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SUMMARY

A standard cell is a level of abstraction that creates logical circuit building blocks that

can be assembled to build complex architectures. The concept of abstraction using standard

cells is a well-established notion in digital architecture. In fact, productivity of digital de-

signers has been greatly supported by these cells, yet there isn’t any widespread equivalent

in the analog domain. Generally, due to the large number of design parameters that tend

to change across process nodes, it has not been viewed as a worthwhile endeavor to cre-

ate analog standard cells without reconfigurability of those parameters. This work aims to

show how leveraging floating gates can create abstractable analog circuits which build into

standard cells that enable large-scale, low power, mixed signal System-On-Chip (SoC)s.
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CHAPTER 1

WHAT ARE STANDARD CELLS?

1.1 Introduction to Standard Cells

Standard cells in the context of Very Large Scale Integrated Circuits (VLSI) generally refer

to a combination of transistors – for the purpose of this discussion Metal Oxide Semicon-

ductor Field Effect Transistor (MOSFET) – which build up to a basic computing element.

Those basic computing elements then combine to form higher order logic. These higher

order functional blocks can also be standard cells which are combined to build more im-

pressive blocks.

1.1.1 Building blocks in Analog and Digital Domains

Digital Building blocks

In digital systems, the basic elements are boolean logic gates (nand, not, nor etc) which can

be combined to form functional blocks like adders, latches, muxes etc.

Analog building blocks

In analog systems, the transistors build up to transconductance/operational amplifiers which

when combined with primitives like capacitors and diode connected transistors can produce

functional blocks like Low Noise Amplifier (LNA)s, band pass filters, delay elements[1]

etc.
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Figure 1.1: Digital standard cells enable design automation in the circuit design process
while analog domain circuit design lacks an established equivalent

1.1.2 Addressing the Gap in Standard cells

In the digital domain, standard cell libraries allow circuit designers to focus on higher order

descriptions of the design. The majority of the logic is represented by hardware description

languages (while automation tools convert that logic to standard cells and even place and

route the cells to generate an Integrated Circuit (IC) layout). This does not exist or is not

very popular for analog/mixed signal systems and definitely does not exist at anywhere near

the same maturity level as illustrated in Figure 1.1 The traditional approach to designing

amplifiers (analog building blocks) is to first choose a topology and then to size the bias

network and strength ratios of the transistors. However, it is important to note that the

bias network and strength ratio primarily change the channel currents flowing through each

branch. A designer can effectively create a new amplifier by tuning the gate voltages to

adjust current flow of certain transistors in an opamp. This is where floating gates enter the

conversation. By storing and adjusting charge on a MOSFET gate of the differential pair or

biasing current sources, a reprogrammable amplifier can be created to allow for higher level

analog abstraction. This can help with specifications like gain, input range, linearity etc.
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of the amplifier. It also allows for post-fabrication mismatch adjustments leading to higher

yield and better matching without some traditional analog layout techniques. A separate

discussion would be required to properly address the myriad of specifications that can be

accounted for with floating gates as well as how to design temperature insensitive circuits

using floating gates [2], but the takeaway for this conversation is that programmability gives

us the ability to create useful abstractions in analog circuits[3].

1.2 Reconfigurable Computing

1.2.1 FPGAs as a subset of FPAAs

The idea behind reconfigurable computing is to be able to change the circuit being used

based on the needs of the designer. The ability to upload a custom circuit to a platform

is an incredibly powerful tool for rapid prototyping especially when Application Specific

Integrated Circuit (ASIC) fabrication can be very costly. Field Programmable Gate Arrays

(FPGA) are able to accomplish this for digital systems by using Look Up Table (LUT)s

in combination with muxes and registers for storage. These three main items can form a

Computational Logic Block (CLB). A LUT can implement any combinational logic circuit

(digital building blocks) given the truth table. Putting enough CLBs in a massive 2-D array

and routing between them is what enables custom digital architectures to be uploaded to an

FPGA.

