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SUMMARY

Regime recognition is a critical tool used for condition-based maintenance, fatigue life

prediction, and creation of usage spectra for military and commercial rotorcraft. Regime

recognition is the process by which aircraft state data is analyzed and vehicle maneuvers

are identified with respect to time. While a variety of regime recognition algorithms are

currently in use, many current algorithms suffer from an over-reliance on training data or

poor classification performance.

This work seeks two main goals, the first is to introduce a new type of regime recogni-

tion algorithm based on a multiple model adaptive estimation scheme, known as an inter-

acting multiple model (IMM) estimator. IMM estimators use a bank of dynamic models to

evaluate the likelihood of the system existing in one of various possible dynamic modes.

In the regime recognition context, each mode represents the system operating in a given

maneuver regime. Compared with other approaches, IMM estimators offer the benefits of

probabilistic regime classification and the incorporation of knowledge of the aircraft flight

dynamics, which reduces reliance on training data. This dissertation presents a novel for-

mulation of an IMM estimator for regime recognition wherein mode probabilities from a

bank of IMM filters are combined in Bayesian framework to yield maneuver regime prob-

abilities.

Second, this work introduces a novel approach to condition based maintenance (CBM)

that is designed to be used in conjunction with a probabilistic regime recognition scheme.

The proposed methodology results in a probability distribution of incurred damage for

specified life-limited components on an individual aircraft basis, with applications to fleet-

wide probabilistic damage spectrum. The primary advantage of the proposed methodology

is the rigorous treatment of regime uncertainty that is quantified in probabilistic regime

recognition. A Gaussian probability density approximation is used to improve computa-

tional efficiency of the damage estimation method, and effects of the flight condition on the

xviii



uncertainty in the damage estimation are investigated.

Following a detailed explanation of the proposed methodologies, results are provided

by applying the algorithms to both simulated and real helicopter data, and compared against

“standard” rule-based approaches. Lastly, some of the methodologies presented in this

dissertation are appropriately modified and applied to fixed wing aircraft and results are

shown using simulated data for the F-16.
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CHAPTER 1

INTRODUCTION

1.1 Problem Motivation and Background

Helicopters contain numerous components that experience repeated dynamic loading that

results in limited part life due to material fatigue. A key goal of modern Condition Based

Maintenance (CBM) programs for both military and civilian helicopters is to estimate the

useful life remaining for life-limited components, and to replace components on an as-

needed basis dictated by the flight loads incurred by a specific vehicle. CBM paradigms

for helicopters in the past have embraced a usage spectrum approach in which component

replacement timelines are specified by the aircraft manufacturer based on a mutually agreed

upon assumed usage spectrum [1, 2]. This assumed usage spectrum is designed to be

conservative and may be refined as the aircraft fleet accumulates operational flight hours

[3]. However, inaccuracies in the assumed usage spectrum (as documented by Moon et

al. [4]) can lead to either unnecessary part replacement or unexpected failures [5]. As

an alternative to usage spectrum-based approaches, future CBM programs are expected to

estimate component life remaining based on actual aircraft usage, a paradigm known as

Individual Aircraft Tracking (IAT). This approach to CBM requires collection and analysis

of flight data for each aircraft along with continual updating of component life predictions

using measured or estimated loads (or damage rates). Several US military specifications

[6–8] highlight the need for, and benefits of, individual aircraft tracking schemes for current

and future military aircraft.

One avenue to track component usage on a per-aircraft basis is through direct loads

measurement or estimation. Because many life-limited components on helicopters are part

of the rotating system, direct measurement of loads requires costly modifications to the

1



aircraft with the installation of strain gauges and slip rings. The difficulty involved in

maintaining such components may lead to poor reliability [9, 10]. An alternative is to

estimate loads from flight dynamic parameters recorded on-board Health and Usage Mon-

itoring System (HUMS) [11–13]. HUMS are playing an increasingly important role in

CBM programs for all modern aircraft, but especially helicopters. These systems typically

involve sensor packages on-board the aircraft to record rigid-body states, vibrational mea-

surements, and other data; telemetry or data storage packages; and real-time and/or post-

flight processing algorithms [14, 15]. These algorithms may serve a variety of purposes to

include anomaly detection, creation of usage or loads spectra [16, 17], fatigue prediction

[18, 19], or some combination. Both the U.S. military and commercial helicopter opera-

tors are increasingly interested in using HUMS data to predict and estimate how flight loads

translate into fatigue damage on life-limited components. Significant research over the past

several decades has focused on developing various possible algorithms and techniques for

this purpose.

Some developed approaches utilize various numerical methods. One such approach to

loads estimation using HUMS data employs high-fidelity structural models of the aircraft

to predict fatigue loads and estimate component useful life remaining [20–22]. While this

so-called “digital twin” approach is promising and potentially transformative, modeling

the complex structural dynamics of helicopters to sufficiently high fidelity to accurately

predict fatigue loads has proven challenging [23]. Instead of a physics-based structural

model approach, numerous authors have proposed estimating loads using black box ma-

chine learning methods such as neural networks or regression models, a class of algorithms

that are known as flight loads synthesis. Such methods have been shown to estimate com-

ponent strains and load spectra with reasonable accuracy [10, 13, 24–26]. The neural nets

employed in these algorithms are trained on a database of flight parameters, aircraft states,

and the corresponding component loads – taken from heavily instrumented vehicles [27–

30]. As an alternative to neural networks, several authors have employed other types of re-

2



gression models in which model coefficients are derived from empirical training data [31–

33]. For example, Ory and Lindert [34] used a reconstruction method to develop a model

of the air loads on helicopter blades for the purpose of damage estimation.

While flight loads synthesis techniques have been successfully employed for fixed-wing

aircraft, the complexity of helicopter structural and aerodynamic loads means that such

approaches require fairly complex regression or machine learning models, with resulting

requirements for large training data sets. Such large training data sets, which must include

both direct loads measurements and corresponding rigid body flight data, are not always

available or may be expensive to obtain [35, 36]. As a result, the rotorcraft community has

relied on approaches that bypass the need for loads estimation. Instead of estimating loads

continuously, the helicopter Original Equipment Manufacturer (OEM) measures loads for

a discrete set of flight regimes using highly-instrumented aircraft, and converts this loads

data to fatigue damage rates for each life-limited component on a per-regime basis [37–39].

Component replacement timelines can then be developed from an assumed usage spectrum,

or an updated usage spectrum derived from employing Regime Recognition (RR) with large

quantities of flight data [40, 41].

Initial design usage spectrum are often supplied by the manufacturer based on the ex-

pected use of the aircraft. This assumed usage spectrum must revised as needed to match

the actual usage as closely as possible. The manufacturer must be notified if the actual us-

age differs significantly from the supplied usage spectrum so that it can be adjusted. In the

past, surveys were conducted using paper questionnaires that were supplied to the pilots.

The pilots filled out information such as mission type, gross weight, altitude, flight maneu-

ver and associated time, velocity, vertical acceleration, wind speed, etc. This information

is then analyzed by an engineer to update the fleet usage [42, 43]. It was found by the

Royal Dutch Navy, that an extension of 10% in the airframe life of their Lynx fleet could

be achieved by frequent updating of the aircraft usage spectrum [44]. However, manually

recording and analyzing flight regimes has the potential to introduce a large amount of hu-
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man error, resulting in the usage spectrum either being over or under conservative with its

estimates. With the increase in availability of HUMS data and computational power, the

U.S. Military, among others agencies, have been relying more on regime recognition to

produce more accurate usage spectra.

Regime recognition involves the post-flight classification of recorded flight data into

a set of discrete categories, called maneuver regimes, in which fatigue damage rates are

known for life-limited components. Many condition-based maintenance processes for ro-

torcraft currently employed by the U.S. military and civilian operators rely on regime recog-

nition for fatigue damage prediction [45, 46]. For military operations, ADS-79D provides

guidance on the development and certification of RR algorithms [8]. This document (ADS-

79D) specifies fairly stringent accuracy requirements – for instance, that regime recognition

codes should be able to demonstrate 97% classification accuracy. This is a difficult goal

to meet given that there is no single, universally accepted definition for maneuvers in the

vehicle state space, and that execution of the same maneuver can vary greatly between

pilots. Work done by Warner and Rogers [47] examines various methodologies for assess-

ing accuracy of regime recognition codes. Their paper describes in detail how the lack of

universally accepted regime definitions imposes limits on the accuracy of regime recogni-

tion. As shown through the examples in [47], the regime recognition problem is arguably

ill-posed due to the requirement that continuous state data be deterministically classified

into discrete, ill-defined regime categories. Nevertheless, the simplicity of RR and its abil-

ity to predict fatigue damage without the need for complex models means that, despite its

limitations, regime recognition still forms the basis for many condition based maintenance

programs.

Generally, three types of regime recognition codes have been developed to date: rule-

based [39, 48–52], motion primitive based [53], and Hidden Markov Model (HMM) based

[54, 55]. Rule-based algorithms use a set of logical rules based on state- or parameter-

dependent thresholds to perform regime classification at each measurement timestep. For
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some maneuvers that appear similar, tiered logic using data from previous timesteps may

be employed to differentiate one maneuver from another. A fully detailed formulation of an

example rule-based regime recognition algorithm is provided in [52]. In recent work, Saetti

and Rogers [53] developed an RR algorithm that leverages motion primitives to distinguish

between trim and maneuver flight segments in a non-causal approach. Trim segments are

classified into particular trim regimes based on conditional logic, while maneuver segments

are classified into particular maneuvers. Dynamic Time Warping is used to compensate

for maneuver initial condition, duration, and aggressiveness. (Note that in this dissertation,

trim and maneuver segments are treated as synonymous.) Alternatively, the Hidden Markov

Model approach to regime recognition proposed in [54, 55] performs classification using a

Gaussian mixture model, where the mixture coefficients are computed recursively for each

measurement time based on the previous measurement. HMM algorithms rely on labeled

training data and do not contain any internal model of the vehicle dynamics.

There are unique benefits and drawbacks of rule-based, motion primitive based, and

HMM based approaches to regime recognition. Rule-based algorithms are relatively easy

to construct, but lack a generalized recursion technique that conditions the current classi-

fication on the previous one. They also perform classification in a binary way — either

the aircraft is flying a regime with 100% certainty, or it is not with 100% certainty. This

deterministic classification does not properly acknowledge the inherent uncertainty in the

regime recognition process. In the motion primitive based approach, the conditional logic

is applied on a per-segment basis, rather than on a per-time-step basis. This avoids the

typical high-frequency switching behavior seen in many rule-based methods. However,

similar to a rule-based method, the motion primitive approach classifies the flight sequence

deterministically (i.e. the aircraft is flying a particular regime, or it is not flying a partic-

ular regime). In contrast with these two methods, HMM algorithms leverage a Markov

Model during classification, providing a recursion mechanism that enforces filter memory.

Furthermore, they classify regimes probabilistically, providing a likelihood associated with
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each regime at each timestep. However, HMM algorithms do not incorporate any flight

dynamic model. Instead, the HMM algorithm is a data-driven method that is trained solely

on whatever scripted flight test data is available. As a result, flight dynamic models cannot

be leveraged to any extent by these algorithms and they are only as accurate as the scripted

flight test data on which they have been trained. This lack of internal model can also cause

issues with certification of the algorithm among some agencies that may wish to employ it.

From the results of either of the two deterministic algorithms discussed above (rule-

based and motion primitive based), the damage incurred on each component is straight-

forward to calculate, as an assumed damage rate for each life-limited component per each

maneuver is specified. However, regime recognition algorithms that result in probabilistic

estimates of the flown regime at each time step (i.e. they produce a probability distribution

over the regimes rather than a deterministic classification) are not straightforward to trans-

late into damage estimates. Currently no technique is available to translate probabilistic

regime classifications to fatigue damage estimates for a specified component.

1.2 Work Overview

The work of this dissertation seeks to address two main topics. First, by documenting the

design and testing of a new type of regime recognition algorithm for helicopters using In-

teracting Multiple Model (IMM) estimators. An IMM estimator is a recursive Bayesian

filtering algorithm for systems that exhibit multiple modes of dynamic behavior [56]. In

the regime recognition context, each regime may be considered a different dynamic mode

of the system. At each timestep of recorded data, the IMM computes innovations between

the predicted state associated with each mode and the measured observation. Then the

probability of each regime is computed based on these innovations, a pre-defined transition

probability matrix, and the probabilities from the prior timestep. Through this probabilis-

tic mode determination, the IMM incorporates uncertainty quantification into the regime

recognition process. It also inherently leverages a flight dynamic model of the aircraft and
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thus does not rely strictly on training data from scripted flights.

Secondly, this dissertation documents a novel technique to compute fatigue damage es-

timates from probabilistic regime classifications. The proposed method for fatigue damage

estimation is designed to be used in conjunction with probabilistic RR algorithms such as

the Hidden Markov Model method from [54, 55, 57] or the IMM method to be discussed

in Chapter 2, and also documented in References [58, 59]. In the proposed approach, the

fatigue damage incurred by each component at a given time step of flight data is considered

as a random variable with a Probability Mass Function (PMF) dictated by the identified

regime and the damage rates in each regime. Incurred damage over a flight is then es-

timated by summing the damage random variables from each timestep. This results in

a probability distribution for the total damage incurred by each component over a flight,

which can be used for IAT purposes to evaluate remaining useful life. In order to improve

the computational performance of the algorithm, a Gaussian approximation is made that

eliminates the need to convolute a large numbers of random variables. This modification

results in minimal loss of accuracy but reduces computation time to a nearly-trivial amount.

While the focus of this work is primarily on damage estimation for IAT, an extension of the

methodology is discussed that allows it to be employed for creation of a damage-per-100

hours spectrum for fleet-wide use.

Results are presented for using both simulated data for an SH-60B and F-16, and real

data gathered from a generic utility-scale helicopter. Probabilistic damage predictions from

the proposed algorithm are compared against those from a deterministic algorithm. Results

show that the probabilistic method produces fatigue damage distributions that mirror the

uncertainty in the RR process. When regime estimates have low uncertainty, the dam-

age distribution has low variance and closely matches deterministic predictions. However,

when regime estimates have high uncertainty, the corresponding damage distribution has

large variance, indicating significant uncertainty in the incurred damage. These results

highlight the main advantage of the probabilistic approach (i.e. uncertainty in the RR pro-
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cess is translated in a rigorous way into the resulting fatigue damage estimates). Further-

more, the approach is general enough that additional sources of uncertainty (e.g. uncer-

tainty in the damage rates caused by variability in regime execution as described above)

can be easily incorporated to produce a unified probabilistic framework that captures all

significant sources of uncertainty in the damage estimation process.

1.2.1 Dissertation Outline

This dissertation proceeds as follows: Chapter 2 begins with an overview of the IMM filter.

The regime recognition algorithm is then presented as a set of IMM filters and Kalman fil-

ters specific to one or more vehicle states, whose mode probabilities are combined to form

the regime probabilities. Results are presented for several simulated flight sequences of the

SH-60B. Accuracy of the regime recognition results are assessed through the use of accu-

racy metrics that are applicable to probabilistic classification. Results are compared with

regime recognition outputs from a rule-based classification scheme, and performance trade-

offs are highlighted. Chapter 3 provides a detailed description of the probabilistic damage

estimation algorithm. A Gaussian approximation is introduced and justified, and analysis

is performed to study the factors that influence variance in the damage distribution. An

algorithmic extension is also presented for use in fleet-wide usage spectrum development.

Simulation results comparing performance of the proposed technique against a determinis-

tic approach are shown. Chapter 4 takes the proposed methodologies and algorithms and

sees them applied to actual HUMS data gathered from a generic single engine transport

helicopter. Chapter 5 shows the presented algorithms applied to a fixed-wing aircraft with

little modification. Results are shown using simulated data generated from a six-Degree of

Freedom (DOF) model of a General Dynamics F-16. Finally, Chapter 6 summarizes the

main contributions of work and gives recommendations for areas of future research.
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CHAPTER 2

PROBABILISTIC REGIME RECOGNITION

2.1 Regime Recognition

Regime recognition is an important aspect of condition-based maintenance for modern he-

licopters, and involves the post-flight classification of flight data into regime categories.

These classifications are then used to predict fatigue damage and vehicle usage spectra.

While several regime recognition algorithms have been proposed to date, many suffer from

an over-reliance on training data or poor accuracy when presented with flight data that does

not precisely match one of the defined regimes. This dissertation introduces a new type

of regime recognition algorithm based on IMM estimators, which use a bank of dynamic

models to evaluate the probability of the system existing in one of various possible dynamic

modes. In the regime recognition context, each of the dynamic modes corresponds to a par-

ticular regime. The proposed recognition algorithm offers advantages over other methods

in that it provides a probabilistic classification of flight data, thereby explicitly acknowl-

edging uncertainty in the recognition process. Furthermore, the algorithm is model-based,

reducing reliance on training data. Following a detailed description of the methodology,

results are provided by applying the algorithm to simulated data towards the end of this

chapter, and actual flight test data in Chapter 4. Results show significant performance im-

provements compared with a typical rule-based recognition scheme.

2.2 IMM Estimator Overview

The Interacting Multiple Model estimator is a special type of multiple model adaptive esti-

mation scheme in which the system is considered to exist in one of several possible modes

[56]. IMMs are in widespread use in radar processing [60], missile tracking [61], and
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a variety of other aerospace and signal processing applications [62]. The IMM estima-

tor contains a bank of (extended) Kalman filters corresponding to each system mode. A

Bayesian mixing step combines the contributions of each mode-matched filter to arrive at

an overall state estimate, as well as a set of probabilities of the system existing in each of

the modes at the specific time. A brief summary of the IMM algorithm is presented here,

while a detailed mathematical description is available in [56].

A diagram of a general IMM filter is shown in Figure 2.1. A set of Nf Kalman filters

are propagated at each timestep – one for each dynamic mode of the system. Let the mode

i filter have state vector ~xi with a state propagation equation given by,

~xi = fi(~xi, ~ui) (2.1)

where ~ui is a vector of control inputs, specific to the ith dynamic mode. The covariance

matrix associated with this mode is denoted as Pi The kth filter step is computed as follows,

with reference to Figure 2.1. First, the Nf models are propagated to the kth measurement

time. The measurement at update step k is denoted as z(k). The residual for filter i is

computed as,

~ri(k) = z(k)−Hi(k)~xi(k
∗) (2.2)

where ~xi(k
∗) is the update step k and Hi(k)~xi(k

∗) is the predicted measurement. The

residual covariance for filter i is given as,

Si(k) = Hi(k)Pi(k
∗)Hi(k)T +Ri(k) (2.3)

where Pi(k∗) is the predicted state error covariance at update k, Hi(k) is the measurement

matrix for filter i, and Ri(k)is the measurement error covariance for filter i. The state and
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covariance updates for filter i are given by,

~xi = ~xi(k
∗) +Wi(k)~ri(k) (2.4)

Pi(k) = Pi(k
∗) +Wi(k)Si(k)Wi(k)T (2.5)

where Wi(k) is the Kalman gain matrix. This propagation and measurement update step is

repeated for all Nf filters.

Following the individual mode-matched filter updates, the mode probabilities are com-

puted as follows. First, the likelihood function for mode i is computed according to,

Λi(k) = N ( ~ri(k); 0;Si(k)) (2.6)

where N ( ~a(k); 0;M) denotes the zero-mean multivariate normal distribution with covari-

ance matrix M evaluated at a ~a. Finally, the mode probabilities are computed as,

µi(k) =
1

c
Λi(k)

Nf∑
j=1

pijµj(k − 1) (2.7)

In Equation 2.7, c is a normalizing coefficient and pji is the Markov transition probability

from mode j to mode i. The Markov transition probabilities pji are constants that are

defined based on anticipated system behavior [56]. Also, the initial mode probabilities

µi(0) may be set based on knowledge of the initial system mode, or can be set to uniform

values µi(0) = 1
Nf

if no information about the initial mode of the system is available.

The filtering process defined in Equations (2.1) to (2.7) is repeated for each of the Nf

mode-matched filters to produce a probability distribution over the set of modes. Note that

additional interaction and mixing steps are performed, but are not described here since the

mode probabilities in Equation 2.7 are the primary quantity of interest in this work (details

of these additional steps, as well as a more complete overview of the IMM are provided in

[56]).
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Figure 2.1: Overview of the IMM Filter.

From a qualitative standpoint, the IMM filter propagates a bank of independent dy-

namic models. When a measurement is received, the residuals of each model are compared

against one another. In general, a filter that exhibits a smaller residual will lead to a higher

probability that the system is in that mode, compared to a filter with a higher residual.

In addition, the mode transition probability matrix defines the probability that the sys-

tem transitions from one mode to another at each filter timestep. These Markov transition

probabilities and the measurement residuals together determine the mode probabilities per

Equation 2.7.

