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SUMMARY

In this research, 3D indoor state estimation for RFID-based motion-capture systems is

built. The state estimation is based on sensor fusion by combining RF signal with IMU

data. The estimation handles both LOS and multipath indoor environment. In this way,

state-space model for sensor fusion and nonlinear state estimation methods are built.

As for the results, in 3D motion with indoor multipath, RMS error before estimation is

71.99 cm, in which 34.99 cm in xy- plane and 62.92 cm along z- axis. After NLE estima-

tion using RF signal combined with IMU data, RMS error of 3D coordinates decreases to

31.90 cm, with 22.50 cm in xy- plane and 22.61 cm along z- axis, achieving a factor of 2

enhancement which is similar to the 2D estimation. In addition, using RF signal only ob-

tains similar estimation results to using both RF and IMU, i.e., 3D RMS error of 31.90 cm,

where 22.48 cm in xy- plane and 22.62 cm along z- axis. Hence, RF signal only is able to

achieve fine-scale RFID-based motion capture in 3D motion, in consistency with the con-

clusion arrived at in 2D estimation. In this way, RFID-based motion capture systems can

be simplified from embedding inertial sensors. EKF derives close results with 2 cm larger

RMS error. In addition, ToF based position sensor in tracking achieves comparable and

higher accuracy compared to RSS based position sensor based on the multipath simulation

model, enabling ToF to be applied in fine-scale motion capture and tracking.

In summary, fine-scale 3D indoor localization for RFID-based motion capture systems

is achieved. In addition, RF signal only is able to achieve fine-scale localization in both

LOS and multipath indoor environment based on sensor fusion estimation, which simplifies

RFID-based motion capture systems.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

RFID-Based motion capture has lots of applications, for instance, real-time tracking of

NFL players, obtaining not only location, acceleration, distance, but also orientation in

the motion [1] as shown in Figure 1.1. It can also be used in supply chain management

[2], tracking and managing people and personnel safety and security [3], and gaming and

motion capture for body movement [4].

Figure 1.1: RFID-Based Motion Capture Applications. Real-time Tracking of NFL players
[1], Supply Chain Management [2], People Safety and Security [3], Gaming and Motion
Capture [4].

Motion capture systems need centimeter-level accuracy with good spatial and temporal

resolution and hence state estimation is needed. RFID-based localization system may be
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affected by small scale fading and multi-path effects in the indoor environment.

1.1 Summary of Localization and Motion Capture Systems

Localization and motion capture techniques mainly include four categories: electromag-

netic measurement systems (EMS), optoelectronic measurement systems (OMS), ultra-

sonic localization systems (UMS) and inertial sensory systems (IMU) [5]. OMS includes

Active Badge [6] and indoor GPS (iGPS) [7], which depend on line-of-sight (LOS) and will

be interrupted when the markers are blocked or out of sight. UMS like Cricket Location

Support System [8] and Active Bat location system [9] require a great deal of infrastruc-

ture including ultrasonic sensors and scalability. IMU [5] consisting of an accelerometer,

gyroscope, and often a magnetometer [10] are most commonly used in short-range mea-

surements. In addition, an IMU could be used to determine position by performing a double

integration but will suffer from large integration drifts over even modest time intervals.

Table 1.1: Summary of Localization and Motion Capture Systems

Localization and Motion Capture Systems

EMS OMS UMS IMU
Large Volume LOS Lots of Short Range

LOS Infrastructure Integration Drift

NLOS

EMS solutions, especially RFID-based localization systems, have better detection range,

blockage transmission, and flexible layout compared to OMS, UMS and IMU. RFID sys-

tem provides large capture volume and no line-of-sight (NLOS) is necessary to find the

positions of the transponders. Therefore, EMS is suitable for large measurement volumes

and situations where occlusions are common. They can identify targets without visual-

ization within clutter and through walls [11]. Out of these characteristics, RFID enabled

robots not only to do human things, but you can also enable them to do superhuman things

like identifying behind walls in a scalable way [11]. Also, RFID can be designed as non-
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intrusive and does not have as many privacy concerns.

1.2 RFID-Based 3D Localization System

Various systems have been built for RFID-Based Indoor 3D Localization System. The first

RFID-based 3D localization scheme SpotON uses most classic trilateration method with

signal strength [12]. 3D-BATL utilizes four readers that are placed on the vertices of a

tetrahedron [13]. A fingerprint approximate approach integrates hundreds of readers on the

ceiling and floor as reference positions [14]. Holographic image is generated from phase

values measured by one antenna at multiple locations [15]. The height is derived by spatial

domain phase difference. The based hologram method of holographic image is originally

proposed in [16].

1.2.1 3D Space Beams from Phase Array Antenna

In mWaveLoc system, 4 × 8 element phased-array antenna generates beams in 3D space

for directional communication of millimeter-wave networks to achieve centimeter-level 3D

localization of Access Point (AP)-client distance estimation in LOS settings [17]. The

system is based on time-of-flight.

Figure 1.2: Scheme of mWaveLoc System. 4 × 8 Element Phased-Array Antenna Gener-
ates Beams in 3D Space Between Access Point and Client [17].
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1.2.2 Triangulation Based on Multiple Base Stations

WiTrack tracks the 3D motion of user without carrying device using radio reflected from

human body in occlusion scenarios based on time-of-flight [18]. WiTrack shows that 3D

localization can translate into an intersection of three ellipsoids, which uses directional

antennas: one for transmitting and three for receiving reflection off human body. A 3D real-

time indoor localization system using broadband nonlinear backscatter in passive devices

achieves centimeter-precision. The system utilizes one broadband transmitter antenna of

fundamental frequency and four receiver antennas radiating the second harmonic signals

[19].

Figure 1.3: Scheme of 3D Localization Based on Four Antennas: Tx1, Tx2, Tx3, Tx4 as
Base Stations for One Target Antenna Rx.

1.2.3 Anchor Sensor Nodes or Access Points

In umbrella, moving target nodes are attained using single reference node (access point)

in an anisotropic network. The distance between the reference node and target node is

calculated based on RSS. The umbrella projects virtual anchor nodes for better centroid
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localization as shown in Figure 1.4 [20].

Given a set of RFID tags and/or readers deployed as reference points at known locations

in a hexahedron, passive or active methods can be used for localization in as DeB [21]. In

the active scheme of DeB, a set of reference tags with known coordinates are placed on

two or more planes in any place of the space. The target reader activates passive tags with

power at different levels without using RSS or phase information as shown in Figure 1.4.

Figure 1.4: Left: Umbrella. Moving Target Nodes are Attained Using Single Reference
Node as well as Projected Virtual Nodes [20]. Right: DeB System. Reader with Unknown
Coordinates (x, y, z) Activate Reference Tags of Known Coordinates for Localization [21].

1.2.4 Indoor Localization Systems

Traditional solutions for location-based services use 802.11, visible light, or acoustics. In

addition, RF-Compass navigates robot, recognizes, and grabs objects by dividing space

into partitions based on RF signals [22]. Moreover, radio map for device free passive local-

ization uses WLAN signal strength [23]. Prototypes use “fusion” algorithms to combine

data from both radios and IMUs sometimes magnetometers, pressure sensors, and digital

compasses together. Also, indoor localization using smartphone has been studied in [24].

3D localization of unknown sensor using RSS from static and moving sensors with particle

filters is built in [25]. Inertial sensor based localization has been investigated in [26, 27,

28].
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1.3 Three Principal Techniques for Localization

Localization techniques may employ individually or in combination [29].

1.3.1 Triangulation, Scene Analysis, and Proximity

Triangulation, scene analysis, and proximity are the three principal techniques for auto-

matic location-sensing [29]. The three principal techniques are summarized in Table 1.2.

Table 1.2: Three Principal Techniques for Localization

Principal Division Subdivision Description Example

Techniques
Direct Direct distance Tape measure

Time-of Travelling time GPS, Active Bat [9]
Lateration -Flight Cricket [8]

Triangulation Attenuation Signal decreases Radio signal
with distance

Angulation - Determine position Phased antenna
using angle arrays

Static Scene Looked up features in predefined
Scene dataset to map MSR RADAR [30]
Analysis Differential Tracks the difference between LANDMARC [31]

Scene successive scenes
Detecting Physical Contact Pressure sensors

Proximity Monitoring Wireless Cellular Access Points Active Badge [6]

Observing Automatic ID Systems Highway E-Toll
systems

The triangulation location-sensing technique uses the geometric properties of triangles to

compute object locations, which includes Lateration that computes the position of an object

by measuring its distance from multiple reference positions and Angulation that uses pri-

marily angle or bearing measurements like direction of arrival (DOA) [32]. Two challenges

of time-of-flight in Lateration are: synchronization and indirect paths by reflections. Chal-

lenge for attenuation in Lateration is signal propagation issues such as reflection, refraction,

and multipath in environments with many obstructions [29].
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Scene analysis location-sensing technique uses features of a scene observed from a par-

ticular vantage point to draw conclusions about the location of the observer or the object in

the scene [29]. Therefore, the location of objects can be inferred using passive observation

and features that do not correspond to geometric angles or distances. At the same time,

changes to the environment that alters the perceived features of the scenes may necessitate

reconstruction of the predefined dataset or retrieval of an entirely new dataset [29].

A proximity location-sensing technique entails determining when an object is ”near”

a known location. An example of monitoring wireless cellular access points is a mobile

device in range of one or more access points in a wireless cellular network like Active

Badge [6, 29].

1.3.2 Sensor Fusion and HIMR System

RFID systems can also be fused with other sensors to enhance accuracy. RFID informa-

tion is combined with laser data in [33] to estimate the pose of the robot and localize tags.

RFID signal is fused with location estimations from a wideband rebounding signal com-

prising multiple frequencies to track the distance of tag and reconstruct position of tag in

the 3D space [11]. RFID RSS image is combined with camera and LIDAR to estimates the

3D location of the object [34]. Moreover, an RFID system is fused with an ultrasonic sensor

to partially remove the uncertainties of RFID systems by using distance data obtained from

ultrasonic sensors for mobile robot localization [35]. In addition, a wearable prototype that

fuses the drift-sensitive IMU with a RFID tag reader in [36] corrects positional errors. Ac-

tivity recognition system combining RFID and accelerometers shows that accuracy can be

significantly improved [37]. Higher level of combining RF signal with images is employed

in Camera-Radar RODNet [38].

HIMR combines RF signals with inertial sensor information in microwave range for

motion capture and localization, which provides better and finer accuracy in the range of

1mm-20mm in 1D and 2D motion as compared to other schemes [39].
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1.4 Reducing Multipath Effects in RFID-Based Indoor Localization

1.4.1 Decreasing Noise Level of Received Signal Strength (RSS)

Noise spectrum of stationary RSS is clustered mostly around DC level [40]. To decrease

the noise level of RSS from scattering, multipath, and delay spread of indoor propagation,

Hanning window with a sharp cutoff frequency response, finite impulse response low-pass

filter, and Savizky-Golay smoothing filters known as polynomial smoothing have been ap-

plied to decrease noise level of RSS.

1.4.2 Using Received Signal Phase (RSP) Difference in Replace of Received Signal Strength

To achieve better accuracy, robustness, and sensitivity for localization, phase difference in

replacement of RSS between two or more receiving antennas is used [41].

1.4.3 Frequency Modulated Continuous Wave (FMCW)

Frequency Modulated Continuous Wave (FMCW) transmits a narrowband signal, e.g., a

few KHz whose carrier frequency changes linearly with time. To identify the distance from

a reflector, FMWC compares the carrier frequency of the reflected signal to that of the

transmitted signal [18].

Figure 1.5: Scheme of Frequency Sweeping w.r.t. Time. The Frequency Difference at the
Receiver Can Be Transferred to ToF. Sweeping Frequencies Along x and y Axes are fx and
fy respectively [18].
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1.4.4 Heuristic Multi Frequency Continuous Wave (HMFCW)

In order to achieve accurate ranging, broad bandwidth can help tolerate multi-path phase

errors. Such trade-off has been exploited in FMCW radar and Ultra Wideband (UWB)

systems [42]. A Heuristic Multi Frequency Continuous Wave (HMFCW) ranging was pro-

posed in [43]. In order to tolerate large phase error while solving phase cycle integers cor-

rectly, optimal utilization of the broad bandwidth which is enabled by nonlinear backscatter

tag and reader design is applied [19].

Figure 1.6: Scheme of HMFCW. The Optimal Frequency Sequence is Sent to the Nonlinear
RFID Tag at Fundamental Frequency f0 in the Downlink. The Second Harmonic Signal
2f0 was Sent to Receiver in the Uplink [19].

1.5 State Estimation for Nonlinear Systems

Motion-capture installations need centimeter-level spatial positioning and precise temporal

resolution [29]. However, when the distance between the base station and the transponder

increases, noise increases and the quality of the signal decreases [5, 29, 44].

When the state of a system is estimated from noisy sensor information, state estimator

is employed to fuse together data from different sensors to produce an accurate estimate of

the true system state. When the system dynamics and observation models are linear, the

minimum mean squared error (MMSE) estimate may be computed using Kalman filter.
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Table 1.3: Summary of State Estimation Methods for Nonlinear Systems

1. Nonlinear Kalman Filter

Linearized Kalman Filter: Expand around nominal on priori guesses of system trajectory.

Extended Kalman Filter: First-order Taylor approximations of state and observation equa-
tions.

Higher-Order Approaches: More refined linearization for highly nonlinear systems.

2. Unscented Kalman Filter

Nonlinear Transformation: Mean and Variance: Unscented transformation approximation.

3. Nonlinear Least-Squares Estimation

Gauss-Newton: Q-quadratically convergent to the root of nonlinear equation with
good start.

Levenberg-Marquardt: Interpolate Gauss-Newton and Gradient Descent to explore start
value.

4. Partical Filter:

Bayesian state estimation based on conditional relative likelihood of each particle (state

vector) with preknown pdf of measurement noise.

However, in most applications of interest, the system dynamics and observation equa-

tions are nonlinear [45]. State estimators for nonlinear systems are derived based on poly-

nomial approximations with multi-dimensional interpolation formula [46].

The optimal solution to the nonlinear filtering problem requires maintaining a complete

description of the conditional probability density. Unfortunately this exact description re-

quires a potentially unbounded number of parameters (such as moments) and a number of

suboptimal approximations have been proposed [47] as summarized in Table 1.3.

1.5.1 Linearized Kalman Filter

More specifically, linearized Kalman filter uses Taylor series to expand state and measure-

ment equations around a nominal control, state, nominal output, and nominal noise values.

These nominal values are based on a priori guesses of the system trajectory.
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1.5.2 Extended Kalman Filter

Since nominal state trajectory is not straightforward, the most widely used filter, the Ex-

tended Kalman Filter (EKF) uses sort of bootstrap method: linearize the nonlinear system

around Kalman filter estimate and Kalman filter estimate is based on the linearized system

[48]. Each linear step is replaced by its linearized equivalent [45]. The EKF is also based

on first-order Taylor approximations of state transition and observation equations [46].

1.5.3 Higher-Order Approaches

More refined linearization techniques including iterated and second-order EKF are used to

reduce the linearization error in EKF for highly nonlinear systems.

1.5.4 Unscented Kalman Filter

Unscented Kalman filter (UKF) is an extension of Kalman Filter that reduces the lineariza-

tion errors of the EKF, using unscented transformation that approximates mean and vari-

ance change in a nonlinear transformation [48].

1.5.5 Nonlinear Least-Squares Estimation

Least square methods including weighted least square, recursive least square estimations,

and Wiener filtering have been applied to state estimation [48]. Nonlinear least-squares

estimation (NLE) proposed in [49] is applied to nonlinear state estimation in a 2D motion.

NLE is developed from the perspective of nonlinear least-squares optimization and the

map-inversion philosophy based on discrete-time dynamics of the system [49].

Nonlinear equations can be solved using Newton’s method based algorithms called

Newton-like or quasi-Newton [50]. Newton’s method is Q-quadratically convergent for

most problems, although it will not necessrily achieve global convergence [50]. The Levenberg-

Marquardt method interpolates between the Gauss–Newton algorithm and the gradient de-

scent method, shares with the gradient methods their ability to converge from an initial

11



guess which may be outside the region of convergence and also shared with the Taylor

series methods the ability to converge rapidly in the vicinity of the converged value [51].

1.5.6 Particle Filter

The Particle filter is a probability-based estimator derived based on Bayesian approach.

State vectors called particles are generated randomly. At each time stamp, particles are

propagated to the next time step. Based on measurement, conditional relative likelihood of

each particle is evaluated based on pdf of measurement noise, which increases the compu-

tational effort of Particle filtering [48].
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CHAPTER 2

RFID LOCALIZATION SYSTEM MODEL

In this chapter, we built a model for the received backscatter signals for semi-passive

switched modulator and semi-active tunnel diode modulator to be used in simulation. The

model is built based on the link budgets for backscatter-radio and RFID systems [52].

2.1 Localization System Model Based on Semi-Passive Switched Modulator Tag

According to the Friis transmission equation, power received by a reader from another tag

in free space is

PR(r) =
PTGTGRG

2
tλ

4X2M

(4πr)4
(2.1)

where PT is reader’s transmitted power, GT is reader’s transmitter antenna gain, GR is

reader’s receiver antenna gain, Gt is tag’s antenna gain, λ is carrier frequency wavelength,

X is the polarization mismatch factor, M is tag’s modulation factor, and r is the reader-tag

separation in radial distance. Additional parameters such as on-object antenna and path

blockages have been omitted, but can be re-introduced for more complicated studies [52].

In addition to the signal model, the round-trip phase of the channel must also be cal-

culated. The reader receives a complex baseband signal after demodulation that can be

characterized as [39]

S(r) = H(r) exp

(
−j
[

4πr

λ
+ ψ0

])
= I + jQ (2.2)

where ψ0 is the accumulated phase offset, which is assumed to be a constant in this simula-

tion. I is the in-phase channel and Q is the quadrature-phase channel of the back-scattered
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signal. Therefore, the magnitude and phase of the measured signal can be calculated as

H(r) =
√
I2 +Q2 (2.3)

ψ =
4πr

λ
=

 tan−1
(
Q
I

)
, I ≥ 0

π + tan−1
(
Q
I

)
, I < 0

(2.4)

Furthermore, the signal amplitude H(r) and received power PR(r) are related by

PR(r) =
H2(r)

2R
(2.5)

where R is the RF impedance of the receiver hardware. Hence, the transformation from

signal amplitude H(r) to reader-tag separation r is

r = 4

√
2PTGTGRG2

tλ
4X2MR

(4π)4H(r)2
(2.6)

Equation 2.6 allows an estimate of tag position based on signal strength alone. Additionally,

phase difference provides an estimate of tag velocity, where ∆ψ is phase difference over

time interval ∆t

ṙ =
λ

4π

∆ψ

∆t
(2.7)
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2.2 Localization System Model Based on Semi-Active Tunnel Diode Modulator Tag

For tunnel diode modulator tag, the magnitude and phase of received signal relates to nor-

mal tag as

Ht(r) =
H(r)

|H(r)|
H(r) (2.8)

ψt = ψ =
4πr

λ
(2.9)

Power received by reader from the tunnelling tag backward in free space is

Pt(r) =
PTG

′
TG
′
tλ

2X ′

(4πr)2
(2.10)

where PT is reader’s transmitted power, G′T is reader’s transmitter antenna gain, G′t is

tunnelling tag’s antenna gain, λ is carrier frequency wavelength, X ′ is the polarization

mismatch factor, and r is the reader-tag separation.

Out of saturation at the diode, power received by tunnelling tag from a reader in the

downlink in free space is

PR(r) =
PTG

′
TG
′
tλ

2X ′M

(4πr)2
(2.11)

Regardless of incident power, reflected power starts at Ptl. Hence, reader received

power is inversely proportional to second order of distance r. The modulation factor M =

1
4
|Γ1 − Γ2|2 can be greater than 1 [53]. A quantum tunneling-based RFID tag achieves

free-space long-range backscattering communication links as wide as 1.2 km.

The reader receives a complex baseband signal after demodulation that can be charac-
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terized as [39]

S(r) = Ht(r) exp

(
−j
[

4πr

λ
+ ψ0

])
= I + jQ (2.12)

where ψ0 is the accumulated phase offset, which is assumed to be a constant in this simula-

tion. I is the in-phase channel and Q is the quadrature-phase channel of the back-scattered

signal. Hence, the transformation from signal amplitude Ht(r) to reader-tag separation r is

r =

√
2PTG′TG

′
tλ

2X ′RM

4πHt(r)
(2.13)

Equation 2.13 allows an estimate of tag position based on signal strength alone.

In the experiment of 3D motion in Figure 6.1 and Figure 6.2, to avoid interference

among readers, four readers operate independently on four different frequencies 5.80 GHz,

5.82 GHz, 5.83 GHz, and 5.85 GHz in 3D motion. Then received signal amplitudes and

phases from four readers are identified based on Equation 2.13 and Equation 2.7 to derive

radial distances and velocities. Afterwards, the derived radial distances and velocities are

input into estimation algorithm to get position and velocity of the tag as described in the

following chapters.

2.3 Noise Distributions for Magnitude and Phase of Received Baseband Signal

In this section, we model the noise distribution for the received backscatter signals to be

used in simulation. Assume that the thermal noise in channels I and Q is independent,

identically-distributed (i.i.d.) white Gaussian noise with variance σ2 [39]. Then the pdf of

the measured signal magnitude follows Rician distribution [54]

fH(x) =
x

σ2
exp

(
−(x2 +H2)

2σ2

)
I0

(
xH

σ2

)
(2.14)
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Rician factor K proposed in [54] indicates the ratio of power in dominant multi-path to the

power in remaining nonspecular multi-path

K =
H2

2σ2
(2.15)

In simulation, K−factor can be calculated from signal amplitude H(r) based on the tag-

reader distance r and σ. At low SNR and small K value, fH(x) follows Rayleigh distribu-

tion. When K � 1 (H � σ) with high SNR, I0 can be approximated as

I0

(
xH

σ2

)
≈
√

σ2

2πxH
exp

(
xH

σ2

)
(2.16)

Therefore, fH is approximated as Gaussian distribution [54]

fH(x) ≈
√

x

2πHσ2
exp

(
−(x−

√
σ2 +H2)2

2σ2

)
(2.17)

≈ 1

σ
√

(2π)
exp

(
−(x−H)2

2σ2

)
(2.18)

Different from previous derivation [39], a transformation of lower complexity to the log

domain [55] is proposed

fQ
I
(I,Q) ≈

µQ +N(0, σ2
Q)

µI +N(0, σ2
I )

=
µQ
µI

1 +
N(0,σ2

Q)

µQ

1 +
N(0,σ2

I )

µI

(2.19)
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Since loge(1 + δ) = δ − δ2

2
+ δ3

3
+ · · · and arctan(x) ≈ π

4
x, pdf of phase distribution can

be characterized as

fψ(I,Q) =
π

4
e
loge

(
fQ
I
(I,Q)

)
(2.20)

≈ π

4
e
loge

(
µQ
µI

)
+
N(0, σ2

Q)

µQ
− N(0, σ2

I )

µI (2.21)

=
π

4
e

loge

(
µQ
µI

)
+N

(
0,
σ2
Q

µ2
Q

+
σ2
I

µ2
I

)
(2.22)

=
π

4

µQ
µI
e

N

(
0,
σ2
Q

µ2
Q

+
σ2
I

µ2
I

)
≈ ψe

N

(
0,
σ2
Q

µ2
Q

+
σ2
I

µ2
I

)
(2.23)

Therefore, fψ is approximated as phase multiplied by exponential order of Gaussian distri-

bution.

In simulation, received signal amplitude H(r) and phase ψ are generated following

above distributions. The noise distributions for magnitude and phase are on the basis of the

thermal channel noise assumption. If the dominant channel noise of RFID system is not

thermal, simulation results may deviate from measurements.