Floating Gates (FG) based Field Programmable Analog Arrays (FPAA)s – an invention

from Dr Hasler’s Lab [4, 5] – expand on this idea by creating Computational Analog Block

(CAB)s which are routed in the same array as CLBs. These CABs contain those analog

building blocks discussed earlier but are enabled by floating gates to give them programma-

bility. That means amplifiers whose parameters are tuned to the user’s requirement can then

be combined with other primitives available in the CAB such as nfets, pfets, current mir-

rors, capacitor banks etc. to create and test custom analog circuits without the cost of ASIC

fabrication.

3



Figure 1.2: Current Tool flow detailing how circuits are programmed to the FPAA

1.2.2 Current FPAA Tool Chain

Collins et al. tool paper [6] shows an in-depth discussion on the design philosophy and im-

plementation of the current tool chain. As a quick summary, the current set of tools that en-

able FPAA programming include Scilab and Xcos programs as well as Python and Assem-

bly Scripts for translating schematics into machine-readable byte code as seen in Figure 1.2.

Analog/Mixed Signal circuits are designed in the graphical Xcos program while any digital

circuits used in the same design are created in Verilog. A custom ”sci2blif” script converts

the Xcos circuit to Berkeley Logic Interchange Format (BLIF) while Verilog-To-Routing

(VTR) converts digital circuits to BLIF as well. These then feed as input to Virtual Place

and Route (VPR) which in conjunction with the technology file generates a netlist that is

placed and routed in the FPAA fabric. The next step is for ”vpr2swcs” to do some post-

processing and generate a switch list which represents transistor locations and their floating

4



gate charge. The compiler then uploads these to the on-board microprocessor for FG pro-

gramming. This tool flow is currently being expanded to include a text based high level

circuit description for analog/mixed signal circuits.

5



CHAPTER 2

WHAT ARE FLOATING GATES?

Figure 2.1: A symbol for a pFET floating gate

A floating gate transistor is a MOSFET with an external capacitor in series with the gate

capacitor to hold charge between them Figure 2.1. A tunneling capacitor is used to re-

move charges from the floating gate (capacitive coupling to the floating gate node to extract

charge carriers). It is important to note that there are no contacts to the floating gate node to

prevent leakage. Due to the floating gate node being surrounded by high quality insulators,

it guarantees the long term storage of charge. Once charge is placed on the FG node, from

the perspective of Vgate, the threshold voltage of the MOSFET can be changed to suit the

needs of the circuit [7]. This is the programmability as discussed in Ch.1 that allows for

analog abstraction. Knowledgeable readers might already be familiar with floating gates as

memory elements which forms the basis for Electronically Erasable Programmable Read

Only Memory (EEPROM)s, Solid-State Drive (SSD)s, Flash memory etc. However, for

the purpose of this discussion, floating gates will be examined as computing elements.

6



2.1 Programming Floating Gates

2.1.1 Fowler-Nordheim Tunneling

To pull electrons off the FG node, a capacitively coupled MOS Capacitor (MOSCAP) is

used. A MOSCAP is preferred because of the substantially better oxide quality and as

such improved reliability[7]. By raising Vtun, electrons tunnel through the SiO2 insulator,

effectively raising the voltage at the FG node.

2.1.2 Hot Electron Injection

Hot electron injection is used to put electrons on the floating gate node. The idea behind it

is having electrons from the channel shoot through the gate insulator to reach the floating

gate node. This is achieved by raising the drain line to an injection voltage, and keeping the

gate voltage at fixed ground potential. Electrons starting at the drain edge of the channel

flowing to the source with higher kinetic energy than the Si-SiO2 barrier are injected into

the oxide and transported to the floating gate.

2.2 Using Floating Gate Transistors in Circuits

Once the charge has been programmed it is important to measure it to ensure accuracy. The

amount of charge on the floating gate is estimated by measuring the current the transistor

produces when the source is connected to a supply voltage. In fact, when programming

the floating gate, charge is added until the transistor produces the target current. This

however raises an interesting question: how does one measure the drain terminal current of

a transistor when programming, while also connecting said drain terminal to say another

transistor to act as a bias with the minimum number of total transistors used.

