

CNN-ENABLED VISUAL DATA ANALYTICS AND INTELLIGENT

REASONING FOR REAL-TIME OPTIMIZATION AND

SIMULATION: AN APPLICATION TO OCCUPANCY-AWARE

ELEVATOR DISPATCHING OPTIMIZATION

A Dissertation

Presented to

The Academic Faculty

by

Shu Wang

In Partial Fulfillment

of the Requirements for the Degree

Master in the

Mechanical Engineering

Georgia Institute of Technology

December 2020

COPYRIGHT © 2020 BY SHU WANG

CNN-ENABLED VISUAL DATA ANALYTICS AND INTELLIGENT

REASONING FOR REAL-TIME OPTIMIZATION AND

SIMULATION: AN APPLICATION TO OCCUPANCY-AWARE

ELEVATOR DISPATCHING OPTIMIZATION

Approved by:

Dr. Roger Jiao, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Feng Zhou

College of Engineering and Computer

Science

University of Michigan-Dearborn

Dr. Seung-Kyum Choi

School of Mechanical Engineering

Georgia Institute of Technology

Dr. A. P. Meliopoulos

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Date Approved: December 02, 2020

iii

ACKNOWLEDGEMENTS

The work of this thesis would not have been finished without the support of lots of

people, and here are the words to thank their contributions.

Firstly, as the academic supervisor of the thesis author, Dr. Roger Jiao provided

much constructive advice on the thesis theme. With his help, the idea of capacity estimation

during elevator dispatching was extended to situation awareness in real-time operations,

and the research can be more generalized as domain modeling: CNN-enabled visual data

analytics and reasoning for optimization. He also offered many suggestions on thesis

writing to make the thesis more readable and organized.

Secondly, the thesis reading committee members, Dr. Roger Jiao, Dr. Seung-Kyum

Choi, Dr. A. P. Meliopoulos, and Dr. Feng Zhou, helped find the limitations of the work

and provided constructive suggestions for the revision.

Thirdly, the students studying in the same lab with the author, Xuejian Gong, Pan

Zou, Mulang Song, Jianyuan Peng, Yiyun (Cindy) Fei, and Stefan Quaadgras, contributed

to the realization of occupancy-aware elevator dispatching. They gave valuable suggestions

on the concept design and helped with the CNN applications during the initial

development.

Their contributions to this thesis are much appreciated.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS ix

SUMMARY xii

CHAPTER 1. Introduction 1

1.1 Real-time Optimization and Discrete-event Simulation 1
1.2 Data Analysis 3
1.3 Knowledge Representation and Reasoning 3
1.4 Technical Challenges 4

CHAPTER 2. Related Work 7
2.1 CNN Techniques for Visual Data Analysis 7

2.2 Knowledge Representation and Reasoning Techniques 8
2.3 Combinatorial Optimization Algorithms 9

CHAPTER 3. Analysis and Design of Real-time Optimization and Simulation with

CNN-based Data Analysis and Reasoning 12

3.1 Real-time Visual Data Analytics and Reasoning 12

3.2 Closed-loop Optimization with Simulation Feedback 14
3.3 Optimization System Architecture 15

3.4 Chapter Summary 17

CHAPTER 4. CNN-based Visual Data Analysis 18
4.1 Objectives of CNN-based Data Analysis 18

4.2 Basic CNN Layers 18
4.3 The Improved ResNet for Image Classification 19
4.4 Mask R-CNN for Object Detection 21
4.5 Model Training with Data Augmentation and Transfer Learning 22
4.6 Chapter Summary 23

CHAPTER 5. Reasoning Methodologies and Techniques for Situational

Intelligence 24
5.1 Application Scenarios 24
5.2 Knowledge Representation 25

5.3 Case-based Reasoning 26
5.4 Fuzzy Logic 27
5.5 Rough Set Theory 30
5.6 Chapter Summary 32

v

CHAPTER 6. Optimization in Real-time Operational Systems 33
6.1 Exact Algorithms 33

6.1.1 Branch-and-Bound 34
6.1.2 Cutting-Plane Method and Branch-and-Cut 36
6.1.3 Column Generation and Branch-and-Price 39

6.2 Heuristic Algorithms 41
6.2.1 A* Search: A Local Search Heuristic 42

6.2.2 Genetic Algorithm: A Global Search Heuristic 43
6.3 Chapter Summary 46

CHAPTER 7. Discrete-event Simulation for Optimization Enhancements 47
7.1 Simulation Model Development 47
7.2 Performance Measurement 49

7.3 Results Analysis for Optimization Calibration and Adaptability Adjustment

 50

7.4 Chapter Summary 51

CHAPTER 8. Simulation and System Validation: an Application of Occupancy-

aware Elevator Dispatching Optimization 53
8.1 Optimal Elevator Dispatching 54
8.2 Elevator Occupancy Awareness 55

8.2.1 Occupancy Information Analysis 56
8.2.2 Functional Analysis 58

8.3 Real-time Context Information Capturing with Mask R-CNN 60
8.3.1 Data Set Construction 60
8.3.2 Model Training 60

8.4 Case-based Reasoning and Fuzzy Logic for Elevator Situation

Comprehension 61
8.4.1 Situation Comprehension during Elevator Dispatching 61
8.4.2 Case-based Reasoning for Elevator Usage Pattern Recognition 62

8.4.3 Traffic Pattern Recognition with Fuzzy Logic 64
8.4.4 3D-Space Consistency Modelling with Object Mobility for Capacity Estimation

 71

8.5 Real-time Dispatching Optimization with Prioritized A* Search 74
8.5.1 Prioritized A* Search Algorithm 75
8.5.2 Dispatching Optimization Problem Formulation 76

8.6 Simulation Experiments and System Validation 78
8.6.1 Simulation Model Development 79

8.6.2 Experiment Design and Input Modelling 84
8.6.3 Experiment Results and Analysis 87

8.7 Chapter Summary 93

CHAPTER 9. Conclusions 95
9.1 Contributions 95
9.2 Future Work 95

REFERENCES 97

vi

LIST OF TABLES

Table 4.1 Architecture of ResNet50 20

Table 6.1 Pseudocode of branch-and-bound 36

Table 6.2 Pseudocode of the cutting-plane method 38

Table 6.3 A* Search Algorithm Procedure 43

Table 6.4 Pseudocode of a GA 44

Table 8.1 Two examples of case representation 63

Table 8.2 Fuzzy rules to determine the traffic type (Siikonen, 1997) 69

Table 8.3 Fuzzy rules for traffic pattern recognition (Siikonen, 1997) 70

Table 8.4 Object occupancy information 73

Table 8.5 Weight distribution and the probability of passengers and

belongings

85

Table 8.6 Passenger arrival rate settings at different traffic intensity levels 85

Table 8.7 The object generation table with new probabilities 86

Table 8.8 Experiment results at different traffic intensity levels 87

Table 8.9 Results of the second group experiments 91

vii

LIST OF FIGURES

Figure 3.1 Information hierarchy of visual data analysis and reasoning 13

Figure 3.2 Workflow of the proposed optimization system 14

Figure 3.3 Optimization system architecture 15

Figure 4.1 Plain network and residual blocks 20

Figure 4.2 Mask R-CNN architecture 20

Figure 6.1 Polyhedrons formed from the problem feasible region 37

Figure 6.2 The flowchart of branch-and-price 40

Figure 6.3 The flowchart of a GA 44

Figure 6.4 The crossover operation 45

Figure 6.5 The mutation operation 45

Figure 7.1 A Real-world problem to a simulation model 48

Figure 7.2 The workflow of Simulation Model Development 49

Figure 8.1 Occupancy information hierarchy 57

Figure 8.2 Functional analysis of the occupancy information analysis model 59

Figure 8.3 Object detection in the elevator cab 61

Figure 8.4 Membership functions for different traffic components 68

Figure 8.5 Membership functions for the traffic intensity 69

Figure 8.6 Crowd density estimation. 72

Figure 8.7 The key process of passenger objects 82

Figure 8.8 The key process of elevator objects 83

Figure 8.9 Discrete-event simulation in Simio 84

Figure 8.10 Performance comparison on four indicators of the first group 89

viii

Figure 8.11 Performance comparison on four indicators of the second group 92

ix

LIST OF SYMBOLS AND ABBREVIATIONS

CNN convolutional Neural Network

CBR case-based reasoning

FOL first-order logic

LA linguistic approximation

HC the passenger handling capacity of the elevator system

IND indispensable relationship

EGC elevator group control

ℋ the desired mapping of a few stacked convolutional layers

ℛ the residual function of the desired mapping

𝑢 the numerical truth value of a fuzzy set

𝜇 the grade of membership of a fuzzy set or a rough set

𝜏 a fuzzy subset of a truth-value set

ℱ the fuzzy set of a truth-value set

𝒯 a truth-value set

𝑋 object space

𝑥 an object in 𝑋

𝑟, 𝑤 propositions

𝐼 an information system

𝑈 a non-empty finite set of objects

𝐴 a non-empty finite set of conditional attributes

𝑑 decision attribute

𝐵 a subset of conditional attributes

x

𝜒 the set of feasible solutions of a mixed integer programming problem

𝑃𝑏 the optimization problem

𝜆 the predicted passenger arrival rate

𝑛𝑝 the number of passengers in the elevator cab

𝑐 the case feature

𝐼𝐷 the case index

𝑎𝑛𝑠 the case solution

𝑤 the weight of a variable

𝑡 the time period

𝐹 the predicted smoothed value

𝑌 the observation

𝛼 the adaptive smoothing factor

𝐸 the smoothed average error

𝐴𝐸 the smoothed absolute error

𝑒 the error term

𝑀 the mobility value of an object

𝑆 the occupancy area of an object

𝑁 the number of detected objects in an elevator cab

𝑛 the cab sequence of an elevator group control system

𝐶 the estimated capacity of an elevator cab

𝑓 the heuristics state evaluation function in A* search

𝑔 the cost reaching the current state from the initial state in A* search

ℎ the estimated cost of reach the goal state from the current state in A* search

𝑜 the occupancy factor of an elevator cab environment

xi

𝑑 the cost to answer a hall call as its first hall call task

𝑠 the cost of a trip between a pair of hall calls

𝑝 the hall calls assigned to a cab

𝑃 the number of hall calls assigned to a cab

𝑣1 the number of hall call tasks before a cab changes the direction

q the hall call to be assigned

𝑄 the number of hall calls to be assigned

xii

SUMMARY

For most operational systems, the optimization problem is a combinatorial

optimization problem, and the optimization performance largely determines the solution

quality. Moreover, there exists a trade-off between the computing time of the decision-

making process and the optimization performance, which is particularly evident in a system

that conducts real-time operations. To obtain better solutions to the decision-making

problem in a shorter time, many optimization algorithms are proposed to improve the

searching efficiency in the search space. However, information extraction from the

environment is also essential for problem-solving. The environment information not only

includes the optimization model inputs, but also contains details of the current situation

that may change the problem formulation and optimization algorithm parameter values.

Due to the time constraint and the computation time of visual processing algorithms, most

conventional operational systems collect environment data from sensor platforms but do

not analyze image data, which contains situational information that can assist with the

decision-making process. To address this issue, this thesis proposes CNN-enabled visual

data analytics and intelligent reasoning for real-time optimization, and a closed-loop

optimization structure with discrete event simulation to fit the use of situational

information in the optimization model. In the proposed operational system, CNNs are used

to extract context information from image data, like the type and the number of objects at

the scene. Then reasoning techniques and methodologies are applied to deduct knowledge

about the current situation to adjust problem formulation and parameter settings. Discrete

event simulation is conducted to test the optimization performance of the system, and

xiii

adjustments can be made to better fit situational information in the optimization process.

To validate the feasibility and effectiveness, an application to occupancy-aware elevator

dispatching optimization is presented.

 1

CHAPTER 1. INTRODUCTION

Operations research originally referred to military planners' work during World War

II, but now it is the discipline where advanced analytical methods are used to help decision

making and obtain the optimal or near-optimal solutions to a problem (Informs, 2020). The

applications of operations research involve various fields, including business, industry,

society, and so on. Many problem-solving techniques are used in operations research, and

mathematical optimization and simulation are essential techniques.

However, because different planning tasks have different time limits, there exists a

trade-off between the computing time and the solution performance in real-world

applications. Long-term planning operations usually have enough time to collect useful

data and obtain the optimal solution, thus focusing more on the solution performance. On

the other hand, short-term planning operations are expected to make decisions within the

given time, and the time becomes a constraint for finding the optimal solution. For

example, workforce scheduling has minutes or hours to obtain the optimal scheduling

result, while the elevator dispatching system needs to assign tasks to cabs within seconds.

To improve the decision-making efficiency for short-term planning operations, especially

those at a real-time scale, optimization and simulation techniques are widely studied,

aiming at finding a satisfying solution within a short time.

1.1 Real-time Optimization and Discrete-event Simulation

To obtain the optimal solution to a real-world problem, a mathematical model should

be formulated first. The objective function is set based on the performance measuring of a

 2

solution. Different optimization algorithms are applied to find the optimal solution.

Discrete-event simulation experiments are conducted for simulation-based optimization or

for validation of the optimization system.

As the sensing technology and the computing ability becomes more advanced, data

can be collected and processed faster, which reduces the computation time of the decision-

making process and improves the management efficiency of the operational system. This

also satisfies the growing demands of optimization at a real-time scale in various industries

to keep pace with the operations. For example, batch manufacturing requires real-time

sequencing to fulfill process requirement when tasks need more materials than the storage

capacity.

Discrete-event simulation is to model the operations of a system with a sequence of

events in time. Because the trigger of an event as well as the event content can be set to

follow specified statistical distributions, it can model the uncertainty of the operational

system and is often used to validate the optimization model. Discrete-event simulation

itself can also be an optimization approach by observing the optimization performance in

different parameter settings to find a satisfying solution.

Apart from optimization itself, the time for optimization model input processing,

including data measuring, data collection, and data analysis, should also be counted in the

decision process. If the optimization model can access more useful information, the

solution is expected to have better performance. In other words, a proper procedure for raw

data processing can provide high-quality model inputs and is important to making optimal

decisions.

 3

1.2 Data Analysis

Data is the information collected through observation (OECD. Publishing, 2008),

which can be displayed in either the numeric form or the graphic form. Based on the data

form and the goal of the analysis, different methods can be utilized.

Conventional numeric data analysis includes regression analysis and time series

analysis. Regression analysis estimates the relationship between a dependent variable and

a set of independent variables, while time series analysis focuses on the relationship of the

values at different time points of a single variable and the forecast of future data based on

previously observed values. Sensors are usually used to obtain numeric data from the

environment.

Visual data analysis aims to obtain information from images. In an operational

system, sensors may not be the only approach to gain information from the environment,

and cameras can capture environment images at a real-time scale. By analysing the contents

in an image with convolutional neural networks or machine vision algorithms, more

context information can be obtained, including the object type, the object number, and even

the object action. By using intelligent reasoning methodologies and techniques, this

information can be further utilized to derive situational information.

1.3 Knowledge Representation and Reasoning

Knowledge representation and reasoning are two techniques usually used together,

involving the description of knowledge, the acquisition of knowledge from given

information, and the application of knowledge to new problems. The definition of

 4

knowledge representation is given as the study of available options in the use of a

representation scheme to ensure the tractability of reasoning (Levesque, 1986). Its

objective is to describe the real-world facts so that machines can draw new conclusions by

manipulating the symbolics. Four common knowledge representation techniques are logic,

rules, frames, and semantic nets (Davis et al., 1993).

Reasoning can be thought of as the inference process where new expressions or

conclusions are obtained from given information and knowledge representations. The

assumption that reasoning is valid is that the decision-making process can be understood

as mechanical operations over symbolic representations (Levesque, 1986). Different

reasoning methodologies are used in various scenarios, and widely used ones include rule-

based reasoning, case-based reasoning, fuzzy logic, and rough set theory. Details of

knowledge representation and reasoning are introduced in Chapter 5. The objective of

using intelligent reasoning in real-time optimization is to gain situational information from

the collected data or processed data about the environment.

