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SUMMARY 

For most operational systems, the optimization problem is a combinatorial 

optimization problem, and the optimization performance largely determines the solution 

quality. Moreover, there exists a trade-off between the computing time of the decision-

making process and the optimization performance, which is particularly evident in a system 

that conducts real-time operations. To obtain better solutions to the decision-making 

problem in a shorter time, many optimization algorithms are proposed to improve the 

searching efficiency in the search space. However, information extraction from the 

environment is also essential for problem-solving. The environment information not only 

includes the optimization model inputs, but also contains details of the current situation 

that may change the problem formulation and optimization algorithm parameter values. 

Due to the time constraint and the computation time of visual processing algorithms, most 

conventional operational systems collect environment data from sensor platforms but do 

not analyze image data, which contains situational information that can assist with the 

decision-making process. To address this issue, this thesis proposes CNN-enabled visual 

data analytics and intelligent reasoning for real-time optimization, and a closed-loop 

optimization structure with discrete event simulation to fit the use of situational 

information in the optimization model. In the proposed operational system, CNNs are used 

to extract context information from image data, like the type and the number of objects at 

the scene. Then reasoning techniques and methodologies are applied to deduct knowledge 

about the current situation to adjust problem formulation and parameter settings. Discrete 

event simulation is conducted to test the optimization performance of the system, and 



xiii 

 

adjustments can be made to better fit situational information in the optimization process. 

To validate the feasibility and effectiveness, an application to occupancy-aware elevator 

dispatching optimization is presented. 
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CHAPTER 1. INTRODUCTION 

Operations research originally referred to military planners' work during World War 

II, but now it is the discipline where advanced analytical methods are used to help decision 

making and obtain the optimal or near-optimal solutions to a problem (Informs, 2020). The 

applications of operations research involve various fields, including business, industry, 

society, and so on. Many problem-solving techniques are used in operations research, and 

mathematical optimization and simulation are essential techniques.  

However, because different planning tasks have different time limits, there exists a 

trade-off between the computing time and the solution performance in real-world 

applications. Long-term planning operations usually have enough time to collect useful 

data and obtain the optimal solution, thus focusing more on the solution performance. On 

the other hand, short-term planning operations are expected to make decisions within the 

given time, and the time becomes a constraint for finding the optimal solution. For 

example, workforce scheduling has minutes or hours to obtain the optimal scheduling 

result, while the elevator dispatching system needs to assign tasks to cabs within seconds. 

To improve the decision-making efficiency for short-term planning operations, especially 

those at a real-time scale, optimization and simulation techniques are widely studied, 

aiming at finding a satisfying solution within a short time.  

1.1 Real-time Optimization and Discrete-event Simulation 

To obtain the optimal solution to a real-world problem, a mathematical model should 

be formulated first. The objective function is set based on the performance measuring of a 
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solution. Different optimization algorithms are applied to find the optimal solution. 

Discrete-event simulation experiments are conducted for simulation-based optimization or 

for validation of the optimization system. 

As the sensing technology and the computing ability becomes more advanced, data 

can be collected and processed faster, which reduces the computation time of the decision-

making process and improves the management efficiency of the operational system. This 

also satisfies the growing demands of optimization at a real-time scale in various industries 

to keep pace with the operations. For example, batch manufacturing requires real-time 

sequencing to fulfill process requirement when tasks need more materials than the storage 

capacity.  

Discrete-event simulation is to model the operations of a system with a sequence of 

events in time. Because the trigger of an event as well as the event content can be set to 

follow specified statistical distributions, it can model the uncertainty of the operational 

system and is often used to validate the optimization model. Discrete-event simulation 

itself can also be an optimization approach by observing the optimization performance in 

different parameter settings to find a satisfying solution. 

Apart from optimization itself, the time for optimization model input processing, 

including data measuring, data collection, and data analysis, should also be counted in the 

decision process. If the optimization model can access more useful information,  the 

solution is expected to have better performance. In other words, a proper procedure for raw 

data processing can provide high-quality model inputs and is important to making optimal 

decisions. 
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1.2 Data Analysis 

Data is the information collected through observation (OECD. Publishing, 2008), 

which can be displayed in either the numeric form or the graphic form. Based on the data 

form and the goal of the analysis, different methods can be utilized. 

Conventional numeric data analysis includes regression analysis and time series 

analysis. Regression analysis estimates the relationship between a dependent variable and 

a set of independent variables, while time series analysis focuses on the relationship of the 

values at different time points of a single variable and the forecast of future data based on 

previously observed values. Sensors are usually used to obtain numeric data from the 

environment. 

Visual data analysis aims to obtain information from images. In an operational 

system, sensors may not be the only approach to gain information from the environment, 

and cameras can capture environment images at a real-time scale. By analysing the contents 

in an image with convolutional neural networks or machine vision algorithms, more 

context information can be obtained, including the object type, the object number, and even 

the object action. By using intelligent reasoning methodologies and techniques, this 

information can be further utilized to derive situational information. 

1.3 Knowledge Representation and Reasoning 

Knowledge representation and reasoning are two techniques usually used together, 

involving the description of knowledge, the acquisition of knowledge from given 

information, and the application of knowledge to new problems. The definition of 
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knowledge representation is given as the study of available options in the use of a 

representation scheme to ensure the tractability of reasoning (Levesque, 1986). Its 

objective is to describe the real-world facts so that machines can draw new conclusions by 

manipulating the symbolics. Four common knowledge representation techniques are logic, 

rules, frames, and semantic nets (Davis et al., 1993).  

Reasoning can be thought of as the inference process where new expressions or 

conclusions are obtained from given information and knowledge representations. The 

assumption that reasoning is valid is that the decision-making process can be understood 

as mechanical operations over symbolic representations (Levesque, 1986). Different 

reasoning methodologies are used in various scenarios, and widely used ones include rule-

based reasoning, case-based reasoning, fuzzy logic, and rough set theory. Details of 

knowledge representation and reasoning are introduced in Chapter 5. The objective of 

using intelligent reasoning in real-time optimization is to gain situational information from 

the collected data or processed data about the environment. 

1.4 Technical Challenges 

One limitation of conventional real-time optimization and simulation systems is that 

they do not make full use of visual data from the environment. This is because traditional 

visual processing algorithms are efficient in object feature extraction but lack the ability to 

detect and classify multiple objects in one image quickly. To make the full use of 

environment images, this thesis proposes to implement CNN-based visual data analytics 

and intelligent reasoning before optimization, so that the context information and the 

situational information can be used to assist in the decision-making process. Furthermore, 
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discrete-event simulation experiments are conducted to evaluate the optimization 

performance. The results can provide feedback to the optimization model, thus adjusting 

the problem formulation and parameter settings of the optimization model and forming a 

closed-loop optimization structure. 

The technical challenges of this implementation are illustrated as follows. (i) Context 

information extraction is expected to keep pace with the operations to reflect the changes 

in the environment in time, thus guaranteeing the timeliness of situational information. (ii) 

Find the situational information that can influence the solution quality by introducing a 

factor that represents the current scenario to the optimization model or that can be used to 

identify different scenarios where new problem formulation can be given. (iii) Modeling 

the effects of situational information in the optimization model. To correctly represent the 

function of situational information during decision-making, problem formulation or the 

objective function parameters should be modified to adapt to the current scenario. 

The rest of this thesis is organized as follows. Chapter 2 reviews the related work of 

CNN-enabled visual data analysis, knowledge representation and reasoning, and 

combinatorial optimization techniques. Chapter 3 presents the analysis and design of real-

time optimization and simulation with CNN-based visual data analysis and reasoning. 

Chapter 4 discusses CNN-based visual data analysis, with the improved ResNet model for 

image classification and the Mask R-CNN model for instance segmentation. Chapter 5 

introduces reasoning-based methodologies and techniques and related knowledge 

representation used to extract situational information for optimization. Chapter 6 discusses 

optimization algorithms in real-time operational systems. Both exact algorithms and 

heuristic algorithms are introduced, with several algorithms presented in detail: branch-
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and-bound, branch-and-cut, branch-and-price, A* search, and genetic algorithms. Chapter 

7 introduces the development procedure of discrete-event simulation and analyzes how 

discrete-event simulation experiments can help enhance the optimization model. In 

Chapter 8, an application of occupancy-aware elevator dispatching optimization is 

presented to validate the feasibility of the proposed optimization system. Finally, the 

contributions of this work and future work are concluded in Chapter 9. 
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CHAPTER 2. RELATED WORK 

2.1 CNN Techniques for Visual Data Analysis 

Deep learning-based CNN techniques have been widely studied in recent years. 

There are many applications of CNN-based visual data analysis, and image classification 

and object detection are two most common tasks. 

Image classification aims to label an image with a particular set of classes. The work 

of CNN-based image classification starts from the AlexNet in the ILSVRC 2012 

competition (Krizhevsky et al., 2017). The AlexNet has five convolutional layers, and it 

proves the possibility of using convolutional neural networks for multi-class classification. 

After that, VGGNet and GoogLeNet added more convolutional layers to build a deeper 

network (Simonyan & Zisserman, 2014; Szegedy et al., 2015), which suggests that deeper 

network architecture has better learning performance and can improve the prediction 

accuracy. However, as the network becomes deeper, there are gradient explosion and 

vanishing problems, influencing the learning performance. These problems are further 

addressed in the residual neural network (ResNet) by learning the residual between layers 

(He et al., 2016). 

Different from image classification, object detection understands an image as various 

classes of objects at different positions. Therefore, the outputs of object detection include 

not only the present objects but their positions. CNN-based object detection starts from 

Regions with CNN features (R-CNN), which proposes to use selective search to generate 

region proposals and then to do the classification using CNN features and SVM (Girshick 
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et al., 2014). Since then, improvements are made to both the training and testing process 

and accuracy. The YOLO removes the original region proposal and uses a convolutional 

network for both region prediction and class prediction (Redmon et al., 2016). It divides 

an image into multiple grids and uses grid cells for bounding box prediction. Faster R-CNN 

uses the region proposal network to replace the selective search and integrates it to form a 

new network (Ren et al., 2015). Mask R-CNN is based on the framework of Faster R-CNN 

and adds an RoI Align layer and a branch to predict segmentation masks (He et al., 2017). 

2.2 Knowledge Representation and Reasoning Techniques 

In the artificial intelligence field, knowledge representation aims at describing the 

information of the real world using symbolic representations, and reasoning is the formal 

manipulation of symbols representing a collection of believed propositions to produce new 

ones (Brachman & Levesque, 2004) or to generate either explicit or implicit conclusions 

from available knowledge. Case-based reasoning, fuzzy logic, rough set theory are three 

commonly used reasoning methodologies and techniques.  

Case-based reasoning (CBR) originates from the study of using scripts to represent 

previous situations as knowledge and using plans to understand new situations (Scank & 

Abelson, 1975). The further work is explored how can the previous situations and situation 

patterns be used for problem-solving and learning (Watson & Marir, 1994), which is close 

to the classic definition for CBR: a case-based reasoner solves problems by using or 

adapting solutions to old problems (Riesbeck & Schank, 2013). Thus, the implementation 

of CBR does not require much explicit knowledge, and CBR systems can keep learning 

new knowledge from retained cases (Watson & Marir, 1994). 
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Fuzzy logic and rough set theory are mathematical approaches to imperfect 

knowledge and uncertainty (Zbigniew, 2004). Fuzzy logic is based on the truism that much 

of human reasoning is approximate rather than precise (Zadeh, 1975). It introduces the 

concept of the fuzzy set, which contains a class of objects with a continuum of grades 

(Zadeh, 1965). Fuzzy truth-values are used to describe exact description during 

approximate reasoning, like true, very true, more or less true, by using fuzzy sets. And the 

fuzzy IF-THEN rules are rules with fuzzy antecedents or fuzzy consequences instead of 

crisp ones (Dubois & Prade, 1996). 

The rough set theory uses set approximations to express vagueness information 

(Zbigniew, 2004). In this theory, the attributes of all objects follow a finite set, and rough 

set approximations are defined as the topological operations “interior” and “closure”, 

corresponding to the lower approximation and the positive region, and the upper 

approximation and the negative region (Pawlak, 1982). Rough set-based reasoning relies 

on rules, and rule induction from the dataset is to search relationships among object 

attributes in the form of production rules (Sabu & Raju, 2011).  

2.3 Combinatorial Optimization Algorithms 

The combinatorial optimization problem is a process to search for an optimal set of 

elements from a finite set of items based on an objective function (Schrijver, 2003). Its 

applications are in many fields: logistics, supply chain optimization, workforce scheduling, 

vehicle routing, etc. Most combinatorial optimization problems are NP-hard (Hertz & 

Widmer, 2003). In general, this kind of problem can be solved with heuristic algorithms 

and exact algorithms. 
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Exact algorithms are algorithms that can find the optimality of the optimization 

problem. To solve large scale mixed integer programming, branch-and-bound is broadly 

used. It is first proposed to address the traveling salesman problem (Little et al., 1963). The 

branch operation guarantees the integrality of the solution, and the bound operation is used 

to discard unpromising candidate solutions. There are several variations of branch-and-

bound. The cutting-plane method is originally used to refine the feasible space by means 

of linear inequalities in optimization (Kelley, 1960; Gomory, 1960). The branch-and-cut 

combines branch-and-bound with the cutting-plane method to tighten the linear 

programming relaxations (Padberg & Rinaldi, 1991). Another variation is branch-and-

price, which combines branch-and-bound and column generation to generate columns that 

have the potential to improve the objective function when the problem scale is too large 

(Barnhart & Johnson, 1998), and thus accelerating the searching process. 

Heuristic algorithms designate a computational procedure to find a near-optimal 

solution by iteratively improving a candidate solution based on a given measure of quality 

(Wang & Chen, 2013). Compared to exact algorithms, heuristic algorithms do not 

guarantee to find the optimal solution but can find an acceptable or good solution within a 

reasonable amount of time (Lu & Zhang, 2013). Based on the search strategy, heuristic 

algorithms can be classified into local search and global search. Local search heuristics 

tend to be greedier, and they do not totally focus on search but also focus on the movement 

from one formation to a neighboring refining formation. Typical local search algorithms 

are A* search (Korf, 1998), tabu search (Glover & Laguna, 1998), variable neighborhood 

search (Hansen, 1999), and simulated annealing (Kirkpatrick et al., 1983). Global search 

heuristics are usually population-based heuristics and have efficient methods to escape 
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local optimum. Prevailing algorithms include ant colony optimization (Dorigo et al., 1999), 

particle swarm optimization (Kennedy et al., 1995), and genetic algorithms (Whitley, 

1994). 
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CHAPTER 3. ANALYSIS AND DESIGN OF REAL-TIME 

OPTIMIZATION AND SIMULATION WITH CNN-BASED DATA 

ANALYSIS AND REASONING 

3.1 Real-time Visual Data Analytics and Reasoning 

Conventional optimization systems usually access environment information with the 

assistance of a sensor platform, but they lack the visual data analysis of the environment. 