2.4 Noise Distributions for Baseband Signal on Tunnel Diode Modulator Tag in 3D

Motion

Out of the magnitude change, the reader receives a complex baseband signal after demod-

ulation that can be characterized as [39]

S(r) = Ht(r) exp

(
−j
[

4πr

λ
+ ψ0

])
= I + jQ (2.24)

where ψ0 is the accumulated phase offset, which is assumed to be a constant in this simula-

tion. I is the in-phase channel and Q is the quadrature-phase channel of the back-scattered

signal.
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After sending to and reflecting back from the tunnel diode modulator tag in the 3D

localization, two transmissions are applied in power as

S(r)2 =

[
Ht(r) exp

(
−j
[

4πr

λ
+ ψ0

])]2

= H2
t (r) exp

(
−2j

[
4πr

λ
+ ψ0

])
(2.25)

Then the pdf of the quared measured signal magnitude follows square of Rician distribution

[54]

f 2
H(x) =

[
x

σ2
exp

(
−(x2 +H2)

2σ2

)
I0

(
xH

σ2

)]2

(2.26)

Hence the square root of measured magnitude follows Rician distribution. The K factor of

Rician distribution is derived in subsection 2.4.1.

2.4.1 K Factor Calculation Based on Moments Method

The moments of Rician distribution, expressed in terms of σ2 and K are given by [56]

µn = E[Rn(t)] = (σ2)n/2Γ(n/2 + 1) exp(−K)1F1(n/2 + 1; 1;K) (2.27)

where1F1(; ; ; ) is the confluent hypergeometric function, and Γ() is the gamma function

[57]. Then

f2,4(K) =
µmn
µnm

=

[
(K + 1)2

K2 + 4K + 2

]2

(2.28)

One of the root is always negative. Since K ≥ 0, yielding a unique nonnegative solution

for K̂2,4 [58, 59, 60] as

K̂2,4 =
−2µ̂2

2 + µ̂4 − µ̂2

√
2µ̂2

2 − µ̂4

µ̂2
2 − µ̂4

(2.29)
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Calculated K values from square root of magnitude of the four readers in the motion is

shown in Figure A.1. As shown in the figure, K factors from different readers follow the

same trend in the motion. In motion, K value is around 10 - 40. In the static states, K

values is larger than 80.

2.5 Multipath Effects on Magnitude and Phase of Received Baseband Signal

Moreover, power received by a reader from another tag in multipath propagation is

PR(r) =
PTGTGRG

2
tλ

4X2M

(4π)4

∣∣∣∣∣ 1

r0

exp(−j 2πr0

λ
) +

N∑
i=1

Γi
1

ri
exp(−j 2πri

λ
)

∣∣∣∣∣
4

(2.30)

where r0 is the length of the direct path, ri, i = 1, ..., N is the length of ith reflection path,

N is the total number of reflection paths, and Γi is the complex reflection coefficient for

the ith reflection path [61]. For one reflection with N = 1, Equation 7.1 gives

PR(r) =
PTGTGRG

2
tλ

4X2M

(4π)4

∣∣∣∣ 1

r0

exp(−j 2πr0

λ
) + Γ1

1

r1

exp(−j 2πr1

λ
)

∣∣∣∣4
=
PTGTGRG

2
tλ

4X2M(A2 +B2)

(4π)4
exp(∓j(8πr0

λ
+ 4 arctanφ))

=
PTGTGRG

2
tλ

4X2M(A2 +B2)

(4π)4
exp(∓j(8πr0

λ
+ 4 arctan(

sin 2π∆r
λ

r1
Γ1r0

+ cos 2π∆r
λ

)))

(2.31)

where A = Γ1

r1
sin 2π∆r

λ
, B = 1

r0
+ Γ1

r1
cos 2π∆r

λ
, φ = arctan(A

B
) = arctan(

sin 2π∆r
λ

r1
Γ1r0

+cos 2π∆r
λ

).

The detailed derivations are in Appendix B.

2.5.1 Power Received by a Reader from Tunnel Diode Modulator Tag in Multipath Propagation

Power received by a reader from tunnel diode modulator tag in multipath propagation is

PR(r) =
PTG

′
TG
′
tλ

2X ′M

(4π)2

∣∣∣∣∣ 1

r0

exp(−j 2πr0

λ
) +

N∑
i=1

Γi
1

ri
exp(−j 2πri

λ
)

∣∣∣∣∣
2

(2.32)
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Similarly, r0 is the length of the direct path, ri, i = 1, ..., N is the length of ith reflection

path, N is the total number of reflection paths, and Γi is the complex reflection coefficient

for the ith reflection path [61]. In case of one reflection, the phase can also be derived as in

Equation 2.31.

2.5.2 Multipath Effects on Magnitude of Received Baseband Signal

As shown in Equation 2.31, since A2 + B2 = (Γ1

r1
)2 + ( 1

r0
+ Γ!

r1
cos 2π∆r

λ
)2 is multiplied to

the magnitude. Then the effects of multipath on magnitude decreases with the increase of

length of multipath. In addition, it is of sinusoidal waves in continuous motions.

2.5.3 Multipath Effects on Phase of Received Baseband Signal

In Equation 2.31, if r1
r0

Γ1 � cos 2π∆r
λ

, then 2πr0
λ

+ 2 arctan(
sin 2π∆r

λ
r1
r0

Γ1+cos 2π∆r
λ

) = 2π(r0+∆r)
λ

=

2πr1
λ

. Otherwise, the phase angle is smaller than 2πr1
λ

. If ∆r changes continuously, phase

also changes sinusoidal accordingly.
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CHAPTER 3

SIMULATION VERIFICATION ON 1D AND 2D LINE-OF-SIGHT (LOS) DATA

In this chapter, sample parameters referring to system in [39] are chosen in the simulation

for semi-passive switched modulator tag for 1D and 2D motions. Based on model and noise

distribution in chapter 2 and section 2.3, Received Signal Strength (RSS) and Received

Signal Phase (RSP) of tag from given reader are simulated. The parameters of the simulated

reader are shown in Table 3.1: 1

Table 3.1: Simulation Template with Sample Parameters in 2D Motion

PT Reader’s Transmitted Power 1W

GT Reader’s Transmitter Antenna Gain 9.5 dBi

GR Reader’s Receiver Antenna Gain 9.5 dBi

Gt Tag’s Antenna Gain 9.5 dBi

X Polarization Mismatch Between Reader’s and Tag’s Antenna 0.5

M Load Modulation Factor of the Tag 0.25

R Input Impedance of the System 15 Ω

f Carrier Frequency 5.8 GHz

σ Standard Deviation of Added Noise 2×10−4

3.1 1D Simulation Verification

To verify the value and noise distribution of simulated states, states of 1D motion based

on the experiment in [62] are simulated. More specifically, the tag initially located at a

distance of 0.99 m from the reader. Starting from rest, the tag accelerated at 7.35 m/s2

to attain a velocity of 1.2 m/s and keeps the velocity for 355 ms before decelerating at a

constant rate of -7.35 m/s2 to static, travelling a total distance of 0.64 m away from the
1Simulation Model is in: https://github.com/qq3575022/RFID_SimulationModel
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Figure 3.1: Simulation Verification of Position and Velocity in 1D Motion. Upper: Po-
sition from Measurement, Simulated Position based on Signal Magnitude, and Ground
Truth States. Lower: Velocity from Measurement, Simulated Velocity based on Phase, and
Ground Truth States.

reader. The input of the simulation model are parameters of the reader in the Table 3.1

and commanded 1D motion described above. The output of the model are RSS and RSP

with channel noise received by the reader from tag in the 1D motion based on models in

chapter 2 and section 2.3.

Simulation outputs including RSS and RSP with added noise are applied to derive po-

sition and velocity based on equations Equation 2.6 and Equation 2.7. Simulated position

and velocity as well as ground truth states are shown and compared in Figure 3.1.

As shown in Figure 3.1, simulated position and velocity states are of the same shape and

similar noise level as measurements [39]. In addition, both of simulation and measurement

fit ground truth states. Thus, the physical-based simulator appears to faithfully reproduce
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Table 3.2: Statistics of Error for Simulation and Measurement Position States in 1D Motion

Position Error Mean [m] Variance [m2] Standard Deviation [m]
Measurement -0.0024 0.0009 0.0295
Simulation 0.0035 0.0009 0.0306

the behaviors of the measurements. In some instances, the physical simulator could be used

to test algorithms faster and in a wider variety of scenarios compared to measurements-

only tests. To make a more detailed comparison, noises of position states in simulation and

measurement deviated from ground truth are shown in Table 3.2.

Statistics of e, i.e. Mean= E(e) = e, Variance=
∑N
t=1(et−E(e))2

N
, and standard deviation,

the root square of variance, are shown in Table 3.2. It can be inferred Table 3.2 that simu-

lated error is of similar distribution and variance to that of measurement error on position

states in 1D motion [39].

3.2 2D Simulation Verification

To verify the simulation for nonlinear states, 2D motion based on the experiment in [39]

is simulated. The motion of the apparatus is commanded by a reference trajectory for

angular position in [39]. Rotation of the beam will occur in the horizontal plane. Physical

parameters of the apparatus are characterized by α, β [39]. More specifically, starting at

time tstart = 0.12 s, a positive acceleration lasting tacc = 0.58 s is applied. After a cruise

time of tcrz = 0.28 s, a negative acceleration is applied. Both acceleration occur on a time

interval of length tacc, with constant accelerations equal to ψ̈ = ±12.6 rad/s2. The distance

traveled, in radians, is 2π. From measurement, the radius of the beam is 0.31 m and the

rotation is around center at (1.95 m, 1.15 m). Please refer to [39] for more parameters.

The setup of the two-dimensional motion is in Figure 3.2. Radial distances r1, r2, and

r3 are distances from the tag to three reader pylons: Reader #1 (Rx #1), Reader #2 (Rx

#2), and Reader #3 (Rx #3), whose locations are in Table 3.3. The origin is O and the

tag is rotating counter-clockwise in the plane. The initial position of the tag has body axis
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xB pointing along y axis. The offset angle for motion in [39] is π/2 from x axis for both

x and y coordinates as shown in Figure 3.2. Similar to 1D simulation, parameters of the 
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Figure 3.2: Two-dimensional Motion Setup. The Three 5.8 GHz RFID Reader Pylons are
Installed at Known Locations with Fixed Coordinates as Shown in Table 3.3 Whose Origin
is Defined by O. An RF Tag Considered as a Rigid Body with Its Own Body Axes xB and
yB Moves Around (1.95 m, 1.15 m) Counter-Clockwise in the Plane. The Radial Distance
to the Tag from Each Pylon is Defined by r1, r2 and r3 Respectively.

reader in ?? and commanded 2D motion coordinates (x, y) described above are input into

the simulation model, and the output of the model is RSS and RSP from three readers at

different locations. The locations of three readers are listed in Table 3.3.

Based on simulated RSS and RSP from three readers, radial distances r1 r2 r3 and radial

velocities ṙ1 ṙ2 ṙ3 from the moving tag to three readers can be derived based on Equation 2.6

and Equation 2.7, which are shown in Figure 3.3 and Figure 3.4. In this way, simulated
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Table 3.3: Locations of Three Readers in 2D Motion

Reader Index Coordinates Location [m]
Reader #1 (x1, y1) (-0.05, 1.5)
Reader #2 (x2, y2) (2, 3)
Reader #3 (x3, y3) (2.7, 0.05)

radial distances r1 r2 r3 and velocities ṙ1 ṙ2 ṙ3 can be compared with measurement states in

[39] and ground truth states for verification. Simulation and comparison results of distances

and velocities are shown in Figure 3.3 and Figure 3.4. It can be inferred from Figure 3.3
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Figure 3.3: Simulation Verification of Radial Distances in 2D Motion: Comparison of
Radial Distances r1 r2 r3 Among Measurement, Simulation, and Ground Truth States.

and Figure 3.4 that simulated radial distances and radial velocities are of the same shape

as measurement states. In addition, both of simulation and measurement states fit ground

truth states generated from description of 2D motion [39].

To make a more detailed comparison, noises of radial position r1, r2, and r3 in simula-
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Figure 3.4: Simulation Verification of Radial Velocity in 2D Motion: Comparison of Radial
Velocities ṙ1 ṙ2 ṙ3 Among Measurement, Simulation, and Ground Truth States.

tion and measurement from ground truth states are shown in Table 3.4, from which it can

be inferred that simulated errors are of similar variance to that of measurement errors on

radial position in 2D motion.

Table 3.4: Statistics of Error for Simulation and Measurement Radial Distances in 2D
Motion

Radial Distance Error Mean [m] Variance [m2] Standard Deviation [m]
r1 Measurement -0.0062 0.0009 0.0303

Simulation 0.0016 0.0006 0.0253
r2 Measurement 0.0195 0.0010 0.0321

Simulation -0.0001 0.0001 0.0102
r3 Measurement 0.0097 0.0007 0.0262

Simulation 0.0023 0.0003 0.0185

27



CHAPTER 4

DESIGN OF 2D NONLINEAR LEAST-SQUARES ESTIMATION

In this chapter, moving forward from linear state estimation in 1D motion, nonlinear state-

space model and nonlinear state estimation for real-time RFID-based 2D localization are

built. Nonlinear state-space model is built with different state vectors and sensor outputs.

Nonlinear Least-Squares Estimation with stacked measurement vector is applied to non-

linear state estimation. Gauss-Newton and Levenberg-Marquardt methods are designed

for estimation implementation. Further, hypothesis of the positive correlation between the

stack length and sensor noise level in Nonlinear Least-Squares Estimation is proposed. 1

4.1 2D State-Space Model

In this section, nonlinear state-space model of the 2D motion using different state vectors

and sensor outputs is built. The tagged object is modeled as a rigid body experiencing

2D motion whose motion in the plane is governed by Newton’s Law [39]. The motion

equations of the tag are in the form

mẍ =Fx (4.1)

mÿ =Fy (4.2)

Izψ̈ =Tz (4.3)

where m is the mass of the rigid body, ẍ and ÿ are the accelerations along x and y axes.

ψ̈ is the angular acceleration. Fx and Fy are the resultant forces applied to the mass along

x and y axes. Iz and Tz are the inertial moment and resultant torque around z axis. The

force/mass and torque/moment ratios determine the 2D motion of the tag. The explained

1NLE is in: https://github.com/qq3575022/Nonlinear_Least_Square_Estimation
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motion profiles are unknowns in the experiment. In addition, unlike estimators in [39],

initial conditions are also unknown in the estimation.

The nonlinear state-space model describing the 2D motion with different state vectors

and sensor outputs is shown in Equation 4.4 - Equation 4.5

Ẋ =AX +Bw (4.4)

Y =h(X) + v (4.5)

where X is the fixed-length state vector composed of position, velocity, and acceleration

states along x, y axes without and with orientation and angular velocity along z axis, which

is shown in Equation 4.6 and Equation 4.9 respectively. Y denotes the vector of noisy

sensor outputs to estimate the state vector. Six sets of sensor outputs Y : {r}, {r, ṙ} for

outputs without acceleration, orientation, or angular velocity are shown in Equation 4.7;

{r, θz, ax, ay}, {r, θz, ωz, ax, ay}, {r, ṙ, θz, ax, ay}, {r, ṙ, θz, ωz, ax, ay} for outputs

with acceleration, orientation, and angular velocity are shown in Equation 4.10. Vector

h(X) describes the nonlinear transformation between state vector and the noise-free sensor

outputs vector. w is the disturbance vector which accounts for the forces ( Ḟx
m
, Ḟy
m
, Ṫz
Iz

) and v

is the vector of sensor noises.

For state vector without orientation or angular velocity, the state vector X and output

vector Y are composed of

X =

[
x ẋ ẍ y ẏ ÿ

]′
(4.6)

Y =

[
r1 ṙ1 r2 ṙ2 r3 ṙ3

]′
(4.7)

Output vector Y in Equation 4.7 corresponds to sensor outputs of {r}, {r, ṙ}. In Equa-

tion 4.7, ri, ṙi are radial distances and radial velocities measured from reader i. If only

radial distances are used, ṙi, ∀i = 1, 2, 3 are removed from Equation 4.7. Corresponding
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coefficient matrices A, B in the state-space model are

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


, B =



0 0

0 0

1 0

0 0

0 0

0 1


(4.8)

For state vector with orientation and angular velocity, the state and output vectors X , Y are

composed of

X =

[
x ẋ ẍ y ẏ ÿ ψ ψ̇

]′
(4.9)

Y =

[
r1 ṙ1 r2 ṙ2 r3 ṙ3 θz ωz ax ay

]′
(4.10)

Output vector Y in Equation 4.10 corresponds to sensor outputs of {r, θz, ax, ay}, {r, θz,

ωz, ax, ay}, {r, ṙ, θz, ax, ay}, {r, ṙ, θz, ωz, ax, ay}. Similarly, ri, ṙi are radial distances

and radial velocities measured from reader i. θz is the orientation angle. ωz is the angular

velocity. ax and ay are accelerations along xB and yB axes in Equation 4.26 and Equa-

tion 4.27. More specifically, detailed descriptions can be inferred in Equation 9.10 and

Equation 9.11. If angular velocity is not used, then ωz is removed from Equation 4.10. If

radial velocities are not used, ṙi where i = 1, 2, 3 in the four sets of sensor outputs are

30



removed from Equation 4.10. Coefficient matrices A, B in the state-space model become

A =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


, B =



0 0

0 0

1 0

0 0

0 0

0 1

0 0

0 0


(4.11)

Suppose that values of the continuous signal are sampled at the sampling instants k with

sampling period T . Corresponding discrete-time state-space model of the tag in the 2D

motion is shown in Equation 4.12 - Equation 4.13.

Xk =FXk−1 +Gwk (4.12)

Yk =h(Xk) + vk (4.13)

whereXk is discrete-time state vector ofX composed of position, velocity, and acceleration

states along x and y axes at time-stamp k. Yk denotes the vector of noisy sensor outputs

at time-stamp k. wk and vk are the discrete-time disturbance vector and the discrete-time

sensor noises vector. Similarly, for state vector without orientation or angular velocity,

discrete-time state vector and output vector corresponding to vectors in continuous time

Equation 4.6 - Equation 4.8 are

Xk =

[
xk ẋk ẍk yk ẏk ÿk

]′
(4.14)

Yk =

[
r1 ṙ1k r2k ṙ2k r3k ṙ3k

]′
(4.15)

If only radial distances are used, ṙik where i = 1, 2, 3 are removed from Equation 4.15.
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Coefficient matrices F and G are shown in Equation 4.16, where T is the sampling period.

F =



1 T 0 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T 0

0 0 0 0 1 T

0 0 0 0 0 1


, G =



0 0

0 0

T 0

0 0

0 0

0 T


(4.16)

For state vector with orientation and angular velocity, discrete-time state and output vectors

corresponding to vectors in Equation 4.9 - Equation 4.11 become

Xk =

[
xk ẋk ẍk yk ẏk ÿk ψk ψ̇k

]′
(4.17)

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k θz ωz axk ayk

]′
(4.18)

If angular velocity is not used, then ωz is removed from Equation 4.18. If radial velocities

are not used, ṙik where i = 1, 2, 3 in the four sets of sensor outputs are removed from

Equation 4.18. Corresponding coefficient matrices F and G are

F =



1 T 0 0 0 0 0 0

0 1 T 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 T 0 0 0

0 0 0 0 1 T 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 T

0 0 0 0 0 0 0 1


, G =



0 0

0 0

T 0

0 0

0 0

0 T

0 0

0 0


, (4.19)

Nonlinear transformation between state vector and noise-free sensor outputs vector are
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presented as following. For state vector without orientation or angular velocity,

h(Xk) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3

]′
(4.20)

ḣi where i = 1, 2, 3 are removed from Equation 4.20 if only radial distances are used. For

state vector with orientation and angular velocity,

h(Xk) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 h5 h6 h7

]′
(4.21)

Likewise, if angular velocity is not used, then h5 is removed from Equation 4.21. If radial

velocities are not used, ḣi where i = 1, 2, 3 in the four sets of sensor outputs are removed

from Equation 4.21. In both situations,

hu =
√

(xk − xu)2 + (yk − yu)2, u = 1, 2, 3 (4.22)

ḣu =
(xk − xu)ẋk + (yk − yu)ẏk√

(xk − xu)2 + (yk − yu)2
, u = 1, 2, 3 (4.23)

h4 =ψk (4.24)

h5 =ψ̇k (4.25)

h6 =ẍk cos(ψk) + ÿk sin(ψk) (4.26)

h7 =− ẍk sin(ψk) + ÿk cos(ψk) (4.27)

in which xu yu, u = 1, 2, 3 are the locations of each reader inferred from Table 3.3.

4.2 2D Nonlinear State Estimation Based on NLE

In this section, the Nonlinear Least-Squares Estimation (NLE) with stacked measurement

vector, originally proposed in [49], is applied to the nonlinear state estimation of real-

time RFID localization in 2D motion. NLE is developed from the perspective of nonlinear

least-squares optimization and the map-inversion philosophy based on discrete-time dy-

33



namics of the system. More specifically, NLE determines an estimate x̂k of xk, using the

l-length measurement set of inputs {yk, yk−1, ..., yk−l+1} to reduce the impact of sensor

noise. Therefore, NLE includes a two-step procedure, wherein first x̂k−l+1 is determined

from the measurement sets and second x̂k is determined through forward propagation [49].

The stacked measurement vector of the tag in the 2D motion based on the discrete-time

state-space model in section 4.1 can be represented as

Zk =

[
Yk−l+1, Yk−l+2, ... , Yk

]′
(4.28)

where Yk is the noisy measurement outputs vector in Equation 4.15 or Equation 4.18, which

is composed of the whole or part of

Yk =

[
r1k, ṙ1k, r2k, ṙ2k, r3k, ṙ3k, θz ωz ax, ay

]′
(4.29)

in which r1k, r2k, r3k, ṙ1k, ṙ2k, ṙ3k are simulated/measurement radial distances and radial

velocities at time-stamp k with added noise, which are shown in Figure 3.3 and Figure 3.4.

A mapping from state and input values to output values is denoted as H

Hk(Xk−l+1) =


h(Xk−l+1)

h(FXk−l+1)

..

h(F l−1Xk−l+1)

 (4.30)

where F is the same as in Equation 4.16 and Equation 4.19 for state vector without and

with orientation and angular velocity. In the absence of modeling error and sensor noise

[49],

Zk =Hk(Xk−l+1) (4.31)
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In case of noise, NLE minimizes the sum of the squares for the residual errors

X̂k−l+1 = argmin||Ek(Xk−l+1)||2 = argmin||Zk −Hk(Xk−l+1)||2 (4.32)

This least-squares state estimate is l samples delayed in time, so it is propagated forward

in time using the nominal system dynamics and gets [49]

X̂k = F l−1Xk−l+1 (4.33)

Suppose that the current iterate in the search for the minimizer of ||Ek(Xk−l+1)||2 is de-

noted by X(j)
k−l+1. Using Taylor series approximation, a corresponding local model for the

iteration process would be [49]

Êk(Xk−l+1) = Ek(X
(j)
k−l+1) + Jk(X

(j)
k−l+1)(Xk−l+1 −X(j)

k−l+1) (4.34)

where Jk(X
(j)
k−l+1) denotes the Jacobian matrix of Ek(X

(j)
k−l+1) with respect to X(j)

k−l+1.

NLE-based estimation can be implemented in both causal and non-causal ways. For

state estimation of RFID-based motion-capture and localization systems, we implement

NLE causally using states before and at the time-stamp. The scheme of nonlinear state

estimation based on NLE is shown in Figure 4.1. In Figure 4.1, Y1, Y2, ..., Y16 are mea-

surement states and X1, X2, ..., X16 are states to be estimated. Estimated states are related

measurement states by Yk = h(Xk) + vk. Furthermore, NLE estimates state Xk from a

stack of measurement Y , i.e. Zk = [Yk−l+1, Yk−l+2, ..., Yk]
′. The estimation is solved by

minimizing nonlinear least square error.

In order to minimize nonlinear least square error ||Ek(Xk−l+1)||2 = ||Zk−Hk(Xk−l+1)||2,

an iterative search of damped Gauss-Newton method is conducted, which is shown in sub-

section 4.2.1 [49]. Levenberg-Marquardt method interpolates between Gauss–Newton al-

gorithm and the method of gradient descent. Hence, Levenberg-Marquardt method shares
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Figure 4.1: Scheme of State Estimation Based on NLE.

with the gradient methods their ability to converge from an initial guess which may be out-

side the region of convergence and also shares with the Taylor series methods the ability

to converge rapidly in the vicinity of the converged value. The Levenberg-Marquardt is

more robust than the Gauss–Newton algorithm, which means that in many cases it finds a

solution even if it starts very far off the final minimum [51]. Levenberg-Marquardt method

is also applied to minimize the error of nonlinear least-squares in subsection 4.2.2.