There are several key tuning parameters in an IMM filter – the model error covariance

(Qi for filter i), the measurement error covariance (Ri for filter i), and the mode transition

probability matrix. The values of these matrices govern both the steady-state behavior and

the rate at which the filter switches between modes. Note that Qi and Ri must be defined
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for each filter in the IMM, and the transition probabilities matrix is Nf × Nf . Thus, the

number of tuning parameters can become quite large as Nf and the size of the state space

grows. This can lead to complications and poor performance as discussed in [63]. In the

context of this paper, the scaling issues associated with the tuning parameters of the IMM

filter lead to specific design choices as described in the next section.

2.3 IMM-Based Regime Recognition for Rotorcraft

2.3.1 Algorithm Overview

The key claim underlying this work is that each maneuver regime defined for helicopter

regime recognition purposes can be recognized as a unique dynamic mode of the system,

and that the mode probabilities associated with each mode define the probability that the

helicopter is executing that maneuver regime at the given timestep. Thus, the regime recog-

nition problem is solved by computing the mode probabilities µi for i = 1, ..., Nf at each

timestep of the recorded data. Note that since the mode probabilities exist in the continuous

interval [0, 1], the regime recognition problem is solved probabilistically. There are usu-

ally non-zero probabilities of the system being in multiple modes (i.e., executing multiple

maneuvers) at once.

Consider a standard IMM filter constructed to solve the regime recognition problem.

There are typically upwards of 100 different maneuver regimes defined for a given vehicle,

and the typical state space for each dynamic mode might range from 5-10 state variables.

This leads to an enormous number of tuning parameters – the mode transition probability

matrix of 100 × 100 elements, as well as over 100 different Q and R matrices (one for

each filter) which can range in size from 5 × 5 to 10 × 10. The sheer number of resulting

tuning parameters makes this treatment of the problem impractical, as it can lead to poor

performance and excessive development effort.

Instead, an alternative approach is proposed here. A set of IMM filters and Kalman fil-

ters is defined, each with a low-dimensional state vector. Each IMM filter or Kalman filter is
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referred to as a bank. The mode probabilities for each filter bank are then combined to form

a joint probability. Because maneuver regimes are defined as unique regions in the joint

probability domain, the joint probabilities form the final maneuver regime probabilities.

This overall process is shown in Figure 2.2. Each of the filter banks produces specific es-

timates for the mode probabilities of its internal modes. These mode probabilities are then

combined to form joint probabilities, which are mapped to the overall maneuver regime

probabilities.

Figure 2.2: IMM Estimator Framework for Maneuver Regime Recognition.

The primary benefit of this scheme is the low dimensionality of the state vectors within

each filter bank (as will be described below). Therefore, the filter includes only a handful of

tuning parameters. In simulation experiments during development, this type of filter archi-

tecture exhibited more robust performance and much less sensitivity to tuning parameters

compared to a single IMM filter with a larger state space that includes all regimes.

It should also be noted that the models used in each of the Kalman filters or IMM filters

in Figure 2.2 can be of varying fidelity. A wide range of rotorcraft flight dynamic models of

varying fidelity have been developed in the literature, ranging from point mass models [64,

65] to 6DOF models driven by aerodynamic loads computed from blade element theory
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[66] or computational fluid dynamics [67, 68]. A comprehensive treatment of rotorcraft

simulation techniques, as well as discussion of modeling trade offs, is provided in [69].

In this work, a reduced 6-degree-of-freedom state vector is used by the mode filters and

the vehicle models embedded in each filter are kinematic only in nature. This design, in

which forces and moments are not modeled explicitly in the filter, reduces any dependence

on complex aerodynamic models while also providing suitable performance in the studies

performed here.

The remainder of this section details each of the filter banks as well as the scheme for

computing joint probabilities. Note that the implementation here is simply a prototype and

is capable of identifying only 18 common maneuver regimes. However, the filter architec-

ture is easily scalable, and implementation of the necessary banks and filter modes to be

able to identify the full range of maneuver regimes for a given helicopter platform would

follow similar procedures to those detailed here.

2.3.2 Measured Vehicle States

For the purposes of this work, the regime recognition algorithm is assumed to have access

to the following measured state vector at an appropriate update rate (10 Hz were assumed

for these studies, but the update rate can vary depending on application and sensing capa-

bilities):

~m =



z

ż

φ

ψ

ψ̇

u


(2.8)

In Equation 2.8, z is the helicopter altitude (with respect to an arbitrary reference, positive

up) and φ and ψ are the Euler roll and yaw angles, respectively. Define the standard he-

licopter body frame in which unit vectors ~IB, ~JB, and ~KB point respectively towards the

front of the aircraft, out the right side of the aircraft, and down, with the origin at the mass
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center (North-East-Down convention). Then u in Equation 2.8 is the ~IB component of the

velocity of the mass center with respect to the wind-fixed frame. Note that these values can

usually be obtained from standard Inertial navigation system (INS) packages and air data

systems typically included in flight data recorders or Health and Usage Monitoring Sys-

tems. Also note that the states in Equation 2.8 are selected only to facilitate computation of

this particular prototype filter – a larger, more complete measurement vector may be needed

to drive an IMM-based algorithm that estimates all maneuver regimes. Finally, the regime

recognition algorithm detailed in this work does not use measurements of pilot inputs. This

is because nearly all maneuver regimes are defined based on the helicopter states rather

than control inputs, and thus conditioning regime classifications on the inputs introduces

unnecessary complications in the recognition process for most regimes compared to a clas-

sification method based on vehicle states only. It is possible that identification of certain

maneuvers (e.g. control reversals) will require the inclusion of control inputs in the data set

considered by the algorithm; however, such developments are not considered in this work.

2.3.3 Vertical Speed, Heading Rate, and Acceleration IMM Filters

This section presents the vertical speed, heading rate, and acceleration IMM filters, all of

which share a common design. The vertical speed IMM filter will be presented in detail,

followed by brief discussions of the analogous designs of the other filters. The goal of

the vertical speed IMM filter is to estimate the probability that the vehicle is in a climb,

descent, or level flight condition. An IMM is implemented for this purpose defining these

three conditions as separate dynamic modes. The state vector and measurement vector for

this IMM filter are given respectively by,

~s1 =

{
z

ż

}
(2.9)
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~r1 =

{
z∗

ż∗

}
(2.10)

Within this IMM filter, five Kalman filters are defined. Each filter uses an identical internal

state vector but a different dynamic model. The dynamic model of the kth filter is given by,

~̇sk1 =

{
ˆ̇z

0

}
, ˆ̇z =


ż if ż ∈ [żth,k, żth,k+1]

żth,k if ż < żth,k

żth,k+1 if ż > żth,k+1

(2.11)

where ż is the IMM’s estimate of the vertical speed. Note that the vertical speed ˆ̇z used in

the kth filter is bounded by two threshold values żth,k and żth,k+1. These thresholds bound

a given vertical speed range and are given in Table 2.1. The five filters in this bank are de-

signed to differentiate between climb maneuvers (k = 1), slow climb maneuvers (k = 2),

constant altitude maneuvers (k = 3), slow descent maneuvers (k = 4), and descent ma-

neuvers (k = 5). Note that the differentiation between climb and slow climb (and descent

and slow descent) maneuvers is made because typical climb and descent rates in hover are

smaller in magnitude compared to forward flight. The resulting mode probabilities p1
1, p2

1,

p3
1,p4

1, and p5
1 (analogous to the µi mode probabilities in the previous section) are used in the

joint probability calculation to estimate the final regime probabilities, as will be discussed

below.

During the estimation process, if the kth filter estimates ż to be within the range

[żth,k, żth,k+1], then the ż estimate is used in the dynamic model in Equation 2.11. If ż

is estimated to be less than żth,k, then ż in the dynamic model is set equal to żth,k. Like-

wise, if ż is estimated to be greater than żth,k+1, then ż used in the dynamic model is set

equal to żth,k+1. As a result of this design, the dynamic model in the filter bank which

corresponds to the current vertical speed of the aircraft will propagate the estimated alti-

tude more accurately than the other filters, yielding the lowest residual error at the next

measurement timestep (neglecting measurement noise). This filter will therefore yield the
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highest likelihood value in Equation 2.6, and the mode probability for this filter will be

pushed higher per Equation 2.7.

Table 2.1: IMM Filter Thresholds

Threshold Vertical Speed Heading Rate Acceleration Roll Angle,
(żth,k), ft/min (ψ̇th,k), deg/s (u̇th,k),m/s

2 deg
1 ∞ −∞ −∞ -52.5
2 300 -2.3 -0.1g -37.5
3 90 2.3 0.1g -15
4 -90 ∞ ∞ 15
5 -300 – – 37.5
6 -∞ – – 52.5

g = 32.12 ft/s2

The goal of the heading rate IMM filter is to estimate the probability that the vehi-

cle is in a turning flight condition using filter modes corresponding to right yaw rate, left

yaw rate, and constant yaw rate flight conditions. Likewise, the acceleration IMM filter

estimates the probability that the aircraft is in a longitudinal acceleration or deceleration

condition. The state vectors for these IMM filters (labeled ~s2 and ~s3, respectively) are

given in Equation 2.12, while the measurement vectors (labeled ~r2 and ~r3, respectively) are

given in Equation 2.13.

~s2 =

{
ψ

ψ̇

}
~s3 =

{
u

u̇

}
(2.12)

~r2 =

{
ψ∗

ψ̇∗

}
~r3 = {u∗} (2.13)

Similar to the vertical speed IMM filter, three mode-matched Kalman filters are defined

within each of the heading rate and acceleration IMM filters. The dynamic models for

the kth filter of the heading rate and acceleration IMM filters are given respectively by

Equation 2.14 and Equation 2.15,

~̇sk2 =

{
ˆ̇ψ

0

}
, ˆ̇ψ =


ψ̇ if ψ̇ ∈ [ψ̇th,k, ψ̇th,k+1]

ψ̇th,k if ψ̇ < ψ̇th,k

ψ̇th,k+1 if ψ̇ > ψ̇th,k+1

(2.14)
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~̇sk3 =

{
ˆ̇u

0

}
, ˆ̇u =


u̇ if u̇ ∈ [u̇th,k, u̇th,k+1]

u̇th,k if u̇ < u̇th,k

u̇th,k+1 if u̇ > u̇th,k+1

(2.15)

Where ψ̇ an u̇ are the IMM filters’ estimates of the yaw rate and change in forward speed.

As in the vertical speed IMM, the heading rate and acceleration used by the kth filters to

drive the dynamic models are saturated between the threshold values for each filter (ψ̇th,k

and ψ̇th,k+1) for the heading rate IMM filter, and u̇th,k) and u̇th,k+1). The values used for

these thresholds in this study are given in Table 2.1. The mode probabilities for the head-

ing rate IMM filter are p1
2, p2

2, and p3
2, corresponding to a left yaw rate, approximately

constant yaw rate, and right yaw rate, respectively. Similarly, the probabilities output from

the acceleration filter bank are denoted as p1
3, p2

3, and p3
3 which correspond to deceleration,

approximately constant speed, and acceleration, respectively. These mode probabilities are

used subsequently in the joint probability calculation to estimate the final regime probabil-

ities.

2.3.4 Bank Angle Filter

One issue that arises when using an IMM to distinguish different maneuver regimes is that

some maneuver regimes do not exhibit distinct dynamic modes, but rather they are differ-

entiated by some boundary in the kinematic state space. An example is the two regimes:

Right Turn at 30°Angle of Bank (AOB), and Right Turn at 45°AOB. These two maneuvers

exhibit the same overall dynamics, with the only difference between them being the esti-

mated value of the roll angle state. While the modes of the vertical velocity filters differ in

the range of values of a dynamic state (vertical velocity), the turn angle regimes differ only

in the value of a kinematic state (roll angle). Thus, an IMM cannot be used to differentiate

between them.

An alternative approach that is consistent with the overall probabilistic framework is

to use the state probability density estimated by a standard Kalman filter to estimate the
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probability associated with different regimes. This process is used in formulation of the

bank angle filter. This fourth filter “bank”, which is actually a single Kalman filter, has

state and measurement vectors given by,

s4 = {φ} (2.16)

r4 = {φ∗} (2.17)

This filter uses a white noise process model given by ṡ4 = {0}. At each measurement up-

date, the filter produces a mean estimated roll angle value φ and a standard deviation of the

roll estimate error σφ, as depicted in Figure 2.3. Define a set of six threshold values φth,k,

k = {1, ..., 6} that define the boundaries between turning regimes. Several of these bound-

aries are illustrated in Figure 2.3, with values provided in Table 2.1. At each measurement

update, the resulting roll angle Probability Density Function (PDF) defined by the Gaussian

distribution with mean φ and standard deviation σφ is processed to obtain the probability

that the actual roll angle lies within certain bounds. This is done by integrating the PDF

within the boundaries of each threshold as shown in Figure 2.3, resulting in the probability

of the state existing within each threshold boundary. The thresholds selected for this filter

in Table 2.1 are designed to differentiate between the regimes Left Turn 45°AOB, Left Turn

30°AOB, Level Flight, Right Turn 30°AOB, and Right Turn 45°AOB, respectively. Thus,

the filter yields five probability values ( p1
4, p2

4, p3
4, p4

4, and p5
4 ) corresponding to each of

these regimes.
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Figure 2.3: Diagram of Probabilistic Roll Angle Estimate.

2.3.5 Translational Velocity Filter

In general, rotorcraft regimes may be placed in two categories: hover-based regimes, and

forward flight-based regimes (with a few exceptions such as ground-based maneuvers, side-

ward and rearward flight, etc.). The goal of the translational velocity filter bank is to esti-

mate the probability that the helicopter is in a hover-based regime, or a forward flight-based

regime in one of several speed ranges. Ideally, this filter would be implemented in an anal-

ogous fashion to the vertical speed IMM filter in which the state vector is composed of the

position and velocity states, and each mode-matched filter propagates a dynamic model that

enforces saturated limits on the velocity estimate used in propagation. However, this re-

quires measurements of the kinematic state, i.e. position, in order to implement because the

residual error from each mode-matched filter is computed between the propagated position

and measured position. This residual error is then used to compute the mode probabilities

for each filter in the IMM. In the case of the vertical speed IMM filter, altitude measure-
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ments are typically available. However, for operational security reasons, it is oftentimes

desired that location information not be used in the regime recognition process as such data

may be sensitive in military missions. Thus it is assumed that the x and y position states of

the aircraft are not available for use by the regime recognition algorithm.

Table 2.2: Thresholds for Translational Velocity Filter

Threshold Value
uth,1 0
uth,2 0.05Vh
uth,3 0.15Vh
uth,4 0.25Vh
uth,5 0.35Vh
uth,6 0.45Vh
uth,7 0.55Vh
uth,8 0.65Vh
uth,9 0.75Vh
uth,10 0.85Vh
uth,11 0.95Vh
uth,12 1.05Vh
uth,13 ∞

As a result of this restriction, the translational velocity filter is implemented in an anal-

ogous manner to the bank angle filter, using a single Kalman filter. The state and measure-

ment vectors for this filter are given by s5 = {u} and r5 = {u∗}, respectively, and a white

noise process model is used. The resulting state PDF is integrated inside the boundaries

listed in Table 2.2 to determine the probability that the aircraft is in a hover-based regime

or within a forward speed regime in a given speed range. Table 2.2 lists the boundaries

of integration defining each of the 12 speed regions, yielding probabilities {p1
5, p

2
5, ..., p

12
5 }.

Note that for the purposes of this work, only positive vehicle airspeeds are considered and

thus a rearward flight regime cannot be detected with this implementation of the algorithm.

However, simply extending the threshold set found in Table 2.2 into the negative direction,

and modifying the appropriate regime joint probability formation (Table 2.3) is all that is

required.
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2.3.6 Joint Probability Calculation

The final step in the regime recognition process is to estimate the probabilities associated

with each regime. To obtain the probabilities of each regime, the probabilities from each of

the five filters can be multiplied together to form joint probabilities, which are of the form

pi1 × p
j
2 × pk3 × p

q
4 × pr5 where i ∈ {1, ..., 5}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3}, q ∈ {1, ..., 5}, and

r ∈ {1, ..., 12}. Thus, there is a total of 2,700 unique joint probabilities (i.e., the number

of combinations of individual filter probabilities). These joint probability values may be

grouped together as appropriate into maneuver regime categories. A regime is therefore a

label applied to certain groups of joint probabilities.

Before defining the specific joint probabilities for each maneuver, some additional no-

tation for the mode probabilities is defined for convenience. First, the mode probabilities

for the translational velocity filter bank can be grouped into categories for hover-based and

forward flight-based maneuvers. Define the hover-based regime probability as,

phov = p1
5 (2.18)

and the total forward flight-based regime probability as,

ptrans =
12∑
i=2

pi5 (2.19)

When assigning regime labels to sets of joint probability values, it is oftentimes the case

that a particular regime label will apply regardless of the probabilities associated with a

particular bank. For instance, in the “hover” regime, the vehicle roll angle may be irrele-

vant and thus the hover regime label definition will not depend on the probabilities output

from the roll angle filter. For notational convenience in these cases, denote the sum of
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probabilities across an entire filter m as,

pallm =
n∑
i

pim (2.20)

where n is the number of probability values output from filter m. Of course, the sum in

Equation 2.20 is equal to 1, but because the regime labels will be assigned to complete joint

probabilities from each of the five filters, the notation in Equation 2.20 is maintained in the

regime definitions for consistency.

Table 2.3 presents the maneuver regimes implemented, along with the formulas for

computing their probabilities in terms of the individual probabilities from each filter. As an

example, the hover regime probability is defined as the probability that the vehicle is not

climbing or descending (p3
1) multiplied by the probability that the vehicle is not changing

heading (p2
2) multiplied by the probability that the vehicle forward speed is near zero (phov).

The other quantities in this formula (pall3 and pall4 ) are equal to one and are included only to

ensure that probabilities from all filters are represented in each formula. Note that the joint

probabilities listed in Table 2.3 represent only 1,788 of the 2,700 possible combinations

of individual filter probabilities. The remaining 912 combinations represent either flight

regimes that are not implemented in this study, or non-physical flight regimes (such as Right

Turn 30°AOB with a left-ward heading rate in forward flight at 0.5Vh, which may not be

physically possible for the helicopter to fly). Thus, the remaining joint probabilities that are

not assigned via the groupings in Table 2.3 are summed together to form the probability of a

general unknown regime. This is analogous to the “Unknown” label assigned by threshold-

based regime recognition codes if a flight regime is processed that conflicts with all of the

threshold definitions. The total probability of the regimes defined in Table 2.3, plus the

Unknown regime probability, sums to 1.
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Table 2.3: Regime Probability Formulas

Regime Formula
Hover p3

1 × p2
2 × pall3 × pall4 × phov

Left Hover Turn p3
1 × p1

2 × pall3 × pall4 × phov
Right Hover Turn p3

1 × p3
2 × pall3 × pall4 × phov

Axial Climb (p1
1 + p2

1)× p2
2 × pall3 × pall4 × phov

Axial Descent (p4
1 + p5

1)× p2
2 × pall3 × pall4 × phov

Forward Flight 0.xVh (p2
1 + p3

1 + p4
1)× pall2 × p2

3 × p3
4 × px+1

5

Accelerate (p2
1 + p3

1 + p4
1)× pall2 × p3

3 × p3
4 × ptrans

Decelerate (p2
1 + p3

1 + p4
1)× pall2 × p1

3 × p3
4 × ptrans

Left Turn 30°AOB (p2
1 + p3

1 + p4
1)× pall2 × p2

3 × p2
4 × ptrans

Left Turn 45°AOB (p2
1 + p3

1 + p4
1)× pall2 × p2

3 × p1
4 × ptrans

Right Turn 30°AOB (p2
1 + p3

1 + p4
1)× pall2 × p2

3 × p4
4 × ptrans

Right Turn 45°AOB (p2
1 + p3

1 + p4
1)× pall2 × p2

3 × p5
4 × ptrans

Descent p5
1 × pall2 × pall3 × p3

4 × ptrans
Climb p1

1 × pall2 × pall3 × p3
4 × ptrans

Left Descending Turn p5
1 × pall2 × pall3 × (p1

4 + p2
4)× ptrans

Left Climbing Turn p1
1 × pall2 × pall3 × (p1

4 + p2
4)× ptrans

Right Descending Turn p5
1 × pall2 × pall3 × (p4

4 + p5
4)× ptrans

Right Climbing Turn p1
1 × pall2 × pall3 × (p4

4 + p5
4)× ptrans

2.4 Evaluation Metrics

When developing regime recognition algorithms, validation must be performed using sim-

ulated or experimental scripted flight test data to ensure suitable accuracy. For instance,

Aeronautical Design Standard 79, entitled “Condition Based Maintenance System for U.S.

Army Aircraft,” [8], dictates required levels of accuracy for regime recognition codes.

Thus, for a particular code some method to evaluate accuracy is necessary both for po-

tential certification and for performance comparisons to other codes. This section will

introduce evaluation metrics for the probabilistic classification strategy employed in this

work. Note that, in so-called ordinary (or deterministic) classification, an observation is as-

signed to a single class deterministically – i.e. the classifier outputs a single class label for

each observation. In contrast, the probabilistic classifier derived here outputs a probability

distribution over all of the classes for each sample observation.