This is largely because the computing time of visual processing cannot keep up with the 

optimization at a real-time scale. However, the development in CNN techniques enables 

fast analysis of image data, including image classification, object detection, pose 

estimation, and even action recognition, if human beings are an important factor during 

operations. Such information can be used to comprehend the current situation using 

reasoning methodologies and techniques. For example, for a fleet management system, if 

the real-time images of the vehicle environment can be captured and analyzed, information 

including the road condition, the weather, and the traffic condition (like accidents and 

traffic jam), can be used to assist in the route planning. 

In this regard, this study proposes to conduct visual data analysis and reasoning to 

extract situational information that can assist the operational system for better optimization 

performance. The whole process is supported by CNN techniques and artificial 

intelligence-based reasoning methodologies. The information hierarchy of this process is 

shown in Figure 3.1.  
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Figure 3.1: Information hierarchy of visual data analysis and reasoning 

The information hierarchy of visual data analysis and reasoning is comprised of three 

levels. The first level is the hardware level, which uses the camera or video monitoring to 

collect visual data of the environment. This level aims at recording the objects in the scene 

and is the basis for further analysis. The second level is the context level. Based on how 

objects in the environment interact with the optimization model, different tasks are 

implemented: Image classification determines the object type; Object detection finds the 

number and category of the objects; Action recognition detects the activity that the object 

is conducting. The third level is the situation level. This level is to refine the obtained 

information and to understand the underlying story using reasoning methodologies. For 

instance, in an elevator dispatching system, the context level obtains the real-time number 

of passengers in the cab. The traffic data is used to recognize the current traffic pattern with 
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fuzzy logic so that an appropriate optimization strategy can be decided to adapt to the 

changing traffic. Usually, the situational information contains knowledge that can guide 

the optimization model on optimization variable selection, objective function formulation, 

algorithm parameter setting, etc. 

3.2 Closed-loop Optimization with Simulation Feedback 

To validate the effectiveness of the situational information on optimization 

performance, discrete-event simulation is conducted. In this study, a closed-loop structure 

is proposed in the validation step to keep adjusting how situational information fits into the 

optimization model, as shown in Figure 3.2. 

 

Figure 3.2 Workflow of the proposed optimization system 

In a conventional operational system, discrete-event simulation experiments are 

conducted to verify the system and validate the optimization model. However, when 

situational information is used during optimization, how it fits into the optimization model 

should be seriously considered. Comparative experiments between the model with and 

without the information or the model with different usages can be conducted to test its 

effectiveness. By analyzing the performance measures and the simulation process, 

adjustments can be made about the influence of situational information on optimization 
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strategies and variables. Therefore, the optimization model and simulation validation form 

a closed-loop structure. The performance measures are used as feedback to evaluate current 

optimization performance and to improve the interactions. 

3.3 Optimization System Architecture 

 

Figure 3.3 Optimization system architecture 
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The system architecture of the proposed CNN-enabled visual data analytics and 

reasoning for real-time optimization and simulation is shown in Figure 3.3. The system 

consists of five layers. The first layer is the environment layer, in which sensors and 

cameras are used to collect environment data both in numeric and graphic form. The real-

time data will then flow into the data analysis layer to further extract context information. 

The data is firstly integrated and clustered based on its usage and form, and then 

information interpretation is implemented through several data analysis models: the CNN-

based visual data analysis model extracts information about objects in the environment; the 

time series analysis model predicts future data; the regression analysis model finds some 

hidden variable values using existing independent variables. Then the processed real-time 

data is utilized to find the situational information in the intelligent reasoning layer. The 

inference is firstly conducted with the processed data and existing knowledge for some 

initial conclusions about the scene. Different reasoning models, including rule-based 

reasoning, case-based reasoning, fuzzy logic, and so on, are used to deduct useful 

situational information that can apply existing knowledge for the assistance of 

optimization. Till this layer, the required data, information, and knowledge for optimization 

are prepared. In the optimization layer, the input information is integrated: Some data is 

used to assign values to decision variables; And information and knowledge are used to 

adjust the optimization strategies, algorithm parameter setting, and optimization problem 

formulation. An optimization model is selected based on the optimization objective and the 

time constraint. If the computing time is the priority, the heuristic algorithms can be used. 

If the task seeks the best solution, exact optimization models can be chosen. The final layer 

is the simulation layer, with the objective to verify the developed mathematical model for 
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the operational system and to validate the optimization model. Discrete-event simulation 

experiments are conducted, during which the optimization model is called to provide the 

optimal solution to the optimization problem. After experiments, the performance 

measures and experiment results are analyzed, providing feedback to the optimization 

model and the usage of situational information. 

3.4 Chapter Summary 

In this chapter, the analysis and design of the proposed optimization system are 

discussed. The information flow of visual data analytics and reasoning are presented to 

explain the function of CNNs and reasoning methodologies and how they process the data. 

The closed-loop optimization structure with discrete-event simulation is proposed, and 

how simulation interacts and enhances the optimization model are discusses. The 

optimization system architecture presents the system functional analysis and the operations 

and required tools or techniques in each stage. 
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CHAPTER 4. CNN-BASED VISUAL DATA ANALYSIS 

4.1 Objectives of CNN-based Data Analysis 

In the proposed optimization system, CNNs are used to extract context information 

from environment images. Different from numeric data analysis, visual data analysis is 

more object-oriented. The following functionalities can be implemented at a real-time scale 

based on existing CNN models: image classification, object detection, pose estimation, and 

action recognition. Therefore, the object type, number, position, posture, and even the 

activity that the object is conducting in the environment can be obtained. This information 

is helpful to further understand the current situation with intelligent reasoning. 

4.2 Basic CNN Layers 

As a hierarchical model, the CNN developed for image classification is usually 

constructed with three basic layers: convolutional layers, pooling layers, and dense layers. 

Convolutional layers are to extract features of images from different classes and 

create feature maps. In each convolutional layer, there are usually tens or hundreds of 

convolution kernels to extract different features. Each kernel generates one feature map 

after the convolution, and the output of the convolutional layer is the collection of feature 

maps created with the kernels. The convolution operation brings several benefits (Guo et 

al., 2016). Firstly, the number of parameters is reduced by weight sharing. Secondly, the 

convolution is invariant to the object location.  
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The pooling layer is the layer that implements sampling on the feature maps to reduce 

the feature map dimension and the number of parameters. The pooling process inevitably 

generates information loss but can speed up the computation. Conventional pooling 

operations include mean pooling, max pooling, global pooling, stochastic pooling, spatial 

pyramid pooling, and def-pooling. 

The dense layer aims to flatten the 2D matrix into a 1D vector, which is usually used 

as the output layer for classification. The Softmax function is normally used for multi-class 

classification, while the Sigmoid function is used for binary classification. The dropout 

operation is often conducted on the weights of the dense layer during the training to prevent 

overfitting (Srivastava et al., 2014). 

4.3 The Improved ResNet for Image Classification 

For conventional deep neural networks, like GoogleNet and VGG16, there are two 

problems becoming more serious as the network goes deeper: the vanishing gradient 

problem and the exploding gradient problem. This is because the derivatives will be 

multiplied when updating the network parameters: If the derivatives are small, the gradient 

will decrease with the propagation through the model until it vanishes; If the derivatives 

are large, the gradient will increase with the propagation until it explodes. This makes the 

training error grows higher when the network is deeper once it reaches some certain levels. 

To address this problem, ResNet proposes to use residual learning to every several 

layers (He et al., 2016), which is implemented with identity mapping by shortcuts, as 

shown in Figure 4.1(b). Assume the original desired underlying mapping of these stacks in 
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a plain network is ℋ(𝑥), as shown in Figure 4.1(a). Then the stacked layers are fit the 

residual mapping ℛ(𝑥): 

 ℛ(𝑥) = ℋ(𝑥) − 𝑥 (4.1) 

where the shortcut connection performs the identity mapping. After the recast, the mapping 

becomes ℛ(𝑥) + 𝑥. In this way, the gradient vanishing/exploding problem can be solved. 

 
  

(a) Plain network (b) Original residual block (c) Improved residual block 

Figure 4.1. Plain network and residual blocks 

Compared to other models, ResNet is known for its generalization performance and 

computation cost. The architecture of the ResNet50 is shown in Table 4.1.  

Table 4.1 Architecture of ResNet50 

Conv1 7*7, 64 

Pooling1 3*3, max pooling 

Conv2_x [
1 ∗ 1,64
3 ∗ 3, 64
1 ∗ 1, 256

] ∗ 3 

Conv3_x [
1 ∗ 1,128
3 ∗ 3, 128
1 ∗ 1, 512

] ∗ 4 
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Conv4_x [
1 ∗ 1,256
3 ∗ 3, 256
1 ∗ 1, 1024

] ∗ 6 

Conv5_x [
1 ∗ 1,512
3 ∗ 3, 512
1 ∗ 1, 2048

] ∗ 3 

Pooling2 average pooling 

Dense 1000  classes 

 

The ResNet model is further improved with the information flow of a residual block 

(He et al., 2016), which is more proper for image identification. The improved block is 

shown in Figure 4.1(c). Compared to the original one, batch normalization and the ReLU 

activation function are moved before 2D convolution. This change further eases the 

training process and improves generalization.  

4.4 Mask R-CNN for Object Detection 

Mask R-CNN is a simple and flexible model for instance segmentation, which can 

generate a segmentation mask for each detected instance. The model is based on the 

framework of Faster R-CNN, which has a region proposal network (RPN) to generate the 

region of interest (RoI) with features extracted from the backbone structure. The backbone 

consists of a bottom-up pathway and a top-bottom pathway. The former is usually a CNN 

for feature extraction, like ResNet or VGG. The latter is a feature pyramid network that 

generates semantic features at various resolution scales.  

The difference between Faster R-CNN is that Mask R-CNN adds an RoI Align layer 

and a branch for predicting high-quality segmentation masks. Compared to the Faster R-

CNN model in which recognition is after segmentation, the mask branch is in parallel with 
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the branches for classification and bounding box prediction, adding only a small computing 

cost. Because classification, bounding boxes, and masks are computed simultaneously, the 

computation time becomes smaller. Furthermore, the RoI Align layer solves the 

misalignment between the RoI and extracted features introduced by quantization in 

RoIPool operations, making it possible to predict masks at the pixel scale.  

The architecture of Mask R-CNN is presented in Figure 4.2. 

 

Figure 4.2 Mask R-CNN architecture 

4.5 Model Training with Data Augmentation and Transfer Learning 

Data augmentation and transfer learning are two training strategies when the dataset 

is small. The former enlarges the original dataset, while the latter lowers the requirement 

of the dataset size. 

Because of the translation invariance of convolution, geometric transformations can 

be done on original images, thus generating more data to improve the model generalization 

performance. Common transformations include flipping, cropping, rotation, translation, 
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and noise injection. Sharpening images with kernel filters is also helpful (Shorten & 

Khoshgoftaar, 2019). During the model training, combining different augmentation 

operations is normally taken. However, two issues are worth noticing. The first is that 

massively inflating the dataset may result in further overfitting when the original dataset is 

very small. The second is the safety of the augmentation operation. The transformation 

should not alter the label of the original image. Otherwise, the training will be done with 

wrongly labeled images. 

Transfer learning is to initiate the network parameters with a pre-trained model 

because the first several convolutional blocks generate the general features that can be used 

for other classification tasks. Thus, the parameters in these layers can be frozen, and only 

parameters in the classification layer and the last several layers should be trained. In this 

way, the training time is largely saved, and less data is needed to develop a new 

classification model. 

4.6 Chapter Summary 

This chapter introduces CNN-based visual data analysis techniques. The objective of 

visual data analysis in the proposed optimization system is discussed. Three basic types of 

CNN layers are introduced. The principle and architecture of two CNN models, the 

improved ResNet, and Mask R-CNN, are introduced as state of the art for image 

classification and object detection tasks. Two common training strategies that lower the 

requirement of the data sample size and avoid overfitting are also discussed. 
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CHAPTER 5. REASONING METHODOLOGIES AND 

TECHNIQUES FOR SITUATIONAL INTELLIGENCE 

5.1 Application Scenarios 

During optimization input preprocessing, intelligent reasoning is to make inferences 

about the situational information using existing knowledge and data, thus making the 

mathematical representation of the real-world scenario more accurate and helping obtain a 

more satisfying solution for the user. In this chapter, after introducing knowledge 

representation, three reasoning methodologies are discussed in this chapter: case-based 

reasoning, fuzzy logic, and rough set theory.  

Case-based reasoning can be used when a database that records solutions to past 

problems can be developed, and the solution to a new problem can be obtained by revising 

the past solutions. Fuzzy logic is typically used to deal with uncertainty or partial truth. 

Instead of describing a truth using 0 and 1, fuzzy logic converts the variable into a value 

between 0 and 1 to describe its degree of truth. Such mathematical description is utilized 

in approximate reasoning. Rough set theory is often used to handle the uncertainty that the 

expression of a decision attribute cannot be uniquely defined by other conditional attributes 

(Pawlak, 1998). Because it approximates a set with a certain attribute using the lower 

approximation and the upper approximation, a decision table with decision attributes and 

conditional attributes of objects should be created before rule induction. 
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5.2 Knowledge Representation 

Knowledge representation investigates the expression of knowledge in a computer 

system (Smedt, 1988). Apart from some data structures like the linked list and the tree 

structure, four common knowledge representation techniques are logical representations, 

semantic networks, production rules, and frame representations (JavaTPoint, 2020). 

Logical representations use concrete rules to express definite propositions, and the 

expression can either be syntax or semantics. Syntax refers to the use of legal symbols to 

express the logic, while semantics focuses on the interpretation of the logic. Logical 

representations can be categorized into propositional logic and first-order logic (FOL). 

Propositional logic is a declarative statement consisting of objects, relations, function, and 

logical connectives. It only conveys a fact is either true or false, and its limitation is that it 

cannot represent relations like some and all. FOL is an extension of propositional logic and 

can express complex natural language statements. FOL assumes the world consists of 

objects, relations, and function, thus representing more complex information than 

propositional logic. FOL syntax consists of more types of elements, including constant, 

variable, predicate, function, connective, equality, and quantifier.  