4.2.1 Implementation of NLE Based on Gauss-Newton Method

In this section, an iterative search of damped Gauss-Newton method is conducted to min-

imize the nonlinear least-squares error in ||Ek(Xk−l+1)||2 = ||Zk − Hk(Xk−l+1)||2. The

solution of Equation 4.34 may be computed using Gauss-Newton method as [49]

X
(j+1)
k−l+1 = X

(j)
k−l+1 − Jk(X

(j)
k−l+1)−1Ek(X

(j)
k−l+1) (4.35)
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To make sure that the inversion of Jacobian matrix can be calculated even for ill-conditioned

matrix, the inversion is calculated based on pseudoinverse using QR decomposition as in

[50]. To guarantee a descent direction and reduce the residual error, the step increment is

defined as [49]

X
(j+1)
k−l+1 = X

(j)
k−l+1 − γ

(j)Jk(X
(j)
k−l+1)−1Ek(X

(j)
k−l+1) (4.36)

where 0 < γ(j) < 1 is a scalar parameter that may be used to limit the length of each step.

Initial Guess: Initialization of state vectors affects the estimation accuracy. In the es-

timation, Xk, k = 1, 2, ..., len where len is the maximum time-stamp in the sequential

state vector in Equation 4.14 and Equation 4.17, are initialized as [1.5,−2, 0, 1,−2, 0]′ and

[1.5,−2, 0, 1,−2, 0, 3, 0]′.

Parameter Selection: From Dennis and Schnabel, if initialization is close enough to a so-

lutionX∗ and Jocobian matrix with respect to J(X∗) is nonsingular, Gauss-Newton method

converges Q-quadratically to solution X∗ [50]. In order to take step that does not exceed

the Newton step, step size γ is chosen as 0.1 in the estimation. Maximum iteration number

is set as 200, i.e., γ = 0.1, limit = 200.

Convergence Criterion: Since fixed step size is applied to update states, if E(Xk) does

not decrease any more or the iteration exceeds the maximal limit, iteration of updating X̂k

breaks and proceeds to estimate the state at next time-stamp, i.e., X̂k+1, k = l, l+ 1, ..., len

- l where l is the stack length.

Estimation Pseudo Code: Pseudo code of implementing NLE based on Gauss-Newton

method with Zk and Hk(Xk−l+1) in Equation 4.28 and Equation 4.30 is shown below.

In the pseudo code, len is the maximum time-stamp in the sequential state vector. State

vector Xk, ∀k is initialized with initial guess. limit is the maximum number of iterations

and γ is the step size. When error Ek(Xk−l+1) stops decreasing or exceeds the maximum
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1: procedure NLE ESTIMATION BASED ON GAUSS-NEWTON

2: for k = l, k++, while k < len do
3: Xk−l+1 ← initial value
4: for iter < limit do
5: Ek(Xk−l+1) = Zk −Hk(Xk−l+1)
6: X ′k−l+1 = Xk−l+1 − γJk(Xk−l+1)−1Ek(Xk−l+1)
7: Ek(X

′
k−l+1) = Zk −Hk(X

′
k−l+1)

8: if Ek(X ′k−l+1) < Ek(Xk−l+1) then
9: Xk−l+1 ← X ′k−l+1

10: else break
11: Xk = F l−1Xk−l+1

12: close

number of iterations, the loop of updating estimated X̂k−l+1 breaks. Inversion of Jacobian

matrix Jk(Xk−l+1)−1 is computed using the pseudo inverse \ based on QR decomposition

in Matlab. Finite-difference approximation is applied to compute Jocobian matrix referring

[49]. Finite-difference approximation also works for cases where derivatives are not ana-

lytically available [50]. When iteration finishes or breaks, estimated state X̂k is calculated

based on forward propagation as: X̂k = F l−1X̂k−l+1.

4.2.2 Implementation of NLE Based on Levenberg-Marquardt Method

Globally convergent modifications of Newton’s method have been elaborated in [50]. In

this estimation, Levenberg-Marquardt method is applied to minimize the nonlinear least-

squares error. Levenberg replaces the inversion from Equation 4.35

[Jk(X
(j)
k−l+1)TJk(X

(j)
k−l+1)](X

(j)
k−l+1 −X

(j+1)
k−l+1) = Jk(X

(j)
k−l+1)TEk(X

(j)
k−l+1) (4.37)

by a “damped version” as

[Jk(X
(j)
k−l+1)TJk(X

(j)
k−l+1) + λI](X

(j)
k−l+1 −X

(j+1)
k−l+1) = Jk(X

(j)
k−l+1)TEk(X

(j)
k−l+1) (4.38)

The non-negative damping factor λ is adjusted at each iteration. Mores specifically, if

reduction of Ek is rapid, a smaller value can be used, making algorithm closer to the
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Gauss–Newton algorithm. If the reduction is insufficient, λ can be increased, giving a

step closer to the gradient-descent [63]. Marquardt recommended starting with a value λ0

and a factor v (v > 1) and computing square error based on damping factors λ0 and λ0/v.

If both of these are worse than the initial point, then the damping factor is increased by suc-

cessive multiplication by v until a better point is found with a new damping factor of λ0v
k

for some k. If use of the damping factor λ0/v results in a reduction in squared residual,

then this is taken as the new value of λ0 and the process continues; if using λ0/v resulted

in a worse residual but using λ0 resulted in a better residual, then λ0 is unchanged and the

new optimum is taken as the value obtained with λ0 as damping factor [51]. Since only

if square error is less than the initial point, the new optimum will be updated, every itera-

tion of Levenberg-Marquardt method is in a descent direction. Therefore, Equation 4.39 is

positive definite [50], retaining fast local convergence.

Jk(X
(j)
k−l+1)TJk(X

(j)
k−l+1) + λI (4.39)

Comparing square error using damping factor and a fraction of damping factor gives a more

proper step size at each iteration.

Implementation: Both step-by-step design of Levenberg-Marquardt method and built-in

function lsqnonlin in Matlab have been applied to the estimation. The two implementa-

tions give close enough results. Built-in function in Matlab lsqnonlin(@(X)Ek(Y,X, l), Xk)

is implemented in the estimation. Input Ek(X) is the residual error in Equation 4.34, state

vector Xk, k = 1, 2, ..., len is initialized the same as in subsection 4.2.1.

4.3 Stack Length of NLE at Different Sensor Noise Levels

If sensor noise v is large, longer stack length of NLE gets higher estimation accuracy; If

sensor noise v is small, shorter stack length gets higher estimation accuracy.
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CHAPTER 5

RESULTS OF 2D NONLINEAR LEAST-SQUARES ESTIMATION

In this chapter, estimation based on NLE is implemented on both measurement data from

Bashir’s work of HIMR system in 2D motion [39] and simulated states from the model

of RFID system in Chapter 2. Estimation results with Gauss-Newton and Levenberg-

Marquardt methods using different sensor outputs are compared and evaluated. From

estimation results, RF-signal achieves similar estimation results to RF-signal with added

inertial information. In addition, stacked states in NLE maintain the motion-capture grade,

i.e., 10 mm estimation accuracy for states at various noise levels. Estimation results also

verify the positive correlation hypothesis between noise level and the stack length in NLE.

NLE using different sensor information including instantaneous trilateration based on

measured radial distances from three readers, radial velocities based on phase difference

from three readers, orientation from magnetometer, angular velocity from gyroscope, and

acceleration from accelerometer: {r}, {r, ṙ}, {r, θz, ax, ay}, {r, θz, ωz, ax, ay}, {r, ṙ, θz,

ax, ay}, {r, ṙ, θz, ωz, ax, ay} corresponding to output vectors in Equation 4.15 or Equa-

tion 4.18 are implemented following estimation steps in subsection 4.2.2. Gauss-Newton

and Levenberg-Marquardt methods obtain very close estimation results. Numerically, mean

error and RMS error before and after estimation are compared in Table 5.1.

5.1 2D State Estimation Results Using Measurement States with Gauss-Newton and

Levenberg-Marquardt Methods

Instantaneous trilateration in Table 5.1 is tag position (x, y) of minimum rms error to the

three intersections of circles whose centers are the reader locations in Table 3.3 and radii are

radial distances calculated based on RSS from three readers. State vectors in Equation 4.14

and Equation 10.21 are estimated from different measurement sensor outputs in the table.
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Table 5.1: Mean Error and RMS Error of Position States from Instantaneous Trilateration
and Estimation Results Using Different Sensor Outputs in Measurement Based on Nonlin-
ear Least-Squares Estimation with Gauss-Newton and Levenberg-Marquardt Methods

Sensor Outputs Mean RMS Stack Enhancement Enhancement
Error [mm] Error [mm] Length Factor for Mean Factor for RMS

Instantaneous 15.9 38.8 - - -
Trilateration

Estimation with Stack Length of 10
r 16.0 33.2 10 1 1
r ṙ 4.7 27.1 10 3 1

r θz ax ay 13.3 29.3 10 1 1
r θz ωz ax ay 13.3 29.3 10 1 1
r ṙ θz ax ay 4.49 27.3 10 4 1
r ṙ θz ωz ax ay 4.50 27.3 10 4 1

Estimation with Optimal Stack Length for Mean Error
r 12.5 35.1 4 1 1
r ṙ 4.66 26.5 14 3 2

r θz ax ay 11.0 19.0 29 1 2
r θz ωz ax ay 11.0 19.1 29 1 2
r ṙ θz ax ay 4.49 27.1 11 4 1
r ṙ θz ωz ax ay 4.50 27.3 10 4 1

Estimation with Optimal Stack Length for RMS Error
r 14.0 28.7 34 1 1
r ṙ 4.68 26.3 17 3 2

r θz ax ay 11.0 18.9 31 1 2
r θz ωz ax ay 11.0 19.0 30 1 2
r ṙ θz ax ay 4.51 26.7 13 4 2
r ṙ θz ωz ax ay 4.58 26.6 15 4 2

Estimated mean error and RMS error of position states are calculated based on ground truth

in Chapter 2 by combining errors along x and y axes. From Table 5.1, we can get that:

1. NLE achieves 4.49 mm mean error and 18.9 mm RMS error estimation, reducing

mean error and RMS error to orders up to 4 and 2 respectively.

2. Using RF signals only (radial distance r and radial velocity ṙ, i.e., {r, ṙ}) achieves

similar estimation results to using both RF and inertial signals {r ṙ θz ax ay}, {r ṙ

θz ωz ax ay} of 4.6 mm mean error with optimal stack length, which holds true for

RMS error as well.

41



3. From estimation results with stack length 10, it can be inferred that the factor of

enhancement for RMS error from different sensor outputs follows: {r} < {r, θz, ax,

ay}, {r, θz, ωz, ax, ay} < {r, ṙ, θz, ax, ay}, {r, ṙ, θz, ωz, ax, ay} < {r, ṙ}.

4. In both Gauss-Newton and Levenberg-Marquardt methods, NLE reduces RMS er-

rors, i.e., enhancement factor for RMS error > 1 holds true for various sensor out-

puts.

5. Stack length does not affect too much on estimation accuracy, e.g., 27.1 mm RMS

estimation error with stack length 10 compared to 26.3 mm RMS estimation error

with optimal stack length 17 using sensor outputs {r, ṙ}.

5.2 2D State Estimation Results with Different Stack Lengths in Measurement

To investigate the impact of stack length in NLE, stack lengths of 1−40 are iterated in NLE

based estimation on measurement states. Mean Error and RMS error of estimation from

different sensor outputs with different stack lengths are shown in Figure 5.1. In Figure 5.1,

dotted lines are the measurement instantaneous trilaterations along x and y axes, i.e., 15.9

mm and 38.8 mm as shown in Table 5.1. Lines under the dotted line mean the stack length

range in which estimation errors are smaller than measurement errors. Vice versa, lines

above the dotted line mean that estimation errors are larger than measurement errors. It can

be inferred from Figure 5.1 that with optimal stack length, estimation based on {r, ṙ} is

close to estimation based on {r, ṙ, θz, ax, ay}, {r, ṙ, θz, ωz, ax, ay}.

5.3 2D State Estimation Results with Different Sensor Outputs

It can be inferred from Figure 5.2 that 2D estimation results with RF signals only {r ṙ} gain

similar estimation results to signals with acceleration, orientation, and angular velocity {r

ṙ θz ax ay}, {r ṙ θz ωz ax ay}. RF signals can achieve localization that is comparable to

using both RF and inertial signals, similar to 1D results in [62].
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Figure 5.1: Mean Error and RMS Error of Estimated Position States with Different Stack
Lengths in Measurement.

5.4 Factor of RMS Error Enhancement at Different Signal-to-Noise Ratios

It can be inferred from Figure 5.3a that even though RMS error of instantaneous trilater-

ation increases exponentially, RMS error of estimated states increases linearly implying

that 10 mm RMS error estimation is achievable for RF-based localization at various noise

levels including highly noisy measurements. This trend is more obviously observed in

Figure 5.3b, in which the blue line is exponentially increased RMS error of instantaneous

trilateration and other lines are linearly increased RMS error of estimation with different

sensor outputs based on NLE.

More specifically, as is shown in Figure 5.3a, RMS error before estimation is 135.9

mm and after estimation becomes 19.4 mm with sensor outputs of {r, ṙ}. Also, NLE
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Outputs Based on NLE.

(a) RMS Error at Different Signal-to-Noise Ra-
tios (SNR) with Different Sensor Outputs Based
on NLE in Simulation. Sensor Outputs of {r, ṙ}
is Always of Similar Estimation Error to Sensor
Outputs of {r ṙ θz ax ay} and {r ṙ θz ωz ax ay}
at Different Noise Levels, both of which Main-
tain 10mm Estimation RMS Error from 100mm
Insantaneous trilateration.
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Figure 5.3: NLE Estimation Accuracy Maintains 10 mm on Simulated States at Different
Noise Levels.
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achieves 34.1mm RMS error estimation with sensor outputs of {r, ṙ} for states of 347 mm

RMS error. Therefore, estimation accuracy maintains for highly noisy states. Moreover,

estimation with sensor outputs {r, ṙ} is always of similar error to estimation with sensor

outputs {r ṙ θz ax ay} and {r ṙ θz ωz ax ay} at different noise levels.

This increasing accuracy enhancement characteristic makes NLE maintain 10 mm RMS

estimation error for highly noisy states. A possible reason of the increasing error elimina-

tion is error cancellation with stacked states, which is described in details in section 5.5.

5.5 Effects of Stack Length in NLE

A weighted gain of Kalman Filter based on noise covariances from measurement and state

model makes Kalman Filter the best filter among all filters when the noise processes are

Gaussian and also the best linear filter among all linear filters otherwise [62]. Discrete-

time disturbance vector w accounts for the forces and will not be zero. Relatively, similar

to Kalman Filter, if sensor noise v is high, then longer stack length that depends more on

state-space model gets higher estimation accuracy. If sensor noise v is low, shorter stack

length that depends more on instant measurement gets higher estimation accuracy as stated

in Hypothsis 1. To verify the hypothesis, simulated states at different noise levels are esti-

mated based on NLE.

Table 5.2: Optimal Stack Length for RMS Error Based on NLE on Simulated States at
Different SNR

SNR (dB) 26.01 19.87 15.82 10.75 6.58 3.16 2.73 2.61 2.21 2.74
Stack Length 7 11 15 22 36 49 57 62 80 80

It can be derived from Table 5.2 that the lower sensor noise indicated by SNR is, the shorter

optimal stack length for RMS error becomes. The higher sensor noise is, the longer optimal

stack length for RMS error is, which verifies Hypothsis 1.
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CHAPTER 6

RFID-BASED 3D LOCALIZATION SYSTEM SETUP

In this chapter, the RFID-based 3D localization system setup is described and displayed.

Sensor signal collected both from RF and inertial sensors are illustrated in details. The 3D

motion is described and shown. The setup of the 3D motion system is shown in Figure 6.1

and Figure 6.2, in which RFID Tag and IMU-embedded cellphone are combined together

in the 3D motion and the motion profile is in Table 6.3.

1. RF Signal: Two pieces of information are sensed by the reader when the RF tag

backscatters the data: the received signal amplitude Ht(r) which is used to calculate the

approximate position of the tag r relative to each reader and absolute phase φ(r) that is

used to calculate the approximate tag velocity ṙ. Absolute phases from multiple frequen-

cies are also used to derive position r relative to each reader.

2. Inertial Sensor Signal: In order to imitate an IMU sensor relayed on the RFID backscat-

ter link, the system we are using applies RF tag and separate data-logging IMU sensor to

meet the goals of our scientific study. Three pieces of inertial information are collected

by the cellphone. Accelerations and angular velocities along x-, y-, z- axes of the cell-

phone are measured by the accelerometer and gyroscope of the embedded IMU from the

cellphone along its body axes. Additionally, magnetic strengths along x-, y-, z- axes of the

cellphone are measured by the embedded magnetometer.

3. 3D Motion Description: The combined unit is fixed to one arm of the 3D positioner.

The combined unit moves along x- axis first, and then travels along y- axis, finally advances

along z- axis. In the motion, four readers in 3D space sensed the RF signals back scattered

from the tag. The locations of the four readers are listed in Table 6.1. In parallel, IMU

sensor data including accelerations, angular velocities, and orientations are collected along
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the body axes of the cellphone Galaxy S8.

In addition, Figure 6.1 presents the scheme of 3D motion profile, locations of the four

readers, and the combination layout of antenna with cellphone. Figure 6.2 shows the pic-

ture of the setup, in which the 3D positioner, tag, cellphone, as well as four readers in the

laboratory environment are presented.

The tag antenna is isotropic, and reader antenna is isotropic in both horizontal and ver-

tical range. More specifications are in Table 6.1.

Table 6.1: Locations and Specifications of Four Readers in 3D Motion

Reader Index Coordinates Location [m] Frequency Power

Reader #1 (x1, y1, z1) (0.00, 0.00, 0.865) 5.80 GHz 1 W

Reader #2 (x2, y2, z2) (2.29, 0.00, 1.270) 5.83 GHz 1 W

Reader #3 (x3, y3, z3) (2.29, 2.52, 0.865) 5.82 GHz 1 W

Reader #4 (x4, y4, z4) (0.00, 2.52, 1.270) 5.85 GHz 1 W

The tag initially located at origin O in Table 6.2 and started from the rest, and then moved

as described in (1) (2) (3) and (4) motion profiles.

Table 6.2: Location of the Origin

Origin Coordinates Location [m]

O (x0, y0, z0) (1.03, 1.31, 1.03)

The details of two sets of moving profile are described in the three paragraphs:

(1) x Axis: Firstly, the tag accelerated at 0.128 m/s2 to attain a velocity of 0.192 m/s

and moved at this constant speed for 0.5 s before decelerated at a constant rate of −0.128

m/s2 to static, travelling a total distance of 0.384 m away along x- axis.

(2) y Axis: Afterwards, the tag accelerated at 0.1472 m/s2 to attain a velocity of 0.1472 m/s

and moved at this constant speed for 1 s before decelerating at a constant rate of −0.1472

m/s2 to static, travelling a total distance of 0.2944 m away along y- axis.
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(3) z Axis: Hereafter, the tag accelerated at 0.0448 m/s2 to attain a velocity of 0.0448 m/s

and then decelerated at a constant rate of −0.0448 m/s2 to static, travelling a total distance

of 0.0448 m away along z- axis.

(4) xyz Axes Moving Together: After moving back to origin O, the tag moves along x-,

y-, and z- axes simultaneously. The tag accelerated at 0.128 m/s2 to attain a velocity of

0.128 m/s and moved at this constant speed for 2 s before decelerated at a constant rate of

−0.128 m/s2 to static along x- axis. At the same time, the tag accelerated at 0.1472 m/s2

to attain a velocity of 0.1472 m/s before decelerating at a constant rate of −0.1472 m/s2 to

static along y- axis. Simultaneously, the tag accelerated at 0.0448 m/s2 to attain a velocity

of 0.0448 m/s and then decelerated at a constant rate of −0.0448 m/s2 to static along z-

axis. The total travel distances along x-, y-, and z- axes are the same as motion in (1) (2)

(3).

The summary of the two sets of motion profiles including total distance travelled, max-

imal velocities, and accelerations are shown in Table 6.3.
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Table 6.3: 3D Motion Profiles of Total Distances Travelled, Maximal Velocities, and Ac-
celerations Attained Along x- y- z- Axes

Moving Along x- Axis, Then y- Axis, and Finally Along z- Axis

x- Axis y- Axis z- Axis

Total Distance Travelled 0.384 m 0.2944 m 0.0448 m

Velocity 0.192 m/s 0.1472 m/s 0.0448 m/s

Acceleration 0.128 m/s2 0.1472 m/s2 0.0448 m/s2

Time Duration of Acceleration - 1.5 s - 0.5 s - 1.5 s 1 s - 1 s - 1 s 1 s - 0 s - 1 s

Constant Velocity -Deacceleration

Moving Together Along x- y- z- Axes Simultaneously

x- Axis y- Axis z- Axis

Total Distance Travelled 0.384 m 0.2944 m 0.0448 m

Velocity 0.128 m/s 0.1472 m/s 0.0448 m/s

Acceleration 0.128 m/s2 0.1472 m/s2 0.0448 m/s2

Time Duration of Acceleration - 1 s - 2 s - 1 s 1 s - 1 s - 1 s 1 s - 0 s - 1 s

Constant Velocity -Deacceleration
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Figure 6.1: Scheme of 3D Motion Setup. Four Readers at Different Frequencies Sent
and Sensed the Back-Scattered RF Signals From the Tag. IMU Collected Accelerations,
Angular Velocities, and Orientations Along the Body Axes of the Cellphone, Which is
Attached to the z Arm of the 3D Positioner.

Figure 6.2: Picture of 3D Motion Setup. Four Readers Sent and Sensed the Back-Scattered
RF Signals From the Tag. Accelerations, Angular Velocities, and Magnetic Strength of
IMU Along Body Axes are Collected From the Accelerometer, Gyroscope, and Magne-
tometer of the Attached Cellphone Galaxy S8 in the Laboratory Environment.
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CHAPTER 7

SIMULATION VERIFICATION ON 3D DATA IN INDOOR MULTIPATH

In this chapter, a simulation model of RFID-based 3D localization system is built. The sim-

ulation model includes multipath effects in the laboratory and indoor environment referring

to the 3D localization system for semi-active tunnelling diode modulator tag in chapter 6.

Based on model, noise distribution, and multipath model in chapter 2, RSS and RSP of tag

from given reader are simulated in Figure 7.2 and Figure 7.3. Simulated magnitude and

phase are very similar to measurement, which enables replacing exhaustive experiments in

new environment with indoor multipath. 1

7.1 Verification for RF Radial Distances and Radial Velocities in 3D Motion

Based on the motion profile in chapter 6, 3D coordinates along x- y- and z- axes in the

motion are generated. Based on the four reader locations in Table 6.1 and origin coordinate

in Table 6.2, radial distances from the four readers #1, #2, #3, #4 are derived from 3D

coordinates as shown in Figure 7.1.

7.2 Verification for Multipath Effects on Magnitude and Phase

Parameters of the simulation based on tunnel diode modulator tag in Table 7.1 are input

into the simulation model with multipath and noise distribution in subsection 7.2.1 - sub-

section 7.2.3. Similar to 1D and 2D simulation, with input motion profile, magnitude and

phase measured from each reader are derived and compared to measured magnitude and

phase as shown in Figure 7.2 and Figure 7.3.

1Simulation Model is in: https://github.com/qq3575022/3DIndoorStateEstimationRF
IDMotionCapture/tree/main/Chapter7
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Table 7.1: Simulation Template and Sample Parameters in 3D Motion

PT Reader’s Transmitted Power 1W

GT Reader’s Transmitter Antenna Gain -16.15 dBi, -6.15 dBi,-14.60 dBi, -17.61 dBi

Gt Tunnel Tag’s Antenna Gain -18.55 dBi

X Polarization Mismatch Between 0.85

Reader’s and Tag’s Antenna

R Input impedance of the System 15 Ω

M Load Modulation Factor of the Tag 1.0

f Carrier Frequency 5.80 GHz, 5.83 GHz, 5.82 GHz, 5.85 GHz

K K factor in Rician Distribution 40, 400, 11, 56

σ Standard Deviation of Added 0.02

Phase Noise

7.2.1 Multipath Reflections in the Laboratory

Power received by a reader from tag is in multipath propagation. Six reflections are in-

cluded in the laboratory of dimension 7.32 m × 6.8 m × 3 m, i.e, one reflection from each

wall.