Performance of an ordinary classifier can be measured through the confusion matrix
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[70]. The confusion matrix is a table showing the true class and the hypothesized class,

and several common metrics such as the false positive rate, true positive rate, accuracy,

precision, and recall can be computed from it [71]. For a probabilistic classifier, application

of the confusion matrix is not as straightforward because each observation results in a

probability distribution over the classes, rather than a single classification. Following the

technique proposed by Wang et al. [72], a probabilistic confusion matrix is used in this

work wherein the confusion matrix elements are computed as a weighted sum of each

classification and the weights are the probability values assigned to the hypothesized class.

To formalize this, the (i, j) element of the n× n confusion matrix is given by,

Cij =

∑
k∈K p(i, k)∑n
r=1Crj

(2.21)

whereK is the set of all timesteps where maneuver regime j was actually flown, and p(i, k)

is the probability value assigned to maneuver i at timestep k. Note that the matrix elements

are normalized by the sum of each column, which is equal to the total number of timesteps

that the regime is flown. This has the effect of weighting the regimes such that a “perfect

classifier” would return all ones down the main diagonal, and zeroes everywhere else. Also

note that this general definition of the confusion matrix can be applied to deterministic

classifiers as well, since in the deterministic case p(i, k) = {0, 1} ∀ i, k. Thus, this gener-

alized confusion matrix can be used to compare performance of the proposed probabilistic

algorithm with a deterministic threshold-based one.

A second measure that will be used in this work to measure classification performance

is the Receiver Operating Characteristic (ROC) graph [71]. ROC graphs are a method to

visualize classifier performance, and can be applied effectively in the case of probabilistic

classifiers. To introduce ROC, define a true positive tii as an instance (timestep) in which

the classifier hypothesized regime i, and the actual regime flown was i. Denote anytime
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that the actual maneuver i was flown as ti. The true positive rate for regime i is then,

TPi =

∑
tii∑
ti

(2.22)

which has an ideal value of 1. Likewise, define a false positive tij as an instance in which

the classifier hypothesized regime i, and the actual regime flown was j where i 6= j. Denote

anytime that the actual maneuver flown was j 6= i as tj . The false positive rate for regime

i can then be defined as,

FPi =

∑
tij∑
ti

(2.23)

which has an ideal value of zero. For a probabilistic classifier, these definitions cannot be

immediately applied since each timestep classification results in a probability distribution

rather than a singular hypothesis. To use these metrics for a probabilistic classifier, the

probabilities of each regime can be thresholded by a value r ∈ [0, 1] such that, if the

probability of regime i is greater than r, then the classifier is said to have hypothesized

regime i (and thus ti is incremented). Note that if r < 1, this may result in multiple regime

hypotheses for each observation, since the probabilities of multiple regimes may be above

the threshold r.

A receiver operating characteristics graph is formed by applying a given threshold r to

the classification results, measuring TPi and FPi, and plotting them on the x and y axes,

respectively. This result is then repeated for a discretized set of r values between 0 and

1, resulting in a line. An example ROC graph is shown in Figure 2.4 (black curve). Note

that when r = 1, the probabilistic classifier never selects regime i and thus commits no

false positive errors but also gains no true positives (thus, the point (0, 0)). Similarly, when

r = 0, the probabilistic classifier always selects regime i and thus has a perfect true positive

score of 1, but also a maximum false positive score of 1.

The integrated area under the ROC curve is a single metric that can be computed to

measure classification performance. A perfect classifier will yield TPi = 1 and FPi = 0 for
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any r, meaning that the RR code assigned 100% probability to the correct (flown) regime

at every timestep. This results in an optimal ROC curve as shown in blue in Figure 2.4.

The integrated area under this curve is 1, which is the optimal Area Under the [ROC] Cuve

(AUC) value. Likewise, the worst-case ROC curve is shown in red in Figure 2.4. For this

classifier, TPi = FPi for any r which represents the strategy of randomly guessing a class

at each observation. No realistic classifier should perform worse than this, and thus the

red curve represents worst-case performance with an associated worst-case AUC value of

0.5. A deterministic classifier has no r value, but its performance can still be plotted as an

ROC curve. For a deterministic classifier, there is a single true positive and false positive

rate for a classified sequence. This value can be plotted on the ROC graph, and connected

to the points (0, 0) and (1, 1) as shown in green in Figure 2.4. The AUC value for the

deterministic classifier can then be compared to that from a probabilistic classifier.

Figure 2.4: Example ROC Graph Showing Various Probabilistic Classifiers.
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2.5 Simulation Model

The simulation model used to generate the HUMS flight data for use in the following ex-

amples is from the Georgia Institute of Technology’s Helicopter Integrated Vehicle Simu-

lation Environment (HIVE). HIVE utilizes a high-fidelity dynamic flight model based on

the ARMCOP model developed by Talbot et al. and Chen (Refs. [73–75]). HIVE also

incorporates several advanced modeling additions for increased accuracy including ground

effect, dynamic inflow, blade stall, and quasi-steady second-order flapping dynamics. The

aircraft model contains 22 total states consisting of: twelve rigid-body vehicle states, three

dynamic inflow states, one for the rotor speed, and six for the main rotor flapping states.

The simulation propagates all model states using a 4th order Runga-Kutta numerical inte-

gration method, with a timestep of 1 ms.

Rotor Forces and Moments

The forces and moments generated by the main rotor are calculated using a numerical

blade-element approach. While dynamic stall and compressibility effects are neglected,

complete aerodynamic look-up tables (See Ref. [76]) are used to model any blade ele-

ments in static stall. For computation, each blade was divided into 15 radial sections, and

integrated at 30 azimuthal locations around the main rotor head. The model includes first-

order harmonic flapping, with flapping states β0, β1s, and β1c, which are propagated using

a second-order flapping equation [77]. HIVE uses a buildup approach where computed

forces and moments are summed to obtain the aerodynamic forces exerted on the rest of

the vehicle. Contributions from the fuselage and stabilizer components are included using

a linear model of the aerodynamics, and down-wash effects are included using a bluff-body

model. Forces and moments exerted by the tail rotor are calculated using Newton-Raphson

iteration with the assumption of uniform inflow. The rotation rate of the tail rotor is de-

termined by scaling the main rotor rotation rate by a constant factor. Additional details
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regarding the rotor model can be found in Refs. [78, 79].

Dynamic Inflow

A variety of dynamic inflow models have been developed in the past several decades. These

models include (but are not limited to) linear models [80], free-vortex wake models [81],

and state-space wake models derived using indicial theory [82]. These models range in

complexity, and the trade off between accuracy and computational burden must be deter-

mined based on the purpose of the studies to be performed. Due to the versatile nature of

the HIVE simulation platform, HIVE utilizes the Pitt and Peters model (detailed in Ref-

erences [83, 84]) for computing the dynamic inflow for the main rotor. This three-state

model is widely used for its balance of accuracy and computational efficiency, and has

been extensively studied and experimentally verified [85]. The three states (denoted as

λ0, λs, and λc) describe the distribution of the induced flow ratio over the disk swept by

the main rotor according to the following equation,

λi(r, ψMR) = λ0 + λs
r

R
sin(ψMR) + λc

r

R
cos(ψMR) (2.24)

where r is the radial distance from the rotor hub, R is the main rotor radius, and ψMR is

the main rotor azimuth angle in radians. These states are then evolved according to the

dynamic equation given by,

[M]

λ̇0

λ̇s

λ̇c

+ [L̂]−1

λ0

λs

λc

 = C (2.25)

where M and L̂ are matrices that are calculated based on blade loads, aerodynamics, rotor

inertial properties, as well as sideslip and wake angles, and C is the resulting vector of

force and moment coefficients expressed in the body-frame. Complete details of the inflow

model can be found in References [83, 84].
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Ground Effect

The HIVE also includes a ground effect correction for when the vehicle is within two rotor

diameters of the ground. This ground effect correction modifies the dynamic inflow given

by Equation 2.24. At steady-state (i.e. λ̇ = 0) eq. (2.24) yields,

C = [L̂]−1λss (2.26)

where λss is the three state vector representing the steady-state inflow. An inflow correction

factor of ∆w/w0 (as described by Heyson [86]) can be used to model ground effect in

forward flight. The correction factors obtained by Heyson – using experimental data – is

only valid at the center of the rotor, and decreases from root to tip of the blades, and thus

a 0.8 multiplier is used to compute the average value of the inflow correction across the

entire rotor disk [86]. The steady-state inflow is then modeled by,

λss,IGE =

(
1− 0.8

∆w

w0

)
λss (2.27)

This correction is then applied to Equation 2.24 by adjusting the dynamic inflow model

given by C so that λ tends towards λss,IGE . Therefore, at steady-state, the following equa-

tion can be used to model the dynamic inflow when the vehicle is in ground effect (IGE),

[M]

λ̇0

λ̇s

λ̇c

+ [L̂]−1

λ0

λs

λc

 =

(
1− 0.8

∆w

w0

)
C (2.28)

Note that in Equations (2.27) and (2.28) the correction factor ∆w
w0

is referred to as the

ground-induced interference velocity, and is found via a lookup table in [86] using rotor

height above ground and wake angle, as inputs.
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Synthetic HUMS

A companion program to HIVE is used to generate an output file that is structurally identi-

cal to that found in some real HUMS outputs used for helicopter regime recognition. This

compatibility of file output allows for comparisons to be made more easily between the

results of the proposed IMM regime recognition and enterprise-grade rule-based RR soft-

ware. The helicopter used in this work is the Sikorsky SH-60B. HIVE includes allowable

minimum and maximum actuator deflection limits and deflection rates. The main rotor col-

lective has a range limit of 9.9°to 25.9°, the lateral cyclic limit of±8°, and the longitudinal

cyclic has a range limited to -12.9° to 16.5°. An actuator rate limit of 40°/s is enforced.

Table 2.4 lists the SH-60B parameters used in the simulation studies found within this

dissertation.

Table 2.4: SH-60B Model Parameters

Parameters Value
Helicopter gross weight 16,000 lbs
Number of main rotor blades 4
Main rotor blade chord 1.73 ft
Main rotor radius 26.83 ft
Main rotor blade moment of inertia 1491 slug ft2

Main rotor height above ground (water line) 12 ft
Main rotor normal operating speed 27.0 rad/s
Main rotor blade airfoil (simulation) SC 1095

Virtual Pilot

In conjunction with the HIVE program, a virtual pilot algorithm, developed by Fowler

et al. [87], was used. Control inputs to the simulated aircraft are driven by a so-called

“virtual pilot” that is capable of executing simulated missions in a similar manner to a

human pilot. This control law module plug-in has a catalog of known maneuvers, each

with a corresponding control law. When a maneuver is commanded, the pre-determined

control loops are activated and/or deactivated, and the appropriate setpoints are updated
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based on the maneuver parameters. The commanded maneuver sequence (also referred to

as flight cards) are loaded into the program as a script prior to simulation. The HIVE, in

conjunction with the virtual pilot algorithm, has been found to generate realistic flight data

that can be used for regime recognition validation and verification [78, 87].

2.6 Results

A set of example cases is presented in this section to demonstrate performance of the IMM-

based regime recognition algorithm using both simulated data for the SH-60B and experi-

mental flight data from a generic single engine transport helicopter. The purpose of these

example cases is to illustrate various aspects of algorithm performance and compare regime

recognition outputs with a threshold-based algorithm.

Two examples below compare the IMM-based regime recognition algorithm outputs to

those generated from a threshold-based code. The specific threshold regime recognition

code used for these comparisons was developed for the SH-60B and uses hierarchical rule-

based methods to classify regimes based on state thresholds. An extensive description of

the algorithm and the development process underlying it is available in Refs. [52] and [87].

Note that this algorithm has been validated extensively using scripted flight test data from

SH-60B test flights (where pilots fly prescribed maneuvers for specified times, creating

a truth dataset against which regime recognition algorithm outputs can be compared for

validation).

The IMM-based algorithm used to generate results throughout this section includes

multiple tuning parameters: the measurement covariance matrices for each filter Ri, the

model error covariance matrices for each filter, and the mode transition probabilities matri-

ces for each IMM filter. These parameters were tuned using both simulated and actual flight

data such that proper performance was observed in terms of reasonable rise times during

maneuver transitions, robustness to noise, and accurate classification results for simulated

data for which truth regimes were known. The same filter tuning was used for all examples

33



in this section.

2.6.1 Example Flight Sequence 1

The first example uses a fairly short flight segment of simulated data. The maneuver se-

quence flown (in simulation) for this example is shown in Table 2.5. Beginning from for-

ward flight at approximately 135 ft/s, the helicopter performs a gentle left turn at 16°AOB,

then a slow climb at 300 feet per minute (fpm), and then recovers to forward flight. Several

relevant state time histories for this flight sequence, namely roll angle, altitude, and alti-

tude rate are shown in Figure 2.5. Note that in these figures, the solid line represents the

simulated flight data and the dashed line is the state estimate from either the IMM filter or

the Kalman filter associated with this state. In this initial example, no measurement noise

is included (although it is in subsequent examples).

Table 2.5: Maneuver Sequence for RR Example 1

Maneuver Start Time, s Flown Regime Parameter
0 Forward Flight 0.5Vh
5 Left Turn 16°AOB

60 Climb 300 fpm
115 Forward Flight 0.5Vh
135 End –

Regime recognition results for this example are shown in Figure 2.6 for the threshold-

based code, and in Figure 2.7 for the IMM-based algorithm. In Figure 2.6 the classified

regime is marked with a black square at each timestep. This figure shows that the threshold

algorithm correctly identifies the left turn (after an initial transient during the entry to the

turn) between 9.8-55.8 sec, but then for the remainder of the flight identifies the flown

regime as Forward Flight 0.5Vh. The threshold algorithm’s behavior in this example is

a clear illustration of the limits of threshold-based codes – if a sustained flight regime

observed in measured data does not fit clearly into one of the canonical definitions for the

regime set, the threshold code is forced to make a deterministic classification anyway. In

this case, the left turn maneuver exceeded the bank angle threshold set in this code for a
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Figure 2.5: Selected State Time Histories for Example 1, Simulated Flight Data (Meas. =
measurement).

“Left Turn” regime and thus this portion was classified accordingly. However, the threshold

algorithm “misses” the climb regime because the climb rate is slower than that for a typical

“Climb” regime as defined by the algorithm thresholds. Thus, although the slow climb is,

in reality, a maneuver that is between a typical “Climb” and “Forward Flight” segment, the

threshold algorithm classifies it deterministically as “Forward Flight”. This deterministic

classification may even lead to damage underprediction (if a shallow climb yields more

component damage than “Forward Flight”), although such implications are not explored

here.

Figure 2.7 shows the performance of the IMM-based algorithm for this example. Un-

like the threshold-based algorithm, the IMM-based algorithm provides partial classifica-

tions to multiple regimes throughout the flight segment. As the helicopter transitions into

the shallow left turn, the “Left Turn 30°AOB” increases from near zero probability to about
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0.6 probability, while “Forward Flight 0.5Vh” decreases from about 1 to about 0.4. Simi-

larly, as the aircraft enters the slow climb segment, the “Climb” probability increases from

about zero to roughly 0.5, and “Forward Flight 0.5Vh” decreases from about 1 to about

0.5. These results make sense since the left turn and slow climb maneuvers as flown are

somewhere in between the “Left Turn” and “Forward Flight” (or “Climb” and “Forward

Flight”) maneuvers as they would be typically flown. The IMM-based estimator provides

the regime recognition code the flexibility to perform this partial classification into two

regimes, rather than a threshold-based code which must perform a 100% classification into

one of the two regimes. This case illustrates the difficulty in applying deterministic classi-

fication to the regime recognition problem since there are no clear, universally-recognized

boundaries between regimes in the state space. In contrast, the probabilistic classifications

more accurately reflect the fact that a flight condition can be a blend between two canonical

regimes.

To compare performance quantitatively for this example, the AUC metrics are com-

puted from the results in Figure 2.6 and Figure 2.7. The threshold code yielded a Forward

Flight AUC of 0.709, Left Turn AUC of 0.982, and Climb AUC of 0.5. Note that the

Climb AUC of 0.5 is the worst possible score for a classifier, which is due to the fact that

the threshold code missed the entire climb maneuver. The IMM code AUC values are

significantly higher at 0.848, 0.956, and 0.989 for Forward Flight, Left Turn, and Climb,

respectively.
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Figure 2.6: Threshold Algorithm Regime Recognition Results, Example 1.

Figure 2.7: IMM-Based Regime Recognition Results, Example 1.
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2.6.2 Example Flight Sequence 2

The second example considers a longer flight sequence consisting of more maneuvers to

explore the performance of the IMM-based algorithm more in depth. The flight sequence

flown in simulation for this example is provided in Table 2.6. Note that the aircraft per-

forms several climbs, turns, and descents, as well as a hover-to-forward flight transition.

Prior to using the data for regime recognition, zero-mean Gaussian noise is added to the

state time histories, where the noise standard deviations for each state were derived from

engineering judgment and experience with real HUMS measurement data. Several relevant

state time histories, showing both the noisy (simulated) measurement values and the as-

sociated IMM/Kalman filter estimates from the associated filter, are shown in Figures 2.8

and 2.9.

Table 2.6: Maneuver Sequence for RR Example 2

Maneuver Start Time, s Flown Regime Parameter
0 Hover –

35 Acceleration –
50 Forward Flight 0.5Vh
80 Climb 500 fpm

115 Climbing Right Turn 500 fpm, 30°AOB
140 Climbing Right Turn 500 fpm, 40°AOB
165 Right Turn 40°AOB
200 Right Turn 30°AOB
230 Forward Flight 0.5Vh
270 Left Turn 30°AOB
305 Descending Left Turn 500 fpm, 30°AOB
330 Descent 500 fpm
360 Forward Flight 0.5Vh
395 End –

Figures 2.10 to 2.12 show the regime recognition results for the two algorithms. Fig-

ure 2.10 shows regime recognition results for the threshold algorithm where the noisy

measurements are directly input to the RR code. In this figure, it regularly appears that

timesteps are classified into multiple regimes simultaneously – in fact, this overlap in the

plotting occurs because the threshold algorithm switches classifications repeatedly between
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Figure 2.8: Selected State Time Histories for Example 2, Simulated Flight Data.

adjacent timesteps. This high-frequency switching (also present in Figure 2.11) appears

as overlapping classifications in the plot. Note that while the regimes are recognized cor-

rectly at many timesteps, the algorithm switches rapidly between classifications even during

steady-state portions of the maneuver. This is because noise in the measurements causes

the states to cross the threshold boundaries between regimes almost on a per-timestep ba-

sis. Figure 2.11 shows the threshold RR code results using measurements that have been

smoothed using a moving average smoother with a two-second sliding window. These

results are much improved over those shown in Figure 2.10, but some high-frequency

switching behavior is still notable in climbing and turning segments of the flight. Fig-

ure 2.12 shows the IMM RR code results when using the raw, noisy measurements, where

the gray-scale value denotes the maneuver probability. Note that, in general, regimes are

correctly classified during steady-state and uncertainty about classification, primarily dur-

ing transients, is addressed by assigning non-zero probabilities across several maneuvers.
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Figure 2.9: Selected State Time Histories for Example 2, Simulated Flight Data.

To quantitatively compare the results, figs. 2.13 and 2.14 show the probabilistic confu-

sion matrices for the smoothed threshold RR results and the IMM RR results, where only

rows and columns for actual flown regimes are included. These matrices can be compared

qualitatively to show that the IMM RR code yields better classification performance, indi-

cated by the fact that the confusion matrix for the IMM case more closely resembles the

identity matrix. Normalized accuracy, computed as the number of true positives divided by

the total number of true positives plus false positives in the normalized confusion matrix, is

64.6% for the smoothed threshold RR code versus 84.1% for the IMM RR code. Table 2.7

shows the AUC metrics for each of the regimes identified by each code, and a subset of the

ROC curves for the IMM code results is shown in Figure 2.15. In Table 2.7, the average

AUC is computed by summing all the AUC values multiplied by their respective fraction

of the flight time executing each maneuver. For all maneuvers, the AUCs yielded by the

IMM-based code are as high, or significantly higher, than those yielded by the threshold-
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based code. The average AUC value of 0.976 for the IMM RR code is significantly better

than the 0.788 exhibited by the threshold code. In addition to the IMM algorithm’s ability

to partially classify flight data that occurs in between standard maneuvers, this example

illustrates the benefits of the algorithm’s probabilistic classifications in handling maneuver

transients. Furthermore, the filtering of noisy measurements is handled naturally by the

IMM algorithm’s internal Kalman filters, which also serves to improve performance.

Figure 2.10: Threshold-Based RR Classification Results, Example 2, No Measurement
Smoothing.