7



2.2.1 Direct Programming

Figure 2.2: Directly programmed Floating Gate

In direct programming, the transistor being programmed is the same transistor that is being

used. A couple of switches are required at the drain terminal to switch between the pro-

gram line and the run line as seen in Figure 2.2. The injection supply can be moved from

injection voltage to supply voltage to avoid adding extra switches. The disadvantage of

direct programming is the requirement of multiple switches in the FG cell. The advantage

it offers is the certainty of the target current programmed.

2.2.2 Indirect Programming

Figure 2.3: Indirectly programmed Floating Gate

In indirect programming, the programmed transistor and the in use (aka run mode) transis-

tor are separate but share the same floating gate node (Figure 2.3). There is also an added

shutdown transistor M3 which minimizes leakage current from the measure (aka program

mode) transistor. This is important because the shared floating gate charge could turn on

8



the program mode transistor but having a shutdown FET separating it from a supply volt-

age prevents unwanted current draw. The advantage of this setup is the dedicated run and

program lines allow for fewer transistors per FG cell, but the disadvantage of this setup is

the mismatch between the program mode transistor and run mode transistor could cause

slightly different currents in the branches. Yet, once this mismatch is characterized, it can

be accounted for when programming future charge to the node.

2.3 FG and Non FG Cell Island Placement

Figure 2.4: Overview showing the use of island structures to mix FG dense cells which
come with many required signal and supply lines with non-FG cells that only require supply
and ground

A significant motivator behind designing these floating gate circuits as standard cells is to

bring the current state of high level analog design closer to the realm of digital as seen in

Figure 1.1. This would enable much larger system architectures and faster design cycles

in analog circuit design. However, floating gates bring many signal and supply lines to

each standard cell that must be accounted for when laying out the circuit. The density of

these lines is what inspired the use of an island architecture where many FG elements can

9



be grouped and routed together. Even within islands, some cells are completely FG based,

others only partially make use of floating gates, while some do not use any floating gates

at all. To account for this, it makes sense to group the FG cells together (left) as well as

grouping the non-FG cells together (right) and to transition between them using cells that

are designed to be half of each (middle) as seen in Figure 2.4. To make efficient use of

space, the cells should be arranged in a gradient starting from the most FG dense to the

least dense as seen in Figure 2.5.

Figure 2.5: Detailed illustration showing how the gradient of FG and non-FG cells can be
placed in an island

10



CHAPTER 3

CREATING STANDARD CELL LIBRARIES ACROSS PROCESS NODES

3.1 350 nm Process

The discussion starts in a 350 nm Complimentary Metal-Oxide Semiconductor (CMOS)

process. It is convenient because this process node makes readily available two layers of

polysilicon which is ideal for creating highly linear capacitors.

Figure 3.1: An indirect floating gate transistor circuit

Figure 3.1 shows an indirect floating gate transistor layout. This core cell is the basic

building block for other FG based cells. The signal and power lines of the cell are designed

to abut both horizontally and vertically which allows for efficient tiling of cells.

11



Figure 3.2: 2x4 bias cell used for VMM

Figure 3.2 is an example of tiling of the core FG cell. There are 8 FG fets: 2 rows and

4 columns. Each row shares a programming drain line and each column shares a gate line.

This forms the basis for a crossbar array which can be used for a Vector Matrix Multiply

(VMM) block or as routing fabric in an FPAA. It also sets the pitch for the entire 350 nm

standard cell library of 15.1 µm.

Figure 3.3: 1x2 bias cell with larger cap

In addition to the core FG bias cell, other variations of an indirect FG cell with multiple

12



capacitive inputs were designed1. Figure 3.3 shows two indirect FG cells with two capac-

itive inputs. The two inputs form a capacitive divider resulting in a lower sub-threshold

slope when sweeping the gate voltage in comparison to non-floating gate pFETs.

