
ASYMPTOTIC ANALYSIS OF SINGLE-HOP STOCHASTIC PROCESSING
NETWORKS USING THE DRIFT METHOD

A Dissertation
Presented to

The Academic Faculty

By

Daniela Hurtado-Lange

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Engineering

Department of Industrial and Systems Engineering

Georgia Institute of Technology

December 2021

© Daniela Hurtado-Lange 2021

ASYMPTOTIC ANALYSIS OF SINGLE-HOP STOCHASTIC PROCESSING
NETWORKS USING THE DRIFT METHOD

Thesis committee:

Dr. Siva Theja Maguluri
Department of Industrial and Systems En-
gineering
Georgia Institute of Technology

Dr. J.G. “Jim” Dai
School of Operations Research and Infor-
mation Engineering
Cornell University

Dr. Robert Foley
Department of Industrial and Systems En-
gineering
Georgia Institute of Technology

Dr. Debankur Mukherjee
Department of Industrial and Systems En-
gineering
Georgia Institute of Technology

Dr. Devavrat Shah
School of Electrical Engineering and
Computer Science
Massachusetts Institute of Technology

Date approved: October 15th, 2021

You may not always have a comfortable life and you will not always be able to solve all of

the world’s problems at once, but don’t ever underestimate the importance you can have

because history has shown us that courage can be contagious and hope can take on a life

of its own.

Michelle Obama

For Paulina, Manuel, Bárbara, Tomás, Sebastián and Spin

ACKNOWLEDGMENTS

First, I must thank my family for their love and support. I wouldn’t have made it

this far without them. Specifically, I thank Spin, Sebastián, Hineva and Dayna for their

unconditional love and support when things got intense. I must also thank my friends, old

and new, who have helped keep me sane during the last five years, especially during this

pandemic.

I’m also thankful to those in the Applied Probability community with whom I haven’t

yet worked directly, but who have nonetheless encouraged and supported me along the way.

Special thanks also to the ISyE community at Georgia Tech, without whom none of this

would have been possible.

This work was funded through an NSF grant, and the Tennenbaum fellowship. I also

thank ANID Becas Chile for supporting my studies.

Special thanks to my committee members, Dr. J.G. “Jim” Dai, Dr. Robert Foley, Dr.

Debankur Mukherjee and Dr. Devavrat Shah , for their advice and knowledge these past

several years. Their suggestions and comments have made this work possible.

Lastly, but certainly not least, thank you to Dr. Siva Theja Maguluri for everything. He

has provided excellent guidance, support, and mentoring. I can’t describe how thankful I

am that I was lucky enough to be part of his group.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiii

Chapter 1: Introduction and Background . 1

1.1 Introduction . 1

1.2 Main contributions . 4

1.2.1 Transform method . 4

1.2.2 Power-of-d choices with heterogeneous servers 5

1.2.3 Load balancing system in the many-server heavy-traffic regime . . . 5

1.2.4 Generalized switch with no complete resource pooling 6

1.3 Diffusion limits and direct methods for heavy-traffic analysis 8

1.4 Notation . 9

1.5 A general single-hop SPN . 12

Chapter 2: Preliminaries . 15

2.1 Definition of drift . 16

2.2 Stability criteria . 17

vi

2.3 Moment bounds based on drift arguments 18

2.4 Overview of the drift method . 21

2.4.1 State space collapse . 21

2.4.2 Asymptotically tight bounds . 22

2.5 Transform method based on the drift method 23

Chapter 3: Heavy-Traffic Analysis of Load-Balancing Systems 29

3.1 Introduction . 29

3.2 Related work . 30

3.3 General MGF framework . 31

3.4 Load balancing system model . 36

3.5 MGF method applied to load balancing systems 37

3.5.1 Proof of Theorem 3.5 . 41

3.6 Details of the proofs of section 3.5 . 46

3.6.1 Proof of SSC in the load balancing system operating under JSQ . . 46

3.6.2 Existence of MGF of ε
∑n

i=1 q
(ε)
i in the load balancing system op-

erating under JSQ . 47

3.6.3 Proof of Lemma 3.9 . 50

3.6.4 Proof of Claim 3.11 . 55

3.7 Conclusion and future work . 55

Chapter 4: Power-of-d Choices Under Heterogeneous Servers 56

4.1 Introduction . 56

4.2 Related work . 57

vii

4.3 Throughput optimality of power-of-d choices 58

4.4 Heavy-traffic optimality . 67

4.5 Generalization to other routing policies . 72

4.6 Details of the proofs in section 4.4 . 73

4.6.1 Proof of Claim 4.10 . 73

4.7 Conclusion and future work . 75

Chapter 5: Load Balancing Under Many-Server Heavy-Traffic Regime 76

5.1 Introduction . 76

5.2 Related work . 78

5.3 Load balancing under JSQ . 80

5.3.1 State space collapse . 83

5.3.2 Proof of Theorem 5.1 using transform method 84

5.4 Rate of convergence in Wasserstein’s distance 86

5.5 Load balancing under power-of-d choices 88

5.6 Details of the proofs of section 5.3 . 89

5.6.1 Proof of Lemma 5.4 . 89

5.7 Load balancing in continuous time model and asymptotic result 92

5.8 Multiplicative state space collapse . 95

5.8.1 Preliminary result . 96

5.8.2 Proof of Proposition 5.14 . 99

5.8.3 Proof of Equation 2.5 for a load balancing system in continuous time 103

5.9 Transform method: Proof of Theorem 5.10 105

viii

5.9.1 Proof of Theorem 5.10 using the transform method 105

5.10 Rate of convergence in Wasserstein’s distance 107

5.11 Rate of convergence of the first moment 112

5.12 Details of proofs of Section section 5.8 . 115

5.12.1 Proof of Claim 5.17 . 115

5.13 Proof of Lemma 5.18 . 117

5.14 Conclusion and future work . 119

Chapter 6: Heavy-traffic analysis of the generalized switch under the CRP con-
dition . 121

6.1 Introduction . 121

6.2 Related work . 121

6.3 Generalized switch model . 122

6.4 Transform method applied to generalized switches 125

6.4.1 MGF method applied to the input-queued switch 127

6.4.2 Proof of Theorem 6.2 . 129

6.5 Details of the proofs of Section 6.4 . 135

6.5.1 Proof of Lemma 6.5 . 135

6.5.2 Existence of MGF of ε ‖q‖ in the generalized switch 139

6.5.3 Proof of Lemma 6.6 . 145

6.5.4 Proof of Claim 6.8 . 148

6.5.5 Proof of Claim 6.9 . 148

6.6 Conclusion and future work . 150

ix

Chapter 7: Heavy-Traffic Analysis With No Complete Resource Pooling 152

7.1 Introduction . 152

7.2 Related work . 154

7.3 Useful lemmas . 156

7.4 Heavy-traffic analysis of the generalized switch. 159

7.4.1 Universal lower bound . 161

7.4.2 State space collapse. 165

7.4.3 Asymptotically tight bounds. 171

7.5 Applications of Theorem 7.5 . 175

7.5.1 Input-queued switch. 175

7.5.2 Full-dimensional SSC. 180

7.6 Proof of Theorem 7.5. 192

7.7 Details of proof of Theorem 7.5 . 197

7.7.1 Proof of Claim 7.21. 197

7.7.2 Proof of Claim 7.22. 200

7.7.3 Proof of Claim 7.23 . 201

7.8 Individual queue lengths and higher moments in the input-queued switch . . 203

7.8.1 System of equations to compute linear combinations of the first mo-
ment of scaled queue lengths. 204

7.8.2 Bounds on linear combinations of the scaled queue lengths in heavy-
traffic. 208

7.9 Generalizations of Theorem 7.24 . 212

7.9.1 System of equations for the 2 × 2 input-queued switch with corre-
lated arrivals. 213

x

7.9.2 System of equations for the N ×N input-queued switch. 214

7.9.3 Generalization to other queueing systems and higher moments. . . . 218

7.10 Proof of Theorem 7.24. 220

7.11 Details of the proof of Theorem 7.24 . 226

7.11.1 Proof of Claim 7.30 . 226

7.11.2 Proof of Claim 7.31 . 227

7.12 Conclusion and future work . 227

References . 229

xi

LIST OF TABLES

5.1 Literature review for asymptotic regimes depending on the value of α. . . . 80

7.1 Numerical results for LP with objective function limε↓0 εE
[
q

(ε)
2 + q

(ε)
3

]
. . . 211

7.2 Numerical results for individual queue lengths. 212

xii

LIST OF FIGURES

6.1 Example of optimal solutions depending on the queue lengths vector. 146

7.1 Example of capacity region C and cone K. 161

7.2 Diagram of the queue length vector for the input-queued switch. 176

7.3 Diagram of ad hoc wireless networks. 181

7.4 Diagrams of examples of parallel-server systems. The dotted lines repre-
sent the compatibility between job-types and servers. 183

xiii

SUMMARY

Today’s era of cloud computing and big data is powered by massive data centers. The

focus of my dissertation is on resource allocation problems that arise in the operation of

these large-scale data centers. Analyzing these systems exactly is usually intractable, and

a usual approach is to study them in various asymptotic regimes with heavy traffic being a

popular one. We use the drift method, which is a two-step procedure to obtain bounds that

are asymptotically tight. In the first step, one shows state-space collapse, which, intuitively,

means that one detects the bottleneck(s) of the system. In the second step, one sets to zero

the drift of a carefully chosen test function. Then, using state-space collapse, one can obtain

the desired bounds.

This dissertation focuses on exploiting the properties of the drift method and providing

conditions under which one can completely determine the asymptotic distribution of the

queue lengths. In chapter 1 we present the motivation, research background, and main

contributions.

In chapter 2 we revisit some well-known definitions and results that will be repeatedly

used in the following chapters.

In chapter 3, chapter 4 and chapter 5 we focus on load-balancing systems, also known as

supermarket checkout systems. In the load-balancing system, there are a certain number of

servers, and jobs arrive in a single stream. Once they come, they join the queue associated

with one of the servers, and they wait in line until the corresponding server processes them.

In chapter 3 we introduce the moment generating function (MGF) method. The MGF,

also known as two-sided Laplace form, is an invertible transformation of the random vari-

able’s distribution and, hence, it provides the same information as the cumulative distribu-

tion function or the density (when it exists). The MGF method is a two-step procedure to

compute the MGF of the delay in stochastic processing networks (SPNs) that satisfy the

complete resource pooling (CRP) condition. Intuitively, CRP means that the SPN has a

xiv

single bottleneck in heavy traffic.

A popular routing algorithm is power-of-d choices, under which one selects d servers

at random and routes the new arrivals to the shortest queue among those d. The power-of-d

choices algorithm has been widely studied in load-balancing systems with homogeneous

servers. However, it is not well understood when the servers are different. In chapter 4 we

study this routing policy under heterogeneous servers. Specifically, we provide necessary

and sufficient conditions on the service rates so that the load-balancing system achieves

throughput and heavy-traffic optimality. We use the MGF method to show heavy-traffic

optimality.

In chapter 5 we study the load-balancing system in the many-server heavy-traffic regime,

which means that we analyze the limit as the number of servers and the load increase to-

gether. Specifically, we are interested in studying how fast the number of servers can grow

with respect to the load if we want to observe the same probabilistic behavior of the delay

as a system with a fixed number of servers in heavy traffic. We show two approaches to

obtain the results: the MGF method and Stein’s method.

In chapter 6 we apply the MGF method to a generalized switch, which is one of the

most general single-hop SPNs with control on the service process. Many systems, such

as ad hoc wireless networks, input-queued switches, and parallel-server systems, can be

modeled as special cases of the generalized switch.

Most of the literature in SPNs (including the previous chapters of this thesis) focuses on

systems that satisfy the CRP condition in heavy traffic, i.e., systems that behave as single-

server queues in the limit. In chapter 7 we study systems that do not satisfy this condition

and, hence, may have multiple bottlenecks. We specify conditions under which the drift

method is sufficient to obtain the distribution function of the delay, and when it can only be

used to obtain information about its mean value. Our results are valid for both, the CRP and

non-CRP cases and they are immediately applicable to a variety of systems. Additionally,

we provide a mathematical proof that shows a limitation of the drift method.

xv

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

A stochastic processing network (SPN) is a system that receives job requests and has

servers that complete them. Typically, the interarrival and processing times are random

variables (thus the name stochastic). An important example is the use of the internet. Ev-

ery time we use a smartphone app, purchase something online, or do a web search, we

request service from a data center. Given the ubiquitous use of the internet, data centers

must process a massive amount of data every second to fulfill every user’s requirement, and

minimizing response time becomes essential. Studies show that if an Amazon’s website is

five milliseconds slower than its competition, it can lose up to $4 billion per millisecond

in revenues [1]. Hence, a crucial problem in the operation of data center networks is to

minimize the delay. In this thesis, the main focus is on understanding delay from a queue

length perspective. Specifically, we analyze the behavior of the queue lengths in several

SPNs.

Exact analysis of queueing systems that arise in the study of SPNs is usually intractable,

so it is common to analyze them in various asymptotic regimes to get insights on their

behavior. A very popular regime in the literature is the heavy-traffic regime, where the

system is loaded very close to its maximum capacity. This regime is sometimes called the

classical or conventional heavy-traffic regime. One of the advantages of the heavy-traffic

limit is that many queueing systems behave as if they live in a much lower dimensional

subspace of the state space in the limit. This phenomenon is known as state space collapse

(SSC). If the heavy-traffic limit is taken such that SSC occurs into a line, then the system is

said to satisfy the Complete Resource Pooling (CRP) condition and, intuitively, it behaves

1

as a single server queue in the limit [2, 3, 4].

Most of the literature on heavy-traffic analysis is on systems that satisfy the CRP con-

dition. A popular framework is the diffusion limits approach [2, 3, 5, 6, 7, 8, 9]. In this

approach, the scaled queue lengths are shown to converge to a reflected brownian motion

(RBM) process, and then the steady-state behavior of this RBM is studied using SSC. The

last step is to show interchange of limits, which is usually challenging. Under the CRP

condition, one obtains an RBM on a line, which is well understood. However, a major

challenge is in using this program for SPNs where the CRP condition is not satisfied (i.e.,

when there are multiple resources that are simultaneously in heavy traffic). In such case,

one needs to solve for the steady-state distribution of a RBM in a multidimensional subset

of Rn, and this is not known in general, as shown by [10].

More recently, three ‘direct methods’ have been proposed to perform heavy-traffic anal-

ysis [11]. In these approaches, there is no need to show interchange of limits, as one directly

works with the queue length process instead of working with an RBM. The methods are: (i)

The BAR approach, (ii) the drift method, and (iii) Stein’s method. We present an overview

of these methods and of the diffusion limits approach in section 1.3.

As opposed to the classical heavy-traffic regime, where the number of servers is fixed,

in the many-server heavy-traffic regime both, the load and the number of servers increase

together. A popular SPN in the many-server heavy-traffic literature is the load balancing

system, also known as supermarket checkout system. In the load balancing system there are

servers with infinite buffers, and the jobs arrive in a single stream. Upon arrival, they must

be routed to one of the servers. There are many routing algorithms, but in this thesis we

work with join the shortest queue (JSQ) and power-of-d choices (also known as JSQ(d)).

Under JSQ, the new arrivals are routed to the queue with the least number of jobs in line,

and under power-of-d choices, they are routed to the shortest queue among d servers that

are sampled uniformly at random. A formal definition of the load balancing system and

these routing algorithms is presented in chapter 3.

2

Depending on how fast the load increases with respect to the number of servers, the

queue lengths in a load balancing system exhibit different behaviors. In section 5.2 we

discuss some well-known results in this area.

In this thesis, we focus on heavy-traffic analysis of single-hop SPNs with control in the

arrival or the service process (not both). In particular, we study load balancing systems as

described above (control in the arrival process), and generalized switches (control in the

service process). The generalized switch is a model that was first introduced in [8], and

subsumes several SPNs that are of practical interest, such as ad hoc wireless networks,

wireless networks in presence of fading, input-queued switches, and parallel-server sys-

tems. A formal definition of the generalized switch and these specific systems is presented

in chapter 6 and chapter 7.

For systems that satisfy the CRP condition, we propose a transform method based on

drift arguments that yields the heavy-traffic distribution of the queue lengths in two steps.

Additionally, we study the essential question of throughput optimality in load balancing

systems with heterogeneous servers. We show these results in chapter 3, chapter 4 and

chapter 6.

Additionally, we study the load balancing system in the many-server heavy-traffic regime.

Our goal is to determine how fast the load has to increase with respect to the number of

servers to obtain the heavy-traffic behavior of the average queue length. In chapter 5 we

show that the answer depends on the routing policy. Additionally, we provide two proofs of

the result: one using the transform method mentioned above, and one using Stein’s method.

According to [10, 12], one of the simplest queueing systems where the CRP condition

is not satisfied is an input-queued switch, and [13] identifies it as a focus of study in the

SPN literature since it serves as a guiding example to study more general systems that

do not satisfy CRP. Recently, the drift method was used to characterize the heavy-traffic

scaled sum of queue lengths in input-queued switches [14, 15], solving a question that

remained open for over a decade. In chapter 7 we generalize this result to the generalized

3

switch, and we show the power and flexibility of the result in several cases of SPNs that do

not satisfy the CRP condition. Further, some of the corollaries of the main theorem solve

open questions. We additionally show a limitation of the drift method with polynomial test

functions. Specifically, we show that we can only obtain certain linear combinations of the

queue lengths.

In the next section we describe the main contributions of this thesis, and in section 1.3

we provide an overview of the methods for heavy-traffic analysis that we briefly introduced

above. We finalize this chapter establishing the notation that we use in the remainder of

this document, including the notation for a general queueing system.

1.2 Main contributions

In this section we present an overview of the main contributions of this thesis.

1.2.1 Transform method

In chapter 3 we develop the transform method in systems that satisfy the CRP condition, by

generalizing the drift method to directly study the stationary distribution (as opposed to the

moments) in heavy traffic. The MGF method is similar to the drift method in the sense that

we use the same notion of SSC, and that we set to zero the drift of a carefully chosen test

function in steady state. However, in the drift method one needs to perform an inductive

argument to compute the stationary distribution, whereas the MGF method immediately

yields the stationary distribution.

To introduce the method and highlight the main steps, we present a sketch of the MGF

method in section 2.5 in the case of a single server queue operating in discrete time. Then,

in chapter 3 we formalize the framework and we apply it to a load balancing system oper-

ating under join the shortest queue [16, 17] and power-of-2 choices [18, 19, 20].

In chapter 6 we study generalized switches [8] under the CRP condition, operating un-

der MaxWeight scheduling algorithm [21]. We also show that an ad hoc wireless networks

4

and an input-queued switch operating under MaxWeight scheduling algorithm satisfy our

assumptions. All these systems are assumed to satisfy the CRP condition, and they are

operated under algorithms that ensure that SSC occurs into a one-dimensional subspace.

We show that the stationary distribution of this one-dimensional component is exponential.

1.2.2 Power-of-d choices with heterogeneous servers

In the literature, most of the work on the power-of-d choices algorithm assumes homoge-

neous servers. In chapter 4 we provide necessary and sufficient conditions on the vector

of service rates that ensure that power-of-d choices is throughput optimal for the load bal-

ancing system. Specifically, we show that power-of-d choices is throughput optimal if and

only if the vector of service rates normalized by the total service rate is majorized by a

vector ν where the ith element represents the probability of routing the new arrivals to

the ith longest queue. This notion of majorization determines a polytopeM(d) where the

service-rate vector should lie.

Additionally, we show that the load balancing system operating under power-of-d choices

satisfies the CRP condition if the service-rate vector lies in the interior of the polytope

M(d). Hence, under this condition, power-of-d choices is heavy-traffic optimal and we

show that the vector of queue lengths converges in distribution to a vector of exponential

random variables. We use the transform method introduced in chapter 3 to prove the last

result.

The third contribution of this chapter is a set of sufficient conditions to ensure through-

put optimality of any routing policy that samples a subset of servers at random, and routes

to the shortest queue from the set.

1.2.3 Load balancing system in the many-server heavy-traffic regime

In chapter 5 we focus on the many-server heavy-traffic regime of the load balancing system.

In this regime, the load and the number of servers increase together, as opposed to the

5

classical heavy-traffic regime, where the number of servers is fixed. The goal of this chapter

is to characterize how fast can the load grow with respect to the number of servers to

observe the classical heavy-traffic behavior, i.e., to obtain convergence in distribution of

the average queue length to an exponential random variable.

We obtain conditions on the parameters of the system for JSQ and power-of-d choices

routing. We provide two proofs of our result: one using transform method and one us-

ing Stein’s method, where we additionally obtain the rate of convergence in Wasserstein’s

distance.

These proofs are empowered by multiplicative SSC, where we obtain error bounds that

increase with the number of servers, but become negligible with respect to the average

queue length. A key component of our proof that is novel relative to prior literature, is the

use of Stein’s method in the presence of a multiplicative SSC.

To prove our result using the transform method, we generalize the framework from the

classical heavy-traffic regime to the many-server heavy-traffic regime. Additionally, we

work with both, a discrete-time and a continuous-time system. Hence, we also generalize

the transform method to be used in SPNs modeled in continuous time.

To finalize the chapter, we show the rate of convergence in mean of the average queue

length. In the previous results, we show convergence in distribution. However, convergence

in distribution does not necessarily imply convergence in expected value. We pursue this

additional step and we use the drift method in our proof.

1.2.4 Generalized switch with no complete resource pooling

In chapter 7 we study one of the most general single-hop SPNs with control in the service

process: the generalized switch. We study the heavy-traffic limit of the expected queue

lengths without assuming that the CRP condition is satisfied. Indeed, our results are valid

in the case of one-dimensional or multi-dimensional SSC.

The main contribution of chapter 7 is the characterization of the heavy-traffic scaled

6

mean of certain linear combinations of the queue lengths in a generalized switch. Since

the generalized switch model subsumes several SPNs, we additionally show how to apply

the main theorem to specific systems such as the input-queued switch, ad hoc wireless

networks, parallel-server systems, and the so-called N -system. Additionally, we show

that if SSC occurs into a full-dimensional subspace, the correlation between the arrival

processes does not affect the mean of the linear combination of the queue lengths. These

results are contributions on themselves, even though their proof is a simple application of

the main theorem.

In the last part of chapter 7 we present an alternate view of the drift method. Tradition-

ally, the choice of the test function plays a key role in the drift method, and it is known that

using polynomial test functions yields heavy-traffic results for the moments of the queue

lengths. We propose that, instead of searching for the right polynomial test function, we

can use all the possible monomials of a certain degree as test functions, and build a linear

system of equations by setting their drift to zero. We show that, when the CRP condition

is not satisfied, this system of equations is under-determined and, hence, one cannot solve

for the individual mean queue lengths. However, if one takes the right linear combination

of the equations, some of the variables cancel out and we obtain an explicit expression.

This system of equations explains the success of the drift method. While it is known

that it is notoriously hard to solve the stationary distribution of a multidimensional RBM,

it has been a little surprising that simple drift-based arguments give the mean of sum of the

queue lengths in several systems, such as the ones studied in [14, 15, 22]. The system of

equations shows that due to the difficulty of the underlying problem, it is not possible to get

all the mean queue lengths individually. However, because of the structure of the system of

equations, it is possible to obtain certain linear combinations. In the case of input-queued

switch and the bandwidth sharing system, the sum of the queue lengths was one of the

linear combinations that is easy to obtain.

Even though one cannot explicitly solve for the individual queue lengths, we propose

7

to use the under-determined system of equations as the feasible region of a linear program

to obtain bounds. We present the details of this approach and numerical results.