PR(r) =
PTG

′
TG
′
tλ

2X ′M

(4π)2

∣∣∣∣∣ 1

r0

exp(−j 2πr0

λ
) +

6∑
i=1

Γi
1

ri
exp(−j 2πri

λ
)

∣∣∣∣∣
2

(7.1)

where r0 is the length of the direct path, ri, i = 1, ..., 6 is the length of ith reflection path,

N = 6 is the total number of reflection paths, and Γi is the complex reflection coefficient

for the ith reflection path [61].

Measured magnitudes and phase measured from the four readers as well as simulated

magnitudes and phase with multipath reflections from four walls, ceiling and floor are

shown in Figure 7.2 and Figure 7.3. It can be inferred from Figure 7.2 that multipath

reflections introduce magnitude shift and quasi-sinusoidal into the amplitude during motion

phases of the tag, which is similar to measurement data. In addition, simulated phase in
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Figure 7.1: Ground Truth Radial Distances r1 r2 r3 and r4 from Four Readers Based on the
3D Motion Trajectory Described in chapter 6 and Reader Locations in Table 6.1 and Origin
Coordinate in Table 6.2

multipath in Figure 7.3 is similar to measured phase as well.

7.2.2 Rician Distribution of Magnitude Noise

In addition to deterministic line-of-sight and multi-path reflections, added magnitude noise

follows Rician distribution. Correspondingly, added noise in signal magnitude in simu-

lation is generated from random generator makedist(’Rician’) in Matlab, which

follows Rician distribution of mean value
√
H ′ that H ′ is the average of |H| and standard
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deviation σ. The fluctuations of magnitude in Figure 7.2 are generated based on the Rician

distribution, which is similar to fluctuations in measurement data in static.

7.2.3 Noise Distribution of Phase

Moreover, noise distribution for phase follows the distribution in Equation 2.23, which is

added to simulated phase in the simulation model accounting for the thermal noise in the

channel.
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Figure 7.2: Measured and Simulated Magnitude H(r) with 6 Reflections and Noise of
Rician distribution from Four Readers with the Input 3D Trajectory in chapter 6.
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Figure 7.3: Measured Phase φ and Simulated Phase φ with 6 Reflections and Noise of Ri-
cian distribution from Four Readers with the Input Trajectory Along x- Then y- and Finally
z- Axis. After Moving Back, Moving Along x- y- z- Axes All Together as Described in
chapter 6.
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CHAPTER 8

THREE KINDS OF POSITION SENSORS

In this chapter, three kinds of position sensors: magnitude based, ToF based, and ToF based

in tracking along the 3D motion in chapter 6 are compared to each other in radial distances

from four readers and 3D coordinates based on triangulation. Both LOS and multipath

environment are involved. In addition, both static and tracking in motion are included in

comparison. 1

8.1 Magnitude Based Position Sensor

Lots of RFID applications use magnitude data for position sensor. In mutipath environment

illustrated in section 7.2, radial distances of tunnel diode modulator tag can be derived from

magnitude based on Equation 2.13 as

r =

√
2PTG′TG

′
tλ

2X ′MR

4πHt(r)
(8.1)

In which,

Ht(r) =

√
2PTG′TG

′
tλ

2X ′MR

4π

∣∣∣∣∣ 1

r0

exp(−j 2πr0

λ
) +

6∑
i=1

Γi
1

ri
exp(−j 2πri

λ
)

∣∣∣∣∣ (8.2)

where r0 is the length of the direct path, ri, i = 1, ..., 6 is the length of i−th reflection path,

N = 6 is the total number of reflection paths, and Γi is the complex reflection coefficient

for the i−th reflection path [61].

Based on Equation 8.1 and Equation 8.2, derived radial distances from simulated mag-

nitudes are shown in Figure 8.1, in which blue lines are radial distances derived from mag-

1https://github.com/qq3575022/3DIndoorStateEstimationRFIDMotionCapture
/tree/main/Chapter8
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nitude in case of multipath in section 7.2 and red lines ares ground truth radial distance in

noise-free and multipath free environment in Figure 7.1.

It can be inferred from the figure that compared to ground truth radial distances, mag-

nitude derived distance has offset in static states and is also of sinusoidal fluctuations in the

motion.
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Figure 8.1: Simulated Derived Radial Distance from Magnitude in Multipath from Four
Readers with the Input Trajectory Along x- Then y- and Finally z- Axis. After Moving
Back, Moving Along x- y- z- Axes All Together as Described in chapter 6.
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8.2 Time-of-Flight (ToF) Based Position Sensor

Based on two or more phases, the travelling distance can be obtained from two or more

frequencies based on Time-of-Flight (ToF). As for two frequencies:

φ1 =
4πr0

λ1

=
4πf1r0

c

φ2 =
4πr0

λ2

=
4πf2r0

c

(8.3)

Hence,

r1 =
cφ1

4πf1

r2 =
cφ2

4πf2

(8.4)

Based on the derivation in [64]

r1 = r2 =
c(φ1 − φ2)

4π(f1 − f2)
(8.5)

8.2.1 Ambiguity Removal of Duplicate Distances

Since phase is always within [0, 2π). Phases φ1, φ2, ... , φM are of period 2π. To avoid

ambiguity distance derived out of the 2π period in phases, the maximal distance that can

be identified with frequency difference without duplicate distance is

rmax =
2πc

4π(f1 − f2)
(8.6)

In this work, frequency difference ∆f = f1 − f2 = 1 MHz, then rmax = 150 m, which

is much larger than the dimension of the laboratory and is used in the simulation. Hence,

ambiguity of duplicate distance is avoided.

In addition, for 5.8 GHz band, the bandwidth is 150 MHz making multiple frequency

hopping of 1 MHz difference feasible.
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8.2.2 Position Sensor from Multiple Frequencies

For multiple frequencies, a fitted line from multiple phases φ1, φ2, φ3, ... , φM can be de-

rived as shown in Figure 8.2. Four hopping frequencies are used in the fitting, in which the

phase differences are ∆φ1 corresponds to frequency difference ∆f1 and phase difference

∆φ2 corresponds to frequency difference ∆f2. Then slope of phase difference α corre-

sponds to the derived radial distance r.

Figure 8.2: Scheme of Line Fitting of Four Hopping Frequencies. Phase difference ∆φ1

corresponds to frequency difference ∆f1 and phase difference ∆φ2 corresponds to fre-
quency difference ∆f2. The slope α is the derived distance r.

Based on Equation 8.5, derived radial distances from simulated phases of two frequen-

cies of difference ∆f = 1 MHz using ToF are shown in Figure 8.3, in which blue lines are

radial distances derived from ToF in case of multipath and red lines ares ground truth ra-

dial distance same as in Figure 7.1. Therefore, the ToF derived distance is also affected by

multipath effect. It is also shown in the figure that ToF based position sensor also changes

quasi-sinusoidal into the phase during motion of the tag.
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Figure 8.3: Simulated ToF of Phase Derived Radial Distance from Two Frequencies in
Multipath from Four Readers at Sampling Frequency of 4847 Hz and Frequency Difference
∆f = 1 MHz with the Input Trajectory Along x- Then y- and Finally z- Axis. After
Moving Back, Moving Along x- y- z- Axes All Together as Described in chapter 6.

8.3 Time-of-Flight (ToF) Based Position Sensor in Tracking

Due to requirement of FCC, the maximal time duration for each frequency has a limit. As

for 75 channels of 5.8 GHz, the average time of occupancy on any frequency must not
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exceed 0.4 s in any 30 s period. In addition, two frequencies sent from the reader saturate

the tag [65].

In order to realize real-time tracking for RFID-based motion-capture systems, at each

time stamp only signal from one frequency is sent. The frequencies of adjacent sample are

different. Hence, the distance from each reader can be derived as following. Similar to ToF

based positioner sensor, the travelling distance can be obtained from two frequencies from

samples at different time stamps as

φ1 =
4πr1

λ1

=
4πf1r1

c

φ2 =
4πr0

λ2

=
4πf2r0

c

(8.7)

Hence,

r1 =
cφ1

4πf1

r2 =
cφ2

4πf2

(8.8)

Based on the derivation in [64]

r′0 =
c(φ1 − φ2)

4π(f1 − f2)
(8.9)

Where r′0 is between r1 and r2. If the sampling time ts is small enough, then r1 − r2 � 1

m. Since the sampling frequency is usually fi � 1 MHz ∀i = 1, 2 and moving speed is

mostly < 50 m/s, the difference r1 − r2 � 5 × 10−5 m, which meets the centimeter-level

localization accuracy requirement.

The derived radial distances based on phase samples at adjacent time stamps of different

frequencies are shown in Figure 8.4. In the figure, blue lines are derived radial distances

at adjacent samples of different frequencies and red lines are ground truth radial distances

same as in Figure 7.1. It is shown in the figure that derived radial distances are similar

to the noise-free ground-truth trajectory and also similar to radial distances derived from
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ToF based position sensor in section 8.2. In addition, ToF based position sensor in tracking

derived distance is also affected by multi-path effect.
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Figure 8.4: Simulated Phase Derived Radial Distance from Different Frequencies at Dif-
ferent time stamps in Multipath from Four Readers at Sampling Frequency of 4847 Hz and
Frequency Difference ∆f = 1 MHz with the Input Trajectory Along x- Then y- and Fi-
nally z- Axis. After Moving Back, Moving Along x- y- z- Axes All Together as Described
in chapter 6.

Hence, ToF based position sensor in tracking using different frequencies at adjacent

time stamps is able to achieve real-time localization and tracking for RFID based motion-
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capture systems. Therefore, ToF based position sensor is able to be used in tracking as a

replacement of magnitude based position sensor.

8.4 The Comparison of Three Kinds of Position Sensors

The comparisons of three kinds of position sensors: magnitude based position sensor in

section 8.1, ToF based position sensor in section 8.2, and ToF based position sensor in

tracking in section 8.3 is shown in Table 8.1 and Table 8.2. More specifically, RMS error

of derived radial distance based on each position sensor compared to ground truth radial

distance relative to four readers is shown in Table 8.1. Furthermore, RMS error of 3D coor-

dinates (x, y, z) derived from radial distances relative to four readers based on triangulation

in subsection 8.4.1 compared to ground truth coordinates for each position sensor is shown

in Table 8.2.

8.4.1 Triangulation Derived 3D Coordinates from Four Radial Distances

The 3D coordinates (x, y, z) derived from the four radial distances based on triangulation

is shown as following. From the four equations of deriving radial distances, we have three

difference equations in matrix representation


r2

1 − r2
4

r2
2 − r2

4

r2
3 − r2

4

 = 2


x4 − x1 y4 − y1 z4 − z1

x4 − x2 y4 − y2 z4 − z2

x4 − x3 y4 − y3 z4 − z3



x

y

z

+


x2

1 − x2
4 + y2

1 − y2
4 + z2

1 − z2
4

x2
2 − x2

4 + y2
2 − y2

4 + z2
2 − z2

4

x2
3 − x2

4 + y2
3 − y2

4 + z2
3 − z2

4


(8.10)

Therefore, 
x

y

z

 =
1

2
F−1(g + u) (8.11)
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where

F =


x4 − x1 y4 − y1 z4 − z1

x4 − x2 y4 − y2 z4 − z2

x4 − x3 y4 − y3 z4 − z3

, g =


x2

1 − x2
4 + y2

1 − y2
4 + z2

1 − z2
4

x2
2 − x2

4 + y2
2 − y2

4 + z2
2 − z2

4

x2
3 − x2

4 + y2
3 − y2

4 + z2
3 − z2

4

, u =


r2

1 − r2
4

r2
2 − r2

4

r2
3 − r2

4


Then the 3D coordinates vector [x, y, z]T can be derived from the four radial distances

r1, r2, r3, r4 based on Equation 8.11.

8.4.2 Comparison of Three Kinds of Position Sensors in Static/Tracking and LOS/Multipath

To compare the accuracy of three kinds of position sensors in case of line-of-sight (LOS)

and multipath scenarios in static and tracking with motion, radial distances and 3D coordi-

nates based on triangulation in subsection 8.4.1 based on the three kinds of position sensors

are shown in Table 8.1 and Table 8.2.

In the comparison, all simulations are at 5.8 GHz with a sampling rate of 4847 Hz using

tunnel diode modulator tag, which are the same as in measurement data. The multipath

model employed was the statistical and 6-reflection model with parameters compared to

measured magnitude. The MMSE model from triangulation in subsection 8.4.1 was used

for the 3D coordinates for four-reader calculation.

1. Other assumptions in the simulation are as following, which holds true for all simula-

tions

1. Average SNR used in all simulations is K = 40, 100, 11, 56 for the four readers respec-

tively as shown in Table 7.1.

2. Standard deviation of noise for all phases is 0.02 as shown in Table 7.1.

3. The frequency difference of all ToF based position sensor in static/tracking and in

LOS/multipath is ∆f = 1 MHz. In addition, all ToF based position sensors use the same 4

frequencies.
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4. The motion profile of all position sensors in static or tracking is the same as 3D motion

trajectory described in chapter 6.

2. Radial Distances from Four Readers Respectively Compared to Ground truth

Table 8.1: Comparison of Three Position Sensors Based on Radial Distances from Four
Readers Respectively Compared to Ground Truth 3D Trajectory in chapter 6

RMS Error for Individual Reader

Reader 1 Reader 2 Reader3 Reader 4

[mm] [mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 97.5 9.3 278.1 58.6

Simulated ToF 23.8 25.2 26.2 23.2

(LOS) Tracking Simulated RSS 97.5 9.3 278.1 58.6

with Motion Simulated ToF 164.7 50.6 163.8 61.1

Multipath

Static
Simulated RSS 160.8 109.9 288.9 151.6

Simulated ToF 40.6 18.2 31.1 25.7

Tracking Measured RSS 175.6 363.9 643.8 203.3

with Motion Simulated RSS 160.8 109.9 288.9 151.6

Simulated ToF 151.9 118.8 136.6 155.7

In the table:

1. Static means that the measurement is taken at each stationary point and the tag doesn’t

move in the simulation/measurement until data are taken done along the same motion pro-

file as in tracking.

2. Tracking with motion, on the contrary, describes the tagged object moving along the

motion profile regardless of whether the data are taken in the experiment and simulation.

3. Simulated RSS is the magnitude based position sensor in section 8.1 to get distance r

from magnitude H(r) due to the attenuation of power w.r.t. the increase of distance r as in

Equation 8.1.
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4. Simulated ToF describes ToF based position sensor in section 8.2 and in ToF based po-

sition sensor in tracking in section 8.3 using the phase difference to get distance r from the

slope of ∆φ w.r.t frequency difference ∆f due to the phase change related to distance as

shown in Equation 2.9.

It can be inferred from Table 8.1 that simulated RSS based position sensor is affected

more by multipath than ToF based position sensor. In addition, ToF in tracking is of higher

RMS error compared to ToF, but is still smaller than RSS based position sensor in multipath

scenario.

3. 3D Coordinates Derived From Four Radial Distances Compared to Ground truth

Table 8.2: Comparison of Three Position Estimators Based on 3D Coordinates (x, y, z)
Using Triangulation in subsection 8.4.1 Compared to Ground Truth Trajectory in chapter 6

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 663.8 154.1 645.7

Simulated ToF 105.8 24.6 102.9

(LOS)
Tracking with Motion

Simulated RSS 663.8 154.1 645.7

Simulated ToF 210.1 171.6 121.2

Multipath

Static
Simulated RSS 750.3 206.5 721.3

Simulated ToF 82.0 40.6 71.2

Tracking with Motion
Measured RSS 719.9 349.9 629.2

Simulated RSS 758.2 207.8 729.1

Simulated ToF 520.6 152.8 497.7

It can be inferred from Table 8.1 and Table 8.2 that:

1. In LOS and multipath scenarios, ToF based position sensors are of higher accuracy for

radial distances from four readers compared to RSS based position sensors.
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2. In tracking with motion, ToF based position sensor is of higher RMS error, which

decreases as sampling frequency increases.

3. Similar to measurement, radial distances from Reader #1 and Reader #3 has larger

RMS errors compared to Reader #2 and Reader #4, which may because the motion is

along direction of Reader #1 to Reader #3 and the motion introduces error compared to

groundtruth trajectory.

4. Derived 3D coordinates based on triangulation in subsection 8.4.1 has larger RMS error

along z- axis compared to xy- plane for both simulation and measurement.

5. As shown in Table 8.2, 3D RMS error follows the same trend as radial distances. RMS

error along z- axis is larger than RMS error in xy- plane.
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CHAPTER 9

INERTIAL SENSOR MODEL

In this chapter, due to the low-cost cellphone embedded IMU, sensor error is larger than

high-precision embedded IMU. Hence, sensor model for inertial sensors is built and veri-

fied with measured IMU data. Calibration of inertial sensors in section E.3 is also based on

the built sensor model.

9.1 Rotation Convention Definition

The definition of rotation angles, i.e., roll rotation along x-axis, pitch rotation along y-axis,

yaw rotation along z-axis is as shown in Figure 9.1.

Figure 9.1: Scheme of Rotation Angles: Roll θx, Rotation Counterclockwise Around x-
axis. Pitch θy, Rotation Counterclockwise Around y-axis and Yaw θz, Rotation Counter-
clockwise Around z-axis.
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9.2 Sensor Error Model of Inertial Sensors

Sensor error models of inertial sensors: accelerometer, gyroscope, and magnetometer are

built to calibrate measurement errors and thus enhancing state estimation accuracy of local-

ization furthermore. Sensor error models provide more precise simulations for states that

can be applied to algorithm design before taking experiment measurements. In this section,

sensor error models of inertial sensors are built. In addition, related traid transformations

among different sensors are also set up.

There are two kinds of errors for inertial sensors: deterministic error and stochastic

error. Both types of errors contribute to output signal quality degradation but deterministic

errors contribute more in practice [66, 67].

Deterministic error is attributed to manufacturing processes, component variation, and

material differences. Deterministic error can be detected by monitoring outputs calibration

which can be divided into three types: Bias, Scalar Factor, and Non-orthogonality Mis-

alignment errors [68]:

(a) Bias Error: Bias is the deviation from the reference when no external stimuli or force

is applied to the sensor.

(b) Scaling Factor Error: Scaling factor is the ratio of change in the output to the change

of the input. The ratio between reference and actual scaling is termed as the scaling factor

[69]. Manufacturer provides a default scalar factor but needs re-calibration in measure-

ments.

(c) Misalignment Error: Each sensor has its own reference origin point and should be the

same. In addition, reference axes of each sensor should be orthogonal to each other. Due

to mounting point differences, manufacturing, and component variation, sensor axes are

not orthogonal to each other and reference points are not aligned. Therefore, misalignment

errors are introduced in measurements.
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In contrast, stochastic error is electronic noise in the form of Additive White Gaussian

Noise (AWGN) [70, 71, 72]. Stochastic error cannot be exactly measured based on output

and can be approximated statistically.

Three axes of the accelerometers triad (AOF), three axes of the gyroscope triad (GOF),

and three axes of the magnetometer triad (MOF) define a shared and orthogonal 3D body

frame b. Nevertheless, due to assembly inaccuracy, misalignment and non-orthogonal,

actual triads of accelerometer gyroscope and magnetometer are non-orthogonal and not

overlapping, which are defined as AF, GF, and MF.

In addition, for each sensor, scaling factors are needed to convert sensor outputs to

actual physical quantity. Moreover, sensor measurement outputs are always affected by

non zero variable biases as well [73], corresponds to misalignment error, scaling factor

error, and bias error that are introduced above.

We define the body frame b as following: the x- axis of frame b coincides with x- axis

of AF; the y- axis of frame b lies in the plane spanned by the x- and y- axes of AF. In this

way, AF, GF, and MF are related to b by a pure rotation. Additionally, AOF, GOF, and MOF

overlap with frame b [73]. Due to this definition, transformation matrix of accelerometer

from AF to body frame b, i.e., T a is an upper triangle matrix as shown in Equation 9.3. In

addition, the transformation matrix of gyroscope from GF to body frame b, i.e., T g is a full

square matrix as shown in Equation 9.6. Similarly, the transformation matrix of magne-

tometer from MF to body frame b, i.e., Tm is also a full square matrix in Equation 9.8.

9.2.1 Sensor Error Model of Accelerometer

There exists bias, scalar factor, and drift errors for accelerometer. Based on [73], the sensor

error model of accelerometer is

ab = T aKa(aa + ba + va) (9.1)
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Figure 9.2: Scheme of Accelerometer Gyroscope and Magnetometer Manufacture Frames
AF, GF, and MF (xS , yS , zS) and Body Frame b (xB, yB, zB), Which Overlaps with AOF,
GOF, and MOF. Manufacture Frames AF, GF, and MF are Related to Body Frame b with
Rotation Angles βij .

where ab ∈ R3 denotes the calibrated accelerations in body frame b of the tagged object.

aa ∈ R3 is the raw measured accelerations in triad AF. Moreover, T aKa is nonsingular for

nearly orthogonal triad of similar sensors. ba ∈ R3 is the bias of accelerations [74]. va is

stochastic noise, va ∼ N(0, σ) where σ is the standard deviation of the stochastic noise.

The scaling matrix Ka ∈ R3×3 and bias vector ba ∈ R3 are composed of

Ka =


sax 0 0

0 say 0

0 0 saz

 , ba =


bax

bay

baz

 (9.2)
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The rotation or misalignment matrix T a ∈ R3×3 is upper triangle as discussed

T a =


1 −αyz αzy

0 1 −αzx

0 0 1

 (9.3)

Where αij is the rotation of the ith accelerometer around the jth b axis as shown in Fig-

ure 9.2 where β is replaced by α to avoid repeated parameters.

In the stationary period, accelerometer is expected to measure the gravity, the cen-

trifugal acceleration and Coriolis acceleration, which are corrupted by noise. Measured

accelerations are fitted to Gaussian distribution as shown in Figure 9.3 [75]. The non-zero

mean denotes the bias ba of accelerometer.

Figure 9.3: Blue: Histogram of Accelerometer Measurements. Orange: Fitted Gaussian
Distribution of Measurements.

9.2.2 Sensor Error Model of Gyroscope

There exists bias, scalar factor, and drift errors in gyroscope measurements. Gyroscope

measures the angular velocity with respect to the body frame GF in raw measurements.
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Similarly, based on [73]

wb = T gKg(wg + bg + vg) (9.4)

where wb ∈ R3 denotes the calibrated gyroscopes in body frame b of the tagged object and

wg ∈ R3 is raw gyroscope measurements in triad GF. bg ∈ R3 is the bias of gyroscope [74].

vg is gyroscope measurement noise, vg ∼ N(0, σ) where σ is the standard deviation of the

stochastic noise. The scaling matrix Kg ∈ R3×3 and bias vector bg ∈ R3 are

Kg =


sgx 0 0

0 sgy 0

0 0 sgz

 , bg =


bgx

bgy

bgz

 , (9.5)

The rotation matrix T g ∈ R3×3 is as

T g =


1 −γyz γzy

γxz 1 −γzx

−γxy γyx 1

 , (9.6)

Similar to T a, γij is the rotation of the ith gyroscope around the jth b axis as shown in

Figure 9.2 where β is replaced by γ.

In the stationary period, gyroscope is expected to measure the earth’s angular velocity

which is corrupted by noise. As is seen from Figure 9.4, the distribution of gyroscope

measurements is close to Gaussian with a smaller standard deviation and there exists bias

for gyroscopes along different axes as well.

9.2.3 Sensor Error Model of Magnetometer

The body frame of the tagged object rotates with respect to the earth frame. Therefore,

rotating magnetic field vector back to completely aligned with gravity, i.e., the earth frame
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Figure 9.4: Blue: Histogram of Gyroscope Measurements. Orange: Fitted Gaussian Dis-
tribution of Measurements.

is needed, such that x and y components can be used to determine the orientation angle.

There exists soft iron and hard iron distortions for magnetometer as well as scalar factor

and misalignment errors [76]. The error model of magnetometer is

mb = TmKmSm(mm + bm + vm) (9.7)

where mb ∈ R3 denotes the calibrated magnetometer in body frame b of the tagged object

and mm ∈ R3 is raw magnetometer measurements in triad MF. vm is magnetometer mea-

surement noise, vm ∼ N(0, σ) where σ is the standard deviation of the stochastic noise.