Figure 3.4: A 9T operational transconductance amplifier

Figure 3.4 is a classic transconductance amplifier structure with a FG cell as the cur-

rent bias. This allows for tuning of parameters like gain post fabrication. With a FG

cell on the differential pair, more parameters like input range and linearity can be also be

tuned. Having OTA’s in the library opens up the possibility for many circuit applications

like capacitvely coupled current conveyor bandpass fiters, LNA’s, delay circuits, amplitude

detectors etc.

1This FG variation cell was a collaboration with another student Joyita Roy
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Figure 3.5: 4 Winner Take all circuits in pitch

A winner-take-all block is a circuit that selects the highest input current from an array

of input currents. It is possible to have multiple winners selected, but the scope of this

chapter limits the discussion to a simpler one winner implementation. It can be thought

of as the output layer of an analog classifier network. Figure 3.52 shows 4 winner-take-all

blocks connected to a single output line. When combined with a couple of the 2x4 Bias

structures in Figure 3.2, one creates a fully analog classifier whose weights are represented

by the charge on the floating gate node. This then allows for the VMM based ”Compute-

in-Memory” architecture first posited in [8].

2The WTA cell was drawn by another lab student Linhao Yang
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3.2 130 nm Process

A significant factor to consider when scaling FG-cells to lower process nodes is the avail-

ability of device primitives in each process, specifically the capacitors. The advantage of a

smaller minimum channel length comes at the cost of the second layer of polysilicon that

was previously used to create FG capacitors. While the 130 process does include Metal-

Insulator-Metal (MIM) capacitors, this would require a contact to the FG node which would

prevent long term storage of charge due to leakage.

The solution is to use a Varactor. This forms a capacitor between an n-diffusion in

an n-well and the polysilicon gate, similar to the structure used for the tunneling junction

(MOSCAP) thus preventing any contacts from being made to the polysilicon gate.

Figure 3.6: 4x2 bias cell used for VMM in 130 nm

The reduced minimum length of transistors in the 130 nm process allows the bias cell

in this library to fit four rows and two columns of directly programmed FG cells in pitch

as seen in Figure 3.6. Each transistor has its gate first connect to a gate-input varactor and

then the tunneling junction varactor in the center n-well block. This cell also sets the pitch

of the library at 6.5 µm. These are directly programmed cells as they were designed to for

a large VMM array for which the extra switches could be placed on the edges3.

3The 4x1 and 4x2 bias cells were contributed by Dr Hasler for the 130 nm process [9]
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Figure 3.7: 4 winner take all cells biased by a 4x1 FG bias cell

The bias network for the WTA cells in this library was created with indirect FG cells as

shown in Figure 3.7. Four rows of FG cells supply the current bias while the current input

for the WTA cell is also made available on the left of the cell.

Figure 3.8: A 5 Stage On-chip Dickson charge pump for generating a 6V injection voltage
from a 1.8V supply implemented in a 130 nm CMOS process

To flesh out the 130 nm library to a point where synthesis of a full chip is possible, addi-

tional cells were required. An example being charge pumps to generate injection (6V) and

tunneling (11-12V) voltages on chip. Due to the large size of the capacitors, the standard

cell (Figure 3.10) was designed as a diode and capacitor stage within pitch and chaining

16



those cells together formed the full pump. The size of the final storage capacitor is much

larger than the previous stages and was allowed to occupy 4 pitch heights. Other circuitry

involved to complete the charge pump is a NAND gate based non Overlapping clock gen-

erator (Figure 3.11), Large W/L Transmission gate (T-gate) to switch the injection supply

to regular (1.8V) supply voltage and a level shifter + inverter for the T-gate selection logic.

The capacitors were implemented using two parallel MIM capacitors stacked vertically

on each other to double the capacitance per unit area and provide extra shielding for the

charge stored in each stage. This can be seen in Figure 3.9

Figure 3.9: Schematic of a single stage of a Dickson charge pump consisting of a rectifying
element connected to a capacitor

Figure 3.10: Layout of a single stage of a Dickson charge pump - sitting in pitch - showing
a rectifying element connected to a capacitor

17



Figure 3.11: Non-Overlapping clock generator layout for the charge pump

Table 3.1: Comparison of key cell sizes between the 350 nm and 130 nm CMOS processes