1.3 Diffusion limits and direct methods for heavy-traffic analysis

One of the most famous approaches for heavy-traffic analysis is diffusion limits. In this

framework, one scales time and space, and proves process level convergence to a Reflected

Brownian Motion (RBM) process in heavy traffic. Then, the stationary distribution of the

RBM is computed. The last step is to prove interchange of limits, which is challenging

in many cases because one needs to prove tightness. Kingman was the first one to use

this approach, and he computed the stationary distribution of the scaled waiting time in a

G/G/1 queue [23]. The same approach has been used in a variety of queueing systems that

satisfy the CRP condition [2, 5, 6, 7, 9, 8]. When the CRP condition is not satisfied, one

needs to solve a multi-dimensional RBM and this is a major challenge that has not been

solved [10].

More recently, three methods that do not require the interchange of limits step have

been developed. They are known as ‘direct’ methods [11], and they are the BAR method,

Stein’s method and the drift method. BAR stands for Basic Adjoint Relationship, which

is an integral equation that must be satisfied by a Markov process. The BAR method is

developed in [24] in the context of a Generalized Jackson Network. It is shown that a

sequence of one-sided Laplace transforms asymptotically satisfies the BAR equation. The

authors in [24] work with a continuous time Markov process, so one of the challenges

in their proof is to handle the jumps of the queue lengths process. They overcome this

difficulty by carefully choosing an exponential test function that helps to eliminate the

jump term associated with the BAR.

Stein’s method for analyzing SPNs was first introduced in [25], and it has now emerged

as a simple yet powerful method that can be used not only to show asymptotic convergence,

but also to bound the rate of convergence in Wasserstein’s distance. It has become a popular

8

approach for both, the mean-field, the classical heavy-traffic and the many-server heavy-

traffic regimes [26, 27, 28, 29, 30, 31, 32]. In [27, 28] the authors establish a three-step

framework that is inspired by the classic paper [33] and on the recent work [25]. We

present a proof using this approach in chapter 5, where we obtain the rate of convergence

in Wasserstein’s distance of the total queue length to the many-server heavy-traffic regime.

The drift method was developed in [34] in the context of queueing systems that satisfy

the CRP condition, operating in discrete time. The main idea is to set to zero the drift of

a carefully chosen test function in steady-state and, using SSC, one obtains bounds on the

moments of the queue lengths that are tight in heavy-traffic. In the process of choosing

the test function, it is essential to consider the region where SSC occurs. Since the drift

method does not involve RBMs, a new notion of SSC is required. The authors in [34]

bound the error of approximating the original queue length vector with its projection on

the region where SSC occurs, and they show that this error is negligible in the heavy-traffic

limit. Therefore, the vector of queue lengths can be well approximated by a vector in the

subspace where SSC occurs. In this document we focus on the drift method, and we present

a detailed overview of the method in section 2.4.

The drift method was first used in queueing systems that satisfy the CRP condition [34],

such as the load balancing system and ad hoc wireless networks (where the CRP condition

is imposed). Here the authors compute all the moments of the queue lengths in heavy

traffic and, therefore, they are able to draw conclusions about the distribution of the vector

of queue lengths. Later, the drift method was generalized to compute the mean of the total

queue length in an input-queued switch [14, 15], and the distribution in bandwidth sharing

networks [22].

1.4 Notation

In this section we establish the notation that we use throughout this document.

9

Vectors and numbers

We use R and Z to denote the set of real and integer numbers, respectively. We add a

subscript + to denote subset of nonnegative numbers and a superscript to denote vector

spaces. For example, given a nonnegative integer number n, we use Rn
+ to denote the set

of n-dimensional vectors with nonnegative elements.

For any n ∈ Z+, we use [n] to denote the set of integers between 1 and n, both included.

For example, [4] = {1, 2, 3, 4}.

We use bold letters to denote vectors, and nonbold letters with an integer subscript to

denote their elements. For example, the vector x ∈ Rn has elements xi for i ∈ [n]. We

write x = (x1, x2, . . . , xn) for convenience, but we treat vectors as column vectors unless

otherwise stated.

Given x,y ∈ Rn, we use 〈x,y〉 to denote the dot product, and for any p ∈ Z+, we use

‖x‖p to denote the p-norm, i.e., ‖x‖pp =
∑n

i=1 |xi|p, where |xi| denotes the absolute value

of xi. When p = 2, we may omit the subscript if it is clear that we mean Euclidean norm

from the context.

Given a matrix A, we write AT to denote its transpose. Given two matrices of the same

size, A and B we use A ◦ B to denote the Hadamard’s product between A and B. For

example, if

A =




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3




and B =




b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3



,

then

A ◦B =




a1,1b1,1 a1,2b1,2 a1,3b1,3

a2,1b2,1 a2,2b2,2 a2,3b2,3

a3,1b3,1 a3,2b3,2 a3,3b3,3



.

10

Let In be the identity matrix of n×n. We use e(i,n) to denote the ith canonical vector in Rn,

i.e., a vector with a 1 in the ith element and zeros in all other entries. With this notation, we

may write the identity matrix as In =
[
e(1,n) e(2,n) · · · e(n,n)

]
. We may omit the n if the

dimension is clear from the context.

Given a vector x ∈ Rn, the notation x(i) refers to the ith smallest element of x. Then,

x(1), x(2), . . . , x(n) are the elements of x ordered from smallest to largest.

We use
(
n
k

)
to denote the binomial coefficient, i.e.

(
n
k

)
= n!

k!(n−k)!
, where n! represents

the factorial. Given x ∈ R, the symbol dxe represents the smallest integer which is greater

than or equal to x, also known as ceiling function. For two integers k and n, where n ≤ k,

we write kmod n to denote the mod function, i.e., kmod n is the remainder after dividing

n by k. For example, 5 mod 3 = 2.

Probability and Random Processes

Given two random variables X and Y , we denote E [X] the expected value of X , Var [X]

the variance of X and Cov (X, Y) the covariance between X and Y . Given an event E, we

denote P [E] the probability of E.

Given a random process {q(k) : k ∈ Z+} (that will be later defined as the queue lengths

process), we use Eq [·] 4= E [·|q(k) = q]. We use⇒ to denote convergence in distribution.

Functions and asymptotic notation

We use ex and exp(x) to denote the exponential function, depending on the size of the

argument.

For a function f with domain Dom(f) we denote ‖f‖ 4= supx∈Dom(f) |f(x)|, and we

use f ′, f ′′ and f ′′′ for its first, second and third derivative, respectively (provided their

existence).

We say f(n) is of order o(g(n)) if limn→∞
f(n)
g(n)

= 0, and we say that f(n) is of order

O(g(n)) if there exists a constant C such that limn→∞
f(n)
g(n)

= C. Similarly, for the limit as

11

ε ↓ 0, we say f(ε) is of order o(g(ε)) if limε↓0
f(ε)
g(ε)

= 0, and we say that f(ε) is of order

O(g(ε)) if there exists a constant C such that limε↓0
f(ε)
g(ε)

= C.

1.5 A general single-hop SPN

In this thesis we mainly work with two SPNs: the load balancing system and the general-

ized switch. Even though these systems are very different, they share some characteristics

and properties that are essential to our analysis. Below we present a general queueing

model, that has both of these systems as special cases.

Consider a single-hop queueing system operating in discrete time, with n separate

servers. Each server has an infinite buffer, where jobs line up if the server is busy. For

each k ∈ Z+, let q(k) be the vector of queue lengths at the beginning of time slot k.

Throughout this document, we use the term ‘queue length’ to talk about the number of jobs

in the queue, including the job in service (if any). Then, for i ∈ [n], qi(k) is the number of

jobs (or queue length) in the ith queue at the beginning of time slot k.

Given that the vector of queue lengths in time slot k is q(k), let ai (q(k)) be the number

of arrivals to the ith queue in time slot k and si (q(k)) be the potential number of jobs that

can be served from queue i in time slot k. We say si (q(k)) is potential service because, if

there are not enough jobs in line, then less than si (q(k)) jobs are processed. For ease of

exposition, and with a slight abuse of notation, from now on we write a(k) and s(k) instead

of a (q(k)) and s (q(k)), respectively. We assume that ai(k) and si(k) are upper bounded

by constants. Specifically, let Amax and Smax be finite constants such that ai(k) ≤ Amax

and si(k) ≤ Smax with probability 1 for all i ∈ [n] and all k ∈ Z+. The difference between

potential and actual service is called unused service, which we denote ui (q(k)). We also

write u(k) instead of u (q(k)) from now on, for ease of exposition. In some queueing

systems, the control problem is to decide the vector a(k) in each time slot (e.g. the load

balancing system) and, in others the vector s(k) (e.g. the generalized switch). We give

more details about these selection processes in the systems that we describe in section 3.4

12

and section 6.3, respectively.

In each time slot, the order of events is as follows. First, the queue lengths are observed.

Second, given the vector of queue lengths q(k), the control problem is solved. Then,

arrivals occur and, at the end of each time slot, jobs are processed by the servers. Therefore,

the dynamics of the queues are as follows

qi(k + 1) = max
{
qi(k) + ai(k)− si(k), 0

}
∀i ∈ [n], ∀k ∈ Z+. (1.1)

For each i ∈ [n] the variables ai(k) and si(k) depend only on q(k), (or they are independent

of q(k)), then Equation 1.1 implies that the process {q(k) : k ∈ Z+} is a DTMC.

We can also describe the dynamics of the queues using unused service instead of the

maximum, as follows

qi(k + 1) =qi(k) + ai(k)− si(k) + ui(k) ∀i ∈ [n], ∀k ∈ Z+. (1.2)

Observe that Equation 1.2 implies

qi(k + 1)ui(k) = 0 ∀i ∈ [n], ∀k ∈ Z+ (1.3)

with probability 1, because the unused service is nonzero only when the potential service

is larger than the number of jobs available to be served (queue length and arrivals), and in

this case the queue is empty in the next time slot. If i 6= j, then we do not necessarily have

qi(k+ 1)uj(k) = 0 because the fact that queue j is empty at the end of time slot k does not

imply that queue i will be empty at the beginning of time slot k+ 1, and vice versa. It turns

out that getting a handle on the unused service plays an important role in heavy-traffic

analysis and Equation 1.3 will be an essential tool in the analysis. Equation 1.3 can be

thought of as a defining property of the queueing process and is analogous to the Skorohod

map [35].

13

In this thesis, we add a line on top of the variables and vectors to denote steady state.

Specifically, let q, a 4= a(q), s 4= s(q) and u 4= u(q) be steady-state vectors that represent

the queue lengths at the beginning of a time slot, and arrivals, potential service and unused

service in one time slot in steady-state, respectively. Let q+ 4
= q + a − s + u denote the

queue length at time k+1 in terms of the queue length, arrival and service at time k, assum-

ing the system is in steady state. The precise definition of each of these steady-state vectors

depends on the control problem, so we provide them once the specific characteristics of

each system are established.

14

CHAPTER 2

PRELIMINARIES

As explained in chapter 1, heavy-traffic analysis has been focused on systems that satisfy

the CRP condition. Under this condition, one can completely determine the distribution

of the queue lengths in heavy traffic. However, if it is not satisfied, one can only partially

study the mean queue lengths (as shown in chapter 7). We start with a formal definition of

the CRP condition. We use the definition provided [8].

Definition 2.1 (CRP condition). Consider a set of queueing systems as described in sec-

tion 1.5, where the capacity region is C. Suppose that in heavy traffic, the vector of arrival

rates approaches a point ν in the boundary of C. We say that the queueing system satisfies

the Complete Resource Pooling (CRP) condition if the outer normal vector to C at ν is

unique up to a scalar coefficient.

In other words, the CRP condition implies that the system can be operated such that all

the servers pool together in the heavy-traffic limit [2, 3, 4]. Hence, under this condition,

the queueing system intuitively behaves as a one-dimensional queueing system (i.e., as a

single server queue) if it is operated under a ‘good’ control algorithm. Therefore, the MGF

method is essentially similar to the proof of Theorem 2.11 after one establishes SSC on a

one-dimensional subspace of the state space.

In this thesis, many of the results are proved using the drift of a function of the vector of

queue lengths. In this section, we provide essential definitions and results for our analysis.

Most of the work in this thesis is based on discrete-time models of SPNs. However, in

Chapter 5 we additionally study a continuous-time model for the load balancing system

(that we describe in detail therein). We present the definitions and preliminary results in

both cases.

15

2.1 Definition of drift

Intuitively, the drift of a function Z at a state x is a random variable that measures the

amount of change in the value of Z(x). In the case of discrete-time processes, it measures

the change in one time slot, and in the case of continuous-time processes, it measures the

change in the next transition. We present both definitions below. We start with the discrete-

time version.

Definition 2.2. For an irreducible and aperiodic DTMC {X(k) : k ∈ Z+} over a countable

state space X , suppose Z : X → R+ is a Lyapunov function. Define the drift of Z at x as

∆Z(x)
4
=
[
Z (X(k + 1))− Z (X(k))

]
1{X(k)=x}. (2.1)

The corresponding definition for continuous-time processes is presented below.

Definition 2.3. For a Continuous-Time Markov Chain (CTMC) {X(t) : t ∈ R+} with

countable state space X and transition-rate matrix GX , suppose Z : X → R+ is a Lya-

punov function. Define the drift of Z at x as

∆Z(x)
4
=

∑

x′∈X\{x}

GX
x,x′ (Z(x′)− Z(x)) . (2.2)

In both cases (discrete and continuous time), we say that we set to zero the drift of Z

in steady-state when we use the property E
[
∆Z(X)

]
= 0 under stationary distribution,

provided that E
[
Z(X)

]
<∞. Here, X is a random variable that is limit in distribution of

the Markov chain {X(k) : k ∈ Z+} in the discrete-time case, or the Markov chain {X(t) :

t ∈ R+} in continuous time. Hence, in order to set to zero the drift of a function, the

first step is to show positive recurrence of the corresponding Markov chain. We provide a

certificate of positive recurrence for discrete and continuous-time processes in section 2.2.

16

2.2 Stability criteria

We work with queueing systems in steady state and, hence, it is essential to show that

the embedded Markov chains are positive recurrent. We present a certificate of positive

recurrence for discrete-time and continuous-time processes.

In the following result, we present a certificate that a DTMC is positive recurrent. We

state the result as presented in [36, Theorem 3.3.7].

Theorem 2.4 (Foster-Lyapunov Theorem for discrete-time processes). Let {X(k) : k ∈

Z+} be an irreducible DTMC with countable state space X . Suppose that there exists a

function Z : X → R+ and a finite set B ⊆ X satisfying the following conditions:

(i) E [∆Z(x)|X(k) = x] ≤ −η if x ∈ X \ B for some η > 0,

(ii) E [∆Z(x)|X(k) = x] ≤ D if x ∈ B for some finite constant D.

Then, the DTMC {X(k) : k ∈ Z+} is positive recurrent.

In the following result, we present a certificate that a DTMC is not positive recurrent,

i.e., that is either null recurrent or transient. We state the result as presented in [36, Theorem

3.3.10].

Theorem 2.5. An irreducible DTMC {X(k) : k ∈ Z+} with countable state space X is

either transient or null recurrent if there exists a function Z : X → R+ and a finite set

B ⊆ X satisfying the following conditions:

(i) E [∆Z(x)|X(k) = x] ≥ 0 for all x ∈ X \ B,

(ii) There exists some x ∈ X \ B such that Z(x) > Z(y) for any y ∈ B,

(iii) E [|∆Z(x)| |X(k) = x] ≤ D for all x ∈ X for some D <∞.

To end this section, we present a certificate that a continuous-time process is positive

recurrent. We present the result as stated in [37, Corollary 6.18].

17

Theorem 2.6. Let {X(t) : t ∈ R+} be a CTMC with state space X . Suppose the functions

Z : X → R+, f : X → R+ and g : X → R+ satisfy:

(i) ∆Z(x) ≤ −f(x) + g(x) for all x ∈ X

(ii) There exists ε > 0 such that the set {x ∈ X : f(x) < g(x) + ε} is finite

(iii) The set {x ∈ X : Z(x) ≤ K} is finite for any constant K.

Then, {X(t) : t ∈ R+} is positive recurrent, so it converges in distribution to a steady-state

random variable X . Further, E
[
f(X)

]
≤ E

[
g(X)

]
.

2.3 Moment bounds based on drift arguments

An essential step in heavy-traffic analysis is State Space Collapse (SSC). In this work,

we show SSC by bounding the error between the actual vector of queue lengths and its

projection on the subspace where SSC occurs. To show such a result, we use moment

bounds based on drift arguments.

The following result was first established in [14, Lemma 3] for discrete-time processes,

and combines the more general results proved in [38] and [39, Theorem 1].

Lemma 2.7. For an irreducible and aperiodic DTMC {X(k) : k ∈ Z+} over a countable

state space X , suppose Z : X → R+ is a Lyapunov function and consider its drift at x,

∆Z(x). Suppose the following conditions are satisfied.

(C1) There exists η > 0 and κ <∞ such that E [∆Z(x) |X(k) = x] ≤ −η for all x ∈ X

with Z(x) ≥ κ.

(C2) There exists D <∞ such that P [|∆Z(x)| ≤ D] = 1 for all x ∈ X .

Further, assume that the Markov chain {X(k) : k ∈ Z+} converges in distribution to a

random variable X as k ↑ ∞. Then, for any j ∈ Z+ with j ≥ 1,

E
[
Z(X)j

]
≤ (2κ)j + (4D)j

(
D + η

η

)j
j!

18

Lemma 2.7 gives conditions on the drift of a function Z, under which the moments

of such function in steady state can be explicitly bounded. In the following result, we

additionally present a bound on the MGF of Z(X).

Lemma 2.8. Let {X(k) : k ∈ Z+} be a DTMC as described in Lemma 2.7, and suppose it

satisfies the two conditions therein. Let θ ∈ R be such that |θ| ≤ 1
2D

log
(
1 + η

D

)
.Then,

E
[
eθZ(X)

]
≤ eθκ

(
η

η +D(1− e2θD)

)
.

The proof of Lemma 2.8 is similar to the proof of Lemma 2.10, so we omit it for brevity.

A continuous-time version of Lemma 2.7 is proved in [22, Lemma 4.1]. We state it

below.

Lemma 2.9. Let {X(t) : t ∈ R+} be a CTMC over a countable state space X , with tran-

sition rate matrix GX . Suppose that it is irreducible, nonexplosive and positive recurrent,

and it converges in distribution to a random variable X . Consider a Lyapunov function

Z : X → R+ and suppose its drift satisfies the following conditions:

(C1) There exist constants η > 0 and κ > 0 such that ∆Z(x) ≤ −η for any x ∈ X with

Z(x) > κ,

(C2) νmax
4
= sup

{
|Z(x′)− Z(x)| : x, x′ ∈ X and GX

x,x′ > 0
}

is finite,

(C3) G
4
= sup

{
−GX

x,x : x ∈ X
}

is finite.

Then, for any j ∈ Z+ with j ≥ 1, we have

P
[
Z(X) > κ+ 2νmaxj

]
≤
(

Gmaxνmax

Gmaxνmax + η

)j+1

, (2.3)

where

Gmax
4
= sup





∑

x′∈X :Z(x)<Z(x′)

GX
x,x′ : x ∈ X



 .

19

As a result, for any positive integer j, the j th moment of Z(X) can be bounded as follows:

E
[
Z(X)j

]
≤ (2κ)j + (4νmax)j

(
Gmaxνmax + η

η

)j
j! (2.4)

Lemma 2.10. Let {X(t) : t ∈ R+} be a CTMC as described in Lemma 2.9, and suppose it

satisfies the three conditions therein. Let θ ∈ R be such that |θ| < 1
2νmax

log
(

1 + η
Gmaxνmax

)
.

Then,

E
[
eθZ(X)

]
≤ eθκη

η +Gmaxνmax(1− e2νmaxθ)
.

Before ending this section, we prove Lemma 2.10.

Proof of Lemma 2.10. First observe that Z(X) ≥ 0 by assumption. Then,

eθZ(X) ≤ e|θ|Z(X).

We compute an upper bound for E
[
e|θ|Z(X)

]
. Let FZ(x) be the cumulative distribution

function of Z(X). Then,

E
[
e|θ|Z(X)

]

=

∫ ∞

0

e|θ|x dFZ(x)

(a)
=
[
−e|θ|xP

[
Z(X) > x

]]∞
0

+ |θ|
∫ ∞

0

e|θ|xP
[
Z(X) > x

]
dx

= P
[
Z(X) > 0

]
+ |θ|

∫ κ

0

e|θ|xP
[
Z(X) > x

]
dx+ |θ|

∫ ∞

κ

e|θ|xP
[
Z(X) > x

]
dx

(b)

≤ e|θ|κ +
∞∑

i=0

∫ κ+2νmax(i+1)

κ+2νmaxi

|θ|e|θ|xP
[
Z(X) > x

]
dx

(c)

≤ e|θ|κ +
∞∑

i=0

∫ κ+2νmax(i+1)

κ+2νmaxi

|θ|e|θ|xP
[
Z(X) > κ+ 2νmaxi

]
dx

(d)

≤ e|θ|κ + e|θ|κ
(
e2|θ|νmax − 1

)(Gmaxνmax

Gmaxνmax + η

) ∞∑

i=0

(
Gmaxνmaxe

2|θ|νmax

Gmaxνmax + η

)i

20

(e)
=

e|θ|κη

η +Gmaxνmax(1− e2νmax|θ|)
,

where (a) holds integrating by parts; (b) holds because probabilities are upper bounded by

1, solving
∫ κ

0
e|θ|x dx, and breaking the last integral into intervals; (c) holds because f(x) =

1 − FZ(x) = P
[
Z(X) > x

]
is a nonincreasing function; (d) holds by Equation 2.3 and

solving the integral; and (e) holds after solving the geometric summation and reorganizing

terms, because |θ| < 1
2νmax

log
(

1 + η
Gmaxνmax

)
by assumption and, hence, the geometric

sum converges.

2.4 Overview of the drift method

The drift method is a direct approach to study the heavy-traffic behavior of the vector of

queue lengths in heavy traffic. We call the method ‘direct’ because one studies the heavy-

traffic behavior of the steady-state queue lengths directly and, hence, the interchange of

limits issue does not arise.

The drift method is based on the analysis developed in [23] for a single-server queue

with general inter-arrival and service time distributions. It has been developed in a series

of articles [34, 14, 15, 22], and can be summarized in two steps: (i) State Space Collapse

(SSC), and (ii) Asymptotically tight bounds. We describe each of these steps in subsec-

tion 2.4.1 and subsection 2.4.2.

2.4.1 State space collapse

In this step, the goal is to show that the vector of queue lengths can be a approximated by

a vector that lies in a subspace of the state space that frequently has a lower dimension.

Denote K the subspace where SSC occurs, and let q‖ be the projection of the vector of

queue lengths q on K. Additionally, define q⊥
4
= q − q‖ and observe that q⊥ represents

the error of approximating q by q‖.

The goal is to show that the moments of ‖q⊥‖ are negligible in heavy traffic. To prove

21

such a result, we use the lemmas stated in section 2.3. In these lemmas, one uses Lyapunov-

drift arguments to show moment bounds. Since the goal is to bound the moments of ‖q⊥‖,

we use Z(q) = ‖q⊥‖ and show that the conditions are satisfied. The most challenging

condition to show is the first condition of Lemma 2.7 and Lemma 2.9, where one needs to

show negative drift outside a bounded set. We sketch the steps that are commonly followed

to show this condition.

Define

W⊥(q)
4
= ‖q⊥‖, V (q)

4
= ‖q‖2, and V‖(q)

4
= ‖q‖‖2.

Then, since W⊥(q) =
√
‖q⊥‖2 and f(x) =

√
x is a concave function, we have the follow-

ing inequality:

∆W⊥(q) ≤ 1

2W⊥(q)

(
∆V (q)−∆V‖(q)

)
. (2.5)

Equation 2.5 was proved for discrete-time processes in [34], and we prove it for the continuous-

time process that we study in chapter 5 in subsection 5.8.3.