Semantic networks use a simple graphical network to represent predicate logic. The 

network usually consists of nodes and arcs, representing objects and the relationship 

between objects. The advantage of using semantic networks is that knowledge is easy and 

transparent to understand, but the disadvantage is that it is not an efficient way for both 

searching and enlarging the network. 
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Production rules represent the knowledge in the IF-THEN form and consist of 

(condition, consequence) pairs. If the conditions for a rule exist, the corresponding 

consequence or action will be carried out. The advantages of production rules are that they 

are expressed in natural language and are highly modular, but the execution of rules can be 

inefficient since the rules are usually in a large number and its management is difficult. 

Frame representations are used to describe different entities in the world. The 

structure consists of a collection of attributes and values, and the attributes can be any type 

and any size. Frame representations are derived from semantic networks and contain 

knowledge about an object or an event. Like the semantic network, frame representations 

are easy to understand and visualize but can bring difficulties to the inference mechanism.  

5.3 Case-based Reasoning 

Unlike other reasoning methodologies, the advantage of CBR is that it does not 

require much domain knowledge to solve problems. Instead, it relies on the accumulation 

of solved cases and finds the solution to its own by comparing the difference of the case 

features. This makes the CBR system more robust and evolutionary as new cases are 

continuously put in. Generally, the implementation of CBR involves the following steps: 

case representation and indexing, new case creation, case retrieval, case reuse or case 

adaptation, and case retention. 

Case representation and indexing is the preparation for further activities. Since CBR 

relies on knowledge sharing from past cases, a case library should be developed to keep 

the solved ones. Because each case should represent an experience where knowledge is 

applied, three types of information can be recorded: the description of the problem, the 
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corresponding solution, and the outcome after the solution is applied. Like a database, each 

case should be indexed properly for retrieval efficiency. There are several requirements 

about indexing (Watson, 1994): Indices should be predictive, scalable, and recognizable, 

and they should suggest the category or the purpose of the case. After the development of 

the case library, a new case can be encoded when a new situation happens, and the 

initialization follows the format of case representation.  

Then case retrieval is conducted to search the most similar cases in the case library. 

This process is partially directed by the case indexing and the organization of data. The 

similarity should be measured with each case in the same category using a specified 

algorithm. Nearest neighbor is the most common method, which defines different weights 

for the similarity measuring of different features (Kolodner, 2014). 

Case adaptation is to adapt the solution of the retrieved case to the current problem. 

The adaptation should analyze the prominent differences between cases and apply rules or 

formulae based on the retrieved solution. There are two types of adaptation: structural 

adaptation and derivational adaptation. The former is to apply adaptation rules directly to 

the solution (Kolodner, 2014), while the latter reuses the algorithm or the rule that the 

retrieved case uses to generate a new solution. 

5.4 Fuzzy Logic 

Fuzzy logic uses the fuzzy set to describe a situation. A fuzzy set consists of different 

classes of objects, which can be graded with a membership function to get the value 

between zero and one (Zadeh, 1965). 
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Assume 𝑋 is the space of objects, and 𝑥 represents a generic object in 𝑋. A fuzzy 

subset of a truth-value set 𝜏  in X can be characterized by a membership function 

𝜇𝜏: [0,1] → [0,1]. 𝜇𝜏(𝑥) represents in what degree 𝑥 has the linguistic truth-value 𝜏. For 

example, let 𝑋 be the temperature, 𝒯 be {cold, warm, hot}, and 𝜏 be the fuzzification of 

{cold}, then 𝜇𝜏(𝑥)  represents the degree of coldness. If 𝜏  is not a fuzzy subset, the 

membership function can be only 0 or 1, with 𝜇𝜏(𝑥) = 0 or 1 based on whether 𝑥 belongs 

to 𝜏 or not. 

Apart from the membership function that can represent uncertainty, modifiers can be 

added to the linguistic truth-values in 𝒯, like more or less, very, quite, and slightly. These 

modifiers can affect the membership function. For example, “very” can be defined to 

square the membership function: 

 𝜇𝑣𝑒𝑟𝑦 𝑐𝑜𝑙𝑑(𝑥) = 𝜇𝑐𝑜𝑙𝑑
2 (𝑥) (5.1) 

Fuzzy logic also follows the standard Łukasiewicz logic (𝐿1). Let 𝑟 and 𝑤 be two 

propositions, ¬  be the negation, ∧  be the conjunction, ∨  be the disjunction, ⇒  be the 

implication, the following formulae exist: 

 𝜇(¬𝑟) ≜ 1 − 𝜇(¬𝑟) (5.2) 

 𝜇(𝑟 ∧ 𝑤) ≜ min(𝜇(𝑟), 𝜇(𝑤)) (5.3) 

 𝜇(𝑟 ∨ 𝑤) ≜ max(𝜇(𝑟), 𝜇(𝑤)) (5.4) 
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 𝜇 (𝑟 ⇒ 𝑤) = min(1,1 − 𝜇(𝑟) + 𝜇(𝑤)) (5.5) 

There are two reasons to use the linguistic truth-values of fuzzy logic instead of 

numerical truth-values of 𝐿1 to do approximate reasoning (Zadeh, 1975). The first is that 

the truth-value set of fuzzy logic is a countable set, while that of 𝐿1 is a continuum. In most 

cases, a small finite subset of the truth-values of fuzzy logic is enough for approximate 

reasoning. The second is that there are more fuzzy propositions than precise propositions 

in approximate reasoning. 

Unlike a conventional proposition, a fuzzy proposition assigns the linguistic value to 

an object as the value of a variable, instead of using the belong-to relation. For example, a 

fuzzy proposition 𝑟 is given by: 

 𝑟 ≜ traffic is ℎ𝑒𝑎𝑣𝑦 (5.6) 

Instead of saying traffic is a member of “heavy”, it can be interpreted as: 

 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(traffic) = ℎ𝑒𝑎𝑣𝑦 (5.7) 

in which Situation(traffic) is a variable, and heavy is the assigned linguistic value. 

Sometimes, the modified linguistic truth-value 𝜏∗ is not in the truth-value set 𝒯, and 

its fuzzy truth-value needs to be approximated by a linguistic truth-value 𝜏 in 𝒯: 

 𝜏∗ = 𝐿𝐴[𝜏] (5.8) 

in which LA stands for linguistic approximation. For example, 
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 𝑢1 = 𝑐𝑜𝑙𝑑 (5.9) 

 (𝑢1, 𝑢2) = 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑒𝑞𝑢𝑎𝑙 (5.10) 

 𝑢2 = 𝐿𝐴[𝑐𝑜𝑙𝑑 ∘ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑒𝑞𝑢𝑎𝑙] (5.11) 

in which ∘ denotes the composition of fuzzy relations. 

5.5 Rough Set Theory 

Rough set-based reasoning relies on the analysis of the table-formed data set, in 

which each row represents a case, and each column represents an attribute. The table is 

also referred to as an information system 𝐼 = (𝑈, 𝐴), where 𝑈 is a non-empty finite set of 

objects and 𝐴 is a non-empty finite set of attributes (Zbigniew, 2004). If there is an attribute 

to describe the class of the object, the information system with the posteriori knowledge is 

called a decision system, 𝐼 = (𝑈, 𝐴 ∪ {𝑑}) where 𝑑 ∉ 𝐴. 

Indiscernibility relation is an important concept in rough set theory, meaning that 

some objects in the decision table are indiscernible only using a subset of attributes. It can 

be defined as follows: 

 𝐼𝑁𝐷𝐼(𝐵) = {(𝑥, 𝑥′) ∈ 𝑈2|∀𝑎 ∈ 𝐵, 𝑎(𝑥) = 𝑎(𝑥′)} (5.12) 

where 𝐵 is a subset of attributes 𝐴. It is described as B-indiscernibility relation, and such 

relation is an equivalence relation. Sets of objects with the same attribute values in this 

relation can be written as [𝑥]𝐵. 
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Set approximation is used to describe a set of objects with a certain attribute value. 

Let 𝑋 ⊆ 𝑈. Then a set 𝑋 can be approximated with B-lower and B-upper approximations, 

𝐵𝑋 and 𝐵𝑋: 

 𝐵𝑋 = {𝑥|[𝑥]𝐵 ⊆ 𝑋} (5.13) 

 𝐵𝑋 = {𝑥|[𝑥]𝐵 ∩ 𝑋 = ∅} (5.14) 

𝐵𝑋 is called the positive region or lower approximation where objects in 𝐵𝑋 can be 

classified as members of 𝑋 without a doubt. 𝐵𝑋 is called the negative region or upper 

approximation, where objects can possibly be members of 𝑋 . The boundary region 

𝐵𝑁𝐼(𝑋) = 𝐵𝑋 − 𝐵𝑋 contains the objects that cannot be decisively classified based on 

current knowledge. It is also called the B-boundary region of 𝑋. And the region outside the 

negative region 𝑈 − 𝐵𝑋 is called the B-outside region of 𝑋 contains objects that can be 

classified as not members of 𝑋 with certainty. 

In rough set theory, the membership function 𝜇𝑋
𝐵: 𝑈 → [0,1] describes the degree of 

that 𝑥  belongs to 𝑋  in terms of information about 𝑥  expressed by B-indiscernibility 

relation: 

 
𝜇𝑋
𝐵(𝑥) =

|[𝑥]𝐵 ∩ 𝑋|

|[𝑥]𝐵|
 

(5.15) 

In an information system, there might exist redundant attributes. Let 𝑎 ∈ 𝐵, and if 

𝐼𝑁𝐷𝐼(𝐵) = 𝐼𝑁𝐷𝐼(𝐵 − {𝑎}), 𝑎 is said to be as dispensable. And if all the attributes of 𝐵 are 
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indispensable, 𝐵  is said to be independent. A subset 𝐵′ ⊆ 𝐵  is a reduct of 𝐵  if 𝐵′  is 

indispensable and 𝐼𝑁𝐷𝐼(𝐵
′) = 𝐼𝑁𝐷𝐼(𝐵). 

The implementation of RST-based reasoning has several steps: data discretization, 

attribute reduction, the study of indiscernibility relation, and rule induction. Data 

discretization is to divide the numeric data into different regions so that numeric data can 

be converted into nominal data. Conventional data discretization methods include the 

global discernibility algorithm, which computes the globally semi-optimal cuts using the 

maximum discernibility heuristic, the quantile-based discretization, and discretization by 

equal intervals. The attribute reduction is to find the reducts of current conditional 

attributes from the discernibility matrix. The rejected attributes should be redundant ones 

whose removal will not worse the classification. The common approach for attribute 

reduction is the heuristics, while the reduct generation is either based on different criteria, 

like entropy and discernibility measure, or on a permutation schema over all attributes. The 

indiscernibility relation refers to a subset of attributes by which two objects are 

indiscernible. IF-THEN decision rules can then be derived from the indiscernibility classes 

defined by a subset of attributes. 

5.6 Chapter Summary 

In this chapter, the function of reasoning methodologies in the optimization system 

is analyzed. Four knowledge representation techniques are introduced. Three commonly 

used reasoning methodologies and techniques, case-based reasoning, fuzzy logic, and 

rough set theory, are discussed in detail, including the application scenario, the reasoning 

procedure, and the representation of reasoning.  
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CHAPTER 6. OPTIMIZATION IN REAL-TIME OPERATIONAL 

SYSTEMS 

In a real-time operational system, the optimization model is responsible for finding 

the optimal decision that meets the requirement or the objectives of the operation. An 

essential trade-off during this process is between the optimization performance and the 

execution time. System managers can have different preferences based on the specific 

application. In this chapter, both exact algorithms and heuristic algorithms are discussed: 

the former seeks for the optimality in the search space, while the latter sacrifices the 

optimality for the computation cost. In real-life applications, the solution obtained from 

exact algorithms and heuristic algorithms may not have much difference in operation costs, 

but the former may take much longer time. Thus, the problem scale and the performance 

tolerance between the optimality and the heuristics solution are also two important factors 

for selecting optimization algorithms. 

6.1 Exact Algorithms 

Conventional approaches to the exact optimal solution are mainly the branch-and-

bound and its variations. The branch-and-bound is a divide-and-conquer method that 

partitions the problem into independent subproblems, which have smaller feasible regions. 

The branch-and-cut is the combination of the cutting plane method and the branch-and-

bound, in which the former is used to generate valid inequalities in the original problem to 

narrow down the feasible region. When the problem scale is large, the number of variables 

can grow exponentially. In this case, it is impossible to formulate the complete model, and  
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column generation will be used to generate variables that can improve the objective 

function. Branch-and-price is to conduct column generation in the branch-and-bound 

framework. 

6.1.1 Branch-and-Bound 

Branch-and-bound takes the divide-and-conquer strategy. Assume the combinatorial 

optimization problem be in the form (Wolsey, 1998): 

 𝑧 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒} (6.1) 

where 𝜒 is the set of feasible solutions. Let 𝜒 = 𝜒1 ∪ …∪ 𝜒𝑛 be a decomposition of 𝜒 into 

smaller sets, and 

 ∪𝑖=1
𝑛 𝜒𝑖 = 𝜒, ∩𝑖=1

𝑛 𝜒𝑖 = ∅ (6.2) 

Let 𝑧𝑘 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒𝑘} for 𝑘 = 1,… , 𝐾. Then 

 𝑧 = max
k
𝑧𝑘 (6.3) 

Let 𝑃𝑏𝐿𝑃 be the linear programming relaxation of the original integer programming 

problem 𝑃𝑏𝐼𝑃. Decomposition is conducted when the optimal solution to 𝑃𝑏𝐿𝑃 contains a 

non-integral part, where the problem 𝑃𝑏𝐿𝑃 can be decomposed as follows: 

 𝑃𝑏𝐿𝑃1 = 𝑃𝑏𝐿𝑃 ∩ 𝑥𝑗 ≤ ⌊𝛽𝑗⌋  (6.4) 

 𝑃𝑏𝐿𝑃2 = 𝑃𝑏𝐿𝑃 ∩ 𝑥𝑗 ≥ ⌈𝛽𝑗⌉ (6.5) 
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where 𝑥𝑗 is the non-integral variable with the value 𝛽𝑗. Thus, the problem can be solved 

with a binary tree structure, where each branch is a problem decomposition. 

For each subproblem  𝑧𝑘 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒𝑘}, there are three scenarios. (i). There 

is no feasible solution: 𝜒𝑘 = ∅; (ii). There is an optimal solution 𝑥𝑖, but the optimal value 

is no better than the known optimal value: 𝑧𝑘 ≤ 𝑧; (iii). There is an optimal solution 𝑥𝑖, 

but the optimal value should be further computed to know if it is better than the known 

optimal value. The node representing the subproblem can be discarded when the first or 

the second scenario exists, which is called pruning. 