The rotation matrix or misalignment matrix Tm ∈ R3×3 and the scaling matrix Km ∈

R3×3 are as

Tm =


1 −λyz λzy

λxz 1 −λzx

−λxy λyx 1

 , Km =


smx 0 0

0 smy 0

0 0 smz

 , (9.8)
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Similarly, λij is the rotation of the ith gyroscope around the jth b axis as shown in Fig-

ure 9.2 where β is replaced by λ. Sm corresponds to soft iron distortion and bm ∈ R3

corresponds to hard iron distortion

Sm =


C1 C2 C3

C4 C5 C6

C7 C8 C9

 , bm =


C10

C11

C12

 , (9.9)

Equation 9.9, C1 - C9 corresponds to soft iron distortion and C10 - C12 corresponds to hard

iron distortion.

9.3 Simulation Verification

To verify the error model and the sensor data measured from the embedded IMU of MPU-

9250 and of cellphone. Simulated and measurement IMU data from MPU-9250 and cell-

phone with the input trajectory are compared in this section.

9.3.1 Verification for IMU Sensor Data in 2D Motion

The IMU sensor data measured from the MPU-9250 and simulation data are presented in

the subsection. For inertial measurements, random Gaussian noise is added to orientation ψ

and angular velocity ψ̇ as magnetometer and gyroscope noise. Simulated angular velocity is

compared with measured angular velocity with an applied ratio of 0.85 (derived from scale

between measurement and ground truth of angular velocity). Simulated orientation and

angular velocity are of similar trend and shape to measured orientation and angular velocity,

indicating that generated 2D orientation and angular velocity are close to the measurement.

Furthermore, accelerations along body axes of the tag xB and yB, in which the negative

xB-axis points towards the center of the circular motion trajectory and yB-axis is tangent to

its circular motion trajectory can be calculated from orientation ψ and accelerations ẍ and
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ÿ along x and y axes [39] as

ax =ẍ cos(ψ) + ÿ sin(ψ) (9.10)

ay =− ẍ sin(ψ) + ÿ cos(ψ) (9.11)

where acceleration ẍ and ÿ along x and y axes, which can be calculated by taking on

derivative of x and y with respect to ψ, where ψ is orientation. To verify simulated acceler-

ation, simulated accelerations along tag body axes xB and yB based on Equation 9.10 and

Equation 9.11 and corresponding measured acceleration with an applied ratio of 0.8 (de-

rived from the scale between measurement and ground truth accelerations) are compared.

Random Gaussian noise is added to acceleration data as inertial sensor noise. Simulated

accelerations along axes xB and yB are of similar trend and shape to measured acceleration,

indicating that described 2D angular acceleration with corresponding axes transformation

are close to the measurement setup.

In summary, noise distribution of position states from the simulation model in Section

section 2.3 is close to the measurement error in 1D and 2D motion. In addition, simulated

states are of similar shape and noise level to measurement states. Motion descriptions in

1D and 2D motion fit measurement states.

9.3.2 Verification for IMU Sensor Data in 3D Motion

The IMU sensor data measured from the cellphone and simulated IMU sensor data based on

the sensor models in section 9.2 are presented in the subsection with the motion described

in chapter 6.

The cellphone embedded IMU sensor measurements and ground truth data based on the

motion profile are show in Figure 7.1. It can be inferred from Figure 7.1 that accelerations

in the motion fit the ground truth profiles. In addition, angular velocities from gyroscope

and magnetic strength from magnetometer are close to constant zeros in the ratio of the
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Figure 9.5: Measurement IMU Data Including Accelerations, Angular Velocities, and Mag-
netic Strength Along x- y- and z- Axes of the Cellphone Embedded IMU Compared to
Simulated Ground Truth with the Input Trajectory Along x- Then y- and Finally z- Axis.
After Moving Back, Moving Along x- y- z- Axes All Together in chapter 6.
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measurement range.

In addition, the simulation of accelerations based on the sensor error model in sec-

tion 9.2 is compared to measurement accelerations as show in Figure 9.6, Figure 9.7, Ta-

ble 9.1, and Table 9.2 along the two motions described below. The simulated acceleration

data are close to measurement data in the motion as shown in Table 9.1 and Table 9.2.

9.3.3 Verification for Accelerometer Model in 3D Motion

1. Moving Along x- Axis Then y- and Finally z- Axis

Accelerations with bias, skew factors, and scalar factors based on the error model in sub-

section 9.2.1 are simulated and compared with measurement data as shown in Figure 9.6.

As shown in Figure 9.6, blue lines are IMU measurement acceleration data. Red lines

are simualted acceleration data. Yellow lines are ground truth acceleration profile with

bias. It can be identified from Figure 9.6 that simulated IMU accelerations based on the

sensor model, error model and noise distribution in subsection 9.2.1 are similar to the

measurement accelerations. Therefore, there exists bias and drift in accelerations of the

cellphone embedded IMU sensor.

The statistics of measurement and simulated accelerations comparison of the cellphone

embedded IMU are shown in Table 9.1.

Table 9.1: Statistics of Measurement and Simulated Accelerations Compared to Ground
Truth Profile When Moving Along x- Axis Then y- Axis and Finally Along z- Axis

Axis Position Errors Absolute Mean Error from Variance of Standard Deviation of

Ground Truth [m] Error [m2] Error [m]

x Measurement 0.0081 0.0368 0.1919

Simulation 0.0000 0.0129 0.1135

y Measurement 0.0121 0.0364 0.1909

Simulation 0.0380 0.0457 0.2137

z Measurement 0.0190 0.0454 0.2130

Simulation 0.0000 0.0128 0.1132
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Figure 9.6: Simulated Accelerations of Cellphone Embedded IMU Sensor in Moving
Along x- Then Along y- and Finally Along z- Axes With the Input Trajectory Described
in chapter 6 Based on Sensor Models, Noise Distribution, As Well As Error Models in
subsection 9.2.1.

It can be inferred from Table 9.1 that statistics of simulation and measurement are com-

parable to each other. Absolute value of position error |et| in simulation and measurement

at time t is plotted and compared in Figure 9.6, where et = P x
t − P

gt
t . P x

t in which x ∈

{meas, sim} indicating measurement and simulation position states. P gt
t is the ground truth
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position state at time t.

Statistics of e, i.e. Mean= E(e) = e, Variance=
∑N
t=1(et−E(e))2

N
, and standard deviation,

the root square of variance, are shown in Table 9.1. In addition, orientations and angular

velocities in the motion are close to zero based on the error model in subsection 9.2.2 and

subsection 9.2.3, similar to motion and measurement.

2. Moving Along x- y- z- Axes All Together Simultaneously

In addition, accelerations with bias, skew factors, and scalar factors based on the error

model in subsection 9.2.1 when tag is moving along x-, y-, and z- axes together are simu-

lated and compared with measurement data as shown in Figure 9.7.

The statistics of measurement and simulated accelerations comparison of the cellphone

embedded IMU are shown in Table 9.2.

Table 9.2: Statistics of Measurement and Simulated Accelerations Compared to Ground
Truth Profile When x- y- z- Axes Moving All Together Simultaneously

Axis Position Error Absolute Mean Error from Variance of Standard Deviation of

Ground Truth [m] Error [m2] Error [m]

x Measurement 0.0081 0.0384 0.1959

Simulation 0.0000 0.0125 0.1119

y Measurement 0.0121 0.0372 0.1929

Simulation 0.0000 0.0125 0.1120

z Measurement 0.0190 0.0449 0.2119

Simulation 0.0000 0.0125 0.1117

It can be inferred from Table 9.2 that statistics of simulation and measurement are com-

parable to each other. Absolute value of position error |et| in simulation and measurement

at time t is plotted and compared in Figure 9.7, where et = P x
t − P

gt
t . P x

t in which x ∈

{meas, sim} indicating measurement and simulation position states. P gt
t is the ground truth

position state at time t.

80



106 107 108 109 110 111 112 113 114

time [s]

-0.8

-0.7

-0.6

-0.5

-0.4

Simulated Accelerations Along x Axe Based on Error Model

Measurement

Simulated

Ground Truth with Bias

106 107 108 109 110 111 112 113 114

time [s]

-0.2

0

0.2

0.4

0.6
Simulated Accelerations Along y Axe Based on Error Model

Measurement

Simulated

Ground Truth with Bias

106 107 108 109 110 111 112 113 114

time [s]

-0.4

-0.2

0

0.2

0.4
Simulated Accelerations Along z Axe Based on Error Model

Measurement

Simulated

Ground Truth with Bias

Figure 9.7: Simulated Accelerations Along x- y- and z- Axes of Cellphone embedded IMU
Sensor With x- y- and z- Moving All Together With the 3D Input Trajectory Described
in chapter 6 Based on Sensor Models, Noise Distribution, As Well As Error Models in
subsection 9.2.1.

Statistics of e, i.e. Mean= E(e) = e, Variance=
∑N
t=1(et−E(e))2

N
, and standard deviation,

the root square of variance, are shown in Table 9.2.

3. Results of Verification for IMU Sensor Data

The maximal sampling frequency of cellphone IMU data is 400 Hz. In addition, the sam-

pling frequency and timestamp of accelerometer, gyroscope, and magnetometer are dif-
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ferent. More specifically, the sampling frequencies of accelerometer and gyroscope are 4

times compared to magnetometer.

In all simulations, the input timestamp of the simulation model is the same as the times-

tamp of measurement from cellphone embedded IMU. It can be inferred from Figure 9.6,

Figure 9.7, Table 9.1, and Table 9.2 that:

1. Simulation model of IMU sensor fits the measurement data in both separate 3D motion

and moving along all axes all together simultaneously in 3D motion.

2. Accelerations of moving all together along x- y- and z- axes are separable and similar to

moving along each axis as along x- axis first, then along y- axis and finally along z- axis.

Therefore, simulated IMU sensor data with sensor model can be used in localization system

design and implementation before taking measurements.
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CHAPTER 10

DESIGN OF 3D NONLINEAR LEAST-SQUARES ESTIMATION

In this chapter, advancing from 2D motion, nonlinear state-space model and nonlinear state

estimation for real-time RFID-based 3D localization are built. Nonlinear state-space model

is designed with different state vectors and sensor outputs for both sensor fusion and RF

estimation. Nonlinear Least-Squares Estimation with stacked measurement vector is ap-

plied to nonlinear state estimation in 3D motion with rotation matrix multiplication along

x- y- and z- axes. For comparison, EKF is built for nonlinear state estimation in 3D motion

as well. In order to handle different sampling rates of RF signal and IMU data as well

as different sensors within IMU data, asynchronous and synchronous models are built for

both NLE and EKF. Further, Quaternion is applied to orientation estimation.

10.1 Frame Systems of 3D Motion

In the 3D localization system, two frame systems in measurement and estimation are in-

volved for inertial sensors [75]:

1. The body frame b: is the coordinate frame of the moving tagged object. Its origin

is located at the center of the tagged object and is aligned to the triad of the inertial sensor.

2. The navigation frame n: is the geographic frame to navigate. The estimated posi-

tion, velocity, acceleration, orientation, and angular velocity of the tagged object is with

respect to this frame. We define this frame as stationary to the earth.

More specifically, x-, y-, and z- axes of the navigation frame n are along x-, y-, and z-

axes of the 3D positioner. For the body frame b, x- axis overlaps with x- axis of the navi-
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gation frame. y- axis overlaps with z- axis of the navigation frame. z- axis overlaps with y-

axis of the navigation frame and points toward the negative direction. In the following 3D

state estimation, the measurements are taken in the body frame b and position orientation

states are estimated in the navigation frame n.

10.2 3D State-Space Model

The motion equation of the tag moving in 3D planar can be represented as [39]

mẍ =Fx (10.1)

mÿ =Fy (10.2)

mz̈ =Fz (10.3)

Ixα̈ =Tx (10.4)

Iyβ̈ =Ty (10.5)

Izψ̈ =Tz (10.6)

where m is the mass of the moving object, ẍ ÿ and z̈ are accelerations along x-, y-, and z-

axes. α̈ β̈ and ψ̈ are the angular accelerations around the x-axis y-axis and z-axis. Fx Fy

and Fz are the resultant forces applied to the mass along x-, y-, and z- axes. Ix Iy Iz and Tx

Ty Tz are the inertial moment and resultant torque around the x-axis y-axis and z-axis. The

force/mass and torque/moment determines the three-dimensional motion of the tag. The

motion profiles explained above are unknown in the experiment. In addition, unlike [39]

initial conditions of the estimation are unknown in estimation.

The nonlinear state-space models of 3D motion with different sensor outputs are shown
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in Equation 10.7 and Equation 10.8

Ẋ =AX +Bw (10.7)

Y =h(X) + v (10.8)

where X shown in Equation 10.13 is the fixed-length state vector composed of position,

velocity, and acceleration states along x-, y-, z- axes, and orientation, angular velocity,

angular acceleration around the x-axis y-axis and z-axis. Y denotes the vector of noisy

sensor outputs to estimate the state vector. Three sets of sensor outputs Y : {r}, {r, ṙ};

{r, ṙ, θ, ω, ax, ay, az} are applied. Vector h(X) describes the nonlinear transformation

between state vector and the noise-free sensor outputs vector. w is the disturbance vector

which accounts for the forces ( Ḟx
m
, Ḟy
m
, Ḟz
m
, Ṫx
Ix
, Ṫy
Iy
, Ṫz
Iz

), and v is the vector of sensor noises.

w =

[
Ḟx
m

Ḟy
m

Ḟz
m

Ṫx
Ix

Ṫy
Iy

Ṫz
Iz

]′
(10.9)

For state vector without orientation or angular velocity, the state vectorX and output vector

Y are composed of

X =

[
x ẋ ẍ y ẏ ÿ z ż z̈

]′
(10.10)

Y =

[
r1 ṙ1 r2 ṙ2 r3 ṙ3 r4 ṙ4

]′
(10.11)

Output vector Y in Equation 10.11 corresponds to sensor outputs of {r}, {r, ṙ}. In Equa-

tion 10.11, ri, ṙi are radial distances and radial velocities measured from reader i. If only

radial distances are used, ṙi, ∀i = 1, 2, 3, 4 are removed from Equation 10.11. Correspond-
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ing coefficient matrices A, B in the state-space model are

A =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0



, B =



0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1



(10.12)

For state vector with orientation and angular velocity, the state and output vectors X , Y are

composed of

X =

[
x ẋ ẍ y ẏ ÿ z ż z̈ α α̇ β β̇ ψ ψ̇

]′
(10.13)

Y =

[
r1 ṙ1 r2 ṙ2 r3 ṙ3 r4 ṙ4 θx ωx θy ωy θz ωz ax ay az

]′
(10.14)

ri, ṙi are radial distances and radial velocities measured from reference reader i = 1, 2, 3, 4.

θx, θy, and θz are the orientation angles and ωx, ωy, ωz are the angular velocities around

the x-axis y-axis and z-axis. ax, ay, and az are acceleration along the xB, yB, and zB axes.
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Corresponding coefficient matrices A, B in the state-space models are

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(10.15)

Suppose that the values of the continuous signals are sampled at the sampling instants k

with sampling period T . Discrete-time state-space models of the tag in 3D motion are [62]

Xk+1 =FXk +Gwk (10.16)

Yk =h(Xk) + vk (10.17)

where Xk is discrete-time state vector of X composed of position, velocity, and accelera-

tion states along x-, y-, and z- axes, as well as orientation, angular velocity, and angular

acceleration around the x-axis y-axis and z-axis at time step k. Yk denotes the vector of

noisy sensor outputs at time step k. wk and vk are the discrete-time disturbance vector and

the vector of sensor noises.

For state vector without orientation or angular velocity, discrete-time state vector and

output vector corresponding to vectors in continuous time Equation 10.10 - Equation 10.11
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are

Xk =

[
xk ẋk ẍk yk ẏk ÿk zk żk z̈k

]′
(10.18)

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k r4k ṙ4k

]′
(10.19)

If only radial distances are used, ṙik where i = 1, 2, 3, 4 are removed from Equation 10.19.

Coefficient matrices F andG are shown in Equation 10.20, where T is the sampling period.

F =



1 T 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 T 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 T 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 T 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 T 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 T 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 T 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 T 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, G =



0 0 0 0 0 0
0 0 0 0 0 0
T 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 T 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 T 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(10.20)

For state vector with orientation and angular velocity, discrete-time state and output vectors

corresponding to vectors in Equation 10.13 - Equation 10.14 become

Xk =

[
xk ẋk ẍk yk ẏk ÿk zk żk z̈k αk α̇k βk β̇k ψk ψ̇k

]′
(10.21)

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k r4k ṙ4k θxk ωxk θyk ωyk θzk ωzk axk ayk azk

]′
(10.22)
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Corresponding coefficient matrices F and G are

F =



1 T 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 T 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 T 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 T 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 T 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 T 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 T 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 T 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, G =



0 0 0 0 0 0
0 0 0 0 0 0
T 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 T 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 T 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(10.23)

where T is the sampling period. Nonlinear transformation between state vector and noise-

free sensor outputs vector can be represented as following. For state vector without orien-

tation or angular velocity,

h(Xk) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 ḣ4

]′
(10.24)

ḣi where i = 1, 2, 3, 4 are removed from Equation 10.24 if only radial distances are used.

For state vector with orientation and angular velocity,

h(Xk) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 ḣ4 h5 h6 h7 h8 h9 h10 h11 h12 h13

]′
(10.25)
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In both situations,

hu =
√

(xk − xu)2 + (yk − yu)2 + (zk − zu)2, u = 1, 2, 3, 4

ḣu =
(xk − xu)ẋk + (yk − yu)ẏk + (zk − zu)żk√

(xk − xu)2 + (yk − yu)2 + (zk − zu)2
, u = 1, 2, 3, 4

h5 = αk

h6 = α̇k

h7 = βk

h8 = β̇k

h9 = ψk

h10 = ψ̇k
h11

h12

h13

 =


cos θzk − sin θzk 0

sin θzk cos θzk 0

0 0 1




cos θyk 0 sin θyk

0 1 0

− sin θyk 0 cos θyk




1 0 0

0 cos θxk − sin θxk

0 sin θxk cos θxk



ax

ay

az


in which xu, yu, u = 1, 2, 3, 4 are the locations of each reader that can be inferred in the

system setup in Table 6.1.

10.3 3D Nonlinear State Estimation Based on NLE

Similarly, Nonlinear Least-Squares Estimation (NLE) proposed in [49] is applied for non-

linear state estimation in 3D motion. NLE is developed from the perspective of nonlinear

least-squares optimization and the map-inversion philosophy based on discrete-time dy-

namics of the system [49].

More specifically, NLE determines an estimate x̂k of xk, using the l-length measure-

ment set {yk, yk−1, ..., yk−l+1} to reduce the impact of sensor noise. Therefore, NLE in-

cludes a two-step procedure, wherein first x̂k−l+1 is determined from the measurement sets

and second x̂k is determined through forward propagation [49].
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The stacked measurement vector of the tag in 3D motion based on section 10.2 is

Zk =

[
Yk−l+1, Yk−l+2, ... , Yk

]T
(10.26)

where Yk is the noisy measurement output vector from Equation 10.22 that is composed of

the whole or part of

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k r4k ṙ4k θxk ωxk θyk ωyk θzk ωzk axk ayk azk

]
(10.27)

where r1k, r2k, r3k, r4k, ṙ1k, ṙ2k, ṙ3k, ṙ4k are simulated/measurement radial distances and

radial velocities with added noise at time stamp k of sampling period T . θxk, θyk, θzk and

ωxk, ωyk, ωzk are simulated/measurement orientations and angular velocities around the

x-axis y-axis and z-axis.

A mapping from state and input values to output values is denoted as H

Hk(Xk−l+1) =



h(Xk−l+1)

h(FXk−l+1)

..

h(F l−1Xk−l+1)


(10.28)

where F is shown in Equation 10.23. In the absence of modeling error and sensor noise,

Zk =Hk(Xk−l+1) (10.29)

holds true [49]. In case of noise, NLE minimizes the sum of the squares of the residual

errors

X̂k−l+1 = argmin||Zk −Hk(Xk−l+1)||2 (10.30)
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This least-squares state estimate is l samples delayed in time, so it is propagated forward

in time using the nominal system dynamics to get [49]

X̂k = F l−1Xk−l+1 (10.31)

Suppose that the current iterate in the search for the minimizer of ||Ek(Xk−l+1)||2 is de-

noted by X(j)
k−l+1. Using Taylor series approximation, a corresponding local model for the

iteration process would be [49]

Êk(Xk−l+1) = Ek(X
(j)
k−l+1) + Jk(X

(j)
k−l+1)(Xk−l+1 −X(j)

k−l+1) (10.32)

where Jk(Xk−l+1) denotes the Jacobian matrix of Ek(Xk−l+1) with respect to Xk−l+1.

NLE estimation can be implemented in both causal and uncausal way. In the estimation

for RFID states, we implement the estimation causally, using states before and at the time

stamp.

In order to minimize ||Ek(Xk−l+1)||2 = ||Zk − Hk(Xk−l+1)||2, an iterative search

of damped Gauss-Newton method is conducted to minimize the error of nonlinear least-

squares problem [49]. In parallel, Levenberg-Marquardt method is also applied to mini-

mize the error of nonlinear least-squares problem.

Implementation: Built-in function lsqnonlin in Matlab have been applied in the esti-

mation. The two implementations give close enough results. Built-in function in Matlab

lsqnonlin(@(X)Ek(Y,X, l), Xk) is implemented in the estimation. Input Ek(X) is the

residual error in Equation 10.30, state vector Xk, k = 1, 2, ..., len is initialized the same.

Minimal Stack Length: With orientation and angular velocity, the length of state vec-

tor is 15 and the length of measurement vector is 17. Hence, the minimal stack length

needed is len = 1 in the 3D estimation.
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10.4 3D Nonlinear State Estimation Based on EKF

EKF is also applied to nonlinear state estimation in 3D motion. There are two steps in EKF:

prediction step in which state vector and prediction error matrix is propagating to next time

stamp and update step in which gain matrix, state vector and prediction matrix are updated

based on measurements.

In this section, we consider with orientation and angular velocity. State-space model

without inertial sensors can be referred to section 10.2. State vectorXk of dimension 1×15

as shown in Equation 10.21, measurement vector Yk of dimension of 1 × 17 as shown in

Equation 10.22, and Fk of dimension 15× 15 as shown in Equation 10.23 in the following

steps. Moving from static, state vector X0 is initialized as a zero vector.

1. Predict Step

X̂k = Fk−1X̂k−1 (10.33)

Pk = Fk−1Pk−1F
T
k−1 +Q (10.34)

2. Update Step

Gk = PkL
T
k (HkPkL

T
k +R)−1 (10.35)

X̂k = X̂k +Gk(Yk − h(X̂k)) (10.36)

Pk = (I −GkLk)Pk (10.37)

where Lk(Xk) is the Jacobian matrix of error Ek(Xk) = Yk − h(X̂k) with respect to Xk.

Pk is the prediction error matrix, Q is the covariance matrix of disturbance vector ωk, and

R is the covariance matrix of vk.
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Prediction error matrix P0 is initialized as

P0 =


0.8

. . .

0.8


15×15

(10.38)

Disturbance vector accounts for the forces ( Ḟx
m
, Ḟy
m
, Ḟz
m
, Ṫx
Ix
, Ṫy
Iy
, Ṫz
Iz

), and v is the vector of

sensor noises. Hence, Q is set as

Q =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Ḟx

m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Ḟy

m
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Ḟz

m
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Ṫx

Ix
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ṫy

Iy
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ṫz

Iz


15×15

(10.39)

Covariance matrix R of sensor noise vector is set with diagonal elements that is the vari-

ance of difference between measurement and ground truth states.
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R =



v1

v2

. . .

v17


17×17

(10.40)

where:

v2i−1 = ||ri − rigt||2, i = 1, 2, 3, 4

v2i = ||ṙi − ṙigt||2, i = 1, 2, 3, 4

vj = ||θk − θkgt||2, vj+1 = ||ωk − ωkgt||2, vj+6 = ||ak − akgt||2, j = 9, 11, 13 k = x, y, z

where rigt, ṙigt, ∀i = 1, 2, 3, 4 are the ground truth radial distances and radial velocities

from reader #1 #2 #3 #4 derived in the motion in chapter 6. θkgt, ωkgt, akgt, ∀k = x, y, z

are orientations, angular velocities, and accelerations along x- y- z- axes.