Then, it suffices to find an upper bound for V (q) and a lower bound for V‖(q).

2.4.2 Asymptotically tight bounds

In this step we set to zero the drift of a test function, and use SSC to compute bounds that

are tight in heavy traffic. The choice of the function plays a key role, and it should be

related to the region where SSC occurs in order to obtain meaningful bounds. A popular

function is V‖(q) = ‖q‖‖2. In [34, 14, 15], the authors show that if we set to zero the

drift of this test function, we obtain bounds on the total queue length. In general, if we use

polynomial test functions of degree m+ 1, we can obtain bounds on the mth moment of the

queue lengths.

In the case of systems that satisfy the CRP condition, one can explicitly obtain all the

22

moments of the queue lengths in heavy traffic and, hence, prove convergence in distribution

additional mild conditions (see [40, Section 4.10] for a discussion of these conditions). For

example, in the case of a single server queue, one can inductively use q2, q3, q4, . . . as test

function, to obtain the expected value of q, q2, q3, . . . (where q denotes the queue length).

When the CRP condition is not satisfied, one cannot obtain the moments of the queue

lengths in general. We show this result formally in section 7.8.

2.5 Transform method based on the drift method

In this section we introduce a variant of the drift method, which uses a test function moti-

vated by the moment generating function (MGF), and is a contribution of this thesis. The

key insight is that, instead of using the polynomial test functions of increasing degrees

inductively as in the drift method, all the polynomials can be combined in Taylor series

to obtain an exponential test function. For example, in the case of a single server queue,

combining q, q2, q3, . . . in Taylor series (with appropriate coefficients), we obtain eθq for

some constant θ, and E
[
eθq
]

is the MGF of q. We exemplify the method in the context of

a single server queue below, and we highlight the main steps. We present the details of the

method and an illustration of its use in the context of a load balancing system in chapter 3.

We additionally apply the method to a generalized switch in chapter 6.

We provide a proof of the well-known result that the scaled queue length of a single

server queue has an exponential distribution in heavy-traffic to illustrate the method and to

show its simplicity. We do not provide all the details of our proofs, since the single server

queue is a special case of the load balancing system (n = 1) and this system is studied in

detail in chapter 3.

Consider a single server queue operating in discrete time, i.e., a queueing system as

described in section 1.5 with n = 1. Arrivals and potential service in each time slot are

assumed to be independent sequences of i.i.d. random variables. Since they are also as-

sumed to be finite with probability 1 (as specified in section 1.5), their MGFs E
[
eθa(1)

]
and

23

E
[
eθs(1)

]
exist for all θ ∈ R.

Let λ 4= E [a(1)] and µ 4
= E [s(1)]. Observe that λ and µ are the rates of arrival and

service, respectively, since they are the expected number of arrival/services in one time slot.

Then, the capacity region of the single server queue is C = {λ ∈ R+ : λ ≤ µ}. To study

de heavy-traffic asymptotics, we parametrize the arrival process by ε ∈ (0, µ) as follows.

We consider a set of single server queues with a fixed service process of rate µ and arrival

rate λ(ε) 4= µ − ε. For each k ∈ Z+, let q(ε)(k), a(ε)(k) and u(ε)(k) be the queue length,

number of arrivals and unused service in time slot k in the system parametrized by ε.

Let a(ε) and s be steady-state random variables that have the same distribution as a(ε)(1)

and s(1), respectively. Then, λ(ε) = E
[
a(ε)
]

and µ = E [s]. Let
(
σ

(ε)
a

)2

= Var
[
a(ε)
]

and

σ2
s = Var [s].

In the rest of this section we prove Theorem 2.11. This is a well-known result and there

are proofs using diffusion limits [23] and the drift method [34] in the literature. We present

an alternate proof which is simpler than the two proofs mentioned above, and will serve as

a template for the MGF method.

Theorem 2.11. Let ε ∈ (0, µ) and consider a set of single server queues parametrized by ε

as described above. Let q(ε) be a steady-state random variable such that {q(ε)(k) : k ≥ 1}

converges in distribution to q(ε) as k ↑ ∞. Further, assume limε↓0 σ
(ε)
a = σa. Then,

εq(ε) ⇒ Υ as ε ↓ 0, where Υ is an exponential random variable with mean σ2
a+σ2

s

2
.

It is well-known that for all ε ∈ (0, µ), the Markov chain {q(ε)(k) : k ∈ Z+} is positive

recurrent. A proof using Foster-Lyapunov theorem (Theorem 2.4) can be found in [36,

Theorem 3.4.2]. Then, q(ε) is well defined.

Before presenting the proof, we prove two lemmas. The first lemma is a different

version of Equation 1.3 and is key in the MGF method. For other queueing systems we

use a weaker version of this lemma, that is sufficient for the MGF method (see Step 1 in

section 3.3 for more details).

24

Lemma 2.12. Consider a single server queue parametrized by ε as described above. Then,

for all α, β ∈ R and each k ∈ Z+ we have

(
eαq

(ε)(k+1) − 1
)(

e−βu
(ε)(k) − 1

)
= 0.

Proof of Lemma 2.12. It follows from Equation 1.3 and because ex − 1 = 0 if and only if

x = 0.

The next Lemma gives the first moment of the unused service in steady state, and it will

be used at the end of the proof of Theorem 2.11.

Lemma 2.13. Consider a single server queue parametrized by ε ∈ (0, µ) as described

above. Then,

E
[
u(ε)
]

= ε.

Proof of Lemma 2.13. We set to zero the drift of the linear test function V1(q) = q, and we

obtain

0 =E
[(
q(ε)
)+ − q(ε)

]

=E
[
(q(ε) + a(ε) − s+ u(ε))− q(ε)

]
,

where the last equality holds because
(
q(ε)
)+ 4

= q(ε) + a(ε) − s + u(ε) by definition. Rear-

ranging terms we obtain

E
[
u(ε)
]

=E
[
s− a(ε)

]
= µ− (µ− ε) = ε.

Now we prove Theorem 2.11.

25

Proof of Theorem 2.11. If we expand the product in Lemma 2.12 and rearrange terms we

obtain

eθεq
(ε)(k+1) − eθε(q(ε)(k)+a(ε)(k)−s(k)) =1− e−θεu(ε)(k). (2.6)

Observe that Equation 2.6 holds for all k ∈ Z+. In particular, it holds in steady-state.

Also, it can be shown that E
[
eθεq

(ε)
]
< ∞ in an interval around 0. We omit the proof

because we provide a proof for the load balancing system in Lemma 3.13, and the sin-

gle server queue is a particular case of the load balancing system (n = 1). Therefore,

E
[
eθε(q

(ε))
+]

= E
[
eθεq

(ε)
]
. Taking expected value with respect to the stationary distribu-

tion in Equation 2.6 we obtain

E
[
eθεq

(ε)
(

1− eθε(a(ε)−s)
)]

=1− E
[
e−θεu

(ε)
]
.

Since a(ε) and s are independent of the queue length, rearranging terms we obtain

E
[
eθεq

(ε)
]

=
1− E

[
e−θεu

(ε)
]

1− E
[
eθε(a

(ε)−s)
] (2.7)

Observe that Equation 2.7 gives an expression for the MGF of εq(ε) that is valid for all

traffic intensities. However, it does not give an explicit expression because the right-hand

side depends on the unused service, which is a function of q(ε). In the rest of this section,

we take the heavy-traffic limit of Equation 2.7 and we obtain an explicit expression.

Observe that the right-hand side of Equation 2.7 yields a 0
0

form in the limit as ε ↓ 0.

Then, we take Taylor series of each term with respect to θ, around θ = 0. The technical

details of why this expansion can be done are established in Lemma 3.1, which is presented

in section 3.3 For the numerator we obtain

1− E
[
e−θεu

(ε)
]

=θεE
[
u(ε)
]
− (θε)2

2
E
[(
u(ε)
)2
]

+O(ε3)

26

=θε2 +O(ε3), (2.8)

where the last equality holds by Lemma 2.13 and because E
[(
u(ε)
)2
]

is O(ε). Details of

this argument will be provided in chapter 3 for the load balancing system (see Claim 3.11).

The main idea of the proof is that 0 ≤ u(ε) ≤ s by definition and, hence, u(ε) is a bounded

random variable. For the denominator we obtain

1− E
[
eθε(a

(ε)−s)
]

=− θεE
[
a(ε) − s

]
− (θε)2

2
E
[
(a(ε) − s)2

]
+O(ε3)

=θε2 − (θε)2

2

((
σ(ε)
a

)2
+ σ2

s + ε2
)

+O(ε3), (2.9)

where the last step holds because E
[
a(ε)
]

= µ− ε and by definition of variance.

If we replace Equation 2.8 and Equation 2.9 in Equation 2.7, and cancel out θε2 from

numerator and denominator we obtain

E
[
eθεq

(ε)
]

=
1 +O(ε)

1− θ

2

((
σ

(ε)
a

)2

+ σ2
s

)
+O(ε)

.

Therefore, taking the heavy-traffic limit we obtain

lim
ε↓0

E
[
eθεq

(ε)
]

=
1

1− θ
(
σ2
a+σ2

s

2

) . (2.10)

Since the right-hand side is the MGF of an exponential random variable with mean σ2
a+σ2

s

2
,

Equation 2.10 implies that εq(ε) converges in distribution to such an exponential random

variable [40, Theorem 9.5 in Section 5].

Remark 2.14. In this thesis we introduce the transform method sketched above, and we

showcase its simplicity and flexibility in the context of a load balancing system and a gen-

eralized switch. This method is the start of a line of work that is still ongoing. In particular,

[41] uses this method to obtain the distribution of an input-queued switch where the arrival

27

process is governed by a Markov chain, as opposed to the i.i.d. assumption here.

Remark 2.15. One of the reasons why the proofs using the transform method are simple,

is the fraction obtained in Equation 2.7, which corresponds to Equation 3.7 in the load

balancing system and Equation 6.5 in the generalized switch. These equations give explicit

expressions for the MGF of the scaled queue lengths and, hence, all we need to do to take

the heavy-traffic limit is bounding the terms related to the unused service.

However, this situation becomes more complex in other settings. In an input-queued

switch that does not satisfy CRP [42] and two-sided queues [43], one obtains an implicit

equation for the MGF of the queue lengths after step 1. Therefore, one needs to show

uniqueness of the solution. This last step is usually challenging.

28

CHAPTER 3

HEAVY-TRAFFIC ANALYSIS OF LOAD-BALANCING SYSTEMS

Based on:

D. Hurtado-Lange and S. T. Maguluri, “Transform methods for heavy-traffic analysis,”

Stochastic Systems, vol. 10, no. 4, pp. 275–309, 2020

3.1 Introduction

The primary contribution of this chapter is the development of the MGF method, which

is a simple framework to compute the stationary distribution of the scaled vector of queue

lengths in heavy traffic. This is done by considering a load balancing system. We also

show how the MGF method can be thought of as a generalization of the drift method by

considering a richer class of test functions. This class of test functions leads to substantially

different proofs, that are much simpler than in the drift method, as will be illustrated in the

following sections. However, unlike the drift method, the MGF method does not involve

an art of picking a test function, since the test function is essentially the MGF. Even though

most of the results that we present have already been established in the literature using

diffusion limit and drift methods, the purpose of this chapter is to develop a framework

based on transform techniques and illustrate its power and simplicity.

A secondary contribution is that the load balancing system we consider is allowed to

have correlated servers. Under the CRP condition and routing algorithms that ensure SSC

to a one-dimensional subspace, we show that even under correlated services, the heavy-

traffic scaled stationary distribution continues to be exponential (see Theorem 3.5). It is

possible to allow for this generalization using other methods, but we illustrate the simplicity

of such generalizations using the MGF method.

29

3.2 Related work

Moment generating functions have been used in the literature to study queueing systems

such as the classical analysis of M/G/1 queue [45]. However, here we use the MGF

to study heavy-traffic scaled queue lengths, since the queue lengths go to infinity in the

heavy-traffic limit. There has been only a little work in the literature that uses transform

methods for heavy-traffic analysis. Characteristic functions were used in [46, 47] to study

heavy-traffic queueing systems, and moment generating functions were used in [48, 49]. In

contrast, the primary focus of this work is to develop transform methods for heavy-traffic

analysis that incorporates SSC.

The single server queue was first studied in heavy-traffic in [47] using characteristic

functions and tools from complex analysis. Characteristic functions are also used in [46] to

study the single server queue. The diffusion limit method to study queueing systems was

developed by studying the single server queue [23]. The well known Kingman bound for

the expected waiting time in a single server queue was developed in the 60’s [50], and later

the second moment was computed using similar arguments [51]. These formed the basis

for the drift method, that was developed in [34]. The single server queue was also presented

as an illustrative example of the BAR method [24]. Most of these papers study the delay

in G/G/1 queue in continuous time, which evolves according to Lindley’s equation [52].

Similar to [34], in this chapter we study the queue length in discrete time. The queue

lengths process evolves from one time slot to the next according to Equation 1.2, which

is equivalent to Lindley’s equation for the waiting time of (k + 1)th customer in a G/G/1

queue. Consequently, the results established for queue lengths in discrete time can be easily

extended to delay in continuous time.

The load balancing system (also known as the supermarket checkout model) has been

widely studied since the 70’s. It was shown that the JSQ policy minimizes the mean delay

among the class of policies that do not know the job durations [17, 53, 54]. Heavy-traffic

30

optimality of the JSQ policy in a system with two servers was established in [16] using

the diffusion limit method, where they also introduced the notion of SSC. Since then, the

load balancing system has been extensively studied both to improve performance and to

decrease the complexity of the algorithms [55, 56, 26, 57, 31, 32, 58, 59, 60, 61]. One lower

complexity algorithm that has received attention is the power-of-two choices algorithm [18,

19, 20, 55]. An exhaustive survey of literature on load balancing is presented in [62]. The

most relevant work for our purposes is the study of the JSQ policy under the drift method

[34] and that of the power-of-two choices algorithm [63].

3.3 General MGF framework

In section 2.5 we proved a well-known result using the MGF method in the case of the

simplest queueing system, i.e., the single server queue. In this section we describe the

method in detail, generalizing the key steps from section 2.5 to more general queueing

systems that satisfy the CRP condition. Then, we apply it to a load balancing system in

section 3.5. Later, in section 6.3, we apply it to a generalized switch that satisfies CRP.

In order to use the MGF method, one needs to make sure that two prerequisites are

satisfied. We state them before presenting the framework.

Prerequisite 1. Positive recurrence.

Before using the MGF method, one needs to prove that the Markov chain {q(ε)(k) : k ∈

Z+} is positive recurrent for ε > 0. Positive recurrence is a requirement to ensure the

queue length process {q(ε)(k) : k ∈ Z+} converges in distribution to a steady-state random

vector, that we denote q(ε), as k ↑ ∞.

Prerequisite 2. State Space Collapse.

To use the MGF method, one also needs to prove SSC into a one-dimensional subspace. Let

c ≥ 0 be the direction into which SSC occurs. For simplicity, we assume ‖c‖ = 1. Then

31

K = {y ∈ Rn : y = ξc , ξ ∈ R+} is the cone where the state space collapses in heavy

traffic. For any n-dimensional vector x, let x‖
4
= 〈x, c〉c be the projection of x on K

and let x⊥
4
= x − x‖. In this step it should be proved that E

[
‖q(ε)
⊥ ‖2

]
is o

(
1
ε2

)
, which is

equivalent to proving that ε2E
[
‖q(ε)
⊥ ‖2

]
is o(1).

The queueing systems that we study in this dissertation actually exhibit a stronger form

of SSC, where E
[
‖q(ε)
⊥ ‖j

]
is O(1) for all j ∈ Z+ with j ≥ 1. However, a weaker form of

SSC is studied in [22, 64].

From this notion of SSC, we conclude that

lim
ε↓0

ε2E
[∥∥∥q(ε)

⊥

∥∥∥
2
]

= 0,

i.e., ε‖q(ε)
⊥ ‖ converges to zero in the mean square sense and, therefore, in probability.

In the case of the single server queue we did not have to verify Prerequisite 2, because

the state space is already one-dimensional. Now we present the MGF method.

Step 1. Prove an equation of the form of

E
[(
eθε〈c,(q

(ε))
+
〉 − 1

)(
e−θε〈c,u

(ε)〉 − 1
)]

is o(ε2) (3.1)

and compute an expression for the MGF of ε〈c, q(ε)〉.

The key in the MGF method is to handle unused service and its interaction with the queue

lengths, arrivals and potential service. In the drift method, the unused service is handled

with Equation 1.3. However, in this case we want to work with an exponential transform

of the queue lengths, so we need to write Equation 1.3 in a different way. In the case of the

single server queue, we used Lemma 2.12 which, in fact, it is much stronger than what we

actually use in the MGF method. For more general queueing systems we use Equation 3.1.

To prove an equation of the form of Equation 3.1 it is essential to use SSC. After proving

Equation 3.1, we need to obtain an expression for the MGF of ε〈c, q(ε)〉 that is valid for

32

all traffic. Below we sketch some algebraic steps that are useful to do it. Expanding the

product on the left-hand side of Equation 3.1 we obtain

E
[(
eθε〈c,(q

(ε))
+
〉 − 1

)(
e−θε〈c,u

(ε)〉 − 1
)]

=E
[
eθε〈c,(q

(ε))
+
−u(ε)〉

]
− E

[
eθε〈c,(q

(ε))
+
〉
]

+ 1− E
[
e−θε〈c,u

(ε)〉
]

(3.2)

(a)
=E

[
eθε〈c,q

(ε)+a(ε)−s(ε)〉
]
− E

[
eθε〈c,(q

(ε))
+
〉
]

+ 1− E
[
e−θε〈c,u

(ε)〉
]

(b)
=E

[
eθε〈c,q

(ε)+a(ε)−s(ε)〉
]
− E

[
eθε〈c,q

(ε)〉
]

+ 1− E
[
e−θε〈c,u

(ε)〉
]
, (3.3)

where (a) holds by the dynamics of the queues described in Equation 1.2 and by defini-

tion of
(
q(ε)
)+

; and (b) holds if the MGF of ε〈c, q(ε)〉 exists in an interval around 0 (this

must be proved). In such case, by definition of steady state we have E
[
eθε〈c,(q

(ε))
+
〉
]

=

E
[
eθε〈c,q

(ε)〉
]
, which is equivalent to setting the drift of the test function V (q) = eθε〈c,q〉 to

zero.

Observe that when we first expand the product in Equation 3.2, we obtain two terms that

are related to the unused service (the first and the last term). We use the dynamics of the

queues, as described by Equation 1.2, to deal with the first one, and we write
(
q(ε)
)+−u(ε)

in terms of q(ε), a(ε) and s(ε). The last term is the MGF of ε〈c,u(ε)〉, and we deal with it in

the second step of the MGF method.

Using Equation 3.3 in Equation 3.1 and reorganizing terms we obtain

E
[
eθε〈c,q

(ε)〉
(

1− eθε〈c,a(ε)−s(ε)〉
)]

= 1− E
[
e−θε〈c,u

(ε)〉
]

+ o(ε2) (3.4)

From Equation 3.4 we can obtain an expression for the MGF of ε〈c, q(ε)〉 which is valid

for all traffic. However, the steps to obtain it depend on the properties of each queueing

system. For example, in the case of the single server queue we know that the arrival and

potential service processes are independent of the queue lengths. Then, we can separate

the product on the left-hand side and we obtain Equation 2.7.

33

Step 2. Bound unused service and take heavy-traffic limit.

Observe that the MGF of ε〈c,a(ε)〉 and ε〈c, s(ε)〉 exist for all θ ∈ R, because the random

variables are bounded by assumption. Further, by definition of unused service, we have

0 ≤ u(ε) ≤ s(ε) component-wise. Then, the MGF of ε〈c,u(ε)〉 exists for all θ ∈ R. Also, in

Step 1 (before obtaining Equation 3.3) it was proved that the MGF of ε〈c, q(ε)〉 exists in an

interval around zero. Therefore, as ε ↓ 0, Equation 3.4 yields 0 = 0. As mentioned above,

depending on the queueing system we will use different approaches to obtain an expression

for the MGF of ε〈c, q(ε)〉 that is valid for all traffic from Equation 3.4. For example, in the

case of the single server queue we obtained Equation 2.7, which yields a 0
0

form in the limit

as ε ↓ 0. Therefore, to compute the heavy-traffic limit we take Taylor series of each term

around θ = 0, except for the MGF of ε〈c, q(ε)〉. To do that, we use the following lemma.

Lemma 3.1. Let X(ε) be a set of random variables indexed by ε > 0. Assume X(ε) is

bounded for all ε, i.e., there exists a constant Kmax (that does not depend on ε) such that

X(ε) ≤ Kmax with probability 1. Define fε,X(θ)
4
= eθεX

(ε)
. Then,

∣∣∣∣E [fε,X(θ)]− 1− θεE
[
X(ε)

]
− (θε)2

2
E
[(
X(ε)

)2
]∣∣∣∣ ≤ ζε3,

where ζ is a finite constant. With a slight abuse of notation, we write the inequality above

as follows

E [fε,X(θ)] = 1 + θεE
[
X(ε)

]
+

(θε)2

2
E
[(
X(ε)

)2
]

+O(ε3). (3.5)

Since we are working with a bounded random variable, the proof of Lemma 3.1 is

straightforward. However, in general, one needs an assumption on the existence of the

MGF. We present the proof below.

Proof of Lemma 3.1. Fix Θ > 0 and x ∈ R. Then, from Taylor approximation of fε,x(θ) =

34

eθεx at θ = 0 we have

eθεx ≤ 1 + θεx+
(θε)2

2
x2 +

(θ̃ε)3

3!
x3 ∀θ ∈ [−Θ,Θ], ∀x ∈ R,

where θ̃ is a real number between 0 and θ. Then, for all 0 ≤ x ≤ κ we have

eθεx ≤ 1 + θεx+
(θε)2

2
x2 +

(θ̃ε)3

3!
κ3.

Since θ̃ is between 0 and θ, and |θ| ≤ Θ we have

∣∣∣∣∣
(θ̃ε)3

3!
κ3

∣∣∣∣∣ =
|θ̃|3ε3

3!
κ3 ≤ (Θε)3

3!
κ3,

which is finite for every ε. Then,

eθεx ≤ 1 + θεx+
(θε)2

2
x2 +

(Θε)3

3!
κ3.

Therefore,

∣∣∣∣eθεx − 1− θεx− (θε)2

2
x2

∣∣∣∣ ≤ ζ1ε
3,

where ζ1 = Θ3κ3

3!
is a finite constant. Now, since X(ε) is bounded, we know the existence

of κmax such that X(ε) ≤ κmax with probability 1. Therefore,

E
[
eθεX

(ε)
]
≤ 1 + θεE

[
X(ε)

]
+

(θε)2

2
E
[(
X(ε)

)2
]

+
Θε3κmax

3!
,

which proves the lemma.

Expanding each term on the right-hand side of Equation 3.4 in Taylor series according

to Lemma 3.1 will yield terms related to the moments of the unused service. As illustrated

in the case of the single server queue, it suffices to handle the first moment. To do that, we

35

set to zero the drift of the linear test function V1(q) = 〈c, q〉, i.e., we set E
[
〈c,
(
q(ε)
)+〉
]

=

E
[
〈c, q(ε)〉

]
(which is finite because in Step 1 it was proved that the MGF of ε〈c, q(ε)〉

exists in an interval around 0). For example, see Lemma 2.13 in the case of the single

server queue, which is used in Equation 2.8.

From this step we obtain an expression for the limit as ε ↓ 0 of the MGF of ε〈c, q(ε)〉.