To study the third scenario, the bound operation is used. The optimal objective 

function value 𝑧 has a lower bound 𝑧, which is provided by any feasible integer solution 

and should be updated whenever a better solution is found. The upper bound is obtained in 

the linear programming relaxation of the current problem. If an upper bound is smaller than 

the current best lower bound, then the node can be discarded. The branching and pruning 

operations are conducted until the feasible solution of the current subproblem equals to 𝑧. 

The pseudocode of branch-and-bound is presented in Table 6.1. 
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Table 6.1 Pseudocode of branch-and-bound 

// Initialization of the problem set and the current optimality 

𝑆 ≔ {𝑃𝑏0}  
𝑍 ≔ −∞ 

while 𝑆 ≠ ∅ 

do 

remove 𝑃𝑏 from 𝑆 

Solve LP(𝑃𝑏) 

if LP(𝑃𝑏) is feasible 

let 𝛽 be the optimal solution  

if 𝛽 satisfies integrality constraint 

      if 𝑐𝑇𝛽 > 𝑍 

            store 𝛽 

            𝑍 = 𝛽 

      else 

            // P can be pruned 

            if 𝑐𝑇𝛽 ≤ 𝑍 

                  continue 

            end 

            let 𝑥𝑗 be integer variable with 𝛽𝑗 ∉ ℤ 

            𝑆 ∶= 𝑆 ∪ {𝑃 ∩ 𝑥𝑗 ≤ ⌊𝛽𝑗⌋, 𝑃 ∩ 𝑥𝑗 ≥ ⌈𝛽𝑗⌉} 

      end 

end 

      end 

end 

return 𝑍 

 

6.1.2 Cutting-Plane Method and Branch-and-Cut 

For combinatorial optimization problems, the feasible region consists of integer 

solutions. However, most of the search space consists of fractional solutions, which is the 

feasible region of the linear programming relaxation of the original problem. To narrow 

down the search space, the cutting-plane method finds the inequalities in the related 

problem that excludes the fractional solutions but still contains the original integer 

solutions, aiming to find the convex hull of the original feasible region until the solution 
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of the relaxed problem is integral. An example of the feasible region of the relaxed problem 

and its convex hull is shown in Figure 6.1. Figure 6.1(a) presents the feasible region of the 

relaxed problem, where its integer solutions are included in the polyhedron. Figure 6.1(b) 

shows the convex hull of the feasible region, where the fractional solutions that exclude 

the integer solutions are eliminated. 

  
(a) Feasible regions of LP relaxation (b) Convex hull of the feasible region 

Figure 6.1 Polyhedrons formed from the problem feasible region 

To achieve this objective, the cutting plane method adds valid inequality whenever 

the solution of the relaxed problem is not integral to narrow down the search space. Valid 

inequality is defined as follows:  

For a linear programming problem 𝑧 = max{𝑐𝑇𝑥|𝐴𝑇𝑥 ≤ 𝑏, 𝑥 ∈ 𝑋} , where 𝑋 =

{𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℤ+
𝑛}, 𝑎′𝑇𝑥 ≤ 𝑏′ is a valid inequality for 𝑋 ⊆ ℝ𝑛 if 𝑎′𝑇𝑥 ≤ 𝑏′, ∀𝑥 ∈ 𝑋. 

The adding constraint should exclude the obtained fractional optimal solution but 

contains all the feasible integer solutions. If the relaxed problem is kept solved with new 

valid inequalities adding in, all the fractional solutions obtained will be excluded from the 

feasible region. This operation is stopped until an integral solution is obtained from the 



 38 

relaxed problem. Because the optimal solution to the relaxed problem is also optimal to the 

problem with integrality constraint, this integer solution is also optimal to the original 

problem. The pseudocode of the cutting-plane method is shown in Table 6.2. 

Table 6.2 Pseudocode of the cutting-plane method 

// Initialization of the problem set and the current optimality 

𝑡 ∶= 0  

𝑃0 ≔ 𝑃  

Solve 𝑧𝑡 = max {𝑐𝑇𝑥|𝑥 ∈ 𝑃𝑡} 
Let 𝑥𝑡 be the optimal solution 

While 𝑥𝑡 ∉ ℤ𝑛 

if 𝑥𝑡 ∉ ℤ𝑛 

      Find (𝑎𝑡, 𝑏𝑡) where 𝑎𝑡𝑥𝑡 > 𝑏𝑡 that cuts off 𝑥𝑡 
      𝑃𝑡+1 = 𝑃 ∩ {𝑥: 𝑎𝑖𝑥 ≤ 𝑏𝑖 , 𝑖 = 1,… , 𝑡}  
end 

𝑡 ∶= 𝑡 + 1  

end 

return 𝑥𝑡 

 

One conventional method to add valid inequalities is through the Gomory’s cut 

(Kelley, 1960).  

Because the convergence of the cutting-plane method is slow and keeping adding 

new cuts makes the relaxed problem very large, it is not commonly used in practice. 

However, when it is used in the branch-and-bound framework, it can accelerate the search. 

The combination of the two algorithms is called branch-and-cut. Once a fractional solution 

is obtained, cuts can be added to the relaxed problem. If an integer solution is found from 

the new relaxed problem, or its new upper bound is less than the current lower bound, this 

node will not be branched but discarded sooner. 
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6.1.3 Column Generation and Branch-and-Price 

For large-scale combinatorial optimization problems, it is nearly impossible to 

enumerate all feasible combinations explicitly. Such problems are often solved by the 

column generation approach, which is embedded in the branch-and-bound framework. The 

rationale of column generation is similar to the simplex method. Because non-basic 

variables of the solution are in the majority, only the variables that have the potential to 

improve the current solution are generated. 

Assume the objective function of the optimization problem is 

 min{𝑐𝑇𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}  (6.6) 

Then its reduced cost can be computed as 𝑐 − 𝐴𝑇𝑦, where 𝑦 is the dual solution of 

the linear programming relaxation of the original problem. Finding the variables with 

minimum reduced costs is then formulated as: 

 min{𝑐 − 𝐴𝑇𝑦}  (6.7) 

Usually, this problem can be formulated as a vehicle routing problem with resource 

constraints.  

Therefore, column generation is used to generate new promising variables 

continuously, while the optimization problem is still solved with branch-and-bound. This 

combination is called branch-and-price.  
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Branch-and-price decomposes the original problem into two related problems: the 

restricted master problem (RMP) that solves the original problem with only a subset of the 

entire variables, and the pricing problem that finds the variables with minimum negative 

reduced costs. Figure 6.2 shows the flowchart of branch-and-price. 

 

Figure 6.2 The flowchart of branch-and-price 

As discussed above, the pricing problem is usually formulated as a shortest path 

problem with resource constraints, and the objective is to find the variables with the 

minimum negative reduced cost. This can be solved by the label correcting algorithm based 

on dynamic programming. The idea of label correcting is to set the labels for each variable 

element and track them while extending them to the connectable elements through the 

graph. After visiting a node, labels on that node will be compared, and the unpromising 
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ones will be discarded with domination rules. The left labels are continuously extended to 

the destination and form a feasible path. The variables of paths with minimum negative 

costs are chosen to enter the basis of the RMP. 

To guarantee the integrality of the solution, the following branching strategy is taken 

after column generation is implemented. Assume the optimal solution to the relaxation of 

the RMP is 𝑥𝑟
∗ . If 𝑥𝑟

∗𝜖ℤ, then 𝑥𝑟
∗  is the optimal solution that is feasible to the original 

formulation. Otherwise, the fractional part 𝑓𝑟
∗ = 𝑥𝑟

∗ − ⌊𝑥𝑟
∗⌋ of every variable value is taken 

to bound the variables with a predefined threshold 𝜏 , where 𝜏 ∈ (0,1). The following 

strategy is taken: 

 𝑥𝑟 ≥ ⌈𝑥𝑟
∗⌉, ∀𝑟 ∈ 𝑅: 𝑓𝑟

∗ ≥ 𝜏 (6.8) 

However, if 𝑓𝑟
∗ < 𝜏 for every 𝑟 ∈ 𝑅, then the variable with the largest fractional part 

will be rounded up: 

 if 𝑟 ∈ 𝑅: 𝑓𝑟
∗ ≥ 𝜏 = ∅, then 𝑥𝑟 ≥ ⌈𝑥𝑟

∗⌉, 𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑓𝑟
∗ (6.9) 

 

6.2 Heuristic Algorithms 

In practice, the benefit of finding optimality that has limited improvement than the 

heuristic solution is not always proportional to the extra computing time. Because of the 

high computation cost of exact algorithms to solve NP-hard problems, especially when the 

problem scale is large, there has been a lot of research on heuristic algorithms.  
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Usually, heuristic algorithms tend to be more greedy than exact algorithms, but they 

also have the varying capability to escape the local optimum during the search. Thus, they 

can obtain a near-optimal solution but in shorter time.  

Based on the search strategy, heuristics can be classified into local search and global 

search. Firstly, the local search starts exploring the search space from an initial point, and 

the initial position will have influences on both the solution quality and the search time, 

while the global search is less dependent on its initial position. Secondly, global search 

uses many techniques to search across search space, while local search focuses more on 

the movement from the current position to its neighboring space.  

Conventional local search heuristics include simulated annealing, tabu search, A* 

search, and so on. And commonly used global search heuristics are particle swarm 

optimization, genetic algorithms, ant colony optimization, and so on. In this section, A* 

search is introduced as a local search heuristic, and the genetic algorithm is discussed as a 

global search heuristic.  

6.2.1 A* Search: A Local Search Heuristic 

As a local search heuristic, A* search can be understood as an algorithm to find the 

optimal path, where each path connects an initial state to a goal state (Korf, 1988). During 

the search, the path is evaluated through a heuristic state evaluation function, 𝑓, which is 

the sum of two cost functions: the sum of the cost reaching the current state from the initial 

state, 𝑔, and the estimated cost of reaching the goal from the current state, ℎ. These two 

functions are designed based on the specific problem. The search direction is based on the 
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heuristic state evaluation function. The key feature of A* search is that if ℎ  is never 

overestimated, the solution is optimal in terms of 𝑔 (Korf, 1988).  

The procedure of A* search is presented in Table 6.3. In this thesis, A* search is 

applied to develop the optimization model for elevator dispatching in Chapter 8.5. 

Table 6.3 A* Search Algorithm Procedure 

Initialization 

(1)  Set 𝐹 as the number of tree levels 

(2)  Initialize the closed set 𝐶 = ∅  and the open node set 𝑀𝑖 = ∅  for 

unsearched nodes in the level 𝑖, 𝑖 = 1,… , 𝐹  

Search 

(1)  Generate the descendant nodes of the node 𝑚𝑖 , which has the lowest 

heuristic stage function value in the node set 𝑀𝑖, and add the descendant 

nodes to 𝑀𝑖+1 

(2)  Calculate the value 𝑓 for the nodes in 𝑀𝑖+1 

(3)  Sort the nodes in 𝑀𝑖+1 in increasing order by 𝑓 values 

(4)  Move the node 𝑚𝑖 to the closed set 𝐶 

Termination 

(1)  If the first node in 𝑀𝑖+1 is the goal state, end. 

(2)  Else, let 𝑖 = 𝑖 + 1 and return to the search stage. 

 

6.2.2 Genetic Algorithm: A Global Search Heuristic 

The genetic algorithm (GA) is a population-based iterative optimization algorithm 

inspired by the process of natural evolution. The solution candidates are treated as a 

population, and each solution candidate is an individual represented as a chromosome, 

where each gene represents one element in the solution. During evolution, the objective 

function is set as the evolution trend. In each iteration, there are several genetic operators 

to improve the solution quality and to escape the local optimum. The pseudocode of a GA 

is presented in Table 6.4, and the flowchart is shown in Figure 6.3. 
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Table 6.4 Pseudocode of a GA 

// Initialization of generation 0: 

𝑖𝑡𝑒 ≔ 0; 

𝑃𝑖𝑡𝑒 ≔initial population of 𝑝 randomly generated 𝑁 individuals; 

// Evaluate the fitness value of the populations 

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒; 

while 𝑖𝑡𝑒 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

do 

// Create generation 𝑖𝑡𝑒 + 1: 

Select a proportion of members from 𝑃𝑖𝑡𝑒; 

Select another proportion of members to for crossover; 

Combine the selection and offspring; 

Mutate the combined set; 

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒+1; 

𝑖𝑡𝑒 ≔ 𝑖𝑡𝑒 + 1; 

if the fitness of the best individual is converged 

return the best individual 

end 

end 

 

 

Figure 6.3 The flowchart of a GA 
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The crossover operations aim to exchange part of the parents’ chromosomes for 

producing offspring. Figure 6.4 shows an example of the crossover operation. The 

operation procedure is as follows. The first step is selecting the parent chromosomes 𝑝1 

and 𝑝2 based on their fitness value by applying the roulette algorithm. A fitter individual 

shows a superior probability of being selected. Then, a random gene index is chosen on the 

chromosome. The two parents exchange the genes after the chosen index to generate two 

offspring. 

  
(a) Selected parents with roulette algorithm (b) Offspring from crossover operation 

Figure 6.4 The crossover operation 

The mutation operations are applied to introduce diversities to the populations. The 

conventional mutation operation randomly changes the value of a gene at an arbitrary 

position on the chromosome, as shown in Figure 6.5. The mutation operation will be 

conducted when a newly generated random number is smaller than the mutation rate, which 

is a preset constant. This mutation strategy can balance the introduction of diversity to the 

population and prevent contamination in the late searching stage. 

  

(a) Chromosome before mutation (b) Chromosome after mutation 

Figure 6.5 The mutation operation 
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6.3 Chapter Summary 

This chapter introduces both exact algorithms and heuristic algorithms to solve 

combinatorial optimization problems in operational systems. Comparison is made between 

exact algorithms and heuristic algorithms. Branch-and-bound, branch-and-cut, and branch-

and-price are introduced for exact algorithms, in which the cutting plane method and 

column generation are two techniques to improve the search efficiency. For heuristic 

algorithms, the comparison is made between local search heuristics and global search 

heuristics, and A* search and the genetic algorithms are presented as two typical 

algorithms. 
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CHAPTER 7. DISCRETE-EVENT SIMULATION FOR 

OPTIMIZATION ENHANCEMENTS 

Discrete-event simulation can model a complex real-world operational system with 

a sequence of events in time. In the simulation model, each entity and event are set with 

different probabilities, trigger conditions, and other properties to represent their existence 

in the real world. By integrating the optimization model of an operational system into 

simulation, its effectiveness can be validated.  

In this thesis, situational information is introduced to the optimization model through 

CNN-enabled visual data analytics and reasoning. Because the integration of situational 

information is flexible, discrete-event simulation can be used to calibrate and improve the 

optimization model by adjusting the usage of situational information through the 

simulation feedback, thus forming a closed-loop optimization structure. 

