PACAP concentration over three days for active tcVNS 

and sham groups. * indicates p ≤ 0.05 after post-hoc corrections, error bars are 

standard error of the mean. Sham group had a marked increase in PACAP, 

consistently increasing over the course of three days. This elevation was less in 

active tcVNS group.  



 101 

approach yielded the number of tests as five: successive time points (e.g., 14 vs 18) and all 

numbers different from 0. Effect sizes (Cohen’s d) were reported for results, regardless of 

the significance of p-value, based on group means, standard deviation, and group sample 

size for device and PTSD status main effects [330]. For post-hoc analyses that include 

timepoints, repeated measures Cohen’s d (drm) was calculated that includes a correction 

factor based on the correlation of PACAP concentrations between two timepoints (for 

example, correlation of delta PACAP between timepoints 0 and 18 and between timepoints 

0 and 22 were included as a correction factor) [330]. Missing biomarker data were assumed 

to be missing completely at random for reasons such as hemolyzed sample or missing 

baseline data, and all analyses were based on available data. Statistical analyses were done 

using R (v 3.6.0) and MATLAB R2020a. 

4.5.3 Results 

First, the association between PACAP baseline concentration and scores of psychological 

and functional scales were examined. Baseline PACAP concentrations were significantly 

positively correlated with total PTSD Symptom Score (PTSD-SS) (ρ = 0.45, p = 0.04) and 

significantly negatively correlated with Baecke Sports Index (ρ = -0.46, p = 0.05). The 

maximum PACAP concentrations (from timepoints 0 to 22 for each subject) were 

significantly positively correlated with Hamilton Anxiety Scale (HAM-A) (ρ = 0.43, p = 

0.05) and Hamilton Depression Scale (HAM-D) (ρ =  0.45, p = 0.04). Upper quartile 

PACAP concentrations (from timepoints 0 to 22 for each subject) were significantly 

negatively correlated with Baecke Leisure Index (ρ = -0.53, p = 0.03). None of the other 

psychological and functional scales were statistically significant with the examined 

PACAP concentrations. 
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Figure 4.12 shows the change in PACAP concentration over three days for active tcVNS 

and sham groups. When examining the PACAP values within the overall sample, the main 

effect of device type (p = 0.26, d = 0.46) and PTSD status (p = 0.13, d = 0.12) along with 

interactions of device type by time (p = 0.53), device type by time by PTSD status (p = 

0.59), PTSD status by time (p = 0.48), and PTSD status by device type (p = 0.63) were not 

significant. However, the main effect of time was statistically significant (p = 0.008).  Post-

hoc comparisons revealed elevated PACAP at timepoints 18 (p = 0.03, drm = 0.27) and 22 

(p = 0.03, drm  = 0.28), but not at timepoint 14 (p = 0.27, drm= 0.18). No other significant 

differences were observed at any timepoint for the overall sample (p > 0.05). 

Although the device type by time interaction was not significant, a subsequent analysis was 

completed using an isolated dataset with just sham or active across time to better determine 

the contributions of treatment group to the overall time effect. No significant main effects 

or interactions were observed for active tcVNS (p = 0.21). The active group effect sizes 

were drm = 0.12, drm = 0.21, and drm = 0.18, for days 1, 2, and 3, respectively.  We further 

examined whether the effect was driven by the sham group. In our isolated analysis, a 

significant main effect of time was observed in the sham group (p = 0.04). Post hoc tests 

revealed significant differences at timepoints 18 (p = 0.04, drm = 0.35) and 22 (p = 0.04, 

drm = 0.41) compared to timepoint 0. No other significant differences were observed in 

sham including timepoint 14 (p = 0.13, drm = 0.27). 

4.5.4 Discussion and Conclusion 

We found that PACAP increased over the course of the stress protocol, an effect attenuated 

by tcVNS (but not sham stimulation) in traumatized individuals both with and without 
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PTSD. Increased PACAP concentrations were correlated with elevated PTSD symptoms 

at baseline, replicating earlier findings [101]. We also found that elevated PACAP was 

associated with increased symptoms of anxiety and depression and impairments in social 

and physical function. As PACAP is known to regulate cellular stress response [101, 102], 

longitudinal evaluation of PACAP may be helpful in tcVNS treatment monitoring. 

This investigation touches on two main points. First, to our knowledge, this is the first 

report of PACAP in humans undergoing a trauma recall and mental stress paradigm over 

multiple days. Trauma recall and stressful tasks were associated with a steady increase in 

PACAP blood levels, regardless of the treatment status. Second, notably, the sham group’s 

PACAP increase was higher, compared to active tcVNS group, which suggests that tcVNS 

may reduce PACAP elevation in response to stress. These results, along with significant 

correlations between PACAP and psychological scales (PTSD-SS, HAM-A, HAM-D, 

Baecke Sports Index, Baecke Leisure Index) suggest that PACAP may play an integral role 

in stress and PTSD, supporting relevant literature [102].  

PTSD is also associated with poor health predictors, notably physical inactivity [331], also 

recognized in our study with negative correlations of baseline PACAP with Baecke Sports 

Index. We did not find significant correlations with other assessments of PTSD symptoms 

(CAPS, PCL-C, ETI, ATI), we believe that this could be due to small sample size. For 

example, only patients with PTSD can have a total CAPS score, which significantly 

decreased the sample size for this correlation. Regardless of the p-values, all psychological 

surveys indicating increased severity with higher scores were positively correlated with 

baseline PACAP. Similarly, physical activity scales (Baecke Questionnaire) were 

negatively correlated.  
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The limitations of this pilot study could be listed as follows. First, the sample included 12 

patients with PTSD, and all three male patients were randomly assigned to the sham group. 

Due to this small sample size and the fact that none of the PTSD male subjects received 

the tcVNS treatment, we cannot evaluate the effect of tcVNS treatment on PACAP 

concentrations among PTSD males. Moreover, as gender may be an effect modifier of 

PACAP concentrations and PTSD, this interaction could not be evaluated within the tcVNS 

treatment group. Prior work has suggested that blood levels of PACAP are associated with 

PTSD diagnosis among females and stress-regulation pathways may vary between men 

and women [101]. Although levels of PACAP were lower at all times points taken after 

traumatic stress and mental stress in the tcVNS group compared to the sham group, the 

interaction term for device by time was not significant. This is also likely related to the 

small sample size, and therefore our results should be considered preliminary and in need 

of replication. PACAP is involved in circadian rhythm regulation [332-334]. Although our 

blood draws were scheduled in the A.M., our study lasted for three days, and the precise 

blood draw time for each subject varied somewhat, as would be anticipated with a multi-

day human investigation. Lastly, in partial correlations between PACAP data (baseline, 

maximum, quartiles) and psychometric scales, we did not control for multiple testing, 

which may result in a Type I error. Again, this is considered an exploratory analysis, and 

results need to be established in a larger study. 

In this study, we showed that acute traumatic and mental stressors are associated with 

increased PACAP concentrations in the peripheral blood in traumatized individuals both 

with and without PTSD. PACAP appears to be a modifiable biochemical biomarker, and 

its temporal changes may predict tcVNS treatment effect to acute stress or neuropsychiatric 
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disorders showing significant PACAP dysregulation. Moreover, longitudinal monitoring 

of PACAP may potentially be used to follow personalized, adaptive dosing strategies for 

larger trials and/or to identify respondent and non-respondent patients to potential 

treatments. Future studies should investigate sex differences in PACAP concentrations 

with acute and longitudinal tcVNS treatment using larger sample sizes. 

4.6 tcVNS Reduces Stress-Induced Activation of Interleukin-6 and Interferon-γ in 

PTSD 

We next examined the effects of tcVNS on peripheral cytokine response to the traumatic 

and mental stress protocol in traumatized subjects with and without PTSD. This part of the 

work was in collaboration with J. Douglas Bremner and Bradley D. Pearce’s research group 

Emory University. Blood samples were processed at Bradley D. Pearce’s lab by Allison 

Hankus. The measured cytokines were Interleukin (IL)-1ß, IL-2, IL-6, TNFα, and IFN-γ. 

These results are currently under review as a journal paper. 

4.6.1 Statistical Analysis 

ANOVA tests were used to compare the demographic characteristics across the tcVNS 

treatment or sham stimulation group among patients with PTSD and healthy participants. 

We used ANOVA and linear regression models to measure the association between the 

cytokine levels and PTSD status, with or without tcVNS treatment effect. The beta 

coefficients (ß) from the mixed models indicate the adjusted average percent or absolute 

differences in the changes of parameters from the corresponding rest values, comparing 

active vs. sham device types. ß were reported along with 95% CI and P-values. A two-
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sided p < 0.05 denoted statistical significance. All statistical analyses were performed using 

SAS 9.4 (SAS Institute, Cary, NC) and MATLAB (R2017b, Natick, MA). 