1.4 Technical Challenges

One limitation of conventional real-time optimization and simulation systems is that

they do not make full use of visual data from the environment. This is because traditional

visual processing algorithms are efficient in object feature extraction but lack the ability to

detect and classify multiple objects in one image quickly. To make the full use of

environment images, this thesis proposes to implement CNN-based visual data analytics

and intelligent reasoning before optimization, so that the context information and the

situational information can be used to assist in the decision-making process. Furthermore,

 5

discrete-event simulation experiments are conducted to evaluate the optimization

performance. The results can provide feedback to the optimization model, thus adjusting

the problem formulation and parameter settings of the optimization model and forming a

closed-loop optimization structure.

The technical challenges of this implementation are illustrated as follows. (i) Context

information extraction is expected to keep pace with the operations to reflect the changes

in the environment in time, thus guaranteeing the timeliness of situational information. (ii)

Find the situational information that can influence the solution quality by introducing a

factor that represents the current scenario to the optimization model or that can be used to

identify different scenarios where new problem formulation can be given. (iii) Modeling

the effects of situational information in the optimization model. To correctly represent the

function of situational information during decision-making, problem formulation or the

objective function parameters should be modified to adapt to the current scenario.

The rest of this thesis is organized as follows. Chapter 2 reviews the related work of

CNN-enabled visual data analysis, knowledge representation and reasoning, and

combinatorial optimization techniques. Chapter 3 presents the analysis and design of real-

time optimization and simulation with CNN-based visual data analysis and reasoning.

Chapter 4 discusses CNN-based visual data analysis, with the improved ResNet model for

image classification and the Mask R-CNN model for instance segmentation. Chapter 5

introduces reasoning-based methodologies and techniques and related knowledge

representation used to extract situational information for optimization. Chapter 6 discusses

optimization algorithms in real-time operational systems. Both exact algorithms and

heuristic algorithms are introduced, with several algorithms presented in detail: branch-

 6

and-bound, branch-and-cut, branch-and-price, A* search, and genetic algorithms. Chapter

7 introduces the development procedure of discrete-event simulation and analyzes how

discrete-event simulation experiments can help enhance the optimization model. In

Chapter 8, an application of occupancy-aware elevator dispatching optimization is

presented to validate the feasibility of the proposed optimization system. Finally, the

contributions of this work and future work are concluded in Chapter 9.

 7

CHAPTER 2. RELATED WORK

2.1 CNN Techniques for Visual Data Analysis

Deep learning-based CNN techniques have been widely studied in recent years.

There are many applications of CNN-based visual data analysis, and image classification

and object detection are two most common tasks.

Image classification aims to label an image with a particular set of classes. The work

of CNN-based image classification starts from the AlexNet in the ILSVRC 2012

competition (Krizhevsky et al., 2017). The AlexNet has five convolutional layers, and it

proves the possibility of using convolutional neural networks for multi-class classification.

After that, VGGNet and GoogLeNet added more convolutional layers to build a deeper

network (Simonyan & Zisserman, 2014; Szegedy et al., 2015), which suggests that deeper

network architecture has better learning performance and can improve the prediction

accuracy. However, as the network becomes deeper, there are gradient explosion and

vanishing problems, influencing the learning performance. These problems are further

addressed in the residual neural network (ResNet) by learning the residual between layers

(He et al., 2016).

Different from image classification, object detection understands an image as various

classes of objects at different positions. Therefore, the outputs of object detection include

not only the present objects but their positions. CNN-based object detection starts from

Regions with CNN features (R-CNN), which proposes to use selective search to generate

region proposals and then to do the classification using CNN features and SVM (Girshick

 8

et al., 2014). Since then, improvements are made to both the training and testing process

and accuracy. The YOLO removes the original region proposal and uses a convolutional

network for both region prediction and class prediction (Redmon et al., 2016). It divides

an image into multiple grids and uses grid cells for bounding box prediction. Faster R-CNN

uses the region proposal network to replace the selective search and integrates it to form a

new network (Ren et al., 2015). Mask R-CNN is based on the framework of Faster R-CNN

and adds an RoI Align layer and a branch to predict segmentation masks (He et al., 2017).

2.2 Knowledge Representation and Reasoning Techniques

In the artificial intelligence field, knowledge representation aims at describing the

information of the real world using symbolic representations, and reasoning is the formal

manipulation of symbols representing a collection of believed propositions to produce new

ones (Brachman & Levesque, 2004) or to generate either explicit or implicit conclusions

from available knowledge. Case-based reasoning, fuzzy logic, rough set theory are three

commonly used reasoning methodologies and techniques.

Case-based reasoning (CBR) originates from the study of using scripts to represent

previous situations as knowledge and using plans to understand new situations (Scank &

Abelson, 1975). The further work is explored how can the previous situations and situation

patterns be used for problem-solving and learning (Watson & Marir, 1994), which is close

to the classic definition for CBR: a case-based reasoner solves problems by using or

adapting solutions to old problems (Riesbeck & Schank, 2013). Thus, the implementation

of CBR does not require much explicit knowledge, and CBR systems can keep learning

new knowledge from retained cases (Watson & Marir, 1994).

 9

Fuzzy logic and rough set theory are mathematical approaches to imperfect

knowledge and uncertainty (Zbigniew, 2004). Fuzzy logic is based on the truism that much

of human reasoning is approximate rather than precise (Zadeh, 1975). It introduces the

concept of the fuzzy set, which contains a class of objects with a continuum of grades

(Zadeh, 1965). Fuzzy truth-values are used to describe exact description during

approximate reasoning, like true, very true, more or less true, by using fuzzy sets. And the

fuzzy IF-THEN rules are rules with fuzzy antecedents or fuzzy consequences instead of

crisp ones (Dubois & Prade, 1996).

The rough set theory uses set approximations to express vagueness information

(Zbigniew, 2004). In this theory, the attributes of all objects follow a finite set, and rough

set approximations are defined as the topological operations “interior” and “closure”,

corresponding to the lower approximation and the positive region, and the upper

approximation and the negative region (Pawlak, 1982). Rough set-based reasoning relies

on rules, and rule induction from the dataset is to search relationships among object

attributes in the form of production rules (Sabu & Raju, 2011).

2.3 Combinatorial Optimization Algorithms

The combinatorial optimization problem is a process to search for an optimal set of

elements from a finite set of items based on an objective function (Schrijver, 2003). Its

applications are in many fields: logistics, supply chain optimization, workforce scheduling,

vehicle routing, etc. Most combinatorial optimization problems are NP-hard (Hertz &

Widmer, 2003). In general, this kind of problem can be solved with heuristic algorithms

and exact algorithms.

 10

Exact algorithms are algorithms that can find the optimality of the optimization

problem. To solve large scale mixed integer programming, branch-and-bound is broadly

used. It is first proposed to address the traveling salesman problem (Little et al., 1963). The

branch operation guarantees the integrality of the solution, and the bound operation is used

to discard unpromising candidate solutions. There are several variations of branch-and-

bound. The cutting-plane method is originally used to refine the feasible space by means

of linear inequalities in optimization (Kelley, 1960; Gomory, 1960). The branch-and-cut

combines branch-and-bound with the cutting-plane method to tighten the linear

programming relaxations (Padberg & Rinaldi, 1991). Another variation is branch-and-

price, which combines branch-and-bound and column generation to generate columns that

have the potential to improve the objective function when the problem scale is too large

(Barnhart & Johnson, 1998), and thus accelerating the searching process.

Heuristic algorithms designate a computational procedure to find a near-optimal

solution by iteratively improving a candidate solution based on a given measure of quality

(Wang & Chen, 2013). Compared to exact algorithms, heuristic algorithms do not

guarantee to find the optimal solution but can find an acceptable or good solution within a

reasonable amount of time (Lu & Zhang, 2013). Based on the search strategy, heuristic

algorithms can be classified into local search and global search. Local search heuristics

tend to be greedier, and they do not totally focus on search but also focus on the movement

from one formation to a neighboring refining formation. Typical local search algorithms

are A* search (Korf, 1998), tabu search (Glover & Laguna, 1998), variable neighborhood

search (Hansen, 1999), and simulated annealing (Kirkpatrick et al., 1983). Global search

heuristics are usually population-based heuristics and have efficient methods to escape

 11

local optimum. Prevailing algorithms include ant colony optimization (Dorigo et al., 1999),

particle swarm optimization (Kennedy et al., 1995), and genetic algorithms (Whitley,

1994).

 12

CHAPTER 3. ANALYSIS AND DESIGN OF REAL-TIME

OPTIMIZATION AND SIMULATION WITH CNN-BASED DATA

ANALYSIS AND REASONING

3.1 Real-time Visual Data Analytics and Reasoning

Conventional optimization systems usually access environment information with the

assistance of a sensor platform, but they lack the visual data analysis of the environment.

This is largely because the computing time of visual processing cannot keep up with the

optimization at a real-time scale. However, the development in CNN techniques enables

fast analysis of image data, including image classification, object detection, pose

estimation, and even action recognition, if human beings are an important factor during

operations. Such information can be used to comprehend the current situation using

reasoning methodologies and techniques. For example, for a fleet management system, if

the real-time images of the vehicle environment can be captured and analyzed, information

including the road condition, the weather, and the traffic condition (like accidents and

traffic jam), can be used to assist in the route planning.

In this regard, this study proposes to conduct visual data analysis and reasoning to

extract situational information that can assist the operational system for better optimization

performance. The whole process is supported by CNN techniques and artificial

intelligence-based reasoning methodologies. The information hierarchy of this process is

shown in Figure 3.1.

 13

Figure 3.1: Information hierarchy of visual data analysis and reasoning

The information hierarchy of visual data analysis and reasoning is comprised of three

levels. The first level is the hardware level, which uses the camera or video monitoring to

collect visual data of the environment. This level aims at recording the objects in the scene

and is the basis for further analysis. The second level is the context level. Based on how

objects in the environment interact with the optimization model, different tasks are

implemented: Image classification determines the object type; Object detection finds the

number and category of the objects; Action recognition detects the activity that the object

is conducting. The third level is the situation level. This level is to refine the obtained

information and to understand the underlying story using reasoning methodologies. For

instance, in an elevator dispatching system, the context level obtains the real-time number

of passengers in the cab. The traffic data is used to recognize the current traffic pattern with

 14

fuzzy logic so that an appropriate optimization strategy can be decided to adapt to the

changing traffic. Usually, the situational information contains knowledge that can guide

the optimization model on optimization variable selection, objective function formulation,

algorithm parameter setting, etc.

3.2 Closed-loop Optimization with Simulation Feedback

To validate the effectiveness of the situational information on optimization

performance, discrete-event simulation is conducted. In this study, a closed-loop structure

is proposed in the validation step to keep adjusting how situational information fits into the

optimization model, as shown in Figure 3.2.

Figure 3.2 Workflow of the proposed optimization system

In a conventional operational system, discrete-event simulation experiments are

conducted to verify the system and validate the optimization model. However, when

situational information is used during optimization, how it fits into the optimization model

should be seriously considered. Comparative experiments between the model with and

without the information or the model with different usages can be conducted to test its

effectiveness. By analyzing the performance measures and the simulation process,

adjustments can be made about the influence of situational information on optimization

 15

strategies and variables. Therefore, the optimization model and simulation validation form

a closed-loop structure. The performance measures are used as feedback to evaluate current

optimization performance and to improve the interactions.

3.3 Optimization System Architecture

Figure 3.3 Optimization system architecture

 16

The system architecture of the proposed CNN-enabled visual data analytics and

reasoning for real-time optimization and simulation is shown in Figure 3.3. The system

consists of five layers. The first layer is the environment layer, in which sensors and

cameras are used to collect environment data both in numeric and graphic form. The real-

time data will then flow into the data analysis layer to further extract context information.

The data is firstly integrated and clustered based on its usage and form, and then

information interpretation is implemented through several data analysis models: the CNN-

based visual data analysis model extracts information about objects in the environment; the

time series analysis model predicts future data; the regression analysis model finds some

hidden variable values using existing independent variables. Then the processed real-time

data is utilized to find the situational information in the intelligent reasoning layer. The

inference is firstly conducted with the processed data and existing knowledge for some

initial conclusions about the scene. Different reasoning models, including rule-based

reasoning, case-based reasoning, fuzzy logic, and so on, are used to deduct useful

situational information that can apply existing knowledge for the assistance of

optimization. Till this layer, the required data, information, and knowledge for optimization

are prepared. In the optimization layer, the input information is integrated: Some data is

used to assign values to decision variables; And information and knowledge are used to

adjust the optimization strategies, algorithm parameter setting, and optimization problem

formulation. An optimization model is selected based on the optimization objective and the

time constraint. If the computing time is the priority, the heuristic algorithms can be used.

If the task seeks the best solution, exact optimization models can be chosen. The final layer

is the simulation layer, with the objective to verify the developed mathematical model for

 17

the operational system and to validate the optimization model. Discrete-event simulation

experiments are conducted, during which the optimization model is called to provide the

optimal solution to the optimization problem. After experiments, the performance

measures and experiment results are analyzed, providing feedback to the optimization

model and the usage of situational information.

3.4 Chapter Summary

In this chapter, the analysis and design of the proposed optimization system are

discussed. The information flow of visual data analytics and reasoning are presented to

explain the function of CNNs and reasoning methodologies and how they process the data.

The closed-loop optimization structure with discrete-event simulation is proposed, and

how simulation interacts and enhances the optimization model are discusses. The

optimization system architecture presents the system functional analysis and the operations

and required tools or techniques in each stage.

 18

CHAPTER 4. CNN-BASED VISUAL DATA ANALYSIS

4.1 Objectives of CNN-based Data Analysis

In the proposed optimization system, CNNs are used to extract context information

from environment images. Different from numeric data analysis, visual data analysis is

more object-oriented. The following functionalities can be implemented at a real-time scale

based on existing CNN models: image classification, object detection, pose estimation, and

action recognition. Therefore, the object type, number, position, posture, and even the

activity that the object is conducting in the environment can be obtained. This information

is helpful to further understand the current situation with intelligent reasoning.

4.2 Basic CNN Layers

As a hierarchical model, the CNN developed for image classification is usually

constructed with three basic layers: convolutional layers, pooling layers, and dense layers.

Convolutional layers are to extract features of images from different classes and

create feature maps. In each convolutional layer, there are usually tens or hundreds of

convolution kernels to extract different features. Each kernel generates one feature map

after the convolution, and the output of the convolutional layer is the collection of feature

maps created with the kernels. The convolution operation brings several benefits (Guo et

al., 2016). Firstly, the number of parameters is reduced by weight sharing. Secondly, the

convolution is invariant to the object location.

 19

The pooling layer is the layer that implements sampling on the feature maps to reduce

the feature map dimension and the number of parameters. The pooling process inevitably

generates information loss but can speed up the computation. Conventional pooling

operations include mean pooling, max pooling, global pooling, stochastic pooling, spatial

pyramid pooling, and def-pooling.

The dense layer aims to flatten the 2D matrix into a 1D vector, which is usually used

as the output layer for classification. The Softmax function is normally used for multi-class

classification, while the Sigmoid function is used for binary classification. The dropout

operation is often conducted on the weights of the dense layer during the training to prevent

overfitting (Srivastava et al., 2014).

4.3 The Improved ResNet for Image Classification

For conventional deep neural networks, like GoogleNet and VGG16, there are two

problems becoming more serious as the network goes deeper: the vanishing gradient

problem and the exploding gradient problem. This is because the derivatives will be

multiplied when updating the network parameters: If the derivatives are small, the gradient

will decrease with the propagation through the model until it vanishes; If the derivatives

are large, the gradient will increase with the propagation until it explodes. This makes the

training error grows higher when the network is deeper once it reaches some certain levels.

To address this problem, ResNet proposes to use residual learning to every several

layers (He et al., 2016), which is implemented with identity mapping by shortcuts, as

shown in Figure 4.1(b). Assume the original desired underlying mapping of these stacks in

 20

a plain network is ℋ(𝑥), as shown in Figure 4.1(a). Then the stacked layers are fit the

residual mapping ℛ(𝑥):

 ℛ(𝑥) = ℋ(𝑥) − 𝑥 (4.1)

where the shortcut connection performs the identity mapping. After the recast, the mapping

becomes ℛ(𝑥) + 𝑥. In this way, the gradient vanishing/exploding problem can be solved.

(a) Plain network (b) Original residual block (c) Improved residual block

Figure 4.1. Plain network and residual blocks

Compared to other models, ResNet is known for its generalization performance and

computation cost. The architecture of the ResNet50 is shown in Table 4.1.