7.1 Simulation Model Development 

Model development of an operational system can be interpreted as two subproblems, 

as shown in Figure 7.1: the modeling of operational mechanisms of the real-world problem 

and the programming of operational algorithms and variable setup. The former ensures the 

simulation model can operate correctly as the real-world system from the process 

perspective. The latter is to instantiate the entities and events with specified properties and 

provide detailed algorithms for the decision-making process.  
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Figure 7.1 A Real-world problem to a simulation model 

The workflow of model development is displayed in Figure 7.2. The first step is the 

problem formulation of the real-world system, including its workflow and mathematical 

representation. The simulation objective should then be set either to evaluate the 

performance of the optimization model with certain performance measures or to obtain the 

optimal solution of a decision-making problem by running experiments with different 

variable settings. After the preparation, the model entities and corresponding processes are 

developed based on their operational mechanisms. Real-world data is collected for input 

modeling. Conventional approaches to process collected data are fitting probability 

distributions, using data itself, or consulting expert opinions. Optimization algorithms are 

then embedded in the simulation model. System verification and validation are 

implemented to test the developed model. The experimental design is implemented to 

determine the variations of comparative experiments. Finally, experiments are conducted, 

and results are analyzed to seek the solution to the simulation objectives.  
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Figure 7.2 The workflow of Simulation Model Development 

7.2 Performance Measurement 

To evaluate the developed model, performance measurement is the critical procedure. 

Two essential questions that must be answered to better understanding model evaluation 

are why to measure and what to measure (Lebas, 1995). 
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The first question, why to measure, answers the usage of measures for model 

evaluation. The chosen measures are not the direct objectives of the designed model, but 

the results of a series of decisions and operations made by the model. By analyzing the 

measures, the comparison can be made between different models to find the key factors 

that influence the model operations. Also, measures provide a direction to improve the 

current model. 

 The second question, what to measure, is equivalent to asking what performance in 

this operational system is. Performance can be defined as the potential for future successful 

implementation of actions to reach the objectives (Lebas, 1995). This can be subjective, 

and people from different perspectives can have different answers. For example, when 

evaluating an elevator dispatching system, the building owner may care more about the 

operation and energy costs, while passengers choose the average waiting time as the most 

important factor. Because models with different usages of situational information will be 

compared in this study, the chosen performance measures should remain the same during 

the analysis. 

7.3 Results Analysis for Optimization Calibration and Adaptability Adjustment 

As discussed above, the main objective of discrete-event simulation in this study is 

to enhance the optimization model by adjusting the usage of situational information during 

optimization. To be specific, there are two methods to embed the situational information: 

to serve as the condition to change the problem formulation in different usage scenarios, 

and to add situational-related factors to the objective function. Thus, by analyzing the 

experiment results, the optimization model can be improved from two perspectives: the 



 51 

calibration of situation-related variables, and the adaptability of the optimization model to 

different usage scenarios. 

Optimization calibration is about finding a proper value for the coefficient (the 

weight) of situation-related variables. Unless there is an explicit mathematical relationship, 

the assignment is usually intuitive. By observing the operations made during the simulation 

or analyzing the experiment results, the coefficient value can be changed to adjust the 

importance of the situational information during optimization. 

There are two possible approaches to improve the model adaptability: the 

modification of applicable conditions for using situational information and the change of 

problem formulation. Model adaptability is related to the optimization strategy. And by 

comparing the operations made between two different models in the same experiment 

settings, the study can be made of whether the triggering conditions for changing the 

problem formulation is proper or whether the new formulation is reasonable. 

Therefore, the functionality of discrete-event simulation in the proposed optimization 

framework is to provide feedback about simulation performance. Through results analysis 

and observation of the simulation process, the integration of situational information can be 

continuously updated until the optimization model has satisfying adaptability and proper 

settings for situational-related variables. 

7.4 Chapter Summary 

This chapter mainly introduces the development procedure of a discrete-event 

simulation model and the analysis of experiment results. The workflow of developing a 
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simulation model from the real-world problem is presented. Performance measurement is 

discussed as the requirement for choosing model evaluation indicators. The directions for 

optimization enhancement through simulation results analysis are discussed: Optimization 

calibration is to find a proper value for the coefficient of the situation-related variable; 

Adaptability adjustment is to modify both the condition and the problem formulation when 

situational information is used to identify different scenarios.  
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CHAPTER 8. SIMULATION AND SYSTEM VALIDATION: AN 

APPLICATION OF OCCUPANCY-AWARE ELEVATOR 

DISPATCHING OPTIMIZATION 

This chapter presents the application of dispatching optimization for elevator group 

control with occupancy awareness to validate CNN-enabled visual data analysis and 

intelligent reasoning for real-time optimization and simulation.  

Elevators are the primary vertical transportation method in modern buildings, 

meeting the transport demands of building occupants for their work and living every day. 

In high-rise buildings where passengers spend much time on elevator travel during the rush 

hour, there are growing demands for improving elevator dispatching performance. 

Dispatching performance can be evaluated by the quantity of service and the quality of 

service (Fernandez & Cortes, 2015). The former refers to the passenger handling capacity 

during peak traffic periods, while the latter includes multiple indicators, such as passenger 

travel time, power consumption, passenger waiting time, and so on.  

In general, elevator dispatching is an optimization problem to make proper hall call 

allocations at a real-time scale, and the main challenge is the balance between dispatching 

performance and its implementation costs, including computing costs, operation costs, and 

facility costs. An efficient dispatching system can make reasonable allocations in a short 

time by the preference criteria set by elevator operators. In this application, real-time 

occupancy awareness is proposed to extract information from inside of the elevator cab for 

optimal elevator group control. Chapter 8.1 introduces the optimal elevator dispatching in 
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detail. Chapter 8.2 presents the occupancy awareness in elevator dispatching. Chapter 8.3 

discusses context information extraction with the Mask R-CNN. Chapter 8.4 presents the 

situational information extraction with case-based reasoning and fuzzy logic. The 

dispatching optimization model with the prioritized A* search is introduced in Chapter 8.5. 

Discrete-event simulation experiments and system validation are presented in Chapter 8.6.  

8.1 Optimal Elevator Dispatching 

Elevator group control (EGC) refers to managing multiple elevators in a group to 

improve transportation efficiency and reduce operation costs (Kim et al., 1995). This is 

achieved by allocating hall calls to the most suitable elevator cab, in an effort to optimize 

one or multiple criteria, including average waiting time, average journey time, round trip 

time, and building owner’s preferences, like power consumption (Fernandez & Cortes, 

2015; Barney & Al-Sharif, 2015). Three main problems concerned with EGC are what 

information to use for optimal dispatching, which dispatching optimization algorithm to 

apply, and how to determine the traffic pattern or the usage pattern to deploy different 

dispatching strategies. 

Dispatching information is a set of parameters describing elevator operating states 

and is applied as the input of dispatching optimization problems. Conventional dispatching 

information includes the cab position and direction, existing hall calls, registered cab calls, 

and so on (Al-Sharif, 2016). The more useful information used during dispatching, the 

better dispatching performance may be obtained, though that often requires more hardware 

support to capture the needed data.  
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Dispatching optimization aims at finding the most proper hall call allocations that 

optimize the selected criteria with the given dispatching information. Decision making for 

elevator dispatching is essentially a combinatorial optimization problem and falls into the 

NP-complete problems (Garey & Johnson, 1979). Given the characteristics of NP-

complete problems, prevailing optimization algorithms are heuristics-based, because they 

can usually find a near-optimal solution in a short time. Other algorithms like fuzzy logic, 

neural networks are also used (Fernandez & Cortes, 2015; Hamdi & Mulvaney, 2007).  

Dispatching strategies regulate elevator operations in different scenarios, including 

the control strategies under different traffic patterns, sub-zoning, and sectoring. Based on 

the analysis and prediction of traffic flow, traffic patterns can be roughly clustered into 

three: up-peak, down-peak, and inter-floor (Siikonen, 1997). Then, different control 

strategies are deployed to fit the characteristic of the current traffic pattern. Zoning and 

sectoring techniques are developed to specify working regions for different cabs (Chan et 

al., 1996; Li et al., 2007). To reduce the number of stops and the journey time, zoning 

divides the building with floors, like a lower zone and an upper zone. During the current 

traffic pattern, each elevator only serves one zone. On the other hand, sectoring divides the 

building in relation to both the position and direction. Such division can change according 

to the traffic flow, and each sector is assigned to only one cab (Al-Sharif, 2016). 

8.2 Elevator Occupancy Awareness 

As one common criterion for dispatching optimization, the journey time is defined 

as the time interval between a passenger registers a hall call and the passenger arrives at 

the destination floor (Bloat & Cortes 2011), which is the sum of waiting time and traveling 
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time. The number of stops in a trip can be a significant factor influencing the journey time. 

Because the movement speed of each elevator cab is relatively fixed, executing more stop 

operations to reach a floor means more time is spent on door closing and opening. This 

time not only influences the traveling time of the passengers in the cab, but also increases 

the waiting time of passengers waiting for this cab. Considering there are scenarios where 

a hall call fails to pick up any passenger due to the cab capacity or where passengers are 

not supposed to use the elevator when it is in a special usage, this application introduces 

occupancy information to improve the dispatching performance under such circumstances. 

8.2.1 Occupancy Information Analysis 

When a cab has no capacity for new passengers but is not overweighed, or when it is 

in a special usage and cannot receive new hall calls (like in hospitals), prevailing 

dispatching systems would keep assigning hall call tasks to it, thus generating wasted stops 

and increasing the journey time. Sometimes, lack of capacity is not because the cab is fully 

occupied but caused by large obstacles that block the entrance of the cab, like when 

passengers bring bicycles and place them at the entrance. And an example of a cab in 

special usage is the transfer of a patient on a stretcher that needs first-aid, and the cab 

should not answer new hall calls until the existing task is performed.  

The hidden assumption of traditional elevator dispatching systems is there is enough 

capacity to accommodate new passengers, so the dispatching mainly focuses on time-based 

criteria, like estimated time of arrival. However, capacity is a type of resource during 

dispatching, and if the resource constraint is not satisfied, penalties should be imposed on 

passenger waiting time and travel time.  
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To improve the current dispatching system, occupancy awareness is proposed during 

optimization. One objective is to reflect the cab capacity, thus decreasing the probability 

of pick-up failure and improving dispatching performance. Also, objects in the 

environment can be detected to recognize the current usage. And the number of passengers 

can be used for traffic analysis. The optimization information hierarchy is shown in Figure 

8.1.  

 

Figure 8.1 Occupancy information hierarchy 

The first level is the hardware level, collecting video data inside the elevator cab with 

video monitoring. This level aims at recording the objects in the scene and provides image 

data for further occupancy analysis. The second level is to extract context information. 

Object detection is implemented to aggregate the number and category of the objects in the 

cab with Mask R-CNN. The number of passengers in each cab during operation is recorded 

separately. The context information is used for traffic pattern recognition and occupancy 

analysis. The third level is to extract situational information. This level is to refine the 
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obtained information as the capacity factor to avoid pick-up failure and recognize the 

current elevator usage and the traffic pattern. Specifically, the cab capacity is estimated 

with space utilization and the mobility of objects in the cab. And the usage is recognized 

with case-based reasoning to determine if any specific dispatching strategy should be 

applied. The traffic pattern can be recognized through fuzzy logic using the real-time data 

of the number of passengers. 

8.2.2 Functional Analysis 

The occupancy information analysis model is the model that implements real-time 

occupancy awareness for optimal elevator dispatching. The functional analysis diagram 

(IDEF0) of the model is shown below. Figure 8.2(a) is the overview of the model, while 

Figure 8.2(b) presents its details. The whole process is completed on a microcomputer 

(M2). Firstly, object detection (A1) is performed with a pre-trained Mask R-CNN model 

(C2) using in-cab image data (I1) collected from the video monitoring (M1). The detection 

is executed with the predefined frequency or triggers (C1) to reach a real-time scale and to 

detect transferred passengers during a stop. The detection result that aggregates the 

numbers and categories of objects is used for situational awareness, including capacity 

estimation (A2) and usage pattern recognition (A3). Capacity is estimated based on the 

occupancy area contributed by each object and their mobility, which are predefined and 

recorded in the object occupancy information table (I2). The specific prediction method is 

to model the “consistency level” of the 3D space with a set of predefined rules (C3). And 

the usage pattern is determined by searching target objects in the detection result and finds 

the corresponding dispatching strategy with case-based reasoning (C6). Suppose a stretcher 

is detected in a hospital elevator cab. In that case, the cab will be determined as in the 



 59 

emergency usage, and the system will hold the hall call and cab call tasks of the cab and 

stop assign new tasks to the cab until the stretcher leaves, since a patient that needs first-

aid should be served as a priority. Traffic data analysis (A3) is to analyze the passenger 

arrival data in different traffic and recognize the current traffic pattern, which requires the 

time series analysis model (C4) for passenger arrival rate forecast and fuzzy rules (C5) to 

analyze the traffic intensity and traffic components. 

 

(a) Overview of the functional analysis of the model. 

 

(b) Detailed functional analysis of the model. 

Figure 8.2 Functional analysis of the occupancy information analysis model 
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8.3 Real-time Context Information Capturing with Mask R-CNN 

In the proposed elevator dispatching system, context awareness aims to find the 

object type and number in the cab. Thus, Mask R-CNN is applied to implement object 

detection for real-time context information capturing. 

8.3.1 Data Set Construction 

Dataset construction is an important step in model development. Because most 

detection targets in the cab are everyday objects, like humans, backpacks, and suitcases, an 

existing dataset can be used to save time from image collection and labeling. In this 

application, the Microsoft COCO dataset is used for the training, which contains 320,000 

labeled images and 90 object categories for object detection (Lin et al., 2014). As cardboard 

boxes are frequently seen in an elevator, box images are also collected and labeled as a 

new class in the dataset. LabelMe is used to annotate new data. For the convenience of 

training and testing, the image size is scaled to 640 * 480. The final dataset consists of 

cardboard boxes and 13 categories of objects from the COCO dataset: backpack, bicycle, 

cat, chair, dog, handbag, person, snowboard, sports ball, suitcase, surfboard, tennis racket, 

and umbrella. 2780 images are selected, where 1668 are in the training set and 556 for 

validation, and the remaining 556 images are in the testing set. 

8.3.2 Model Training  

The model in this application is trained using transfer learning techniques, which 

saves the time by learning the extraction of general features from pre-trained models (Shin 

et al. 2016). This is implemented by firstly freezing the backbone layers and only training 
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the head layers. Then the entire model is fine-tuned. The training is done on the new 

dataset. Normally, ResNet-50 is chosen for backbone feature extraction.  