4.6.2 Results 

The average age of this population was 30 (SD = 9), and the average BMI was 27 (SD = 

5.60). Among all the participants, 18 (50%) were White / Caucasian, 21 (58%) were 

female, and consistent with prior reports [20], 9/12 (75%) of the PTSD patients were 

 

Figure 4-13. Effects of tcVNS or sham on IL-6 response to stress in patients with 

PTSD and traumatized participants without PTSD. Toward the end of day 1 with 

repeated traumatic stress (TS), there was an increase in IL-6 greater in sham versus 

tcVNS in PTSD patients (*) that occurred 90 minutes after the presentation of the first 

trauma scripts (Timepoints #12 and #14)(p < .05). On day 2 participants underwent a 

baseline blood draw at rest (task #15) and 90 minutes after mental stress (MS) in the 

form of public speaking and mental arithmetic paired with tcVNS or sham (task #18). 

On day 3, participants again underwent a baseline blood draw at rest (task #19) and 90 

minutes after mental stress (MS) using the same protocol as D2 (task #22). There were 

no significant differences between sham or active on days 2 or 3 with mental stress 

(MS, public speech and mental arithmetic) compared to each days’ baseline in PTSD. 

Non-PTSD participants showed no difference between active or sham for either TS or 

MS days. Statistical analysis showed a significant day by diagnosis by device effect 

(p < .05), with secondary analysis showing a significant increase in IL-6 in sham 

versus tcVNS in the PTSD group with traumatic scripts (Day 1, p < .05).  
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female. All of the PTSD participants randomized to VNS were female (Fisher’s Exact p = 

0.045), and the gender proportion in the other groups was similar. 

Exposure to personalized traumatic scripts in conjunction with sham stimulation resulted 

in an increase in IL-6 in PTSD but not non-PTSD participants that was greater following 

repeated exposure to personalized traumatic scripts (Day 1) than for mental stress (public 

speaking and mental arithmetic on Days 2 and 3), that peaked about 90 minutes after 

exposure to the first traumatic scripts and was blocked by tcVNS (ß = 0.474, 0.009 – 0.939 

95% CI, p = 0.046) (Figure 4.13). There was minimal effect on IL-6 for mental stress 

(public speaking and mental arithmetic) on days 2 and 3 in either the PTSD or non-PTSD, 

sham or tcVNS groups. Personalized traumatic scripts resulted in an immediate and marked 

rise in IFN-γ on Day 1 in the PTSD but not the non-PTSD participants (Figure 4.14). The 

traumatic script-induced increase in IFN-γ was blocked by tcVNS versus sham (ß = -0.246, 

 

Figure 4-14. Effects of tcVNS or sham on IFN-γ response to stress in patients with 

PTSD and traumatized participants without PTSD. Overall there was a marked 

increase in IFN-γ in the PTSD but not the non-PTSD participants which was most 

pronounced after the first traumatic script (task #4) and was largely blocked by tcVNS 

but not sham, resulting in a significant increase in IFN-γ over the three day stress 

protocol in the sham group versus active tcVNS (*, p < .05).  
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-0.470 -- -0.022 95% CI, p = 0.032) (Figure 4.14). There were no statistically significant 

differences between tcVNS of sham stimulation groups in IL-2, IL-1ß or TNF-α. 

4.6.3 Discussion and Conclusion 

tcVNS blocked an increase in the inflammatory marker IL-6 and IFN-γ seen with 

personalized traumatic scripts in PTSD patients administered sham stimulation. Non-PTSD 

participants with a history of exposure to psychological trauma overall had minimal IL-6 

or IFN-γ increases in response to personalized traumatic scripts. Personalized traumatic 

scripts had much greater effects than mental stress including mental arithmetic and public 

speaking on IL-6 and INF-γ in PTSD patients and therefore the blocking effects of tcVNS 

were more prominent.  

Studies showing that peripheral IL-6 and TNF-α concentrations vary with changes in HRV 

are consistent with the current findings that the vagus modulates peripheral inflammation 

[335, 336]. The current study shows that PTSD patients have an enhanced inflammatory 

response to stress, with the greatest effects for personalized traumatic scripts. Our finding 

of blocked IL-6 and IFN-γ responses to stress with tcVNS adds to the growing literature 

on nVNS affecting central brain and peripheral autonomic function in human [160, 161, 

174, 178, 293, 329, 337, 338] and animal studies [177, 181, 182]. 

Projections of the vagus through the nucleus tractus solitarius (NTS) extend to the locus 

coeruleus and hypothalamus, key areas involved in sympathetic hyperarousal in PTSD, as 

well as brain areas like the amygdala that are involved in the fear response and the medial 

prefrontal cortex / anterior cingulate, which is involved in both fear extinction and 

modulation of peripheral neurohormonal responses to stress . tcVNS likely travels through 
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these central pathways to effect changes in peripheral inflammation. Cytokines, 

inflammasomes, and other inflammatory markers have behavioral effects similar to stress-

related psychiatric symptoms [69, 339], so reduction of spikes in IL-6 and IFN-γ that likely 

occur multiple times a day with traumatic reminders and daily stressors in PTSD patients 

to will likely benefit symptoms driven by inflammation and lead to improvements in 

clinical course. For instance, in our studies of coronary artery disease [62] patients, we 

found not only an increase in mental stress-induced IL-6 in those with co-morbid PTSD 

[99]but also that psychological distress (including an aggregate measure of subjective 

anger, distress and PTSD) was associated with long-term adverse cardiovascular outcomes 

[340]. Furthermore, CAD patients with mental stress-induced myocardial ischemia (MSI) 

had an increase in PTSD [340], and subjective anger response to stress was associated with 

MSI [64]. 

IL-6 and IFN-γ represent only one part of a complex system that is responsive to stress and 

could be modifiable by tcVNS. Other inflammatory factors implicated in PTSD include 

High mobility group protein B 1 (HMGPB1), a proinflammatory master mediator, which 

is increased in PTSD, and inhibited by VNS [341, 342]. T helper (TH) cell differentiation 

is partly controlled by cholinergic neurotransmission and therefore amenable to vagal 

stimulation [343], and dysregulation of TH cells differentiation and function has been 

proposed in PTSD [344]. TH1 cytokines include proinflammatory mediators (IFN-γ) as 

well as IL-2 and IL-3. TH2 cytokines are IL-4, IL-5, and IL-13. IL10 is stimulated by 

catecholamines, is broadly anti-inflammatory, and induces a shift in the TH1/TH2 balance 

toward TH2 dominance. Although both afferent and efferent arms of the vagus may 

contribute to the reduction in these proinflammatory cytokines, selective unidirectional 
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stimulation of the cervical vagus has been shown to dampen TNF production [345]. The 

kynurenine pathway is also relevant to the effects of VNS on physiological function and 

mental disorders. VNS in humans resulted in a tendency to a reduction in kynurenine [137], 

and an increase in anthranilic acid (AA), which is neuroprotective . Kynurenic acid 

(KYNA) is an antagonist of alpha-7 Nicotinic receptors, which are key mediators of the 

efferent cholinergic anti-inflammatory loop [343, 345, 346]. 

This investigation is not without limitations. The sample size was small, and the current 

findings should be replicated in other samples. The current study also did not find as much 

of an IL-6 response to mental stress as in our prior study of public speaking stress in 

patients with PTSD. That was a different sample, however, including older patients with 

CAD and more medical comorbidities than the current sample of younger uncomplicated 

PTSD patients [99]. The prior study was also the first exposure to stress performed while 

sitting in a chair as opposed to lying in a scanner, which we have found presents a more 

direct interpersonal experience in the solicitation of stressful responses within a social 

context. In prior studies we found a reduction in cardiovascular reactivity on a following 

day when stress was repeated in a scanner [347]. In the current study, neutral mental stress 

came on subsequent days to personalized traumatic scripts, so a reduction in responsiveness 

is to be expected.  

4.7 Self-Reported Anger Response for tcVNS Paired with Traumatic Recall 

We next examined subjective anger scores, grouped by PTSD and non-PTSD. The 

questionnaires were performed by the clinical staff during the three-day protocol. Non-

PTSD participants had minimal anger responses with no statistically significant differences 
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between the tcVNS and sham stimulation groups (Figure 4.15). It is notable that PTSD 

patients who received active tcVNS reported less subjective anger scores, although active 

and sham groups started with similar anger rating at the very first traumatic script (no 

stimulations before). These data highlight potential beneficial effects of tcVNS in 

perceived anger, however a larger sample is necessary to draw behavioral conclusions. 