Table 4.1 Architecture of ResNet50

Conv1 7*7, 64

Pooling1 3*3, max pooling

Conv2_x [
1 ∗ 1,64
3 ∗ 3, 64
1 ∗ 1, 256

] ∗ 3

Conv3_x [
1 ∗ 1,128
3 ∗ 3, 128
1 ∗ 1, 512

] ∗ 4

 21

Conv4_x [
1 ∗ 1,256
3 ∗ 3, 256
1 ∗ 1, 1024

] ∗ 6

Conv5_x [
1 ∗ 1,512
3 ∗ 3, 512
1 ∗ 1, 2048

] ∗ 3

Pooling2 average pooling

Dense 1000 classes

The ResNet model is further improved with the information flow of a residual block

(He et al., 2016), which is more proper for image identification. The improved block is

shown in Figure 4.1(c). Compared to the original one, batch normalization and the ReLU

activation function are moved before 2D convolution. This change further eases the

training process and improves generalization.

4.4 Mask R-CNN for Object Detection

Mask R-CNN is a simple and flexible model for instance segmentation, which can

generate a segmentation mask for each detected instance. The model is based on the

framework of Faster R-CNN, which has a region proposal network (RPN) to generate the

region of interest (RoI) with features extracted from the backbone structure. The backbone

consists of a bottom-up pathway and a top-bottom pathway. The former is usually a CNN

for feature extraction, like ResNet or VGG. The latter is a feature pyramid network that

generates semantic features at various resolution scales.

The difference between Faster R-CNN is that Mask R-CNN adds an RoI Align layer

and a branch for predicting high-quality segmentation masks. Compared to the Faster R-

CNN model in which recognition is after segmentation, the mask branch is in parallel with

 22

the branches for classification and bounding box prediction, adding only a small computing

cost. Because classification, bounding boxes, and masks are computed simultaneously, the

computation time becomes smaller. Furthermore, the RoI Align layer solves the

misalignment between the RoI and extracted features introduced by quantization in

RoIPool operations, making it possible to predict masks at the pixel scale.

The architecture of Mask R-CNN is presented in Figure 4.2.

Figure 4.2 Mask R-CNN architecture

4.5 Model Training with Data Augmentation and Transfer Learning

Data augmentation and transfer learning are two training strategies when the dataset

is small. The former enlarges the original dataset, while the latter lowers the requirement

of the dataset size.

Because of the translation invariance of convolution, geometric transformations can

be done on original images, thus generating more data to improve the model generalization

performance. Common transformations include flipping, cropping, rotation, translation,

 23

and noise injection. Sharpening images with kernel filters is also helpful (Shorten &

Khoshgoftaar, 2019). During the model training, combining different augmentation

operations is normally taken. However, two issues are worth noticing. The first is that

massively inflating the dataset may result in further overfitting when the original dataset is

very small. The second is the safety of the augmentation operation. The transformation

should not alter the label of the original image. Otherwise, the training will be done with

wrongly labeled images.

Transfer learning is to initiate the network parameters with a pre-trained model

because the first several convolutional blocks generate the general features that can be used

for other classification tasks. Thus, the parameters in these layers can be frozen, and only

parameters in the classification layer and the last several layers should be trained. In this

way, the training time is largely saved, and less data is needed to develop a new

classification model.

4.6 Chapter Summary

This chapter introduces CNN-based visual data analysis techniques. The objective of

visual data analysis in the proposed optimization system is discussed. Three basic types of

CNN layers are introduced. The principle and architecture of two CNN models, the

improved ResNet, and Mask R-CNN, are introduced as state of the art for image

classification and object detection tasks. Two common training strategies that lower the

requirement of the data sample size and avoid overfitting are also discussed.

 24

CHAPTER 5. REASONING METHODOLOGIES AND

TECHNIQUES FOR SITUATIONAL INTELLIGENCE

5.1 Application Scenarios

During optimization input preprocessing, intelligent reasoning is to make inferences

about the situational information using existing knowledge and data, thus making the

mathematical representation of the real-world scenario more accurate and helping obtain a

more satisfying solution for the user. In this chapter, after introducing knowledge

representation, three reasoning methodologies are discussed in this chapter: case-based

reasoning, fuzzy logic, and rough set theory.

Case-based reasoning can be used when a database that records solutions to past

problems can be developed, and the solution to a new problem can be obtained by revising

the past solutions. Fuzzy logic is typically used to deal with uncertainty or partial truth.

Instead of describing a truth using 0 and 1, fuzzy logic converts the variable into a value

between 0 and 1 to describe its degree of truth. Such mathematical description is utilized

in approximate reasoning. Rough set theory is often used to handle the uncertainty that the

expression of a decision attribute cannot be uniquely defined by other conditional attributes

(Pawlak, 1998). Because it approximates a set with a certain attribute using the lower

approximation and the upper approximation, a decision table with decision attributes and

conditional attributes of objects should be created before rule induction.

 25

5.2 Knowledge Representation

Knowledge representation investigates the expression of knowledge in a computer

system (Smedt, 1988). Apart from some data structures like the linked list and the tree

structure, four common knowledge representation techniques are logical representations,

semantic networks, production rules, and frame representations (JavaTPoint, 2020).

Logical representations use concrete rules to express definite propositions, and the

expression can either be syntax or semantics. Syntax refers to the use of legal symbols to

express the logic, while semantics focuses on the interpretation of the logic. Logical

representations can be categorized into propositional logic and first-order logic (FOL).

Propositional logic is a declarative statement consisting of objects, relations, function, and

logical connectives. It only conveys a fact is either true or false, and its limitation is that it

cannot represent relations like some and all. FOL is an extension of propositional logic and

can express complex natural language statements. FOL assumes the world consists of

objects, relations, and function, thus representing more complex information than

propositional logic. FOL syntax consists of more types of elements, including constant,

variable, predicate, function, connective, equality, and quantifier.

Semantic networks use a simple graphical network to represent predicate logic. The

network usually consists of nodes and arcs, representing objects and the relationship

between objects. The advantage of using semantic networks is that knowledge is easy and

transparent to understand, but the disadvantage is that it is not an efficient way for both

searching and enlarging the network.

 26

Production rules represent the knowledge in the IF-THEN form and consist of

(condition, consequence) pairs. If the conditions for a rule exist, the corresponding

consequence or action will be carried out. The advantages of production rules are that they

are expressed in natural language and are highly modular, but the execution of rules can be

inefficient since the rules are usually in a large number and its management is difficult.

Frame representations are used to describe different entities in the world. The

structure consists of a collection of attributes and values, and the attributes can be any type

and any size. Frame representations are derived from semantic networks and contain

knowledge about an object or an event. Like the semantic network, frame representations

are easy to understand and visualize but can bring difficulties to the inference mechanism.

5.3 Case-based Reasoning

Unlike other reasoning methodologies, the advantage of CBR is that it does not

require much domain knowledge to solve problems. Instead, it relies on the accumulation

of solved cases and finds the solution to its own by comparing the difference of the case

features. This makes the CBR system more robust and evolutionary as new cases are

continuously put in. Generally, the implementation of CBR involves the following steps:

case representation and indexing, new case creation, case retrieval, case reuse or case

adaptation, and case retention.

Case representation and indexing is the preparation for further activities. Since CBR

relies on knowledge sharing from past cases, a case library should be developed to keep

the solved ones. Because each case should represent an experience where knowledge is

applied, three types of information can be recorded: the description of the problem, the

 27

corresponding solution, and the outcome after the solution is applied. Like a database, each

case should be indexed properly for retrieval efficiency. There are several requirements

about indexing (Watson, 1994): Indices should be predictive, scalable, and recognizable,

and they should suggest the category or the purpose of the case. After the development of

the case library, a new case can be encoded when a new situation happens, and the

initialization follows the format of case representation.

Then case retrieval is conducted to search the most similar cases in the case library.

This process is partially directed by the case indexing and the organization of data. The

similarity should be measured with each case in the same category using a specified

algorithm. Nearest neighbor is the most common method, which defines different weights

for the similarity measuring of different features (Kolodner, 2014).

Case adaptation is to adapt the solution of the retrieved case to the current problem.

The adaptation should analyze the prominent differences between cases and apply rules or

formulae based on the retrieved solution. There are two types of adaptation: structural

adaptation and derivational adaptation. The former is to apply adaptation rules directly to

the solution (Kolodner, 2014), while the latter reuses the algorithm or the rule that the

retrieved case uses to generate a new solution.

5.4 Fuzzy Logic

Fuzzy logic uses the fuzzy set to describe a situation. A fuzzy set consists of different

classes of objects, which can be graded with a membership function to get the value

between zero and one (Zadeh, 1965).

 28

Assume 𝑋 is the space of objects, and 𝑥 represents a generic object in 𝑋. A fuzzy

subset of a truth-value set 𝜏 in X can be characterized by a membership function

𝜇𝜏: [0,1] → [0,1]. 𝜇𝜏(𝑥) represents in what degree 𝑥 has the linguistic truth-value 𝜏. For

example, let 𝑋 be the temperature, 𝒯 be {cold, warm, hot}, and 𝜏 be the fuzzification of

{cold}, then 𝜇𝜏(𝑥) represents the degree of coldness. If 𝜏 is not a fuzzy subset, the

membership function can be only 0 or 1, with 𝜇𝜏(𝑥) = 0 or 1 based on whether 𝑥 belongs

to 𝜏 or not.

Apart from the membership function that can represent uncertainty, modifiers can be

added to the linguistic truth-values in 𝒯, like more or less, very, quite, and slightly. These

modifiers can affect the membership function. For example, “very” can be defined to

square the membership function:

 𝜇𝑣𝑒𝑟𝑦 𝑐𝑜𝑙𝑑(𝑥) = 𝜇𝑐𝑜𝑙𝑑
2 (𝑥) (5.1)

Fuzzy logic also follows the standard Łukasiewicz logic (𝐿1). Let 𝑟 and 𝑤 be two

propositions, ¬ be the negation, ∧ be the conjunction, ∨ be the disjunction, ⇒ be the

implication, the following formulae exist:

 𝜇(¬𝑟) ≜ 1 − 𝜇(¬𝑟) (5.2)

 𝜇(𝑟 ∧ 𝑤) ≜ min(𝜇(𝑟), 𝜇(𝑤)) (5.3)

 𝜇(𝑟 ∨ 𝑤) ≜ max(𝜇(𝑟), 𝜇(𝑤)) (5.4)

 29

 𝜇 (𝑟 ⇒ 𝑤) = min(1,1 − 𝜇(𝑟) + 𝜇(𝑤)) (5.5)

There are two reasons to use the linguistic truth-values of fuzzy logic instead of

numerical truth-values of 𝐿1 to do approximate reasoning (Zadeh, 1975). The first is that

the truth-value set of fuzzy logic is a countable set, while that of 𝐿1 is a continuum. In most

cases, a small finite subset of the truth-values of fuzzy logic is enough for approximate

reasoning. The second is that there are more fuzzy propositions than precise propositions

in approximate reasoning.

Unlike a conventional proposition, a fuzzy proposition assigns the linguistic value to

an object as the value of a variable, instead of using the belong-to relation. For example, a

fuzzy proposition 𝑟 is given by:

 𝑟 ≜ traffic is ℎ𝑒𝑎𝑣𝑦 (5.6)

Instead of saying traffic is a member of “heavy”, it can be interpreted as:

 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(traffic) = ℎ𝑒𝑎𝑣𝑦 (5.7)

in which Situation(traffic) is a variable, and heavy is the assigned linguistic value.

Sometimes, the modified linguistic truth-value 𝜏∗ is not in the truth-value set 𝒯, and

its fuzzy truth-value needs to be approximated by a linguistic truth-value 𝜏 in 𝒯:

 𝜏∗ = 𝐿𝐴[𝜏] (5.8)

in which LA stands for linguistic approximation. For example,

 30

 𝑢1 = 𝑐𝑜𝑙𝑑 (5.9)

 (𝑢1, 𝑢2) = 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑒𝑞𝑢𝑎𝑙 (5.10)

 𝑢2 = 𝐿𝐴[𝑐𝑜𝑙𝑑 ∘ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑒𝑞𝑢𝑎𝑙] (5.11)

in which ∘ denotes the composition of fuzzy relations.

5.5 Rough Set Theory

Rough set-based reasoning relies on the analysis of the table-formed data set, in

which each row represents a case, and each column represents an attribute. The table is

also referred to as an information system 𝐼 = (𝑈, 𝐴), where 𝑈 is a non-empty finite set of

objects and 𝐴 is a non-empty finite set of attributes (Zbigniew, 2004). If there is an attribute

to describe the class of the object, the information system with the posteriori knowledge is

called a decision system, 𝐼 = (𝑈, 𝐴 ∪ {𝑑}) where 𝑑 ∉ 𝐴.

Indiscernibility relation is an important concept in rough set theory, meaning that

some objects in the decision table are indiscernible only using a subset of attributes. It can

be defined as follows:

 𝐼𝑁𝐷𝐼(𝐵) = {(𝑥, 𝑥′) ∈ 𝑈2|∀𝑎 ∈ 𝐵, 𝑎(𝑥) = 𝑎(𝑥′)} (5.12)

where 𝐵 is a subset of attributes 𝐴. It is described as B-indiscernibility relation, and such

relation is an equivalence relation. Sets of objects with the same attribute values in this

relation can be written as [𝑥]𝐵.

 31

Set approximation is used to describe a set of objects with a certain attribute value.

Let 𝑋 ⊆ 𝑈. Then a set 𝑋 can be approximated with B-lower and B-upper approximations,

𝐵𝑋 and 𝐵𝑋:

 𝐵𝑋 = {𝑥|[𝑥]𝐵 ⊆ 𝑋} (5.13)

 𝐵𝑋 = {𝑥|[𝑥]𝐵 ∩ 𝑋 = ∅} (5.14)

𝐵𝑋 is called the positive region or lower approximation where objects in 𝐵𝑋 can be

classified as members of 𝑋 without a doubt. 𝐵𝑋 is called the negative region or upper

approximation, where objects can possibly be members of 𝑋 . The boundary region

𝐵𝑁𝐼(𝑋) = 𝐵𝑋 − 𝐵𝑋 contains the objects that cannot be decisively classified based on

current knowledge. It is also called the B-boundary region of 𝑋. And the region outside the

negative region 𝑈 − 𝐵𝑋 is called the B-outside region of 𝑋 contains objects that can be

classified as not members of 𝑋 with certainty.

In rough set theory, the membership function 𝜇𝑋
𝐵: 𝑈 → [0,1] describes the degree of

that 𝑥 belongs to 𝑋 in terms of information about 𝑥 expressed by B-indiscernibility

relation:

𝜇𝑋
𝐵(𝑥) =

|[𝑥]𝐵 ∩ 𝑋|

|[𝑥]𝐵|

(5.15)

In an information system, there might exist redundant attributes. Let 𝑎 ∈ 𝐵, and if

𝐼𝑁𝐷𝐼(𝐵) = 𝐼𝑁𝐷𝐼(𝐵 − {𝑎}), 𝑎 is said to be as dispensable. And if all the attributes of 𝐵 are

 32

indispensable, 𝐵 is said to be independent. A subset 𝐵′ ⊆ 𝐵 is a reduct of 𝐵 if 𝐵′ is

indispensable and 𝐼𝑁𝐷𝐼(𝐵
′) = 𝐼𝑁𝐷𝐼(𝐵).

The implementation of RST-based reasoning has several steps: data discretization,

attribute reduction, the study of indiscernibility relation, and rule induction. Data

discretization is to divide the numeric data into different regions so that numeric data can

be converted into nominal data. Conventional data discretization methods include the

global discernibility algorithm, which computes the globally semi-optimal cuts using the

maximum discernibility heuristic, the quantile-based discretization, and discretization by

equal intervals. The attribute reduction is to find the reducts of current conditional

attributes from the discernibility matrix. The rejected attributes should be redundant ones

whose removal will not worse the classification. The common approach for attribute

reduction is the heuristics, while the reduct generation is either based on different criteria,

like entropy and discernibility measure, or on a permutation schema over all attributes. The

indiscernibility relation refers to a subset of attributes by which two objects are

indiscernible. IF-THEN decision rules can then be derived from the indiscernibility classes

defined by a subset of attributes.