An example of object detection in an elevator cab is presented in Figure 8.3. 

 

Figure 8.3 Object detection in the elevator cab 

8.4 Case-based Reasoning and Fuzzy Logic for Elevator Situation Comprehension 

8.4.1 Situation Comprehension during Elevator Dispatching 

To improve dispatching performance, situational information is extracted to equip 

the optimization model with the comprehension of the current environment. In elevator 

dispatching, three types of situational information are useful for obtaining high-quality 

dispatching solutions: the cab usage pattern, the traffic pattern, and the estimated capacity. 

The objective of usage pattern recognition is to recognize the transport objective of 

the trip. If the cab is in a special usage, it may perform only the specified tasks, and this 

can change the number of usable cabs or the hall calls that should be answered in the 
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optimization model. Traffic patterns indicate the traffic components about passengers’ trip 

directions and the traffic intensity. If the traffic is heavy and most passengers have the same 

trip directions, like the rush hour in the morning, certain dispatching strategies can be 

adopted to make more reasonable hall call allocations. Capacity estimation is to understand 

the space utilization of each cab. It enables the optimization model to consider the capacity 

constraints during dispatching in heavy traffic, so the hall call allocation can be more 

balanced to avoid pick-up failure caused by the lack of capacity. 

8.4.2 Case-based Reasoning for Elevator Usage Pattern Recognition 

Because elevators can be in special usages during operations, timely detection of a 

special usage can help the dispatching system to adjust its dispatching strategy and bring 

convenience to passengers. For example, if an elevator cab is often used to transport freight, 

a usage pattern regarding this usage can be set. If specific freight carriers or devices are 

detected, the usage is defined as a special one. In this scenario, a special optimization 

strategy can be set, like to serve the current task as a priority and ignore the outside hall 

calls until the current task is finished. Different dispatching strategies can be set to satisfy 

the demands of special elevator usages from the management perspective. 

In this application, case-based reasoning is used to implement usage pattern 

recognition. There are five steps: case representation and indexing, new case creation, case 

retrieval, case reuse or case adaptation, and case retention.  

Case representation and indexing are the preparation work for further operations. 

Because the objective is to detect special usages, the number and type of key items can be 

used to describe a case. For example, stretchers and cleaning carts are set as the target 
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object for the first-aid usage and cleaning tool transport. And the number of passengers is 

also of interest. Then < 𝑐1, 𝑐2, 𝑐3, 𝐼𝐷, 𝑎𝑛𝑠 > can be used to describe a case, where 𝑐1 and 

𝑐2 are Boolean variables (true or false) representing the existence of stretchers and cleaning 

carts, and 𝑐3 is a numeric variable representing the number of passengers in the cab. 𝐼𝐷 is 

the index of the case, and 𝑎𝑛𝑠 is its recorded solution. The case indexing can use the special 

usage as the case category and a number that represents the sequence of that case in this 

category to ease the case retrieval process. Table 8.1 presents two cases for the transport 

of a cleaning cart and the freight.  

Table 8.1 Two examples of case representation 

(a) Cleaning cart transport 

-ID: Cleaning_003 

-CleaningCart: True 

-Freight: False 

-Psg_Number: 4 

-Capacity: 30% 

-Direction: upward 

+Solution: The cab becomes unavailable for new calls till the cart leaves. 

(b) Freight transport 

-ID: FreightTransport_015 

-CleaningCart: False 

-Freight: True 

-Psg_Number: 0 

-Capacity: 30% 

-Direction: downward 

+Solution: Clear current hall call allocations and the cab become unavailable for  

                  new calls till the freight leaves. 
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Case retrieval aims to find similar cases in the case library, and similarity measuring 

between the new case and old cases is needed. A conventional approach is to use the nearest 

neighbor matching with the following equation for similarity measuring: 

 ∑ 𝑤𝑖
𝑛
𝑖=1 ∗𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖

𝑛𝑒𝑤,𝑐𝑖
𝑜𝑙𝑑)

∑ 𝑤𝑖
𝑛
𝑖=1

                           (8.1) 

where 𝑐𝑖 is the case feature, and 𝑤𝑖 is the weight of the feature. Because the usage detection 

is largely determined by the existence of items, the corresponding feature variable is either 

Boolean or integral, making the similarity measuring easier. 

The objective of case adaptation or reuse is to find a solution to the current case. 

Based on different elevator usages and the detected items, there can be several types of 

solutions. For example, if the elevator is used for first aid, the current hall call and cab call 

assignment will be eliminated to serve the current task, and no new hall call will be 

allocated until this task is performed. Suppose the elevator is used for the transport of a 

cleaning cart. In that case, the cab will keep its current cab call assignment, but whether to 

execute existing hall calls can be decided by other information, like the floor difference 

between the cart destination and its starting floor. Production (IF-THEN) rules can be used 

to evaluate the case similarity and decide whether to modify or reuse the original solution. 

After the solution is found, the solved new case can be stored in the case library for future 

reference. 

8.4.3 Traffic Pattern Recognition with Fuzzy Logic 

8.4.3.1 Passenger Travel Data Analysis 
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According to the travel purpose, passenger traffic components can be categorized 

into incoming traffic, inter-floor traffic, and outgoing traffic. To determine the passenger 

arrival rates in different traffic, the data recording the number of passengers in each cab is 

transformed into the number of passengers in different traffic. 

Context awareness provides the real-time data of the number of passengers. 

Considering that passengers only enter or exit the cab during a stop, a frequency can be 

determined to capture the change during the stop. Assume passengers do not enter the cab 

until all the passengers whose destination is at this floor exit. Let 𝑛𝑝0, 𝑛𝑝𝑚𝑖𝑛, 𝑛𝑝1 be the 

number of passengers before the stop, the minimum number of passengers during the stop, 

and the number of passengers after the stop. The number of passengers exiting the cab is 

𝑛𝑝0 − 𝑛𝑝𝑚𝑖𝑛, while the number of new passengers is 𝑛𝑝1 − 𝑛𝑝𝑚𝑖𝑛.  

To derive the passenger arrival rates in different traffic, the number of transferred 

passengers is needed. For incoming traffic, the number of passengers who enter the cab on 

the main floor is recorded. For inter-floor traffic, if the cab moves upwards, the number of 

passengers entering the cab between the second floor and the next highest floor is recorded. 

If the cab moves downwards, the number of passengers who exit the cab on these floors 

are recorded. For outgoing traffic, the number of passengers who exit the cab on the main 

floor is recorded. The recorded data is then aggregated with a fixed granularity to calculate 

the passenger arrival rates in different traffic. 

8.4.3.2 Traffic Flow Forecast with ARRES 

Traffic pattern recognition aims to detect the pattern change in advance to avoid the 

form of long waiting queues. Thus, traffic flow forecast is implemented to predict the 
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passenger arrival rates. In this application, the adaptive response rate exponential 

smoothing (ARRES) is chosen as the time series analysis model, which was validated to 

solve this problem (Makridakis et al., 1983). The learning of traffic flow is not limited to a 

single day, and the past data will be incorporated into the long-term statistics. 

Compared to single exponential smoothing, ARRES continuously optimizes the 

smoothing factor 𝛼. The prediction formula is illustrated below. 

 𝐹𝑡+1 = 𝛼𝑡𝑌𝑡 + (1 − 𝛼𝑡)𝐹𝑡 (8.2) 

 
𝛼𝑡 = |

𝐸𝑡
𝐴𝐸𝑡

| (8.3) 

 𝐸𝑡 = 𝛽𝑒𝑡 + (1 − 𝛽)𝐸𝑡−1, 0 < 𝛽 < 1 (8.4) 

 𝐴𝐸𝑡 = 𝛽|𝑒𝑡| + (1 − 𝛽)𝐴𝐸𝑡−1 (8.5) 

 𝑒𝑡 = 𝑌𝑡 − 𝐹𝑡−1                                                                    (8.6) 

𝐹𝑡+1 is the forecast smoothed value, 𝑌𝑡 is the observation in the current period, 𝐸𝑡 is 

the smoothed average error, and 𝐴𝐸𝑡 is the smoothed absolute error. 𝛼𝑡 is the smoothing 

factor that keeps being optimized. 𝛽 is a predefined constant parameter between zero and 

one. And 𝑒 is the error term. 

After the forecast, the future passenger arrival rates in different traffic, 

𝜆𝑖𝑛𝑐, 𝜆𝑜𝑢𝑡, 𝜆𝑖𝑛𝑡, can be obtained. 
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8.4.3.3 Traffic Pattern Recognition with Fuzzy Logic 

In this application, traffic pattern recognition is conducted with fuzzy logic according 

to the traffic intensity and the distribution of different traffic components in the building. 

The implementation is based on published research of KONE (Siikonen, 1997). The 

proposed method defines four traffic factors related to different traffic components and the 

overall traffic intensity. Fuzzy set values are obtained with two groups of membership 

functions for traffic components and the traffic intensity. Fuzzy rules are then applied to 

determine the traffic pattern based on the fuzzy set values. 

Traffic component analysis and traffic intensity evaluation are first implemented, 

with four traffic factors, 𝑢1, 𝑢2, 𝑢3, 𝑢4,   defined to grade the corresponding level. The 

component analysis aims to reflect the proportion of three traffic. The component values 

for incoming traffic, outgoing traffic, and inter-floor traffic, 𝑢1, 𝑢2, 𝑢3 , are shown in 

Equation (8.7)-(8.9).  

 𝑢1 = 100 ∗ 𝜆𝑖𝑛𝑐/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡)                                                  (8.7) 

 𝑢2 = 100 ∗ 𝜆𝑜𝑢𝑡/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡)                                                (8.8) 

 𝑢3 = 100 ∗ 𝜆𝑖𝑛𝑡/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡)               (8.9) 

And the overall traffic intensity value 𝑢4  is to scale the total arrival rates to the 

passenger handling capacity 𝐻𝐶, where the handling capacity is determined as the number 

of served passengers in five minutes during up-peak traffic: 
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 𝑢4 = 100 ∗ (𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡)/𝐻𝐶  (8.10) 

Then fuzzy sets {low, high, medium}∈ ℱ1 are used to describe 𝑢1, 𝑢2, 𝑢3. Figure 8.4 

presents the fuzzy sets corresponding to traffic components. The membership function to 

describe the three factors are as below: 

 

𝜇𝑙𝑜𝑤(𝑢) = {

1, 𝑖𝑓 𝑢 < 25
35 − 𝑢

10
, 𝑖𝑓 25 ≤ 𝑢 < 35

0, 𝑖𝑓 𝑢 ≥ 35

 (8.11) 

 

𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑢) =

{
 
 

 
 

0, 𝑖𝑓 𝑢 < 30
𝑢 − 30

20
, 𝑖𝑓 30 ≤ 𝑢 < 50

70 − 𝑢

20
, 𝑖𝑓 50 ≤ 𝑢 < 70

0, 𝑖𝑓 𝑢 ≥ 70

 (8.12) 

 

𝜇ℎ𝑖𝑔ℎ(𝑢) = {

0, 𝑖𝑓 𝑢 < 65
𝑢 − 65

10
, 𝑖𝑓 65 ≤ 𝑢 < 75

1, 𝑖𝑓 𝑢 ≥ 75

 (8.13) 

 

Figure 8.4 Membership functions for different traffic components 
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The obtained results are used to determine the traffic type with the fuzzy rules 

presented in Table 8.2. The traffic type will influence the parameter setting in the 

membership function for the traffic intensity. 

Table 8.2 Fuzzy rules to determine the traffic type (Siikonen, 1997) 

Incoming Outgoing Inter-floor Traffic Type 

high low low incoming 

medium low low incoming 

low high low outgoing 

low medium low outgoing 

low low high inter-floor 

low low medium inter-floor 

medium medium low two-way 

medium low medium mixed 

low medium medium mixed 

The fuzzy set for the traffic intensity is {light, normal, heavy, intense}∈ ℱ2, and the 

membership functions are shown in Figure 8.5. The formulae are presented in Equation 

(8.14). 

 

Figure 8.5 Membership functions for the traffic intensity 
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𝜇𝑓(𝑢4) =

{
 
 
 

 
 
 

0, 𝑖𝑓 𝑢4 < 𝑎𝑗
𝑢4 − 𝑎𝑗

𝑏𝑗 − 𝑎𝑗
, 𝑖𝑓 𝑎𝑗 ≤ 𝑢4 < 𝑏𝑗

1, 𝑖𝑓 𝑏𝑗 ≤ 𝑢4 < 𝑐𝑗
𝑑𝑓𝑗 − 𝑢4

𝑑𝑗 − 𝑐𝑗
, 𝑖𝑓 𝑐𝑗 ≤ 𝑢4 < 𝑑𝑗

0, 𝑖𝑓 𝑢4 ≤ 𝑑𝑗

 (8.14) 

where 𝑎𝑗 ≤ 𝑏𝑗 ≤ 𝑐𝑗 ≤ 𝑑𝑗 , 𝑗 ∈ 𝐽 . 𝐽  is the space of all traffic types. Different set limits, 

𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗, are set according to the traffic type. 

Finally, the grades of the membership function for traffic components and the traffic 

intensity are compared with the equation below: 

 𝜇𝑖′(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝜇𝑖(𝑢1) ∧  𝜇𝑖(𝑢2) ∧  𝜇𝑖(𝑢3) ∧ 𝜇𝑓(𝑢4) 

= min{𝜇𝑖(𝑢1), 𝜇𝑖(𝑢2), 𝜇𝑖(𝑢3), 𝜇𝑓(𝑢4)} 
(8.15) 

where 𝑖 ∈ ℱ1, 𝑓 ∈ ℱ2, 𝑖′ ∈ 𝑍. 𝑍 is the space of all traffic patterns. 

Table 8.3 presents the 36 fuzzy rules to determine traffic patterns. The grades 

obtained with Equation (8.15) are added to the corresponding rules. The rule with the 

highest grade determines the recognized traffic pattern.  