This proves convergence in distribution of ε〈c, q(ε)〉 to a random variable Y , which turns

out to be exponential in the cases we study in this chapter. Then, εq(ε)
‖ = ε〈c, q(ε)〉c⇒ Y c

as ε ↓ 0 because c is a fixed vector. We also know from SSC in Prerequisite 2 that εq(ε)
⊥ → 0

in probability as ε ↓ 0. Then, by Slutsky’s theorem [40, Theorem 11.4 in Section 5], we

obtain that εq(ε) = εq
(ε)
‖ + εq

(ε)
⊥ ⇒ Y c as ε ↓ 0.

Remark 3.2. In order to set E
[
eθε〈c,(q

(ε))
+
〉
]

= E
[
eθε〈c,q

(ε)〉
]

in Step 1, one must first prove

the existence of the MGF of ε〈c, q(ε)〉 in an interval around zero. An alternative approach

(where this difficulty does not arise), is to use characteristic functions, because they always

exist. However, working with characteristic functions involves the use of complex analy-

sis. Another way to overcome this difficulty is to use one-sided Laplace transform, i.e., to

consider θ < 0. One-sided Laplace transform of ε〈c, q(ε)〉 always exists because ε, c and

q(ε) are nonnegative. If one chooses to work with other transforms such as the characteris-

tic function or one-sided Laplace transform to get around the issue of the existence of the

MGF, then one needs to assume that certain moments exist in a counterpart of Lemma 3.1.

For instance, Theorem 2.3.3. in [65] can be used when one is working with characteristic

functions.

3.4 Load balancing system model

Consider a system with n separate queues, as described in section 1.5. For each i ∈ [n],

{si(k) : k ∈ Z+} is a sequence of i.i.d. random variables with µi
4
= E [si(1)], and let µΣ

4
=

n∑

i=1

µi. We consider this system in a general setting, so we do not assume independence of

36

the servers. Let Σs be the covariance matrix of s(1). Then, for each pair i, j ∈ [n], we have

(Σs)i,j = Cov [si(1), sj(1)].

There is a single stream of arrivals, that we model as a sequence {a(k) : k ∈ Z+} of

i.i.d. random variables such that a(k) is the number of arrivals to the system in time slot k.

In this queueing system the control problem is to route the arrivals to one of the n queues in

each time slot. We assume the routing policy is fixed for all k ∈ Z+, but we do not assume

any particular policy. After routing, ai(k) is the number of arrivals routed to the ith queue

in time slot k, for i ∈ [n]. We assume a(k) ≤ Amax with probability 1 for all k ∈ Z+,

and that the arrival process is independent of the queue length and service processes. The

dynamics of the queues are according to Equation 1.2. It is well known that the capacity

region of the load balancing system is C = {λ ∈ R+ : λ ≤ µΣ}. A proof can be found in

Appendix A of [34].

3.5 MGF method applied to load balancing systems

In this section we use the MGF method in the context of load balancing systems, also

known as supermarket checkout systems. The model is described in section 3.4.

To study the heavy-traffic limit of this queueing system, we parametrize the arrival

process as follows. For ε ∈ (0, µΣ) we consider a load balancing system with arrival

process {a(ε)(k) : k ∈ Z+}, that satisfies E
[
a(ε)(1)

]
= µΣ−ε and Var

[
a(ε)(1)

]
=
(
σ

(ε)
a

)2

.

In other words, the arrival rate approaches the point ν = µΣ in the boundary of C as ε ↓ 0.

Since the capacity region C of the load balancing system is one-dimensional, the CRP

condition (as defined in Definition 2.1) is trivially satisfied.

In the rest of this section, we state the main theorem of this section and provide some

examples. We prove the result using the MGF method as developed in section 3.3 in subsec-

tion 3.5.1. Before presenting the formal statement of the result we introduce the following

definitions.

Definition 3.3 (Throughput optimality). A routing algorithm A is throughput optimal for

37

the load balancing system described in section 3.4, if the Markov chain
{
q(ε)(k) : k ∈ Z+

}

operating under A is positive recurrent for all ε ∈ (0, µΣ).

Definition 3.4 (State Space Collapse). Consider a routing algorithm A and let

K = {x ∈ Rn : xi = xj ∀i, j ∈ [n]} ,

i.e., c = 1√
n
1. For any vector y ∈ Rn, let y‖ be the projection of y on K and let y⊥

4
=

y − y‖. We say that the algorithm A satisfies SSC if the load balancing system described

in section 3.4 operating under A satisfies the following property.

E
[
‖q(ε)
⊥ ‖2

]
is o
(

1

ε2

)
,

where q(ε) is a steady-state random vector such that
{
q(ε)(k) : k ∈ Z+

}
converges in dis-

tribution to q(ε) if it is positive recurrent.

Observe that if an algorithm A satisfies SSC (as defined above), then SSC occurs into

the one-dimensional space K. Therefore, a load balancing system operating under such A

behaves as a single server queue in the heavy-traffic limit.

Now we formally present the result that we will prove using the MGF method.

Theorem 3.5. Let ε ∈ (0, µΣ) and consider a set of load balancing systems as described

in section 3.4, parametrized by ε as described above. Suppose that the routing algorithm

is throughput optimal and that it satisfies SSC. For each ε ∈ (0, µΣ), let q(ε) be a steady-

state random vector such that the queue length process {q(ε)(k) : k ∈ Z+} converges

in distribution to q(ε). Assume the MGF of ε
∑n

i=1 qi exists, i.e., E
[
eθε

∑n
i=1 q

(ε)
i

]
< ∞ for

θ ∈ [−Θ,Θ] where Θ > 0 is a finite number, and that limε↓0 σ
(ε)
a = σa. Then εq(ε) =⇒ Υ̃1

as ε ↓ 0, where Υ̃ is an exponential random variable with mean 1
2n

(
σ2
a + 1TΣs1

)
.

Now we introduce two routing policies that are throughput optimal and satisfy SSC as

defined above. We first define the policies.

38

Definition 3.6 (JSQ and Power-of-two choices). Consider a load balancing system as de-

scribed in section 3.4. Then, for each k ∈ Z+, given the vector of queue lengths q(ε)(k), a

routing policy selects i∗(k) routes the arrivals so that a(ε)(k) = e(i∗(k))a(k).

(a) The routing policy Join the Shortest Queue (JSQ) sends all arrivals in time slot k to

the queue with the least number of jobs, breaking ties at random. Formally, under

JSQ routing policy

i∗(k) ∈ arg min
i∈[n]

{
q

(ε)
i (k)

}
,

breaking ties at random.

(b) The routing policy power-of-two choices selects two queues uniformly at random, say

i1, i2 ∈ [n] and sends all arrivals in time slot k to the queue with the least number

of jobs between those two, breaking ties at random. Formally, under power-of-two

choices, if queues i1 and i2 are selected, then

i∗(k) ∈ arg min
i∈{i1,i2}

{
q

(ε)
i (k)

}
,

breaking ties at random.

In the following two corollaries we show that these routing policies satisfy the assump-

tions of Theorem 3.5 and, therefore, the scaled vector of queue lengths in a load balanc-

ing system operating under any of these policies has an exponential distribution in heavy-

traffic.

Corollary 3.7. Consider a set of load balancing systems as described in section 3.4,

parametrized by ε ∈ (0, µΣ) as described above. Suppose the routing algorithm is JSQ.

Then, εq(ε) =⇒ Υ̃11 as ε ↓ 0, where Υ̃1 is an exponential random variable with mean

1
2n

(
σ2
a + 1TΣs1

)
.

39

A particular case of the queueing system described in Corollary 3.7 is the load balancing

system operating under JSQ with independent servers. In this case, 1TΣS1 reduces to the

sum of variances of the servers. This is one of the systems studied in [34].

Proof of Corollary 3.7. We only need to show that JSQ is throughput optimal, that it satis-

fies SSC, and that there exists Θ > 0 such that E
[
eθε

∑n
i=1 q

(ε)
i

]
<∞ for all θ ∈ [−Θ,Θ]. In

[34], the authors prove throughput optimality and SSC in the case of independent servers.

However, their proofs hold for correlated servers. The proof of throughput optimality can

be found in Appendix A of [34].

The SSC result proved [34] is stronger than the property presented in Definition 3.4.

In fact, they prove that E
[
‖q(ε)
⊥ ‖j

]
is upper bounded by a constant for each j ∈ Z+ with

j ≥ 1. This clearly implies that Definition 3.4 is satisfied. We provide a sketch of their

proof of SSC in subsection 3.6.1.

The existence of MGF of ε
∑n

i=1 q
(ε)
i in an interval around 0 is proved in subsec-

tion 3.6.2.

Corollary 3.8. Consider a set of load balancing systems as described in section 3.4,

parametrized by ε as described above. Suppose the routing algorithm is power-of-two

choices and that all the servers are identical. Then, εq(ε) =⇒ Υ̃21 as ε ↓ 0, where Υ̃2 is an

exponential random variable with mean 1
2n

(
σ2
a + 1TΣs1

)
.

Proof of Corollary 3.8. Similar to the proof of Corollary 3.7, we check throughput op-

timality, SSC and existence of MGF. SSC is proved in [63, Section 4.3] in the case of

independent servers, but their proof holds true if this assumption is dropped. Their proof

is along the lines of the proof for JSQ in subsection 3.6.1, so we do not present it here.

Throughput optimality can be proved using the Foster-Lyapunov theorem (Theorem 2.4)

and the calculations developed in [63] in the proof of SSC. The proof of existence of MGF

is similar to the case of JSQ. We omit these proofs, since our goal is to introduce the MGF

method.

40

Observe that the assumption of identical servers is essential for the power-of-two choices

algorithm to be throughput optimal. The case when the servers are not identical was stud-

ied in [55] using the diffusion limits approach. The routing policy there randomly selects

d servers in each time slot, where the probability of choosing server i is proportional to

its service rate µi, for all i ∈ [n]. Then, the arrivals are sent to the server with the shortest

queue among the d selected servers. They prove that this queueing system satisfies the CRP

condition and that the distribution of the scaled vector of queue lengths is exponential. A

similar result can be obtained using the MGF method once the SSC as stated in Definition

3.4 is established. This is straightforward extension, and we do not present the details here

because the focus is on illustrating the MGF approach.

In chapter 4 we provide necessary and sufficient conditions on the vector of service

rates to ensure that power-of-d choices is throughput optimal in load balancing systems

with heterogeneous servers. We additionally show SSC under similar conditions, and we

compute the distribution of the vector of queue lengths in heavy traffic using the MGF

method.

In this subsection we presented the main theorem of this section, and two examples

where the assumptions of the theorem are satisfied. Observe that in both cases we only

needed to check that the conditions of the theorem are satisfied. In fact, if we want to

prove that the scaled vector of queue lengths of the load balancing system operating under

any other routing policy has an exponential distribution, we only need to check these three

assumptions.

3.5.1 Proof of Theorem 3.5

In the rest of this section we prove Theorem 3.5 using the MGF method. Before presenting

the proof we specify notation.

Let a(ε) be a steady-state random variable with the same distribution as a(ε)(1) and

let a(ε) 4= a(ε)(q) be the vector of arrivals to each queue after routing in steady-state.

41

The vector u(ε) represents the unused service. Observe that, in this case, the vector s is

independent of q(ε) and has the same distribution as s(1), because the potential service

sequences {si(k) : k ∈ Z+} are i.i.d. and independent of the queue length process.

Proof of Theorem 3.5. For ease of exposition, we omit the dependence on ε of the variables

in this proof. We use the MGF method. Before applying the steps, we need to verify that

the prerequisites are satisfied, i.e., we need to check positive recurrence and SSC. In fact,

one of the assumptions of the theorem is that the routing policy is throughput optimal.

Therefore, for any ε > 0 the Markov chain
{
q(ε)(k) : k ∈ Z+

}
is positive recurrent. Also,

SSC is satisfied by assumption. Now we go through the steps of the MGF method.

Step 1. Prove an equation of the form of Equation 3.1 and compute an expression for the

MGF of ε〈c, q(ε)〉.

We first prove the following lemma.

Lemma 3.9. Consider a load balancing system parametrized by ε as described in Theo-

rem 3.5. Then, there exists θmax > 0 finite such that for any real number θ ∈ [−θmax, θmax]

we have

E
[(
e
θε
∑n
i=1

(
q
(ε)
i

)+

− 1

)(
e−θε

∑n
i=1 u

(ε)
i − 1

)]
is o(ε2).

We present the proof of Lemma 3.9 in subsection 3.6.3.

Since 〈c, q〉 =
1√
n

n∑

i=1

qi, proving an equation of the form of Equation 3.1 is equivalent

to Lemma 3.9 using θ√
n

instead of θ. For ease of exposition, we work with θ in the rest of

this proof.

Note that P [a−∑n
i=1 si 6= 0] > 0 whenever ε > 0. If we expand the product in

the expression of Lemma 3.9 and we follow the steps sketched after Step 1 in Section

42

section 3.3 we obtain

E
[
eθε

∑n
i=1 qi

(
1− eθε

∑n
i=1(ai−si)

)]
= 1− E

[
e−θε

∑n
i=1 ui

]
+ o(ε2). (3.6)

Recall
∑n

i=1 ai = a and that a, s are independent of q, by definition. Therefore,

reorganizing terms we obtain

E
[
eθε

∑n
i=1 qi

]
=

1− E
[
e−θε

∑n
i=1 ui

]
+ o(ε2)

1− E
[
eθε(a−

∑n
i=1 si)

] , (3.7)

which gives an expression for the MGF of ε
∑n

i=1 qi that is valid for all traffic.

Step 2. Bound unused service and take heavy-traffic limit.

Equation 3.7 yields a 0
0

form in the limit as ε ↓ 0, just like Equation 2.7 in the case of

the single server queue. Equivalently, we can observe that Equation 3.6 yields 0 = 0 in

the limit as ε ↓ 0. Then, we take Taylor series of the numerator and the denominator of

Equation 3.7 at θ = 0 to obtain the limit. To take Taylor expansion we use Lemma 3.1.

In order to bound the numerator we need to compute E [
∑n

i=1 ui], so we start with a

lemma.

Lemma 3.10. Consider a load balancing system as described in section 3.4, parametrized

by ε ∈ (0, µΣ) as described at the beginning of section 3.5, operating under a throughput

optimal routing policy. Then,

E

[
n∑

i=1

u
(ε)
i

]
= ε.

Proof of Lemma 3.10. We set to zero the drift of V1(q) = 〈c, q〉 in steady state. In this

case, from the definition of K in Definition 3.4 we have c =
1√
n
1. Then, we obtain

0 =E
[
V1

(
q+
)
− V1 (q)

]

43

=
1√
n
E

[
n∑

i=1

q+
i −

n∑

i=1

qi

]

(a)
=

1√
n
E

[
n∑

i=1

(qi + ai − si + ui)−
n∑

i=1

qi

]

(b)
=

1√
n
E

[
a−

n∑

i=1

si +
n∑

i=1

ui

]

where (a) holds by definition of q+; and (b) holds because a =
∑n

i=1 ai by definition of a

and ai. Rearranging terms and canceling 1√
n

, we obtain

E

[
n∑

i=1

ui

]
=

n∑

i=1

E [si]− E [a]
(a)
=

n∑

i=1

µi − (µΣ − ε)
(b)
= ε,

where (a) holds because E [a] = µΣ − ε; and (b) holds by definition of µΣ.

Now we expand the numerator and denominator of Equation 3.7 in Taylor series. We

start with the numerator, and we obtain

1− E
[
e−θε

∑n
i=1 ui

]
=1− E

[
fε,−

∑n
i=1 ui

(θ)
]

=θεE

[
n∑

i=1

ui

]
− (θε)2

2
E



(

n∑

i=1

ui

)2

+O(ε3)

=θε2 − (θε)2

2
E



(

n∑

i=1

ui

)2

+O(ε3), (3.8)

where the last equality holds by Lemma 3.10. Now we need to bound the second moment

of the sum of unused services.

Claim 3.11. Consider a load balancing system as described in Theorem 3.5. Then,

(θε)2

2
E



(

n∑

i=1

u
(ε)
i

)2

 is O(ε3).

44

We prove the claim in subsection 3.6.4. Using the Claim 3.11 in Equation 3.8 we obtain

1− E
[
e−θε

∑n
i=1 ui

]
=θε2 +O(ε3), (3.9)

For the denominator, we obtain

1− E
[
eθε(a−

∑n
i=1 si)

]

= 1− E
[
fε,(a−

∑n
i=1 si)

(θ)
]

= −θεE
[
a−

n∑

i=1

si

]
− (θε)2

2
E



(
a−

n∑

i=1

si

)2

+O(ε3)

= θε2 − (θε)2

2

(
(
σ(ε)
a

)2
+

n∑

i=1

n∑

i′=1

Cov [si, si′] + ε2

)
+O(ε3), (3.10)

where the last step holds because E [a] = µΣ − ε, E [
∑n

i=1 si] = µΣ and by definition of

covariance.

Using Equation 3.9 and Equation 3.10 in Equation 3.7, and since O(ε3) is o(ε2), we

obtain

E
[
eθε

∑n
i=1 qi

]
=

θε2 + o(ε2)

θε2 − (θε)2

2

(
(
σ(ε)
a

)2
+

n∑

i=1

n∑

i′=1

Cov [si, si′] + ε2

)
+O(ε3)

Canceling θε2 from the numerator and denominator, and noticing that
∑n

i=1

∑n
i′=1 Cov [si, si′] =

1TΣs1 , we obtain

E
[
eθε

∑n
i=1 qi

]
=

1 + o(1)

1− θ

2

((
σ(ε)
a

)2
+ 1TΣs1

)
+O(ε)

.

Therefore, taking the limit we obtain

lim
ε↓0

E
[
eθε

∑n
i=1 qi

]
=

1

1− θ
2

(
σ2
a + 1TΣs1

) ,

45

which is the MGF of an exponential random variable with mean 1
2

(
σ2
a + 1TΣs1

)
. Then,

ε〈c, q〉c = ε
(

1
n

∑n
i=1 qi

)
1 ⇒ Υ̃1 as ε ↓ 0, where Υ̃ is an exponential random variable

with mean 1
2n

(
σ2
a + 1TΣs1

)
. Therefore, we conclude that εq(ε) = εq

(ε)
‖ + εq

(ε)
⊥ ⇒ Υ̃1 as

ε ↓ 0. This proves Theorem 3.5.

3.6 Details of the proofs of section 3.5

In this section we provide the details of the proofs from section 3.5.

3.6.1 Proof of SSC in the load balancing system operating under JSQ

In this section we present an insight of the proof of SSC as developed in [34]. They prove

the result for the case where the servers are independent, but it also holds in the case where

they are not. We first state the result.

Proposition 3.12. Consider a load balancing system as described in Corollary 3.7. Then,

for each j ∈ Z+ with j ≥ 1 there exists a finite constant Jj such that

E
[
‖q(ε)
⊥ ‖j

]
≤ Jj.

This proof is based on Lemma 2.7.

Proof of Proposition 3.12. In [34], the authors use the Lyapunov function Z(q) = ‖q(ε)
⊥ ‖

and they prove that

E [∆Z(q) | q(k) = q] ≤ −δ +
n(max{Amax, Smax})2 + 2nS2

max

2‖q(ε)
⊥ ‖

,

where δ is a fixed constant in (0, µmin). The proof is based on the fact that ‖x‖ =
√
‖x‖2,

that square root is a concave function and that JSQ sends all arrivals to the shortest queue

in each time slot. This verifies condition (C1) of Lemma 2.7.

46

To verify condition (C2), they prove that for all q ∈ Rn
+

|∆Z(q)| ≤ 2
√
nmax{Amax, Smax},

using triangle inequality and boundedness of the arrival and service processes.

Also, for ε > 0 the Markov Chain {q(ε)(k) : k ∈ Z+} is positive recurrent and, since

projection is nonexpansive, we have ‖q(ε)
⊥ (k)‖ ≤ ‖q(ε)(k)‖. Hence, {q(ε)

⊥ (k) : k ∈ Z+} is

positive recurrent, which proves the result.

3.6.2 Existence of MGF of ε
∑n

i=1 q
(ε)
i in the load balancing system operating under JSQ

We first state the result formally.

Lemma 3.13. Consider a load balancing system operating under JSQ, parametrized by

ε ∈ (0, µΣ) as described in Corollary 3.7. Then, there exists Θ > 0 (which is independent

of ε) such that E
[
eθε

∑n
i=1 q

(ε)
i

]
<∞ for all θ ∈ [−Θ,Θ].

Proof of Lemma 3.13. We omit the dependence on ε of the variables for ease of exposition.

First observe that if θ ≤ 0, then E
[
eθε

∑n
i=1 qi

]
< ∞ trivially because q ≥ 0 by definition

of queue length.

In the rest of this proof we assume θ > 0. Observe that the function f(x) = eθεx is

convex. Then, by Jensen’s inequality we have that, for all q ≥ 0

e
θε
n

∑n
i=1 qi ≤ 1

n

n∑

i=1

eθεqi .

Hence, it suffices to show that
∑n

i=1 E
[
eθεqi

]
<∞ for θ ≤ Θ. We show that the condi-

tions of the Foster-Lyapunov theorem (Theorem 2.4) are satisfied with Lyapunov function

V (q) =
∑n

i=1 e
θεqi . Then, one can easily obtain a finite bound on E [V (q)] [37, Proposition

6.14].

Using Lemma 2.12 for each of the n queues and rearranging terms we obtain that, for

47

each i ∈ [n] and k ∈ Z+

eθεqi(k+1) =1− e−θεui(k) + eθε(qi(k)+ai(k)−si(k)).

Then, using the notation Eq [·] 4= E [· | q(k) = q], we obtain

Eq [V (q(k + 1))− V (q(k))]

=
n∑

i=1

Eq
[
eθεqi(k+1) − eθεqi(k)

]

=
n∑

i=1

(
1− Eq

[
e−θεui(k)

])
+

n∑

i=1

eθεqi
(
Eq
[
eθε(ai(k)−si(k))

]
− 1
)
.

Since Eq
[
e−θεui(k)

]
≥ 0, we have

n∑

i=1

(
1− Eq

[
e−θεui(k)

])
≤ n.

Then, it suffices to show that for some Θ and some η > 0, we have

n∑

i=1

eθεqi
(
Eq
[
eθε(ai(k)−si(k))

]
− 1
)
≤ −η

n∑

i=1

eθεqi ∀θ ∈ (0,Θ].

Given q(k) = q, let i∗ ∈ arg mini∈[n] {qi(k)} be the queue where arrivals in time slot k

are routed. Then,

n∑

i=1

eθεqi
(
Eq
[
eθε(ai(k)−si(k))

]
− 1
)

= eθεqi∗
(
E
[
eθε(a(k)−si∗ (k))

]
− 1
)

+
n∑

i=1
i 6=i∗

eθεqi
(
E
[
e−θεsi(k)

]
− 1
)

= eθεqi∗Ma−si∗ (θ) +
n∑

i=1
i 6=i∗

eθεqiM−si(θ),

where we used the notation MX(θ) = E
[
eθεX

]
− 1. Next we take the truncated Taylor

48

series around 0. Then, for some ξi ∈ (0, θ) for each i ∈ [n], we have

n∑

i=1

eθεqi
(
Eq
[
eθε(ai(k)−si(k))

]
− 1
)

(a)
= eθεqi∗

(
θε(λ− µi∗) +

θ2

2
M ′′

a−si∗ (ξi∗)

)
+

n∑

i=1
i 6=i∗

eθεqi
(
−θεµi +

θ2

2
M ′′

si
(ξi)

)

(b)

≤ eθεqi∗θε(λ− µi∗)−
n∑

i=1
i 6=i∗

eθεqiθεµi +
θ2ε2

2
(A2

max + S2
max)eθµΣAmax

n∑

i=1

eθεqi , (3.11)

where (a) holds by definition of i∗ and the routing algorithm; and (b) holds after bounding

the second derivatives as follows. Since ε < µΣ by definition, we have

M ′′
a−si∗ (θ) = E

[
ε2(a− si∗)2eθε(a−si∗)

]
≤ ε2(A2

max + S2
max)eθµΣAmax

M ′′
−si(θ) = E

[
ε2s2

i e
−θεsi

]
≤ ε2S2

max ≤ ε2(A2
max + S2

max)eθµΣAmax .