Name Process Size Width

Crossbar Cell 350nm 2×4 cell 33.42µm

130nm 4×2 cell 20.12µm

Transconductance 350nm 1TA 31.72µm

Amplifiers (TA) 130nm 2TA 17.92µm

TA FG bias 130nm 1 FG, 1 non-FG, TA 28.09µm

Winner-Take-All 350nm 4 stages 26µm

with threshold biases 130nm 4 stages 14.07µm

3.3 90 nm, 65 nm Process

The 90 and 65 nm processes are fairly similar to the 130 nm process as they are all planar,

single poly, MOS processes. As a result, there should be a relatively linear scaling [10]

between cells in these libraries. Early estimations put the cell pitch at 4.5 µm and 3.25 µm

for the 90 and 65 nm processes respectively. However, there is uncertainty as to how the

scaling of the well spacing might change due the voltage levels being very similar across

these processes. Additionally, the substrate doping might change which would also affect

the scaling. Once access is granted to these process nodes, uncertainties can be clarified.
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CHAPTER 4

APPLICATIONS ENABLED BY PROGRAMMABLE ANALOG STANDARD

CELLS

4.1 ALICE: A Listening Caravan

The ”A Listening Caravan (ALICE)” chip is a custom designed, hand synthesized1, stan-

dard cell based, analog command word recognizer IC. As part of the Institute of Electronics

and Electrical Engineers (IEEE) Solid-State Circuits Society (SSCS) Platform for IC De-

sign Outreach (PICO) competition, the ALICE chip was developed to be fabricated by

program partners Google, Skywater and Efabless in their efforts to support the open source

IC design community.

4.1.1 Dataflow

Figure 4.1: Block diagram showing the Alice chip dataflow

For the theory of operation, there are five relevant blocks as highlighted in Figure 4.1.

The raw microphone input flows into the 16 parallel band pass filters. These divide the

input into 16 frequency bands covering the range of human voice. Next, the 16 parallel

outputs flow into the amplitude detection stage to determine if there is a strong enough

1ALICE was hand synthesized due to existing open source tools being unable to perform place and route
with the 130 nm library. See Ch.5 for more details
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signal within the isolated frequency band. The output of the amplitude detect stage then

flows into a ”general linear dynamics” stage which is composed of seven delay stages,

specifically ladder filters[1]. These delay lines expand the region of time over which input

is collected as certain words and even phrases are multi syllabic and require a slightly longer

time frame to characterize. The seven outputs of the delay stages and the one output of the

amplitude detect stage forms eight individual time shifted versions of the input. There are

also 16 frequency ranges for which this operation is performed generating a 128 output

lines going to the VMM structure. This is the Acoustic Front-End (AFE) of ALICE.

A fact that might be taken for granted is the corners of the bandpass filters, the strength

of the amplitude detects and delay of the ladder filters can all be tuned after fabrication

thanks to floating gates. Traditional analog designs would have to make final decisions

about these items before fabrication and any slight errors would lead to a lot of wasted

effort and possibly a whole new chip run. Not to mention, if the user wanted to change the

range of frequencies detected or shorten the delay window for classification purposes that

would not have been possible.

The VMM and Winner-Take-All (WTA) form the on-chip neural network/classifier

structure[11, 12]. There are two islands of 1600 x 128 directly programmed FG cells

which will hold the weights and biases used to identify the bank of command words. Each

row of cells flows into a WTA circuit at the last column. These are actually K-Winner

Take All Circuits that allow for multiple winners at once. The digital logic value of the

WTA’s win/loss is then scanned out via a shifter register attached to the VMM array. See

Figure 4.2 for individual circuit schematics of each stage.
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Figure 4.2: Schematics showing the circuit implementations of major functional blocks

The scanner is controlled by a shift register which is driven by a digital signal from an

on-board processor. Each register element controls a t-gate that connects a WTA output to

the shared scan out line as seen in Figure 4.3. One should note that Figure 4.3 is primarily

to help convey the idea and is not an exact depiction of the implemented circuit.