4.8 Automatic Detection of Target Engagement for tcVNS 

Transferring tcVNS technologies to at-home settings brings challenges associated with the 

assessment of therapy response. In this part of the investigation, we studied how machine 

learning can help to determine target engagement for tcVNS using noninvasively obtained 

ANS activity information [329]. We created a feature set from autonomic parameters to: 

1) detect active (vs. sham) tcVNS stimulation presence with machine learning methods, 

 

Figure 4-15. Effects of tcVNS or sham on subjective anger as measured with the Visual 

Analogue Scale (VISAN). There were increases in anger over time from baseline (B) 

and neutral scripts (NS) to trauma scripts (TS) in PTSD that were blunted by pairing 

with active tcVNS. Traumatized participants without PTSD showed less of an anger 

response to scripts and did not show differences between groups. 
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and 2) determine which sensing modalities and features provide the most salient markers 

of tcVNS-based changes in physiological signals.  

The ANS activity data with tcVNS applied in tandem with acute traumatic stress is 

clinically relevant. Patients with trauma-related psychiatric disorders may experience 

traumatic flashbacks multiple times a day, triggered by, for example, sensory data (odor, 

sound, room size), cues related to the traumatic event, or even temporal data (incident 

repeated at the same time of the day) [348-352]. These specific triggers may be relevant to 

personal traumatic memories from sexual assault to combat exposure [13]. Engineering 

efforts to transfer tcVNS to at-home use bring challenges regarding the stimulation 

 

Figure 4-16. Wearable neuromodulation technologies can interface with noninvasive 

sensing. Ongoing activity acquired from one or more sensors can be utilized to assess 

cardiovascular and peripheral physiological response via signal processing. Events or 

changes in these data streams can then be decoded using machine learning via feature 

extraction, in order to dynamically trigger closed-loop delivery when needed, and to 

quantify patient adherence and stimulation efficacy for at-home therapy. 
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application. A fundamental challenge is the determination of whether stimulation delivered 

properly [353]: The electrode placement and stimulation intensity affect the current flow 

and distribution, hence the stimulation efficacy, as tcVNS electrodes are directly in contact 

with the skin rather than placed on the nerve itself (as with an implantable counterpart). 

Thus, personalized neuromodulation to provide feedback for the physician or for the patient 

on whether stimulation has been properly delivered to the vagus nerve is necessary for 

longitudinal treatment paradigms. As summarized in Figure 4.16 interfacing tcVNS with 

noninvasive sensing modalities and extracting information to decode whether the 

stimulation engaged the nerve target could dramatically improve stimulation efficacy and 

provide closed-loop delivery in response to a detected event. Continuous cardiovascular 

and peripheral physiological sensing offer a convenient tool for this investigation, due to 

the intimate relationship of the vagus with the heart and the peripheral physiology, and the 

ubiquity of noninvasive wearable technologies.  Previously, we observed changes in 

individual features such as HR, the differences between groups in these individual features 

were not sufficient to allow for classifying whether or not tcVNS was properly delivered. 

Another point to consider is the optimization of the acquired modalities: while wearable 

sensing offers a convenient tool to quantify tcVNS, learning from the optimized modalities 

(i.e. “learning from less data”) would be favorable for hardware adaptations that possibly 

may not employ all measurement modalities discussed.   

In  this work, we employed machine learning techniques to determine the stimulation type, 

active or sham, from the extracted ANS activity parameters and determined suitable 

sensing modalities for “in the wild” tcVNS use that could quantify therapy response, and 

ultimately enable closed-loop tcVNS delivery when a traumatic stress trigger is detected. 
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4.8.1 Statistical Analysis 

 

Figure 4-17. a) ECG, PPG, SCG, RSP signals were processed and HR, PAT, PEP, PPG 

amplitude, RR, RW, RP were extracted as physiological parameters. b) Using the 

extracted parameters, dataset constructed after normalization, resampling, and 

windowing. c) After standardization, dimensionality reduction methods were applied 

for dataset visualization. Then, feature selection and machine learning were conducted. 

PATF: PATFOOT; PATP: PATPEAK; AO: Aortic opening; PPGA: PPG amplitude.  
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Subject demographics (age, gender, height, weight, body-mass index) and baseline 

physiological parameters were compared between the two device groups, active and sham, 

to understand whether the groups were significantly different from each other. Normality 

was assessed using Shapiro-Wilk test. The comparisons were made using t-tests for normal 

continuous variables, Wilcoxon rank-sum tests for non-normal continuous variables, and 

chi-squared tests for categorical variables. P-values lower than 0.05 were considered 

statistically significant. The groups were determined to be balanced with equivalent 

baseline characteristics, rendering the data amenable to use for further engineering 

purposes, demographics detailed in Ref. [329]. 

4.8.2 Dataset Construction 

Figure 4.17 summarizes signal processing and parameter extraction paradigm, conducted 

in MATLAB (R2017b, Natick, MA). The physiological parameters related to ANS and 

peripheral physiological activity were extracted from four sensing modalities: ECG, PPG, 

SCG, RSP. The physiological parameters were extracted from stimulation and post-

stimulation intervals, which correspond to the data from the last minute of stimulation and 

one-minute data from three minutes after the stimulation ended, respectively. Then, these 

parameters were divided by the mean values obtained from the rest period to normalize 

inter-subject variability.  The rest data were obtained before the stimulation protocol 

started, at the same body position the stimulation was carried out. The dataset for machine 

learning was constructed from the time-series data obtained from the normalized intervals. 

The extracted parameters were resampled to the length of the parameter that has the 

maximum length to equalize the length of each parameter within an interval for further 

usage of the resampled data in windowing (to obtain equal length of arrays for windowing), 
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using an antialiasing FIR lowpass filter and compensating for the delay introduced by the 

filter. Resampling was necessary as the length of respiratory features are approximately 

half of the beat-by-beat features per unit time, as human respiration and heartbeat 

frequency are different (12-20 breaths per minute respiratory rate versus 70-100 beats per 

minute heart rate). Then, instances were created by using 10-sample sliding windows with 

9-sample overlap (90% overlap). The features consisted of the mean, standard deviation 

(std), maximum (max), minimum (min), area under curve (auc) and slope (slp) of the 

extracted physiological parameters in each window. The approximate first order 

derivatives (differences between the adjacent elements) were also computed to generate 

additional parameters. The same feature calculation methodology was applied to the 

difference matrices (except slope). The multi-dimensional feature matrix was constructed 

from all extracted features and the corresponding labels as device types (tcVNS, sham). 

This matrix included features as columns and instances as rows, consisting of 176 features 

and 1780 instances (827 tcVNS, 953 sham). Overall, these features were derived from 16 

time-series data (HR, PEP, PPG Amplitude, PATFOOT, PATPEAK, RR, RW, RP in two 

intervals), with 11 mathematical properties derived from each of them and their 

differences. Later, the data were standardized across each feature to have a mean of zero 

and a standard deviation of one.  

4.8.3 Machine Learning 

For the machine learning paradigm, our primary concerns were 1) minimizing the number 

of features/sensing modalities used in classification to optimize the computational power 

and to determine which sensing modalities are necessary for a wearable implementation 

(note that there are a total of 176 features from four sensors with unknown contributions to 
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the classification task), 2) developing a realistic validation paradigm for a new subject who 

has just started undergoing stimulation. To address 1, we implemented a univariate feature 

selection paradigm based on sorting ANOVA F-statistics of features to eliminate redundant 

data without incurring significant loss of information [221].  Note that this feature selection 

step is not mandatory but optional. Assuming no need for optimization, not applying this 

step (simply using all features) did not cause a dramatic decrease in performance (See Table 

4.2, Support Vector Machine with sigmoid kernel, which was used as our classifier). To 

address 2, we wanted to ensure that the training dataset are not biased for a new, incoming 

subject by using LOSO-CV. Typical methods such as K-fold cross validation would not 

guarantee that the training dataset does not have data from the incoming subject. The fact 

that there is data from the incoming subject in both the training and testing datasets will 

likely make the model know more about the target subject than it should. With an entirely 

new subject (not in the training dataset), the K-fold trained model will potentially perform 

poorly because it did not include data from the new subject in the training set before. 

LOSO-CV, on the other hand, guarantees there is no data from the incoming subject in the 

training dataset in model evaluation process already, hence this is a conservative approach 

to assess an expected performance for an incoming subject. Feature selection and LOSO-

CV were implemented as follows: For each LOSO-CV loop, one subject was left out of the 

feature selection and classification model training, then used for testing. The procedure 

was repeated for each of the 26 subjects.  
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We determined the number of top features by implementing the feature selection and 

LOSO-CV and swiping the number of top features from 1 to 176. For each case, we 

computed the area under curve obtained from the receiver operator characteristics (ROC  

AUC) and plotted ktopfeatures versus ROC AUC. Then, we determined a range for ktopfeatures 

where ROC AUC is high (> 0.9) and robust enough to ensure good performance and 

ktopfeatures is low enough to reduce processing time. 