Table 8.3 Fuzzy rules for traffic pattern recognition (Siikonen, 1997) 

Intensity Incoming Outgoing Inter-floor Traffic Pattern 

intense high low low intense up-peak 

intense low high low intense down-peak 

intense low low high intense inter-floor 

intense medium low low intense up-peak 

intense low medium low intense down-peak 

intense low low medium intense inter-floor 
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intense medium medium low intense mixed 

intense medium low medium intense mixed 

intense low medium medium intense mixed 

heavy high low low up-peak 

heavy low high low down-peak 

heavy low low high heavy inter-floor 

heavy medium low low heavy up-peak 

heavy low medium low heavy down-peak 

heavy low low medium heavy inter-floor 

heavy medium medium low mixed 

heavy medium low medium heavy mixed 

heavy low medium medium heavy mixed 

normal high low low up-peak 

normal low high low down-peak 

normal low low high inter-floor 

normal medium low low up-peak 

normal low medium low down-peak 

normal low low medium inter-floor 

normal medium medium low mixed 

normal medium low medium mixed 

normal low medium medium mixed 

light high low low light up-peak 

light low high low light down-peak 

light low low high light inter-floor 

light medium low low light up-peak 

light low medium low light down-peak 

light low low medium light inter-floor 

light medium medium low light mixed 

light medium low medium light mixed 

light low medium medium light mixed 

 

8.4.4 3D-Space Consistency Modelling with Object Mobility for Capacity Estimation 

Situational awareness is proposed to understand the latent story of the cab usage. In 

this sense, capacity is defined as the area that can accommodate new passengers. This 

concept is different from the unoccupied space, because sometimes passengers cannot find 

a path to the unoccupied space when large obstacles are getting in the way. Considering 

the influence of object mobility on the capacity, this study proposes to utilize the object 
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occupancy area, 𝑆, and the object mobility, 𝑀, to model the 3D space consistency level, 𝐿, 

and then to do the estimation. 

The object occupancy area is the area that the object occupies and is obtained based 

on the crowd density approximation method by fully occupying the cab with the objects 

(Barney & Al-Sharif 2015). For example, the ground of a cab is measured as 2𝑚 × 2𝑚. 

Figure 8.6 shows the static crowd density from 1 person/𝑚2 to 5 people/𝑚2. According 

to the crowd density and risk analysis control, 5 people/𝑚2 is the upper limit for standing 

spaces. Therefore, the maximum capacity for humans is 20, and the object occupancy area 

is 0.2 sqm.  

 
Figure 8.6 Crowd density estimation. 

The object mobility is defined as a categorical variable to describe how easily the 

object can be moved. It has three levels: low, medium, and high. If an object is too large 

or heavy to move, or it is not supposed to move much in the cab, its mobility is defined as 

low. For example, the mobility of a wheelchair is low, because crowdedness should be 

avoided when the disabled are in the cab.  

The 3D-space consistency level is defined to describe the ability of the cab to make 

room for new passengers, which can be regarded as the evaluation for conversion 
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efficiency between the space and the capacity. The value of the consistency level is also 

supposed to consider the object position. For example, if all the objects in the cab have 

high mobility, it is easier to reach a high space utilization rate, because the positions of 

passengers and other objects can be adjusted. But if an object with low mobility is placed 

near the cab entrance, it will be inconvenient for passengers to enter. However, given that 

the relationship among capacity, object mobility, and position is ambiguous to model, and 

that the camera angle influences the object position obtained from Mask R-CNN, this study 

uses the mobility factor to reflect the effect of object position on capacity. Table 8.4 

presents part of the object occupancy information in this application. 

Table 8.4 Object occupancy information 

Object Mobility   Occupancy Area Occupancy Percentage 

Human High 0.2 sqm 5% 

Backpack High 0.02 sqm 0.5% 

Suitcase High 0.2 sqm 5% 

Scooter Medium 0.214 sqm 6% 

Box Medium 0.3 sqm 7.5% 

Wheelchair Low 1 sqm 15% 

Bicycle Low 0.5 sqm 12.5% 

 

In this application, the mobility value 𝑀  corresponds to the predefined mobility 

level:  

 
𝑀 = {

1, level = high
2, level = medium
3, level = low

 (8.16) 
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     The value of room consistency level is calculated as a function of the object occupancy 

area 𝑆 and the object mobility 𝑀: 

 
𝐿 =

∑ 𝑆𝑖𝑀𝑖
𝑁
𝑖=1

∑ 𝑆𝑖
𝑁
𝑖=1

 (8.17) 

where 𝑁 is the number of detected objects. 

The estimated capacity 𝐶  is calculated as the empty space divided by the room 

consistency level:  

 
𝐶 =

1

𝐿
∙ (𝑆cab −∑ 𝑆𝑖

𝑁

𝑖=1
) (8.18) 

where 𝑆cab is the ground area of the cab. 

8.5 Real-time Dispatching Optimization with Prioritized A* Search 

The elevator dispatching problem falls into NP-complete problems and requires real-

time responses. In a building with 𝑛 elevators with 𝑝 hall calls, the number of possible 

solutions is 𝑛𝑝 . During peak traffic, the dispatching system needs to make hall call 

allocations in a short time with high quality. In this application, a modified prioritized A* 

search algorithm is used to find the optimal allocations considering occupancy information 

(Hamdi & Mulvaney, 2007). 

 

 



 75 

8.5.1 Prioritized A* Search Algorithm 

Compared to the heuristics-based methods, the modified prioritized A* search is 

more suitable for this context. Firstly, prevailing heuristics will not stop until the 

convergence criteria are met. However, for elevator dispatching, hall call allocations 

should be assigned within very few seconds after the hall call is registered. Secondly, 

heuristics usually find a general high-quality solution and have a thorough search horizon. 

However, dispatching information keeps changing all the time, and original allocations are 

less meaningless since new hall calls are generated. Thus, it is advantageous if the 

algorithm can limit the search horizon and interrupt the search horizon. These operations 

are easy to implement for the A* search algorithm. Thirdly, the cost of each hall call 

allocation is reflected in the objective function of the A* search algorithm, making it easier 

to fit the occupancy information into the problem.  

In the context of elevator dispatching, each level addresses one hall call assignment 

in the A* search algorithm. When the number of hall calls exceeds the number of cabs, this 

algorithm tends to assign all hall calls until it terminates. However, in this scenario, it is 

more important that each cab has at least one hall call task. If the algorithm is interrupted 

because of the limit of the computing time, there might be cabs with no hall call assignment.  

In this regard, the prioritized A* search is proposed and prioritizes the search 

sequence according to the elevator usage. This means the objective of the search is to 

allocate a hall call task to a cab at each tree level. Because the search logic forces the 

assignment of cabs to hall calls instead of the reverse, the search can be stopped when the 

number of the searched tree levels is equal to the number of cabs. 
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8.5.2 Dispatching Optimization Problem Formulation 

To introduce the occupancy information into the problem formulation, the capacity 

𝐶𝑛 and cab ground area 𝑆𝑛 are utilized, where 𝑛 refers to the cab sequence. Based on the 

influence of the capacity on pick-up failure, the cost to perform a hall call task should be 

smaller if a cab has more capacity, and vice versa. Thus, the occupancy factor 𝑜𝑛 is set as 

the coefficient of the task cost, and it is calculated as below: 

 

𝑜𝑛 = {
√
𝑆𝑛
𝐶𝑛
, 𝑖𝑓 𝐶𝑛 > 0.01𝑆𝑛

10, 𝑖𝑓 𝐶𝑛 ≤ 0.01𝑆𝑛

 (8.19) 

It should be noticed that the occupancy factor 𝑜𝑛 should only be applied to the hall 

call tasks that are performed before the cab changes the direction. Because the assumption 

of the elevator operation logic is that the cab will not change its direction before it finishes 

all the tasks in the original direction. If the hall call task is performed after the cab changes 

the direction, passengers on the cab currently will exit the cab before the last task in this 

direction, and the occupancy factor will be no longer effective to the task costs. 

The passenger waiting time is chosen as the criterion to evaluate dispatching 

performance. Correspondingly, the calculation of 𝑔 and ℎ are concerned with the waiting 

time. Two look-up tables are prepared to calculate the value 𝑔 and ℎ. The first table records 

the costs for each cab to answer a hall call as its first hall call from the current position, 

taking the cab call commitments into account. And the second table records the costs of 

trips between different pairs of hall calls for each cab, in which both hall call and cab call 

tasks are considered. The cost estimation is based on the worst-case scenarios to ensure no 
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overestimation is made on ℎ. Let 𝑑𝑛 be the cost to answer a hall call as its first hall call 

task for the cab 𝑛, and 𝑠𝑛 be the cost of a trip between a pair of hall calls. Let 𝑝𝑖 be an 

assigned hall call of the cab 𝑛, and 𝑃𝑛 be the number of assigned hall calls to it. Thus, the 

first table represents 𝑑𝑛(𝑝1), referring to the cost for the cab 𝑛 to answer the hall call as 

the first hall call task. The second table represents 𝑠𝑛(𝑝𝑖, 𝑝𝑖+1), meaning the cost for the 

cab 𝑛 to answer the hall call 𝑝𝑖 followed by 𝑝𝑖+1. For each hall call 𝑚 performed before 

the cab changes its direction, the cost 𝑔𝑛(𝑚) is given by: 

 𝑔𝑛(1) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1),      𝑃𝑛 = 1 (8.20) 

 
𝑔𝑛(𝑚) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1) +∑ 𝑜𝑛

1
3𝑖𝑠𝑛(𝑝𝑖, 𝑝𝑖+1)

𝑃𝑛−1

𝑖=1
,       𝑃𝑛 > 1,𝑚 = 1,… , 𝑃𝑛 

(8.21) 

On the other hand, if the hall call 𝑚  is performed after the cab 𝑛  changes the 

direction, let 𝑣1 be the number of hall call tasks before it changes the direction, the cost 

𝑔𝑛(𝑚) is given by: 

 𝑔𝑛(1) = 𝑑𝑛(𝑝1),      𝑃𝑛 = 1 (8.22) 

 
𝑔𝑛(𝑚) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1) + ∑ 𝑜𝑛

1

3𝑖𝑠𝑛(𝑝𝑖, 𝑝𝑖+1) + ∑ 𝑠𝑛(𝑝𝑗 , 𝑝𝑗+1)
𝑃𝑛−1
𝑗=𝑣1

𝑣1−1
𝑖=1 , 𝑃𝑛 >

1,𝑚 = 1,… , 𝑃𝑛    

(8.23) 

The value of 𝑔 at the current node is the sum of 𝑔𝑛 . It should be noted that the 

occupancy influence on the cost evaluation of performing a task will decrease dramatically 

as the cab receives more tasks. The same goes for the calculation of ℎ. 
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Let 𝑄 be the number of hall calls to be assigned and 𝑞𝑗 is one of the hall calls, and 𝑘 

be an unassigned hall call temporarily assigned at the current node. Usually, 𝑄 is chosen 

as the number of the cabs in the system. The cost ℎ𝑛(𝑘), for the cab 𝑛 to answer a hall call 

𝑞𝑗 as the 𝑘𝑡ℎ assigned hall call performed before the cab changes the direction, is given by: 

 ℎ𝑛(𝑘) = 𝑜𝑛 ∗ min[𝑑𝑛(𝑞𝑗)] , 𝑃𝑛 = 0, 𝑗 = 1,… , 𝑄  (8.24) 

 
ℎ𝑛(𝑘) = min [∑ 𝑔𝑛(𝑚) + 𝑜𝑛

1

3𝑃𝑛𝑠𝑛 (𝑝𝑃𝑛,𝑞𝑗)
𝑃𝑛
𝑚=1 ] , 𝑃𝑛 > 0, 𝑗 = 1,… , 𝑄                        

(8.25) 

If this hall call is performed after the cab 𝑛 changes its direction, the cost ℎ𝑛(𝑘) is 

given by: 

 ℎ𝑛(𝑘) = min[𝑑𝑛(𝑞𝑗)] , 𝑃𝑛 = 0, 𝑗 = 1,… , 𝑄 (8.26) 

 ℎ𝑛(𝑘) = min [∑ 𝑔𝑛(𝑚) + 𝑠𝑛 (𝑝𝑃𝑛,𝑞𝑗)
𝑃𝑛

𝑚=1
] , 𝑃𝑛 > 0, 𝑗 = 1,… , 𝑄 (8.27) 

The value of ℎ(𝑘) is the smallest value from ℎ𝑛(𝑘), and the value of ℎ is the sum of 

ℎ(𝑘). In the meantime, the value ℎ is used as the termination criterion. If ℎ = 0 at a node, 

that node will be the goal state.  

8.6 Simulation Experiments and System Validation 

To validate the proposed smart dispatching with real-time occupancy awareness, the 

simulation model for elevator dispatching is developed, and discrete-event simulation 

experiments are conducted. To study the effects of dispatching with occupancy information 

and simplify the simulation process, only capacity estimation is implemented, meaning that 
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the existence of objects is known and recorded once they are generated, and no special 

usage pattern is set during the experiments. Furthermore, objects in the experiments are 

designed to have relatively large occupancy area but small weight. 

8.6.1 Simulation Model Development 

Simulation for elevator dispatching requires three components: one for building the 

discrete-event simulation model, one for implementing the dispatching optimization 

algorithm, and one for data communication between the simulation model and the 

algorithm. In this study, Simio is the simulation software to model the behavior of elevator 

cabs and passengers. MATLAB is used for computing work, including capacity estimation 

and dispatching optimization. And Microsoft SQL Server is the data communication 

platform. A user-defined Simio process is developed with C# based on the Simio API to 

call MATLAB function from Simio, so that Simio can issue the command to run an 

algorithm in MATLAB during the simulation. 

Some assumptions are made based on the elevator usage in real life: (i). Passengers 

cannot enter the cab if it does not have enough capacity or they make the cab overweighed. 

(ii). If passengers cannot enter the cab when it arrives, they will repress the hall call button 

after it leaves. (iii). If the cab is fully occupied, it still stops at the floor where its allocated 

hall call tasks are registered. (iv). Passengers only enter the cab that goes towards their 

destinations. (v). Passengers arrive one by one, instead of in a group. (vi). A cab will park 

on the ground floor if it has no tasks. (vii). A cab will not change the direction until all the 

hall call and cab call tasks are fulfilled in the original direction. (viii). The time to travel to 
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the adjacent floor is fixed. (ix). The time is the same to perform either a hall call task, a cab 

call task, or both on a floor. 

In Simio, the basic object unit is the “entity”. Built-in entities like vehicles and 

workers in the standard library have specific properties, processes, and functions to 

perform certain tasks. Considering the complexity of the elevator operation logic, this study 

develops the elevator and passenger objects from scratch to model their behaviors instead 

of using built-in entities. Apart from this, some necessary state variables are defined as the 

model states for the convenience of data communication. 

8.6.1.1 Model State Variable Setup 

To guarantee the accessibility of some key variables in the process of any entity 

object, they are defined as the model state variables. These include the weight and capacity 

of each elevator cab, arrays that record the allocated hall calls and the committed cab calls 

of each cab, and an array recording the unassigned hall calls. Meanwhile, total passenger 

waiting time, total passenger journey time, and the number of the served passengers are 

defined. 