Figure 4.3: WTA Shifter Register controlled Scanner Cell Schematic

These scanner cells were designed to be connected to the VMM array and as such
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need to fit four t-gates and four D-flip flops in pitch while abutting with the WTA output.

The D-flip flops are digital standard cells from the Skywater provided library. Figure 4.4

shows two of these standard cell tiling vertically while in the full layout, 1600 of these tile

vertically.

Figure 4.4: Layout showing two vertically tiling scanner cells

4.1.2 Programming Infrastructure

The total number of FG cells on the ALICE chip is around 410,000+ transistors which all

need to be programmed. To accomplish such a task, programming infrastructure [13, 14]

needs to be designed around the 3 core islands: 1 for the AFE and 2 for each VMM island.

As the reader will remember from Ch.2 page 8, the two lines of interest when programming

a FG cell are the gate line and the program drain line. The gate lines are the columns and

the drain lines are the rows. Floating gate circuits will generally have two modes, run

mode and program mode. Run mode is when the circuits are being used for their intended

purpose while program mode is when the FG cells are being programmed. Another reason

for placing cells on an island in a crossbar array is to allow addressing of individual FG

cells during program mode.
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Gate Line Programming

Figure 4.5: Switches used to connect the gate line to either an input or the programming
select and unselect gate lines

In run mode the gate lines are connected to some input but in program mode, only one

column should be connected to the gate select line while the other columns connect to

the gate selectb (unselect) line. The select and unselect signals are generated by decoders

which receive input from an on-board processor.

Figure 4.6: Switches used to connect the select and unselected gate lines to one of a gate
DAC, Floating Gate Bootstrap Supply or Injection Supply

At the end of the gate select and unselect lines is the set of switches in Figure 4.6. In
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run mode, both the gate select and unselect lines are shorted to the FG bootstrap source. In

program mode, the selected gate line is controlled by the gate DAC and the unselected gate

lines are tied up to the injection power supply to shut them off.

Figure 4.7: Layout of 2 horizontally tiled switches used to connect the gate line to either
an input or the programming select and unselect gate lines

Figure 4.8: Layout of switches used in the programming architecture to connect gate lines
to one of the DAC, Floating Gate Bootstrap or Injection Supply
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Drain Line Programming

Figure 4.9: Switches used to select a drain line from a crossbar array

In program mode, each drain line is connected to the drain selection switches. Selection

signals come from a drain decoder which receives input from the processor. The selected

drain is connected the common ”Drain Line” as seen in Figure 4.9. Transistor drains that

are not selected are tied to the injection supply. To finalize programming, the drain current

of the selected drain needs to be measured as well as injected. The switches in Figure 4.10

serve this purpose.

Figure 4.10: Switches to either pulse the drain line for injection or measure the drain current
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Figure 4.11: Hand synthesized1 layout of the ALICE chip using the 130 nm standard cell
library

1Synthesis of the full ALICE chip was done in collaboration with Dr Jennifer Hasler, Pranav Mathews,
Praveen Raj and Dr Barry Muldrey
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Table 4.1: Functional grouping of ALICE chip circuits showing their on-chip area and
estimated power consumption

Component Size Area Power

Bandpass filters + Amp detect 16 Channels 0.006 mm2 2 - 6 µW

Linear Dynamics Computation

(Delay lines)

16 input taps

(7 delay blocks)

16 x 7 = 112

0.053 mm2 0.5 - 2 µW

2x VMM + WTA Classifier 2x (128 x 1600) 7.03 mm2 4 - 16 µW

FG Programming Infrastructure

(During inference)
∼0 µW

AFE Gate Mux 31 lines, 5 bit address 0.024 mm2

AFE Drain Mux 16 lines, 4 bit address 0.003 mm2

2x Classifier Gate Mux 128 lines, 7 bit address 0.110 mm2

2x Classifier Drain Mux 1600 lines, 11 bit address 0.184 mm2

Total1 7.41 mm2 7 - 24 µW

The reader might notice that the VMM array alone contains around 400K FG transistors

while consuming about 16 µW of power. Running at a 1.8V supply, this works out to

nanoamp current levels for each row. (This deep sub-threshold current level is what gives

analog computing significant scalability over its digital counterpart.)