Following the determination of feature selection and the needs for model evaluation, we 

explored the most effective classification architecture for predicting stimulation presence 

from physiological signals. Using LOSO-CV, we used the following classifiers: Naïve 

Bayes (for predicting baseline performance), Random Forest, k-Nearest Neighbors (k-NN), 

Logistic Regression, Multilayer Perceptron (MLP), Decision Trees, and Support Vector 

Machine (SVM) with linear, polynomial, radial bases function (RBF), and sigmoid kernels. 

Table 4-2. ROC AUC Scores of Classifiers Derived Using LOSO-CV and All 

Features 

Naïve 

Bayes 

Random 

Forest 
k-NN 

Logistic 

Regression 
MLP 

0.52 0.76 0.56 0.80 0.71 

Decision 

Trees 

SVM 

(Linear) 

SVM 

(Polynomial) 

SVM 

 (RBF) 

SVM 

(Sigmoid) 

0.62 0.80 0.66 0.65 0.98 

ROC AUC = Receiver operator characteristics area under curve; k-NN = k-Nearest 

Neighbors; MLP = Multilayer Perceptron; SVM (Kernel) = Support Vector Machine 

(Kernel Function); RBF = Radial Basis Function 
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Table 4.2 lists the ROC AUC values for each classifier. We observe that SVM with a 

sigmoid kernel performs the best among different classifiers used, hence we decided to use 

this classifier. 

4.8.4 Results 

We performed multiple classification runs with a sigmoid SVM classifier using features 

from different sensors alone and their combinations. Supplementary Figure S1 in [329] 

shows the number of features versus ROC AUC, plotted from one feature to the maximum 

number of features based on the sensors chosen. It is apparent that ROC AUC>0.8 could 

be obtained from different sensor combinations.  

By using the described feature selection and machine learning methodologies, we obtained 

the highest ROC AUC (> 0.90) and highest accuracy, precision, recall (> 0.90) for four 

cases: By using: 1) all sensors, at least 140 top features out of 176; 2) ECG and PPG 

sensors, at least 70 top features out of 88; 3) ECG, SCG, and PPG sensors, at least 99 top 

features out of 110, and 4) ECG, PPG, and RSP sensors, at least 84 features out of 154. As 

our aim was to minimize the number of sensing modalities and features to reduce 

complexity for a future wearable implementation, we focused on the classification results 

for the second case, the combination of ECG and PPG. The features in this dataset contain 

HR, PPG amplitude, and PAT. 

Our next goal was to analyze the results obtained from ECG and PPG. Figure 4.18 details 

the outcomes for the features obtained from ECG and PPG. Figure 4.18a shows the t-SNE 

plot grouped by tcVNS and sham clusters. A nonlinear separation exists between the device 

groups. Figure 4.18b shows how the number of selected top features change the ROC area. 
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A ROC area of > 0.9 can be obtained by using 70 top features out of 88 (and beyond). 

Figure 4.18c-d summarize the machine learning outcomes for the classification using top 

 

Figure 4-18. Dimensionality reduction and classification outcomes for separating the 

stimulus types: active tcVNS and sham. a) Dimensionality reduction applied to the 

high-dimensional feature matrix using t-SNE constructed from features from ECG 

and PPG. b) Number of Top features selected using ANOVA F-score-based feature 

selection versus receiver operator characteristics (ROC) area under curve (AUC). 

ROC AUC is robust to Top Features from 70 to 88. c) Confusion matrix for the 

classifier, obtained with LOSO-CV and minimum number of features (71). d) 

Receiver operator characteristics (ROC) for the classifier. A ROC area under curve 

(AUC) of 0.96 was obtained. Classification outcomes vary minorly with Top Features 

from 70 to 88.  
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71 features out of 88 (note that outcomes are similar between 70 to 88). The classification 

resulted in 25 correctly classified subjects out of 26 total subjects (12 active tcVNS, 14 

sham) with LOSO-CV. There was one false negative subject. Macro-averaged accuracy, 

precision, recall, and F1 scores of 96% with 0.96 ROC AUC were obtained as the 

performance outcomes. Due to the feature selection method applied in each LOSO-CV 

loop, the features used in the classification slightly differed for each subject. Figure 4.19 

shows the top 5 features obtained by applying the feature selection method to the whole 

dataset of 88, sorted by ANOVA F-values. PPG and HR features resulted in the largest F-

values. Lastly, we calculated the time complexity (the time elapsed encompassing all tasks 

ranging from signal processing to machine learning) for each subject as measured on a 

Core i7-6500U CPU @2.5GHz 12GB RAM personal laptop. We found that 2.6 (1.1) 

seconds (mean (SD)) were required to generate an output class for an incoming subject. 

 

Figure 4-19. Top five features sorted by ANOVA F-values, their histograms, and 

kernel density estimates grouped by classes. The top features were calculated from 

the full feature set obtained from ECG and PPG sensors. The dashed lines indicate 

the mean of the class.  
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4.8.5 Discussion and Conclusion 

In this work, we investigated methods for detecting target engagement for tcVNS by using 

cardiovascular and peripheral signals. The dataset constructed from ECG and PPG signals 

yielded sufficient information to detect whether therapy response occurred (active device), 

resulting in 25 correctly classified subjects out of 26. The false negative subject (active 

subject classified as sham) was a female aged 24 years. The combination of other sensing 

modalities resulted in similar classification outcomes, slightly changing the confusion 

matrix. Single sensors/features do not offer the same performance as the combinations. 

Thus, there is not a single biomarker or pattern that could be easily recognized by the 

human eyes; there is likely a complex, high-dimensional relation between multiple features 

that requires multiple modalities.  

The investigation of the most salient features reveals that features related to PPG and HR 

perform favorably compared to others. HR is regulated by both SNS and PNS activity [38]. 

Stimulation of the vagus nerve typically decreases SNS activity or increases PNS activity, 

also observed in the clinical portion of this study [293]. Moreover, increase in PPG 

amplitude was noted when tcVNS was paired with traumatic stress, compared to sham. 

From Figure 4.19b-f, PPG features increased and mean HR decreased for the tcVNS group. 

Both of these changes indicate a decrease in sympathetic tone, which perhaps makes the 

separation between the classes possible by these features.  

The analysis of machine learning performance outcomes is essential to gain an 

understanding regarding the translation of the methods to at-home settings: with our 

classifier, the accuracy, precision, recall, F1 scores were 0.96. Thus, the classifier could 
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provide a binary (e.g., red or green) indicator to the user following stimulation regarding 

whether the nerve target was successfully engaged. Among 100 stimulation 

administrations upon traumatic stress triggers, we would be able detect whether the 

stimulation happened correctly 96 times.  

The methods described in this study leverage physiological signals that are convenient to 

obtain with wearable sensing modalities, such as the smartwatches that measure ECG and 

PPG. The framework presented herein could remain the same and could be generalized to 

include other types of sensory data. Note that although the measured computation time was 

2.6 seconds on average to generate an output class for an incoming subject, this was 

computed with a personal laptop. A final implementation of this pipeline would not require 

a fully embedded platform as no precision timing is necessary. The collected signals could 

be transferred to a Cloud-based distributed system that employs parallel processing 

capabilities to further reduce this 2.6-second computation time if needed.  

Among the modalities we used, HR and respiratory effort information are typically 

collected in clinical practice, in a non-continuous manner. Therefore, we explored using 

only these features. Using the features obtained from HR, RSP, and their combination for 

the classification task do not outperform the reported results. The reader is referred to 

Supplementary Figure S1 in [329] for the details of this result. 

Other measures that might indicate stimulation presence from the literature are the use of 

microneurography, pupil size, serum cytokines (anti-inflammatory effects as quantified by 

tumor necrosis alpha, interleukin-6), HRV, or evoked potentials resulting from stimulation 

[157, 178, 354, 355]. Microneurography and serum cytokines are not non-invasive, not 
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pursuant to the goal of real-time identification, and are confined to clinical settings, 

electroencephalogram requires bulky multi-channel equipment, while pupil size was not 

found to give favorable results for stimulation in prior work. As for HRV, this measure 

does not have a continuous nature and requires a long-term clean recording to compute a 

single number based on the variability in R-R intervals. An auricular stimulation study 

noted changes in HRV with long-term recordings [157], while some studies did not note 

changes in HRV [356]. 