Based on the fact that measurements from different readers are of different frequencies

and thus are mutually independent. In addition, accelerometer gyroscope magnetometer

measured from the cellphone embedded IMU are also independent.

10.5 Asynchronous Estimation

States in nonlinear transformation are dependent on each other, e.g. accelerations are de-

pendent on orientations. Therefore, synchronous estimation are of reduced accuracy out of

the time stamp difference among states, which is verified by the estimation results.

To avoid the time difference, asynchronous estimation is introduced in this section, in

which the state vector is estimated whenever a measurement sensor output arrives. Hence,

state vector gets updated at every measurement arrival. Since it only relies on single sensor

output, time stamp is the same in the estimation.
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10.5.1 3D State-Space Model in Asynchronous Estimation

We only consider with orientation and angular velocity. State-space model without inertial

sensors can be referred to section 10.2. To match number of sensor inputs, coefficient

matrix C is applied to both Yki and h(Xk) to truncate corresponding arrived measurement

sensor outputs from the whole measurement vector. State vector Xk is of the fixed length

15 as shown in Equation 10.41. Measurement vector Yki is sensor output of different length,

i.e., 4, 8, 17 depends on number of arrival sensor measurements at the same time stamp ki.

Xk =

[
xk ẋk ẍk yk ẏk ÿk zk żk z̈k αk α̇k βk β̇k ψk ψ̇k

]′
(10.41)

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k r4k ṙ4k θxk ωxk θyk ωyk θzk ωzk axk ayk azk

]
(10.42)

Coefficient matrix F of propagating state vector Xk at time stamp k to measurements Yki

at time stamp ki becomes

F =



1 Ti 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 Ti 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 Ti 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 Ti 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 Ti 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 Ti 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 Ti 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 Ti 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 Ti
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(10.43)

where Ti = Tki−Tk is the time difference to propagate state vectorXk at time k to received

measurement time stamp ki. Since there is only one set of measurement, all Ti in F are the

same.
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Then stacked measurement vector Yki is composed of sensor measurements of different

lengths, e.g., 4, 8, or 17, from different sensors in 3D motion is able to provide sensor

measurements from multiple sources.

For example, if three accelerations arrive, Yki is of length 3. Jacobian matrix Jki in

NLE and Jacobian matrix Lk in Kalman filter are of size 3× 15. C is of size 3× 17, which

is composed of an identity matrix of 3 with a 3 by 14 zero matrix. In addition, R matrix is

also of size 3× 3.

10.5.2 Estimation Using NLE and EKF in Asynchronous Estimation

1. Asynchronous Estimation Using NLE

Zk =

[
Yk−l+1, Yk−l+2, ... , Yk

]T
(10.44)

where Yk−l+1, Yk−l+2, ... , Yk is corresponding sensor measurements arrives at time stamp

k − l + 1, k − l + 2, ... , k, which may be outputs from RF of length 8, accelerometer of

length 3, gyroscope of length 3, or magnetometer of length 3.

Similarly, NLE estimates the state vector from the stacked measurement vector as in

section 10.3 afterwards.

2. Asynchronous Estimation Using EKF

In addition, Fk is of fixed size 15 × 15, Gk is of size 17 × len where len is the length of

input measurement vector. R is of size len× len. h(Xk) is of length len× 1.

If only RF signal comes, h(Xk) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 ḣ4

]
; if only mag-

netometer measurement comes, h(Xk) =

[
h5 h7 h9

]
; if only gyroscope measurement

comes, h(Xk) =

[
h6 h8 h10

]
; if only accelerations comes, h(Xk) =

[
h11 h12 h13

]
.

The rest is the union of different combinations of h(Xk).
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Correspondingly, Jacobian matrix LTk is of size len × 15, where len is the number of

arrival sensor measurements. Afterwards, EKF estimates the state vector from the varied

length measurement vector following steps in section 10.4.

10.6 Synchronous Estimation

Synchronous estimation is applied to the fixed-length measurement vector Yk. It waits

until every sensor output arrives to build one set of the measurement vector. Therefore,

dimensions of Xk, Yk, F , G, Zk, Hk in NLE and Fk−1, Pk, Q, R, Lk, Gk stay the same.

Since all measurements may not come at the same time, measurement state vector as shown

in Equation 10.46 may be of different arrival time stamps.

10.6.1 3D State-Space Model in Synchronous Estimation

Similarly, we only consider with orientation and angular velocity. State-space model with-

out inertial sensors can be referred to section 10.2. Specifically, let kr denote the arrival

time stamp for RF signals where r = 1, 2, 3, 4. kax, kay, kaz denote time stamp for acceler-

ations along x-, y-, and z- axes, kα′ , kβ′ , kψ′ denote time stamp for orientation around x-,

y-, and z- axes, and kαx, kβy, kψz denote time stamp for angular velocity around x-, y-, and

z- axes.

Discrete-time state vector at time stamp k of fixed length is shown in Equation 10.45

Xk =

[
xk ẋk ẍk yk ẏk ÿk zk żk z̈k αk α̇k βk β̇k ψk ψ̇k

]′
(10.45)

Discrete-time measurement vector at different time stamps kr, kax, kay, kaz kα′ kβ′ kψ′ , kαx

kβy kψz as described above is shown in Equation 10.46

Yk =

[
r1k ṙ1k r2k ṙ2k r3k ṙ3k r4k ṙ4k θxk ωxk θyk ωyk θzk ωzk axk ayk azk

]
(10.46)
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Corresponding coefficient matrix F of propagating state vector Xk to corresponding

measurements in Yk at each time stamp

F =



1 Tax 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 Tax 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 Tay 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 Tay 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 Taz 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 Taz 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 Tα1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 Tβ1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 Tψ1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(10.47)

where Tai, i = x, y, z is the time difference to propagate acceleration at time stamp k to

position and velocity calculated from RF signal at time stamp kr along x, y, z axes, i.e.

Tai = kr − k, where i = x, y, z, r = 1, 2, 3, 4. RF signals from readers r = 1, 2, 3, 4 are of

the same time stamp.

Tα1, Tβ1 Tψ1 are the time difference to propagate angular velocity to orientation mea-

sured from magnetometer at time stamp α′, β′, ψ′ around x-axis y-axis and z-axis, i.e.

Tα1 = α′ − k, Tβ1 = β′ − k, and Tψ1 = ψ′ − k.

Therefore, state vector is propagated to each time stamp in the measurement vector

correspondingly. Then each time stamp of Xk and Yk are the same to each other.

10.6.2 Estimation Using NLE and EKF in Synchronous Estimation

1. Synchronous Estimation Using NLE

In NLE, once we have a full vector of measurements Yk, NLE described in section 10.3 is

then applied to estimate the state vector Xk.

99



More specifically, the stacked measurement vector in NLE is

Zk =

[
Yk−l+1, Yk−l+2, ... , Yk

]T
=

[
h(F l−1Xk−l+1), h(F l−2Xk−l+2), ... , h(Xk)

]T
(10.48)

Zk of length l contains each measurement Yi of full length 17, which is shown in Equa-

tion 10.46 and F is the same as shown in Equation 10.47, and Xk is shown in Equa-

tion 10.45.

2. Synchronous Estimation Using EKF

In EKF, once we have a full vector of measurements Yk, which is the same as in Equa-

tion 10.46. F is as shown in Equation 10.43. EKF in section 10.4 is applied to estimate the

state vector Xk. In addition R matrix is the variance of measurement data.

10.7 Orientation Estimation Based on Quaternion

To alleviate the singularity problem caused by the Euler angles representation, quaternions

are used to represent the attitude of rigid body. The singularity is in general a point at which

a given mathematical object is not defined and it causes the gimbal lock. The singularity

occurs when the pitch angles rotation is θ = ±π/2 [77].

The quaternion vector q that represents the attitude is

q =

[
q0 q1 q2 q3

]
(10.49)

Based on the rotation principal, rotation matrices based on Euler angles and quaternion are

[77]
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R =


cos θz − sin θz 0

sin θz cos θz 0

0 0 1




cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy




1 0 0

0 cos θx − sin θx

0 sin θx cos θx

 (10.50)

=


cos θy cos θz − cos θx sin θz + sin θx sin θy cos θz sin θx sin θz + cos θx sin θy cos θz

cos θy sin θz cos θx cos θz + sin θx sin θy sin θz − sin θx cos θz + cos θx sin θy sin θz

− sin θy sin θx cos θy cos θx cos θy


(10.51)

=


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (10.52)

Therefore, the pitch θx roll θy and yaw θz angles derived from quaternion are

θx = arctan

(
R23

R33

)
= arctan

(
2(q2q3 − q0q1)

q2
0 − q2

1 − q2
2 + q2

3

)
(10.53)

θy = − arcsin(R13) = − arcsin(2(q1q3 + q0q2)) (10.54)

θz = arctan

(
R12

R11

)
= arctan

(
2(q1q2 − q0q3)

q2
0 + q2

1 − q2
2 − q2

3

)
(10.55)

Where θx is pitch angle in the range [−π, π], θy is roll angle in the range [−π/2, π/2], and

θz is yaw angle in the range [−π, π].

Measurement accelerations [ax, ay, az] after rotating Euler angles of [θx, θy, θz] or quater-

nion representation angles of [q0, q1, q2, q3] are


a′x

a′y

a′z

 = R


ax

ay

az

 (10.56)
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In static states, there only exists gravity in acceleration. In this case, measured acceler-

ations are
a′x

a′y

a′z

 = R


0

0

g

 =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3




0

0

g


(10.57)

=


2(q1q3 + q0q2)g

2(q2q3 + q0q1)g

(q2
0 − q2

1 − q2
2 + q2

3)g

 (10.58)

subsection 10.7.1 and subsection 10.7.3 describe orientation estimation using angular ve-

locities from gyroscope and accelerations from accelerometer in quaternion [78].

10.7.1 State Space Model for Quaternion Based Orientation Estimation

State space model to estimate orientation based on quaternion is as shown below [77, 78]

q̇ =
1

2
Wq (10.59)

y = h(q) + vk (10.60)

where W is composed of angular velocities ωx ωy ωz along x- y- z- axes

W =



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0


(10.61)
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and the nonlinear transformation from quaternion to accelerations is the same as in Equa-

tion 10.58

h(q) =


2(q1q3 + q0q2)g

2(q2q3 + q0q1)g

(q2
0 − q2

1 − q2
2 + q2

3)g

 (10.62)

Discrete-time model of Equation 10.59 and Equation 10.60 are as shown in the following

qk = Fk−1qk−1 + ωk (10.63)

Yk = h(qk) + vk (10.64)

where

Fk =
1

2
WkT + I =



1 −1
2
ωxT −1

2
ωyT −1

2
ωzT

1
2
ωxT 1 1

2
ωzT −1

2
ωyT

1
2
ωyT −1

2
ωzT 1 1

2
ωxT

1
2
ωzT

1
2
ωyT −1

2
ωxT 1


(10.65)

where ωx, ωx, and ωx are angular velocities along x-, y-, and z- axes at time stamp k. T is

the time difference between time stamp k and time stamp k − 1.

10.7.2 Quaternion Based Orientation Estimation Using NLE

The stacked measurement vector of the quaternion based orientation estimation

Zk =

[
Yk−l+1, Yk−l+2, ... , Yk

]T
(10.66)
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where Yk is the noisy measurement acceleration vector

Yk =

[
axk ayk azk

]
(10.67)

where axk, ayk, azk are simulated/measurement accelerations with added noise at time

stamp k of sampling period T along x-axis y-axis and z-axis.

A mapping from state and input values to output values is denoted as H

Hk(Xk−l+1) =



h(Xk−l+1)

h(FXk−l+1)

..

h(F l−1Xk−l+1)


(10.68)

where F is shown in Equation 10.23. In the absence of modeling error and sensor noise,

Zk =Hk(Xk−l+1) (10.69)

holds true [49]. In case of noise, NLE minimizes the sum of the squares of the residual

errors

X̂k−l+1 = argmin||Zk −Hk(Xk−l+1)||2 (10.70)

This least-squares state estimate is l samples delayed in time, so it is propagated forward

in time using the nominal system dynamics to get [49]

X̂k = F l−1Xk−l+1 (10.71)

The implementation of estimation is the same as in section 10.3.
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10.7.3 Quaternion Based Orientation Estimation Using EKF

Predict and update stages of EKF to estimate the attitude using quaternion are

Predict:

q̂k = Fk−1q̂k−1 (10.72)

Pk = Fk−1Pk−1F
T
k−1 +Q (10.73)

Update:

Gk = PkH
T
k (HkPkH

T
k +R)−1 (10.74)

X̂k = X̂k +Gk(zk − h(X̂k)) (10.75)

Pk = (I −GkHk)Pk (10.76)

In addition, Pk is the prediction error matrix, Q is the covariance matrix of ωk, and R

is the covariance matrix of vk.

Estimation results of attitude based on the models above are shown in Figure 10.1. The

cellphone firstly rotates counter-clockwisely along x- axis for 2π, i.e., θx rotating counter-

clockwise for 2π rad. Then rotating counter-clockwisely along y- axis for 2π rad. Finally

rotating along z- axis for 2π rad.

Rotation angles are defined counterclockwise as shown in Figure 9.1. In Figure 10.1,

roll angle θx increases to π and decreases to −π, travelling a total orientation of 2π. The

yaw angle θz is of the same motion profile. Pitch angle θy increases to π/2 and decreases

to −π/2, travelling a total orientation of π.

As shown in Figure 10.1, there exists jitters in estimated roll θx and yaw θz due to

the gimbol lock in transforming quaternion to Euler angles based on Equation 10.55 when

pitch θy is close to ±π/2.
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Figure 10.1: Estimated Orientation Along x- y- and z- Axes, i.e., Roll θx Pitch θy Yaw θz
Using Quaternion and EKF.
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CHAPTER 11

RESULTS OF 3D NONLINEAR LEAST-SQUARES ESTIMATION

In this chapter, estimation based on NLE and EKF is implemented on measurement data

including RF signal and IMU sensors. Estimation results using both RF and IMU and

RF signal only are compared and evaluated. From estimation results, RF-signal achieves

similar estimation results to RF-signal with added inertial information. In addition, stacked

states in NLE maintain the motion-capture grade, i.e., 30 cm estimation accuracy for states

at various noise levels in indoor multipath environment. Estimation results also verify the

similar estimation results between NLE and EKF. In addition, NLE is of 2 cm smaller RMS

error compared to EKF in both estimations.

This is the first attempt in the literature of a true 3D RFID-based motion capture system.

The collection includes amplitude, phase, and IMU data to provide a comprehensive data

set that can be down-selected to explore any number of sensor fusion estimation techniques.

Selectively using some or part of the data set will allow us to judge the relative contributions

of each piece of data to the overall location accduracy. NLE and EKF using different sensor

information {r}, {r, ṙ}, {r, ṙ, θx, θy, θz, ωx, ωy, ωz, ax, ay, az} corresponding to output

vectors in Equation 10.19 or Equation 10.22 are implemented following estimation steps

in section 10.3 and section 10.4. 1

11.1 Bias Jump After Motion

In cellphone based IMU data, there is a bias jump after each motion as shown in Fig-

ure 11.1. For the low-cost cellphone embedded IMU, there exists a threshold for sensor

measurements to be identified. Accelerations > 0.0447 m/s2 can be identified.
1https://github.com/qq3575022/3DIndoorStateEstimationRFIDMotionCapture/tree/

main/Chapter11
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Figure 11.1: Acceleration of 0.128 m/s2 Along x- Axis and Then 0.2943 m/s2 Along y-
Axis and Finally 0.0447 m/s2 Along z- Axis, Dividing the Static Regions into 1, 2, 3.

The mean values of bias for accelerations along x- y- and z- axes in static regions 1, 2, 3

are shown in Table 11.1.

Table 11.1: Mean Values of Accelerations in Regions 1, 2, 3

Region 1 Region 2 Region 3
Mean Error Along x Axes [m/s2] 0.1453 0.1427 0.1364
Mean Error Along y Axes [m/s2] -0.0063 -0.0043 -0.0023
Mean Error Along z Axes [m/s2] -0.6318 -0.6371 -0.6162

As shown in Table 11.1, the bias in regions 1, 2, 3 are different for all accelerations along

different axes. In addition, the maximal difference among different regions is 0.0209 m/s2.

Therefore, updates on parameters of error model need to be updated in each static region.

11.2 Static Detection on IMU Measurement

Zero velocity detection in subsection E.2.1 is applied to detect the stationary states for cal-

ibration. Hard thresholds on accelerations and angular velocities are applied for detection.
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The result is shown in Figure 11.2.

Figure 11.2: Zero Velocity Detection For Accelerations and Angular Velocities Along x-
y- and z- Axes Using Hard Set Thresholds: 0.37 m/s2 for Accelerations and 0.018 rad/s for
Angular Velocities.

In Figure 11.2, blue lines are acceleration along x- axis, orange lines are acceleration along

y- axis, and green lines are acceleration along z- axis. The red rectangle are states of de-

tected static regions. It can be inferred from Figure 11.2 that motion along x- y- and z- axes

separately and x- y- z- axes all together are identified. In addition, static states in between

are detected as stationary states as shown in the red rectangles.

More specifically, the start time stamps in the motion along x- axis first, then along y-

axis, and finally along z- axis as well as moving along x- y- z- axes all together are shown

in Table 11.2.

In addition, the small time difference, like in the detected method < 0.1 s, the estimation
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Table 11.2: Static Detection on IMU Accelerometer and Gyroscope Measurements

Start TimeStamp in Motion Along x- Along y- Along z- Along xyz-
Detected Start TimeStamp 47.32 s 57.09 s 67.72 s 107.153 s

results are not affected. Moreover, the start times stamps are very close to the ground truth

start time based on the motion profile.

11.3 Orientation Estimation in the Motion

Rotation angles are defined counterclockwise as shown in Figure 11.3. In Figure 11.3, roll

angle θx, yaw angle θz, and pitch angle θy decreases to a constant around 0, indicating the

orientation in the motion does not change. The input are acceleration and angular velocity

as described in subsection 10.7.3. More specifically, the accelerations are calibrated with

parameters derived in section E.6.

11.4 Sensor Fusion Based Estimation Using Both RF and IMU Sensor Data

The IMU accelerometer measurement data are calibrated using the scalar and skew matrices

from Table E.3 and the bias estimated before input into the NLE estimation. The values are

shown in Table 11.3 as well.

In addition, the bias of accelerometer change in different setup and also have time drift.

Bias value of accelerometer are estimated with Kalman filer. For easier implementation,

mean values are applied instead. It is tested that mean value of time difference larger than

a few minutes are still able to get reasonable estimation results.

Moreover, since the orientation and angular velocity do not change much in the motion,

bias of gyroscope as well as orientation derived in Figure 11.3 are compensated for cali-

bration.
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Figure 11.3: Estimated Orientation Along x- y- and z- Axes, i.e., Roll θx Pitch θy Yaw θz
Using Quaternion and EKF.

Table 11.3: Derived Scalar Factor Bias and Skew Factor in Measurement

Skew Factor Scalar Factor Bias
−αyz 0.0623 sax 0.9944 bax 0.1739
αzy 0.0055 say 0.9999 bay 0.0071

−αzx −0.0041 saz 0.9880 baz −0.2999

In the estimation below, the tagged object is moving along x- y- z- axes all together simul-

taneously.
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11.4.1 NLE Based State Estimation on RF and IMU Data

Following steps in the asynchronous estimation in section 10.5 that is based on NLE in

section 10.3, sensor fusion based estimation including RF and IMU sensor data using NLE

is implemented. Input are radial distance r and radial velocity ṙ as well as IMU sensor data:

accelerations, angular velocities from gyroscope, and orientation from magnetometer. The

sampling rate of RF signal is 4847 Hz and the sampling rate of IMU is 813 Hz. Estimation

results of using both RF signal and IMU {r, ṙ, θx, θy, θz, ωx, ωy, ωz, ax, ay, az} based on

NLE of stack length 5 are shown in Table 11.4 and Figure 11.4.

Table 11.4: RMS Error for Estimated Position Along x- y- and z- Axes All Together Based
on NLE in Asynchronous Model Using RF Signal and Cellphone Embedded Measurement
Data with Stack Length of 5.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Before Estimation 719.9 349.9 629.2

r ṙ θx, θy, θz, ωx, ωy, ωz, ax, ay, az 319.0 225.0 226.1

In addition, the estimated positions, velocities, and accelertaions along x- y- and z-

axes of NLE with stack length of 5 on RF and IMU sensors are show in Figure 11.4.

It can be inferred from Table 11.4 and Figure 11.4 that estimated position and velocity

states follow the ground truth position and velocity. In addition, estimated RMS error

along z- axis is larger than RMS error in xy- plane similar to measurement data before

estimation. In the xy- plane, NLE based estimation achieves 22.50 cm level accuracy in

multipath. Therefore, NLE based sensor fusion estimation achieves fine-scale localization

of 31.90 cm from 71.99 cm in 3D motion in real-time.

112



Figure 11.4: Estimation Results of the 3D Motion Along x- y- and z- Axes Using RF Sig-
nal and Cellphone Embedded Measurement Data Based on NLE in Asynchronous Model
When Moving x- y- and z- Axes All Together Simultaneously with Stack Length of 5.
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11.4.2 EKF Based State Estimation on RF and IMU Data

Following steps in the asynchronous estimation in section 10.5 that is based on EKF in

section 10.4, sensor fusion based estimation including RF and IMU sensor data using EKF

is implemented. Input are radial distance r and radial velocity ṙ as well as IMU sensor data:

accelerations, angular velocities from gyroscope, and orientation from magnetometer. The

sampling rate of RF signal is 4847 Hz and the sampling rate of IMU is 813 Hz. Estimation

results of using both RF signal and IMU {r, ṙ, θx, θy, θz, ωx, ωy, ωz, ax, ay, az} based on

EKF are shown in Table 11.5 and Figure 11.5.

Table 11.5: RMS Error for Estimated Position Along x- y- and z- Axes All Together Based
on EKF in Asynchronous Model Using RF Signal and Cellphone Embedded Measurement
Data.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Before Estimation 719.9 349.9 629.2

r ṙ θx, θy, θz, ωx, ωy, ωz, ax, ay, az 335.4 230.5 234.7

It can be inferred from Table 11.5 and Figure 11.5 that estimates position and velocity

states based on EKF are similar to ground truth. In addition, estimation results of EKF

is similar to NLE, which validate both estimation methods. Hence, sensor fusion based

estimation in 3D motion achieves motion capture level accuracy, i.e., 33.54 cm, which

holds the similar accuracy level in 3D motion in NLE of 31.90 cm.
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Figure 11.5: Estimation Results of the 3D Motion Along x- y- and z- Axes Using RF Sig-
nal and Cellphone Embedded Measurement Data Based on EKF in Asynchronous Model
When Moving x- y- and z- Axes All Together Simultaneously.
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11.5 RF Signal Only Based Estimation

In this section, we show that RF signal only, i.e., sensor combination {r}, {r, ṙ} achieve

the same level accuracy as sensor fusion based estimation. Thus, RF signal only is able to

achieve motion capture level accuracy estimation. In this way, RFID based motion capture

systems can be greatly simplified from embedding IMU.

11.5.1 NLE Based State Estimation on RF Signal Only

Asynchronous estimation including RF sensor data using NLE is implemented. Input are

radial distance r and radial velocity ṙ. The sampling rate of RF signal is 4847 Hz. Estima-

tion results of using RF signal only {r}, {r, ṙ} based on NLE of stack length 5 are shown

in Table 11.6 and Figure 11.6.