5.6 Chapter Summary

In this chapter, the function of reasoning methodologies in the optimization system

is analyzed. Four knowledge representation techniques are introduced. Three commonly

used reasoning methodologies and techniques, case-based reasoning, fuzzy logic, and

rough set theory, are discussed in detail, including the application scenario, the reasoning

procedure, and the representation of reasoning.

 33

CHAPTER 6. OPTIMIZATION IN REAL-TIME OPERATIONAL

SYSTEMS

In a real-time operational system, the optimization model is responsible for finding

the optimal decision that meets the requirement or the objectives of the operation. An

essential trade-off during this process is between the optimization performance and the

execution time. System managers can have different preferences based on the specific

application. In this chapter, both exact algorithms and heuristic algorithms are discussed:

the former seeks for the optimality in the search space, while the latter sacrifices the

optimality for the computation cost. In real-life applications, the solution obtained from

exact algorithms and heuristic algorithms may not have much difference in operation costs,

but the former may take much longer time. Thus, the problem scale and the performance

tolerance between the optimality and the heuristics solution are also two important factors

for selecting optimization algorithms.

6.1 Exact Algorithms

Conventional approaches to the exact optimal solution are mainly the branch-and-

bound and its variations. The branch-and-bound is a divide-and-conquer method that

partitions the problem into independent subproblems, which have smaller feasible regions.

The branch-and-cut is the combination of the cutting plane method and the branch-and-

bound, in which the former is used to generate valid inequalities in the original problem to

narrow down the feasible region. When the problem scale is large, the number of variables

can grow exponentially. In this case, it is impossible to formulate the complete model, and

 34

column generation will be used to generate variables that can improve the objective

function. Branch-and-price is to conduct column generation in the branch-and-bound

framework.

6.1.1 Branch-and-Bound

Branch-and-bound takes the divide-and-conquer strategy. Assume the combinatorial

optimization problem be in the form (Wolsey, 1998):

 𝑧 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒} (6.1)

where 𝜒 is the set of feasible solutions. Let 𝜒 = 𝜒1 ∪ …∪ 𝜒𝑛 be a decomposition of 𝜒 into

smaller sets, and

 ∪𝑖=1
𝑛 𝜒𝑖 = 𝜒, ∩𝑖=1

𝑛 𝜒𝑖 = ∅ (6.2)

Let 𝑧𝑘 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒𝑘} for 𝑘 = 1,… , 𝐾. Then

 𝑧 = max
k
𝑧𝑘 (6.3)

Let 𝑃𝑏𝐿𝑃 be the linear programming relaxation of the original integer programming

problem 𝑃𝑏𝐼𝑃. Decomposition is conducted when the optimal solution to 𝑃𝑏𝐿𝑃 contains a

non-integral part, where the problem 𝑃𝑏𝐿𝑃 can be decomposed as follows:

 𝑃𝑏𝐿𝑃1 = 𝑃𝑏𝐿𝑃 ∩ 𝑥𝑗 ≤ ⌊𝛽𝑗⌋ (6.4)

 𝑃𝑏𝐿𝑃2 = 𝑃𝑏𝐿𝑃 ∩ 𝑥𝑗 ≥ ⌈𝛽𝑗⌉ (6.5)

 35

where 𝑥𝑗 is the non-integral variable with the value 𝛽𝑗. Thus, the problem can be solved

with a binary tree structure, where each branch is a problem decomposition.

For each subproblem 𝑧𝑘 = max {𝑐𝑇𝑥|𝑥 ∈ 𝜒𝑘}, there are three scenarios. (i). There

is no feasible solution: 𝜒𝑘 = ∅; (ii). There is an optimal solution 𝑥𝑖, but the optimal value

is no better than the known optimal value: 𝑧𝑘 ≤ 𝑧; (iii). There is an optimal solution 𝑥𝑖,

but the optimal value should be further computed to know if it is better than the known

optimal value. The node representing the subproblem can be discarded when the first or

the second scenario exists, which is called pruning.

To study the third scenario, the bound operation is used. The optimal objective

function value 𝑧 has a lower bound 𝑧, which is provided by any feasible integer solution

and should be updated whenever a better solution is found. The upper bound is obtained in

the linear programming relaxation of the current problem. If an upper bound is smaller than

the current best lower bound, then the node can be discarded. The branching and pruning

operations are conducted until the feasible solution of the current subproblem equals to 𝑧.

The pseudocode of branch-and-bound is presented in Table 6.1.

 36

Table 6.1 Pseudocode of branch-and-bound

// Initialization of the problem set and the current optimality

𝑆 ≔ {𝑃𝑏0}
𝑍 ≔ −∞

while 𝑆 ≠ ∅

do

remove 𝑃𝑏 from 𝑆

Solve LP(𝑃𝑏)

if LP(𝑃𝑏) is feasible

let 𝛽 be the optimal solution

if 𝛽 satisfies integrality constraint

 if 𝑐𝑇𝛽 > 𝑍

 store 𝛽

 𝑍 = 𝛽

 else

 // P can be pruned

 if 𝑐𝑇𝛽 ≤ 𝑍

 continue

 end

 let 𝑥𝑗 be integer variable with 𝛽𝑗 ∉ ℤ

 𝑆 ∶= 𝑆 ∪ {𝑃 ∩ 𝑥𝑗 ≤ ⌊𝛽𝑗⌋, 𝑃 ∩ 𝑥𝑗 ≥ ⌈𝛽𝑗⌉}

 end

end

 end

end

return 𝑍

6.1.2 Cutting-Plane Method and Branch-and-Cut

For combinatorial optimization problems, the feasible region consists of integer

solutions. However, most of the search space consists of fractional solutions, which is the

feasible region of the linear programming relaxation of the original problem. To narrow

down the search space, the cutting-plane method finds the inequalities in the related

problem that excludes the fractional solutions but still contains the original integer

solutions, aiming to find the convex hull of the original feasible region until the solution

 37

of the relaxed problem is integral. An example of the feasible region of the relaxed problem

and its convex hull is shown in Figure 6.1. Figure 6.1(a) presents the feasible region of the

relaxed problem, where its integer solutions are included in the polyhedron. Figure 6.1(b)

shows the convex hull of the feasible region, where the fractional solutions that exclude

the integer solutions are eliminated.

(a) Feasible regions of LP relaxation (b) Convex hull of the feasible region

Figure 6.1 Polyhedrons formed from the problem feasible region

To achieve this objective, the cutting plane method adds valid inequality whenever

the solution of the relaxed problem is not integral to narrow down the search space. Valid

inequality is defined as follows:

For a linear programming problem 𝑧 = max{𝑐𝑇𝑥|𝐴𝑇𝑥 ≤ 𝑏, 𝑥 ∈ 𝑋} , where 𝑋 =

{𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℤ+
𝑛}, 𝑎′𝑇𝑥 ≤ 𝑏′ is a valid inequality for 𝑋 ⊆ ℝ𝑛 if 𝑎′𝑇𝑥 ≤ 𝑏′, ∀𝑥 ∈ 𝑋.

The adding constraint should exclude the obtained fractional optimal solution but

contains all the feasible integer solutions. If the relaxed problem is kept solved with new

valid inequalities adding in, all the fractional solutions obtained will be excluded from the

feasible region. This operation is stopped until an integral solution is obtained from the

 38

relaxed problem. Because the optimal solution to the relaxed problem is also optimal to the

problem with integrality constraint, this integer solution is also optimal to the original

problem. The pseudocode of the cutting-plane method is shown in Table 6.2.

Table 6.2 Pseudocode of the cutting-plane method

// Initialization of the problem set and the current optimality

𝑡 ∶= 0

𝑃0 ≔ 𝑃

Solve 𝑧𝑡 = max {𝑐𝑇𝑥|𝑥 ∈ 𝑃𝑡}
Let 𝑥𝑡 be the optimal solution

While 𝑥𝑡 ∉ ℤ𝑛

if 𝑥𝑡 ∉ ℤ𝑛

 Find (𝑎𝑡, 𝑏𝑡) where 𝑎𝑡𝑥𝑡 > 𝑏𝑡 that cuts off 𝑥𝑡
 𝑃𝑡+1 = 𝑃 ∩ {𝑥: 𝑎𝑖𝑥 ≤ 𝑏𝑖 , 𝑖 = 1,… , 𝑡}
end

𝑡 ∶= 𝑡 + 1

end

return 𝑥𝑡

One conventional method to add valid inequalities is through the Gomory’s cut

(Kelley, 1960).

Because the convergence of the cutting-plane method is slow and keeping adding

new cuts makes the relaxed problem very large, it is not commonly used in practice.

However, when it is used in the branch-and-bound framework, it can accelerate the search.

The combination of the two algorithms is called branch-and-cut. Once a fractional solution

is obtained, cuts can be added to the relaxed problem. If an integer solution is found from

the new relaxed problem, or its new upper bound is less than the current lower bound, this

node will not be branched but discarded sooner.

 39

6.1.3 Column Generation and Branch-and-Price

For large-scale combinatorial optimization problems, it is nearly impossible to

enumerate all feasible combinations explicitly. Such problems are often solved by the

column generation approach, which is embedded in the branch-and-bound framework. The

rationale of column generation is similar to the simplex method. Because non-basic

variables of the solution are in the majority, only the variables that have the potential to

improve the current solution are generated.

Assume the objective function of the optimization problem is

 min{𝑐𝑇𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} (6.6)

Then its reduced cost can be computed as 𝑐 − 𝐴𝑇𝑦, where 𝑦 is the dual solution of

the linear programming relaxation of the original problem. Finding the variables with

minimum reduced costs is then formulated as:

 min{𝑐 − 𝐴𝑇𝑦} (6.7)

Usually, this problem can be formulated as a vehicle routing problem with resource

constraints.

Therefore, column generation is used to generate new promising variables

continuously, while the optimization problem is still solved with branch-and-bound. This

combination is called branch-and-price.

 40

Branch-and-price decomposes the original problem into two related problems: the

restricted master problem (RMP) that solves the original problem with only a subset of the

entire variables, and the pricing problem that finds the variables with minimum negative

reduced costs. Figure 6.2 shows the flowchart of branch-and-price.

Figure 6.2 The flowchart of branch-and-price

As discussed above, the pricing problem is usually formulated as a shortest path

problem with resource constraints, and the objective is to find the variables with the

minimum negative reduced cost. This can be solved by the label correcting algorithm based

on dynamic programming. The idea of label correcting is to set the labels for each variable

element and track them while extending them to the connectable elements through the

graph. After visiting a node, labels on that node will be compared, and the unpromising

 41

ones will be discarded with domination rules. The left labels are continuously extended to

the destination and form a feasible path. The variables of paths with minimum negative

costs are chosen to enter the basis of the RMP.

To guarantee the integrality of the solution, the following branching strategy is taken

after column generation is implemented. Assume the optimal solution to the relaxation of

the RMP is 𝑥𝑟
∗ . If 𝑥𝑟

∗𝜖ℤ, then 𝑥𝑟
∗ is the optimal solution that is feasible to the original

formulation. Otherwise, the fractional part 𝑓𝑟
∗ = 𝑥𝑟

∗ − ⌊𝑥𝑟
∗⌋ of every variable value is taken

to bound the variables with a predefined threshold 𝜏 , where 𝜏 ∈ (0,1). The following

strategy is taken:

 𝑥𝑟 ≥ ⌈𝑥𝑟
∗⌉, ∀𝑟 ∈ 𝑅: 𝑓𝑟

∗ ≥ 𝜏 (6.8)

However, if 𝑓𝑟
∗ < 𝜏 for every 𝑟 ∈ 𝑅, then the variable with the largest fractional part

will be rounded up:

 if 𝑟 ∈ 𝑅: 𝑓𝑟
∗ ≥ 𝜏 = ∅, then 𝑥𝑟 ≥ ⌈𝑥𝑟

∗⌉, 𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑓𝑟
∗ (6.9)

6.2 Heuristic Algorithms

In practice, the benefit of finding optimality that has limited improvement than the

heuristic solution is not always proportional to the extra computing time. Because of the

high computation cost of exact algorithms to solve NP-hard problems, especially when the

problem scale is large, there has been a lot of research on heuristic algorithms.

 42

Usually, heuristic algorithms tend to be more greedy than exact algorithms, but they

also have the varying capability to escape the local optimum during the search. Thus, they

can obtain a near-optimal solution but in shorter time.

Based on the search strategy, heuristics can be classified into local search and global

search. Firstly, the local search starts exploring the search space from an initial point, and

the initial position will have influences on both the solution quality and the search time,

while the global search is less dependent on its initial position. Secondly, global search

uses many techniques to search across search space, while local search focuses more on

the movement from the current position to its neighboring space.

Conventional local search heuristics include simulated annealing, tabu search, A*

search, and so on. And commonly used global search heuristics are particle swarm

optimization, genetic algorithms, ant colony optimization, and so on. In this section, A*

search is introduced as a local search heuristic, and the genetic algorithm is discussed as a

global search heuristic.

6.2.1 A* Search: A Local Search Heuristic

As a local search heuristic, A* search can be understood as an algorithm to find the

optimal path, where each path connects an initial state to a goal state (Korf, 1988). During

the search, the path is evaluated through a heuristic state evaluation function, 𝑓, which is

the sum of two cost functions: the sum of the cost reaching the current state from the initial

state, 𝑔, and the estimated cost of reaching the goal from the current state, ℎ. These two

functions are designed based on the specific problem. The search direction is based on the

 43

heuristic state evaluation function. The key feature of A* search is that if ℎ is never

overestimated, the solution is optimal in terms of 𝑔 (Korf, 1988).

The procedure of A* search is presented in Table 6.3. In this thesis, A* search is

applied to develop the optimization model for elevator dispatching in Chapter 8.5.

Table 6.3 A* Search Algorithm Procedure

Initialization

(1) Set 𝐹 as the number of tree levels

(2) Initialize the closed set 𝐶 = ∅ and the open node set 𝑀𝑖 = ∅ for

unsearched nodes in the level 𝑖, 𝑖 = 1,… , 𝐹

Search

(1) Generate the descendant nodes of the node 𝑚𝑖 , which has the lowest

heuristic stage function value in the node set 𝑀𝑖, and add the descendant

nodes to 𝑀𝑖+1

(2) Calculate the value 𝑓 for the nodes in 𝑀𝑖+1

(3) Sort the nodes in 𝑀𝑖+1 in increasing order by 𝑓 values

(4) Move the node 𝑚𝑖 to the closed set 𝐶

Termination

(1) If the first node in 𝑀𝑖+1 is the goal state, end.

(2) Else, let 𝑖 = 𝑖 + 1 and return to the search stage.

6.2.2 Genetic Algorithm: A Global Search Heuristic

The genetic algorithm (GA) is a population-based iterative optimization algorithm

inspired by the process of natural evolution. The solution candidates are treated as a

population, and each solution candidate is an individual represented as a chromosome,

where each gene represents one element in the solution. During evolution, the objective

function is set as the evolution trend. In each iteration, there are several genetic operators

to improve the solution quality and to escape the local optimum. The pseudocode of a GA

is presented in Table 6.4, and the flowchart is shown in Figure 6.3.

 44

Table 6.4 Pseudocode of a GA

// Initialization of generation 0:

𝑖𝑡𝑒 ≔ 0;

𝑃𝑖𝑡𝑒 ≔initial population of 𝑝 randomly generated 𝑁 individuals;

// Evaluate the fitness value of the populations

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒;

while 𝑖𝑡𝑒 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

do

// Create generation 𝑖𝑡𝑒 + 1:

Select a proportion of members from 𝑃𝑖𝑡𝑒;

Select another proportion of members to for crossover;

Combine the selection and offspring;

Mutate the combined set;

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒+1;

𝑖𝑡𝑒 ≔ 𝑖𝑡𝑒 + 1;

if the fitness of the best individual is converged

return the best individual

end

end

Figure 6.3 The flowchart of a GA

 45

The crossover operations aim to exchange part of the parents’ chromosomes for

producing offspring. Figure 6.4 shows an example of the crossover operation. The

operation procedure is as follows. The first step is selecting the parent chromosomes 𝑝1

and 𝑝2 based on their fitness value by applying the roulette algorithm. A fitter individual

shows a superior probability of being selected. Then, a random gene index is chosen on the

chromosome. The two parents exchange the genes after the chosen index to generate two

offspring.