A number of limitations exist for the study described here. First, this study employs a 

reactive approach. Traumatic stress requires a flashback occurrence: the subjects should 

remember their memories to be stressed, which requires some time starting from the 

introduction of the traumatic recording. We applied stimulation immediately after the 

traumatic stress recording as our prior brain imaging studies demonstrated that the arousal 

persists following rumination of the traumatic script recording [51, 304]. Future studies 

should consider sweeping the timing of the stimulation, which might possibly 

downregulate the autonomic reactivity even before reaching a peak stressed state, based on 

prior preclinical studies [145, 303]. Second, this study did not have continuous blood 

pressure recordings, hence we could not use blood pressure-related measures except pulse 

arrival time (PAT) obtained from ECG and PPG, which is a measure related to both 

continuous blood pressure and cardiac contractility [206]. Nevertheless, analyses on the 

effects of auricular or cervical stimulation on cardiovascular and autonomic function have 

produced mixed outcomes throughout many studies that use basic vital signals such as HR, 

HRV, or BP, hence these basic measures are not likely to be sufficient for monitoring 

stimulation presence [296, 297, 356]. Lastly, in the current study, we obtained a 
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transmissive PPG signal that requires the photodiode (PD) and light emitting diode (LED) 

combination to be at the opposite sides of the skin. A reflective PPG sensor (both PD and 

LED on the same side of the skin) might be more appropriate for a comfortable and 

minimally obtrusive wearable device. 

This study demonstrates the first effort to provide real-time inputs that could be used in 

tcVNS therapy response, and further for closed-loop modulation for at-home tcVNS 

technologies. Multimodal signal fusion might be a viable approach in determining whether 

the stimulation occurred as expected. In addition to the investigation of individual 

parameters, sensor fusion could be instrumental in translating tcVNS to unsupervised 

settings to improve therapy response in a home-based setting. ECG and PPG sensing 

appear to provide relevant information regarding the stimulation delivery, and both signals 

could be obtained noninvasively, and are also prevalent in commercially available 

wearable sensing devices. The methods presented herein could thus be deployed in 

wearables allowing for a convenient home-based approach to supporting accurate and 

effective delivery of noninvasive vagal nerve stimulation therapies. 

Future studies should focus on the following to facilitate successful translation to clinical 

practice. Continuous blood pressure should be measured as an additional physiological 

parameter to be studied as it includes important vascular information; effects of the time of 

stimulation (before or during traumatic stimuli) on efficacy should be determined; and the 

ability of indices derived from reflective PPG sensors to capture the key physiological 

information should be quantified. Additionally, stimulation induces parameter-specific 

changes in physiology [155]. Therefore, regression models of stimulation parameters onto 
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the changes in cardiovascular and peripheral measures could provide a better understanding 

for inter-patient variability in noninvasive VNS studies. 

Finally, as another dimension of analysis, the positron emission tomography (PET) 

imaging part of the study led by Matthew T. Wittbrodt (Emory School of Medicine) was 

also recently published [357]. The analysis investigated the brain activity during traumatic 

stress for the non-PTSD sample. The results suggest that, compared to sham group, active 

tcVNS decreased brain activity during traumatic stress by attenuating the increased neural 

activity in the fear memory circuitry. In addition, patterns of decreased activation for the 

active group suggest improved appraisal and emotional processing.  

In summary, this chapter presented a broad investigation involving engineering, basic 

science, and clinical research on the use of tcVNS to mitigate the body’s acute stress 

response in a double-blind sham controlled randomized study. tcVNS appears to modulate 

physiological, inflammatory, and cellular responses to emotional and mental stress, as well 

as self-reported mood scales signal an attenuation in perceived anger in individuals with or 

without PTSD. Physiological measures quantifying the autonomic state are powerful 

candidates for technological translation, as they do not require blood work, could be 

obtained in remote settings outside of clinics, and are amenable to be designed as closed-

loop systems satisfying rehabilitation upon the detection of an autonomic perturbation. 
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CHAPTER 5. OBJECTIVE PTSD ASSESSMENT THROUGH 

TRAUMATIC STRESS REACTIVITY 

In this chapter, a methodology based on autonomic reactivity to traumatic reminders for 

objective assessment of PTSD is introduced. This methodology relies only on objectively 

measurable psychophysiological activity and patient background, rather than structured 

interviews prone to malingering and under-reporting. We consider a holistic approach, 

fusing autonomic reactivity to traumatic reminders—captured with multiple modalities of 

physiological sensors—and patient background. This assessment could help objective 

diagnosis of PTSD and potentially long-term monitoring of PTSD therapy response or 

trauma recall reactivity. Additionally, this work substantially extends the current literature 

by introducing psychophysiological correlates of clinician administered psychometric, 

personality, mood, and discomfort scales. 

5.1 Introduction 

PTSD may develop following single or repeated exposure to trauma related to threat of 

death, violence, or injury, either by direct exposure or witnessing/learning someone close 

to the individual faced the event. The current state of the art for diagnosing PTSD requires 

interaction with a medical professional and an approximately one hour long structured 

interview. As the diagnosis has a self-report nature, the interviews are susceptible to 

malingering or under-reporting the specific categories [183, 184]. Moreover, there is now 

a plethora of evidence on the effects of traumatic stress on survivors: Patients with PTSD 

experience a broad range of problem with memory, including problems with remembering 
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the traumatic event, gaps in memory, or in contrast, intrusive memories, evidenced by both 

preclinical and clinical research [358-361]. Given these, more objective measures are 

needed to assist in PTSD diagnosis. 

Previous research suggests that baseline physiology such as resting skin conductance and 

resting heart rate are informative: patients with PTSD exhibit greater levels in magnitude 

than those without PTSD [362, 363]. In addition to baseline physiology, patients with 

PTSD are known to elicit elevated psychophysiological reactivity to trauma-related cues 

[364]. Increased reactivity in HR, EDA, facial electromyogram (EMG), and HRV are 

observed as psychophysiological measures [365, 366]. Reactivity to trauma-related cues 

are associated with the severity of disorder, either for standardized trauma-related stimuli 

or internal mental imagery of traumatic events [364]. A recent study used trauma-related 

virtual reality videos to assess PTSD status using heart rate and skin conductance 

 

Figure 5-1. Illustration of reactivity-based objective PTSD assessment scheme. The 

fusion of autonomic reactivity to traumatic reminders and patient demographics 

could help objective diagnosis of PTSD and long-term monitoring of PTSD therapy 

response. Autonomic reactivity information is obtained using noninvasively 

obtained physiological signals germane to wearable sensing devices while the 

patient is hearing personal traumatic memories.  
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responses, obtaining classification accuracy between 89% to 92% (PTSD/non-PTSD) 

using 58 male participants with military service experience [367]. While promising, lack 

of women in the datasets limited the generalizability of the results. Another study used a 

novel method, speech samples, from male, warzone-exposed veterans with and without 

PTSD during CAPS interview [368]. Similarly, the dataset included only males who were 

already undergoing a CAPS interview, hence the usability of the technique and 

applicability to women have been open questions, though with promising results. Women 

are twice more likely to experience PTSD than men: 10% of women have PTSD sometime 

in their lives compared to 4% in men [369, 370]. In addition, more civilians are likely to 

experience PTSD than veteran population [371, 372], though the exposure likelihood 

increases in veterans.  

In this work, we utilized our dataset from physically healthy human individuals (females 

and males) with prior exposure to psychological trauma but without PTSD (n = 26), and 

patients with PTSD (n = 25) while they underwent a one-minute trauma recall paradigm to 

identify PTSD status. We developed a holistic approach using multiple measures of 

autonomic nervous system activity and patient background as a potential objective measure 

of PTSD (Figure 5.1). This is the first study to identify autonomic activity and patient 

background features that differentiate PTSD from trauma-exposed individuals without 

PTSD. We also correlated psychophysiological reactivity to traumatic memories with 

current standard psychometric scales.  

5.2 Methods 
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Figure 5.2 shows the CONSORT and dataset diagram detailing the available data for 51 

human subjects. Available and categorized data categories were: demographics, baseline 

psychometric scales, baseline personality scales, visual analogue scales (baseline and 

trauma), blood pressure (baseline and trauma), physiological parameters, and trauma 

details. Tables 5.1 and 5.2 show the demographics (age, sex, height, weight, BMI, 

education, race), psychometric scale scores (PCL-C, CAPS, PTSD-SS, HAM-A, HAM-D, 

CADSS, BDI, ETI, ATI, ESSI), baseline personality surveys (Big Five, Toronto 

Alexithymia Scale), baseline mood scales (distress, VISAN) broken into PTSD and non-

PTSD groups. As trauma research literature suggests that the trauma details might be 

important in psychophysiological reactivity, we also categorized each subject’s traumatic 

experience. Trauma type (child abuse/neglect, sexual/physical assault, combat, other), 

existence of sexual content (yes/no), trauma time (childhood, adulthood), trauma onset (> 

6 months, < 6 months) were categorized based on clinical assistance and relevant literature 

[364, 373, 374]. We performed a number of analyses: 1) For understanding the basic 

differences between groups, we first compared the aforementioned information between 

PTSD and non-PTSD groups. 2) For understanding the associations between physiological 

variables and psychometric scales/PTSD status, we carried out partial correlations using 
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baseline and trauma/baseline data. For all correlation analyses, we adjusted for age, sex, 

height, weight, BMI, race, ethnicity, and education. 3)  After carrying out signal processing 

steps in Figures 5.3 and 5.4, and steps in Figure 5.5, we constructed a machine learning 

dataset. For our main analysis, we excluded EDA and HRV features as they limited the 

dataset to a small number of patients as EDA signal was very noisy. Our dataset included 

time series features, patient background/demographics, and cuff-based blood pressure 

values (see Figure 5.3 for time series features, static features, and 

background/demographics coding). We created three datasets: one by using only baseline 

data (5-15 minutes of data/subject), one by using trauma/pre-trauma (3-4 minutes of 

data/subject) data, and one by using trauma/baseline data (6-16 minutes of data/subject). 