Table 2.7: AUC Values for Example 2 Regime Recognition Results

Maneuver Threshold-Based Code IMM-Based Code
Acceleration 0.649 0.910
Climb 0.726 0.973
Climbing Right Turn 0.694 0.983
Descending Left Turn 0.622 0.992
Descent 0.500 0.999
Forward Flight 0.5Vh 0.885 0.972
Hover 0.996 0.996
Left Turn 0.959 0.989
Right Turn 0.947 0.999
Average (Weighted) 0.788 0.976
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Figure 2.11: Threshold-Based RR Classification Results, Example 2, Smoothed Measure-
ments.

Figure 2.12: IMM-Based RR Classification Results, Example 2, No Measurement Smooth-
ing.
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Figure 2.13: Probabilistic Confusion Matrices for Threshold RR Results.

Figure 2.14: Probabilistic Confusion Matrices for IMM RR Results.
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Figure 2.15: ROC Curves for Selected Regimes, IMM Regime Recognition Results.
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CHAPTER 3

PROBABILISTIC DAMAGE ESTIMATION

Condition-based maintenance programs for modern helicopters rely on algorithmic tech-

niques to estimate the useful life remaining for life-limited components. Regime recognition-

based CBM programs involve a regime recognition step and a damage estimation step in

which damage is calculated based on the identified regimes. However, to date there has

been no method developed to convert probabilistic regime distributions to damage esti-

mates. This dissertation proposes a technique to compute a probability distribution over

the fatigue damage for each life-limited component directly from the regime probability

distributions. The method treats the incurred damage at a given time as a random variable,

and accumulates the total damage incurred as a sum of random variables. The damage

distribution at each time is computed from the regime distribution and the regime damage

rates. A primary advantage of the approach is that it captures uncertainty in the regime

recognition process by treating damage as a random variable rather than a deterministic

value. Simulation results illustrate the benefit of the probabilistic approach over a deter-

ministic method, particularly for flights where there is significant uncertainty in the flown

regimes.

3.1 Damage Estimation Algorithm

This section begins with an overview of the proposed Individual Aircraft Tracking CBM

scheme using probabilistic RR and damage estimation. This is followed by a detailed

description of the damage estimation methodology, which operates on the regime probabil-

ities for each timestep of flight data identified by the RR code. Two additional subsections

discuss a computational implementation using a Gaussian approximation for the damage

distributions, as well as an analysis of the factors that drive uncertainty in the damage
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estimates.

3.1.1 Damage Estimation Process Overview

The IAT paradigm envisioned here is depicted in Figure 3.1. For each flight (or set of

flights) of a given aircraft, HUMS data is recorded and processed by a probabilistic regime

recognition module. Note that flight data may be processed after each flight, or after a

batch of flights, as shown in Figure 3.1. The probabilistic RR modules may, for example,

be based on the Hidden Markov Model algorithm of Refs. [54, 55, 57], the IMM scheme

discussed in chapter 2 (also documented in Refs.[58, 59]), or some other method, but are

differentiated from rule-based RR methods in that they produce a probability distribution

over the regime set at each timestep of flight data. The output of the probabilistic regime

recognition algorithm is a probability distribution over the regime set at each timestep of

flight data.

These regime distributions are provided to a Damage Computation Module (DCM),

which is responsible for estimating the fatigue damage incurred for all life-limited compo-

nents over the course of the flights being processed. Typically, a deterministic RR approach

to damage calculation would apply the damage rates identified for each regime over the

time duration spent in each regime to calculate the total damage on each component. How-

ever, in a probabilistic setting, regime classifications are non-deterministic at each timestep,

but rather take the form of probability distributions. Thus, there is no single damage rate

that can be applied to a given component at a given time, since probabilities may be as-

signed to several regimes at once. This necessitates the development of a complementary

Damage Computation Module for use with probabilistic regime recognition, which is the

focus of this chapter.

The Damage Computation Module proposed here treats the damage incurred by each

component at each time interval of flight data as a random variable. Thus, the total damage

incurred by a component over a flight (or set of flights) is a sum of random variables,
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Figure 3.1: Individual Aircraft Tracking Data Flow.

which itself is a random variable. Thus, the proposed DCM converts the regime probability

distributions at each timestep of flight data to damage probability distributions for each

component at each timestep. Then, as depicted in Figure 3.1, the DCM accumulates the

damage estimates over the course of the flights being processed to produce a total damage

probability distribution for each life-limited component. A mathematical description of the

DCM is provided in detail in following subsection (also documented in Refs. [88, 89]).

3.1.2 Methodology of the Damage Calculation

Useful life consumed, due to material fatigue, in a dynamic component can be calculated

using Palmgren-Miner’s rule of linear cumulative damage [90], given by Equation 3.1,

DF =
K∑
i=1

ci
Ni

(3.1)

In Equation 3.1, ci is the number of cycles a component has experienced at a given unique

stress level andNi is the number of cycles to failure at that same stress level. Failure occurs

when the damage fraction DF = 1. Since loads themselves are never measured or esti-
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mated in the context of regime-based damage estimation, the goal of the DCM in this work

is to estimate the damage fraction incurred by all life-limited components for a specific air-

craft over a given set of flights. This is accomplished through the determination of damage

rates for each regime and each component, which can be estimated using Palmgren-Miner’s

rule in conjunction with rainflow counting techniques [91]. It is assumed in this work that

damage rates for each regime have already been established and are available for use by

the DCM.

Let the damage rate for regime r and component k be denoted as dr,k. Furthermore, let

the regime probabilities identified at the jth timestep of flight data be given by {ptj1 , p
tj
2 , ...p

tj
n },

where
∑n

r=1 p
tj
r and n is the total number of regimes in the regime set (so r ∈ {1, 2, ..., n}).

These regime probabilities form a PMF over the regime set. Then, the damage incurred by

component k at timestep tj is also a random variable, denoted as Xj,k. For the remainder

of this dissertation, the subscript k denoting the component will be dropped for simplicity

of notation – however, it is important to remember that the below damage computations

must be performed for each component using their respective damage rates in each regime.

The PMF over Xj can be calculated by assigning a probability of
∑

r∈R p
tj
r to the damage

value dr∆t (where ∆t is the length of the timestep) for all R regimes that have the same

damage rate dr for this component. The resulting damage PMF at this timestep is denoted

as Pj(Xj). This process models the damage incurred by a particular component at timestep

j as a discrete random variable, with a PMF computed from the regime probabilities iden-

tified at timestep tj and the damage rates in each regime.

As a simple example, consider a case with only four regimes and damage rates for

the kth component given by dr = {0.001, 0.005, 0.001, 0.007} sec−1 for regimes r ∈

{1, 2, 3, 4}. Assume that the probabilistic RR code identifies regime probabilities at timestep

tj given as ptjr = {0.4, 0.1, 0.2, 0.3}. Then, assuming ∆t = 0.1 sec, the PMF over Xj is

shown in Figure 3.2. Note that the probabilities for regimes 1 and 3 contribute to the same

damage value of 0.0001 because they share the same damage rate for component k. It
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should be mentioned that the damage rates here and elsewhere in this section are orders-

of-magnitude higher than actual damage rates, and are inflated only for the purposes of

illustrative examples in this section.

Figure 3.2: Probability Mass Function Example for Incurred Damage at Timestep j,Xj .

Because the damage incurred by the kth component at a single timestep is a random

variable, the damage incurred over M timesteps (or, a flight or set of flights) is also a

random variable given by,

X1:M = X1 +X2 + ...+XM (3.2)

This sum of discrete random variables may be found through the process of discrete con-

volution [92]. Consider the damage at two timesteps, X1 and X2, with PMFs given by

P1(X1) and P2(X2), respectively. Then the PMF of X1:2 = X1 +X2 is given by,

P1:2(X1:2) =
∑
X2∈R2

P1(X1:2 −X2)P2(X2) (3.3)

where R2 is the support of X2. Equation 3.3 is the standard method of computing the
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PMF of the sum of two discrete random variables and can be applied recursively to find the

damage PMF of X1:M , representing the cumulative damage incurred over M timesteps.

To illustrate the process of adding two damage PMFs, consider example probabilistic

RR data for two adjacent timesteps t1 and t2 in Table 3.1. The notional damage rate (inflated

in this example, for illustrative purposes only) is listed as well. Note that the damage rate is

listed in the units of damage fraction per timestep for illustrative purposes. Using the data in

Table 3.1, the PMFs for X1 and X2 can be obtained as shown in Figure 3.3. Finally, using

the convolution equation in Equation 3.3, the cumulative damage distribution P1:2(X1:2)

may be computed using the steps shown in Table 3.2. A plot of P1:2(X1:2) is shown in

Figure 3.3.

Table 3.1: RR and Damage Rate Information for Two Timestep Example

Probability

Regime Damage/timestep t1 t2
Forward Flight 0.005 0.4688 0.4115

Right Turn 30°AOB 0.006 0.5055 0.5611
Right Turn 45°AOB 0.008 0.0059 0.0065

Other 0.008 0.0198 0.0209

Table 3.2: Convolution Calculations for Damage Summation from Two Timestep Example

X1,2 PMF Intermediate Expression Value
P1:2(X1:2=0.010) (0.4688)(0.4115) 0.1929
P1:2(X1:2=0.011) (0.4688)(0.5611) + (0.5055)(0.4115) 0.4711
P1:2(X1:2=0.012) (0.4688)(0) + (0.5055)(0.5611) + (0)(0.4115) 0.2836
P1:2(X1:2=0.013) (0.4688)(0.0274) + (0.5055)(0) + (0)(0.5611) + (0.0257)(0.4115) 0.0234
P1:2(X1:2=0.014) (0.5055)(0.0274) + (0)(0) + (0.0257)(0.5611) 0.0283
P1:2(X1:2=0.015) (0)(0.0274) + (0.0257)(0) 0
P1:2(X1:2=0.016) (0.0257)(0.0274) 0.0007

In this work, the damage fractions at each timestep are assumed to be random variables

(with example PMFs shown in Figure 3.3), although the uncertainty in the damage frac-

tion stems only from uncertainty in the regime flown; the damage rates for each regime

are assumed to be deterministic and known. It is possible to incorporate uncertainty in

the damage rates for each regime into the above probabilistic damage estimation process,
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Figure 3.3: Example Sum of Damage From Two Adjacent Timesteps.

which would result in a more complete treatment of the problem in a probabilistic manner.

This will be discussed further in the next subsection.

3.1.3 Gaussian Approximation of the Damage

The above convolution methodology produces the exact damage PMF over M timesteps

from the individual damage PMFs at each timestep; however, it is computationally intensive

and scales poorly to large amounts of flight data. Direct implementation of the discrete con-

volution of M random variables scales as O(M2), and although more efficient approaches

exist (such as Fast Fourier Transform-based methods, which scale as O(M log(M)) [93])

even these approaches are likely infeasible for the very large datasets commonly encoun-

tered in CBM. In this section, a Gaussian approximation approach with computational

complexity ofO(M) is proposed that significantly reduces computation time with minimal

loss of accuracy.

The key insight underlying the Gaussian approximation is that the damage random

variables at each timestep are strongly mixed. That is, while the correlation between Xj

and Xj+1 (i.e., the damage random variables at two adjacent timesteps) is likely to be high

because the aircraft flight condition is likely to be similar, the farther apart in time that two

timesteps are, the less correlation is expected to be observed in the damage incurred at each

timestep. Strong mixing for a sequence of random variables implies that the dependency

between any two random variables decreases the further they are apart in the sequence and

51



goes to zero as the distance between them in the sequence goes to infinity [94]. Importantly,

it has been shown that the probability distribution of a sum of random variables with finite

variance subject to strong mixing will converge to a Gaussian distribution [95–99]. In the

context of the current work, let the covariance between the two damage random variables

at adjacent timesteps Xj and Xj+1 be given by σj,j+1. The variables Xj and Xj+1 are

strongly correlated since the damage incurred at the next timestep is likely to be similar

to the damage incurred at the current timestep. However, it is assumed that the damage

random variables exhibit strong mixing meaning that σj,j+N → 0 as N → ∞. This is

certainly the case, as the regime flown (and thus the damage incurred) at a time in the far

distant future is completely independent of the regime flown, and damage incurred, at the

current time.

Given this assumption of strong mixing, the probability density function of the cumu-

lative damage will be a Gaussian for any appreciable length of flight data. The mean and

variance which define the cumulative damage PMF can be obtained by summing the means

and variances of the individual timestep PMFs, Pj(Xj), which themselves are not necessar-

ily Gaussian. Let the mean and variance of Pj(Xj) be denoted as µj and σ2
j , respectively.

The mean and variance of a PMF can be found by computing the first and second central

moments respectively, using the following equations for r ∈ {1, ..., n} defined regimes

over the jth timestep,

µj =
n∑
r=1

ptjr dr∆t (3.4)

σ2
j =

n∑
r=1

ptjr (dr∆t)
2 − µ2

j (3.5)

Then the PMF of the cumulative incurred damage, P1:M(X1:M), for a value of M represen-

tative of typical flight data segments approximates a Gaussian PDF with mean µ1:M and
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variance σ2
1:M where,

µ1:M = µ1 + µ2 + ...+ µM (3.6)

σ2
1:M = σ2

1 + σ2
2 + ...+ σ2

M (3.7)

In other words, X1:M ∼ N (µ1:M , σ
2
1:M). Note that under this approximation, the cumu-

lative damage X1:M is now considered a continuous rather than discrete random variable,

which is more realistic from a physical perspective.

The numerical approach to computing the Gaussian approximation of P1:M(X1:M) us-

ing Equations (3.6) and (3.7) isO(M) and is thus extremely computationally efficient. Fur-

thermore, the approximation is nearly exact considering the number of data points usually

processed for a single flight (typically tens of thousands). Numerical comparisons between

P1:M obtained from the convolution in Equation (3.3) and the Gaussian approximation for

100 timesteps of simulated flight data showed essentially a perfect match between the two

densities. A further advantage of the Gaussian approximation approach is that the Cu-

mulative Density Function (CDF) of the total damage, denoted as F1:M(X1:M), is easily

obtained. One reason why this may be important is that, in a notional CBM program using

damage PDFs for life-limited components, it may be desired that components be replaced

when F1:M(1) = P1:M(X1:M < 1) < 0.999999, signifying that there is a one in one million

chance that the component has exceeded a damage fraction of 1. Since P1:M is a Gaussian

distribution, computing F1:M is trivial even when M is very large.

As a final point of comparison against deterministic damage estimation approaches,

recall that deterministic (rule-based) regime recognition is a special case of probabilistic

RR in which regimes are assigned either 1 or 0 probabilities at each timestep (see discussion

in [59]). At the jth timestep, the deterministic regime classification results in a damage

PMF given by Pj(Xj = dr∆t) = 1, where dr is the damage rate of the identified regime.

Computing P1:M(X1:M) using either the convolution or Gaussian approximation approach
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yields a deterministic result for the damage estimate, i.e., P1:M(X1:M = D) = 1 where

D =
∑M

j=1 drj∆t and drj is the damage rate of the regime identified at the jth timestep.

This is the identical result as would be produced by a deterministic damage estimation

approach which simply sums the damage fractions at each timestep. Thus, this type of

deterministic damage estimation may be viewed as a special case of the probabilistic DCM

proposed here.

Damage Rate Uncertainty

The Gaussian approximation discussed above is useful for computing the damage incurred

across all timesteps in a computationally efficient way. However, the methodology assumes

the damage rates for each regime take on a discrete value. This assumption is not neces-

sarily realistic. While regime-based approach avoids the need for direct load measurement

and/or estimation, Boorla and Rotenberger [40] have established that fatigue damage in a

given regime may vary widely due to a range of factors including maneuver severity, air-

craft weight, and pilot technique, reinforcing the findings of other authors such as Schaefer

[100]. This damage variability within regimes has often been stated as one of the main

drawbacks of a regime-based approaches to component damage estimation. While the em-

ployment of probabilistic regime recognition can incorporate regime uncertainty into the

damage estimate, additional work is needed to properly incorporate damage rate uncer-

tainty. Fortunately, the Gaussian approximation discussed above provides a perfect oppor-

tunity for the inclusion of the uncertainty present in the damage rates into the total fatigue

damage estimate.

First, let the nominal damage rate – of a given component – for regime r (out of n total

defined regimes in the RR library) be denoted as dr, and the associated variance over a

single timestep be denoted as σ2
dr∆t. As before, let the probability of regime r identified

by the probabilistic RR at the jth timestep be denoted as ptjr . In this way, the Gaussian

approximation of the equivalent damage over timestep tj (given by eqs. (3.4) and (3.5))
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can be modified to include the damage rate uncertainty. This will be done in accordance

with the methodology of variance estimation in combined Gaussian mixture distributions

found in Ref. [101], yielding the following equations,

µeq,j =
n∑
r=1

ptjr dr∆t (3.8)

σ2
eq,j =

n∑
r=1

ptjr
[
σ2
dr∆t + (dr∆t)

2]− µ2
eq,j (3.9)

Now the equivalent mean and variance of the incurred damage over the jth timestep can be

found by computing µeq,j and σ2
eq,j in Equations (3.8) and (3.9) respectively. These equiv-

alent means and variances for each timestep can then be summed using Equations (3.6)

and (3.7) to form the new cumulative damage Gaussian PDF that effectively captures the

damage uncertainty stemming from both major sources (i.e. uncertainty from the flown

regime and uncertainty from the damage rates). It should be noted that Equations (3.8)

and (3.9) are generalized in the sense that if a discrete damage rate was to be used (i.e.

σ2
dr∆t = 0) they would reduce to Equations (3.4) and (3.5).

3.1.4 Damage Estimation Uncertainty Analysis

When considering fatigue damage as a random variable driven by uncertainty in regime

recognition (as well as damage rates, potentially), it is interesting and important to char-

acterize the factors that influence the amount of uncertainty in damage estimates. Since

the incurred damage at each timestep is modeled in this context as a random variable with

the PDF Pj(Xj), the variance σ2
j provides a proper metric of the uncertainty in the damage

estimate at the jth timestep. The question posed in this section is then, what distribution of

regime probabilities leads to maximum uncertainty in the damage estimate?

To answer this question, consider the regime probability estimates at the jth timestep.

Let the highest damage rate over all regimes in the regime set be given by dr,max, and the

minimum damage rate (usually zero) by dr,min. ThenXj is bounded above by a = dr,max∆t
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and below by b = dr,min∆t. With these bounds defined, the distribution Pj(Xj) with mean

µj can take on infinitely-many forms depending on the probabilities over the regime set at

the jth timestep produced by the RR code. It can be shown [102, 103] that if the variance

of Xj is maximized over every possible µj , then the greatest possible variance is achieved

when Pj(Xj = a) = 0.5 and Pj(Xj = b) = 0.5, with Pj(b < Xj < a) = 0. This

means that the maximum uncertainty in the damage at a given timestep, as measured by the

variance in Xj , occurs when the aircraft flies on the boundary between the most damag-

ing regime(s) and the least damaging regime(s). More precisely, the maximum uncertainty

condition is achieved when the regime recognition code identifies a total of 50% probability

that the aircraft is flying the most-damaging regimes, and a total of 50% probability that the

aircraft is flying the least-damaging regimes. While such conditions may sound unlikely

to occur, in practice large-variance estimates of the damage distribution Pj(Xj) may occur

routinely because high angle-of-bank turns are often associated with high damage rates for

some rotor components. During transitions from level flight to turns, or during shallow

turns, probabilistic RR codes can produce mixed probabilities of level flight (which often

produce low or zero damage rates) and turns (which often produce higher damage rates),

leading to high-variance damage distributions during these timesteps. It is important to

note that the above condition corresponds to the largest uncertainty in the damage esti-

mate (maximum σ2
j ), rather than the largest estimate of the mean damage (maximum µj).

Clearly, the mean estimated damage µj is maximized when Pj(Xj = a) = 1, i.e., the RR

code identifies the most damaging regime with probability 1.

3.2 Application to Fleet-Wide Damage Spectrum

This section documents an approach to use the proposed damage estimation methodology

to create an updated damage spectrum for an aircraft fleet based on observed usage. Often-

times, rotorcraft manufacturers provide component replacement timelines based on number

of hours flown and an assumed usage spectrum. Studies have shown that such usage spec-
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tra may be inaccurate [4], and thus there may be a desire to create updated usage spectra

and component replacement timelines based on observed usage. This approach to CBM, in

which the damage fraction per N hours is specified, may be used as an alternative to IAT

in cases where IAT is deemed too expensive or infeasible for operational reasons. A dam-

age spectrum may also be used to augment IAT if HUMS data is corrupted or unreliable

due to a faulty sensor. This section will detail a method to create updated component re-

placement timelines through the application of the probabilistic RR approach and damage

computation module to large-scale fleet data.