8.6.1.2 Passenger Object Development 

Passenger processes can be grouped according to whether the passenger enters a cab 

or not. When the passenger is waiting, the process ensures that the passenger's information 

is initialized, and the unassigned hall call array is updated. After the passenger enters the 

cab, the process is to update the cab variables and check if they arrive at the destination 

floor.  
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The key process is shown in Figure 8.7. After a passenger is generated from the 

source, related state variables are initialized, including traffic data like the birth floor and 

destination floor and data for calculating the weight and cab capacity. The passenger is 

then transferred to the waiting area of that floor, and the unassigned hall call array is 

updated in the corresponding index. After the preparation, there are conditional statements 

to check if any cab arrives at the floor and if the cab can be taken. If so, the passenger is 

transferred into the cab. Otherwise, the unassigned hall call will be recorded again, and re-

dispatching might be implemented. After the passenger enters the cab, the array that 

records the cab call commitments is updated. The passenger waits until the cab arrives at 

the destination floor and is then transferred to the exit.  

 

(a) The process before a passenger enters a cab 
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(b) The process after a passenger enters a cab 

Figure 8.7 The key process of passenger objects 

8.6.1.3 Elevator Object Development 

The difficulty of modeling elevator objects is to determine the destination of the next 

task. Because the dispatching operation is dynamic and traffic data keeps changing, 

assigned hall calls can be reassigned to another cab. Thus, it is necessary to update the next 

task whenever it arrives at a floor and after it performs a task. In this study, elevator 

processes are grouped as the floor-related process and the task-related process. The former 

defines the operation logic when a cab arrives at a floor, while the latter is to find its next 

task. 

Figure 8.8(a) presents the process when a cab arrives at a floor. It first determines if 

the next task is on this floor or if a hall call from this floor is assigned to the cab when it 

approaches here.  If not, update the next task in case of any change of hall call allocations. 

If yes, determine the current direction and stop at this floor to drop off or pick up 

passengers. Find out the task type and update the corresponding array. After the update, 

determine its next task. Figure 8.8(b) shows the process to determine the next task after a 

task is performed. Firstly, it checks if the cab has any task. If not, let the cab park on the 
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ground floor. If yes, determine the current direction and if there is any unperformed task in 

this direction, and these two steps help decide if the change of direction is needed. Then 

the nearest task is found in that direction as the next task. 

 

(a) The process of a cab arrives at a floor 

 

(b) The process of determining the destination of the next task 

Figure 8.8 The key process of elevator objects 
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8.6.2 Experiment Design and Input Modelling 

The experiments simulate elevator dispatching in a 10-floor building with two 

elevator cabs at different traffic intensity levels and aim to analyze the effects of occupancy 

information on dispatching performance. The facility view of the simulation model is 

presented in Figure 8.9. 

 

Figure 8.9 Discrete-event simulation in Simio 

There are two groups of experiments. In the first group, variables that record 

passenger properties include the weight and occupancy area of passengers and their 

belongings, the passenger destination floor, and the passenger arrival rates. Table 8.5 

presents the weight distribution of passengers and other possible objects, and each 

combination is generated with a predefined probability during the simulation. The 
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occupancy information of these objects can be seen in Table 8.4. The destination floor of 

a passenger is randomly chosen with the same probability as all other floors. Five travel 

intensity levels are set, including one scenario for light traffic, normal traffic, and heavy 

traffic, and two scenarios for intense traffic. Each level has different passenger arrival rates 

and experiment time, as shown in Table 8.6. Variables regarding elevator cabs are fixed. 

The occupancy area of the cab ground is set as 4 𝑚2, and the load capacity is 1000 𝑘𝑔. The 

time to go to an adjacent floor is 4 seconds. And the time to perform a task is 8 seconds. 

Table 8.5 Weight distribution and the probability of passengers and belongings 

Combination 
Simio Expression 

Probability 
Human Weight Belonging Weight 

Human Random.Triangular(30, 65, 90) 0 65% 

Human + 

Bicycle 
Random.Triangular(30, 65, 90) Random.Triangular(7.5, 8.5, 10) 2% 

Human + 

Suitcase 
Random.Triangular(45, 65, 90) Random.Triangular(20, 23, 30) 5% 

Human + 
Cardboard Box 

Random.Triangular(45, 65, 90) Random.Triangular(8, 15, 25) 7% 

Human + 

Backpack 
Random.Triangular(30, 65, 90) Random.Triangular(3, 5.5, 8) 20% 

Human + 

Wheelchair 
Random.Triangular(50, 65, 90) Random.Triangular(30, 40, 50) 1% 

Table 8.6 Passenger arrival rate settings at different traffic intensity levels 

Traffic 

Intensity 

Intensity 

Level 

Simio Expression Average 

Number 

per Hour 

Running 

Time 
[seconds] 

Ground Floor 

[minutes] 

Upper Floor 

[minutes] 

I1 Light 
Random.Exponential 

(0.3) 
Random.Exponential(1) 740 1800 

I2 Normal 
Random.Exponential 

(0.2) 
Random.Exponential(2/3) 1110 1200 

I3 Heavy 
Random.Exponential 

(0.15) 
Random.Exponential(0.5) 1480 900 

I4 Intense 
Random.Exponential 

(0.12) 
Random.Exponential(0.4) 1850 900 

I5 Intense 
Random.Exponential 

(0.1) 
Random.Exponential(1/3) 2220 900 
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To further study the effectiveness of dispatching with occupancy information, the 

second group of experiments are designed with scenarios where there are more large 

objects, which is implemented by changing the probability of different scenarios in Table 

8.5. The table with the new probability of different object combinations is presented Table 

8.7. Also, four different levels of traffic intensities, 𝐼1, 𝐼2, 𝐼3, and 𝐼4, are tested in this group. 

Table 8.7 The object generation table with new probabilities 

Combination 
Simio Expression 

Probability 
Human Weight Belonging Weight 

Human Random.Triangular(30, 65, 90) 0 20% 

Human + 

Bicycle 
Random.Triangular(30, 65, 90) Random.Triangular(7.5, 8.5, 10) 20% 

Human + 

Suitcase 
Random.Triangular(45, 65, 90) Random.Triangular(20, 23, 30) 20% 

Human + 
Cardboard Box 

Random.Triangular(45, 65, 90) Random.Triangular(8, 15, 25) 20% 

Human + 

Backpack 
Random.Triangular(30, 65, 90) Random.Triangular(3, 5.5, 8) 15% 

Human + 

Wheelchair 
Random.Triangular(50, 65, 90) Random.Triangular(30, 40, 50) 5% 

 

The dispatching optimization problem is solved with the prioritized A* search 

algorithm. Two dispatching optimization models are developed: one that represents the 

traditional dispatching methods and only considers the estimated time of arrival as the 

optimization criterion, and one representing the occupancy-aware dispatching proposed in 

this paper. The former model has the same algorithm procedure as the latter, and it aims to 

minimize the average waiting time, while the latter considers both the estimated time of 

arrival and the cab capacity for dispatching decision evaluation. 
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For performance measuring, four indicators are utilized: average waiting time, 

average travel time, average journey time, and the number of served passengers within the 

experiment time window. Because the algorithm is designed to minimize the average 

waiting time, effects of using capacity information on the traffic time are necessary to 

analyze. Moreover, capacity information conveys the space utilization of a cab, so the 

quantity of service is another affected perspective. 

8.6.3 Experiment Results and Analysis 

The experiment results of the first group of experiments are recorded in Table 8.8, 

showing the values of the four performance indicators in two dispatching optimization 

models at different traffic intensity levels. The comparison charts of the four indicators 

between the two models are also presented in Figure 8.10. 

Table 8.8 Experiment results at different traffic intensity levels 

Traffic 

Intensity 

Running 

Time 

[Seconds] 

Whether Consider 

Occupancy factor 

Average Waiting 

Time 

[seconds] 

Average 

Travel Time 

[seconds] 

Average 

Journey Time 

[seconds] 

Number of 

Served 

Passengers 

I1 1800 
No 59.93 39.90 99.83 358 

Yes 55.29 41.37 96.66 358 

I2 1200 
No 63.36 43.76 107.12 351 

Yes 70.45 42.83 113.28 364 

I3 900 
No 83.97 42.96 126.93 308 

Yes 82.16 42.57 124.73 320 

I4 900 
No 92.97 44.85 137.82 366 

Yes 87.52 41.85 129.37 358 

I5 900 
No 92.06 43.52 135.58 431 

Yes 92.49 43.96 136.45 450 
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(a) Average waiting time 

 
(b) Average travel time 
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(c) Average journey time 

 
(d) The number of served passengers 

Figure 8.10 Performance comparison on four indicators of the first group 

Compared to the traditional dispatching method, the proposed occupancy-aware 

dispatching fits the occupancy factor into the original objective function as the coefficient 

of task costs. This change in function structure introduces the trade-off between the time 
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costs and the space utilization of each cab. In Figure 8.10(a), occupancy-aware dispatching 

has lower average waiting time in light, heavy, and intense traffic. When passenger arrival 

rates are small, the constraints on capacity can always be satisfied, and pick-up failure will 

not happen. This characteristic covers up the neglect of capacity in traditional dispatching. 

In this case, the occupancy factor will influence decision making with cab capacity, and 

the dispatching optimization model might miss the optimal decision. As passenger arrival 

rates become larger, capacity is sometimes not enough to accommodate new passengers. 

Those who fail to enter the cab will spend longer time waiting for the next cab. In this case, 

the consideration of space utilization helps avoid pick-up failure by skipping the original 

optimal decision. However, if the traffic intensity becomes too intense, cabs in the system 

are nearly always fully occupied, and the occupancy factor coefficient on task costs will be 

similar among different cabs, making the capacity information less effective. Figure 

8.10(b) presents the comparison of the average travel time, where occupancy-aware 

dispatching has better performance in normal, heavy, and intense traffic. The reduction of 

travel time is because of the reduction in the probability of pick-up failure, which reduces 

the number of unnecessary stops during a trip. Figure 8.10(c) is the comparison chart of 

the average journey time, showing the overall effects of the occupancy factor on waiting 

time and travel time. It suggests occupancy-aware dispatching improves the quality of 

service in light, heavy, and intense traffic. 

The results of the second group of experiments are shown in Table 8.9. The 

comparison charts of the four indicators between the two models are also presented in 

Figure 8.11. 
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Table 8.9 Results of the second group experiments 

Traffic 

Intensity 

Running 

Time 

[Seconds] 

Whether Consider 

Occupancy factor 

Average Waiting 

Time 

[seconds] 

Average 

Travel Time 

[seconds] 

Average 

Journey Time 

[seconds] 

Number of 

Served 

Passengers 

I1 1800 
No 86.05 42.98 129.03 357 

Yes 83.34 41.42 124.76 360 

I2 1200 
No 108.70 43.83 152.53 296 

Yes 90.33 43.63 133.96 302 

I3 900 
No 116.38 43.47 159.85 254 

Yes 122.49 43.68 166.18 258 

I4 900 
No 113.02 40.31 153.34 303 

Yes 116.31 41.03 157.34 299 

 

 
(a) Average waiting time 

 

(b) Average travel time 
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(c) Average journey time 

 

(d) The number of served passengers 

Figure 8.11 Performance comparison on four indicators of the second group 

In the second group of experiments, occupancy-aware dispatching has better 

performance in the quality of service when the traffic intensity is light or normal but has 

worse performance in heavy and intense traffic intensities. Also, the improvement in the 

normal traffic intensity is significant. This is because when there are more large objects in 

the cab, the cab is easily occupied. If the traffic intensity is heavy or intense, the passenger 
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arrival rate is large, and the cab is fully occupied most of the time. In this case, the 

occupancy factor has the same effects on both cabs. If the traffic intensity is light or normal, 

the cab is more difficult to get fully occupied, but the capacity constraint is not always 

satisfied. In such scenarios, occupancy-aware dispatching can effectively avoid pick-up 

failure and reduce the average waiting time. From the perspective of the quantity of service, 

occupancy-aware dispatching still has better performance in most traffic intensities: light, 

normal, and heavy. 

To summarize, occupancy-aware dispatching improves both the quality and quantity 

of service to some extent. It improves the quantity of service if the passenger arrival rate is 

not too small or too large. It also reduces the average waiting time and the average journey 

time in most traffic intensities when cabs are sometimes fully occupied in the system. 

8.7 Chapter Summary 

The validation of the work in this study is through its application to occupancy-aware 

elevator dispatching optimization, where occupancy awareness refers to cab capacity 

estimation, usage pattern recognition, and traffic pattern recognition. Mask R-CNN is used 

to determine the type and number of objects in the environment. Fuzzy logic and case-

based reasoning are used to recognize the current elevator usage and the traffic pattern, 

based on which the dispatching optimization problem can be formulated differently. 

Estimated capacity is used to represent the penalty cost of a task in the objective function. 

A prioritized A* search optimization model with occupancy information is developed for 

real-time dispatching. And the discrete-event simulation model is developed to validate 
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and adjust the use of estimated capacity during dispatching. Experiments show that 

occupancy-aware dispatching improves the quality and quantity in certain traffic intensities. 
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CHAPTER 9. CONCLUSIONS 

9.1 Contributions  

To provide more useful information to the optimization model of a real-time 

operational system, this thesis proposes to implement CNN-based visual data analysis and 

intelligent reasoning to extract information from the environment and to deduct applicable 

knowledge for optimization performance improvement. It enables the operational system 

to understand the current situation from the image perspective by detection of object 

existence and reasoning of the underlying information. Also, a closed-loop optimization 

framework with discrete-event simulation is proposed for optimization model 

enhancement, in which the functionalities of the simulation are extended to optimization 

calibration and adaptability adjustment. The validation of this work is done with its 

application to occupancy-aware elevator dispatching optimization.  

In conclusion, the proposed optimization system broadens the information 

acquisition source and possesses the reasoning ability to make full use of the attainable 

information. This helps to find solutions of better quality when the decision-making 

process is conducted in an environment that keeps changing. The use of discrete-event 

simulation in this system also guarantees the robustness of optimization with situational 

information by keeping adjusting their interaction. 

9.2 Future Work 

Future work of this study has three directions. The first direction is to study data 

augmentation techniques that can generate new information. Because the number of useful 
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data in practice is not always enough, and geometric transformation-based operations only 

recombine the information, techniques that can generate new information from original 

data should be studied. The second direction is model verification and validation. Model 

verification and validation are important steps to guarantee the effectiveness of the work. 

However, because of the lack of elevator operation data, reasoning-based situational 

comprehension methods are not verified or validated in this work. The third direction is 

the study of experimental design in discrete-event simulation. For the research that does 

not study well-defined problems, the simulation scenarios should reflect the characteristics 

of the domain problem. Thus, how to design the experiments to represent the problem 

characteristics should be studied. 
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