Table 11.6: RMS Error for Estimated Position Along x- y- and z- Axes All Together Based
on NLE in Asynchronous Model Using RF Signal Only with Stack Length of 5.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Before Estimation 719.9 349.9 629.2

r 319.6 225.7 226.2

r ṙ 319.0 224.8 226.2

It can be inferred from Table 11.6 and Figure 11.6 that using RF signal only achieves sim-

ilar position accuracy to using both RF signal and IMU data together. More specifically,

using RF signal only is of 31.96 cm and 31.90 cm accuracies. The estimated position and

velocity states are close to the shape of ground truth position and velocity states. Hence, RF

signal only based estimation achieves motion capture level accuracy, i.e., 31.90 cm, using

only RF signal, which is similar to using both RF signal and IMU data of 31.90 cm.
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Figure 11.6: Estimation Results of the 3D Motion Along x- y- and z- Axes Using RF
Signal Only Based on NLE in Asynchronous Model When Moving x- y- and z- Axes All
Together Simultaneously with Stack Length of 5.
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11.5.2 EKF Based State Estimation on RF Signal Only

Asynchronous estimation including RF sensor data using EKF is implemented. Input are

radial distance r and radial velocity ṙ. The sampling rate of RF signal is 4847 Hz. Estima-

tion results of using RF signal only {r}, {r, ṙ} based on EKF are shown in Table 11.7 and

Figure 11.7.

Table 11.7: RMS Error for Estimated Position Along x- y- and z- Axes All Together Based
on EKF in Asynchronous Model Using RF Signal Only.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Before Estimation 719.9 349.9 629.2

r 339.3 233.0 246.7

r ṙ 335.9 230.8 244.0

It can be inferred from Table 11.7 and Figure 11.7 that EKF estimation on RF signal only

is of similar results to EKF state estimation using sensor fusion of RF signal and IMU to-

gether as well as NLE estimation on RF signal only, i.e., 33.59 cm compared to 33.54 cm

and 31.90 cm.

In summary, RF signal only is able to achieve motion capture level accuracy of 31.90

cm in 3D state estimation in indoor multipath environment. Therefore, RF signal only

based state estimation is of similar accuracy to sensor fusion based localization using both

RF signal and IMU data in 3D motion, which is similar to 2D scenario and thus simplifying

the RFID based motion capture system from embedding IMU.

11.6 Relation Between Newton Observer and EKF

It has shown that the measurement update equations for x̂k in the iterated EKF are exactly

as the minimization problem when a Gauss-Newton method is used with x̂−k as initial guess.
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Figure 11.7: Estimation Results of the 3D Motion Along x- y- and z- Axes Using RF
Signal Only Based on EKF in Asynchronous Model When Moving x- y- and z- Axes All
Together Simultaneously.

Hence, the covariance matrices R and Q−k may be interpreted as weights on the norms in

the ouput space and state space [79]. In the derivation, the number of measurements is

equal to the number of state variables, i.e., the output map H is n× n.
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CHAPTER 12

COMPARISON OF STATE ESTIMATION ON THREE KINDS OF POSITION

SENSORS

In this chapter, not only the magnitude based position sensor in measurement in Fig-

ure 10.7.3 but also all the three kinds of position sensors: magnitude position sensor in

section 8.1, ToF based position sensor in section 8.2, and ToF based position sensor in

tracking in section 8.3 are used for 3D state estimation based on NLE and EKF. 1

In the simulation:

1. The sampling rate of RF is 4847 Hz, sampling rate of IMU is 813 Hz, time stamps in

simulation are the same as in measurement.

2. All ToF in static or in tracking uses the same 4 frequencies.

3. All frequency separations in ToF is 1 MHz.

4. Both statistical noise and 6 deterministic reflection are added in the simulation model

compared to RMS error of measured magnitude. In all simulations for RSS and ToF, the K

values are 40, 400, 11, 56 for each reader and the standard deviation for phase noise is all

0.02 as shown in Table 7.1.

In addition, definition of static, tracking with motion, simulated RSS and simualted ToF

can be inferred from subsection 8.4.2.
1https://github.com/qq3575022/3DIndoorStateEstimationRFIDMotionCapture/tree/

main/Chapter12
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12.1 Using Both RF and IMU All Together Based on NLE and EKF

In this section, comparisons of estimated 3D coordinates (x, y, z) based on three position

sensors in LOS and multipath in static and tracking integrated with simulated IMU data

based on sensor model in section 9.2 along motion trajectory described in chapter 6 are

shown in Table 12.1 and Table 12.2.

Table 12.1: RMS Error Based on 3D Coordinates (x, y, z) Using Triangulation in sub-
section 8.4.1 Based on NLE in Asynchronous Model Using Three Position Sensors and
Simulated Cellphone IMU Data Compared to Ground Truth Trajectory in chapter 6.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 359.5 95.4 346.6

Simulated ToF 38.8 19.4 33.6

(LOS)
Tracking with Motion

Simulated RSS 359.5 95.4 346.6

Simulated ToF 173.3 170.1 33.2

Multipath

Static
Simulated RSS 386.8 161.9 351.3

Simulated ToF 82.2 41.8 70.8

Tracking with Motion
Measured RSS 319.0 225.0 226.1

Simulated RSS 386.8 161.9 351.3

Simulated ToF 395.6 157.5 362.9
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Table 12.2: RMS Error Based on 3D Coordinates (x, y, z) Using Triangulation in sub-
section 8.4.1 Based on EKF in Asynchronous Model Using Three Position Sensors and
Simulated Cellphone IMU Data Compared to Ground Truth Trajectory in chapter 6.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 109.8 55.4 94.8

Simulated ToF 89.0 52.2 72.1

(LOS)
Tracking with Motion

Simulated RSS 109.8 55.4 94.8

Simulated ToF 190.4 175.5 73.8

Multipath

Static
Simulated RSS 265.0 147.9 219.9

Simulated ToF 111.3 65.1 90.3

Tracking with Motion
Measured RSS 335.4 230.5 234.7

Simulated RSS 265.0 147.9 219.9

Simulated ToF 380.9 162.5 343.5

It can be inferred from Table 12.1 and Table 12.2 that:

1. Similar to results before estimation, RMS error in 3D for ToF based position sensors

is smaller than RSS based position sensor in LOS and multipath with static or tracking

with motion for NLE out of better non-Gaussian noise cancellation.

2. EKF has better noise cancellation for RSS based position sensor compared to ToF based

position sensors out of better Gaussian noise cancellation.

3. More specifically, for RSS based position sensor, after estimation RMS errors are 10.98

cm and 26.50 cm in EKF compared to 35.95 cm and 38.68 cm in NLE. In contrast, for ToF

based position sensors, RMS errors are 8.90 cm, 19.04 cm, 11.13 cm, and 38.09 cm in EKF

compared to 3.88 cm, 17.33 cm, 8.22 cm, and 39.56 cm in NLE.
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4. After estimation, RMS in 3D is reduced by half compared to Table 8.2. In addition, most

reduction in along z-axis for NLE based estimation in asynchronous model.

5. Estimated RMS error in xy-plane based on simulated position sensors is smaller than

RMS error along z-axis, which is similar to the measurement estimation results in Ta-

ble 11.4 - Table 11.7.

6. NLE outperforms EKF in estimation for ToF based position sensors, in tracking and

multipath scenarios for non-Gaussian noise.

7. EKF is of higher estimation accuracy for RSS based position sensors, especially in LOS

in which Gaussian noise is dominant.

8. NLE has better cancellation for large error i.e., error along z- axis in the motion.

9. In multipath simulated RSS based estimation, accuracy in xy-plane is 26.50 cm, which

is similar to estimation results in Table 11.6 and Table 11.7.

In LOS, the main noise source of RSS is Gaussian noise. EKF like KF is designed based

on Gaussian assumptions. On the other side, the larger the stack length is, the more accu-

rate NLE gives. The bias also increases if the stack length is too large. In multipath and

tracking scenarios, NLE comparably enhances non-Gaussian noise more compared to EKF

especially for ToF.

12.2 Using RF Signal Only based on NLE and EKF

In this section, comparisons of estimated 3D coordinates (x, y, z) based on three position

sensors of RF signal only in LOS and multipath in static and tracking along motion trajec-

tory described in chapter 6 are shown in Table 12.3 and Table 12.4 respectively.
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Table 12.3: RMS Error Based on 3D Coordinates (x, y, z) Using Triangulation in sub-
section 8.4.1 Based on NLE in Asynchronous Model Using Three Position Sensors Only
Compared to Ground Truth Trajectory in chapter 6.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 354.0 101.5 339.2

Simulated ToF 42.3 18.2 38.2

(LOS)
Tracking with Motion

Simulated RSS 354.0 101.5 339.2

Simulated ToF 173.4 169.2 37.5

Multipath

Static
Simulated RSS 382.8 165.5 345.2

Simulated ToF 87.0 42.9 75.7

Tracking with Motion
Measured RSS 319.0 224.8 226.2

Simulated RSS 382.8 165.5 345.2

Simulated ToF 395.4 156.8 363.0

It can be inferred from Table 12.3 and Table 12.4 that:

1. Using simulated RF signal only gets very similar estimation results to using both simu-

lated RF signal and IMU data based on NLE and EKF in asynchronous model, the differ-

ence for both NLE and EKF < 5 mm.

2. Similar to using both RF signal and IMU data together, estimated RMS error for simu-

lated ToF with multipath in static is smaller than estimation error of simulated RSS in LOS

and multipath.

3. In addition, ToF based position sensor in tracking with phases of adjacent time stamps

still keeps high localization accuracy.

4. The estimation error along z-axis is larger than RMS error in the xy-plane like in esti-

mation with simulated RF signal and IMU data together.
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Table 12.4: RMS Error Based on 3D Coordinates (x, y, z) Using Triangulation in sub-
section 8.4.1 Based on EKF in Asynchronous Model Using Three Position Sensors Only
Compared to Ground Truth Trajectory in chapter 6.

RMS Error for 4 Readers

3D xy-plane z-axis

[mm] [mm] [mm]

Line-of-Sight

Static
Simulated RSS 111.9 57.0 96.3

Simulated ToF 92.3 54.1 74.8

(LOS)
Tracking with Motion

Simulated RSS 111.9 57.0 96.3

Simulated ToF 191.9 176.1 76.3

Multipath

Static
Simulated RSS 264.3 148.5 218.6

Simulated ToF 113.8 66.6 92.2

Tracking with Motion
Measured RSS 335.9 230.8 244.0

Simulated RSS 264.3 148.5 218.6

Simulated ToF 379.8 163.0 343.1

In summary, for both NLE and EKF, estimation results using RF signal only is similar

to using both RF signal and IMU data in simulation, which are similar to measurement

estimation results. Before and after estimation, RMS error along z-axis is larger than RMS

error in xy-plane. NLE and EKF Estimation reduces raw RMS error by half. Before

and after estimation, ToF based position sensor gains higher localization accuracy in 3D

compared to RSS based position sensor.
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CHAPTER 13

CONCLUSIONS

This dissertation presented the competitive fine-scale and computational efficient wireless

position estimation with low infrastructure using both real measurements and realistic sim-

ulation models, both of which included multipath effects. 3D indoor state estimation for

RFID based motion capture systems achieves 31.90 cm in the 3D motion in the indoor mul-

tipath environment. More specifically, 22.50 cm in xy-plane and 22.61 cm along z-axis. In

addition, RF signal only estimation achieves 31.90 cm in 3D motion, 22.48 cm in xy-plane

and 22.62 cm along z-axis, enabling RF signal only based motion capture and localization

systems, which simplify fine-scale 3D localization systems to a great deal from embedding

inertial sensors in the indoor environment.

In addition, multipath has been simulated and added. Simulated magnitudes and phases

are very similar to measurements. Three kinds of position sensors are built in the simula-

tion model in both LOS and multipath scenarios in static and motion with tracking. It is

shown that RSS based position sensor is more sensitive to multipath than ToF. In addition,

ToF in tracking is able to achieve comparable localization accuracy compared to static,

making ToF based position sensor an alternative of RSS in real-time RFID based track-

ing and motion capture. Simulation results before and after estimation are very similar to

measurements. Additionally, RMS error along z- axis is larger than that in xy- plane.

Both NLE and EKF have been applied to 3D state estimation in different combinations

of RF signal and IMU data. EKF on Gaussian noise assumptions has better noise cancel-

lation on RSS based position sensors. NLE, developed from the perspective of nonlinear

least-squares optimization and the map-inversion philosophy on discrete-time dynamics,

has better noise cancellation for non-Gaussian noise in ToF and multipath. NLE based

estimation in 3D motion outperforms EKF by 2 cm.
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13.1 Major Contributions

1. First-of-its-kind 3D state-space model for state estimation in 3D space for sensors

of different sampling rates:

One major contribution of this dissertation was a first-of-its-kind 3D state-space model

with state vector including position and orientation information. Nonlinear state estimation

is extended to 3D space correspondingly with both asynchronous and synchronous models

to handle different sensor sampling rates. NLE in this research has better noise cancellation

and convergence for non-Gaussian noise in tracking and multipath as well as higher local-

ization accuracy compared to existing EKF and UKF with different coefficient matrices

that experience divergence in RF localization [80].

In this work, a 3D localization scheme that works with an accuracy of 31.9 cm RMS error

was achieved indoor in a high multipath environment. Few techniques in the literature have

even been tested in such a realistic multi path environment. The best results achieved prior

to the study in this dissertation have been 21.5 - 76.7 cm [17] or 10 to 13 cm in the x- and

y- dimensions, and 21 cm in the z- dimension [18]. The 3D state estimation in this work

avoids the complex infrastructure of phased array as well as specific design and layout of

FMCW transmit receive antennas.

2.Sensor fusion estimation in linear and nonlinear motions deriving RF signal only

achieves fine-scale localization which simplifies RFID-based motion capture systems:

Another major contribution of this work was first sensor fusion estimation to explore differ-

ent sensor combinations. Estimation results of sensor combinations are compared, unlike

integration all signals from different sources together in the existing hybrid RF localization
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systems [81, 82, 83, 84]. It is discovered from sensor combination comparison that RF sig-

nal only achieves similar accuracy to using both RF signal and IMU data in both linear and

nonlinear motions. Hence, RF signal only is able to achieve fine-scale localization in LOS

and multipath environment, which greatly simplified RFID-based motion capture systems

from embedding inertial sensors as in [85, 86, 87].

Additionally, ToF based position sensor in tracking is of comparable accuracy to RSS based

position sensor on the basis of results from the built multipath simulation model, enabling

using ToF in tracking as a replacement of RSS for RFID real-time localization and motion

capture systems.
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CHAPTER 14

FUTURE WORK

The following tasks may be helpful for enhancing 3D indoor state estimation and localiza-

tion for RFID-based motion capture systems in real-time tracking with multipath:

• More complex motion and longer motion time may be needed: Rotation motion

around x- y- z- axes together with linear motion along x- y- z- axes may need to

be combined together for more complex motion in real-time 3D motion capture and

localization. In addition, motion of longer time may also be needed for verification

of stability .

• Using ToF based position sensor in replacement of RSS: In replacement of RSS,

ToF in tracking may be used as an alternative position sensor in 3D localization and

tracking using samples from adjacent time stamps.

• Real-time multipath removal in the indoor environment in case of dominant reflec-

tions along the motion: More study of removing multipath and dominant reflections

in door localization and tracking in real-time may need to be investigated and devel-

oped.

• Measurement taken behind walls in tracking: Unlike other schemes, EMS is able to

transmit in blockage. Hence, measurements behind walls with obstacles for estima-

tion and motion capture may also enhance the 3D indoor state estimation in tracking.

• Combining multiple position sensors in the estimation: Instead of using one position

sensor in each estimation, multiple position sensors may be fused to input into the

estimation model.
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• Using RF signal only for 3D estimation: Since RF singal only is able to achieve fine-

scale motion capture as combining RF with inertial sensors together. Future systems

may focus on enhancement of RF signal either in processing or state estimation with-

out embedding IMU.

• Enhancement on estimation accuracy with coefficient matrix: Investigating coeffi-

cient matrices in estimation for different sensor inputs and more than one sensor

inputs may be helpful to enhance the estimation accuracy.

• Integrating static detection, tracking, and calibration together for real-time in door lo-

calization: Real-time estimation instead of offline processing combining all modules

together to achieve real-time indoor localization may extend to many applications

and achieve RFID-based motion capture systems.

• Selecting frequency sequence to enhance multipath mitigation: selecting frequency

sequence in the hopping may also be another way for mitigating multipath effects.

• Obtaining orientation of the object from RF signal: Orientation of the object may

also be obtained from RF signal without using IMU.

Accuracy enhancement and sensor source extension are helpful for the real-time RFID-

based motion capture system.
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APPENDIX A

K FACTOR OF FOUR READERS IN MEASUREMENT
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Figure A.1: K Values Calculated Based on K̂2,4 in Equation 2.29 From Square Root of
Magnitude Ht(r) =

√
H(r) of Four Readers.
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APPENDIX B

DERIVATION OF PHASE IN MULTIPATH SCENARIO
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B.0.1 Removal of Multi-Path in Time-of-Flight Based Distance Estimator

Assume that φ = 4πr0
λ

+ 2 arctan(
sin 2π∆r

λ
r1
r0

Γ1+cos 2π∆r
λ

). Assume that reflection coefficient Γ1

is known, Multi-path length can be solved from the nonlinear equation. Multiple roots

are solved from the equation out of the period of π of arctan angle. After removing the

multi-path, radial distances based on time-of-flight are shown in Figure B.1.
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Figure B.1: Recovered Phase Derived Radial Distance from Two Frequencies in Multipath
from Four Readers with the Input Trajectory Along x- Then y- and Finally z- Axis. After
Moving Back, Moving Along x- y- z- Axes All Together as Described in chapter 6.
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APPENDIX C

COMPARISON OF RADIAL DISTANCE AND RADIAL VELOCITY IN

SIMULATION AND MEASUREMENT
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Figure C.1: Radial Distance r1 r2 r3 r4 Derived from Magnitude H(r) of Four Readers.
Blue Lines are Radial Distances from Measurement. Red Lines are Ground Truth Radial
Distances Based on Motion Profile.
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Figure C.2: Radial Velocities ṙ1 ṙ2 ṙ3 ṙ4 Derived from Phase Difference φ(r) with Applied
Mean Filter of Length 4000 from Four Readers. Blue Lines are Radial Velocities from
Measurement. Red Lines are Simulated Radial Velocities Based on 3D Motion Profile.
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APPENDIX D

MAGNETOMETER MEASUREMENTS RESEMBLES TO RADIAL DISTANCES

When zoom into the magnetic strength, it can be inferred from Figure D.1 that magnetic

strength along x- and z- axes are similar to radial distance r1 and r3 from reader 1 and 3.

It may be from the magnetometer sensed from a certain point so correspondingly change

along the motion, which also verifies the correctness of the simulated radial distances.
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Figure D.1: Magnetic Strength Along x- and z- Axes Compared to Simulated RF Magni-
tude H3 and H1 From Reader #3 and Reader #1. The Resemblance May be From That
Magnetometer Magnitude is Based on Certain Point in Environment So Correspondingly
Changes Along the Motion.

137



APPENDIX E

PLATFORM-FREE CALIBRATION METHODS FOR INERTIAL SENSORS

The embedded IMU sensor of the cellphone is low-cost and of imperfections in manu-

facturing and installation as well as high noise levels. Zero-velocity update (ZUPT) for

inertial sensor calibration to compensate drift in long time measurement has been devel-

oped in this chapter to enhance the localization accuracy. In this section, we proposed an

on-line calibration method enables platform free calibration for real-time localization.

E.1 Allan Variance

Allan variance [88, 89] characterizes gyroscope bias drifts, which measures the variance of

difference between consecutive interval averages. Allan variance is defined as

σ2
a =

1

2
< (x(t, k)− x(t, k − 1))2 >=

1

2K

K∑
k=1

(x(t, k)− x(t, k − 1))2 (E.1)

where x(t, k) is the k-th interval average which spans t seconds, and K is the total number

of intervals. The time in which the Allan variances of the three axis converge to a small

values represents the initialization period Tinit.

At the beginning of measurements, calculate the time taken for Allan variance to reach

small. It is the initial time. Tinit ≈ 66 s for the IMU embedded in Galaxy S8.

Zero velocity detection needs to start after Tinit since the measured states before con-

vergence may introduce false zero-velocity detections. Figure E.1 shows the Allan variance

with respect to time intervals from 10 s to 300 s in human walking.
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Figure E.1: Allan Variance σ2
a w.r.t. Different Time Intervals T [s] From 10 s to 300 s for

Galaxy S8. Based on the Trend, Tinit is Set at 66 s.

E.2 Zero Velocity Detection

There exists two kinds of static detection methods: dynamic and with set thresholds. If

multiple sensors of similar parameters are used, set thresholds as in [90, 91, 92] are appli-

cable. If factors among different motions are stable, dynamic static detection as described

below is applicable [68].

A dynamic way is applied to detect zero velocity in order to get stationary states for

calibration.

Firstly, standard deviations of acceleration and gyroscope measurements in a set win-

dow size of min are calculated. If both values are smaller than the set threshold times,

global minimal values of acceleration and angular velocity, standard deviations of accel-

eration and gyroscope measurements in a larger window size of max are calculated. If

both values are still smaller than the set thresholds, the detected periods are identified as

stationary states.

In addition, global minimal values of standard deviations for accelerometers and gyro-

scopes are updated if the calculated values in the larger window size are smaller than the

original global minimal values [68].
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Two different sizes of windows are set. Window size ofmin is applied to enhance com-

putational efficiency. Smaller window size enables faster standard deviation calculation as

the initial selection. On the other hand, window size of max is applied to reduce false

positive detection. More specifically, the larger window size of max is at least 1s to avoid

detecting transient static outliers.

The threshold coefficients for acceleromter and gyroscope minimal values c1 c2 and

window size min max can be learned from pre-collected labelled measurement data using

SVM and/or LSTM.

In the Pseudocode, c1 is set as 2 and c2 is set as 3. In order to classify quasi-static

and semi-static also as static states, higher threshold about 15 - 35 should be used. The

pseudocode for stationary state detection algorithm is shown as following

• Global minimal value of standard deviations for acceleration σamin is initialized

around g and global minimal value of standard deviations for gyroscope σgmin is

initialized around 0.

• Sizes for smaller and larger windows, i.e., wmin and wmax are set.

• At time stamp t, standard deviations of accelerations σcwa and gyroscopes σcwg in

window size of wmin are calculated.

• If the calculated standard deviation σcwa is less than set threshold c1σamin = 2σamin

and the calculated standard deviation of gyroscope σcwg is less than the set threshold

c2σgmin = 3σgmin , then both values are re-calculated in the larger window size of

wmax.

• If both re-calculated standard deviations are also within set thresholds, states in the

larger window size are identified as static.

• If calculated standard deviations σcwa and σcwg are smaller than global minimal val-

ues σamin and σgmin , then global minimal standards deviations of acceleration or gy-
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roscope are updated.

1: procedure STATIONARY STATE DETECTION PSEUDOCODE

2: σamin ← g ± v
3: σgmin ← 0± v′
4: wmin ← min size
5: wmax ← max size
6: repeat
7: cwa, cwg ← gather wmin number of IMU measurements
8: σcwa ← calc std(L2(cwa))
9: σcwg ← calc std(L2(cwg))

10: if σcwa < c1σamin and σcwgmin < c2σg then
11: cwa, cwg ← gather wmax number of IMU measurements
12: σcwa ← calc std(L2(cwa))
13: σcwg ← calc std(L2(cwg))
14: if σcwa < c1σamin and σcwgmin < c2σgmin then
15: if σcwa < σamin then
16: σamin ← σcwa
17: if σcwg < σgmin then
18: σgmin ← σcwg

states← static states
19:
20: close
21:

close
22:

=0

E.2.1 Measurement Results for Zero Velocity Detection

As presented in section E.1, Allan variance is used to derive Tinit. Then static states are

automatically detected using the method of Stationary State Detection Algorithm in sec-

tion E.2. Three categories of measurements are taken for verification:

1. Measurement 1

Rotations with small angles along different axes are presented in Figure E.2, in which red

rectangles are the intervals in measurements detected as static intervals. As shown in the

two figures, the resolution of this automatic detection method is within seconds-level. In

addition, the automatic detection algorithm is able to detect sharp changes in the continu-
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ous motion.

Figure E.2: Detection Result on Accelerations and Gyroscopes. Rotations with Small An-
gles Along Different Axes Using Dynamic Zero Velocity Detection. There are 51 detected
static intervals. Red Rectangles: Intervals Detected as Static Intervals. Blue, Orange, Green
Curves: Raw Angular Velocity Measurements from Gyroscope.