For each i ∈ [n], define λi
4
= µi − ε

n
, and observe λ =

∑n
i=1 λi. Then, we obtain

Equation 3.11

= θε
n∑

i=1

eθεqi(λi − µi) +
θ2ε2

2
(A2

max + S2
max)eθµΣAmax

n∑

i=1

eθεqi + θε
n∑

i=1

λi
(
eθεqi∗ − eθεqi

)

(a)

≤ θε2
(
− 1

n
+
θ

2
(A2

max + S2
max)eθµΣAmax

) n∑

i=1

eθεqi ,

where (a) holds because qi∗ ≤ qi for all i ∈ [n] by definition of i∗, because λi − µi = − ε
n

and reorganizing terms. Therefore, it suffices to show the existence of Θ > 0 such that

− 1

n
+
θ

2
(A2

max + S2
max)eθµΣAmax ≤ − 1

2n
∀θ ≤ Θ.

49

Solving the inequality yields

Θ =
1

µΣAmax

W0

(
AmaxµΣ

n(A2
max+S2

max)

)
,

where W0(·) is the principal branch of the Lambert W function, which has been studied

in [66] among others. Observe that Θ is independent of ε. This completes the proof.

3.6.3 Proof of Lemma 3.9

To prove Lemma 3.9 we use the following result.

Lemma 3.14. Consider the load balancing system indexed by ε described in Theorem 3.5.

Then, for any α ∈ R and for all k ∈ Z+ we have

n∑

i=1

u
(ε)
i (k)

(
e
α
n

∑n
j=1 q

(ε)
j (k+1) − 1

)
=

n∑

i=1

u
(ε)
i (k)

(
e−αq

(ε)
⊥i (k+1) − 1

)
,

where q(ε)
⊥i (k) is the ith element of q(ε)

⊥ (k), for each i ∈ [n].

Proof of Lemma 3.14. If α = 0, the equation trivially holds. So now assume α 6= 0. Since

qi(k + 1)ui(k) = 0 for all i ∈ [n], we have

ui(k)(e−αqi(k+1) − 1) = 0 ∀i ∈ [n].

Then, summing over i ∈ [n] we obtain

n∑

i=1

ui(k)
(
e−αqi(k+1) − 1

)
= 0.

By definition of q‖(k) and q⊥(k) we have q(k) = q‖(k) + q⊥(k), so

n∑

i=1

ui(k)(e−α(q‖i(k+1)+q⊥i(k+1)) − 1) = 0.

50

But q‖(k+1) =
(

1
n

∑n
j=1 qj(k + 1)

)
1 so q‖i(k+1) = q‖1(k+1) for all i ∈ [n]. Then,

reorganizing terms we obtain

n∑

i=1

ui(k)e−αq⊥i(k+1) = eαq‖1(k+1)

n∑

i=1

ui(k).

By definition of q‖(k) we obtain

n∑

i=1

ui(k)e−αq⊥i(k+1) = e
α
n

∑n
j=1 qj(k+1)

n∑

i=1

ui(k).

Finally, subtracting
∑n

i=1 ui(k) in both sides we obtain

n∑

i=1

ui(k)
(
e
α
n

∑n
j=1 qj(k+1) − 1

)
=

n∑

i=1

ui(k)
(
e−αq⊥i(k+1) − 1

)
.

In the proof of Lemma 3.9 we use Lemma 3.14 and the following facts:

(i) The function g(x) = ex−1
x

is nonnegative and nondecreasing for all x ∈ R

(ii) Suppose 0 ≤ x ≤ y. Then, for all θ ∈ R we have eθx − 1 ≤ (θx)

(
eθy − 1

θy

)

(iii) For all x ∈ R+,
ex − 1

x
< ex

All these facts can be shown using calculus techniques, so we omit the proof. Now we

prove Lemma 3.9.

Proof of Lemma 3.9. First observe that if θ = 0 the statement trivially holds. If θ 6= 0, by

properties of expectation and absolute value we obtain

∣∣∣E
[(
eθε

∑n
i=1 q

+
i − 1

)(
e−θε

∑n
i=1 ui − 1

)]∣∣∣

≤E
[∣∣∣
(
eθε

∑n
i=1 q

+
i − 1

)(
e−θε

∑n
i=1 ui − 1

)∣∣∣
]

51

(a)
=|θ|εE

[∣∣∣∣∣

(
n∑

i=1

ui

)(
eθε

∑n
i=1 q

+
i − 1

)(e−θε
∑n
i=1 ui − 1

−θε∑n
i=1 ui

)∣∣∣∣∣1{
∑n
i=1 ui 6=0}

]

(b)

≤|θ|ε
(
e|θ|εnSmax − 1

|θ|εnSmax

)
E

[∣∣∣∣∣
n∑

i=1

ui

(
eθε

∑n
j=1 q

+
j − 1

)∣∣∣∣∣

]

(c)

≤|θ|ε
(
e|θ|εnSmax − 1

|θ|εnSmax

)
E

[
n∑

i=1

ui
∣∣e−θεnq⊥i − 1

∣∣
]

(d)

≤|θ|ε
(
e|θ|εSmax − 1

|θ|εSmax

)
E

[
n∑

i=1

uji

] 1
j

E

[
n∑

i=1

∣∣e−θεnq⊥i − 1
∣∣ j
j−1

] j−1
j

(e)

≤|θ|ε1+ 1
j S

j−1
j

max

(
e|θ|εSmax − 1

|θ|εSmax

)
E

[
n∑

i=1

∣∣e−θεnq⊥i − 1
∣∣ j
j−1

] j−1
j

=θ2ε2+ 1
j S

j−1
j

maxn

(
e|θ|εSmax − 1

|θ|εSmax

)(n∑

i=1

E

[∣∣∣∣
e−θεnq⊥i − 1

−θεnq⊥i

∣∣∣∣
j
j−1

|q⊥i|
j
j−11{q⊥i 6=0}

]) j−1
j

,

(3.12)

where j ∈ Z+ satisfies j > 1. Here (a) holds because if
∑n

i=1 ui = 0 then e−θε
∑n
i=1 ui−1 =

0, and by multiplying and dividing everything by |θε∑n
i=1 ui|; (b) holds by the fact item (i)

stated above, because ui ≤ Smax for all i ∈ [n] and because 0 ≤ 1{∑n
i=1 ui 6=0} ≤ 1; (c)

holds by triangle inequality and Lemma 3.14; (d) holds by Hölder’s inequality; and (e)

holds because ui ≤ Smax for all i ∈ [n], because
∑n

i=1 E [ui] = ε and because x
1
p is an

increasing function for x ≥ 0.

By L’Hospital’s rule we have

lim
ε↓0

e|θ|εnSmax − 1

|θ|εnSmax

= 1.

Then, the last step is to prove that the last expression in Equation 3.12 is O(1). To do

that we show the following claim at the end of this section.

Claim 3.15. Consider a load balancing system as described in Lemma 3.9. Then, there

52

exists θmax > 0 finite such that for all |θ| < θmax we have

(
n∑

i=1

E

[∣∣∣∣
e−θεnq⊥i − 1

−θεnq⊥i

∣∣∣∣
j
j−1

|q⊥i|
j
j−11{q⊥i 6=0}

]) j−1
j

is O(1).

An expression for θmax is provided in Equation 3.13.

Therefore,

E
[(
eθε

∑n
i=1 q

+
i − 1

)(
e−θε

∑n
i=1 ui − 1

)]
is o(ε2.

Now we prove the claim.

Proof of Claim 3.15. By Hölder’s inequality, for each i ∈ [n]

E

[∣∣∣∣
e−θεq⊥i − 1

−θεq⊥i

∣∣∣∣
j
j−1

|q⊥i|
j
j−11{q⊥i 6=0}

]

≤ E



∣∣∣∣
e−θεq⊥i − 1

−θεq⊥i

∣∣∣∣
(j
j−1)

(
j′
j′−1

)
1{q⊥i 6=0}



j′−1
j′

E
[
|q⊥i|(

j
j−1)j′

] 1
j′
,

where j′ ∈ Z+ satisfies j′ > 1. On one hand, we can choose j large so that j
j−1
≈ 1, and

j′ > 1 such that
(

j
j−1

)
j′ = 2. Then, E

[
|q⊥i|(

j
j−1)j′

] 1
j′ is O(1) by SSC.

Also, by SSC we know that ε|q⊥i| converges to zero in the mean-square sense and,

therefore, in distribution. Then, by the continuous mapping theorem [40, Theorem 10.4 in

Section 5] we have that

(
e−θε|q⊥i| − 1

−θε|q⊥i|

)(j
j−1)

(
j′
j′−1

)
=⇒ 1.

It remains to prove that E
[
e−θε|q⊥i|−1
−θε|q⊥i|

]
is finite to conclude that its expected value also

53

converges to 1. In fact, we have

−θε|q⊥i| ≤ |θ|ε|q⊥i| ≤ |θ|ε‖q⊥‖

and |θ|ε‖q⊥‖ ≥ 0. Then, by the facts item (i) and item (iii) stated above we obtain

0 ≤ e−θε|q⊥i| − 1

−θε|q⊥i|
1{q⊥i 6=0} ≤

e|θ|ε‖q⊥‖ − 1

|θ|ε‖q⊥‖
1{q⊥i 6=0} ≤ e|θ|ε‖q⊥‖1{q⊥i 6=0} ≤ e|θ|ε‖q⊥‖

Therefore,

E



(
e−θε|q⊥i| − 1

−θε|q⊥i|

)(j
j−1)

(
j′
j′−1

)
1{q⊥i 6=0}


 ≤E

[
e
|θ|(j

j−1)
(

j′
j′−1

)
ε‖q⊥‖

]

(a)

≤E
[
e
|θ|(j

j−1)
(

j′
j′−1

)
ε‖q‖
]

(b)

≤E
[
e
|θ|(j

j−1)
(

j′
j′−1

)
ε
∑n
i=1 qi

]

(c)
<∞

where (a) holds because projection is nonexpansive; (b) holds because norm-1 is greater

than Euclidean norm; and (c) holds by assumption of Theorem 3.5, choosing

|θ|
(

j

j − 1

)(
j′

j′ − 1

)
≤ Θ.

Then, the claim holds with

θmax = Θ

(
j′ − 1

2

)
, (3.13)

where we used that
(

j
j−1

)
j′ = 2. This completes the proof.

54

3.6.4 Proof of Claim 3.11

Proof of Claim 3.11. We have

0 ≤ (θε)2

2
E



(

n∑

i=1

ui

)2

 (a)

≤ε2
(
nSmaxθ

2

2

)
E

[
n∑

i=1

ui

]

(b)
=ε3

(
nSmaxθ

2

2

)

where (a) holds because, by definition of unused service, we have ui ≤ si ≤ Smax and all

terms are nonnegative; and (b) holds by Lemma 3.10.

Therefore,

(θε)2

2
E



(

n∑

i=1

ui

)2

 is O(ε3).

3.7 Conclusion and future work

In this chapter we introduced transform methods to compute the steady-state distribution

of the scaled queue lengths in heavy traffic. We focused on two-sided Laplace transform,

which is also known as MGF. We motivated the method with a single server queue in

section 2.5 and we applied it in the load balancing system under the CRP condition. In

chapter 6 we also apply it to the generalized switch. The main idea in the MGF method is

to set the drift on an exponential test function to zero. The key step is in getting a handle

on the unused service, and the paper illustrates how the unused service is handled in two

different types of queueing systems.

We discuss future work directions at the end of chapter 6 (see section 6.6).

55

CHAPTER 4

POWER-OF-D CHOICES UNDER HETEROGENEOUS SERVERS

Based on:

D. Hurtado-Lange and S. T. Maguluri, “Throughput and delay optimality of power-of-d

choices in inhomogeneous load balancing systems,” Operations Research Letters, 2021

4.1 Introduction

Two popular routing algorithms for the load balancing system are join the shortest queue

(JSQ) and power-of-d choices. Under JSQ, the arrivals of each time slot are routed to the

server with the shortest queue among all. A disadvantage of JSQ is that, if the number of

servers is high, finding the shortest queue among all may take considerable time. How-

ever, JSQ only uses the state of the system (queue length vector) and does not require any

information about the parameters of the system, such as the service rates.

Under power-of-d choices, one samples d queues uniformly at random, and routes the

arrivals to the shortest queue among these d. In this case, we also do not use information

about the service rates, but if the servers are not equal, the queue length vector may not be

stable. In other words, if the servers are heterogeneous we may have infinite queue lengths

in steady state, even when the arrival rate is strictly less than the total service rate. Hence,

under heterogeneous servers, power-of-d choices may not be throughput optimal.

The primary contribution of this chapter is the computation of necessary and sufficient

conditions for throughput optimality of power-of-d choices, that only depend on the mean

service rate vector. Specifically, we characterize a polytope where the service rate vectors

should lie. In particular, if the servers are identical our conditions are satisfied. Our result

formalizes the idea that, in order to have throughput optimality, all the queues need to be

sampled frequently enough. Then, given that power-of-d selects d queues uniformly at

56

random, our result implies that the service rates of different servers should be close to each

other; but not necessarily equal.

The second contribution of this chapter is the computation of the distribution of the

scaled vector of queue lengths in heavy traffic. We show that, if the heterogeneous service

rates lie in the interior of the polytope proposed for throughput optimality, the load bal-

ancing system operating under power-of-d choices has the same limiting distribution as a

load balancing system operating under JSQ. Therefore, our results imply that power-of-d

choices is heavy-traffic optimal.

The third contribution of this chapter is a sufficient condition for throughput optimality

under a larger class of routing policies. Specifically, we consider the following generaliza-

tion of power-of-d choices. In power-of-d choices, only sets of size d are sampled, and all

of them are observed with the same probability. In the last part of this chapter, we consider

a routing policy that selects any subset of servers with certain probability, and routes the

arrivals to the server with the shortest queue in the set. Then, we prove sufficient conditions

on the sampling probabilities for throughput optimality.

4.2 Related work

Throughput and delay optimality of the power-of-d choices routing algorithm have been

proved only when the servers are identical. If the service rates are different, there are

known counterexamples for throughput optimality [68]. In other words, if the servers are

different, power-of-d may reduce the stability region of the load balancing system. If the

dispatcher knows the service rates, throughput and delay optimality of a modified version

of power-of-d choices have been proved in [55, 69]. In this adaptation, the probability of

sampling each server is proportional to its mean service rate. However, we are interested

in studying the cases when service rates may be unknown to the dispatcher.

In [70] the authors address a similar question. They study stability of a general load

balancing system, and they obtain sufficient conditions for throughput optimality. However,

57

they approach the problem from a different perspective, and they provide conditions that

depend on the queue length processes. In this chapter, we provide conditions that only

depend on the service rates and the sampling scheme. Hence, our conditions are easier to

check.

Heavy-traffic analysis of the load balancing system operating under power-of-d choices

has been done in the literature, but only under the assumption of identical and independent

servers [63]. To the best of our knowledge, we are the first ones to obtain the heavy-traffic

behavior of this queueing system with heterogeneous servers, and without modifying the

probability of sampling each server.

4.3 Throughput optimality of power-of-d choices

The goal of this chapter is to provide necessary and sufficient conditions on the vector of

service rates such that the load balancing system operating under the power-of-d choices

routing algorithm (see Definition 4.1) is throughput and heavy-traffic optimal. Before pre-

senting the result, we establish the details of the model.

We consider a load balancing system as described in section 3.4 but, instead of assum-

ing that the arrivals and potential service per time slot are bounded, we only assume finite

second moment. Let λ 4= E [a(1)], µ 4
= E [s(1)] and µΣ

4
=
∑n

i=1 µi. Without loss of gen-

erality, we assume the vector µ is ordered from minimum to maximum, i.e., µi = µ(i) for

all i ∈ [n]. Let σ2
a

4
= Var [a(1)] be the variance of the arrival process and Σs the covariance

matrix of s(1). For each i ∈ [n], define σ2
si

4
= (Σs)i,i. It is well known that the capacity

region of the load balancing system is

C 4= {x ∈ R+ : x ≤ µΣ} , (4.1)

i.e., for each λ ∈ Int (C), there exists a routing algorithm such that {q(k) : k ∈ Z+} is

positive recurrent, and if λ /∈ C, then {q(k) : k ∈ Z+} is not positive recurrent for any

58

routing algorithm. A proof of this statement is presented in [34].

In this chapter we work with the power-of-d choices routing algorithm, also known as

JSQ(d). We define it below.

Definition 4.1. Fix d ∈ [n]. In each time slot, the power-of-d choices algorithm selects d

queues uniformly at random, and then routes the arrivals to the shortest of these. Ties are

broken at random. Formally, if queues i1, . . . , id are selected uniformly at random, then the

arrivals in time slot k are routed to the i∗th queue, where i∗ ∈ arg mini∈{i1,...,id} {qi(k)}.

Observe that the power-of-d choices algorithm does not require any information about

arrival or service rates. It just requires observing the number of jobs at d of the queues in

each time slot.

Before presenting the result we formally define throughput optimality.

Definition 4.2. A routing algorithm A is throughput optimal if the queue length process

{q(k) : k ∈ Z+} of the load balancing system operating under A is positive recurrent for

all λ ∈ Int (C), where C is defined in Equation 4.1.

Now we present the main theorem of this chapter. Recall that for a vector x ∈ Rn we

use x(i) for its ith smallest element. Then, x(1) = mini∈[n] xi and x(n) = maxi∈[n] xi, for

example.

Theorem 4.3. For any d ∈ [n− 1], define

M(d) 4=

{
y ∈ Rn

+ :

∑`
i=1 y(i)

yΣ

≥
(
`
d

)
(
n
d

) ∀d ≤ ` ≤ n− 1

}
, (4.2)

where yΣ
4
=
∑n

i=1 yi. Then, the power-of-d choices algorithm is throughput optimal for the

load balancing system described above if and only if µ ∈M(d).

Before presenting the proof of Theorem 4.3 we present some remarks that will help

interpreting the result.

59

Remark 4.4. Observe that we can equivalently defineM(d) for all d ∈ [n] as follows

M(d) 4=

{
y ∈ Rn

+ :

∑`
i=1 y(i)

yΣ

≥
(
`
d

)
(
n
d

) ∀` ∈ [n]

}
,

where we use the convention
(
`
d

)
= 0 if ` < d. Here we only added redundant constraints

toM(d), so we use the definition in Equation 4.2 to avoid confusion.

Remark 4.5. An interpretation of Theorem 4.3 is the following. In order for power-of-d

choices algorithm to be throughput optimal, faster servers should be sampled sufficiently

often. If this does not happen, it leads to the counter example in [68]. Equation 4.2 charac-

terizes the amount of imbalance between service rates that power-of-d choices can tolerate.

Note that, when the number of servers is fixed, as d increases, power-of-d choices can toler-

ate more imbalance because the right-hand side of Equation 4.2 becomes smaller. If d = 1,

which corresponds to random routing, the setM(d) is exactly the set of vectors where all

the service rates are equal. In the other extreme case, when d = n, all the inequalities in

Equation 4.2 are redundant, and M(d) is the set of all nonnegative vectors. This fact is

consistent with the throughput optimality of JSQ for any vector of service rates.

Remark 4.6. For i ∈ [n], define

νi =





0 , if 1 ≤ i ≤ d− 1
(
i−1
d−1

)
(
n
d

) , if d ≤ i ≤ n.

and let ν be a vector with elements νi. An equivalent characterization ofM(d) is the set

of all nonnegative vectors µ such that µ
µΣ

is majorized by ν. Majorization captures the

notion of imbalance, and several equivalent characterizations can be found in [71]. This

notion has been used in the study of balls and bins models in [72], and to prove optimality

of routing and servicing algorithms in [73]. This notion also shows that for fixed d and n,

the vector µ = ν is on the boundary ofM(d).

60

Remark 4.7. Theorem 4.3 establishes that if µ /∈M(d), then the power-of-d choices is not

throughput optimal. In other words, if µ /∈ M(d) there are some values of λ ∈ Int (C) for

which {q(k) : k ∈ Z+} is not positive recurrent. In fact, if µ /∈ M(d), the queue length

process is positive recurrent only if λ ∈ Int
(
C
)
, where

C 4=
{
x ∈ R+ : x ≤

(
n
d

)
(
`
d

)
∑̀

i=1

µi ∀d− 1 ≤ ` ≤ n− 1

}
.

Observe that C (C if µ /∈M(d), and C = C if µ ∈M(d). We omit the proof of this remark,

since it easily follows from the proof of Theorem 4.3.

In the proof of Theorem 4.3 we use the Foster-Lyapunov theorem (Theorem 2.4) and a

certificate that a DTMC is not positive recurrent (Theorem 2.5). Both of them are stated in

section 2.2.

Proof of Theorem 4.3. Let ε 4= µΣ − λ, and observe that λ ∈ Int (C) if and only if ε ∈

(0, µΣ). We first prove that if µ ∈M(d), then the power-of-d choices algorithm is through-

put optimal. To do that, we use the Foster-Lyapunov theorem (Theorem 2.4) with Lyapunov

function Z(q) = ‖q‖2. We have

Eq [∆Z(q(k))]

=Eq
[
‖q(k + 1)‖2 − ‖q(k)‖2]

(a)
=Eq

[
‖q(k + 1)− u(k)‖2 + ‖u(k)‖2 + 2〈q(k + 1)− u(k),u(k)〉 − ‖q(k)‖2]

(b)
=Eq

[
‖q(k) + a(k)− s(k)‖2 − ‖u(k)‖2 − ‖q(k)‖2]

(c)

≤Eq
[
‖q(k) + a(k)− s(k)‖2 − ‖q(k)‖2]

(d)
=Eq

[
‖a(k)− s(k)‖2]+ 2Eq [〈q,a(k)− s(k)〉] , (4.3)

where (a) holds after adding and subtracting u(k) to the first term, and expanding the

square; (b) holds after usingthe dynamics of the queues presented in Equation 1.2 and the

61

key property of the unused service presented in Equation 1.3, and reorganizing terms; (c)

holds because ‖u(k)‖2 ≥ 0; and (d) holds after expanding the first square and reorganizing

terms.

We analyze each of the terms in Equation 4.3 separately. For the first term, we have

Eq
[
‖a(k)− s(k)‖2] (a)

≤ Eq
[
‖a(k)‖2

]
+ E

[
‖s(k)‖2

]

(b)
= E

[
a(k)2

]
+

n∑

i=1

E
[
si(k)2

]

(c)
= λ2 + σ2

a +
n∑

i=1

(
µ2
i + σ2

si

)
,

where (a) holds after expanding the square, noticing that 〈a(k), s(k)〉 ≥ 0 and because the

potential service vector is independent of the queue lengths; (b) holds because all the ar-

rivals in one time slot are routed to the same queue; and (c) holds by definition of variance.

Define ζ1
4
= λ2 + σ2

a +
∑n

i=1

(
µ2
i + σ2

si

)
, and observe ζ1 is a finite constant. Then,

Eq
[
‖a(k)− s(k)‖2] ≤ ζ1. (4.4)

Observe that the computation of the bound in Equation 4.4 does not use any properties

of the routing algorithm. In other words, the Equation 4.4 is valid for the load balancing

system under any routing algorithm.