(a) Selected parents with roulette algorithm (b) Offspring from crossover operation

Figure 6.4 The crossover operation

The mutation operations are applied to introduce diversities to the populations. The

conventional mutation operation randomly changes the value of a gene at an arbitrary

position on the chromosome, as shown in Figure 6.5. The mutation operation will be

conducted when a newly generated random number is smaller than the mutation rate, which

is a preset constant. This mutation strategy can balance the introduction of diversity to the

population and prevent contamination in the late searching stage.

(a) Chromosome before mutation (b) Chromosome after mutation

Figure 6.5 The mutation operation

 46

6.3 Chapter Summary

This chapter introduces both exact algorithms and heuristic algorithms to solve

combinatorial optimization problems in operational systems. Comparison is made between

exact algorithms and heuristic algorithms. Branch-and-bound, branch-and-cut, and branch-

and-price are introduced for exact algorithms, in which the cutting plane method and

column generation are two techniques to improve the search efficiency. For heuristic

algorithms, the comparison is made between local search heuristics and global search

heuristics, and A* search and the genetic algorithms are presented as two typical

algorithms.

 47

CHAPTER 7. DISCRETE-EVENT SIMULATION FOR

OPTIMIZATION ENHANCEMENTS

Discrete-event simulation can model a complex real-world operational system with

a sequence of events in time. In the simulation model, each entity and event are set with

different probabilities, trigger conditions, and other properties to represent their existence

in the real world. By integrating the optimization model of an operational system into

simulation, its effectiveness can be validated.

In this thesis, situational information is introduced to the optimization model through

CNN-enabled visual data analytics and reasoning. Because the integration of situational

information is flexible, discrete-event simulation can be used to calibrate and improve the

optimization model by adjusting the usage of situational information through the

simulation feedback, thus forming a closed-loop optimization structure.

7.1 Simulation Model Development

Model development of an operational system can be interpreted as two subproblems,

as shown in Figure 7.1: the modeling of operational mechanisms of the real-world problem

and the programming of operational algorithms and variable setup. The former ensures the

simulation model can operate correctly as the real-world system from the process

perspective. The latter is to instantiate the entities and events with specified properties and

provide detailed algorithms for the decision-making process.

 48

Figure 7.1 A Real-world problem to a simulation model

The workflow of model development is displayed in Figure 7.2. The first step is the

problem formulation of the real-world system, including its workflow and mathematical

representation. The simulation objective should then be set either to evaluate the

performance of the optimization model with certain performance measures or to obtain the

optimal solution of a decision-making problem by running experiments with different

variable settings. After the preparation, the model entities and corresponding processes are

developed based on their operational mechanisms. Real-world data is collected for input

modeling. Conventional approaches to process collected data are fitting probability

distributions, using data itself, or consulting expert opinions. Optimization algorithms are

then embedded in the simulation model. System verification and validation are

implemented to test the developed model. The experimental design is implemented to

determine the variations of comparative experiments. Finally, experiments are conducted,

and results are analyzed to seek the solution to the simulation objectives.

 49

Figure 7.2 The workflow of Simulation Model Development

7.2 Performance Measurement

To evaluate the developed model, performance measurement is the critical procedure.

Two essential questions that must be answered to better understanding model evaluation

are why to measure and what to measure (Lebas, 1995).

 50

The first question, why to measure, answers the usage of measures for model

evaluation. The chosen measures are not the direct objectives of the designed model, but

the results of a series of decisions and operations made by the model. By analyzing the

measures, the comparison can be made between different models to find the key factors

that influence the model operations. Also, measures provide a direction to improve the

current model.

 The second question, what to measure, is equivalent to asking what performance in

this operational system is. Performance can be defined as the potential for future successful

implementation of actions to reach the objectives (Lebas, 1995). This can be subjective,

and people from different perspectives can have different answers. For example, when

evaluating an elevator dispatching system, the building owner may care more about the

operation and energy costs, while passengers choose the average waiting time as the most

important factor. Because models with different usages of situational information will be

compared in this study, the chosen performance measures should remain the same during

the analysis.

7.3 Results Analysis for Optimization Calibration and Adaptability Adjustment

As discussed above, the main objective of discrete-event simulation in this study is

to enhance the optimization model by adjusting the usage of situational information during

optimization. To be specific, there are two methods to embed the situational information:

to serve as the condition to change the problem formulation in different usage scenarios,

and to add situational-related factors to the objective function. Thus, by analyzing the

experiment results, the optimization model can be improved from two perspectives: the

 51

calibration of situation-related variables, and the adaptability of the optimization model to

different usage scenarios.

Optimization calibration is about finding a proper value for the coefficient (the

weight) of situation-related variables. Unless there is an explicit mathematical relationship,

the assignment is usually intuitive. By observing the operations made during the simulation

or analyzing the experiment results, the coefficient value can be changed to adjust the

importance of the situational information during optimization.

There are two possible approaches to improve the model adaptability: the

modification of applicable conditions for using situational information and the change of

problem formulation. Model adaptability is related to the optimization strategy. And by

comparing the operations made between two different models in the same experiment

settings, the study can be made of whether the triggering conditions for changing the

problem formulation is proper or whether the new formulation is reasonable.

Therefore, the functionality of discrete-event simulation in the proposed optimization

framework is to provide feedback about simulation performance. Through results analysis

and observation of the simulation process, the integration of situational information can be

continuously updated until the optimization model has satisfying adaptability and proper

settings for situational-related variables.

7.4 Chapter Summary

This chapter mainly introduces the development procedure of a discrete-event

simulation model and the analysis of experiment results. The workflow of developing a

 52

simulation model from the real-world problem is presented. Performance measurement is

discussed as the requirement for choosing model evaluation indicators. The directions for

optimization enhancement through simulation results analysis are discussed: Optimization

calibration is to find a proper value for the coefficient of the situation-related variable;

Adaptability adjustment is to modify both the condition and the problem formulation when

situational information is used to identify different scenarios.

 53

CHAPTER 8. SIMULATION AND SYSTEM VALIDATION: AN

APPLICATION OF OCCUPANCY-AWARE ELEVATOR

DISPATCHING OPTIMIZATION

This chapter presents the application of dispatching optimization for elevator group

control with occupancy awareness to validate CNN-enabled visual data analysis and

intelligent reasoning for real-time optimization and simulation.

Elevators are the primary vertical transportation method in modern buildings,

meeting the transport demands of building occupants for their work and living every day.

In high-rise buildings where passengers spend much time on elevator travel during the rush

hour, there are growing demands for improving elevator dispatching performance.

Dispatching performance can be evaluated by the quantity of service and the quality of

service (Fernandez & Cortes, 2015). The former refers to the passenger handling capacity

during peak traffic periods, while the latter includes multiple indicators, such as passenger

travel time, power consumption, passenger waiting time, and so on.

In general, elevator dispatching is an optimization problem to make proper hall call

allocations at a real-time scale, and the main challenge is the balance between dispatching

performance and its implementation costs, including computing costs, operation costs, and

facility costs. An efficient dispatching system can make reasonable allocations in a short

time by the preference criteria set by elevator operators. In this application, real-time

occupancy awareness is proposed to extract information from inside of the elevator cab for

optimal elevator group control. Chapter 8.1 introduces the optimal elevator dispatching in

 54

detail. Chapter 8.2 presents the occupancy awareness in elevator dispatching. Chapter 8.3

discusses context information extraction with the Mask R-CNN. Chapter 8.4 presents the

situational information extraction with case-based reasoning and fuzzy logic. The

dispatching optimization model with the prioritized A* search is introduced in Chapter 8.5.

Discrete-event simulation experiments and system validation are presented in Chapter 8.6.

8.1 Optimal Elevator Dispatching

Elevator group control (EGC) refers to managing multiple elevators in a group to

improve transportation efficiency and reduce operation costs (Kim et al., 1995). This is

achieved by allocating hall calls to the most suitable elevator cab, in an effort to optimize

one or multiple criteria, including average waiting time, average journey time, round trip

time, and building owner’s preferences, like power consumption (Fernandez & Cortes,

2015; Barney & Al-Sharif, 2015). Three main problems concerned with EGC are what

information to use for optimal dispatching, which dispatching optimization algorithm to

apply, and how to determine the traffic pattern or the usage pattern to deploy different

dispatching strategies.

Dispatching information is a set of parameters describing elevator operating states

and is applied as the input of dispatching optimization problems. Conventional dispatching

information includes the cab position and direction, existing hall calls, registered cab calls,

and so on (Al-Sharif, 2016). The more useful information used during dispatching, the

better dispatching performance may be obtained, though that often requires more hardware

support to capture the needed data.

 55

Dispatching optimization aims at finding the most proper hall call allocations that

optimize the selected criteria with the given dispatching information. Decision making for

elevator dispatching is essentially a combinatorial optimization problem and falls into the

NP-complete problems (Garey & Johnson, 1979). Given the characteristics of NP-

complete problems, prevailing optimization algorithms are heuristics-based, because they

can usually find a near-optimal solution in a short time. Other algorithms like fuzzy logic,

neural networks are also used (Fernandez & Cortes, 2015; Hamdi & Mulvaney, 2007).

Dispatching strategies regulate elevator operations in different scenarios, including

the control strategies under different traffic patterns, sub-zoning, and sectoring. Based on

the analysis and prediction of traffic flow, traffic patterns can be roughly clustered into

three: up-peak, down-peak, and inter-floor (Siikonen, 1997). Then, different control

strategies are deployed to fit the characteristic of the current traffic pattern. Zoning and

sectoring techniques are developed to specify working regions for different cabs (Chan et

al., 1996; Li et al., 2007). To reduce the number of stops and the journey time, zoning

divides the building with floors, like a lower zone and an upper zone. During the current

traffic pattern, each elevator only serves one zone. On the other hand, sectoring divides the

building in relation to both the position and direction. Such division can change according

to the traffic flow, and each sector is assigned to only one cab (Al-Sharif, 2016).

8.2 Elevator Occupancy Awareness

As one common criterion for dispatching optimization, the journey time is defined

as the time interval between a passenger registers a hall call and the passenger arrives at

the destination floor (Bloat & Cortes 2011), which is the sum of waiting time and traveling

 56

time. The number of stops in a trip can be a significant factor influencing the journey time.

Because the movement speed of each elevator cab is relatively fixed, executing more stop

operations to reach a floor means more time is spent on door closing and opening. This

time not only influences the traveling time of the passengers in the cab, but also increases

the waiting time of passengers waiting for this cab. Considering there are scenarios where

a hall call fails to pick up any passenger due to the cab capacity or where passengers are

not supposed to use the elevator when it is in a special usage, this application introduces

occupancy information to improve the dispatching performance under such circumstances.

8.2.1 Occupancy Information Analysis

When a cab has no capacity for new passengers but is not overweighed, or when it is

in a special usage and cannot receive new hall calls (like in hospitals), prevailing

dispatching systems would keep assigning hall call tasks to it, thus generating wasted stops

and increasing the journey time. Sometimes, lack of capacity is not because the cab is fully

occupied but caused by large obstacles that block the entrance of the cab, like when

passengers bring bicycles and place them at the entrance. And an example of a cab in

special usage is the transfer of a patient on a stretcher that needs first-aid, and the cab

should not answer new hall calls until the existing task is performed.

The hidden assumption of traditional elevator dispatching systems is there is enough

capacity to accommodate new passengers, so the dispatching mainly focuses on time-based

criteria, like estimated time of arrival. However, capacity is a type of resource during

dispatching, and if the resource constraint is not satisfied, penalties should be imposed on

passenger waiting time and travel time.

 57

To improve the current dispatching system, occupancy awareness is proposed during

optimization. One objective is to reflect the cab capacity, thus decreasing the probability

of pick-up failure and improving dispatching performance. Also, objects in the

environment can be detected to recognize the current usage. And the number of passengers

can be used for traffic analysis. The optimization information hierarchy is shown in Figure

8.1.

Figure 8.1 Occupancy information hierarchy

The first level is the hardware level, collecting video data inside the elevator cab with

video monitoring. This level aims at recording the objects in the scene and provides image

data for further occupancy analysis. The second level is to extract context information.

Object detection is implemented to aggregate the number and category of the objects in the

cab with Mask R-CNN. The number of passengers in each cab during operation is recorded

separately. The context information is used for traffic pattern recognition and occupancy

analysis. The third level is to extract situational information. This level is to refine the

 58

obtained information as the capacity factor to avoid pick-up failure and recognize the

current elevator usage and the traffic pattern. Specifically, the cab capacity is estimated

with space utilization and the mobility of objects in the cab. And the usage is recognized

with case-based reasoning to determine if any specific dispatching strategy should be

applied. The traffic pattern can be recognized through fuzzy logic using the real-time data

of the number of passengers.

8.2.2 Functional Analysis

The occupancy information analysis model is the model that implements real-time

occupancy awareness for optimal elevator dispatching. The functional analysis diagram

(IDEF0) of the model is shown below. Figure 8.2(a) is the overview of the model, while

Figure 8.2(b) presents its details. The whole process is completed on a microcomputer

(M2). Firstly, object detection (A1) is performed with a pre-trained Mask R-CNN model

(C2) using in-cab image data (I1) collected from the video monitoring (M1). The detection

is executed with the predefined frequency or triggers (C1) to reach a real-time scale and to

detect transferred passengers during a stop. The detection result that aggregates the

numbers and categories of objects is used for situational awareness, including capacity

estimation (A2) and usage pattern recognition (A3). Capacity is estimated based on the

occupancy area contributed by each object and their mobility, which are predefined and

recorded in the object occupancy information table (I2). The specific prediction method is

to model the “consistency level” of the 3D space with a set of predefined rules (C3). And

the usage pattern is determined by searching target objects in the detection result and finds

the corresponding dispatching strategy with case-based reasoning (C6). Suppose a stretcher

is detected in a hospital elevator cab. In that case, the cab will be determined as in the

 59

emergency usage, and the system will hold the hall call and cab call tasks of the cab and

stop assign new tasks to the cab until the stretcher leaves, since a patient that needs first-

aid should be served as a priority. Traffic data analysis (A3) is to analyze the passenger

arrival data in different traffic and recognize the current traffic pattern, which requires the

time series analysis model (C4) for passenger arrival rate forecast and fuzzy rules (C5) to

analyze the traffic intensity and traffic components.

(a) Overview of the functional analysis of the model.

(b) Detailed functional analysis of the model.

Figure 8.2 Functional analysis of the occupancy information analysis model

 60

8.3 Real-time Context Information Capturing with Mask R-CNN

In the proposed elevator dispatching system, context awareness aims to find the

object type and number in the cab. Thus, Mask R-CNN is applied to implement object

detection for real-time context information capturing.

8.3.1 Data Set Construction

Dataset construction is an important step in model development. Because most

detection targets in the cab are everyday objects, like humans, backpacks, and suitcases, an

existing dataset can be used to save time from image collection and labeling. In this

application, the Microsoft COCO dataset is used for the training, which contains 320,000

labeled images and 90 object categories for object detection (Lin et al., 2014). As cardboard

boxes are frequently seen in an elevator, box images are also collected and labeled as a

new class in the dataset. LabelMe is used to annotate new data. For the convenience of

training and testing, the image size is scaled to 640 * 480. The final dataset consists of

cardboard boxes and 13 categories of objects from the COCO dataset: backpack, bicycle,

cat, chair, dog, handbag, person, snowboard, sports ball, suitcase, surfboard, tennis racket,

and umbrella. 2780 images are selected, where 1668 are in the training set and 556 for

validation, and the remaining 556 images are in the testing set.

8.3.2 Model Training

The model in this application is trained using transfer learning techniques, which

saves the time by learning the extraction of general features from pre-trained models (Shin

et al. 2016). This is implemented by firstly freezing the backbone layers and only training

 61

the head layers. Then the entire model is fine-tuned. The training is done on the new

dataset. Normally, ResNet-50 is chosen for backbone feature extraction.

An example of object detection in an elevator cab is presented in Figure 8.3.

Figure 8.3 Object detection in the elevator cab

8.4 Case-based Reasoning and Fuzzy Logic for Elevator Situation Comprehension

8.4.1 Situation Comprehension during Elevator Dispatching

To improve dispatching performance, situational information is extracted to equip

the optimization model with the comprehension of the current environment. In elevator

dispatching, three types of situational information are useful for obtaining high-quality

dispatching solutions: the cab usage pattern, the traffic pattern, and the estimated capacity.