 

Figure 5-2. Available demographics, psychometric scale, personality scale, visual 

analogue scale, blood pressure, physiological parameters, and categorized trauma 

details for the dataset. The exact numbers were broken into (# available data/51) as 

the forthcoming analyses have different sample sizes due to missing data in some 

measures.  
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From a practical standpoint, baseline or trauma/pre-trauma is the easiest to obtain, 

trauma/baseline data requires clean baseline data. Using a LOSO-CV cross validation 

paradigm, we attempted to predict the PTSD status for each dataset. We used Naïve Bayes, 

SVM with linear, sigmoid, RBF, and polynomial kernels, Random Forest, k-NN (n = 5), 

Logistic Regression, Multilayer Perceptron, Decision Trees, and Adaboost using Python’s 

scikit-learn toolbox. 

5.3 Results 

5.3.1 Baseline Analysis 

PTSD (n = 25) and non-PTSD (n = 26) groups are not significantly different in terms of 

age, sex, height, weight, BMI, education, age (Table 5.1, p > 0.05). For psychometric 

surveys, we observe that PTSD group has significantly higher PCL-C, PTSD-SS, HAM-

A, HAM-D, CADSS, BDI, ETI, ATI scores, as expected due to the overlapping symptoms 

 

Figure 5-3. The list of features and relevant coding used in machine learning. 

Dataset includes both dynamic (time series) and static (BP, HRV, background 

demographics) features.  
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of PTSD with anxiety and depression, dissociative symptoms, and childhood/adulthood 

history of trauma (p < 0.001). The groups do not have a significant difference in ESSI 

scores. In terms of baseline personality surveys, the groups do not show significant 

difference in Big Five categories (p > 0.05), though notably non-PTSD group has less 

extraversion trait. When it comes to alexithymia (Table 5.2), PTSD group exhibits higher 

scores in difficulty in describing/identifying feelings and total alexithymia score (p < 0.05). 

From baseline mood scales, PTSD group experiences more distress, feels more nervous, 

anxious, and fearful, compared to the non-PTSD group (p < 0.05). Lastly, categorized 

traumas (onset, time, sexual content) do not seem to be significantly different between 

groups (p > 0.05). 

5.3.2 Associations with Physiological Indices 

We observe a number of significant associations between baseline and trauma/baseline 

physiological indices and clinician administered scales. Appendix Tables A.1 and A.2 list 

the statistically significant associations with correlation coefficients and p-values. After 

adjustments with potential confounders, a number of physiological measures are 

significantly correlated with psychometric scales, during both baseline and trauma 

(normalized by baseline).  

For baseline, we see significant correlations between anxiety and depression scales and 

EDA measures, PTSD status/severities with PAT, respiratory measures, and HRV 

measures. Baseline HR is associated with Agreeableness and Openness personality traits, 

baseline EDA measures are associated with subjective discomfort, baseline respiratory and 
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HRV measures are associated with VISAN mood scales, and HRV measures are associated 

with the Big Five personality traits. 
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Table 5-1. PTSD and Non-PTSD Dataset Details - 1 

PTSD 

Status Demographics & Background 

 Age Sex Height Weight BMI Education 

PTSD 35.2 (12.6) 19F, 6M 170.1 (10.6) 83.3 (24.6) 28.4 (6.2) 4 (1) 

Non-

PTSD 
30.7 (9.6) 15F, 12M 170.2 (10.7) 77.9 (13.7) 27 (4.9) 4.6 (1.3) 

P-

value 
0.16 0.13 0.99 0.33 0.39 0.1 

 Psychometric Scales 

 
PCL-

C 
CAPS 

PTSD-

SS 

HAM-

A 

HAM-

D 
CADSS BDI ETI ATI ESSI 

PTSD 
11.9 

(13.8) 
9 (10.5) 7.9 (9.5) 7.6 (91) 8.3 (11.1) 7.8 (8.6) 

13.1 
(14.9) 

10.4 
(12.3) 

2.4 
(2.9) 

5.4 
(6.6) 

Non-

PTSD 
7.9 

(9.3) 
N/A 3.4 (4.3) 4.8 (6.8) 4.6 (6.4) 2.2 (3.5) 

8.6 

(10.5) 

5.2 

(6.8) 

1.8 

(2.1) 

5.5 

(6.7) 

P-

value 
<0.001 N/A <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.18 

 Big Five Personality Scale 

 Extraversion Agreeableness Conscientiousness Neuroticism Openness 

PTSD 20.9 (6.2) 26.9 (5.6) 28.9 (6.9) 24.4 (6) 35.2 (7.2) 

Non-

PTSD 
30.5 (3.5) 35 (2) 30.5 (3.5) 22 (1) 31.5 (4.5) 

P-

value 
0.06 0.08 0.76 0.61 0.52 

Datasets do not differ in terms of the analyzed demographics and background (race 

not shown as race coding do not relate to any quantifiable severity). Patients with 

PTSD exhibit higher severities in psychometric scales.  BMI = Body mass index, F = 

Female, M = Male. Values represented as mean ± SD. 



 136 

 

 

Table 5-2. – PTSD and Non-PTSD Dataset Details - 2 

PTSD 

Status 
Toronto Alexithymia Scale (TAS) 

 

Difficulty in 

Describing 

Feelings 

Difficulty in 

Identifying 

Feelings 

Externally Oriented 

Thinking 
TAS Score 

Alexithymia 

Class 

PTSD 15.5 [1] 20.4 (5.7) 16.9 (3.6) 52.7 (12.5) 0.9 (0.9) 

Non-

PTSD 
5.5 (0.5) 10 (2) 13.5 (1.5) 29 (4) 0 (0) 

P-

value 
0.02 0.03 0.25 0.03 0.19 

 SUDS VISAN 

 Discomfort  Nervous Anxious Fearful High Anger 

PTSD 33.5 (27.9) 2 (1.5) 2.2 (1.5) 1.1 (1.2) 0.3 (0.6) 0.4 (0.9) 

Non-

PTSD 
12.6 (15.2) 0.4 (0.7) 0.4 (0.7) 0 (0.2) 0.2 (0.6) 0 (0.2) 

P-

value 
<0.01 <0.0001 <0.0001 <0.0001 0.66 0.09 

 Trauma Details 

 Onset (>6 months?) 
Time 

(Childhood/Adulthood) 
Sexual Content (Y/N) 

P-

value 
0.28 0.5 0.23 

Patients with PTSD exhibit higher scores in alexithymia categories, higher baseline 

discomfort, nervousness, anxiety, and fear. There is no significant difference between 

groups in terms of trauma onset, time, and sexual content. SUDS = Subjective Units 

of Distress, VISAN = Visual Analogue Scale. Values represented as mean ± SD. 
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For trauma reactivity (trauma/baseline), we see associations between HR/ PPG Amplitude 

and CAPS/ETI, EDA measures and anxiety, depression, social support. Blood pressure 

reactivity is strongly correlated with alexithymia symptoms, and HRV measures are 

associated with self-reported mood ratings, anxiety, and depression scales.  

5.3.3 Classifier Performance and Feature Analysis 

Table 5.3 shows the ROC AUC and selected machine learning results. Using baseline 

dataset, we obtain a ROC AUC of 0.62, little above naïve prediction. Normalized trauma 

(baseline and pre-trauma) datasets perform notable higher in the classification task. 

Trauma/baseline dataset gives a ROC area of 0.98. However, as using pre-trauma data 

would be more practical from an engineering standpoint, we focus on the trauma/pretrauma 

dataset. We observe that SVM with sigmoid kernel gives the highest ROC of 0.89. The 

accuracies for these datasets range from 78% to 98%. 