To compute the second term of Equation 4.3, we first compute Eq [〈q,a(k)〉]. Recall

that under power-of-d choices, d queues are chosen uniformly at random, and then the

arrivals are sent to the shortest among them. Then, we have

Eq [〈q,a(k)〉] =λ
n−d+1∑

i=1

q(i)

(
n−i
d−1

)
(
n
d

) (4.5)

because there are
(
n−i
d−1

)
ways pf sampling d queues, and make sure that q(i) is the shortest;

and there are
(
n
d

)
ways of sampling d queues uniformly at random. If there are ties on

62

the queue lengths, power-of-d breaks them at random. Hence, the result in Equation 4.5

remains valid.

Let φ(i) be the index of the ith shortest queue given q(k) = q. Then, since the potential

service is independent of the queue lengths, the second term of Equation 4.3 is

Eq [〈q,a(k)− s(k)〉] = Eq [〈q,a(k)〉]− 〈q,µ〉

=
n−d+1∑

i=1

q(i)

(
λ
(
n−i
d−1

)
(
n
d

) − µφ(i)

)
−

n∑

i=n−d+2

q(i)µφ(i). (4.6)

Define

αi
4
=





λ
(
n−i
d−1

)
(
n
d

) − µφ(i) , if 1 ≤ i ≤ n− d+ 1

−µφ(i) , if n− d+ 1 < i ≤ n.

(4.7)

Claim 4.8. The parameters αi defined in Equation 4.7 satisfy

1. αn ≤ −µ1.

2.
n∑

i=1

αi = −ε.

3. For any ` ∈ Z+ satisfying 2 ≤ ` ≤ n − 1, we have
n∑

i=`

αi ≤ −ζ2, where ζ2
4
=

min

{
µ1,

ε

(nd)

}
.

We prove Claim 4.8 at the end of this section. Now we compute an upper bound for

Equation 4.6. We obtain

Eq [〈q,a(k)− s(k)〉] =
n∑

i=1

αiq(i)

= q(1)

n∑

i=1

αi +
n∑

`=2

(
n∑

i=`

αi

)
(
q(`) − q(`−1)

)

(a)

≤ −εq(1) − ζ2

n∑

`=2

(
q(`) − q(`−1)

)

63

(b)
= q(1) (ζ2 − ε)− ζ2q(n)

(c)

≤ −ζ2q(n), (4.8)

where (a) holds by the first two properties of Claim 4.8; (b) holds after solving the tele-

scopic sum and rearranging terms; and (c) holds because ζ2 ≤ ε

(nd)
by definition, and

(
n
d

)
≥ 1. Using Equation 4.4 and Equation 4.8 in Equation 4.3 we obtain

Eq [∆Z(q(k))] ≤ ζ1 − 2ζ2q(n).

Let η > 0. Then, defining

D
4
= ζ1 and B 4=

{
q ∈ Rn

+ : max
i∈[n]

qi ≤
ζ1 + η

2ζ2

}
,

both of the conditions of Theorem 2.4 are satisfied. Therefore, if µ ∈ M(d) then the

power-of-d choices algorithm is throughput optimal.

Now we prove that if µ /∈M(d), then the power-of-d choices algorithm is not through-

put optimal. In other words, we prove that if µ /∈ M(d), there exists λ ∈ Int (C) such that

{q(k) : k ∈ Z+} is not positive recurrent.

First observe that if µ /∈ M(d), there exists ` ∈ Z+ such that d ≤ ` ≤ n − 1 and∑`
i=1 µi
µΣ

<
(`d)
(nd)

. Let `∗ be the smallest ` satisfying this condition, and δ`∗ > 0 satisfy

∑`∗

i=1 µi
µΣ

+ δ`∗ =

(
`∗

d

)
(
n
d

) . (4.9)

We use Theorem 2.5 with function V`∗(q) =
∑`∗

i=1 qi. We have

Eq [V`∗(q(k + 1))− V`∗(q(k))]

=
`∗∑

i=1

Eq [ai(k)− si(k) + ui(k)]

64

(a)

≥
`∗∑

i=1

Eq [ai(k)]−
`∗∑

i=1

µi

(b)

≥
`∗∑

i=1

Eq
[
aφ̃(i)(k)

]
−

`∗∑

i=1

µi

(c)
=

`∗∑

i=d

λ

(
i−1
d−1

)
(
n
d

) − µΣ

((
`∗

d

)
(
n
d

) − δ`∗
)

(d)
= µΣδ`∗ − ε

(
`∗

d

)
(
n
d

) ,

where (a) holds because E [si(k)] = µi and E [ui(k)] ≥ 0 for all i ∈ [n]; (b) holds by

letting φ̃(i) be the index of the ith longest element of q, and because under power-of-d

choices the arrivals are routed to the shortest queue among the d selected; (c) holds by

Equation 4.9, and because the arrivals are routed to the ith longest queue only if the other

d − 1 selected queues are larger, and this happens with probability (i−1
d−1)
(nd)

if i ≥ d and

with probability 0 otherwise (similarly to the computation of Equation 4.5); and (d) holds

because
∑`∗

i=d

(
i−1
d−1

)
=
(
`∗

d

)
and λ = µΣ − ε.

This proves conditions the first two conditions for ε > 0 satisfying

ε ≤ µΣ min

{
1, δ`∗

(
`∗

d

)
(
n
d

)
}

To prove the third condition, observe

Eq [V`∗(q(k + 1))− V`∗(q(k))]

=
`∗∑

i=1

Eq [ai(k)− (si(k)− ui(k))]

(a)

≤
`∗∑

i=1

Eq [ai(k)]

(b)

≤
n∑

i=1

Eq [ai(k)]

(c)
=λ

65

where (a) holds because ui(k) ≤ si(k) with probability 1, by definition of unused ser-

vice; (b) holds because arrivals to each queue are a nonnegative random variable; and (c)

holds because a(k) =
∑n

i=1 ai(k) and λ = E [a(k)]. Since λ < ∞, this proves the third

condition. This completes the proof of the theorem.

We now present the proof of Claim 4.8.

Proof of Claim 4.8. We prove each of the three properties. We obtain:

1. If i = n we have αn = −µφ(n) ≤ −µ1, because µ1 = mini∈[n] µi.

2. The total sum of αi’s satisfies

n∑

i=1

αi =
λ(
n
d

)
n−d+1∑

i=1

(
n− i
d− 1

)
− µΣ

(a)
= λ− µΣ = −ε,

where (a) holds because
∑n−d+1

i=1

(
n−i
d−1

)
=
(
n
d

)
.

3. If 2 ≤ ` ≤ n− d+ 1 we have that the tail sums are

n∑

i=`

αi =
λ(
n
d

)
n−d+1∑

i=`

(
n− i
d− 1

)
−

n∑

i=`

µφ(i)

(a)
=λ

(
n+1−`
d

)
(
n
d

) −
n∑

i=`

µφ(i)

(b)
=(µΣ − ε)

(
n+1−`
d

)
(
n
d

) −
n∑

i=`

µφ(i)

(c)

≤
n+1−`∑

i=1

µi −
(
n+1−`
d

)
(
n
d

) ε−
n∑

i=`

µφ(i)

(d)

≤ − ε(
n
d

) ,

where (a) holds because
∑n−d+1

i=`

(
n−i
d−1

)
=
(
n+1−`
d

)
; (b) holds by definition of ε;

(c) holds because µ ∈ M(d); and (d) holds because
(
n+1−`
d

)
≥ 1, and because

∑n+1−`
i=1 µi −

∑n
i=` µφ(i) ≤ 0, since

∑n+1−`
i=1 µi is the sum of the n + ` − 1 smallest

66

elements of µ, and
∑n

i=` µφ(i) is the sum of n+ `− 1 of the elements of µ which are

not necessarily the smallest.

If n− d+ 1 < ` ≤ n− 1 we have

n∑

i=`

αi =−
n∑

i=`

µφ(i) ≤ −µ1.

where the inequality holds because µ1 = mini∈[n] µi. Then, for all 2 ≤ ` ≤ n− 1 we

have

n∑

i=`

αi ≤ −ζ2
4
= −min

{
ε(
n
d

) , µ1

}
.

4.4 Heavy-traffic optimality

In this section we perform heavy-traffic analysis of a heterogeneous load balancing system

operating under power-of-d choices. Specifically, we prove that in the heavy-traffic limit,

the load balancing system operating under power-of-d choices behaves as a single server

queue and show that the scaled vector of queue lengths converges to a vector of exponential

random variables. This result is similar to Corollary 3.7 and Corollary 3.8. The main

difference is that in Corollary 3.7 we used the JSQ routing policy, and in Corollary 3.8 we

studied power-of-2 choices under homogeneous servers. Here we show that the same result

can be proved for power-of-d choices with heterogeneous servers, under similar conditions

to Theorem 4.3.

We parametrize the system similarly to section 3.5. Specifically, we fix a sequence of

service rate vectors {s(k) : k ∈ Z+} and take ε ∈ (0, µΣ). The arrival process to the

system parametrized by ε is an i.i.d. sequence {a(ε)(k) : k ∈ Z+} that satisfies λ(ε) 4=

E
[
a(ε)(1)

]
= µΣ − ε. Then, the heavy-traffic limit is obtained by taking ε ↓ 0. We add a

67

superscript (ε) to the queue length, arrival and unused service variables when we refer to

the load balancing system parametrized by ε.

In the next proposition we show SSC to the cone K 4=
{
x ∈ Rn

+ : xi = x` ∀i, ` ∈ [n]
}

.

For any vector x ∈ Rn, define

x‖ = 1

(∑n
i=1 xi
n

)
, x⊥

4
= x− x‖. (4.10)

Then, x‖ is the projection of x on K and x⊥ is the error of approximating x by x‖. Now

we present the result.

Proposition 4.9. Given a sequence {s(k) : k ∈ Z+} of i.i.d. random vectors, and ε ∈

(0, µΣ), consider a load balancing system operating under power-of-d choices, parametrized

by ε as described above. Suppose d ≥ 2, and that the number of arrivals and the potential

service in each time slot are bounded. Let µ ∈ Int
(
M(d)

)
and let q(ε) be a steady-state

vector such that {q(ε)(k) : k ∈ Z+} converges in distribution to q(ε) as k ↑ ∞. Let δ > 0

be such that for all ` ∈ Z+ satisfying d ≤ ` ≤ n− 1 we have

∑`
i=1 µi
µΣ

− δ ≥
(
`
d

)
(
n
d

) . (4.11)

If ε < δµΣ, then E
[
‖q(ε)
⊥ ‖j

]
≤ Jj for each j ∈ Z+ with j ≥ 1, where Jj is a finite constant

(independent of ε).

Proposition 4.9 says that the error of approximating q(ε) by q(ε)
‖ is negligible in heavy

traffic because, as ε gets smaller, the arrival rate to the system increases and, therefore, the

vector of queue lengths q(ε) becomes larger. Then, the projection q(ε)
‖ also becomes larger.

However, the error of approximating q(ε) by q(ε)
‖ , denoted as q(ε)

⊥ , has bounded moments.

Then, as ε goes to zero it becomes negligible.

Observe that the vector q(ε) is well defined, because µ ∈ Int
(
M(d)

)
⊂ M(d). Then,

from Theorem 4.3 we know that the DTMC
{
q(ε)(k) : k ∈ Z+

}
is positive recurrent for all

68

ε ∈ (0, µΣ).

Proof of 4.9. For ease of exposition, we omit the dependence on ε of the variables. Define

V (q)
4
= ‖q‖2 , V‖(q)

4
= ‖q‖‖2, W⊥(q)

4
= ‖q⊥‖.

We use Lemma 2.7 with Z(q) = W⊥(q). We start with a fact first used in [34]. Observe

that ‖q⊥‖ =
√
‖q⊥‖2 by definition of square root, and f(x) =

√
x is a concave function.

Then, by definition of concavity and the Pythagoras theorem,

∆W⊥(q) ≤ 1

2 ‖q⊥‖
(
∆V (q)−∆V‖(q)

)
. (4.12)

Then, to prove condition (C1), it suffices to upper bound Eq [∆V (q)] and lower bound

Eq
[
∆V‖(q)

]
. We start with Eq [∆V (q)]. From the proof of Theorem 4.3, we know Equa-

tion 4.4 is satisfied, i.e.,

Eq [∆V (q(k))] ≤ ζ1 + 2Eq [〈q,a(k)− s(k)〉] .

We analyze the last term differently here. Defining φ(i) as in the proof of Theorem 4.3, we

have

Eq [〈q,a(k)− s(k)〉]

=λ
n−d+1∑

i=1

q(i)

(
n−i
d−1

)
(
n
d

) −
n∑

i=1

q(i)µφ(i)

(a)
= − ε

(∑n
i=1 qi
n

)
+

n−d+1∑

i=1

q(i)

λ
(
n−i
d−1

)
(
n
d

) +
n∑

i=1

q(i)

(ε
n
− µφ(i)

)

(b)
= − ε

(∑n
i=1 qi
n

)
+

n∑

i=1

q(i)βi

where (a) holds by adding and subtracting ε
n

(
∑n

i=1 qi), and reorganizing terms; and (b)

69

holds defining for each i ∈ [n]

βi
4
=





(
n−i
d−1

)
(
n
d

) λ+
ε

n
− µφ(i) , if 1 ≤ i ≤ n− d+ 1

ε

n
− µφ(i) , if n− d+ 1 < i ≤ n

(4.13)

Observe βi = αi + ε
n

for each i ∈ [n], where αi is defined in Equation 4.7.

Claim 4.10. The parameters βi defined in Equation 4.13 satisfy

1. βn ≤ −µ(1) + ε
n

.

2.
n∑

i=1

βi = 0.

3. For any ` ∈ Z+ satisfying 2 ≤ ` ≤ n− 1 we have
∑n

i=` βi ≤ −δµΣ + ε.

We prove Claim 4.10 in subsection 4.6.1. Observe that if d = 1, the second property is

not satisfied. Using Claim 4.10 we obtain

n∑

i=1

q(i)βi =q(1)

n∑

i=1

βi +
n∑

`=2

(
n∑

i=`

βi

)
(
q(`) − q(`−1)

)

≤ (−δµΣ + ε)
(
q(n) − q(1)

)
. (4.14)

Observe that, by definition of q⊥, we have

‖q⊥‖2 =
n∑

i=1

(
qi −

∑n
j=1 qj

n

)
(a)

≤ n
(
q(n) − q(1)

)
,

where (a) holds because qi ≤ q(n) for all i ∈ [n] and 1
n

∑n
`=1 q` ≥ q(1) by definition of q(1)

and q(n). Using this result in Equation 4.14 we obtain that

n∑

i=1

q(i)βi ≤
(−δµΣ + ε√

n

)
‖q⊥‖ ≤

(−δµΣ + ε0√
n

)
‖q⊥‖ ,

70

for any ε0 ∈ (0, δµΣ). Therefore,

Eq [∆V (q(k))] ≤ ζ1 − 2ε

(∑n
i=1 qi
n

)
+ 2

(−δµΣ + ε0√
n

)
‖q⊥‖ . (4.15)

To lower bound Eq
[
∆V‖(q)

]
we only use properties of the norm and the unused ser-

vice. We obtain

Eq
[
∆V‖(q(k))

]
≥ −2ε

(∑n
i=1 qi
n

)
− ζ3, (4.16)

where ζ3
4
= 2nS2

max, and Smax is a finite constant such that si(1) ≤ Smax for all i ∈ [n]

with probability 1. Using Equation 4.15 and Equation 4.16 in Equation 4.12 we obtain

Eq [∆W⊥(q(k))] ≤ζ1 + ζ3

2 ‖q⊥‖
+

(−δµΣ + ε0√
n

)
,

which satisfies condition (C1) for η > 0 and

κ =

(
ζ1 + ζ3

2

)(
−η +

δµΣ − ε0√
n

)−1

.

Condition (C2) is trivially satisfied because potential service and arrivals in one time

slot are bounded random variables.

Using SSC, we can completely determine the behavior of the vector of queue lengths

in heavy traffic. In the next proposition we provide this result.

Theorem 4.11. Consider a set of load balancing systems operating under power-of-d as

described in Proposition 4.9. Let σ(ε)
a be the standard deviation of a(ε)(1) and assume

σa = limε↓0 σ
(ε)
a . Then, εq(ε) =⇒ Υ1 as ε ↓ 0, where Υ is an exponential random variable

with mean 1
2n

(
σ2
a + 1TΣs1

)
.

Remark 4.12. In Proposition 4.9 and Theorem 4.11 we assume that the set M(d) has

nonempty interior. This can be proved by observing that, for d ≥ 2, a vector of homoge-

71

neous service rates µ = ξ1 (with ξ > 0) satisfies all the inequalities in Equation 4.2, and

none of them is tight. Then, such µ = ξ1 ∈ Int
(
M(d)

)
. On the other hand, when d = 1,

the setM(d) only contains the homogeneous service rate vectors, which has an empty inte-

rior. Then, our heavy-traffic results are not applicable. This is consistent with the fact that

random routing is not heavy-traffic optimal.

Proof of Theorem 4.11. We use the MGF method introduced in section 3.3. In fact, our

theorem is a corollary of Theorem 3.5. We only verify that three conditions are satisfied.

We first verify that the routing algorithm is throughput optimal, which holds from The-

orem 4.3 because we assumeµ ∈M(d). The second condition is SSC to a one-dimensional

subspace, which is satisfied by Proposition 4.9. In fact, in Theorem 3.5 we require a weaker

notion of SSC, which is trivially satisfied after proving Proposition 4.9. The last condition

is existence of the MGF of ε
∑n

i=1 qi, which we formalize in Claim 4.13. We omit the

proof, since it is equivalent to the proof of Lemma 3.13.

Claim 4.13. For the load balancing system described in Theorem 4.11, there exists Θ > 0

such that E
[
eθε

∑n
i=1 q

(ε)
i

]
is finite for all θ ∈ [−Θ,Θ].

4.5 Generalization to other routing policies

In this section we generalize the sufficient conditions in Theorem 4.3 to a larger class of

routing policies. Instead of using power-of-d choices, suppose the router randomly selects

an arbitrary subset of servers, and then the arrivals are routed to the server with the shortest

queue among these. Let π : 2[n] → [0, 1] be the probability mass function that governs the

set of servers that are randomly selected in each time slot. We callRπ the routing algorithm

described above.

Theorem 4.14. Given π : 2[n] → [0, 1], consider a load balancing system as described in

section 3.4, operating under Rπ. For each subset S ⊆ [n], let π(S) be the probability of

72

sampling the servers in the set S . Let P ([n]) be the set of permutations of the elements of

the set [n], and for each τ ∈ P([n]) define

Mτ
4
=

{
y ∈ Rn

+ :

∑`
i=1 y(i)

yΣ

≤
∑̀

i=1

∑

S∈Sτi

π(S) ∀` ∈ [n− 1]

}
,

where

Sτi
4
= {S ⊆ [n] : τ(n− i+ 1) ∈ S, τ(`) /∈ S ∀` < n− i+ 1} .

Then, the routing algorithmRπ is throughput optimal if µ ∈Mτ for all τ ∈ P ([n]).

The proof is similar to the proof of Theorem 4.3, and we present a sketch below.

Proof sketch of Theorem 4.14. The proof is very similar to Theorem 4.3. In fact, the only

difference is the computation of Eq [〈q,a(k)〉]. Since the sampling scheme in power-of-d

choices is symmetric, in Theorem 4.3 we obtain the simple expression presented in Equa-

tion 4.5. In this case, we obtain

Eq [〈q,a(k)〉] =
n∑

i=1

q(i)λ

(∑

S⊆[n]:
φ(i)∈arg min`∈S q`

π(S)

)
.

We omit the rest of the proof for brevity.

4.6 Details of the proofs in section 4.4

4.6.1 Proof of Claim 4.10

Proof of Claim 4.10. We prove each of the three properties. We have:

1. If i = n we have

βn = αn +
ε

n
≤ −µ(1) +

ε

n
,

73

where we used property item 1 from Claim 4.8.

2. The total sum of βi’s satisfies

n∑

i=1

βi =
n∑

i=1

αi + ε = 0,

where we used property item 2 from Claim 4.8.

3. To prove this property we divide in 2 cases. If ` ≤ n− d+ 1 we have

n∑

i=`

βi = λ
n−d+1∑

i=`

(
n−i
d−1

)
(
n
d

) +
n∑

i=`

(ε
n
− µφ(i)

)

= (µΣ − ε)
(
n+1−`
d

)
(
n
d

) +

(
n− `+ 1

n

)
ε−

n∑

i=`

µφ(i)

(a)

≤
(
n+1−`
d

)
(
n
d

) µΣ + ε−
n−`+1∑

i=1

µ(i)

(b)

≤ ε− δµΣ

where (a) holds because ε > 0, n−`+1
n
≤ 1 and because

∑n−`+1
i=1 µi is the sum of the

smallest (n− `+ 1) elements of µ; and (b) holds by Equation 4.11 and reorganizing

terms.

If ` > n− d+ 1 we have

n∑

i=`

βi =
n∑

i=`

(ε
n
− µφ(i)

)

(a)

≤ n− `+ 1

n
ε−

n−`+1∑

i=1

µi

(b)

≤ ε− µΣ

((
n−`+1
d

)
(
n
d

) + δ

)

(c)

≤ ε− δµΣ

74

where (a) holds because
∑n−`+1

i=1 µi is the sum of the smallest (n−`+1) elements of

µ; (b) holds because n−`+1
n
≤ 1 and by Equation 4.11; and (c) because (n−`+1

d)
(nd)

≥ 0.

4.7 Conclusion and future work

In this chapter we study performance of power-of-d choices in inhomogeneous load balanc-

ing systems. We find necessary and sufficient conditions for throughput optimality and we

show that almost under the same conditions, we have heavy-traffic optimality. The condi-

tions we obtain formalize the intuition that power-of-d choices is a good routing algorithm

when the service rates are not too imbalanced. However, they do not need to be equal.

Future work is to explore routing policies as described in section 4.5 and obtain heavy-

traffic results for them.

75

CHAPTER 5

LOAD BALANCING UNDER MANY-SERVER HEAVY-TRAFFIC REGIME

Based on:

D. Hurtado-Lange and S. T. Maguluri, “Load balancing system under join the shortest

queue: Many-server-heavy-traffic asymptotics,” arXiv preprint arXiv:2004.04826v2, 2020

5.1 Introduction

So far, we have been studying the heavy-traffic asymptotics of the load balancing system. In

this regime, we keep the number of jobs constant and we increase the load to the maximum

capacity. In this chapter we work in the many-server heavy-traffic regime, where both, the

load and the number of servers, increase together. Specifically, we let n be the number of

servers and we parametrize the arrival process so that the mean arrival rate per server is

1 − n−α, where α > 0. Then, the total arrival rate to the system is n(1 − n−α). In the

many-server heavy-traffic regime, there are different phases depending on the value of α.

As α ↓ 0, we approximately approach the mean-field regime, α = 1
2

represents the Halfin-

Whitt regime [75], α = 1 represents the nondegenerate-slowdown regime (NDS) [76], and

α → ∞ can be thought of as the classical heavy-traffic regime. In this chapter, we look

at all super-NDS regimes, i.e., the regimes with α > 1 and, hence, that are more heavily

loaded than NDS. The main contributions of this chapter are summarized below:

(i) We show that the total queue length scaled by n−α (or, equivalently, the average

queue length scaled by n1−α) converges in distribution to an exponential random

variable if the load grows ‘fast enough’ with respect to the number of servers. In

particular, under power-of-d choices with constant d, we show that this result is valid

if α > 3 (see Corollary 5.11); and under JSQ the same result holds for α > 2 (see

76

Corollary 5.12). Further, we show the condition that α must satisfy under power-of-

d choices when d is a function of the number of servers. Specifically, we show that

if d 4= cnβ for some c > 0 and β ≥ 0 such that d ∈ [n], the convergence to the

exponential random variable is valid if α + β > 3 (see Theorem 5.10). We provide

two proofs to our result, which we explain in the next two contributions.