The objective of usage pattern recognition is to recognize the transport objective of

the trip. If the cab is in a special usage, it may perform only the specified tasks, and this

can change the number of usable cabs or the hall calls that should be answered in the

 62

optimization model. Traffic patterns indicate the traffic components about passengers’ trip

directions and the traffic intensity. If the traffic is heavy and most passengers have the same

trip directions, like the rush hour in the morning, certain dispatching strategies can be

adopted to make more reasonable hall call allocations. Capacity estimation is to understand

the space utilization of each cab. It enables the optimization model to consider the capacity

constraints during dispatching in heavy traffic, so the hall call allocation can be more

balanced to avoid pick-up failure caused by the lack of capacity.

8.4.2 Case-based Reasoning for Elevator Usage Pattern Recognition

Because elevators can be in special usages during operations, timely detection of a

special usage can help the dispatching system to adjust its dispatching strategy and bring

convenience to passengers. For example, if an elevator cab is often used to transport freight,

a usage pattern regarding this usage can be set. If specific freight carriers or devices are

detected, the usage is defined as a special one. In this scenario, a special optimization

strategy can be set, like to serve the current task as a priority and ignore the outside hall

calls until the current task is finished. Different dispatching strategies can be set to satisfy

the demands of special elevator usages from the management perspective.

In this application, case-based reasoning is used to implement usage pattern

recognition. There are five steps: case representation and indexing, new case creation, case

retrieval, case reuse or case adaptation, and case retention.

Case representation and indexing are the preparation work for further operations.

Because the objective is to detect special usages, the number and type of key items can be

used to describe a case. For example, stretchers and cleaning carts are set as the target

 63

object for the first-aid usage and cleaning tool transport. And the number of passengers is

also of interest. Then < 𝑐1, 𝑐2, 𝑐3, 𝐼𝐷, 𝑎𝑛𝑠 > can be used to describe a case, where 𝑐1 and

𝑐2 are Boolean variables (true or false) representing the existence of stretchers and cleaning

carts, and 𝑐3 is a numeric variable representing the number of passengers in the cab. 𝐼𝐷 is

the index of the case, and 𝑎𝑛𝑠 is its recorded solution. The case indexing can use the special

usage as the case category and a number that represents the sequence of that case in this

category to ease the case retrieval process. Table 8.1 presents two cases for the transport

of a cleaning cart and the freight.

Table 8.1 Two examples of case representation

(a) Cleaning cart transport

-ID: Cleaning_003

-CleaningCart: True

-Freight: False

-Psg_Number: 4

-Capacity: 30%

-Direction: upward

+Solution: The cab becomes unavailable for new calls till the cart leaves.

(b) Freight transport

-ID: FreightTransport_015

-CleaningCart: False

-Freight: True

-Psg_Number: 0

-Capacity: 30%

-Direction: downward

+Solution: Clear current hall call allocations and the cab become unavailable for

 new calls till the freight leaves.

 64

Case retrieval aims to find similar cases in the case library, and similarity measuring

between the new case and old cases is needed. A conventional approach is to use the nearest

neighbor matching with the following equation for similarity measuring:

 ∑ 𝑤𝑖
𝑛
𝑖=1 ∗𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖

𝑛𝑒𝑤,𝑐𝑖
𝑜𝑙𝑑)

∑ 𝑤𝑖
𝑛
𝑖=1

 (8.1)

where 𝑐𝑖 is the case feature, and 𝑤𝑖 is the weight of the feature. Because the usage detection

is largely determined by the existence of items, the corresponding feature variable is either

Boolean or integral, making the similarity measuring easier.

The objective of case adaptation or reuse is to find a solution to the current case.

Based on different elevator usages and the detected items, there can be several types of

solutions. For example, if the elevator is used for first aid, the current hall call and cab call

assignment will be eliminated to serve the current task, and no new hall call will be

allocated until this task is performed. Suppose the elevator is used for the transport of a

cleaning cart. In that case, the cab will keep its current cab call assignment, but whether to

execute existing hall calls can be decided by other information, like the floor difference

between the cart destination and its starting floor. Production (IF-THEN) rules can be used

to evaluate the case similarity and decide whether to modify or reuse the original solution.

After the solution is found, the solved new case can be stored in the case library for future

reference.

8.4.3 Traffic Pattern Recognition with Fuzzy Logic

8.4.3.1 Passenger Travel Data Analysis

 65

According to the travel purpose, passenger traffic components can be categorized

into incoming traffic, inter-floor traffic, and outgoing traffic. To determine the passenger

arrival rates in different traffic, the data recording the number of passengers in each cab is

transformed into the number of passengers in different traffic.

Context awareness provides the real-time data of the number of passengers.

Considering that passengers only enter or exit the cab during a stop, a frequency can be

determined to capture the change during the stop. Assume passengers do not enter the cab

until all the passengers whose destination is at this floor exit. Let 𝑛𝑝0, 𝑛𝑝𝑚𝑖𝑛, 𝑛𝑝1 be the

number of passengers before the stop, the minimum number of passengers during the stop,

and the number of passengers after the stop. The number of passengers exiting the cab is

𝑛𝑝0 − 𝑛𝑝𝑚𝑖𝑛, while the number of new passengers is 𝑛𝑝1 − 𝑛𝑝𝑚𝑖𝑛.

To derive the passenger arrival rates in different traffic, the number of transferred

passengers is needed. For incoming traffic, the number of passengers who enter the cab on

the main floor is recorded. For inter-floor traffic, if the cab moves upwards, the number of

passengers entering the cab between the second floor and the next highest floor is recorded.

If the cab moves downwards, the number of passengers who exit the cab on these floors

are recorded. For outgoing traffic, the number of passengers who exit the cab on the main

floor is recorded. The recorded data is then aggregated with a fixed granularity to calculate

the passenger arrival rates in different traffic.

8.4.3.2 Traffic Flow Forecast with ARRES

Traffic pattern recognition aims to detect the pattern change in advance to avoid the

form of long waiting queues. Thus, traffic flow forecast is implemented to predict the

 66

passenger arrival rates. In this application, the adaptive response rate exponential

smoothing (ARRES) is chosen as the time series analysis model, which was validated to

solve this problem (Makridakis et al., 1983). The learning of traffic flow is not limited to a

single day, and the past data will be incorporated into the long-term statistics.

Compared to single exponential smoothing, ARRES continuously optimizes the

smoothing factor 𝛼. The prediction formula is illustrated below.

 𝐹𝑡+1 = 𝛼𝑡𝑌𝑡 + (1 − 𝛼𝑡)𝐹𝑡 (8.2)

𝛼𝑡 = |

𝐸𝑡
𝐴𝐸𝑡

| (8.3)

 𝐸𝑡 = 𝛽𝑒𝑡 + (1 − 𝛽)𝐸𝑡−1, 0 < 𝛽 < 1 (8.4)

 𝐴𝐸𝑡 = 𝛽|𝑒𝑡| + (1 − 𝛽)𝐴𝐸𝑡−1 (8.5)

 𝑒𝑡 = 𝑌𝑡 − 𝐹𝑡−1 (8.6)

𝐹𝑡+1 is the forecast smoothed value, 𝑌𝑡 is the observation in the current period, 𝐸𝑡 is

the smoothed average error, and 𝐴𝐸𝑡 is the smoothed absolute error. 𝛼𝑡 is the smoothing

factor that keeps being optimized. 𝛽 is a predefined constant parameter between zero and

one. And 𝑒 is the error term.

After the forecast, the future passenger arrival rates in different traffic,

𝜆𝑖𝑛𝑐, 𝜆𝑜𝑢𝑡, 𝜆𝑖𝑛𝑡, can be obtained.

 67

8.4.3.3 Traffic Pattern Recognition with Fuzzy Logic

In this application, traffic pattern recognition is conducted with fuzzy logic according

to the traffic intensity and the distribution of different traffic components in the building.

The implementation is based on published research of KONE (Siikonen, 1997). The

proposed method defines four traffic factors related to different traffic components and the

overall traffic intensity. Fuzzy set values are obtained with two groups of membership

functions for traffic components and the traffic intensity. Fuzzy rules are then applied to

determine the traffic pattern based on the fuzzy set values.

Traffic component analysis and traffic intensity evaluation are first implemented,

with four traffic factors, 𝑢1, 𝑢2, 𝑢3, 𝑢4, defined to grade the corresponding level. The

component analysis aims to reflect the proportion of three traffic. The component values

for incoming traffic, outgoing traffic, and inter-floor traffic, 𝑢1, 𝑢2, 𝑢3 , are shown in

Equation (8.7)-(8.9).

 𝑢1 = 100 ∗ 𝜆𝑖𝑛𝑐/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡) (8.7)

 𝑢2 = 100 ∗ 𝜆𝑜𝑢𝑡/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡) (8.8)

 𝑢3 = 100 ∗ 𝜆𝑖𝑛𝑡/(𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡) (8.9)

And the overall traffic intensity value 𝑢4 is to scale the total arrival rates to the

passenger handling capacity 𝐻𝐶, where the handling capacity is determined as the number

of served passengers in five minutes during up-peak traffic:

 68

 𝑢4 = 100 ∗ (𝜆𝑖𝑛𝑐 + 𝜆𝑜𝑢𝑡 + 𝜆𝑖𝑛𝑡)/𝐻𝐶 (8.10)

Then fuzzy sets {low, high, medium}∈ ℱ1 are used to describe 𝑢1, 𝑢2, 𝑢3. Figure 8.4

presents the fuzzy sets corresponding to traffic components. The membership function to

describe the three factors are as below:

𝜇𝑙𝑜𝑤(𝑢) = {

1, 𝑖𝑓 𝑢 < 25
35 − 𝑢

10
, 𝑖𝑓 25 ≤ 𝑢 < 35

0, 𝑖𝑓 𝑢 ≥ 35

 (8.11)

𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑢) =

{

0, 𝑖𝑓 𝑢 < 30
𝑢 − 30

20
, 𝑖𝑓 30 ≤ 𝑢 < 50

70 − 𝑢

20
, 𝑖𝑓 50 ≤ 𝑢 < 70

0, 𝑖𝑓 𝑢 ≥ 70

 (8.12)

𝜇ℎ𝑖𝑔ℎ(𝑢) = {

0, 𝑖𝑓 𝑢 < 65
𝑢 − 65

10
, 𝑖𝑓 65 ≤ 𝑢 < 75

1, 𝑖𝑓 𝑢 ≥ 75

 (8.13)

Figure 8.4 Membership functions for different traffic components

 69

The obtained results are used to determine the traffic type with the fuzzy rules

presented in Table 8.2. The traffic type will influence the parameter setting in the

membership function for the traffic intensity.

Table 8.2 Fuzzy rules to determine the traffic type (Siikonen, 1997)

Incoming Outgoing Inter-floor Traffic Type

high low low incoming

medium low low incoming

low high low outgoing

low medium low outgoing

low low high inter-floor

low low medium inter-floor

medium medium low two-way

medium low medium mixed

low medium medium mixed

The fuzzy set for the traffic intensity is {light, normal, heavy, intense}∈ ℱ2, and the

membership functions are shown in Figure 8.5. The formulae are presented in Equation

(8.14).

Figure 8.5 Membership functions for the traffic intensity

 70

𝜇𝑓(𝑢4) =

{

0, 𝑖𝑓 𝑢4 < 𝑎𝑗
𝑢4 − 𝑎𝑗

𝑏𝑗 − 𝑎𝑗
, 𝑖𝑓 𝑎𝑗 ≤ 𝑢4 < 𝑏𝑗

1, 𝑖𝑓 𝑏𝑗 ≤ 𝑢4 < 𝑐𝑗
𝑑𝑓𝑗 − 𝑢4

𝑑𝑗 − 𝑐𝑗
, 𝑖𝑓 𝑐𝑗 ≤ 𝑢4 < 𝑑𝑗

0, 𝑖𝑓 𝑢4 ≤ 𝑑𝑗

 (8.14)

where 𝑎𝑗 ≤ 𝑏𝑗 ≤ 𝑐𝑗 ≤ 𝑑𝑗 , 𝑗 ∈ 𝐽 . 𝐽 is the space of all traffic types. Different set limits,

𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , 𝑑𝑗, are set according to the traffic type.

Finally, the grades of the membership function for traffic components and the traffic

intensity are compared with the equation below:

 𝜇𝑖′(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝜇𝑖(𝑢1) ∧ 𝜇𝑖(𝑢2) ∧ 𝜇𝑖(𝑢3) ∧ 𝜇𝑓(𝑢4)

= min{𝜇𝑖(𝑢1), 𝜇𝑖(𝑢2), 𝜇𝑖(𝑢3), 𝜇𝑓(𝑢4)}
(8.15)

where 𝑖 ∈ ℱ1, 𝑓 ∈ ℱ2, 𝑖′ ∈ 𝑍. 𝑍 is the space of all traffic patterns.

Table 8.3 presents the 36 fuzzy rules to determine traffic patterns. The grades

obtained with Equation (8.15) are added to the corresponding rules. The rule with the

highest grade determines the recognized traffic pattern.

Table 8.3 Fuzzy rules for traffic pattern recognition (Siikonen, 1997)

Intensity Incoming Outgoing Inter-floor Traffic Pattern

intense high low low intense up-peak

intense low high low intense down-peak

intense low low high intense inter-floor

intense medium low low intense up-peak

intense low medium low intense down-peak

intense low low medium intense inter-floor

 71

intense medium medium low intense mixed

intense medium low medium intense mixed

intense low medium medium intense mixed

heavy high low low up-peak

heavy low high low down-peak

heavy low low high heavy inter-floor

heavy medium low low heavy up-peak

heavy low medium low heavy down-peak

heavy low low medium heavy inter-floor

heavy medium medium low mixed

heavy medium low medium heavy mixed

heavy low medium medium heavy mixed

normal high low low up-peak

normal low high low down-peak

normal low low high inter-floor

normal medium low low up-peak

normal low medium low down-peak

normal low low medium inter-floor

normal medium medium low mixed

normal medium low medium mixed

normal low medium medium mixed

light high low low light up-peak

light low high low light down-peak

light low low high light inter-floor

light medium low low light up-peak

light low medium low light down-peak

light low low medium light inter-floor

light medium medium low light mixed

light medium low medium light mixed

light low medium medium light mixed

8.4.4 3D-Space Consistency Modelling with Object Mobility for Capacity Estimation

Situational awareness is proposed to understand the latent story of the cab usage. In

this sense, capacity is defined as the area that can accommodate new passengers. This

concept is different from the unoccupied space, because sometimes passengers cannot find

a path to the unoccupied space when large obstacles are getting in the way. Considering

the influence of object mobility on the capacity, this study proposes to utilize the object

 72

occupancy area, 𝑆, and the object mobility, 𝑀, to model the 3D space consistency level, 𝐿,

and then to do the estimation.

The object occupancy area is the area that the object occupies and is obtained based

on the crowd density approximation method by fully occupying the cab with the objects

(Barney & Al-Sharif 2015). For example, the ground of a cab is measured as 2𝑚 × 2𝑚.

Figure 8.6 shows the static crowd density from 1 person/𝑚2 to 5 people/𝑚2. According

to the crowd density and risk analysis control, 5 people/𝑚2 is the upper limit for standing

spaces. Therefore, the maximum capacity for humans is 20, and the object occupancy area

is 0.2 sqm.

Figure 8.6 Crowd density estimation.

The object mobility is defined as a categorical variable to describe how easily the

object can be moved. It has three levels: low, medium, and high. If an object is too large

or heavy to move, or it is not supposed to move much in the cab, its mobility is defined as

low. For example, the mobility of a wheelchair is low, because crowdedness should be

avoided when the disabled are in the cab.

The 3D-space consistency level is defined to describe the ability of the cab to make

room for new passengers, which can be regarded as the evaluation for conversion

 73

efficiency between the space and the capacity. The value of the consistency level is also

supposed to consider the object position. For example, if all the objects in the cab have

high mobility, it is easier to reach a high space utilization rate, because the positions of

passengers and other objects can be adjusted. But if an object with low mobility is placed

near the cab entrance, it will be inconvenient for passengers to enter. However, given that

the relationship among capacity, object mobility, and position is ambiguous to model, and

that the camera angle influences the object position obtained from Mask R-CNN, this study

uses the mobility factor to reflect the effect of object position on capacity. Table 8.4

presents part of the object occupancy information in this application.