 

 

Figure 5-4. Signal processing for time series features and static HRV features.  
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Next, we investigate the relative importance of features to determine the contribution of 

different feature types and sensors. As sigmoid boundary is non-linear, this is not a trivial 

task. We categorized the features and dropped one by one to understand the drop in ROC, 

hence their relative contribution. The features were categorized as the following groups: 

demographics & age, BP (all cuff-based BP values), HR, PEP, PPG Amplitude, PAT (foot, 

peak), respiratory features (RR, RW, RP). Table 5.4 shows the ROC areas when only one 

of the feature groups is used in machine learning with the same classifier.  The highest 

 

Figure 5-5. Dataset construction for time series features (except EDA as it was 

excluded due to low sample size).  
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ROC AUC occur when HR and PEP were used separately, PAT features result in the lowest 

ROC AUC. 

5.4 Discussion and Conclusion 

We performed a wide scale assessment using multimodal autonomic nervous system 

activity, background/demographics, and clinician administered psychometric surveys. Our 

results reveal that reactivity-based PTSD assessment holds promise, compared to using 

only baseline data. The methods presented herein could be used in objective assessment of 

Table 5-3. Machine Learning Results 

 Trauma/Baseline Dataset 

 F-1 Score Precision Recall # Subjects ROC AUC 

Non-

PTSD 
0.98 0.95 1 23 

0.98 

PTSD 0.98 1 0.96 23 

Accuracy 0.98 0.98 0.98  

Macro 

Avg. 
0.98 0.98 0.98 46 

 Trauma/Pretrauma Dataset 

Non-

PTSD 
0.79 0.79 0.79 23 

0.89 

PTSD 0.79 0.79 0.79 23 

Accuracy 0.79 0.79 0.79  

Macro 

Avg. 
0.79 0.79 0.79 46 
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PTSD and could complement the existing interview-based methodologies. The use of 

wearable sensing data and minimum requirement for a medical professional potentially 

widens the applicability to disadvantaged populations who would otherwise not have the 

chance to visit a clinic.  

Confirming relevant literature [50], HRV values are significantly associated with clinical 

assessments of anxiety, depression, and PTSD. Autonomic imbalance in PTSD has started 

to be recognized in the recent years [6]. Recent studies including our group is contributing 

to the literature linking the autonomic nervous system problems to PTSD, depression, and 

heart disease [375-377]. 

This is the first study, to our knowledge, to use multimodal sensing during a traumatic 

recall paradigm to identify PTSD with a dataset that includes females. PTSD classification 

have been studied previously with emotionally evocative virtual reality [367] and speech 

data during PTSD-related structured interview [368] with only male participants. These 

studies significantly differ from the current study due to only male datasets, experiment 

protocols, and sensing modalities. [367] investigated only HR and EDA differentiation 

during a virtual reality based emotional paradigm in male veterans. [368] studied speech 

features during a CAPS interview from male participants. Given that women are more 

Table 5-4. ROC AUC for Individual Feature Groups (Trauma/Pretrauma 

Dataset) 

 Demographics BP HR PEP 
PPG 

Amp. 
PAT RSP 

ROC 

AUC 

Drop 

0.81 0.55 0.96 0.97 0.70 0.5 0.80 

 



 141 

likely to develop PTSD than men, the inclusion of women in the dataset is important for 

the potential of the work to successfully translate from lab to patient care settings.  

Alexithymia and mood survey results are quite interesting: Patients with PTSD exhibit 

great difficulty in describing and identifying feelings with a higher total alexithymia score, 

at the same time they report higher levels of baseline discomfort, nervousness, anxiety, and 

fear. The link between PTSD and alexithymia have been investigated by a few groups [378-

381]. Alexithymia in PTSD have been thought as a characteristic related to PTSD 

symptoms, and not simply exposure to trauma [378], as a measure of suppressed or warded-

off negative effects. Associations between PTSD severity and dysfunctional brain regions 

in PTSD also point out the merit of alexithymia measurement [380]. Despite the difficulties 

in expression of feelings, higher self-reported negative mood scores highlight a paradoxical 

outcome. 

A notable point to mention is the type of autonomic perturbation. One might think that 

stressors not specific to trauma (i.e., mental stress, exercise) could potentially be helpful in 

PTSD assessment. Research showed that reactivity to non-personalized emotional cues or 

stressors is comparable or slightly greater in magnitude in patients with PTSD than in 

control groups [364]. Specifically, prior studies show that psychophysiological reactivity 

to emotional cues not related to trauma was only able to accurately classify 46% of 

individuals who met diagnostic criteria for PTSD and 76% of individuals who did not meet 

diagnostic criteria for PTSD. These sensitivity and specificity values are significantly 

lower than our results obtained with personalized traumatic scripts. Nevertheless, the 

method for delivery of trauma-related cues (audible, imagery, thought, only trauma-

specific cues such as smell or horns) is debatable and should be researched. 
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Another point is the ethical and practical consideration of using traumatic event 

recollections. The requirement to use traumatic events is a baseline condition for clinician 

administered surveys based on DSM-5 [39, 40]. These surveys ask questions about the 

traumatic event details and posttraumatic symptoms. Moreover, prolonged exposure 

therapy, which is an intervention strategy for patients with PTSD, uses traumatic event 

recollections and trauma-related cues to gradually improve symptoms of PTSD [364]. 

Hence, the use of traumatic memories is quite common in both diagnosis and treatment of 

PTSD, though with longer amounts of time and the requirement to interact with a medical 

professional. Our study uses one to two minutes of traumatic stress scripts, substantially 

decreasing the required amount of time and passively listening voice recordings. 

This study is subject to limitations: Due to the small sample size and lack of high quality 

EDA signal, the merit of EDA and HRV (two of the most commonly used 

psychophysiological indices) cannot be evaluated for the classification task with the same 

sample size. Though the partial correlation assessments signal the promising merit of these 

parameters, it was left as future work to evaluate with lower (available) sample sizes and 

compare with other physiological parameters. 

In summary, we were able to classify PTSD status based on autonomic reactivity to 

traumatic event recollections, as captured by signals that can be measured with wearable 

technology. This assessment might potentially complement standard PTSD measures by 

providing objective, real-world assessments that could enhance clinical and non-clinical 

care with the help of wearable sensing devices. We believe that our autonomic markers 

represent a multidimensional set of “internet of body” features which hold promise by 

further validation for developing objective, low-cost, and non-invasive PTSD diagnosis. 
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Given the ubiquity of smartphones and small form factor physiological sensing modalities 

[207, 382, 383], the objective assessment could be a widely accessible tool for assessing 

PTSD in civilian, veteran, or military populations. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

PTSD is a debilitating disorder with profound public health burden. Individuals with PTSD 

face high levels of disability and loss of productivity. With the COVID-19 pandemic, we 

have once again been reminded of the importance of healthcare accessibility, regardless of 

socioeconomic status. Unfortunate (though predicted) events such as COVID-19 signal the 

human psychology that “anything can happen any time”, thus leading to vigilance, 

alertness, and sustained attention. Such alertness and stressed state are not sustainable for 

the human body, and eventually will lead to mental and physical health problems. Wearable 

bioelectronic medicine and digital phenotyping have the potential for revolutionizing 

healthcare, specifically mental healthcare, for those who cannot afford or maintain 

continuous interaction with clinicians and caregivers. 

Psychiatry does not have the lab work that is common in other medical disciplines, such as 

readily-available blood biomarkers. It relies on subjective, self-reported measures, and can 

be unreliable because of human factors. The current diagnostic tools are not perfectly 

aligned with the neurobiology of psychiatric disorders. This alignment could be addressed 

with engineering, by connecting dots between current diagnostics and neurobiology with 

the aim of defining objectively measurable quantities relevant to disease-specific circuits. 

In this dissertation, we investigated techniques to diagnose and treat PTSD. We first 

developed technologies in the context of stress measurement and autonomic nervous 

system activity quantification. We then validated the potential of noninvasive VNS with 
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investigations in noninvasive sensing and blood biomarkers that are relevant to the 

condition, in both PTSD and non-PTSD controls with a sham-controlled double blind 

study. We demonstrated that pairing noninvasive VNS with traumatic reminders in patients 

with PTSD reduces the fight-or-flight response to emotional triggers and thereby could 

provide a completely new mode of treatment. This paradigm also reduces stress reactivity 

to non-personalized mental stress and stress reactivity in trauma-exposed individuals 

without PTSD. We showed that capturing autonomic nervous system activity could be 

useful to quantify meaningful information about stimulation and disease state. We 

developed a machine learning-guided target engagement quantification method based on 

fusing multiple modalities that can be incorporated in wearable technology. Lastly, we 

developed an autonomic reactivity based objective PTSD assessment scheme that predicts 

the PTSD status using traumatic memories, for which the state-of-the-art diagnosis 

methods rely on clinician administered structured interviews and self-reports. In sum, this 

work established methods amenable for widespread use of noninvasive VNS in the context 

of stress and PTSD.  