(ii) We first show the result using one-sided Laplace transform (see section 5.3 and sec-

tion 5.7). Specifically, we generalize the transform method introduced in chapter 3

for discrete-time systems in heavy traffic. In subsection 5.3.2 we generalize it to the

many-server heavy-traffic asymptotics, and in section 5.9 we further generalize it to

continuous-time model.

(iii) We compute the rate of convergence of the scaled total queue length to the exponen-

tial random variable in Wasserstein’s distance (see Theorem 5.6 and Theorem 5.19).

These are stronger versions of Theorem 5.10 and Theorem 5.1, respectively, where

we actually obtain the convergence in distribution as a consequence of the error

bound. To show this result we use Stein’s method (see section 5.10).

(iv) All these proofs are powered by multiplicative SSC results that we show in Proposi-

tion 5.3 and Proposition 5.14. We show SSC to the line generated by the vector 1,

i.e., we show that all the queue lengths are similar. Specifically, we compute bounds

for the moments of the norm of the difference between the queue length vector and its

projection on the line generated by the vector 1. Further, we compute a bound for the

MGF of its norm. These bounds grow to infinity as the number of servers increase.

However, after scaling the total queue length by n−α they become negligible, hence

the name multiplicative.

(v) We compute the rate of convergence in expected value of the total average queue

length scaled by n−α. Specifically, we show that the rate of convergence is of order

log(n)n3−β . As a consequence, we prove the convergence of the expectation under

77

the same conditions established in Theorem 5.10 (see Theorem 5.21). Similarly to

Theorem 5.10, we explicitly show that the power-of-d choices algorithm with con-

stant d and the JSQ algorithm are immediate consequences of Theorem 5.21. To

prove this result we use the drift method.

5.2 Related work

In previous chapters, we have focused on heavy-traffic analysis, where the number of

servers is kept constant and the load is increased to maximum capacity. Another popu-

lar regime is mean-field , where we keep the load constant and we increase the number of

servers.

The mean-field regime has become popular after it was used to show that the power-of-

2 choices algorithm yields queue lengths that are considerably smaller than random routing

[18, 19, 20]. It was later proved that the JSQ system behaves as an M/M/∞ system in

the mean-field regime [77]. In [78], it was shown that under power-of-d choices with d

growing with n, the fluid limit does not depend on the growth rate and, hence, power-of-d

and JSQ have the same fluid limit. More recently, it has been shown that, in this regime,

there must always be a proportion of empty queues and, hence, any routing policy that

prioritizes empty queues yields queue lengths of at most one job [79]. Under the same

logic, the join the idle queue (JIQ) policy has become popular. It was proposed in [59]

and the idea is that, whenever a server idles, it communicates its status to the dispatcher.

Then, the arrivals are routed randomly to one of the empty queues. If none of the queues

is empty, then a server is selected uniformly at random. This policy has been rigorously

analyzed in [60] under exponential job sizes, and in [80] for general job-size distributions.

In both cases, the authors show that the steady-state probability that an arriving job waits

in line vanishes as the number of servers grows to infinity.

Among the many-server heavy-traffic regimes (where the number of servers and the

load increase together), one of the most popular is the Halfin-Whit regime, where the dif-

78

ference between the service and arrival rate per server is n−1/2, i.e., α = 1
2
. This regime

was introduced in [75], where the authors present the classical analysis of the M/M/n

queue. More recently, [58] shows that the number of empty queues and the number of

queues with one customer in line are of order O(
√
n). The authors use the diffusion limits

approach, but interchange of limits is not proved. This step is completed in [26]. In [81, 82]

the work of [58] is continued. Specifically, in [81] the authors study tail asymptotics of the

stationary distribution, and in [82] they study the moments of the stationary distribution. In

[83], the authors show that JIQ routing yields diffusion-level optimality in the Halfin-Whitt

regime.

In [29], load balancing systems under several routing policies in the sub-Halfin-Whitt

regime are studied, and in [84] the analysis is extended to the super-Halfin-Whitt regime,

i.e., when α ∈
[

1
2
, 1
)
. In [85], the authors also focus on the super-Halfin-Whitt regime, and

they compute the asymptotic distribution of the (centered and scaled) queue lengths. In

[86] a load balancing system operating under power-of-d, where jobs are batches of tasks,

is analyzed. Specifically, the authors find conditions on the value of d (as a function of the

number of servers, the load and the number of tasks per job) such that power-of-d choices

achieves zero delay in sub-Halfin-Whitt regime.

The NDS regime was introduced in [76] in the context of an M/M/n queue, and the

author shows that the regime yields new diffusion processes. More recently, it has been

used to compare routing policies in the load balancing system [79]. Specifically, the authors

in [79] characterize the diffusion approximation of JSQ and propose a new policy with less

communication overhead, and that achieves JSQ optimality. This policy is called idle-one-

first, and prioritizes routing to servers that are idling or have one job.

Multiplicative SSC has been used in a variety of contexts in the literature [87, 88, 89,

90, 64, 22, 9]. The most relevant work in our context are the results in [88, 22]. In [88]

the authors study a parallel-server system in the Halfin-Whitt regime, and they propose a

framework for establishing SSC in queueing systems with multiple server pools in parallel

79

Table 5.1: Literature review for asymptotic regimes depending on the value of α.

Value of α Regime References
α ↓ 0 (intuitively) Mean-field [77, 80, 19, 20, 78, 60, 18]
α ∈

(
0, 1

2

)
Sub-Halfin-Whitt [29, 86]

α = 1
2

Halfin-Whitt [81, 82, 26, 58, 75, 83]

α ∈
(

1
2
, 1
)

Super-Halfin-Whitt [84, 85]

α = 1
Nondegenerate Slow-
down (NDS)

[76, 79]

α ∈ (1, 2] Super-NDS Open question
α ∈ (2,∞) Super-NDS This chapter

α→∞ (intuitively) Classical heavy-traffic
[6, 7, 9, 3, 2, 8, 5, 4, 44, 16,
34, 63, 67, 91, 24]

and different customer classes. They use the fluid dynamics to establish their result. In

[22] the multiplicative SSC result is used in the context of the heavy-traffic analysis of a

bandwidth sharing network, and they use the drift method to analyze it. Their proof is

based on bounding the drift of the error of approximating the actual vector of flows by

its projection on the subspace where SSC occurs, which is traditional in the drift method

[34, 15, 14]. In the traditional drift method technique, the SSC bounds are independent

of the heavy-traffic parameter. However, in [22], the bounds depend on the heavy-traffic

parameter and the authors show that they become negligible after scaling. In this chapter,

we adopt their technique to show SSC and we use it in the context of a load balancing

system in the many-server heavy-traffic regime.

In Table 5.1 we show a summary of the related work presented above, classified accord-

ing to the value of α. We also include the literature on heavy-traffic analysis introduced in

previous chapters.

5.3 Load balancing under JSQ

Consider the load balancing model introduced in chapter 3. We start introducing the details

of the many-server heavy-traffic parametrization. For each i ∈ [n], assume E [si(1)] = 1

80

and Var [si(1)] = σ2
s . We are interested in the many-server heavy-traffic limit, so we

parametrize the system by the number of servers n in the following way. We add a su-

perscript (n) to the variables when we refer to the parametrized system. Let λ(n) 4
=

E
[
a(n)(1)

]
= n (1− n−α), where α > 0 and Var

[
a(n)(1)

]
= nσ2

a. Observe that the mean

and variance of the arrival rate increases linearly with n. Hence, the upper boundAmax also

needs to be a function of n. Let Ãmax > 0 be a finite constant such that a(n)(1) ≤ nÃmax

with probability 1 for each n.

Note that

n∑

i=1

E [si(1)]− E
[
a(n)(1)

]
= n1−α,

which is positive. Therefore, the Markov Chain
{
q(n)(k) : k ∈ Z+

}
is positive recurrent

[34, Lemma 2]. Assume P [a(k)− si(k) = 0] > 0 for some i ∈ [n]. Then,
{
q(n)(k) : k ∈ Z+

}

is also aperiodic because P [q(k) = q(k + 1)] > 0. Then, the vector of queue lengths con-

verges in distribution to a steady-state random vector, that we denote q(n). Let a(n) be a

steady-state random variable with the same distribution as a(n)(1) and s be a steady-state

random vector with the same distribution as s(1). Let a(n) be the vector of arrivals after

routing in steady state, given that the queue lengths are q(n) and a(n) jobs arrive to the sys-

tem, and let u(n) be the vector of unused service in steady-state, given q(n), a(n) and s(n).

Define
(
q(n)

)+ 4
= q(n) + a(n) − s+ u(n) as the vector of queue lengths one time slot after

q(n) is observed, given a(n) and s. Then, we have
(
q

(n)
i

)+

u
(n)
i = 0 with probability 1 for

all i ∈ [n].

In the next subsections we prove Theorem 5.1, using two different approaches.

Theorem 5.1. Consider a sequence of load balancing systems operating under JSQ, parametrized

by n as described above. If α > 4, then n−α
∑n

i=1 q
(n)
i ⇒ Υ as n → ∞, where Υ is an

exponential random variable with mean σ2
a+σ2

s

2
.

Similarly to the classical heavy-traffic regime, proving SSC and bounding the unused

81

service are essential in the proof of Theorem 5.1. Further computing the expected total un-

used service in steady state is essential in the proof of SSC and in the proof of Theorem 5.1.

We state the result below, as it will be repeatedly in the rest of this section.

Lemma 5.2. Consider a load balancing system operating under JSQ, parametrized by n

as described above. Then,

E

[
n∑

i=1

u
(n)
i

]
= n1−α.

Proof of Lemma 5.2. In this proof we omit the dependence on n of the variables for ease

of exposition. We set to zero the drift of V`(q) =
∑n

i=1 qi. Before doing it, we should show

that E [V`(q)] < ∞. This result is a direct consequence of [34, Proposition 3], so we omit

the proof. Setting the drift to zero we obtain

0 = E
[
V`(q

+)− V`(q)
]

= E

[
n∑

i=1

(
q+
i − qi

)
]

(a)
= E

[
n∑

i=1

(ai − si + ui)

]
,

where (a) holds by the dynamics of the queues presented in Equation 1.2 and by definition

of q+. Rearranging terms we obtain

E

[
n∑

i=1

ui

]
= E

[
n∑

i=1

(si − ai)
]

(a)
=

n∑

i=1

E [si]− E [a]

= n1−α,

where (a) holds because a =
∑n

i=1 ai by definition.

Observe that in the proof of Lemma 5.2 we do not specifically use that the routing

82

policy is JSQ. In fact, all we need is a routing policy such that E
[∑n

i=1 q
(n)
i

]
< ∞, and

this condition is usually satisfied by throughput optimal policies. For example, power-of-d

choices satisfies this condition as well.

5.3.1 State space collapse

The goal of this section is to show that when α > 4, the average queue length in the

load balancing system in the many-server heavy-traffic limit behaves similarly to the clas-

sical heavy-traffic regime. It is known that the load balancing system operating under JSQ

exhibits one-dimensional SSC in classical heavy traffic, i.e., in the limit it behaves as a

single-server queue. In [34], SSC is proved by showing that the error of approximating the

actual vector of queue lengths by its projection on the line where SSC occurs is bounded,

and the bound does not depend on the traffic intensity. Therefore, as the traffic intensity

increases, this error becomes negligible. In this case, the traffic intensity depends on the

number of servers, so we need to show that the bound becomes negligible as n increases.

Before stating the result we introduce notation. Given a vector x ∈ Rn, let

x‖
4
=

(
n∑

i=1

xi
n

)
1 and x⊥

4
= x− x‖. (5.1)

Then, x‖ is the projection of x on the line generated by the vector 1, and x⊥ is the error of

approximating x by x‖. In this section we prove the following proposition.

Proposition 5.3. Consider a load balancing system operating under JSQ, parametrized by

n as described above. Let δ ∈ (0, 1) and n0 ∈ Z+ be such that δ ≤ 1−n−α for all n ≥ n0.

Then, there exists a finite constant C such that for any j ∈ Z+ with j ≥ 1, we have

E
[∥∥∥q(n)

⊥

∥∥∥
j
] 1
j

≤ Cjn3. (5.2)

83

Additionally, if θ ≤ 1

4Amaxn
5
2−α

log
(

1 + δ

4Amaxn
3
2

)
we have

E
[
exp

(
θn1−α

∥∥∥q(n)
⊥

∥∥∥)] ≤ δ exp (2θn3−α
δ

)

δ + 4Amaxn
3
2

(
1− exp

(
4θAmaxn

5
2−α
)) . (5.3)

In the proof of Proposition 5.3 we use the moment and exponential bounds based on

drift arguments presented in Lemma 2.7 and Lemma 2.8.

5.3.2 Proof of Theorem 5.1 using transform method

In this section we prove Theorem 5.1 using the Transform method introduced in chapter 3.

We use one-sided Laplace transform.

Proof of Theorem 5.1. For ease of exposition, in this proof we omit the dependence on n

of the variables. The first step is to prove an ‘exponential version’ of the key property of

the unused service presented in Equation 1.3. We state the result below, and we prove it in

subsection 5.6.1.

Lemma 5.4. Consider a load balancing system operating under JSQ, parametrized by n

as described in Theorem 5.1, and suppose α > 4. Let θ̂
4
= θ

(
σ2
a+σ2

s

2

)
, where θ < 0 is a

finite parameter. Then, there exists Θ̃ > 0 such that for all |θ̂| < Θ̃ we have

∣∣∣E
[(

exp
(
θ̂n−α

∑n
i=1

(
q
(n)
i

)+
)
− 1
)

(exp (−θ̂n−α∑n
i=1 u

(n)
i)− 1)

]∣∣∣ is o
(
n1−2α

)
,

where q+
Σ represents the total queue length one time slot after observing qΣ.

Rearranging terms in the expression of Lemma 5.4 we obtain

E [exp (θ̂n−α∑n
i=1 q

+
i)]− E [exp (θ̂n−α∑n

i=1 qi)]E
[
exp

(
θ̂n−α(a−

∑n
i=1 si)

)]

= 1− E [exp (−θ̂n−α∑n
i=1 ui)] + o

(
n1−2α

)
,

where we used the dynamics of the queues presented in Equation 1.2, the fact that a =

84

∑n
i=1 ai, and that the arrival process to the system and the potential service processes are

independent of the queue lengths.

Since θ̂ < 0, we know E [exp (θ̂n−α∑n
i=1 qi)] ≤ 1 < ∞. Then, we can set its drift to

zero, i.e., we set E [exp (θ̂n−α∑n
i=1 qi)] = E [exp (θ̂n−α∑n

i=1 q
+
i)]. Using this property and

rearranging terms we obtain

E [exp (θ̂n−α∑n
i=1 qi)] =

1− E [exp (−θ̂n−α∑n
i=1 ui)] + o (n1−2α)

1− E
[
exp

(
θ̂n−α(a−

∑n
i=1 si)

)] (5.4)

Our goal is to take the limit as n→∞. Observe that the right-hand side of Equation 5.4

yields a 0
0

form in the limit. Then, we take the Taylor expansion with respect to θ̂ of the

numerator and denominator. For the numerator we obtain

1− E [exp (−θ̂n−α∑n
i=1 ui)] = θ̂n−αE

[
n∑

i=1

ui

]
+ o

(
n1−2α

)
= θ̂n1−2α + o

(
n1−2α

)
,

where the last equality holds by Lemma 5.2. The o (n1−2α) term arises because for all

j ≥ 2 we have

∣∣∣∣∣∣
θ̂jn−jα

j!
E



(

n∑

i=1

ui

)j


∣∣∣∣∣∣

(a)
=
|θ̂|jn−jα

j!
E



(

n∑

i=1

ui

)j−1(n∑

i=1

ui

)


(b)

≤ |θ̂|
jSj−1

max

j!
nj(1−α)−1E

[
n∑

i=1

ui

]

(c)
=
|θ̂|jSj−1

max

j!
nj−α(j+1),

where (a) holds because ui ≥ 0 with probability 1 for all i ∈ [n] by definition of unused

service; (b) holds because 0 ≤ ui ≤ si ≤ Smax; and (c) holds by Lemma 5.2. Also,

j − α(j + 1) − (1 − 2α) = (j − 1)(1 − α), which is negative for all α > 1. Then, it is

negative for α > 4.

85

For the denominator we obtain

1− E
[
exp

(
θ̂n−α(a−

∑n
i=1 si)

)]

= −θ̂n−αE
[
a−

n∑

i=1

si

]
− θ̂2n−2α

2
E



(
a−

n∑

i=1

si

)2

+ o

(
n1−2α

)

(a)
= θ̂n1−2α − θ̂2n1−2α

2

(
σ2
a + σ2

s

)
− θ̂2n2−4α

2
+ o

(
n1−2α

)
,

where (a) holds by definition of variance and because E [
∑n

i=1 si − a] = n1−α. The

o (n1−2α) arises similarly to the case of the numerator. We omit the details for brevity.

Putting everything together and canceling θ̂n1−2α from the numerator and the denomi-

nator we obtain

E [exp (θ̂n−α∑n
i=1 qi)] =

1 + o(1)

1− θ̂
(
σ2
a + σ2

s

2

)
+ o(1)

=
1 + o(1)

1− θ + o(1)
,

where the last equality holds because θ̂ = 2θ
σ2
a+σ2

s
. Therefore,

lim
n→∞

E [exp (θ̂n−α∑n
i=1 qi)] =

1

1− θ ,

which is the one-sided Laplace transform of an exponential random variable with mean 1.

This completes the proof.

5.4 Rate of convergence in Wasserstein’s distance

A different approach to show Theorem 5.1 is using Stein’s method, where one additionally

obtains the rate of convergence in Wasserstein’s distance. We present a definition of this

metric and the result below.

86

Definition 5.5. For two probability measures ν1 and ν2, the Wasserstein’s distance between

them is

dW (ν1, ν2)
4
= sup

h∈Lip(1)

∣∣∣∣
∫
h(x) dν1(x)−

∫
h(x) dν2(x)

∣∣∣∣ ,

where Lip(1) = {h : R→ R such that |h(x)− h(y)| ≤ |x− y|} is the set of Lipschitz

functions with constant 1.

For random variables X and Y with laws ν1 and ν2, respectively, we write dW (X, Y)

instead of dW (ν1, ν2), and when the measures are clear from the context we write

dW (X, Y) = sup
h∈Lip(1)

|E [h(X)]− E [h(Y)]| . (5.5)

Theorem 5.6. Consider a load balancing system operating under JSQ, parametrized by n

as described in Section 5.3. Let Z be an exponential random variable with mean 1. Then,

we have

dW

(
2n−α

σ2
a + σ2

s

n∑

i=1

q
(n)
i , Z

)

≤ 1

σ2
a + σ2

s

(
5Smaxn

1−α + n1−2α + CSmax(α− 1)n4−α dlog (n)en 1
dlog(n)e

+
4n2−3α

3(σ2
a + σ2

s)
(Amax + 2Smax)3

)
.

where C
4
= CSmaxe

1
2e

+1 and C is the constant from Proposition 5.3.

It is known that convergence to zero of the Wasserstein’s distance implies convergence

in distribution [92, Theorem 2]. Hence, Theorem 5.1 is an immediate consequence of

Theorem 5.6.

We omit the proof of Theorem 5.6, since it is very similar to the proof of Theorem 5.19.

87

5.5 Load balancing under power-of-d choices

As mentioned in chapter 4, JSQ is a special case of the power-of-d choices routing algo-

rithm. In this section, we present the many-server heavy-traffic asymptotics of the average

queue length in a load balancing system operating under this routing algorithm. We omit

the proof, since it is similar to the proofs in chapter 4 and section 5.3.

Theorem 5.7. Consider a sequence of load balancing systems operating under power-of-d

choices, parametrized by n as described in section 5.3. Let d = cnβ , where c, β > 0 are

constants. If α + β > 11
2

, then n−α
∑n

i=1 q
(n)
i ⇒ Υ as n→∞, where Υ is an exponential

random variable with mean σ2
a+σ2

s

2
.

Below we state the SSC result that we use in the proof of Theorem 5.7.

Proposition 5.8. Consider a load balancing system operating under power-of-d choices,

parametrized by n as described above. Let δ ∈ (0, 1) and n0 ∈ Z+ be such that δ ≤ 1−n−α

for all n ≥ n0. Then, there exists a finite constant C such that for any j ∈ Z+ with j ≥ 1,

we have

E
[∥∥∥q(n)

⊥

∥∥∥
j
] 1
j

≤ C

(
jn

9
2

d− 1

)
.

Additionally, if θ ≤ 1

4Ãmaxn
5
2−α

log
(

1 + δ
4Ãmaxn5

)
we have

E
[
exp

(
θn1−α

∥∥∥q(n)
⊥

∥∥∥)] ≤ (1− δ)(d− 1) exp
(

2θn
9
2−α

(1−δ)(d−1)

)

(1− δ)(d− 1) + 4Ãmaxn5
(
1− exp

(
4θÃmaxn

5
2−α
)) .

Recall that if we set d = n, power-of-d choices is equivalent to JSQ. However, if we use

d = n in Theorem 5.7 and Proposition 5.8, we do not recover the results from section 5.3.

Exploring this gap is future work.

88

5.6 Details of the proofs of section 5.3

5.6.1 Proof of Lemma 5.4

We use the following lemma, which was proved in chapter 3 (see Lemma 3.14). We state

it here for completeness.

Lemma 5.9. Consider a load balancing system operating under JSQ, parametrized by n

as described in section 5.3. Then, for any ζ ∈ R and k ∈ Z+ we have

n∑

i=1

u
(n)
i (k)

(
exp

(
ζ
n

∑n
j=1 q

(n)
j (k+1)

)
− 1
)

=
n∑

i=1

u
(n)
i (k) (exp (−ζq(n)

⊥i (k+1))− 1) ,

where q(n)
⊥i (k + 1) is the ith element of q(n)

⊥ (k + 1).

Now we prove Lemma 5.4.

Proof of Lemma 5.4. We have

|E [(exp (θ̂n−α∑n
i=1 q

+
i)− 1) (exp (−θ̂n−α∑n

i=1 ui)− 1)]|

≤ E [|(exp (θ̂n−α∑n
i=1 q

+
i)− 1) (exp (−θ̂n−α∑n

i=1 ui)− 1)|]

(a)
= |θ̂|n−αE

[(
n∑

i=1

ui

)
|exp (θ̂n−α∑n

i=1 q
+
i)− 1|

(
exp (−θ̂n−α∑n

i=1 ui)− 1

−θ̂n−α∑n
i=1 ui

)
1{∑n

i=1 ui 6=0}

]

(b)

≤ |θ̂|n−α
(

exp (−θ̂n−αSmax)− 1

−θ̂n−αSmax

)
E

[
n∑

i=1

ui
∣∣exp

(
θ̂n−α

∑n
j=1 q

+
j

)
− 1
∣∣
]

(c)

≤ |θ̂|n−α
(

exp (−θ̂n−αSmax)− 1

−θ̂n−αSmax

)
E

[
n∑

i=1

ui |exp (−θ̂n1−αq⊥i)− 1|
]

(d)

≤ |θ̂|n−α
(

exp (−θ̂n−αSmax)− 1

−θ̂n−αSmax

)
E

[
n∑

i=1

uji

] 1
j

E

[
n∑

i=1

|exp (−θ̂n1−αq⊥i)− 1|
j
j−1

] j−1
j

(5.6)

where j > 1 is an integer number. Here (a) holds after multiplying and dividing by

|θ̂|n−α∑n
i=1 ui, because if

∑n
i=1 ui = 0 then exp (θ̂n−α∑n

i=1 ui) − 1 = 0, and because

89

the function f(x) = ex−1
x

is nonnegative; (b) holds because the function f(x) = ex−1
x

is

nonnegative and increasing, and because 0 ≤ ui ≤ Smax with probability 1 for all i ∈ [n];

(c) holds by Lemma 5.9 and the triangle inequality; and (d) holds by Hölder’s inequality.