Table 8.4 Object occupancy information

Object Mobility Occupancy Area Occupancy Percentage

Human High 0.2 sqm 5%

Backpack High 0.02 sqm 0.5%

Suitcase High 0.2 sqm 5%

Scooter Medium 0.214 sqm 6%

Box Medium 0.3 sqm 7.5%

Wheelchair Low 1 sqm 15%

Bicycle Low 0.5 sqm 12.5%

In this application, the mobility value 𝑀 corresponds to the predefined mobility

level:

𝑀 = {

1, level = high
2, level = medium
3, level = low

 (8.16)

 74

 The value of room consistency level is calculated as a function of the object occupancy

area 𝑆 and the object mobility 𝑀:

𝐿 =

∑ 𝑆𝑖𝑀𝑖
𝑁
𝑖=1

∑ 𝑆𝑖
𝑁
𝑖=1

 (8.17)

where 𝑁 is the number of detected objects.

The estimated capacity 𝐶 is calculated as the empty space divided by the room

consistency level:

𝐶 =

1

𝐿
∙ (𝑆cab −∑ 𝑆𝑖

𝑁

𝑖=1
) (8.18)

where 𝑆cab is the ground area of the cab.

8.5 Real-time Dispatching Optimization with Prioritized A* Search

The elevator dispatching problem falls into NP-complete problems and requires real-

time responses. In a building with 𝑛 elevators with 𝑝 hall calls, the number of possible

solutions is 𝑛𝑝 . During peak traffic, the dispatching system needs to make hall call

allocations in a short time with high quality. In this application, a modified prioritized A*

search algorithm is used to find the optimal allocations considering occupancy information

(Hamdi & Mulvaney, 2007).

 75

8.5.1 Prioritized A* Search Algorithm

Compared to the heuristics-based methods, the modified prioritized A* search is

more suitable for this context. Firstly, prevailing heuristics will not stop until the

convergence criteria are met. However, for elevator dispatching, hall call allocations

should be assigned within very few seconds after the hall call is registered. Secondly,

heuristics usually find a general high-quality solution and have a thorough search horizon.

However, dispatching information keeps changing all the time, and original allocations are

less meaningless since new hall calls are generated. Thus, it is advantageous if the

algorithm can limit the search horizon and interrupt the search horizon. These operations

are easy to implement for the A* search algorithm. Thirdly, the cost of each hall call

allocation is reflected in the objective function of the A* search algorithm, making it easier

to fit the occupancy information into the problem.

In the context of elevator dispatching, each level addresses one hall call assignment

in the A* search algorithm. When the number of hall calls exceeds the number of cabs, this

algorithm tends to assign all hall calls until it terminates. However, in this scenario, it is

more important that each cab has at least one hall call task. If the algorithm is interrupted

because of the limit of the computing time, there might be cabs with no hall call assignment.

In this regard, the prioritized A* search is proposed and prioritizes the search

sequence according to the elevator usage. This means the objective of the search is to

allocate a hall call task to a cab at each tree level. Because the search logic forces the

assignment of cabs to hall calls instead of the reverse, the search can be stopped when the

number of the searched tree levels is equal to the number of cabs.

 76

8.5.2 Dispatching Optimization Problem Formulation

To introduce the occupancy information into the problem formulation, the capacity

𝐶𝑛 and cab ground area 𝑆𝑛 are utilized, where 𝑛 refers to the cab sequence. Based on the

influence of the capacity on pick-up failure, the cost to perform a hall call task should be

smaller if a cab has more capacity, and vice versa. Thus, the occupancy factor 𝑜𝑛 is set as

the coefficient of the task cost, and it is calculated as below:

𝑜𝑛 = {
√
𝑆𝑛
𝐶𝑛
, 𝑖𝑓 𝐶𝑛 > 0.01𝑆𝑛

10, 𝑖𝑓 𝐶𝑛 ≤ 0.01𝑆𝑛

 (8.19)

It should be noticed that the occupancy factor 𝑜𝑛 should only be applied to the hall

call tasks that are performed before the cab changes the direction. Because the assumption

of the elevator operation logic is that the cab will not change its direction before it finishes

all the tasks in the original direction. If the hall call task is performed after the cab changes

the direction, passengers on the cab currently will exit the cab before the last task in this

direction, and the occupancy factor will be no longer effective to the task costs.

The passenger waiting time is chosen as the criterion to evaluate dispatching

performance. Correspondingly, the calculation of 𝑔 and ℎ are concerned with the waiting

time. Two look-up tables are prepared to calculate the value 𝑔 and ℎ. The first table records

the costs for each cab to answer a hall call as its first hall call from the current position,

taking the cab call commitments into account. And the second table records the costs of

trips between different pairs of hall calls for each cab, in which both hall call and cab call

tasks are considered. The cost estimation is based on the worst-case scenarios to ensure no

 77

overestimation is made on ℎ. Let 𝑑𝑛 be the cost to answer a hall call as its first hall call

task for the cab 𝑛, and 𝑠𝑛 be the cost of a trip between a pair of hall calls. Let 𝑝𝑖 be an

assigned hall call of the cab 𝑛, and 𝑃𝑛 be the number of assigned hall calls to it. Thus, the

first table represents 𝑑𝑛(𝑝1), referring to the cost for the cab 𝑛 to answer the hall call as

the first hall call task. The second table represents 𝑠𝑛(𝑝𝑖, 𝑝𝑖+1), meaning the cost for the

cab 𝑛 to answer the hall call 𝑝𝑖 followed by 𝑝𝑖+1. For each hall call 𝑚 performed before

the cab changes its direction, the cost 𝑔𝑛(𝑚) is given by:

 𝑔𝑛(1) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1), 𝑃𝑛 = 1 (8.20)

𝑔𝑛(𝑚) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1) +∑ 𝑜𝑛

1
3𝑖𝑠𝑛(𝑝𝑖, 𝑝𝑖+1)

𝑃𝑛−1

𝑖=1
, 𝑃𝑛 > 1,𝑚 = 1,… , 𝑃𝑛

(8.21)

On the other hand, if the hall call 𝑚 is performed after the cab 𝑛 changes the

direction, let 𝑣1 be the number of hall call tasks before it changes the direction, the cost

𝑔𝑛(𝑚) is given by:

 𝑔𝑛(1) = 𝑑𝑛(𝑝1), 𝑃𝑛 = 1 (8.22)

𝑔𝑛(𝑚) = 𝑜𝑛 ∗ 𝑑𝑛(𝑝1) + ∑ 𝑜𝑛

1

3𝑖𝑠𝑛(𝑝𝑖, 𝑝𝑖+1) + ∑ 𝑠𝑛(𝑝𝑗 , 𝑝𝑗+1)
𝑃𝑛−1
𝑗=𝑣1

𝑣1−1
𝑖=1 , 𝑃𝑛 >

1,𝑚 = 1,… , 𝑃𝑛

(8.23)

The value of 𝑔 at the current node is the sum of 𝑔𝑛 . It should be noted that the

occupancy influence on the cost evaluation of performing a task will decrease dramatically

as the cab receives more tasks. The same goes for the calculation of ℎ.

 78

Let 𝑄 be the number of hall calls to be assigned and 𝑞𝑗 is one of the hall calls, and 𝑘

be an unassigned hall call temporarily assigned at the current node. Usually, 𝑄 is chosen

as the number of the cabs in the system. The cost ℎ𝑛(𝑘), for the cab 𝑛 to answer a hall call

𝑞𝑗 as the 𝑘𝑡ℎ assigned hall call performed before the cab changes the direction, is given by:

 ℎ𝑛(𝑘) = 𝑜𝑛 ∗ min[𝑑𝑛(𝑞𝑗)] , 𝑃𝑛 = 0, 𝑗 = 1,… , 𝑄 (8.24)

ℎ𝑛(𝑘) = min [∑ 𝑔𝑛(𝑚) + 𝑜𝑛

1

3𝑃𝑛𝑠𝑛 (𝑝𝑃𝑛,𝑞𝑗)
𝑃𝑛
𝑚=1] , 𝑃𝑛 > 0, 𝑗 = 1,… , 𝑄

(8.25)

If this hall call is performed after the cab 𝑛 changes its direction, the cost ℎ𝑛(𝑘) is

given by:

 ℎ𝑛(𝑘) = min[𝑑𝑛(𝑞𝑗)] , 𝑃𝑛 = 0, 𝑗 = 1,… , 𝑄 (8.26)

 ℎ𝑛(𝑘) = min [∑ 𝑔𝑛(𝑚) + 𝑠𝑛 (𝑝𝑃𝑛,𝑞𝑗)
𝑃𝑛

𝑚=1
] , 𝑃𝑛 > 0, 𝑗 = 1,… , 𝑄 (8.27)

The value of ℎ(𝑘) is the smallest value from ℎ𝑛(𝑘), and the value of ℎ is the sum of

ℎ(𝑘). In the meantime, the value ℎ is used as the termination criterion. If ℎ = 0 at a node,

that node will be the goal state.

8.6 Simulation Experiments and System Validation

To validate the proposed smart dispatching with real-time occupancy awareness, the

simulation model for elevator dispatching is developed, and discrete-event simulation

experiments are conducted. To study the effects of dispatching with occupancy information

and simplify the simulation process, only capacity estimation is implemented, meaning that

 79

the existence of objects is known and recorded once they are generated, and no special

usage pattern is set during the experiments. Furthermore, objects in the experiments are

designed to have relatively large occupancy area but small weight.

8.6.1 Simulation Model Development

Simulation for elevator dispatching requires three components: one for building the

discrete-event simulation model, one for implementing the dispatching optimization

algorithm, and one for data communication between the simulation model and the

algorithm. In this study, Simio is the simulation software to model the behavior of elevator

cabs and passengers. MATLAB is used for computing work, including capacity estimation

and dispatching optimization. And Microsoft SQL Server is the data communication

platform. A user-defined Simio process is developed with C# based on the Simio API to

call MATLAB function from Simio, so that Simio can issue the command to run an

algorithm in MATLAB during the simulation.

Some assumptions are made based on the elevator usage in real life: (i). Passengers

cannot enter the cab if it does not have enough capacity or they make the cab overweighed.

(ii). If passengers cannot enter the cab when it arrives, they will repress the hall call button

after it leaves. (iii). If the cab is fully occupied, it still stops at the floor where its allocated

hall call tasks are registered. (iv). Passengers only enter the cab that goes towards their

destinations. (v). Passengers arrive one by one, instead of in a group. (vi). A cab will park

on the ground floor if it has no tasks. (vii). A cab will not change the direction until all the

hall call and cab call tasks are fulfilled in the original direction. (viii). The time to travel to

 80

the adjacent floor is fixed. (ix). The time is the same to perform either a hall call task, a cab

call task, or both on a floor.

In Simio, the basic object unit is the “entity”. Built-in entities like vehicles and

workers in the standard library have specific properties, processes, and functions to

perform certain tasks. Considering the complexity of the elevator operation logic, this study

develops the elevator and passenger objects from scratch to model their behaviors instead

of using built-in entities. Apart from this, some necessary state variables are defined as the

model states for the convenience of data communication.

8.6.1.1 Model State Variable Setup

To guarantee the accessibility of some key variables in the process of any entity

object, they are defined as the model state variables. These include the weight and capacity

of each elevator cab, arrays that record the allocated hall calls and the committed cab calls

of each cab, and an array recording the unassigned hall calls. Meanwhile, total passenger

waiting time, total passenger journey time, and the number of the served passengers are

defined.

8.6.1.2 Passenger Object Development

Passenger processes can be grouped according to whether the passenger enters a cab

or not. When the passenger is waiting, the process ensures that the passenger's information

is initialized, and the unassigned hall call array is updated. After the passenger enters the

cab, the process is to update the cab variables and check if they arrive at the destination

floor.

 81

The key process is shown in Figure 8.7. After a passenger is generated from the

source, related state variables are initialized, including traffic data like the birth floor and

destination floor and data for calculating the weight and cab capacity. The passenger is

then transferred to the waiting area of that floor, and the unassigned hall call array is

updated in the corresponding index. After the preparation, there are conditional statements

to check if any cab arrives at the floor and if the cab can be taken. If so, the passenger is

transferred into the cab. Otherwise, the unassigned hall call will be recorded again, and re-

dispatching might be implemented. After the passenger enters the cab, the array that

records the cab call commitments is updated. The passenger waits until the cab arrives at

the destination floor and is then transferred to the exit.

(a) The process before a passenger enters a cab

 82

(b) The process after a passenger enters a cab

Figure 8.7 The key process of passenger objects

8.6.1.3 Elevator Object Development

The difficulty of modeling elevator objects is to determine the destination of the next

task. Because the dispatching operation is dynamic and traffic data keeps changing,

assigned hall calls can be reassigned to another cab. Thus, it is necessary to update the next

task whenever it arrives at a floor and after it performs a task. In this study, elevator

processes are grouped as the floor-related process and the task-related process. The former

defines the operation logic when a cab arrives at a floor, while the latter is to find its next

task.

Figure 8.8(a) presents the process when a cab arrives at a floor. It first determines if

the next task is on this floor or if a hall call from this floor is assigned to the cab when it

approaches here. If not, update the next task in case of any change of hall call allocations.

If yes, determine the current direction and stop at this floor to drop off or pick up

passengers. Find out the task type and update the corresponding array. After the update,

determine its next task. Figure 8.8(b) shows the process to determine the next task after a

task is performed. Firstly, it checks if the cab has any task. If not, let the cab park on the

 83

ground floor. If yes, determine the current direction and if there is any unperformed task in

this direction, and these two steps help decide if the change of direction is needed. Then

the nearest task is found in that direction as the next task.

(a) The process of a cab arrives at a floor

(b) The process of determining the destination of the next task

Figure 8.8 The key process of elevator objects

 84

8.6.2 Experiment Design and Input Modelling

The experiments simulate elevator dispatching in a 10-floor building with two

elevator cabs at different traffic intensity levels and aim to analyze the effects of occupancy

information on dispatching performance. The facility view of the simulation model is

presented in Figure 8.9.

Figure 8.9 Discrete-event simulation in Simio

There are two groups of experiments. In the first group, variables that record

passenger properties include the weight and occupancy area of passengers and their

belongings, the passenger destination floor, and the passenger arrival rates. Table 8.5

presents the weight distribution of passengers and other possible objects, and each

combination is generated with a predefined probability during the simulation. The

 85

occupancy information of these objects can be seen in Table 8.4. The destination floor of

a passenger is randomly chosen with the same probability as all other floors. Five travel

intensity levels are set, including one scenario for light traffic, normal traffic, and heavy

traffic, and two scenarios for intense traffic. Each level has different passenger arrival rates

and experiment time, as shown in Table 8.6. Variables regarding elevator cabs are fixed.

The occupancy area of the cab ground is set as 4 𝑚2, and the load capacity is 1000 𝑘𝑔. The

time to go to an adjacent floor is 4 seconds. And the time to perform a task is 8 seconds.