1The area above does not include the charge pumps, DACs + ADC, and global routing area.
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CHAPTER 5

SUMMARY AND LOOKING TO THE FUTURE

5.1 Summary

Chapter 1 explained the concept of standard cells and addressed how floating gates can be

used to bridge the gap between digital and analog design flow to create abstractable analog

circuits. Chapter 2 explained what floating gates are and how they can be programmed

and used in a circuit. Chapter 3 examined the FG building blocks for both a 350 nm and

130 nm analog standard cell library. Chapter 4 demonstrated an application enabled by

the 130 nm standard cell library and shows the usefulness of programmability in circuit

design. My work was centered around implementation of the core FG cell, 4x2 Bias cell,

9T OTA cell and assisting other lab students like Joyita and Linhao in designs of the 350

nm library. Furthermore, my work also includes design and implementation of the charge

pump cells, – both injection and tunneling (not shown) – vertical scanner elements, gate

and drain line switches used in the programming infrastructure as well as the portions of

the global routing done to synthesize the ALICE chip. All other aspects of the ALICE chip

were in collaboration with Dr Jennifer Hasler, Pranav Mathews, Praveen Raj and Dr Barry

Muldrey.

5.2 Looking to the Future

A running theme throughout the discussion has been the concept of laying the groundwork

to elevate the analog circuit design process to approach that of digital. The only way to

achieve that is through the power of automation. While the ALICE chip is a decently

sized structure, access to place and route tools would allow for far more complex and

ambitious projects. Even within the digital space access to synthesis tools have historically
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been locked behind massive licensing contracts and only recently have the OpenRoad and

OpenLane projects surfaced to help democratize hardware design.

5.2.1 Existing Open Source Synthesis Tools

Figure 5.1: OpenLane connects many open source IC design tools sitting at various points
in the stack to achieve one of the first fully open source HDL to GDSII Synthesis tool
chains for digital designs.

The OpenLane project is an impressive tool that shows the power of an open source com-

munity and has made significant strides in accomplishing its goals. For the ALICE chip,

the counter used by the 14-bit ramp ADC was synthesized by OpenLane. Attempts at syn-

thesizing smaller analog projects using the 130 nm library were made, but unfortunately

the way the tool tried to use the Library Exchange Format (LEF) files ultimately did not

work. While the LEF and .lib files were generated, the tool had issue using them during

place-and-route.
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5.2.2 Novel Approach to Synthesis

Figure 5.2: A novel synthesis flow that is able to program circuit implementations to an
FPAA for rapid prototyping, ASIC layout generation and even synthesize the layout of new
FPAA architectures

To achieve the future of synthesizable analog VLSI, especially with FG enabled standard

cell libraries, a novel synthesis flow is described in Figure 5.2. As seen for the digital

counterparts, circuit designs implemented on the FPAAs could only have matched or sig-

nificantly better performance when moved to an ASIC. Power consumption would drop

significantly considering unused elements are removed from the fabric while routing and

programming infrastructure would be tailored for the application leading to a boost in com-

puting efficiency as well. These additional reasons highlight the importance of establishing

a novel synthesis flow that is able to program circuit implementations to an FPAA for rapid

prototyping, ASIC layout generation and even synthesize the layout of new FPAA archi-

tectures with the same high level description language.

5.2.3 ALICE as a Benchmark

When discussing Electronic Design Automation (EDA) tools, it is important to have a

benchmark against which to characterize the performance of said tools. With the 130 nm

library being sufficiently fleshed out to hand synthesize the ALICE chip, it serves as an
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excellent comparison point for the proposed synthesis tools in Figure 5.2. Parallel work

is already underway tackling both task A: converting the existing Xcos tool chain to a text

based representation and subsequently converting that to BLIF and task B: This work which

contributes to creating standard cell libraries across various process nodes to enable synthe-

sis. Contributing to the creation of the proposed flow is part of the work to be undertaken

in my pursuit of a PhD here at Georgia Tech.
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