2. Measurement 2

Stationary with standard deviations of acceleration and angular velocity close to 0 when

putting onto the table and routine activities like using apps, searching online etc. are shown

in Figure E.3. As shown in both figures, standard deviation in certain interval close enough

to 0 doesn’t turn off static detections afterwards.
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3. Measurement 3

Figure E.3: Detection Result on Accelerations. Stationary When Putting onto the Table
and Routine Activities Like Using Apps, Searching Online etc. Using Dynamic Zero Ve-
locity Detection. There are 6 Detected Static Intervals. Red Rectangles: Intervals Detected
as Static Intervals. Blue, Orange, Green Curves: Raw Acceleration Measurements From
Accelerometer.

Measurement 3 in Figure E.4 is taken in human walking and standing activities. It can

be inferred from both figures that detected static intervals of human activities are not as

continuous as putting static onto the table. In addition, with accelerations not converge to

0 (the acceleration along y axis is positive and acceleration along x axis is negative) when

standing still, static states are still be able to be detected.
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Figure E.4: Detection Result on Gyroscopes. Stationary When Putting onto the Table and
Routine Activities Like Using Apps, Searching Online etc. Using Dynamic Zero Velocity
Detection. There are 6 Detected Static Intervals. Red Rectangles: Intervals Detected as
Static Intervals. Blue, Orange, Green Curves: Raw Angular Velocity Measurements From
Gyroscope.
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E.3 Platform-Free Calibration Methods for Inertial Sensors

Based on whether or not there’s a requirement in using any additional equipment, calibra-

tion methods for inertial sensors can be divided into two groups [68]: Traditionally, calibra-

tion is performed by using high-end measurement equipment to get parameters hard-coded

into sensor. This method requires an attitude controlled turntable with each axis perfectly

aligned with the instrument. A major drawback is the cost out of using the specialized and

expensive equipment. In addition, it’s also labor intensive and can only be performed in a

controlled environment [93].

In applications of mobile phone, activity trackers, and wearables etc., in-field calibra-

tions without using additional equipment are more and more widely used. The principal

idea is to use known reference values in certain positions. When an object is stationary,

the only force applied to it is gravity. By using the value of gravity acceleration, g, opti-

mization methods enable reliable calibration of coefficient matrices. The first calibration

required placing the IMU in six-different positionss [94]. Methods in [95, 96] focus on

calibrating accelerometer only. Calibrations methods that calibrate both accelerometer and

gyroscope are documented in [97, 98]. In [97, 99], calibrated accelerations are used to

calibrate gyroscope.

To improve current one-shot procedures, an automatic re-calibration method combining

static detection and calibration for accelerometer and gyroscope together are designed.

E.4 Platform-Free Calibration for Accelerometer

Accelerometer is calibrated based on the principal idea that the only force applied to is

gravity acceleration, g, when the object is stationary.
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E.4.1 Removal of Random Gaussian Noise

Kalman filter is applied to remove stochastic noise va. After filtering, the error model of

acceleration becomes

ab = T aKa(aa + ba) (E.2)

where T a, Ka, and ba are rotation matrix, scalar matrix, and bias vector to be calibrated.

E.4.2 Estimate Acceleration Parameter Vector

In the multi-position scheme, a set of N distinct, temporarily stable states at different ori-

entations are detected based on detection method in section E.2. Afterwards, N raw accel-

eration measurements ab are extracted from the static states. After calibration, the norm of

the acceleration vector should be equal to the ground truth gravity at this location.

Therefore, parameter vector θacc can be obtained by minimizing the difference between

the two norms based on Levenberg-Marquardt (LM) method as

θacc = argmin
θacc

N∑
k=1

(||g||2 − ||ab||2)2 (E.3)

where ab is the raw acceleration measurement vector as shown in Equation E.2 that contains

the parameter vector θacc.

||g|| is the actual magnitude of the local gravity vector that can be inferred from the

three methods described as following.

Method 1 [68]

International Gravity Formula (IGF) with Free Air Correction (FAC) are used to calculate
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ground truth vaue of gravity [68]

g = IGF + FAC (E.4)

IGF = 9.780327(1 + e1 sin Φ2 − e2 sin 2Φ2) (E.5)

FAC = −3.08610−6 × h (E.6)

where Φ is the latitude in radians, e1 = 0.0053024, e2 = 0.0000058, h is the height relative

to sea level.

Method 2

Ground truth value of gravity g can also be calculated as [100]

g = 9.7803253359
1 + 0.001931853 sin Φ2

√
1− e2 sin Φ2

(E.7)

g = g(
Rearth

Rearth + h
)2 (E.8)

where Φ is the latitude in radians, h is the height relative to sea level, e2 = 0.00669437999014

is the square of the first eccentricity, Rearth = 6371000 m is the radius of the earth.

Method 3

The value of gravity can also be inferred from websites, which includes getting latitude,

longitude, and height above the sea level as well as getting gravity value from obtained

latitude, longitude, and height [101, 102].

E.5 Platform-Free Calibration for Gyroscope

Gyroscope is calibrated using the calibrated acceleration from section E.4 unit vector which

contains the orientation information and is related to angular velocity measured from gyro-

scope.
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E.5.1 Removal of Random Gaussian Noise

Kalman filter is applied to remove stochastic noise vg. After filtering, we have the error

model of gyroscope

wb = T gKg(wg + bg) (E.9)

where T g, Kg, and bg are rotation matrix, scalar matrix, and bias vector to be calibrated.

E.5.2 Estimate Gyroscope Bias

At the beginning of measurements, when becomes small enough, the biases of gyroscopes

can be correctly determined by averaging the values along each axis. The time taken for

Allan variance to reach small is around 66 s. Mean values of gyroscopes in static states

approximate bias vector bg as

bg =


bgx

bgy

bgz

 =


avg(wbx)

avg(wby)

avg(wbz)

 (E.10)

Then the error model for gyroscope becomes

wb = T gKgwg (E.11)

where T g, Kg, and bg are rotation matrix, scalar matrix, and bias vector to be calibrated.

Unknown parameters in T g, Kg, and bg compose the gyroscope parameter vector

θgyro =

[
γyz γzy γxz γzx γxy γyx sgx sgy sgz

]′
(E.12)
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E.5.3 Estimate Gyroscope Parameter Vector

In order to relate gyroscope measurements to the unit vector from calibrated acceleration

vector, integration on angular velocity of gyroscope to derive orientation angle change is

applied.

Integrate gyroscope measurements between static states tk−1 and tk with corresponding

measurement time-stamp to get orientation angle change between the two static states tk−1

and tk.

θxk =
∑

td∈(k−1,k)

wbxtd (E.13)

θyk =
∑

td∈(k−1,k)

wbytd (E.14)

θzk =
∑

td∈(k−1,k)

wbztd (E.15)

Then we can transform the unit vector representing gravity from ug,k−1 to ug,k using

integrated orientation angle change αk βk, and ψk

ug,k =


cos θzk − sin θzk 0

sin θzk cos θzk 0

0 0 1




cos θyk 0 sin θyk

0 1 0

− sin θyk 0 cos θyk




1 0 0

0 cos θxk − sin θxk

0 sin θxk cos θxk

ug,k−1

(E.16)

where θxk, θyk, and θzk are roll, pitch, and yaw rotation angles along x-axis, y-axis, and

z-axis, respectively.

Afterwards, ug,k at time stamp tk is calculated based on Equation E.16. In addition, unit

vector ua,k can also be derived from measured acceleration vector aa that is calibrated based

on Equation E.2 with known θacc. The calibrated vector then normalized as unit vector ua,k.

By minimizing the difference between ua,k and ug,k from N − 1 intervals between static
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periods, θgyro can be estimated using Levenberg-Marquardt(LM) method as

θgyro = argmin
θgyro

N−1∑
k=1

||ua,k − ug,k||2 (E.17)

In summary, the gyroscope calibration steps are as following:

• Integrate angular velocity from gyroscope measurements in intervals between static

states as shown in Equation E.13 - Equation E.15 to get the changed orientation

angles θxk, θyk, and θzk.

• Transform unit vector ug,k−1 to ug,k representing gravity from tk−1 to tk based on

integrated angles θxk, θyk, and θzk from Equation E.16.

• At the same time, with known acceleration parameter vector θacc, derive the unit

vector ua,k at tk from measurement acceleration aa by using Equation E.11.

• Then θgyro can be estimated by minimizing the difference between ua,k and ug,k on

formula Equation E.17 using LM optimization.

• Then we have the gyroscope parameter vector θgyro.

E.6 Platform-Free Calibration Results for Accelerometer

E.6.1 Ground Truth Value of Gravity Based on Different Methods

Based on measurement location of Atlanta GA, the latitude is 33.7490° N, 84.3880° W.

The Barometer reading is 985.100100 m above the sea level.

Results of ground truth values of gravity calculated from Method 1, Method 2, and

Method 3 in section E.4 are compared and shown in Table E.1. It can be inferred from

Table E.1 that the three methods give very close results, which is up to 4-digit accuracy.

Ground truth gravity can reach difference < 0.0001 m/s2.
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Table E.1: Derived Ground Truth Value of Gravity from Method 1, 2, 3

Method 1 Method 2 Method 3
Gravity Value [m/s2] 9.79324452 9.793253733 9.7925 – 9.7951

E.6.2 Calibration Results

24 positions scheme for calibration: rotation counterclockwise for 90 degrees around x- y-

and z- axes which accumulates to 12 positions and flip upside down to get total 24 positions

as shown in [103].

From two kinds detected stationary intervals in subsection E.2.1, corresponding accel-

eration vector is extracted from each interval by averaging or Kalman filtering. Afterwards,

calibrated coefficient matrix in Equation 9.1 are derived based on the accelerometer cali-

bration method in section E.4.

1. Same Sign Among Different DataSets and Detection Methods

In all 7 sets of measurements using dynamic static detection or set thresholds static detec-

tion, all 14 derived calibrated coefficient matrices have the same sign for each parameter as

shown in Table E.2.

Table E.2: Sign of Parameters in Derived Calibrated Coefficient Matrices Among All Mea-
surements

Skew Factor Scalar Factor Bias
−αyz + sax + bax +
αzy + say + bay +

−αzx − saz + baz −

2. Small Differences in Calibrated Coefficient Matrices with Different Detection Meth-

ods

In set thresholds and dynamic static detection methods, the differences between derived

calibrated coefficient matrices is < 0.03 for each parameter.
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3. Range of Parameters in Calibrated Coefficient Matrices in Different Measure-

ments

The calibrated coefficient matrix result are shown in Table E.3. The range of each parame-

ter is shown in Table E.4.

Table E.3: Derived Scalar Factor Bias and Skew Factor in Measurement

Skew Factor Scalar Factor Bias
−αyz 0.0623 sax 0.9944 bax 0.1739
αzy 0.0055 say 0.9999 bay 0.0071

−αzx −0.0041 saz 0.9880 baz −0.2999

Table E.4: Derived Scalar Factor Bias and Skew Factor Difference Ranges in All Measure-
ments

Skew Factor Scalar Factor Bias
−αyz 0.0579− 0.0779 sax 0.9914− 0.9953 bax 0.1719− 0.1887
αzy −0.0013− 0.0075 say 0.9978− 0.9999 bay 0.0058− 0.0394

−αzx −0.0125−−0.0041 saz 0.9867− 0.9892 baz −0.3036−−0.2761

It can be inferred from Table E.3 and Table E.4 that automatic static interval detections

and calibration methods derive similar calibration results from different measurements and

motions.

E.6.3 Calibration Verification

Table E.5 show mean and standard deviation of error deviated from the ground truth value

of gravity on measurement 2 - 7 with parameters calibrated from measurement 1. Table E.6

and Table E.7 are verification on different measurements as well.

It can be inferred from Table E.5, Table E.6, Table E.7, Table E.8, Table E.9, and

Table E.7 that calibrated parameters achieve acceptable calibration accuracy when applied
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to different motions and measurements. The calibration method for accelerometer can be

applied to real-time calibration in measurements.

Table E.5: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 2 - 6 Using Coefficient Matrix Derived from Measurement 1

Error (m/s2): Measurement 1→Measurement 2-6
Mean -0.000095807 0.0051 -0.00092365 -0.0022 0.0017
Standard Deviation 0.0395 0.0447 0.0437 0.0434 0.0416

Table E.6: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 1, 3 - 6 Using Coefficient Matrix Derived from Measurement 2

Error (m/s2): Measurement 2→Measurement 1, 3-6
Mean -0.0035 0.0029 -0.0012 -0.0060 -0.0020
Standard Deviation 0.0477 0.0470 0.0523 0.0505 0.0480

Table E.7: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 1,2, 4 - 6 Using Coefficient Matrix Derived from Measurement 3

Error (m/s2): Measurement 3→Measurement 1,2, 4 - 6
Mean -0.0075 -0.0093 -0.0084 -0.0141 -0.0110
Standard Deviation 0.0448 0.0409 0.0487 0.0451 0.0432

Table E.8: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 1 - 3, 5, 6 Using Coefficient Matrix Derived from Measurement 4

Error (m/s2): Measurement 4→Measurement 1 - 3, 5, 6
Mean -0.0035 -0.0010 0.0042 -0.0038 -0.00045571
Standard Deviation 0.0393 0.0381 0.0439 0.0393 0.0373

E.6.4 Parameter Range with Different Number of Positions

In addition, the number of positions and distributions of positions placed in the calibration

affect the range of parameters. It can be inferred from Figure E.5 that using 24, 48, or mod-
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Table E.9: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 1 - 4, 6 Using Coefficient Matrix Derived from Measurement 5

Error (m/s2): Measurement 5→Measurement 1 - 4, 6
Mean 0.0013 0.00090573 0.0042 -0.0012 -0.0018
Standard Deviation 0.0422 0.0380 0.0420 0.0432 0.0376

Table E.10: Calibration Verification for Error Mean and Standard Deviation Among Mea-
surement 1 - 5 Using Coefficient Matrix Derived from Measurement 6

Error (m/s2): Measurement 6→Measurement 1 - 5
Mean -0.0011 -0.00089762 0.0034 -0.0022 -0.0060
Standard Deviation 0.0447 0.0403 0.0438 0.0455 0.0425

ified 40 positions all within same mean and region. Parameters calibrated by 48 positions

have smaller range compared to 24 positions.

Moreover, modified 40 positions are taken at evenly distributed angles along x- y- and

z- axes. Due to the distributed attitudes, the range of parameters are much smaller than 48

positions with fewer number of positions. Hence, the distributions of attitudes also affects

the variance of calibrated parameters.

E.6.5 Comparison with Platform-Based Calibration

The platform-free calibration gets rid of the high precision rotation table or reference in-

strument, maintaining high-precision calibration accuracy. In this way, platform-free and

automatic calibration is feasible for cellphone-based realtime 3D localization.
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Figure E.5: Histogram of Distributions for Acceleration Calibration Parameters αyz −αyz,
αxy, −αzx, Sax , Say , Saz , bax, bay, and baz with 24 Positions 48 Positions and Modified 40
Positions.
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APPENDIX F

RF ONLY BASED LOCALIZATION MOVING ALONG X− AXIS
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Figure F.1: Estimation Results of the 3D Motion of Position Velocities and Acceleration
Along x- Axis Using RF Signal Only When Moving x- Axis All Based on EKF in Asyn-
chronous Model.
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APPENDIX G

INERTIAL SENSOR ONLY BASED 3D LOCALIZATION

In this section, we propose that using cellphone embedded IMU is able to achieve centimeter-

accuracy 3D localization. In addition, the percentage accuracy is improved when trav-

elling distance increases, which enables 3D localization within 3% accuracy. The IMU

accelerometer measurement data are calibrated using the scalar and skew matrices from

Table E.3 and the bias estimated before input into the NLE estimation. The values are

shown in Table E.3 as well.

G.1 Moving Along x- Axis Then y- Axis and Finally z- Axis

(1) Asynchronous NLE Estimation

Following steps in the Asynchronous estimation in section 10.5 which is based on NLE

in ??. Input are IMU sensor data: accelerations, angular velocities from gyroscope, and

orientation from magnetometer.

Table G.1: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- Then y- and Finally z- Axes Based on NLE in Asynchronous Model
with Stack Length of 5

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.0038 0.0187 0.0027
Estimated RMS Error After Calibration[m] 0.0032 0.0163 0.0027
Moving Range [m] 0.3840 0.2944 0.0448
Percentage of Relative Distance 0.83 % 5.54 % 6.03 %
Percentage of Maximal Distance [%] 4.87 %

As shown in Table G.1, estimated RMS error of position along x-axis is 0.0032 m,

along y- axis is 0.013 m, along z- axis is 0.0027 m in the motion of 0.3840 m, 0.2944 m,

and 0.0448 m along x- y- z- axes. The percentage of relative distance is 0.83 % - 6.03 %.
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Figure G.1: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along x Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 in Motion Along x- Axis Alone.

The percentage of maximal distance is 4.87 %.

More specifically, estimated position, velocity, and acceleration states along x- y- z-

axes as well as ground truth states are show in Figure G.1, Figure G.2, and Figure G.3. It

can be inferred from the three figures that estimated position and velocity based on the cell-

phone embedded IMU measurements based on NLE of stack length of 5 in asynchronous

model fit the ground truth states.
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Figure G.2: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along y Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 in Motion Along y- Axis Alone.

In addition, it can be inferred from Table G.1 that:

• As long as acceleration is > 0.0447 m/s2, NLE based estimation achieves high accu-

racy position estimation. The percentage errors are all < 7 %.

• Estimation position error doesn’t increase with the increase of travelling distance.

The percentage error is decreasing from 6.03 % - 5.54 % - 0.83 %.
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Figure G.3: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along z Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 in Motion Along z- Axis Alone.

• In longer travelling distance, improved percentage error is achievable. Hence, low

cost cellphone embedded IMU is able to achieve 3D high accuracy localization.
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(2) Synchronous NLE Estimation

Table G.2: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- Then y- and Finally z- Axes Based on NLE in Synchronous Model with
Stack Length of 5

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.1410 0.1464 0.0481
Moving Range [m] 0.3840 0.2944 0.0448

It can be inferred from Table G.2 that synchronous model is of much less accuracy com-

pared to asychronized model due to time difference among different sensors.

(3) Asynchronous EKF Estimation

Following steps in asynchronous estimation in section 10.5 based on EKF in ??. Input

are also the IMU sensor data from accelerometer, gyroscope, and magnetometer using the

scalar and skew matrices from section E.3 and the bias estimated before input the estima-

tion.

Table G.3: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- Then y- and Finally z- Axes Based on EKF in Asynchronous Model

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.0060 0.0099 0.00066
Estimated RMS Error After Calibrationn [m] 0.0054 0.0077 0.00066
Moving Range [m] 0.3840 0.2944 0.0448
Percentage of Relative Distance 1.41 % 2.62 % 1.47 %
Percentage of Maximal Distance [%] 2.01 %

As shown in Table G.3, estimated RMS error of position along x- axis is 0.0060 m, along

y- axis is 0.0099 m, along z- axis is 0.00066 m in the motion of 0.3840 m, 0.2944 m, and

0.0448 m along x- y- z- axes. The percentage of relative distance is 1.41 % - 2.62 %. The

percentage of maximal distance is 2.01 %. Therefore, EKF is of higher estimation accuracy

compared to NLE for separate motion along each axis.
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Figure G.4: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along x Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in
Asynchronous Model in Motion Along x- Axis Alone.

More specifically, estimated position, velocity, and acceleration states along x- y- z-

axes as well as ground truth states are show in Figure G.4, Figure G.5, and Figure G.6. It

can be inferred from the three figures that estimated position and velocity based on the cell-

phone embedded IMU measurements based on EKF in asynchronous model fit the ground

truth states.

In addition, it can be inferred from Table G.3 that:

• EKF based estimation achieves high accuracy position estimation. The percentage
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Figure G.5: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along y Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in
Asynchronous Model in Motion Along y- Axis Alone.

errors are all < 3 %.

• Estimation position error doesn’t increase with the increase of travelling distance.

The percentage error is decreasing from 1.47 % - 2.62 % - 1.41 %.

• In longer travelling distance, improved percentage error is achievable. Hence, low

cost cellphone embedded IMU is able to achieve 3D high accuracy localization.
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Figure G.6: Estimation Results of the 3D Motion of Position Velocities and Acceleration
Along z Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in Asyn-
chronous Model in Motion Along z- Axis Alone.

• NLE based estimation achieves higher estimation accuracy compared to EKF based

estimation.
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(4) Synchronous EKF Estimation

In addition, estimation results based on EKF in synchronous model are shown in Table G.3.

Table G.4: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- Then y- and Finally z- Axes Based on EKF in Synchronous Model

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.1448 0.1393 0.04141
Moving Range [m] 0.3840 0.2944 0.0448

G.2 Moving Along x- y- z- Axes All Together Simultaneously

(1) Asynchronous NLE Estimation

After moving back to origin O, the tag moves along x- y- z- axes all together. The es-

timation result based on NLE in asynchronous model with stack length of 5 is shown in

Table G.5.

Table G.5: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- y- and z- Axes All Together Based on NLE in Asynchronous Model
with Stack Length of 5

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.0170 0.0021 0.0432
Estimated RMS Error After Calibration [m] 0.0216 0.0036 0.0439
Moving Range [m] 0.3840 0.2944 0.0448
Percentage of Relative Distance 4.43 % 0.71 % -
Percentage of Maximal Distance [%] 4.43 %

As shown in Table G.5, estimated RMS error of position along x- axis is 0.0170 m,

along y- axis is 0.0021 m, along z- axis is 0.0432 m in the motion. The percentage of

relative distance is 4.43 % - 0.71 %. The percentage of maximal distance is 4.43 %. More

specifically, estimated position, velocity, and acceleration states along x- y- z- axes as well

as ground truth states are show in Figure G.7 - Figure G.9.
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It can be inferred from Table G.5, Figure G.7, Figure G.8, and Figure G.9 that:

• Estimated position and velocity based on the cellphone embedded IMU measure-

ments based on NLE in asynchronous model with stack length of 5 fit the ground

truth states.

• NLE based estimation in moving along x- y- z- axes all together simultaneously

achieves higher estimation accuracy compared to moving along x- then y- and finally

along z- axis.

(2) Asynchronous EKF Estimation

In addition, estimation result based on EKF in Asynchronous model is shown in Table G.6.

Table G.6: RMS Error and Percentage of Relative and Maximal Distance for Estimated
Position Along x- y- and z- Axes All Together Based on EKF in Asynchronous Model

X Axis Y Axis Z Axis
Estimated RMS Error [m] 0.0196 0.0106 0.0025
Estimated RMS Error After Calibration [m] 0.0193 0.0079 0.0033
Moving Range [m] 0.3840 0.2944 0.0448
Percentage of Relative Distance 5.10 % 3.60 % 5.58 %
Percentage of Maximal Distance [%] 4.56 %

It can be inferred from Table G.6, Figure G.10, Figure G.11, and Figure G.12 that:

• Estimated position and velocity based on the cellphone embedded IMU measure-

ments based on EKF in asynchronous model fit the ground truth states.

• EKF based estimation in moving along x- y- z- axes all together simultaneously

achieves lower estimation accuracy compared to moving along x- then y- and finally

along z- axis.

• NLE based estimation in moving along x- y- z- axes all together simultaneously

achieves higher estimation accuracy compared to EKF based estimation.
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Figure G.7: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along x Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 When Moving x- y- z- Axes All Together
Simultaneously.

In IMU based estimation, the initial position needs to be known. Estimation based on

accelerations, orientations, and angular velocities derives relative distance, velocity, and

acceleration travelled from origin O.
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Figure G.8: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along y Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 When Moving x- y- z- Axes All Together
Simultaneously.
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Figure G.9: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along z Axis Using Cellphone Embedded IMU Measurement Data Based on NLE in
Asynchronous Model with Stack Length of 5 When Moving x- y- z- Axes All Together
Simultaneously.
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Figure G.10: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along x Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in
Asynchronous Model When Moving x- y- z- Axes All Together Simultaneously.
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Figure G.11: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along y Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in
Asynchronous Model When Moving x- y- z- Axes All Together Simultaneously.
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Figure G.12: Estimation Results of the 3D Motion of Position Velocities and Accelera-
tion Along z Axis Using Cellphone Embedded IMU Measurement Data Based on EKF in
Asynchronous Model When Moving x- y- z- Axes All Together Simultaneously.
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