Consider a large set of HUMS data from a fleet of Na aircraft, and suppose that a

component damage spectrum in terms of damage fraction per 100 hours is desired. Then,

with reference to Figure 3.4, a random sample of 100 flight hours can be drawn from the

fleet data and processed with both the probabilistic RR code (for example, from [59]) and

the DCM outlined in the prior section. Assuming the total data consists of M timesteps

of flight data, this produces the damage distributions P1:M(X1:M) for each component,

representing the estimated damage fraction incurred during this 100 hour sample of flight

data. These damage distributions can be reduced to a single conservative estimate of the

damage per 100 hours by storing the damage value corresponding to the 0.999999 (six-

nines) percentile, given by F1:M(0.999999) = D. This process of randomly sampling 100

hours of flight data, computing P1:M and F1:M , and storing the six-nines damage fraction

Di (where the i subscript is added for the ith random sampling of flight data) is repeated

numerous times to create a bootstrapped statistic on the damage per 100 hours. Assuming

this process is repeated Ns times, various bootstrapped statistics of Di, i ∈ 1, 2, ...Ns (such

as the mean or median) can be used to create a single damage per 100 hours estimate for

each component. Note that the mean or median of the set of Di’s may be an appropriate

statistic in this case because conservativeness is already built into the estimated values

through the six-nines selection criteria applied to each PDF from the randomly-sampled

flight data. Nevertheless, the desired bootstrapped statistic (mean, median, or otherwise)
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to be used as the single damage per 100 hours estimate is a regulatory decision that may

involve additional considerations and analysis not explored here. Note that the intent of the

process outlined in this section is to produce fatigue damage spectra that explicitly account

for the uncertainty in the regime recognition process.

Figure 3.4: Visualization of Process to Create Updated Damage Spectrum Using Proba-
bilistic Damage Computation.

3.3 Results

The proposed damage computation method described in Sections 3.1 and 3.2 is illustrated

in this section using simulated flight data in a series of test cases. The simulation model

used in this section is the same model and virtual pilot discussed in Section 2.5, as well

as documented in [78, 87]. To obtain the data used in this study, simulated states of the

aircraft were recorded at 10 Hz to model the data rates of typical HUMS devices

One of the goals of this section is to compare performance of the proposed probabilis-

tic damage estimation scheme with a deterministic approach based on rule-based regime

recognition. Rule-Based (RB) regime recognition uses thresholds to define sections in the
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aircraft state-space that map directly to a particular regime in order to make a deterministic

classification. The simulation studies and comparisons shown in this section use only a

limited set of regimes (listed in Table 3.3), and thus for the purposes of this work a basic

RB-RR algorithm was developed using guidelines obtained from [39, 48–52, 104, 105].

The thresholds used to classify regimes in this basic RB-RR code are shown in Table 3.3,

where the thresholds are applied to the state listed in the second column. The probabilis-

tic results shown in this section are generated with the IMM-RR algorithm discussed in

Chapter 2. The same regime thresholds used in the rule-based code in Table 3.3 are used to

define the individual models in the IMM-RR code, which is important so that the RR and

damage estimation results can be meaningfully compared. The final column of Table 3.3

lists notional component damage rates (in damage fraction per timestep) for an example

component, to be used in the damage estimation studies throughout the remainder of this

section. Note that the damage rates in Table 3.3 are for example purposes only and are not

meant to represent actual damage rates for a particular component or set of regimes.

3.3.1 Flight Condition Effects on Uncertainty

The first simulated example will illustrate the damage computation process and explore the

basic effects of flight condition on damage estimation uncertainty. Two simulated flight

segments were flown using the flight card shown in Table 3.4. In the first flight seg-

ment, labeled the Well-Defined flight segment, the two Right Turn maneuvers are flown

at ±30°AOB which falls squarely within the range of the defined Right Turn (30°AOB)

regime listed in Table 3.3. The second flight segment, labeled the Mixed flight segment,

performs the same right turns except at slightly higher±37.5°AOB. This places the aircraft

state between two regimes – Right Turn (30°AOB), and Right Turn (45°AOB), which have

differing damage rates. Figure 3.5 shows simulated flight data for these two flight cards,

showing time histories for the roll angle and the body-frame x velocity component, denoted

as u.
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Table 3.3: Regime Definition Information

Regime Threshold State Lower Threshold Upper Threshold Damage/s
Forward Flight Forward Speed 0.1Vh 0.95Vh 0

Right Turn 30°AOB Roll Angle 15° 37.5° 1.0424 ×10−7

Right Turn 45°AOB Roll Angle 37.5° 52.5° 1.6280 ×10−6

Left Turn 30°AOB Roll Angle -37.5° -15° 6.1125 ×10−8

Left Turn 45°AOB Roll Angle -52.5° -37.5° 8.4980 ×10−7

Forward Accelerate Longitudinal Accel. 0.1g ∞ –
Descent Rate of Climb 300 ft/min ∞ 1.6288 ×10−6

Table 3.4: Flight Card for Example 1

Maneuver Start Time, s Flown Regime Parameter (Well-Defined) Parameter (Mixed)
0 Forward Flight 0.5Vh – –
30 Right Turn 30°AOB 37.5°AOB
60 Forward Flight 0.5Vh – –
80 Left Turn -30°AOB -37.5°AOB
110 Forward Flight 0.5Vh – –
130 End – –

Figure 3.5: Selected State Time Histories for Example 1.
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Figures 3.6 and 3.7 show the regime recognition results for the Well-Defined flight seg-

ment and Mixed flight segment respectively, where the IMM-RR results are shown on the

top plots, and the RB-RR results are shown on the bottom plots. For the Well-Defined flight

segment, both the IMM and RB algorithms produce essentially identical results, correctly

identifying the regimes throughout the flight. For the Mixed flight segment, during the first

turn the IMM algorithm estimates a roughly 50% probability that the regime is Right Turn

(30°AOB) and 50% probability that the regime is Right Turn (45°AOB), with analogous

results during the second turn. In contrast, the rule-based code must make a deterministic

classification and instead switches between 30°AOB and 45°AOB classifications during

both turns. Importantly, although the aircraft is flying on the border between two regimes,

the rule-based code does not provide any quantification of the uncertainty in the recog-

nized regime outputs, but instead switches between deterministic classifications of the two

bounding regimes. This is a primary drawback of rule-based methodologies in general as

noted in Refs. [58, 59], but also has implications for damage estimation as well.

The estimated damage was computed from the regime recognition results shown in in

Figures 3.6 and 3.7 by applying the DCM using the damage rates in Table 3.3. For the

probabilistic RR results, this results in damage PDFs for the Well-Defined and Mixed flight

segments, while for the deterministic RR results, a single damage value for each flight

segment is computed. The results are shown in Figure 3.8. Note that the deterministic

damage predictions are different between the two flight segments as would be expected, but

the ambiguity regarding the regimes flown in the Mixed flight segment is not represented

in any way in the deterministic damage estimates. In contrast, the damage PDFs shown

for the Well-Defined and Mixed flight segments differ not only in their mean predictions,

but also in their variance. Figure 3.8 shows that the variance of the estimated damage from

the Mixed flight segment is about three times greater than that for the Well-Defined flight

segment, reflecting higher uncertainty in the damage stemming from higher uncertainty

in the regime classifications. This translation of uncertainty in regime classifications to
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Figure 3.6: Regime Recognition results for IMM (top) and RB (bottom) algorithms (Well-
Defined Flight Segment).

Figure 3.7: Regime Recognition results for IMM (top) and RB (bottom) algorithms (Mixed
Flight Segment).
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larger variance in the damage estimates is a key benefit of the probabilistic RR and damage

estimation approach that is clearly lacking in the comparison deterministic method. It is

also important to recognize that although most of the Well-Defined flight segment is flown

well within the defined regime boundaries, there is still uncertainty in the regimes flown

while the aircraft transitions between different regimes, as illustrated in Figures 3.6 and 3.7.

As a result, the probabilistic damage estimate for the Well-Defined flight segment has a low

but non-zero variance.

Figure 3.8: Damage Estimates and Distributions for Example 1.

3.3.2 Monte Carlo Analysis of the Effects of Flight Condition Uncertainty

To further reinforce the benefits of the probabilistic damage estimation scheme over a de-

terministic approach, a Monte Carlo study is performed to analyze how small perturbations

to the aircraft state over a nominal flight segment can cause large uncertainty in RR out-

puts. Specifically, the study shows how uncertainty in the recognized regimes affects the

overall damage estimates for both the deterministic and probabilistic damage algorithms.
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Five hundred simulated flights of the flight card shown in Table 3.5 were performed. For

each Monte Carlo trial, the bank angle parameters in column 3 of Table 3.5 were perturbed

by a normally-distributed random value with zero mean and standard deviation of 1°. Thus,

for every Monte Carlo trial, a total of six random samples were created and added to each

turn setpoint value in the flight card in Table 3.5 executed by the virtual pilot. In practice,

because the commanded turns are on the boundaries between the Forward Flight, 30°AOB,

and 45°AOB turn regime definitions, these perturbations mean that in each trial of the

Monte Carlo simulation the aircraft is either just over or just under each of the thresholds

for a 30°AOB or 45°AOB turn. This means that the rule-based regime recognition code

changes its classifications between Forward Flight, 30°AOB turn, or 45°AOB turn on a

flight-to-flight basis, even though the angle-of-bank perturbations are only on the order

of 1 deg between the turns maneuvers in each trial. Figure 3.9 shows a time history of

selected states for the nominal flight segment (with no random perturbations), while Fig-

ure 3.10 shows the RR outputs from the rule-based and probabilistic codes for this nominal

flight. In Figure 3.10, the probabilistic RR results in the top plot show approximately 50%

probabilities between the Forward Flight and 30°AOB turn regimes for the shallow turns,

and 50% probabilities between the 30°AOB or 45°AOB turns during the steeper turns,

as expected. In contrast, the rule-based code switches between them periodically and is

forced to make a deterministic classification even though these turns are conducted on the

boundaries between regimes.

For each Monte Carlo trial, the damage was computed for the RR results using the

DCM described in Section 3.1. For the IMM probabilistic RR results, this produced a dam-

age PDF for each trial. The mean and 99.9999th percentile (.96) values were computed for

each trial. A histogram of these values is shown in the top two plots of Figure 3.11. The

damage was also computed for the deterministic rule-based RR results, with a histogram

of these values shown in the third plot in Figure 3.11. For each of the top three plots in

Figure 3.11, the damage value computed from the nominal flight segment (with no random

64



Table 3.5: Flight Card for Example 2

Maneuver Start Time, s Flown Regime Parameter Perturbation
0 Forward Flight 0.5Vh – –

10 Right Turn 15°AOB N (0, 1 deg2)
55 Right Turn 37.5°AOB N (0, 1 deg2)

115 Right Turn 15°AOB N (0, 1 deg2)
160 Forward Flight 0.5Vh – –
190 Left Turn -15°AOB N (0, 1 deg2)
235 Left Turn -37.5°AOB N (0, 1 deg2)
295 Left Turn -15°AOB N (0, 1 deg2)
340 Forward Accelerate – –
375 Max Forward Speed – –
420 End – –

Figure 3.9: Nominal State Time History for Flight Card in Table 3.5.

perturbations) is shown with a red line, and the mean of the Monte Carlo trials is shown

with the blue dashed line. Note that the histograms of the mean and .96 damage values

for the IMM results are fairly smooth, with the small perturbations in each trial resulting

in small perturbations in the damage estimates. The damage histograms exhibit a close

match to normal distributions, which correspond to the normal distributions used to gen-
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Figure 3.10: Regime Recognition Results for Nominal Flight for Flight Card in Table 3.5
(Top: IMM, Bottom: Rule-Based).

erate the roll angle perturbations. Furthermore, the mean damage from the Monte Carlo

trials matches the nominal damage almost exactly. In contrast, the deterministic damage

histogram exhibits a multi-modal distribution caused by the discrete “switch” between the

maneuver options (Forward Flight, Left Turn 30/45°, Right Turn 30/45°) depending on the

perturbation in a given simulation, and the mean damage differs from the nominal damage

by more than 10%. The four modes are caused by the large damage incurred by the 45°deg

turns – if the 3rd and 7th flown regimes happen to cross the boundaries for this regime (or

not), the damage value is shifted significantly. The deterministic damage histogram shows

that the damage estimate can vary widely, and fairly discontinuously, given small pertur-

bations in the aircraft state as it flies near the boundaries between defined regimes. This

wide variation in the deterministic damage estimate is a result of using a rule-based regime

recognition approach that is forced to produce deterministic (100%) classifications, even if

there is significant ambiguity in the actual flown regime. Finally, the deterministic results
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were re-processed with simulated flight data which was perturbed by additive white noise

on each of the states, simulating measurement noise (where noise standard deviations were

derived from engineering judgment based on experience with actual flight data). The dam-

age estimated from these noise-perturbed trials is shown in the bottom plot in Figure 3.11.

In this case, the distinct modes of the distribution disappear as the RR results show more

variation in maneuver switching times. While the noise mitigates the discontinuity in the

damage estimates due to small perturbations in the state, it does not change the fact that the

damage estimates vary widely in response to small changes in the roll angle on the order

of a couple of degrees or less. Overall, these results highlight the improved performance of

the probabilistic DCM compared to its deterministic counterpart when the aircraft flies for

sustained periods on the boundary between defined regimes with different damage rates.

Figure 3.11: Monte Carlo Damage Estimation Results.
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To complement this Monte Carlo study, an additional Monte Carlo simulation was per-

formed using only well-defined flight conditions – i.e., flight segments which do not involve

the aircraft flying on the border between defined maneuvers. The flight card for this study

was the same as in Table 3.5, except that the ±15°roll angle setpoints were changed to

±30°, and the ±37.5°setpoints were changed to ±45°. Even though the same small roll

angle perturbations as used in the above example were still included, the roll maneuvers in

each Monte Carlo trial fell well within the Left Turn 30/45°and Right Turn 30/45°regime

categories. Figure 3.12 shows the damage results for this Monte Carlo simulation using the

same RR and damage processing methods employed in Figure 3.11. Note that, because the

small perturbations do not cause flight-to-flight changes in the regime estimates for either

the deterministic or probabilistic RR outputs, the damage estimates are nearly the same

for all trials. For all cases, the mean and nominal damage estimates differ by less than

0.01%, and the spread of each distribution is less than 1% of their respective nominal val-

ues. While the nominal damage computed by the IMM (red line in top plot of Figure 3.12)

is close to the nominal damage computed by the rule-based methodology in the bottom

plot, they are not identical due to the effects of filter tuning in the IMM and the transient

response during maneuver switching. Note that sensor noise was not added in this exam-

ple as the perturbations caused by noise would not affect the recognized regimes, given

that the aircraft flew well within the regime boundaries during the entire flight segment.

The results in Figure 3.12 clearly show that the probabilistic damage estimation approach

produces essentially identical results to the deterministic damage estimator when the level

of uncertainty in regime estimates is low. When viewed in conjunction with the first set

of Monte Carlo results, it is evident that the probabilistic DCM is a generalization of the

deterministic damage estimator that responds more smoothly to uncertainty in regime esti-

mates but provides equivalent results when the aircraft flies well within the defined regime

categories.

68



Figure 3.12: Monte Carlo Damage Estimation Results (Well-Defined Nominal Flight Con-
dition).

3.3.3 Creation of Probabilistic Damage Spectrum

As described in Section 3.2, the damage computation methodology can be applied to fleet-

wide usage data to create a probabilistic damage spectrum. For the purposes of this work,

simulated fleet data was used to demonstrate the overall methodology. An automated flight

simulation process was created to generate a large database of randomized flight segments

consisting of simple maneuvers. The ordering of these maneuvers, the total duration and

maneuver durations, and the setpoints used for each maneuver were randomized.

For each flight in the simulated database, the number of maneuvers is first randomized

using the distribution in Table 3.6. Then, the duration of each maneuver is randomly sam-

pled from a uniform distribution with the limits shown in Table 3.6. The maneuver type is

then randomly selected as Forward Flight, Turn, Climb/Descent, and Climbing/Descending

Turn (except for the first maneuver in the flight card, which is always selected as Forward

Flight). Finally, the parameters for each maneuver are randomly sampled using Inverse
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Transform Sampling (ITS) [106]. For the Forward Flight segments, the speed setpoint is

sampled from a uniform distribution using the limits shown in Table 3.6. For the turn,

Climb/Descent, and Climbing/Descending Turn segments, the setpoints are chosen from

bimodal distributions shown in Table 3.6, which are built from two truncated normal dis-

tributions. For instance, if a Climb/Descent maneuver is commanded, the rate is sampled

from the bimodal distribution defined by the union of the two normal distributions in Ta-

ble 3.6, resulting in either a climb or descent depending on the sampled parameter.

Table 3.6: Flight Parameter Distributions for SH-60B Simulated Database Creation

Parameter Lower Limit Upper Limit Distribution(s)
Number of Maneuvers 15 25 Uniform
Maneuver Duration, s 120 240 Uniform
Angle of Bank, deg -40 40 N (30, 4),N (−30, 4)
Rate of Climb, ft/s -12.5 12.5 N (8.33, 2),N (−8.33, 2))
Forward Speed (Vh) 0.5 0.7 Uniform

Using this automated flight card generation method, a total of approximately 1,000

hours of flight data was generated using the generic helicopter simulation and the virtual

pilot. A probabilistic damage spectrum for a given component, providing an estimate of

the damage per 100 hours, was created from this data as follows. First, random flights

were selected from the database until the total cumulative number of flight hours exceeded

100. These 100 hours of data were then processed by the IMM-RR algorithm and the

probabilistic DCM described in Section 3.1, producing a PDF of the damage incurred over

those ∼100 hours. Let this PDF be denoted as N (µT , σ
2
T ). Because this damage estimate

corresponds to a series of flights that do not total 100 hours exactly, this PDF must be scaled

to represent a probability distribution for damage per 100 hours, denoted here as X100. The

PDF for X100 can be computed from N (µT , σ
2
T ) according to,

X100 ∼ N
(
µ100, σ

2
100

)
= N

(
µT

100

T
, σ2

T

(
100

T

)2
)

(3.10)

where T is the total cumulative flight time of the randomly-selected flight segments. A
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percentile of this distribution, for instance, the 99.9999th percentile, is then recorded, rep-

resenting a conservative estimate of the damage incurred over this random∼100 hour flight

segment. Let this percentile value be denoted as γ(η, i), where η is the percentile and i is

the index corresponding to the randomized flight data set.

This process is repeated for Nf total sets of approximately 100 hours of flight data,

creating a set of γη,i’s where i ∈ 1, ..., Nf . Figure 3.13 shows a histogram of the γη,i

values for Nf = 10, 000 randomized sets of flight data created from the simulated flight

database and η = .96 (top plot), along with the empirical CDF (bottom plot). Note that

the histogram of γη,i representing a bootstrapped distribution of the damage per 100 hours

for this example component to a desired level of conservativeness represented by η = .96,

closely matches a normal distribution. In the current example, the damage per 100 hours is

observed to have a mean of 0.175, standard deviation of 0.0044, and range of 0.0336.

Figure 3.13: Histogram (top) and Empirical CDF (bottom) of Damage Per 100 Hours γη,i.

In practice, CBM requires a single damage per 100 hour estimate for each life-limited
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component, not a PDF such as that shown in Figure 3.13. To obtain this, the empirical CDF

in Figure 3.13 can be interpolated to (once again) achieve a desired level of conservative-

ness. Since the γη,i values would likely already be chosen using a conservative selection

for η (for instance, six-nines), it may be appropriate to choose the mean of the γη,i values

in Figure 3.13 as the single estimate of damage per 100 hours for this component. Alter-

natively, additional conservativeness can be enforced by selecting the six-nines value from

the empirical γη,i values. Appropriate choice of the percentile values used in computing

γη,i, and in the final damage per 100 hours, warrants further study and consideration given

current and future regulatory requirements, although such investigation is beyond the scope

of this work.

Finally, it is important to point out the difference between computing the damage spec-

trum using a rule-based RR method and the probabilistic approach used in this section.

In a deterministic approach, one can potentially create a histogram of damage values us-

ing random ∼100 hour flight sequences as performed here. This approach could be used to

generate the equivalent plot to Figure 3.13, and to select a damage per 100 hour value based

on a desired level of conservativeness from the empirical CDF. However, the deterministic

samples used to create the empirical PDF and CDF (equivalent to Figure 3.13) only provide

the deterministic RR algorithm’s best guess as to the damage incurred (similar, but not the

same, as an expected value), providing no information about the uncertainty in the regimes

flown. In contrast, for each 100 hour segment of data, the probabilistic RR algorithm and

DCM condition the damage estimates on the uncertainty in the regimes flown, and a con-

servative estimate can then be derived from the resulting distribution. The probabilistic

approach therefore provides a mechanism to enforce a level of conservativeness during the

regime recognition process, and during the “outer” sampling process in which flight data

sequences are chosen to be representative of fleet-wide usage.
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CHAPTER 4

APPLICATION TO REAL HUMS DATA

In the prior chapters, methodologies were developed that use the output from an aircraft

HUMS and perform probabilistic regime recognition, then translate those probabilistic RR

results into fatigue damage estimates for use in IAT and usage spectrum-based programs.