6.2 Future Work 

Various future research directions could stem from this work. A potentially domain-

specific direction would be application to other disorders that VNS could be useful for, 

such as opioid use disorder, anxiety disorders, obsessive compulsive disorder, or mild 

traumatic brain injury occasionally seen together with PTSD. These disorders have 

overlapping symptoms and neurobiology with PTSD, thus could benefit from the 

advantages of noninvasive neuromodulation. Peripheral neuromodulation projects to a set 
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of brain regions that regulate functions from memory to sleep, thus providing many 

application areas. 

 A more computationally focused direction is personalization of stimulation based on a 

patient’s individual response. Characterization and personalization of neuromodulation 

treatments are crucial as each patient is substantially different from another. Personalized 

modeling and control of neuromodulation-related biomarkers will pave the way for 

widespread adoption of these technologies. Improvement of stimulation selectivity and 

parameter studies are also natural research extensions. Cost-effective and portable 

modalities are required to research selectivity and optimization of stimulation parameters 

based on the target domain. 

6.2.1 Ethical Considerations 

Although the methodologies presented in this dissertation are solely for academic 

investigation, it is important to discuss ethical considerations for multimodal physiological 

monitoring and physiological modulation, particularly in the context of affective 

computing (i.e., psychiatric disease prediction, emotion recognition) or mood/performance 

improvement (i.e., enhancing resilience). Physiological data can be very personal and 

revealing. Though the researcher/engineer designs these systems with enormous creativity, 

the fundamental ethical side of tracking and modulating human emotions and emotional 

phenotyping in different sectors should be taken into consideration before turning these 

technologies into actual products or services, or sharing research content publicly.  

Privacy-Aware Technologies and Research Activities 
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Particularly for businesses handling big data, encryption of physiological or digital data in 

ways that would not be trivially tracked backwards by robust security & cryptography 

algorithms not to reveal identity is crucial. Asides from big businesses, data, code, and 

model sharing is quite common in research domain for relatively small datasets. Research 

sharing could be customized in a way that would not be decoded as individualized 

information, rather as average/generalized outputs. For instance, rather than public 

availability of machine learning models trained to output specific personal information, the 

models could only produce an average/general representation of the output. In addition, 

research datasets could suffer from biases due to uneven distribution of demographics, 

race, education level, or cultural background. These limitations should be communicated 

with the model user for careful testing with new data. 

Fully Informed Consent and Ability to Opt-Out Anytime 

The data belongs to the user or the subject under experimentation, regardless of the aim of 

the product of service. It must be the data owner’s decision as to how much they want to 

share and whether they want to opt-out to remove their entries from the entire data 

ecosystem. Consent process requires clear communication by avoiding unnecessary 

technical language and lengthy documentation.  

Transparent Tech and Data Storage 

It is quite important to inform the naïve user about the specifics of data handling and 

storage, and precautions taken against potential pitfalls. Where is the data stored? What 
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kind of privacy protocols are followed? Who accesses the data? Is the data de-identified? 

Regardless of the technical knowledge of the data owner, critical details about data 

handling and storage should be communicated in a language the data owner can understand 

and evaluate for themselves. 

To this end, it is at the designer’s discretion and very personal to the designer to follow or 

not follow any sort of morality or ethical considerations while moving forward with a 

particular task or producing products aimed at benefiting consumer welfare. For what it’s 

worth, while building emotional connections with technology, one needs to keep in mind 

that great power comes with great responsibility. 

Neuromodulation or “electroceuticals” may not completely replace pharmaceuticals, 

however there is great promise that they can complement them and reduce the burden on 

drug side effects and pharmaceutical-resistant conditions. Wearable technologies can 

substantially help to achieve these goals. While designing these technologies, one should 

be considerate on the usability, security, privacy, and ethical aspects. Wearable and 

ubiquitous sensing provides us a wide range of tools where we could benefit from multiple 

streams of data, different measurement techniques, and computational methods to make 

sense of the data. The nexus of such technological advancements could lead to wearable 

sensing feedback enabled neuromodulation therapies that can transform the diagnosis and 

management of neuropsychiatric disorders.  
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APPENDIX A. SUPPLEMENTARY MATERIAL 

Table 0-1. Statistically significant associations (p<0.05) during baseline for PTSD and 

Non-PTSD dataset. 

Physiological 

Measure 

Psychometric Scales and 

Correlation Coefficients 

Physiological 

Measure 

Psychometric Scales and 

Correlation Coefficients 

HR Agreeableness (Big Five): -0.72 

Openness (Big Five): -0.84 

pnn50 Agreeableness (Big Five): 0.82 

Alexithymia Status (TAS): -0.97 

PAT PTSD Status: 0.33 ULF Difficulty Describing Feelings 

(TAS): -0.98 

Total Alexithymia Score (TAS): -

0.96 

SCLMEAN HAM-A: -0.64 

HAM-D: -0.60 

SUDS: -0.71 

VLF HAM-A: -0.34 

SCRMEAN HAM-A: 0.64 

HAM-D: 0.60 

SUDS: 0.71 

LF PTSD Status: -0.33 

SMNA HAM-D: 0.6 

SUDS: 0.71 

HF Extraversion (Big Five): 0.88 

Neuroticism (Big Five): -0.86 

Openness (Big Five): 0.96 

SCLSLOPE ESSI: -0.65 LF/HF Conscientiousness (Big Five): -

0.81 

RR PTSD-SS: -0.38 Total Power Extraversion (Big Five): 0.81 

 

RW PTSD-SS: 0.41 

PTSD Status: 0.31 

Highness (VISAN): 0.33 

Anger (VISAN): 0.33 

NNkurt Nervousness (VISAN): -0.36 

Anxiousness (VISAN): -0.36 
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NNmean Neuroticism (Big Five): -0.81 

Openness (Big Five): 0.84 

AC Openness (Big Five): -0.91 

NNmedian Neuroticism (Big Five): -0.80 

Openness (Big Five): 0.83 

DC Openness (Big Five): 0.92 

NNskew Neuroticism (Big Five): -0.92 

Openness (Big Five): 0.81 

SD1 Extraversion (Big Five): 0.91 

Neuroticism (Big Five): -0.88 

Openness (Big Five): 0.90 

NNiqr Extraversion (Big Five): 0.89 SD2 HAM-A: -0.36 

HAM-D: -0.39 

Extraversion (Big Five): 0.91 

SDNN HAM-D: -0.36 

Extraversion (Big Five): 0.93 

RMSSD Extraversion (Big Five): 0.91 

Openness (Big Five): 0.90 
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Table 0-2. Statistically significant associations (p < 0.05) for trauma/baseline for PTSD 

and Non-PTSD dataset 

Physiological 

Measure 

Psychometric Scales and 

Correlation Coefficients 

Physiological 

Measure 

Psychometric Scales and 

Correlation Coefficients 

DBP Conscientiousness (Big Five): -

0.82 

Externally Oriented Thinking 

(TAS): 0.82 

Total Alexithymia Score (TAS): 

0.81 

LF/HF PCL-C: 0.44 

PTSD Status: 0.4 

HAM-A: 0.35 

CADSS: 0.40 

ETI: 0.47 

ATI: 0.43 

Neuroticism (Big Five): -0.91 

Openness (Big Five): 0.83 

Anxious (VISAN): 0.39 

MAP Conscientiousness (Big Five): -

0.79 

AC CAPS: -0.75 

Neuroticism (Big Five): 0.89 

Openness (Big Five): -0.88 

Anger (VISAN): 0.39 

 

PP Extraversion (Big Five): 0.80 

Alexithymia Status (TAS): -0.98 

DC Openness (Big Five): -0.83 

HR CAPS: 0.64 

ETI: 0.39 

Extraversion (Big Five): 0.81 

RR PTSD-SS: 0.34 

CADSS: 0.34 

BDI: 0.33 

PPG 

Amplitude 

ETI: 0.55 

ATI: 0.43 

 

RW CADSS: -0.32 

BDI: -0.33 

SCLMEAN ESSI: -0.66 RP PTSD-SS: 0.35 
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HAM-A: 0.39 

HAM-D: 0.39 

CADSS: 0.42 

BDI: 0.31 

Nervousness (VISAN): 0.38 

Anxiousness (VISAN): 0.40 

Fear (VISAN): 0.37 

Highness (VISAN): 0.40 

Anger (VISAN): 0.71 

SCRMEAN ESSI: -0.66 NNvariance Anger (VISAN): 0.44 

SMNA ESSI: -0.66 LF CAPS: -0.70 
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