Table 8.5 Weight distribution and the probability of passengers and belongings

Combination
Simio Expression

Probability
Human Weight Belonging Weight

Human Random.Triangular(30, 65, 90) 0 65%

Human +

Bicycle
Random.Triangular(30, 65, 90) Random.Triangular(7.5, 8.5, 10) 2%

Human +

Suitcase
Random.Triangular(45, 65, 90) Random.Triangular(20, 23, 30) 5%

Human +
Cardboard Box

Random.Triangular(45, 65, 90) Random.Triangular(8, 15, 25) 7%

Human +

Backpack
Random.Triangular(30, 65, 90) Random.Triangular(3, 5.5, 8) 20%

Human +

Wheelchair
Random.Triangular(50, 65, 90) Random.Triangular(30, 40, 50) 1%

Table 8.6 Passenger arrival rate settings at different traffic intensity levels

Traffic

Intensity

Intensity

Level

Simio Expression Average

Number

per Hour

Running

Time
[seconds]

Ground Floor

[minutes]

Upper Floor

[minutes]

I1 Light
Random.Exponential

(0.3)
Random.Exponential(1) 740 1800

I2 Normal
Random.Exponential

(0.2)
Random.Exponential(2/3) 1110 1200

I3 Heavy
Random.Exponential

(0.15)
Random.Exponential(0.5) 1480 900

I4 Intense
Random.Exponential

(0.12)
Random.Exponential(0.4) 1850 900

I5 Intense
Random.Exponential

(0.1)
Random.Exponential(1/3) 2220 900

 86

To further study the effectiveness of dispatching with occupancy information, the

second group of experiments are designed with scenarios where there are more large

objects, which is implemented by changing the probability of different scenarios in Table

8.5. The table with the new probability of different object combinations is presented Table

8.7. Also, four different levels of traffic intensities, 𝐼1, 𝐼2, 𝐼3, and 𝐼4, are tested in this group.

Table 8.7 The object generation table with new probabilities

Combination
Simio Expression

Probability
Human Weight Belonging Weight

Human Random.Triangular(30, 65, 90) 0 20%

Human +

Bicycle
Random.Triangular(30, 65, 90) Random.Triangular(7.5, 8.5, 10) 20%

Human +

Suitcase
Random.Triangular(45, 65, 90) Random.Triangular(20, 23, 30) 20%

Human +
Cardboard Box

Random.Triangular(45, 65, 90) Random.Triangular(8, 15, 25) 20%

Human +

Backpack
Random.Triangular(30, 65, 90) Random.Triangular(3, 5.5, 8) 15%

Human +

Wheelchair
Random.Triangular(50, 65, 90) Random.Triangular(30, 40, 50) 5%

The dispatching optimization problem is solved with the prioritized A* search

algorithm. Two dispatching optimization models are developed: one that represents the

traditional dispatching methods and only considers the estimated time of arrival as the

optimization criterion, and one representing the occupancy-aware dispatching proposed in

this paper. The former model has the same algorithm procedure as the latter, and it aims to

minimize the average waiting time, while the latter considers both the estimated time of

arrival and the cab capacity for dispatching decision evaluation.

 87

For performance measuring, four indicators are utilized: average waiting time,

average travel time, average journey time, and the number of served passengers within the

experiment time window. Because the algorithm is designed to minimize the average

waiting time, effects of using capacity information on the traffic time are necessary to

analyze. Moreover, capacity information conveys the space utilization of a cab, so the

quantity of service is another affected perspective.

8.6.3 Experiment Results and Analysis

The experiment results of the first group of experiments are recorded in Table 8.8,

showing the values of the four performance indicators in two dispatching optimization

models at different traffic intensity levels. The comparison charts of the four indicators

between the two models are also presented in Figure 8.10.

Table 8.8 Experiment results at different traffic intensity levels

Traffic

Intensity

Running

Time

[Seconds]

Whether Consider

Occupancy factor

Average Waiting

Time

[seconds]

Average

Travel Time

[seconds]

Average

Journey Time

[seconds]

Number of

Served

Passengers

I1 1800
No 59.93 39.90 99.83 358

Yes 55.29 41.37 96.66 358

I2 1200
No 63.36 43.76 107.12 351

Yes 70.45 42.83 113.28 364

I3 900
No 83.97 42.96 126.93 308

Yes 82.16 42.57 124.73 320

I4 900
No 92.97 44.85 137.82 366

Yes 87.52 41.85 129.37 358

I5 900
No 92.06 43.52 135.58 431

Yes 92.49 43.96 136.45 450

 88

(a) Average waiting time

(b) Average travel time

 89

(c) Average journey time

(d) The number of served passengers

Figure 8.10 Performance comparison on four indicators of the first group

Compared to the traditional dispatching method, the proposed occupancy-aware

dispatching fits the occupancy factor into the original objective function as the coefficient

of task costs. This change in function structure introduces the trade-off between the time

 90

costs and the space utilization of each cab. In Figure 8.10(a), occupancy-aware dispatching

has lower average waiting time in light, heavy, and intense traffic. When passenger arrival

rates are small, the constraints on capacity can always be satisfied, and pick-up failure will

not happen. This characteristic covers up the neglect of capacity in traditional dispatching.

In this case, the occupancy factor will influence decision making with cab capacity, and

the dispatching optimization model might miss the optimal decision. As passenger arrival

rates become larger, capacity is sometimes not enough to accommodate new passengers.

Those who fail to enter the cab will spend longer time waiting for the next cab. In this case,

the consideration of space utilization helps avoid pick-up failure by skipping the original

optimal decision. However, if the traffic intensity becomes too intense, cabs in the system

are nearly always fully occupied, and the occupancy factor coefficient on task costs will be

similar among different cabs, making the capacity information less effective. Figure

8.10(b) presents the comparison of the average travel time, where occupancy-aware

dispatching has better performance in normal, heavy, and intense traffic. The reduction of

travel time is because of the reduction in the probability of pick-up failure, which reduces

the number of unnecessary stops during a trip. Figure 8.10(c) is the comparison chart of

the average journey time, showing the overall effects of the occupancy factor on waiting

time and travel time. It suggests occupancy-aware dispatching improves the quality of

service in light, heavy, and intense traffic.

The results of the second group of experiments are shown in Table 8.9. The

comparison charts of the four indicators between the two models are also presented in

Figure 8.11.

 91

Table 8.9 Results of the second group experiments

Traffic

Intensity

Running

Time

[Seconds]

Whether Consider

Occupancy factor

Average Waiting

Time

[seconds]

Average

Travel Time

[seconds]

Average

Journey Time

[seconds]

Number of

Served

Passengers

I1 1800
No 86.05 42.98 129.03 357

Yes 83.34 41.42 124.76 360

I2 1200
No 108.70 43.83 152.53 296

Yes 90.33 43.63 133.96 302

I3 900
No 116.38 43.47 159.85 254

Yes 122.49 43.68 166.18 258

I4 900
No 113.02 40.31 153.34 303

Yes 116.31 41.03 157.34 299

(a) Average waiting time

(b) Average travel time

 92

(c) Average journey time

(d) The number of served passengers

Figure 8.11 Performance comparison on four indicators of the second group

In the second group of experiments, occupancy-aware dispatching has better

performance in the quality of service when the traffic intensity is light or normal but has

worse performance in heavy and intense traffic intensities. Also, the improvement in the

normal traffic intensity is significant. This is because when there are more large objects in

the cab, the cab is easily occupied. If the traffic intensity is heavy or intense, the passenger

 93

arrival rate is large, and the cab is fully occupied most of the time. In this case, the

occupancy factor has the same effects on both cabs. If the traffic intensity is light or normal,

the cab is more difficult to get fully occupied, but the capacity constraint is not always

satisfied. In such scenarios, occupancy-aware dispatching can effectively avoid pick-up

failure and reduce the average waiting time. From the perspective of the quantity of service,

occupancy-aware dispatching still has better performance in most traffic intensities: light,

normal, and heavy.

To summarize, occupancy-aware dispatching improves both the quality and quantity

of service to some extent. It improves the quantity of service if the passenger arrival rate is

not too small or too large. It also reduces the average waiting time and the average journey

time in most traffic intensities when cabs are sometimes fully occupied in the system.

8.7 Chapter Summary

The validation of the work in this study is through its application to occupancy-aware

elevator dispatching optimization, where occupancy awareness refers to cab capacity

estimation, usage pattern recognition, and traffic pattern recognition. Mask R-CNN is used

to determine the type and number of objects in the environment. Fuzzy logic and case-

based reasoning are used to recognize the current elevator usage and the traffic pattern,

based on which the dispatching optimization problem can be formulated differently.

Estimated capacity is used to represent the penalty cost of a task in the objective function.

A prioritized A* search optimization model with occupancy information is developed for

real-time dispatching. And the discrete-event simulation model is developed to validate

 94

and adjust the use of estimated capacity during dispatching. Experiments show that

occupancy-aware dispatching improves the quality and quantity in certain traffic intensities.

 95

CHAPTER 9. CONCLUSIONS

9.1 Contributions

To provide more useful information to the optimization model of a real-time

operational system, this thesis proposes to implement CNN-based visual data analysis and

intelligent reasoning to extract information from the environment and to deduct applicable

knowledge for optimization performance improvement. It enables the operational system

to understand the current situation from the image perspective by detection of object

existence and reasoning of the underlying information. Also, a closed-loop optimization

framework with discrete-event simulation is proposed for optimization model

enhancement, in which the functionalities of the simulation are extended to optimization

calibration and adaptability adjustment. The validation of this work is done with its

application to occupancy-aware elevator dispatching optimization.

In conclusion, the proposed optimization system broadens the information

acquisition source and possesses the reasoning ability to make full use of the attainable

information. This helps to find solutions of better quality when the decision-making

process is conducted in an environment that keeps changing. The use of discrete-event

simulation in this system also guarantees the robustness of optimization with situational

information by keeping adjusting their interaction.

9.2 Future Work

Future work of this study has three directions. The first direction is to study data

augmentation techniques that can generate new information. Because the number of useful

 96

data in practice is not always enough, and geometric transformation-based operations only

recombine the information, techniques that can generate new information from original

data should be studied. The second direction is model verification and validation. Model

verification and validation are important steps to guarantee the effectiveness of the work.

However, because of the lack of elevator operation data, reasoning-based situational

comprehension methods are not verified or validated in this work. The third direction is

the study of experimental design in discrete-event simulation. For the research that does

not study well-defined problems, the simulation scenarios should reflect the characteristics

of the domain problem. Thus, how to design the experiments to represent the problem

characteristics should be studied.

 97

REFERENCES

Al-Sharif, L. "Introduction to elevator group control (METE XI)." Lift Report 42, no. 2

(2016): 59-68.

Barney, Gina, and Lutfi Al-Sharif. Elevator traffic handbook: theory and practice.

Routledge, 2015.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H.

(1998). Branch-and-price: Column generation for solving huge integer

programs. Operations research, 46(3), 316-329.

Brachman, R. J., & Levesque, H. J. (2003). Knowledge representation and Reasoning.

Morgan Kaufmann.

Chan, W. L., Albert TP So, and K. C. Lam. "Dynamic zoning for intelligent supervisory

control." International Journal of Elevator Engineering 1 (1996): 47-59.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a knowledge representation?. AI

magazine, 14(1), 17-17.

De Smedt, K. (1988). Knowledge representation techniques in artificial intelligence: An

Overview. In Human-Computer Interaction (pp. 207-222). Springer, Berlin,

Heidelberg.

Dorigo, M., & Di Caro, G. (1999, July). Ant colony optimization: a new meta-heuristic.

In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat.

No. 99TH8406) (Vol. 2, pp. 1470-1477). IEEE.

Dubois, D., & Prade, H. (1996). What are fuzzy rules and how to use them. Fuzzy sets

and systems, 84(2), 169-185.

Fernandez, Joaquin R., and Pablo Cortes. "A survey of elevator group control systems for

vertical transportation: a look at recent literature." IEEE Control Systems

Magazine 35, no. 4 (2015): 38-55.

 98

Garey, Michael R., and David S. Johnson. Computers and intractability. Vol. 174. San

Francisco: freeman, 1979.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 580-587).

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial

optimization (pp. 2093-2229). Springer, Boston, MA.

Gomory, R. (1960). An algorithm for the mixed integer problem. RAND CORP SANTA

MONICA CA.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for

visual understanding: A review. Neurocomputing, 187, 27-48.

Hamdi, Muna, and D. J. Mulvaney. "Prioritised A* search in real-time elevator

dispatching." Control Engineering Practice 15, no. 2 (2007): 219-230.

Hansen, P., & Mladenović, N. (1999). An introduction to variable neighborhood search.

In Meta-heuristics (pp. 433-458). Springer, Boston, MA.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 770-778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 770-778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual

networks. In European conference on computer vision (pp. 630-645). Springer,

Cham.

Hertz, A., & Widmer, M. (2003). Guidelines for the use of meta-heuristics in

combinatorial optimization. European Journal of Operational Research, 151(2),

247-252.

 99

Informs, “What is O.R.?”, //www.informs.org/Explore/What-is-O.R.-Analytics/What-is-

O.R. (Accessed November 4, 2020).

JavaTPoint, “Techniques of knowledge representation”, www.javatpoint.com/ai-

techniques-of-knowledge-representation (Accessed November 6, 2020).

Kelley, Jr, J. E. (1960). The cutting-plane method for solving convex programs. Journal

of the society for Industrial and Applied Mathematics, 8(4), 703-712.

Kelley, Jr, J. E. (1960). The cutting-plane method for solving convex programs. Journal

of the society for Industrial and Applied Mathematics, 8(4), 703-712.

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization.

In Proceedings of ICNN'95-International Conference on Neural Networks (Vol.

4, pp. 1942-1948). IEEE.

Kim, Chang Bum, Kyoung A. Seong, Hyung Lee-Kwang, Jeong O. Kim, and Yong Bae

Lim. "A fuzzy approach to elevator group control system." IEEE Transactions on

systems, man, and cybernetics 25, no. 6 (1995): 985-990.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. science, 220(4598), 671-680.

Kolodner, J. (2014). Case-based reasoning. Morgan Kaufmann.

Korf, R. E. (1988). Search: A survey of recent results. In Exploring artificial

intelligence (pp. 197-237). Morgan Kaufmann.

Korf, Richard E. "Search: A survey of recent results." In Exploring artificial intelligence,

pp. 197-237. Morgan Kaufmann, 1988.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84-90.

Lebas, M. J. (1995). Performance measurement and performance

management. International journal of production economics, 41(1-3), 23-35.

https://www.informs.org/Explore/What-is-O.R.-Analytics/What-is-O.R
https://www.informs.org/Explore/What-is-O.R.-Analytics/What-is-O.R

 100

Levesque, H. J. (1986). Knowledge representation and reasoning. Annual review of

computer science, 1(1), 255-287.

Li, Zhonghua, Yunong Zhang, and Hongzhou Tan. "Particle swarm optimization for

dynamic sectoring control during peak traffic pattern." In International

Conference on Intelligent Computing, pp. 650-659. Springer, Berlin, Heidelberg,

2007.

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. "Microsoft coco: Common

objects in context." In European conference on computer vision, pp. 740-755.

Springer, Cham, 2014.

Little, J. D., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the

traveling salesman problem. Operations research, 11(6), 972-989.

Lu J.J., & Zhang, M. (2013) Heuristic Search. Encyclopedia of Systems Biology,

Springer, New York, 885-885.

Makridakis, S.G., Wheelwright, S.C. and McGee, V.E. (1983) Forecasting: Methods and

Applications. 2nd Edition, Wiley, New York.

OECD. Publishing. (2008). OECD glossary of statistical terms. Organisation for

Economic Co-operation and Development.

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM review, 33(1), 60-100.

Pawlak, Z. (1982). Rough sets. International journal of computer & information

sciences, 11(5), 341-356.

Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics &

Systems, 29(7), 661-688.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information

processing systems (pp. 91-99).

 101

Riesbeck, C. K., & Schank, R. C. (2013). Inside case-based reasoning. Psychology Press.

Sabu, M. K., & Raju, G. (2011, March). Rule induction using Rough Set Theory—An

application in agriculture. In 2011 International Conference on Computer,

Communication and Electrical Technology (ICCCET) (pp. 45-49). IEEE.

Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency (Vol. 24).

Springer Science & Business Media.

Shin, Hoo-Chang, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,

Jianhua Yao, Daniel Mollura, and Ronald M. Summers. "Deep convolutional

neural networks for computer-aided detection: CNN architectures, dataset

characteristics and transfer learning." IEEE transactions on medical imaging 35,

no. 5 (2016): 1285-1298.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for

deep learning. Journal of Big Data, 6(1), 60.

Siikonen, Marja-Liisa. “Elevator Group Control with Artificial Intelligence.” (1997).

Siikonen, Marja-Liisa. “Elevator Group Control with Artificial Intelligence.” (1997).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research, 15(1), 1929-1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings of the IEEE conference

on computer vision and pattern recognition (pp. 1-9).

Wang, F. S., & Chen, L. H. (2013). Heuristic optimization. Encyclopedia of Systems

Biology, Springer, New York, 885-885.

Watson, I., & Marir, F. (1994). Case-based reasoning: A review. Knowledge Engineering

Review, 9(4), 327-354.

 102

Wolsey, L. A. (1998). Integer programming (Vol. 52). John Wiley & Sons.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zadeh, L. A. (1975). Fuzzy logic and approximate reasoning. Synthese, 30(3-4), 407-428.

Zbigniew, S. (2004). An introduction to rough set theory and its applications‐A tutorial.

Proceedings of ICENCO’2004.