Currently there has been no work done to verify the validity of such probabilistic RR al-

gorithms on real-world aircraft data. This chapter seeks to demonstrate that the proposed

algorithm is viable on real data. To demonstrate this, a large batch of HUMS from a generic

single engine transport helicopter was processed using the algorithms and methodologies

proposed in Chapters 2 and 3.

4.1 Helicopter Regime Recognition

In this section, several flight sequences are explored using actual HUMS data. For these

datasets, no “truth” data is available, and thus the goal of these examples is not to evaluate

the accuracy of the IMM-RR algorithm, but rather to demonstrate its operation using real-

world data.

4.1.1 Real Flight Sequence 1

The flight segment examined in this example consists of a series of climbs, descents, climb-

ing turns, and descending turns, although the determination of these flown maneuvers is

obtained through subjective analysis of the flight data rather than any recorded truth data

from the pilots. Figures 4.1 and 4.2 show selected state time histories from the HUMS

data as well as the IMM or Kalman filter state estimates for each state. Note that, due

to the proprietary nature of the data, dimensions are removed and only trends are shown.

Throughout the approximately 8 min flight segment, the vehicle maintains a fairly con-
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stant forward flight speed, performing turns, climbs, and descents. Figure 4.3 shows the

recognized regimes from the IMM-based algorithm, where the gray-scale denotes regime

probability. Examining the results in depth, the algorithm recognizes a descent regime for

about the first 50 seconds with probability near 1, due to the clear descent rate and zero

angle of bank forward flight condition. The helicopter then performs a climb in a shal-

low right turn, leading the IMM algorithm to recognize Climb and Right Climbing Turn

regimes with approximately equal probability. After about 120 sec, the angle of bank be-

comes zero and the algorithm recognizes a Climb regime until about 220 sec. The aircraft

then performs a level descent from about 220-350 seconds, with intermittent shallow left

turns again correctly classified by the IMM algorithm. The flight segment ends with a Left

Descending Turn maneuver, Right Descending Turn maneuver, and finally a level Climb

maneuver. Overall, this example shows that the IMM-based regime recognition algorithm

can be practically applied to actual data from a HUMS flight data recorder and provides

evidence of the algorithm’s promise as an alternative approach to regime recognition with

unique advantages over state-of-the-practice methods.
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Figure 4.1: Selected State Time Histories for Real Flight Sequence 1, Actual Flight Data.

Figure 4.2: Selected State Time Histories for Real Flight Sequence 1, Actual Flight Data.
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Figure 4.3: IMM-Based RR Classification Results for Real Flight Sequence 1.

4.1.2 Real Flight Sequence 2

In the next two examples, taken from a generic single-engine transport helicopter, no state

time histories are available for the sequences due to the potentially sensitive nature of the

underlying data. So once again no “truth data” is available, similar to the previous example.

However, these examples still allow for the further validation of the proposed IMM-based

probabilistic regime recognition. In this example a flight sequence is analyzed, and the

results of the IMM-RR can be seen in Figure 4.4. Based on the RR results, it is presumed to

be a hover-based sequence, but note that no true regime labels are available. Because only

several regimes are active throughout the entire flight, the chart plotted using a line graph.

Examining the RR results, the aircraft is shown to be in steady hover with probably greater

then 97% for the first 8 minutes of analyzed flight time. This is immediately followed by

an abrupt transition to a regime that does not appear in the IMM-RR maneuver library.

The IMM code is able to maintain its probabilistic classifications and mark the regime as

“unknown.” The algorithm then initially begins a mixed classification between “Hover” and

“Axial Climb” before classifying the segment as almost exclusively the “Hover” regime. At

around the 9 minute mark, the algorithm begins classifying an alternating set of “Hover”,
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“Axial Climb”, and “Axial Descent” with high steady-state probability (>95%), before

ending the sequence with “Hover.”

Figure 4.4: IMM-Based RR Classification Results for Real Flight Sequence 2.

4.1.3 Real Flight Sequence 3

In this next example, a sequence is analyzed that is believed to be primarily forward flight

based, as evident by the regime recognition results. The results of the IMM-RR can be

seen in Figure 4.5. At the start of this analyzed segment, the aircraft can be seen exiting

a Climb. Over a five minute period it engages in a sequence of climb and descent based

maneuvers before entering steady forward flight. The algorithm continues to classify the

aircraft regime as steady forward flight with a probability of greater than 90% from approx-

imately 110-130 minutes. The aircraft then enters a series of climbs, descents, and level

flight segments for the remainder of the flight. Notice that in Figure 4.5 the maneuvers

transitions are classified smoothly as the probability varies from one to the other. Also note

that the steady state probabilities are not strictly 100% or 0% – as would be the case with a
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rule-based RR methodology – and the IMM-based algorithm is able to mix the probabilities

of multiple regimes to best estimate the regime state at any particular timestep.

Figure 4.5: IMM-Based RR Classification Results for Real Flight Sequence 3.

4.2 Helicopter Usage Analysis

In traditional (rule-based) regime recognition, the amount of analysis that can be performed

on aircraft HUMS data is limited. This limit is due to the deterministic nature of the results.

Whereas a probabilistic RR scheme will lend itself more easily to more in depth analyses.

This allows for information and relationships to be derived that are simply not possible for

a rule-based RR methodology.

Before any usage analysis could be done, regime recognition first had to be performed

on all available data. A program was written to open each helicopter flight HUMS file, and

perform RR using the IMM methodology discussed in Chapter 2. Because the IMM-RR

is based on a Kalman filter, it suffers from some of the same drawbacks. In this case, it
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was found that missing data in the file stream (i.e corrupted values due to sensor failure

or issues with data recording/retrieval) could sometimes cause the IMM to go unstable. In

these cases, it was necessary to stop execution of the IMM-RR and save off only data prior

to filter instability. If the methods proposed in this dissertation are to ever be deployed

within production-grade code, it is recommended that additional pre-processing steps be

implemented to remove sections of corrupted data prior to regime recognition. This will

insure that the amount of data available for analysis is maximized, and that the results of

analysis are not skewed by the vehicle’s maneuvering behavior in the earlier portions of the

flown missions. After running regime recognition on all available data, just over 500 hours

of usable flight data was available for analysis.

4.2.1 Expected Time Analysis

As mentioned above, the use of probabilistic regime recognition allows for greater flexi-

bility when analyzing aircraft usage. It will be useful to convert the regime probabilities

at each timesetep into the ratios of “expected time.” For this purpose, the expected time of

each regime r can be computed as follows,

Et(r) =
n∑
j=1

∆t ptjr (4.1)

Where n is the total number of timesteps. Once Et(r) is computed for all regimes in the

RR library, it can then be converted into a fraction of the total time as,

Ft(r) =
Et(r)

n∆t
(4.2)

Once the expected time fraction is computed, the results can be tabulated and sorted. Ta-

ble 4.1 shows the results for the processed 500 hr batch of flight data. It was found that

Hover and Forward Flight dominate the usage for this particular data set. Forward Climb

and Forward Descent were found to be the next most commonly flown regimes. Axial
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Climb and Axial descent were flown the next most often. All regimes after that (including

the Unknown Regime), are found to have a frequency of less then 5% of the overall flight

time.

This type of analysis is analogous to the types of usage case studies that can be easily

performed on regime recognition results generated by a rule-based classifier. In a rule-

based classifier, each timestep is identified as a particular regime, so the process of com-

puting the expected time fraction is straight forward, and could be done as follows,

Ft,RB(r) =
nr
n

(4.3)

Where nr is the number of timesteps identified to be associated with regime r, and n is the

total number of timesteps processed.

Table 4.1: Expected Values of Usage Spectrum

Regime Name Percent
Hover 29.3
Forward Flight Steady 24.0
Climb 11.3
Descent 8.1
Axial Climb 6.5
Axial Descent 6.4
Unknown Maneuvers 4.7
Left Hover Turn 2.2
Right Hover Turn 1.3
Forward Flight Accelerate 1.1
Left Climbing Turn 1.1
Forward Flight Decelerate 0.8
Right Turn 30°AOB 0.8
Left Turn 30°AOB 0.7
Left Descending Turn 0.7
Right Climbing Turn 0.5
Right Descending Turn 0.4
Forward Flight Steady > 1Vh 0
Right Turn 45°AOB 0
Left Turn 45°AOB 0
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4.2.2 Simultaneous Regimes Analysis

The real benefit of using a probabilistic RR for usage spectrum analysis comes from the

ability to extract more useful information then just the expected times and percents. Be-

cause a probabilistic regime recognition can give partial classifications of the flown regimes

at each timestep (as opposed to a single classification in the case of a rule-based method),

an analysis can be performed to see what regimes were active simultaneously, and how of-

ten. For this analysis the regime recognition results for the batch of flight data was analyzed

by looking only at the timesteps when two regimes each had a probability of greater then

30% at the same timestep. This can be formalized by saying that only the set of timesteps

S = {t : p
tj
r1 ≥ 0.3 , p

tj
r2 ≥ 0.3 ∀ j, r} were considered. From this, it was found that two

regimes were simultaneously active (i.e. both had probability ≥ 0.3) for a total of 12.44%

of flight time. During analysis, it was recorded which regime pairs appeared together, along

with the percent of total flight time that the particulars pairs occurred. The results of that

analysis can be seen in Table 4.2, where the first 50 most common regime pairs are shown.

Table 4.2: Regime Pair Usage

Pair # Regime #1 Regime #2 Percent
1 Forward Flight Steady 0.5Vh Forward Flight Steady 0.6Vh 1.12
2 Hover Axial Descent 1.04
3 Hover Axial Climb 0.84
4 Forward Flight Steady 0.4Vh Forward Flight Steady 0.5Vh 0.82
5 Forward Flight Steady 0.6Vh Forward Flight Steady 0.7Vh 0.73
6 Forward Flight Steady 0.3Vh Forward Flight Steady 0.4Vh 0.37
7 Forward Flight Steady 0.7Vh Forward Flight Steady 0.8Vh 0.37
8 Climb Left Climbing Turn 0.36
9 Axial Descent Unknown Maneuver 0.36
10 Axial Climb Unknown Maneuver 0.36
11 Left Hover Turn Unknown Maneuver 0.36
12 Climb Descent 0.34
13 Descent Left Descending Turn 0.31
14 Hover Right Hover Turn 0.31
15 Hover Left Hover Turn 0.27
16 Forward Flight Steady 0.2Vh Forward Flight Steady 0.3Vh 0.23
17 Forward Flight Steady 0.5Vh Descent 0.22
18 Forward Flight Steady 0.5Vh Climb 0.21
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Table 4.2 (continued): Regime Pair Usage

Pair # Regime #1 Regime #2 Percent
19 Forward Flight Steady 0.6Vh Descent 0.20
20 Climb Right Climbing Turn 0.19
21 Axial Climb Axial Descent 0.19
22 Forward Flight Steady 0.6Vh Climb 0.18
23 Forward Flight Steady 0.8Vh Forward Flight Steady 0.9Vh 0.18
24 Forward Flight Steady 0.9Vh Forward Flight Steady 1Vh 0.14
25 Forward Flight Steady 0.4Vh Climb 0.13
26 Forward Flight Steady 0.7Vh Climb 0.13
27 Hover Forward Flight Steady 0.1Vh 0.13
28 Forward Flight Steady 0.4Vh Descent 0.12
29 Forward Flight Steady 0.7Vh Descent 0.12
30 Right Hover Turn Unknown Maneuver 0.11
31 Descent Right Descending Turn 0.11
32 Forward Flight Steady 0.1Vh Forward Flight Steady 0.2Vh 0.10
33 Axial Descent Descent 0.09
34 Forward Flight Steady 0.5Vh Right Turn 30°AOB 0.09
35 Forward Flight Steady 0.8Vh Climb 0.09
36 Forward Flight Steady 0.3Vh Climb 0.08
37 Forward Flight Steady 0.1Vh Rearward 0.08
38 Forward Flight Steady 0.8Vh Descent 0.07
39 Forward Flight Steady 0.1Vh Descent 0.07
40 Forward Flight Steady 0.3Vh Descent 0.07
41 Forward Flight Steady 0.4Vh Right Turn 30°AOB 0.06
42 Forward Flight Steady 0.6Vh Right Turn 30°AOB 0.06
43 Forward Flight Steady 0.2Vh Climb 0.06
44 Climb Unknown Maneuver 0.06
45 Forward Flight Steady 0.5Vh Left Turn 30°AOB 0.05
46 Forward Flight Steady 0.2Vh Descent 0.05
47 Left Turn 30°AOB Left Climbing Turn 0.05
48 Left Turn 30°AOB Left Descending Turn 0.05
49 Axial Climb Climb 0.04
50 Forward Flight Steady 0.6Vh Left Turn 30°AOB 0.04

The results shown in Table 4.2 can provide some deep insight into the type of maneuvers

the aircraft is flying during missions. The majority of cases are logical, and even expected.

Because Table 4.2 shows the frequency that two regimes are both active it makes sense

that regimes that have similar dynamic behavior would appear together. One situation

where two similar regimes could be active is during the transient period when the aircraft is

82



transitioning from one regime to another. An example of this is if the vehicle is transitioning

from the Hover regime to an Axial Climb, such as might be the situation in Pair #3. A

second possible situation that could cause two regime to be active is if the vehicle is flying

on the defined boundary between two regimes. An example of this is if the aircraft is flying

in a slow climb. In this situation, the vehicle would be 50% in “Level Flight”, and 50%

in “Climb.” A correctly tuned probabilistic RR would classify the regimes accordingly,

leading to the situation were both regimes were identified as active. An example of this

might be seen in Pair #18. Although, without access to the underlying aircraft state data,

there is no way of determining which of the two situations described could be the cause of

two simultaneous regime pairs being active.

When looking at the results of in Table 4.2, some interesting cases can be seen that

appear – at first glance – to give contradicting regime pairs. An example of a seemingly er-

roneous pair can be seen in Pair #12, where the “Climb” and “Descent” regimes are found

to both be active simultaneously. However, this behavior can be caused when the aircraft is

rapidly changing between regimes. In this situation, the IMM filter response for “Climb”

and “Descent” regime probabilities may not have time to decay before the other regime

probability begins to rise, leading to the apparent simultaneous activation of two opposed

regimes. While this behaviour has been observed during the development and testing of the

IMM-RR, more testing is warranted to determine if a similar behavior is present if a differ-

ent probabilistic RR were to be used (such as an HMM-based algorithm). In production,

if two opposed regimes are often flagged as simultaneously active, it could also indicate to

the aircraft designer that additional work is needed on the algorithm. It may be the case that

the IMM filters need additional tuning to reduce the frequency of occurrence – if the events

are determined to be erroneous. If regime boundary definitions are close together in the

state-space, steady-state error in the filters can interfere with the regime recognition pro-

cess by causing regime probabilities to have a baseline value that is large enough to make

a regime appear “always active.” This can usually be fixed by additional filter tuning, or by
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appropriately modifying the regime probability formulas (such as those seen in Table 2.3).

4.2.3 Unknown Regime Analysis

For usage spectrum analysis to be effective, the percent of time that the regime recognition

algorithm results in a classification of “Unknown Regime” must be kept as low as possi-

ble. While some Unknown Regime will almost certainly be present, the exact “acceptable

amount” is subjective. For this reason, it may be useful to quantify how much “Unknown

Regime” is present in a batch of RR processed flight data. For the available flight data, a set

of decreasing thresholds were swept through the IMM-RR results, and the fraction of time

the Unknown Regime that was less then the threshold was recorded. Or, more formally,

for a given threshold i, let b be equal to the number of timesteps where ptju < i for all n

timesteps processed, and where u corresponds to the index for the Unknown Regime. Then

the fraction of time that the Unknown Regime is less than or equal to the threshold can be

found as,

Ft(r = u) =
b

n
(4.4)

This was done for all available processed flight data, and the results are recorded in

Table 4.3. In Table 4.3 it can be seen that a threshold of 1 yields an unknown percent of

100%. This simply means that 100% of the time, the unknown regime has a probability of

less then or equal to 1 across all timesteps. This makes sense, although the information is

not very useful. The more interesting results will be found as the threshold is lowered. For

a threshold of 0.5, Table 4.3 states that more then 95% of the time, the Unknown Regime

had a probability of 0.5 or less. The results can easily be reversed by taking one minus

the percent. For example, for the same threshold of 0.5, it can be seen that only 4.4% of

the total time the unknown regime had a probability greater then 0.5. Looking towards the

bottom of the table, at a threshold of 0.02, a value of 90.5% can be seen in the right column.

This is interpreted as saying, that greater then 90% of the time, the Unknown Regime

had a probability of less then 2%. Together, these results provide a good indication that
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Table 4.3: Percent of Time the Unknown Regime is Less Than Threshold i

Threshold, i
Unknown ≤
Threshold, %

1 100.0
0.9 97.4
0.8 96.7
0.7 96.3
0.6 96.0
0.5 95.6
0.4 95.2
0.3 94.8
0.2 94.2
0.1 93.4
0.05 92.4
0.04 92.1
0.03 91.6
0.02 90.5
0.01 86.7

0 31.3

the Unknown Regime is not overly active. As mentioned before, analyzing the Unknown

Regime behavior can provide insight into potential problems. If the Unknown Regime is

found to be more active in some batches of data then is considered normal for a particular

aircraft, it could indicate faulty sensors or corrupted data are present. This would, of course,

depend on what states the regime recognition code requires for correct operation, and how

error handling is performed both in the HUMS unit and the RR algorithm. A high presence

of the Unknown Regime might also signal to an operator that the aircraft is flying regimes

do no not appear in the regime recognition library.

It should be noted that this style of analysis could be performed with any regime, not just

the Unknown Regime, and may be useful if an operator or aircraft designer wanted to know

what percent of time an aircraft spends in regimes with different probability thresholds.

Again, it should be noted that this of in depth analysis is difficult or even impossible with

traditional rule-based regime recognition codes.
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4.2.4 Thresholded Regime Analysis

This next analysis is similar to that found in the previous section, in that a threshold prob-

ability is swept through the results and regime percent-of-time is calculated. However, in

this case, all regime are considered simultaneously. For a given threshold i, let k be the

number of timesteps where max(pjr) < i ∀ r ∈ R for each timestep j over the number

of all timesteps processed n, and where R corresponds to the set of all regimes in the RR

library. Then the fraction of time that the highest probability regime is below the given

threshold can be calculated as,

Fth =
k

n
∗ 100 (4.5)

For each threshold i the most common regime satisfying the given conditions was recorded.

The results of the analysis can be seen in Table 4.4.

Table 4.4: Maximum Regime Probability Against Threshold i

Threshold, i
Max Regime

Most Common Regime
Probability ≤ i, %

1.00 100.0 Hover
0.95 59.0 Hover
0.90 45.7 Hover
0.85 36.6 Hover
0.80 30.3 Forward Flight 0.6Vh
0.75 25.4 Forward Flight 0.6Vh
0.70 20.7 Forward Flight 0.6Vh
0.65 16.7 Forward Flight 0.6Vh
0.60 12.8 Forward Flight 0.6Vh
0.55 9.0 Forward Flight 0.6Vh
0.50 5.0 Climb

Analyzing the results can once again provide insight into the aircraft usage. It can be

seen in Table 4.4 that when the threshold is set to 1, 100% of the greatest regime probability

was less than or equal to 1. Once again, this makes intuitive sense, but is not all that useful.

The rightmost column of Table 4.4 states that the most common regime (at Threshold = 1)

is Hover. This is matches the findings for the most common regime stated in Table 4.1. As
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the threshold is lowered, the percent of total time that the regime with greatest probability

has a probability over that threshold is also lowered. Taking an example from Table 4.4, it

can be seen that 25.4% of the time, the regime with highest probability had a probability of

less then 0.75, and the most common regime fitting that specification was Forward Flight

at 0.6Vh. Overall, Table 4.4 can be used to determine how often the probabilistic regime

recognition is uncertain about the flown regimes, and which regimes those are. From Ta-

ble 4.4 it can be concluded that when the IMM-RR is uncertain about the flown regime,

it is most likely to be a Hover or Forward Flight based maneuver. This makes sense, as

helicopters often spend the majority of their time in those two regime, and when climbs

and descents are made, they are often not executed at maximum aggression. This results

in a lot of slow climbs and descents, that the IMM-RR classifies as partial maneuvers. To

reiterate, this is one of the primary benefits of a probabilistic regime recognition scheme

over its rule-based counterparts as documented in Chapter 2, as well as in References [58]

and [59].

4.3 Helicopter Damage Estimation

The end-goal of many regime recognition schemes is for use in Condition Based Mainte-

nance for fatigue damage estimation of life-limited components. In this section, the actual

HUMS data used for regime recognition and usage analysis in the last section will be used.

The techniques applied will be those proposed in Chapter 3. While the regime boundary

definitions remain the same as in previous chapters (see Tables 2.1 and 2.2), the damage

rates for this chapter are given in Table 4.5. Note that these damage rates are for demon-

stration purposes only and are not meant to represent any true component or set of regimes.
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Table 4.5: Regime Damage Rates

Regime Parameter Damage/s
Hover − 0
Right Hover Turn − 2.89× 10−9

Left Hover Turn − 2.41× 10−9

Axial Climb − 4.66× 10−9

Axial Descent − 1.90× 10−9

Forward Flight Accelerate − 6.62× 10−8

Forward Flight Decelerate − 6.62× 10−8

Forward Flight Steady 0.1Vh – 0.9Vh 0
Forward Flight Steady 1Vh 3.38× 10−8

Forward Flight Steady > 1Vh 6.33× 10−8

Right Turn 30◦AOB 1.23× 10−7

Right Turn 45◦AOB 1.35× 10−6

Left Turn 30◦AOB 5.99× 10−8

Left Turn 45◦AOB 7.99× 10−7

Climb − 2.62× 10−7

Right Climbing Turn − 5.20× 10−6

Left Climbing Turn − 4.00× 10−7

Descent − 1.55× 10−7

Right Descending Turn − 4.97× 10−6

Left Descending Turn − 3.13× 10−7

Unknown Maneuver − 5.20× 10−6

4.3.1 Cumulative Damage

The first example will be to compute the cumulative damage of a theoretical component

using all available HUMS data. The damage was computed using the Gaussian approx-

imation discussed in Section 3.1.3, and the damage rates in Table 4.5, resulting in the

cumulative damage Gaussian seen in Figure 4.6. The total damage was computed twice.

Once where the standard deviation on the damage rates were set to zero for all regimes

(seen as the blue line). The second time, the standard deviation of each damage rate was

set to 20% of its nominal value (seen as the orange line). For example, for a given dam-

age rate dr = 2.89 × 10−9, the standard deviation for that damage rate would be set to

σdr = 0.2 ∗ (2.89× 10−9) = 0.579 × 10−9. The mean of both distributions was 0.6367.

This implies that an estimated 63.7% of the components useful life has been consumed.
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To remain conservative, one would likely select a high percentile value (e.g. .96) for the

purpose of part replacement timeline creation. The standard deviation of the Gaussian cor-

responding to 20% damage rate standard deviation is 2.78× 10−4, while the standard devi-

ation of the Gaussian corresponding to zero damage rate standard deviation is 2.56× 10−4,

which as expected, is smaller. The difference between these two standard deviations is

very small relative to the number of hours processed. However, it should be noted that the

regime usage analysis in the Section 4.2 indicated that the vehicle flew mostly low or non-

damaging regimes, and only approximately 12% of the IMM-RR was uncertain about what

regime was being flown. Together, this means the IMM-RR, although still probabilistic,

was behaving more like a rule-based RR algorithm. Put another way, because the IMM-RR

resulted in high regime certainty ∼90% of the time, the corresponding damage estimate

had less overall uncertainty and the effects of additional uncertainty from the damage rates

were reduced.

Figure 4.6: Cumulative Damage of Helicopter Component.
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4.3.2 Effects of Saturating Probabilistic RR Results

An important factor when evaluating different regime recognition and condition based

maintenance scheme combinations is the level of conservativeness in the resulting dam-

age estimate. To effectively evaluate the IMM-RR results, a comparison needed to be made

with a different methodology. Because rule-based RR results were unavailable for the batch

of helicopter HUMS data processed, a saturation method was employed as a substitute to

create a pseudo rule-based RR. This is a reasonable substitute because the regime identified

with the highest certainty will be promoted to the singularly representative regime. This

is not unlike what happens within a rule-based RR code, where a single regime is selected

with 100% certainty at each timestep, as discussed in Chapter 1. The saturation of the

IMM-RR will be accomplished by taking the regime probability array at each timestep and

assigning a value of 1 to the highest probability, and 0 to all others. The algorithm to create

this new saturated IMM-RR result is,

pjr,sat =

 1 if pjr = max(pj) ∀ r ∈ R

0 otherwise
(4.6)

Where pj is the regime probability array at timestep j generated from a probabilistic regime

recognition, and R is the set of all regimes in the RR library. As a simple example,

consider a case with only four regimes r ∈ {1, 2, 3, 4}. Assume the probabilistic RR

code identifies regime probabilities at timesteps j ∈ {1, 2, 3} as p1 = {0.2, 0.6, 0.1, 0.1},

p2 = {0.3, 0.4, 0.2, 0.1} , p3 = {0.4, 0.3, 0.3, 0.0}. The resulting saturated values would be

p1
sat = {0, 1, 0, 0}, p2

sat = {0, 1, 0, 0} , and p3
sat = {1, 0, 0, 0}.

Using the algorithm in Equation 4.6, all the results generated from using the IMM-RR

on the entire batch of HUMS data were saturated, and the incurred damage was computed.

The same techniques, set points, damage rates, etc. as those used to generate the results

in Figure 4.6 with 20% standard deviation on the damage rates. The results of the damage
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estimation of the saturated IMM-RR results are seen in Figure 4.7. Immediately it can

be seen that both the mean and differ between the two PDFs. Because the saturated RR

assumes no uncertainty in the regimes, the fact that there is any variance in the saturated

results may not be immediately obvious. However, the variance present is entirely the

result of the uncertainty in the damage rates, as is evident from Equation 3.9. The mean of

the saturated RR results (seen in orange) is a reduction of 2.03% from the mean resulting

from the full probabilistic treatment of the regime uncertainty (seen in blue). The variance,

however, is decreased from 7.67×10−8 to 1.11×10−8, a reduction by a factor of 6.93. This

result clearly points to the effects regime uncertainty has on the uncertainty in the damage

estimate. Initially, it may seem that a reduction in the mean estimated damage of only about

2% is not significant. However, it has already been shown that the aircraft flew mostly non-

damaging maneuvers, meaning this change in mean damage was caused by a much smaller

subset of the overall flight time. If the aircraft were to fly only high-damaging regimes,

the difference between the two variances would be much greater. Additionally, even if the

aircraft were to continue flying with the same regime usage spectrum, a difference of only

2% can cause a significant difference in the number of hours remaining on a life-limited

component. Assuming the aircraft were to continue flying with the same regime usage seen

in Table 4.1, the saturated form of the IMM-RR damage estimation would over-predict the

available remaining component life by 16.8 hours, using the mean values of the damage

PDFs. If higher percentile values were used, the difference in estimated remaining-life

would be even greater. A difference of 16.8 hours could be the difference between a vehicle

being greenlit for a mission, or being grounded for repairs and maintenance. Or, in a worst

case scenario, this discrepancy in estimated remaining life might be the difference between

safe operation and catastrophic component failure.
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Figure 4.7: Damage PDF with IMM-RR and Saturated IMM-RR Results.

In order to make claims about which methodology is more conservative, it is important

to gain a more full understanding of what is happening to in the damage estimate of the

saturated case. To this end, a study was performed to analyze the damage rate “promo-

tions” that resulted from the use of the algorithm in Equation 4.6. At each timestep, when

Equation 4.6 was applied, a check was performed to see if the damage rate associated with

max(pj) was greater, lesser, or equal to the damage rate associated with the regime that

was assigned the second highest probability by the IMM-RR. In this way, it can be deter-

mined if the damage rate actually applied to each timestep is over- or under-estimating the

damage.Figure 4.8 shows the results of the damage rate promotions.

In Figure 4.8 it can be seen that a lesser damage rate was promoted 68% more often then

a greater damage rate. Or, put another way, this shows that the damage rate with the lower

nominal value is being promoted more often then the damage rate with the higher nomi-

nal value. This implies that when the probabilistic regime recognition results are saturated
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Figure 4.8: Damage Rate Promotions Using Saturation Algorithm.

using the algorithm in Equation 4.6, the cumulative damage estimate is under-predicted

for the batch of flight data processed, when compared to using the full probabilistic treat-

ment of the cumulative damage estimate as described in Chapter 3. While the results of

Section 4.3.2 are technically only valid for the vehicle usage of the flight data processed,

coupled with the damage rates used in Table 4.5, some generalizations can still be made.

Because aircraft tend to spend a lot of time flying in fundamental maneuvers (i.e. level for-

ward flight, hover, etc.) the damage rate associated with those fundamental regimes will get

promoted more often if a saturation algorithm is used. Also, because a rule-based regime

recognition algorithm shares similar characteristics, in terms of resulting regime classifica-

tions, to those of saturating a probabilistic RR output, many (if not all) of the comparisons

and conclusions made here would be valid for both.

Because condition based maintenance programs are useful, not only for cost savings,

but for personnel safety as well, it is important to know how different algorithms and

methodologies affect the conservativeness of the damage estimate. The results of this sec-
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tion indicate that full treatment of the regime and damage rate uncertainty provides a more

conservative damage estimate over rule-based or saturation-based methods.

4.3.3 Helicopter Damage Spectrum

There are many reasons why individual aircraft tracking may not be feasible. Corrupted

data, faulty sensors, and a myriad of other reasons may prevent the retrieval or availability

of the data necessary for successful IAT. For this reason, it may be desirable to perform

usage spectrum analysis on a batch of flight data in order to gain insight into the estimated

damage of the vehicle (or fleet of vehicles) with respect to a fixed time rate.

A simple averaging of the total fatigue damage rate per component is one approach that

could be taken. In this way IAT could be performed on an available batch of flight data.

Then the mean value of the damage could be selected and divided by the number of hours

processed to provide an “average damage per time.” However, a simple time-averaging

approach will not properly address uncertainty in the vehicle usage.

An alternative approach is that proposed in Section 3.3.3 where a bootstrapped sta-

tistical method is used to encapsulate variability in the aircraft usage spectrum. In this

study, the methods proposed in Section 3.3.3 (whose process flow is shown in Figure 3.4)

are employed on the real-world HUMS data. In accordance with the proposed methodol-

ogy, random flights are selected from the total batch of available data and the damage is

estimated using the IMM-RR and DCM discussed in Chapters 2 and 3. The level of con-

servativeness chosen was set to both the 99.9999th and 50th percentile so that comparisons

could be made between the two. In the same way as before, Equation 3.10 was used to

scale the damage random variable to 100 hours at each iteration of the re-sampling. The

damage rates for a theoretical component were set equal to those found in Table 4.5. Fig-

ure 4.9 shows the resulting histogram of the γη,i for i ∈ {1, ..., 10, 000} randomized sets of

flights taken from all available in the batch for the 99.9999th percentile of damage during

each iteration of 100 hours. The histogram in Figure 4.9 is observed to approximate a nor-

94



mal distribution, this is inline with the simulation based findings in Section 3.3.3. For this

case study, the damage per 100 hours probability distribution was found to have a mean of

0.1225, a standard deviation of 0.0184, and a range of 0.1426. Note that the damage for

the entire batch of flight data (518 hrs) computed using the IAT method in Section 4.3.1

can be scaled to yield an average damage rate of 0.1227 per 100 hrs (shown as the vertical

red line in Figure 4.9). This results in a percent difference of 0.14% compared to the mean

damage per 100 hrs computed using the bootstrapped method. This further validates the

bootstrapped method as a viable solution to estimating the damage of the vehicle when an

Individual Aircraft Tracking approach is not possible.

In Figure 4.10 the empirical CDF is shown, created from the underlying data in the

histogram for both the 99.9999th percentile (.96) and the 50th percentile (µ). It can be

seen that the empirical CDF corresponding to the 99.9999th and 50th percentile are almost

identical. This in part, helps to answer a question that was asked in Section 3.3.3 about

whether the mean value, or a highly conservative value, should be selected from the damage

spectrum CDF for use in practically applying the damage rate to a vehicle(s) for CBM.

Because the vehicle (in the cases presented here) flew mostly non/low-damaging regimes

with relatively low regime uncertainty the uncertainty present in the damage estimate at

the end of each 100 hr randomly sampled block was also relatively low, resulting in a very

small difference between the two distributions (99.9999th and 50th percentile).

95



Figure 4.9: Histogram of Damage Per 100 hours at the 99.9999th Percentile.

Figure 4.10: Empirical CDF of Damage Per 100 hours.

96



CHAPTER 5

APPLICATION TO FIXED WING AIRCRAFT

The regime recognition and damage estimation algorithms presented in Chapters 2 and 3

have – so far – only been used on helicopters. However, there is nothing in either algorithm

formulation that precludes its use on fixed wing aircraft. As discussed in Chapter 1, fixed

wing aircraft often make use of strain gauges and load sensors mounted directly on the ve-

hicle airframe. Load data can then be collected and analysed using the flight load synthesis

techniques mentioned in Chapter 1. For this reason, the damage estimation algorithms pre-

sented in Chapter 3 may not provide any additional useful information about the damage

state of the aircraft components. However, the probabilistic regime recognition algorithms

in Chapter 2 and usage analysis techniques in Chapter 4 can provide useful information

about the type of missions being executed. This chapter will seek to employ the proposed

IMM-RR algorithms on data collected from a simulated General Dynamics F-16.

5.1 Aircraft Dynamic Model

In this section, a nonlinear aircraft will be described. This model, taken from Reference

[107], is the basis for a program that was written to provide the necessary aircraft state data

for applying the IMM-RR algorithm – in a similar way that HIVE was used to generate

HUMS data in Chapters 2 and 3. It should be noted that not all necessary information for

defining the aircraft model is present in this section. A general overview is provided, but

some additional state equations, aerodynamic coefficients, and lookup tables, that may be

required for implementation, are omitted here. A full detailing of the model used can be

found in Reference [107]. Some aircraft properties for the F-16 are given in Table 5.1, the

remaining properties as well as all aerodynamic lookup tables can be found in Reference

[108].
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Table 5.1: F-16 Selected Properties

Property Value Unit
Weight 20,500 lbs
Moment of Inertia Jxx 9,496 Slug-ft2

Moment of Inertia Jyy 55,814 Slug-ft2

Moment of Inertia Jzz 63,100 Slug-ft2

Moment of Inertia Jxz 982 Slug-ft2

Wing Span 30 ft
Wing Area 300 ft2

Mean Aerodynamic Chord 11.32 ft

5.1.1 Assumptions

The aircraft is assumed to be rigid, with constant mass, and symmetry about the X-Z plane.

The mass density of the aircraft is assumed constant, and internal components (such as

the motion and quantity of fuel) are ignored. External forces and moments acting on the

aircraft are assumed to be only from from gravity, propulsion, and aerodynamics. A flat

earth approximation is used, with a stationary atmosphere. Flights are limited to 50,000

feet in altitude and speeds less than Mach 1. The gravitational pull of the Earth is assumed

to be a uniform field, such that the center of mass and center of gravity are coincident on

the aircraft. All sign conventions follow the standard right-hand rule [109].

5.1.2 Aircraft States and Controls

For the aircraft model, the following state vector is used,

x = [Vt α β φ θ ψ p q r xE yE h Pa]
T (5.1)

where, Vt is the airspeed of the aircraft, α is the angle of attack, β is the angle of sideslip,

φ, θ, ψ are the Euler angles, p, q, r are the body-axis angular rates, xE, yE are the X and

Y earth-axis positions respectively, h is the aircraft altitude above sea level, and Pa is the

engine power level expressed as a percent. In addition to the vehicle states the following
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control state vector was used,

u = [δth δe δa δr]
T (5.2)

In this equation, the variables correspond to the control surface deflection for the throttle

(δth), elevator (δe), aileron (δa), and rudder (δr).

The set of coupled first-order nonlinear differential equations that govern the dynamics

of the aircraft can be represented as,

ẋ = f (x, u) (5.3)

with output equations,

y = h (x, u) (5.4)

5.1.3 Equations of Motion

There are six nonlinear rigid body equations of motion used to model the translational and

rotational dynamics of the aircraft [107]. These are made up of three force equations and

three moment equations.

Force Equations

u̇ = rv − qw − g sin θ +
q̄SCx + T

m
(5.5)

v̇ = pw − ru− g cos θ sinφ+
q̄SCy
m

(5.6)

ẇ = qu− pv − g cos θ cosφ+
q̄SCz
m

(5.7)
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Moment Equations

ṗ = (c1r + c2p+ c4heng) q + q̄Sb (c3Cl + c4Cn) (5.8)

q̇ = (c5p− c7heng) r − c6

(
p2 − r2

)
+ q̄Sc̄c7Cm (5.9)

ṙ = (c8p− c2r + c9heng) q + q̄Sb (c4Cl + c9Cn) (5.10)

In addition to the force and moment equations, there are three rotational kinematic equa-

tions, and three navigation equations [107]. The rotational kinematic equations describe

the relationship between the aircraft Euler angular rates and the body-axis angular rates.

The navigation equations describe the relationship between the aircraft translational veloc-

ity components expressed in the body axis and the aircraft translational velocity expressed

in the earth-axis. These six total equations are given below.

Kinematic Equations

φ̇ = p+ tan θ (q sinφ+ r cosφ) (5.11)

θ̇ = q cosφ− r sinφ (5.12)

ψ̇ =
q sinφ+ r cosφ

cos θ
(5.13)

Navigation Equations

ẋE = u cosψ cos θ + v (cosψ sin θ sinφ− sinψ cosφ) (5.14)

+ w (cosψ sin θ cosφ+ sinψ sinφ)

ẏE = u sinψ cos θ + v (sinψ sin θ sinφ+ cosψ cosφ) (5.15)

+ w (sinψ sin θ cosφ− cosψ sinφ)

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ (5.16)
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These twelve total equations (given by eqs. (5.5) to (5.16)) are sufficient to describe the

nonlinear equations of motion for the aircraft, and can be used in a numerical integration

scheme to propagate the aircraft states forward in time. Complete descriptions of each

equation can be found in Ref. [107].

5.1.4 Engine Model

The engine power is modeled using a first-order lag filter to relate the commanded power

level to the actual power response. The equation governing this relationship is given by,

Ṗa =
1

τeng
(Pc − Pa) (5.17)

where Pc is the commanded power level computed as a function of the throttle state δth,

and τeng is the engine power level time constant. Additional details regarding the engine

model used can be found in Ref. [107].

5.1.5 Atmospheric Model

The air density and speed of sound is calculated in accordance with the U.S. Standard

Atmosphere model [107, 108]. Air density ρ, dynamic pressure q̄, and Mach number M

are governed by,

ρ = 0.002377 (T ∗)4.14 (5.18)

M =


Vt√

1.4(1716.3)(390)
if h ≥ 35,000 ft

Vt√
1.4(1716.3)(519T ∗)

if h < 35,000 ft
(5.19)

q̄ =
1

2
ρV 2

t (5.20)

where T ∗ = 1− 0.703h× 10−5 is the computed temperature factor [107].
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5.2 Aircraft Control Laws

In order to simulate flights of the aircraft, a control scheme is needed. To this end, a

set of controllers was developed using some of the same techniques found in the virtual

pilot algorithm discussed in prior chapters and found fully documented in References [87]

and [78]. Because the set of maneuvers needed to demonstrate the feasibility of IMM-

RR on fixed wing aircraft is relatively small (compared to the 100+ maneuvers that may

be implemented for deployment on actual vehicles), a simplified control scheme could be

used. The control design is based primarily on the autopilot PID controllers for altitude

and roll-attitude hold found in Aircraft Control and Simulation, 2nd Ed. by Stevens and

Lewis [108]. Additional controllers were added using a similar architecture for regulating

sideslip, and forward speed. A control update rate of 20 Hz was used for these studies. All

four controllers (manipulating control variables δth, δa, δr, and δe) were tuned and operated

independently of each other. More information regarding general PID controller design

and tuning can be found in Modern Control Engineering, 4th Ed. by Ogata [110].

5.2.1 Controller Architecture

Forward Speed, Roll Angle, and Sideslip Channels

The controllers used for the Forward Speed, Roll Angle, and Sideslip channels were Single

Input Single Output (SISO) PID controllers. Each controller used a specified parameter

imported from the flight card to operate on the relevant aircraft state variable. The engine

throttle control variable δth was manipulated using commanded airspeed Vtc as reference,

where airspeed was used as an approximation for the forward speed of the aircraft. The

aileron control variable δa was manipulated using the commanded Euler roll angle φc as

reference. Finally, the rudder control variable δr was manipulated using the commanded

sideslip angle βc as reference. Because the sideslip controller was used solely to regulate

sideslip to zero for all flights, the sideslip angle setpoint was set to a constant zero in the
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control law. Control block diagrams for all three channels can be seen in Figure 5.1.

Figure 5.1: Forward Speed, Roll Angle, and Sideslip Control Loop Structures.

Altitude Channel

The controller used for the Altitude channel is a SISO nested-loop PID controller. In this

controller, the altitude setpoint hc is used by the outer-loop PID to generate a pitch angle

setpoint θc for the inner-loop PID. The inner-loop PID is then used to drive the elevator

control variable δe. The control block diagram for the altitude hold can be seen in Fig-

ure 5.2. If a rate of climb track was desired, it was supplied to the controller as a ramp

input to the altitude setpoint, whose slope was set equal to the desired rate of climb. This

resulted in satisfactory performance for the type of flights used in these studies – without

the additional complexity of a variable structure control architecture, like that used in the

virtual pilot algorithm developed by Fowler (Refs. [78, 87]).
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Figure 5.2: Altitude Control Loop Structure.

5.3 Aircraft Simulation

For the purpose of this work, a 4th order Runge–Kutta scheme for numerical integration was

used to propagate the model forward in time with a timestep of 0.01 seconds. A timestep

as small as 1 ms was tried, but resulted in a significant increase in computation time with

no impactful change in accuracy.

5.3.1 Aircraft Simulation Example with Acrobatic Maneuver

This example shows a fairly short flight segment of simulated data, the purpose of which

is to establish the aircraft simulation basic capabilities. The maneuver sequence for this

example is shown in Table 5.2. Beginning from forward flight at approximately 500 ft/s,

the aircraft performs a right turn at 30°AOB, then transitions directly into a more aggres-

sive right turn at 60°AOB, before recovering to forward flight at 600 ft/s. The aircraft then

enters a vertical loop maneuver before exiting the simulation. Several relevant state time

histories for this flight sequence, namely forward speed, altitude, and roll angle are shown

in Figure 5.3. The maneuvers executed by a high performance and agile aircraft (such

as the F-16) can be roughly broken down into two categories. Namely, standard maneu-

vers and acrobatic maneuvers. The regime recognition and usage analysis techniques were

designed to work on standard maneuvers. Therefore, it will be useful to identify the acro-

batic maneuver segments in a pre-processing step, before regime recognition takes place.

In this dissertation, acrobatic flight segments were defined to be any set of timesteps where
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the angle of bank exceeded ±60°, or the pilot load factor Lf exceeded a value of ±2 g’s.

These values were selected for illustrative purposes, and could be changed depending on

the needs of the user. The load factor was computed using the following equation [108],

Lf = −az + q̇xs
g

(5.21)

where az is the acceleration in the z-direction at the aircraft center of mass, q̇ is the deriva-

tive of the Euler pitch rate, xs is the longitudinal distance from the aircraft center of mass

to the pilot seat, and g is the earth gravitational constant.

Table 5.2: Maneuver Sequence for F-16 Simulation Example

Maneuver Start Time, s Flown Regime Parameter
0 Forward Flight 500 ft/s
5 Right Turn 35°AOB

45 Right Turn 60°AOB
95 Forward Flight 600 ft/s

125 Vertical Loop –
155 End –

This pre-processing step was performed on the flight sequence described in Table 5.2.

Figure 5.4 shows the plot of the aircraft flight path in 3D space. The solid blue line indicates

flight segments where the pre-processor identified standard maneuvers, and the dashed

black line indicates flight segments identified as acrobatic maneuvers.

Figure 5.5 shows the state time history of the pilot load factor calculated using Equa-

tion 5.21. During the right turn maneuvers it can be seen how the calculated load factor is

greater for the more aggressive turn (Lf ≈ 1.2 for 35°AOB turn, and Lf ≈ 2.0 for 60°AOB

turn). It can then be seen that during the level flight portion of the flight sequence (95 – 125

seconds) the load factor was approximately 1g, this is expected as the pilot is not experi-

encing any acceleration other then that due to gravity. During the vertical loop maneuver

(125 – 155 seconds), the pilot load factor exceeds 2 g’s for the majority of the maneuver,

then is rapidly reduced to near zero as the aircraft exits the loop.
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Figure 5.3: Selected State Time History for F-16 Simulation Example.

Figure 5.4: Aircraft Flight Path with Identified Acrobatic Segments for F-16 Simulation
Example 1.
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Figure 5.5: Pilot Load Factor Time History for F-16 Simulation Example.

5.4 Fixed Wing Regime Recognition

Before usage spectrum analysis can take place, regime recognition must be performed. The

IMM-RR discussed in detail in Chapter 2 can be designed to work on fixed wing aircraft

data (such as the F-16) with little modification. Mainly, the modifications involve removing

any maneuvers from the RR library (Table 2.3) that correspond to hover-based maneuvers

(i.e. Hover, Left/Right Hover Turn, Axial Climb/Descent). Setpoints for regime boundary

definitions can also be modified if deemed necessary by the user, although for consistency

in this dissertation, any maneuvers with a common name are given the same boundary

definitions. Because aircraft handling characteristics vary substantially between the F-16

and SH-60, additional tuning was required for some filters. It should be noted that this

additional tuning was quite minimal and was accomplished using only a handful of test

sequences generated using the simulation methodology outlined above.

5.4.1 RR Example Sequence

This example uses a fairly short segment of simulated data. The maneuver sequence flown

for this example is shown in Table 5.3. The aircraft begins in forward flight at approxi-

mately 600 ft/s for the first twenty seconds, the aircraft then enters a climbing right turn at

30°AOB and a 20 ft/s rate of climb. The aircraft then levels off to constant altitude while

remaining in a 30°AOB turn and increasing forward speed to 800 ft/s, before entering a left
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descending turn at -15°AOB and 20 ft/s rate of descent. Finally the aircraft levels out to

steady forward flight and reduces forward speed to 700 ft/s before ending the simulation.

Table 5.3: F-16 Maneuver Sequence for RR Example Sequence

Maneuver
Flown Regime

Forward Rate of Angle of
Start Time, s Speed, ft/s Climb, ft/s, Bank, deg

0 Forward Flight 600 0 0
20 Climbing Right Turn 600 20 30
50 Right Turn 800 0 30
75 Descending Left Turn 800 -20 -15

110 Forward Flight 700 0 0
150 End – – –

Several relevant state time histories for this sequence, namely forward speed, altitude,

altitude rate, and roll angle, are shown in Figure 5.6. Note that in this figure, the solid blue

line represents the simulated flight data, and the dashed black line represents the IMM Filter

(or Kalman Filter) estimate for each respective state. Regime recognition results are shown

in Figure 5.7 for the IMM-RR adapted to fixed wing usage. In Figure 5.7 the gray scale

denotes the probability of the recognized regimes. The maneuver sequence identified by

the IMM-RR closely matches the flight card in Table 5.3. In Figure 5.7, between seconds

90 and 110, the IMM-RR identified a mix of the “Descent” and “Left Descending Turn”

maneuvers. The flight card for that portion of the flight specifies a rate of descent of 20

ft/s and an angle of bank of -15°. These parameters put the aircraft well into the definition

of a descent, but on the regime boundaries for “level wing”, and “left turn.” Therefore,

the correct regime designation would be somewhere between a level wing descent, and a

descending left turn, which is exactly the classification given by the IMM-RR.
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Figure 5.6: Selected State Time Histories for F-16 RR Example, Simulated Flight Data
(Meas. = measurement).

Figure 5.7: IMM-Based Regime Recognition Results for F-16 RR Example.
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5.5 Fixed Wing Usage Spectrum

Before the usage analysis of a simulated F-16 can be analyzed, a large batch of flight data

must be created. 1,000 hours of flight data were generated using the parameter distribu-

tions found in Table 5.4, and the same techniques described in detail in Section 3.3.3 for

the SH-60 simulated database. In the same way as before, each flight in the simulated

database was generated by first randomizing the number and duration of maneuvers using

the uniform distributions found in Table 5.4. Then the maneuver type is randomly selected

as Forward Flight, Climb/Descent, and Climbing/Descending turn. Similar to the creation

of the SH-60 database, the first maneuver is always selected as Forward Flight. Finally,

the the parameters for each maneuver are sampled using ITS [106] from the parameter

distributions created using Table 5.4.

Table 5.4: Flight Parameter Distributions for F-16 Simulated Database Creation

Parameter Lower Limit Upper Limit Distribution(s)
Number of Maneuvers 15 25 Uniform
Maneuver Duration, s 120 240 Uniform
Angle of Bank, deg -50 50 N (30, 4),N (−30, 4),

N (45, 4),N (−45, 4)
Rate of Climb, ft/s -30 30 N (10, 4),N (−10, 4))
Forward Speed, Vh 0.5 0.8 Uniform

All the same techniques for usage analysis discussed in Section 4.2 can be applied to

the probabilistic regime recognition results for fixed wing aircraft. However, there is an

additional methodology that can be applied to probabilistic RR that may be more useful in

cases were the usage spectrum is the end-goal of the flight data analysis. This technique

involves the use of a bootstrapped statistical method.

First, consider a large set of HUMS data from of a fleet ofNm aircraft, and suppose that

a usage spectrum in terms of per 100 hours is desired. Then with reference to Figure 5.8,

a random sampling of 100 flight hours can be selected from the batch of available feet

data and processed with a probabilistic RR code. Then the expected time for each regime
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r can be computed using Equation 4.1 for each set of 100 hrs, and stored in Er,i, where

i is the ith random sampling of data. This process can then be repeated a large number

of times (e.g. 10,000) to extract various statistics about the regime usage (such as mean

fraction of overall flight time and standard deviation). This process was performed on the

batch of 1,000 hours of simulated F-16 flight data with 10,000 re-samples, the results of

which can be seen in Table 5.5. The two key statistics extracted from the data set are

computed usage and computed standard deviation. In Table 5.5 the computed usage refers

to the expected time that the aircraft spent in each regime (expressed as a percent), and the

computed standard deviation is the measure of how dispersed the computed usage is from

the mean (with units of percentage points).

Figure 5.8: Visualization of Process to Create Regime Usage Spectrum.

In order to check the accuracy of the computed results, a comparison to “truth data”

needs to be made. This “truth data” was found by taking the flight cards generated for each

random flight in the 1,000 hours of simulated data, and tracking how much time the aircraft

was commanded to fly in each regime across all flights. In this way, the actual expected

usage could be computed for each regime across the entire data set by dividing the total
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commanded time for each regime by the total flight time simulated. Formally this can be

expressed as,

Ut(r) =
Tc,r
Ttotal

(5.22)

Were Tc,r is the total command time flown for regime r, and Ttotal is the total simulated

flight time across the entire data set.

This provides a benchmark that the proposed methodology can be compared to, but it

should be noted that the “actual usage” and the “computed usage” will not match exactly.

This is because the “actual usage” is based on the discrete commanded regime, and cannot

account for the variation in regime setpoints stemming from the sampling distributions. For

example, if the aircraft was commanded to fly a “Right Climbing Turn,” the rate of climb

and angle of bank setpoints are specified from the sampling distributions found in Table 5.4.

If the setpoints are not sampled at exactly the middle of the regime boundary definitions,

then the IMM-RR will return primarily a classification of “Right Climbing Turn,” but may

also return partial classifications of “Climb,” “Level Flight,” “Left Turn 30°,” etc. These

partial classifications will result in a discrepancy between the “computed usage” and the

“actual usage” of the aircraft.

Another source of discrepancy is in the transient response of the aircraft. For exam-

ple, the flight card might command that the aircraft fly for some set amount of time in a

particular regime (e.g. Right Turn 30° for 60 seconds), but if the aircraft was flying a left

turn in the prior maneuver, it will take some time for the aircraft to change its flown regime

to match the the new command. This transient time cannot be accounted for, leading to

another source of discrepancy between the “expected usage” and the “actual usage” of the

aircraft.

Finally, it should be noted that some maneuvers are not explicitly commanded, but are

the result of a change in setpoint from one maneuver to the next. An example of this would

be the Accelerate and Decelerate maneuvers, which are the results of the aircraft first being

commanded one particular forward speed, then subsequently being commanded a different
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forward speed in the next maneuver.

Table 5.5 shows the actual usage as specified by the generated flight cards and the

“expected usage” calculated using the bootstrap method in conjunction with the IMM-RR.

It can be seen that even with the sources of discrepancies discussed above, the computed

and actual aircraft usage have close agreement across all regimes, with a largest difference

of less then 2 percentage points.

This shows that the bootstrapped method was able to effectively extract regime usage

statistics from the available data set. This methodology, along with the other usage analysis

techniques discussed in Section 4.2, allows for an aircraft operator to make full use of

probabilistic regime recognition schemes to analyze aircraft usage, either individually or as

a fleet.

Table 5.5: Regime Usage Spectrum for Simulated F-16 Database

Regime
Actual Expected Difference Computed Computed

Usage (A), % Usage (C), % |A - C|, % Std., % C.V., %
Forward Flight 600 ft/s 14.59 15.80 1.21 0.566 3.58
Forward Flight 700 ft/s 9.93 10.31 0.38 0.582 5.65
Forward Flight 500 ft/s 9.89 9.49 0.43 0.534 5.63
Forward Flight 800 ft/s 9.65 9.10 0.55 0.532 5.85
Descent 7.82 6.14 1.68 0.372 6.06
Climb 7.50 5.66 1.84 0.370 6.54
Left Turn 30°AOB 6.86 8.05 1.19 0.499 6.20
Left Turn 45°AOB 6.84 7.21 0.37 0.534 7.41
Right Turn 45°AOB 6.67 6.68 0.01 0.492 7.37
Right Turn 30°AOB 6.59 8.21 1.62 0.531 6.47
Right Descending Turn 3.45 2.48 0.97 0.290 11.69
Right Climbing Turn 3.44 2.56 0.88 0.283 11.05
Left Climbing Turn 3.39 2.54 0.85 0.309 12.17
Left Descending Turn 3.38 2.63 0.75 0.273 10.38
Forward Flight 400 ft/s 0.00 0.20 0.20 0.012 6.00
Forward Flight 900 ft/s 0.00 0.20 0.20 0.012 6.00
Forward Flight Accel. – 1.41 – 0.040 2.84
Forward Flight Decel. – 0.74 – 0.027 3.65
Unknown Maneuver – 0.57 – 0.052 9.12
Std. = Standard Deviation
C.V. = Coefficient of Variation
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CHAPTER 6

CONCLUSION

6.1 Contributions

1. A novel algorithm has been developed for rotorcraft regime recognition that lever-

ages interacting multiple model estimation. The proposed approach casts the regime

recognition problem in a Bayesian framework, in which the vehicle is a hybrid dy-

namical system and flight regimes are the discrete dynamic modes. A key advan-

tage of the proposed algorithm is that it yields probabilistic estimates of the vehicle

existing in a regime, rather than discrete classifications provided by alternative ap-

proaches. Given that there are no clear universally-recognized boundaries between

maneuver regimes in the state space, the proposed algorithm acknowledges uncer-

tainty in the classification process by assigning a probability distribution across the

regimes at each measurement time. Results illustrate the advantages of the proposed

approach compared to threshold-based algorithms.

2. The proposed RR algorithm’s ability to assign partial regime classifications allows

for a more accurate assessment of the regime(s) that are actually flown at a particu-

lar time. Evaluation metrics such as the probabilistic confusion matrix, normalized

accuracy, and AUC values show significant improvements when compared to a tra-

ditional rule-based approach. For some of the example flights shown, normalized

accuracy was improved by 20 percentage points and the AUC score was increased

from 0.79 to 0.98.

3. The proposed algorithm yields smooth physically-meaningful results during the tran-

sitions between maneuvers, eliminating the high-frequency switching that is present

in rule-based RR. The IMM-RR methodology was also found to operate very fast.
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The algorithms were found to process 100 hours of flight data in approximately 10

hours using a single core of an i7-4710MQ processor with 16GB of memory.

4. A framework for computing fatigue damage using probabilistic regime recognition

has been developed, with specific methods developed for both individual aircraft

tracking and creation of fleet-wide damage spectra. The underlying damage estima-

tion algorithm converts probabilistic regime classifications into probability densities

over the incurred damage for each life-limited component on the aircraft.

5. A Gaussian approximation was employed and justified based on the strong-mixing

property, providing a means to rapidly compute the damage distributions for large

sets of flight data. A generalized version of the Gaussian approximation was then

introduced to capture not only the uncertainty present in the flown regimes, but also

the uncertainty present in the damage rates. Results showed an increase in the vari-

ance of the damage estimate when all sources of uncertainty were accounted for. The

Gaussian approximation of the incurred damage was found to process 100 hours of

probabilistic regime recognition results in under 10 seconds using a single core of an

i7-4710MQ processor with 16GB of memory.

6. Demonstrated primary advantage of the probabilistic framework over deterministic

counterparts is that the probabilistic methodology produces damage distributions that

depend on the underlying uncertainty in regime classifications, which can be signif-

icant when aircraft fly near the boundaries of defined regimes. Simulation results

show that the damage estimates produced by the probabilistic framework respond

more smoothly to small changes in the vehicle states, and that the methodology

can be viewed as a generalization of deterministic methods for computing damage.

Monte Carlo studies showed how when the aircraft is flown on the boundaries of the

regime definitions, the smoothly varying nature of the IMM resulted in a unimodal

distribution of the estimated damage, where the mean and nominal damage values
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differed by only 0.1%. This is contrasted with the rule-based approach were the

mean and nominal damage differed by more than 10%, and had a range of greater

then 3 times that of the IMM methodology.

7. The presented algorithms were applied to a large batch of actual helicopter HUMS

data, and the results were consistent with the simulation based findings. The method-

ologies were also adapted to work on HUMS data from a simulated F-16. Results

demonstrated application of regime usage analysis in both rotary and fixed wing

aircraft, where the bootstrapped methodology was shown to be able to accurately

generate the aircraft usage spectrum, differing by less than 2 percentage points for

the worst case regime, in the study performed.

6.1.1 Concluding Remarks

These algorithms have been found to be very computationally efficient, and due to the mod-

ular nature of the joint probability module’s use of IMMs, the proposed regime recognition

methodology is a prime candidate for computational parallelization. Because the interact-

ing multiple model estimators leverage banks of dynamic models, minimal training data

is needed to effectively tune the filters for proper function. In addition, data filtering is

handled internally through use of the IMMs, reducing the number of pre-processing steps

required for data analysis.

Overall, the probabilistic schemes for both regime recognition and damage estimation

have been shown to be promising alternatives to standard deterministic methods for future

condition-based maintenance programs.

6.2 Recommended Future Work

As with any research, there are many interesting questions raised along the way. While

some of these questions must be answered for completeness, there are also those that are
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beyond the scope of the current work being done. This section presents two areas of po-

tential research that could be explored now that the work presented in this dissertation is

concluded.

6.2.1 Regime Recognition and Damage Estimation of Other Events

The regime recognition and damage estimation framework proposed in this dissertation

focused on flown aircraft regimes. While flown maneuvers are often the cause of a large

portion of the damage incurred by life-limited components, there are other events that may

contribute to component wear. Some examples include control reversals, and ground-air-

ground cycles. While these events are generally viewed as discrete, it may be useful for

their inclusion into the regime recognition and damage estimation to be cast into a prob-

abilistic framework. In this way, a single unified probabilistic approach could be used to

model all sources of uncertainty in the damage estimate.

6.2.2 Real-Time Component Damage Reduction

Because the regime recognition and damage estimation scheme is based on the use of Inter-

acting Multiple Model estimators and Extended Kalman Filters – both of which are causal

filters – there is nothing preventing the use of these algorithms in real-time. The primary

obstacles would include access to real-time state data of the aircraft, and enough computing

power to perform the regime recognition without significant delay.

The proposed algorithms could then be used to provide a real-time damage estimate

of the aircraft based on the current maneuver(s) being flown. It could then be possible to

include the real-time damage estimate as a feedback element in a control loop to enforce

a ”low damage mode.” In this mode, the aircraft pilot control inputs could be modified

to reduce the damage incurred on various components in real-time, resulting in increased

component life during missions where high aircraft agility and responsiveness is deemed

less important.
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6.2.3 Real-Time Regime Control

In an autonomous vehicle that is commanded to fly a regime (rather than commanded to

track some set points in the vehicle state space) the IMM-RR output could be used in

real-time to estimate the aircraft’s current regime. This real-time RR output could then be

used as either a reference in a controller feedback loop, or be used as a gain-scheduling

input in the regime controllers themselves. Implementation of this method would be highly

dependent on the controller design, but the IMM-RR could provide the necessary feedback

to form a full closed-loop regime control scheme.

6.2.4 Multivariate Damage Rates

The damage estimation framework discussed in this dissertation assumes the damage rates

to be fixed in nominal value for each regime, with the option to describe each damage rate

as a Gaussian distribution. It is likely that in the future, more complete damage rate func-

tions will be developed by the OEMs. One such possible multivariate damage rate function

is one that is not only dependent on the flown regime, but also on certain concurrent aircraft

states. In this case, it would be beneficial to modify the discussed framework to include

multivariate damage rate functions. Because the IMM can provide a combined state esti-

mate, it would be possible to extend the Damage Computation Module to use the combined

aircraft state estimates as inputs to the regime multivariate damage rate functions.

It might also be possible to further analyze the IMM-RR output to identify the transient

regime behavior as the aircraft switches from one regime to another. If the OEM is able to

provide damage rates that change based on maneuver transitions, with further development

the IMM approach to regime recognition and damage estimation could be made capable of

identifying these transient portions of the flight segments and use the appropriate damage

rates accordingly.
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