We analyze each expression in Equation 5.6 separately. First observe that

lim
n→∞

exp (−θ̂n−αSmax)− 1

−θ̂n−αSmax

= 1.

The unused service is nonnegative by definition, then

0 ≤ E

[
n∑

i=1

uji

]
(a)

≤ Sj−1
max E

[
n∑

i=1

ui

]
(b)
= Sj−1

maxn
1−α

where (a) holds because ui ≤ Smax with probability 1 for all i ∈ [n]; and (b) holds by

Lemma 5.2.

For the last term we use Hölder’s inequality again. Let j′ > 1 be an integer number.

Then, for each i ∈ [n] we have

E
[
|exp (−θ̂n1−αq⊥i)− 1|

j
j−1

]

= |θ̂|
j
j−1n

j
j−1

(1−α)E



(

exp (−θ̂n1−αq⊥i)− 1

−θ̂n1−αq⊥i

) j
j−1

|q⊥i|
j
j−1 1{q⊥i 6=0}




(a)

≤ θ̂
j
j−1n

j
j−1

(1−α)


E



∣∣∣∣∣
exp (−θ̂n1−αq⊥i)− 1

−θ̂n1−αq⊥i

∣∣∣∣∣

(j
j−1)

(
j′
j′−1

)
1{q⊥i 6=0}







j′−1
j′ (

E
[
|q⊥i|

j
j−1

j′
]) 1

j′
,

where j′ > 1 is an integer number. Here, (a) holds by Hölder’s inequality. We bound each

of these terms.

Using Proposition 5.3 for the last term we obtain

0 ≤ E
[
|q⊥i|

j
j−1

j′
] j−1
jj′ (a)

≤ E
[
‖q⊥‖

j
j−1

j′
] j−1
jj′ ≤ Cn3

(
jj′

j − 1

)
, (5.7)

90

where (a) holds if j
j−1

j′ ≥ 2, by the inequalities between norms.

On the other hand, since ex−1
x
≤ e|x|, we obtain


E



∣∣∣∣∣
exp (−θ̂n1−αq⊥i)− 1

−θ̂n1−αq⊥i

∣∣∣∣∣

(j
j−1)

(
j′
j′−1

)
1{q⊥i 6=0}







j′−1
j′

≤
(
E
[
exp

(
|θ̂|n1−α

(
j′−1
j′

)
(j−1

j)|q⊥i|
)]) j′−1

j′
, (5.8)

and the last term can be bounded similarly to Equation 5.7, using Lemma 2.8 for

|θ̂|
(
j′ − 1

j′

)(
j − 1

j

)
≤ 1

4Amaxn
5
2
−α

log

(
1 +

δ

4Amaxn
3
2

)
.

Observe that the right-hand side grows to infinity as n → ∞. Then, there exists n∗0 ∈ Z+

such that the lemma is satisfied with

Θ̃
4
=

(
j′

j′ − 1

)(
j

j − 1

)(
1

4Amax(n∗0)
5
2
−α

)
log

(
1 +

δ

4Amax(n∗0)
3
2

)
.

Further, the upper bound in Equation 5.8 converges to a constant as n → ∞. We omit the

details for brevity.

Putting everything together in Equation 5.6 we obtain

|E [(exp (θ̂n−α∑n
i=1 q

+
i)− 1) (exp (−θ̂n−α∑n

i=1 ui)− 1)]| ≤ L(n)n4−2α+ 1−α
p ,

where L(n) is of order O(1). Finally, observe that 4 − 2α + 1−α
j

< 1 − 2α if and only if

α > 3j + 1, and j can be taken as close to one as desired. Therefore, the lemma holds for

all α > 4.

91

5.7 Load balancing in continuous time model and asymptotic result

In the load balancing model that we studied in the previous sections of this chapter, we have

that the expected number of arrivals per time slot is n(1−n−α), and all the arrivals of each

time slot are routed to the same server. Then, as n grows, the number of jobs that are routed

in each time slot tends to grow and the number of jobs in the server that receives the new

arrivals dramatically grows. Hence, the SSC result that we proved is weak. Even if we have

q(n)(k) = q
(n)
‖ (k) for a certain k ∈ Z+ (i.e., perfect SSC), we will have a large q(n)

⊥ (k + 1)

if n is large. Intuitively, if we were able to route the jobs one by one, we would obtain a

better SSC result and, hence, we would obtain that the average queue lengths behaves as

in the classical heavy-traffic regime for smaller values of α. In this section, we propose to

work with a continuous-time model, and we observe that the value of α indeed improves

and, additionally, we no longer have the gap between power-of-d choices with d = n and

JSQ. We start specifying the model.

Consider a load balancing system operating in continuous time, that is, a queueing sys-

tem with n parallel servers, each of them with an infinite buffer. Arrivals to the system

occur according to a Poisson process at rate λn, where λ ∈ (0, 1). Upon arrival, a dis-

patcher immediately routes the new job to one of the servers, where they wait in line until

the server can process them. All the servers are identical, and all the arriving jobs have

exponential size with mean 1. Routing occurs according to power-of-d choices, where

d ∈ Z+ is of the form d
4
= cnβ for constants c > 0 and β ∈ [0, 1] such that d ∈ [n].

Specifically, upon arrival, d servers are sampled uniformly at random and the new job is

routed to the server with the shortest queue among those d. Ties are broken uniformly at

random. Observe that if c = β = 1, then d = n and power-of-d choices is equivalent to

JSQ.

For each t ∈ R+ and each i ∈ [n], let qi(t) be the number of jobs in queue i at time

t, including the job in service (if any). Then, the queue length process {q(t) : t ∈ R+} is

92

a continuous-time Markov chain (CTMC) with the generator matrix G defined in Equa-

tion 5.9. Let q ∈ Zn+, and for each i ∈ [n] let ψq(i) be the index of the ith smallest element

of q. Then, for any q′ ∈ Zn+ we have that the transition rate from state q to state q′ is

Gq,q′
4
=





−
(
λn+

∑n
i=1 1{qi>0}

)
if q = q′,

1 if qi > 0 and q′ = q − e(i), with i ∈ [n],

λn

(
n−i
d−1

)
(
n
d

) if q′ = q + e(ψq(i)),

0 otherwise.

(5.9)

The first case is the additive inverse of the sum of the other cases; the second case corre-

sponds to a departure from queue i, which occurs at rate 1 and it can only happen if the

queue is nonempty; and the third case corresponds to an arrival to the ith shortest queue,

and the rate holds because of the following reason. Arrivals occur at rate λn, and the new

arrival is routed to the ith shortest queue (which has index ψq(i)) if it is the shortest among

the d randomly selected queues. There are
(
n
d

)
ways to select d queues uniformly at random

and, out of those selections, only
(
n−i
d−1

)
would result in routing to the ith shortest queue.

We are interested in the steady-state analysis of the load balancing system described

above. First observe that the Markov chain is irreducible and nonexplosive. Additionally,

the total arrival rate to the system (λn) is strictly smaller than the total service rate (n) for

any λ ∈ (0, 1). Then, the queue length process is also positive recurrent. Hence, stationary

distribution exists and it is unique [37, Proposition 6.9b]. Let q be a steady-state random

vector which is limit in distribution of {q(t) : t ∈ R+}, and define qΣ

4
=
∑n

i=1 qi.

We parametrize the load balancing system as follows. Consider α > 0 and let λ(n) 4=

1−n−α be the arrival rate per server to the system. Then, the total arrival rate is λ(n)n. Let
{
q(n)(t) : t ∈ R+

}
be the queue length process of the nth system and q(n) a steady-state

random vector which is limit in distribution of
{
q(n)(t) : t ∈ R+

}
. In the next theorem we

present the main result of this chapter.

93

Theorem 5.10. Consider a sequence of load balancing systems operating under power-of-

d, parametrized by n as described above. If α + β > 3, then n−αq(n)
Σ ⇒ Υ as n → ∞,

where Υ is an exponential random variable with mean 1.

Immediate corollaries of Theorem 5.10 are the cases of power-of-dwith constant d, and

JSQ. We formally present these results below.

Corollary 5.11. Consider a sequence of load balancing systems operating under power-

of-d choices, parametrized by n as described Theorem 5.10. Suppose d = c, where c ∈ Z+

is a fixed parameter. If α > 3, then n−αq(n)
Σ ⇒ Υ as n → ∞, where Υ is an exponential

random variable with mean 1.

The proof of Corollary 5.11 holds easily after setting β = 0. Now we present a result

for the load balancing system under JSQ.

Corollary 5.12. Consider a sequence of load balancing systems operating under JSQ,

parametrized by n as described in Theorem 5.10. If α > 2, then n−αq(n)
Σ ⇒ Υ as n→∞,

where Υ is an exponential random variable with mean 1.

The proof of Corollary 5.12 holds after letting c = β = 1 in Theorem 5.10.

Remark 5.13. In the classical heavy-traffic regime, one defines the heavy-traffic parameter

as ε
4
= µΣ−λΣ, where µΣ is the total service rate (the sum of the mean service rate of each

server) and λΣ is the total arrival rate. Then, one parametrizes the vector of queue lengths

by ε and can show that ε 1
n

∑n
i=1 q

(ε)
i ⇒ Υ̃, where Υ̃ is an exponential random variable

whose mean depends on the variance of the arrival and service processes. Further, one

can show that εq(ε) ⇒ 1Υ̃. We presented the details of this analysis in chapter 3.

In this chapter, we study the many-server heavy-traffic regime, and our goal is to find

the value of α such that the scaled average queue length converges in distribution to an

exponential random variable. In Theorem 5.10 we show convergence in distribution of the

total queue length scaled by n−α, which is equivalent to the average queue length scaled

94

by n1−α. Additionally, observe that the difference between the total service and arrival rate

in this chapter is n1−α. In other words, in the many-server heavy-traffic regime, n1−α plays

the role of the heavy-traffic parameter ε. Further, in the classical heavy-traffic regime there

is an analogous result to Lemma 5.15 (proved in subsection 5.8.1), which is key to bound

the unused service.

5.8 Multiplicative state space collapse

Before stating the result formally, we introduce some notation. Given a vector x ∈ Rn
+,

define

x‖
4
= 1

(∑n
i=1 xi
n

)
, and x⊥

4
= x− x‖. (5.10)

Then, x‖ is the projection of x on the line generated by 1, and x⊥ represents the error of

approximating x by x‖. Now we introduce the result.

Proposition 5.14. Consider a load balancing system operating under power-of-d choices,

as described in section 5.7, and let λ0 ∈ (0, 1). If c and β are such that d = cnβ ≥ 2, then

for any λ ∈ (λ0, 1):

1. There exists a finite constant C, which is independent of λ, β and n, such that for any

positive integer j we have

E
[
‖q⊥‖j

]
≤ C

(
n2

cnβ − 1

)j
jj+

1
2 . (5.11)

2. Let e be Euler’s constant and C
4
= C exp (1

2e
). Then, for any positive integer j we

have

E
[
‖q⊥‖j

] 1
j ≤ Cj

(
n2

cnβ − 1

)
. (5.12)

95

3. Let θ∗ ∈ R be such that |θ∗| < 1
4

log
(

1 + λ0(cnβ−1)
8n

)
. Then,

E [exp (θ∗‖q⊥‖)] ≤
λ0(cnβ − 1) exp

(
θ∗n2

λ0(cnβ−1)

)

λ0(cnβ − 1) + 2n (1− exp (4θ∗))
. (5.13)

In Proposition 5.14 we give an upper bound for the j th moment, the j th norm and the

MGF of ‖q⊥‖. Observe that these upper bounds are independent of λ, but they depend on

n and d. Our SSC result is multiplicative because the bounds grow to infinity as n → ∞.

However, after scaling, they become negligible.

Before presenting the proof of Proposition 5.14 we present a preliminary result that will

be repeatedly used in the rest of this section.

5.8.1 Preliminary result

A key challenge when studying the load balancing system described in section 5.7 is to

handle the indicator function that arises from the second case in Equation 5.9. Specifically,

when one computes the drift of any function, we get a term of the form 1{qi>0} for each

i ∈ [n]. This term represents that service cannot occur at empty queues and, therefore, the

queue lengths cannot be negative. In this chapter, we handle this indicator function using

the property 1{qi>0} = 1 − 1{qi=0} for every i ∈ [n] and the following lemma. In fact,

Lemma 5.15 is repeatedly used in the proof of SSC, in the two proofs that we provide for

Theorem 5.10 and in the proof of Theorem 5.21.

Lemma 5.15. Consider a load balancing system as described above, where the routing

policy is throughput optimal. Let λ ∈ (0, 1) be the arrival rate per server, and let q be

a steady-state random vector which is limit in distribution of {q(t) : t ∈ R+}. Then, if

E [qΣ] <∞ we have

E

[
n∑

i=1

1{qi=0}

]
= n(1− λ).

96

Note that if we use λ(n) in this lemma, we obtain

E

[
n∑

i=1

1{
q
(n)
i =0

}
]

= n1−α.

Now we prove the result.

Proof of 5.15. We consider the test function V`(q) =
∑n

i=1 qi. Since E [qΣ] < ∞, we can

set to zero the drift of V`(q) in steady state. Note that we use the definition of drift in

continuous time, provided in Definition 2.3. We obtain

∆V`(q) = λn

((
n∑

i=1

qi + 1

)
−

n∑

i=1

qi

)
+

n∑

j=1

(
1− 1{qj=0}

)
((

n∑

i=1

qi − 1

)
−

n∑

i=1

qi

)

= λn− n+
n∑

i=1

1{qi=0}.

Taking expected value with respect to the stationary distribution, and reorganizing terms

we obtain the result.

Observe that in Lemma 5.15 we do not need to assume that routing occurs according

to power-of-d choices. In fact, this proof has only two steps: (i) Determine the drift of the

function V`(q); and (ii) Set the drift to zero in steady state. In the first step, we do not use

the details of the generator matrix. We only use that, if there is an arrival, the total queue

length increases by 1 and, if there is a departure (provided that the system is not empty),

the total queue length decreases by 1. In the second step we need E [qΣ] < ∞ because,

otherwise, we cannot set the drift to zero. The last property can be frequently concluded

from the proof of throughput optimality. We prove that the load balancing system operating

under power-of-d choices satisfies this condition below.

Proposition 5.16. Consider a load balancing system operating under power-of-d choices,

parametrized by n as described in section 5.7. Then, E
[
q

(n)
Σ

]
<∞.

Proof of Proposition 5.16. We use Theorem 2.6 with Z(q) = ‖q‖2 =
∑n

i=1 q
2
i . Using the

97

definition of drift, we obtain

∆Z(q) = λn
n∑

i=1

(
n−i
d−1

)
(
n
d

)
(∥∥q + e(ψq(i))

∥∥2 − ‖q‖2
)

+
n∑

i=1

(
1− 1{qi=0}

) (∥∥q − e(i)
∥∥2 − ‖q‖2

)

= λn

n∑

i=1

(
n−i
d−1

)
(
n
d

) (1 + 2q(i)

)
+

n∑

i=1

(1− 1{qi=0}) (1− 2qi)

(a)
= n(λ+ 1) + 2

n∑

i=1

q(i)

(
λn

(
n−i
d−1

)
(
n
d

) − 1

)
−

n∑

i=1

1{qi=0}

(b)

≤ n(λ+ 1) + 2
n∑

i=1

q(i)

(
λn

(
n−i
d−1

)
(
n
d

) − 1

)
,

where (a) holds because 1{qi=0}qi = 0 for all i ∈ [n]; and (b) holds because 1{qi=0} ≥ 0

for all i ∈ [n].

Now we bound the last term. For each i ∈ [n] define

γi
4
= λn

(
n−i
d−1

)
(
n
d

) − 1.

Observing the analogy of γi and the parameters αi defined in Equation 4.7. Note that:

(i) γi = −1 for all i > n− d+ 1,

(ii) The total sum satisfies:

n∑

i=1

γi = −n1−α,

(iii) For every ` ∈ [n], the partial sums satisfy

n∑

i=`

γi ≤ −ζ1,

where ζ1
4
= min

{
d− 1, n

1−α

(nd)

}
.

98

Using these three facts we obtain

n∑

i=1

γiq(i) = q(1)

n∑

i=1

γi +
n∑

`=2

(
n∑

i=`

γi

)
(
q(`) − q(`−1)

)

≤ −n1−αq(1) − ζ1

(
q(n) − q(1)

)

(a)

≤ −ζ1q(n),

where (a) holds because n1−α ≥ ζ1 by definition of ζ1. Therefore, we obtain

∆Z(q) ≤ n(λ+ 1)− 2ζ1q(n).

Hence, conditions 1 and 2 from Theorem 2.6 are satisfied with

f(q) = 2ζ1q(n), and g(q) = n(λ+ 1).

Condition 3 is trivially satisfied. Therefore, we obtain

E
[
q(n)

]
≤ n(λ+ 1)

2ζ1

,

and since q(n)
4
= maxi∈[n] qi we obtain

E [qΣ] ≤ n2(λ+ 1)

2ζ1

,

which is finite for every n ∈ Z+.

5.8.2 Proof of Proposition 5.14

In the proof of Proposition 5.14 we use the moment bounds from Lemma 2.9 and the bound

on the MGF from Lemma 2.10.

Proof of Proposition 5.14. We prove the proposition using d instead of cnβ , for ease of

99

exposition. Before providing the proof recall the following notation. Given a vector q ∈

Zn+, let

V (q)
4
= ‖q‖2 , V‖(q)

4
=
∥∥q‖
∥∥2
, and W⊥(q)

4
= ‖q⊥‖ . (5.14)

We verify the conditions of Lemma 2.9 with Z(q) = W⊥(q). Then, Equation 2.4 and

Stirling’s approximation yield Equation 5.11. Equation 5.12 is a direct consequence of

Equation 5.11, and Equation 5.13 is a consequence of Lemma 2.10.

To verify the first condition, observe that for any q ∈ Zn+ we have

∆W⊥(q) ≤ 1

2 ‖q⊥‖
(
∆V (q)−∆V‖(q)

)
. (5.15)

The proof of Equation 5.15 holds by concavity of the function g(x) =
√
x, and is presented

in subsection 5.8.3. Therefore, it suffices to compute an upper bound for ∆V (q) and a

lower bound for ∆V‖(q). We first find an upper bound for ∆V (q). We have

∆V (q)

= λn
n∑

i=1

(
n−i
d−1

)
(
n
d

)
(∥∥q + e(ψq(i))

∥∥2 − ‖q‖2
)

+
n∑

i=1

(
1− 1{qi=0}

) (∥∥q − e(i)
∥∥2 − ‖q‖2

)

= λn
n∑

i=1

(
n−i
d−1

)
(
n
d

) (1 + 2q(i)

)
+

n∑

i=1

(1− 1{qi=0}) (1− 2qi)

(a)

≤ n(λ+ 1)− 2(1− λ)
n∑

i=1

qi + 2λ
n∑

i=1

(
n
(
n−i
d−1

)
(
n
d

) − 1

)
q(i), (5.16)

where (a) holds because 1{qi=0}qi = 0 for all i ∈ [n], because
∑n

i=1 1{qi=0} ≥ 0 and

reorganizing terms.

We compute an upper bound for the last term of Equation 5.16. For each i ∈ [n] define

γi =
n
(
n−i
d−1

)
(
n
d

) , (5.17)

100

and observe that γi = 0 for i ≥ n− d+ 1. Then,

n∑

i=1

(
n
(
n−i
d−1

)
(
n
d

) − 1

)
q(i) =

n∑

i=1

(γi − 1) q(i).

Observe that γ1 = d. Then,

n∑

i=1

(γi − 1) q(i)

= (d− 1)q(1) +
n∑

i=2

(γi − 1) q(i)

(a)
=

(
d− 1

n

) n∑

i=1

(
q(1) − qi

)
+

n∑

i=1

(
γi −

n− d+ 1

n

)
q(i) − (d− 1)q(1)

(b)

≤ −d− 1

n
‖q⊥‖ , (5.18)

where (a) holds after reorganizing terms; and (b) holds by the claim below.

Claim 5.17. Consider a load balancing system as described in Proposition 5.14, and let γi

be as defined in Equation 5.17 for each i ∈ [n]. Then,

(
d− 1

n

) n∑

i=1

(
q(1) − qi

)
+

n∑

i=1

(
γi −

n− d+ 1

n

)
q(i) − (d− 1)q(1) ≤ −

(
d− 1

n

)
‖q⊥‖ .

We prove Claim 5.17 in subsection 5.12.1. Using Equation 5.18 in Equation 5.16 we

obtain

∆V (q) ≤ n(λ+ 1)− 2(1− λ)
n∑

i=1

qi − 2λ

(
d− 1

n

)
‖q⊥‖ . (5.19)

Now we compute a lower bound for ∆V‖(q). We obtain

∆V‖(q)

= λn
n∑

i=1

(
n−i
d−1

)
(
n
d

)
(∥∥∥
(
q + e(ψq(i))

)
‖

∥∥∥
2

−
∥∥q‖
∥∥2
)

101

+
n∑

i=1

(
1− 1{qi=0}

)(∥∥∥
(
q − e(i)

)
‖

∥∥∥
2

−
∥∥q‖
∥∥2
)

(a)
= λ

n∑

i=1

(
n−i
d−1

)
(
n
d

)
(

1 + 2
n∑

`=1

q`

)
+

1

n

n∑

i=1

(
1− 1{qi=0}

)
(

1− 2
n∑

j=1

qj

)
(5.20)

= λ− 2(1− λ)
n∑

i=1

qi +
1

n

n∑

i=1

(
1− 1{qi=0}

)
+

1

n

(
n∑

i=1

1{qi=0}

)(
n∑

i=1

qi

)

(b)

≥ −2(1− λ)
n∑

i=1

qi, (5.21)

where (a) holds by the definition of x‖ given a vector x in Equation 5.10, and com-

puting the norms; and (b) holds because λ ≥ 0, 1 − 1{qi=0} ≥ 0 for all i ∈ [n], and
(∑n

i=1 1{qi=0}
)

(
∑n

i=1 qi) ≥ 0 since every term is nonnegative. Using Equation 5.19 and

Equation 5.21 in Equation 5.15, and reorganizing terms we obtain

∆W⊥(q) ≤ n(λ+ 1)

2 ‖q⊥‖
− λ(d− 1)

n
(a)

≤ n

‖q⊥‖
− λ0(d− 1)

n
,

where (a) holds because λ ∈ (λ0, 1). Therefore, the first condition of Lemma 2.9 is satis-

fied with

η =
λ0(d− 1)

n
, and κ =

n2

λ0(d− 1)
. (5.22)

Now we verify the second condition. From Equation 5.9 observe that if q, q′ ∈ Zn+ are

such that Gq,q′ > 0, then there are only two options: either q′ = q + e(i) or q′ = q − e(i)

for some i ∈ [n]. Then, by definition of q⊥, we have, q′⊥ = q⊥

∓(
e(i) − 1

n
1
)
. Hence,

νmax ≤ 2. (5.23)

102

To verify the third condition we observe from Equation 5.9 that

G = n (λ+ 1) , (5.24)

where the maximum is attained when none of the queues is empty. Finally, observe that

Gmax ≤ G by definition, and the upper bound is indeed attained when q = q‖. Therefore,

Gmax = n (λ+ 1) . (5.25)

We verified that all the conditions are satisfied. Then, using Equation 5.22, Equa-

tion 5.23 and Equation 5.25 in Equation 2.4 from Lemma 2.9, we obtain that for any posi-

tive integer j

E
[
‖q⊥‖j

]
≤
(

2n2

λ0(d− 1)

)j
+

(
64n2 + 8λ0(d− 1)

λ0(d− 1)

)j
j!

(a)

≤ C

(
n2

d− 1

)j
j!

(b)

≤ C

(
n2

d− 1

)j
jj+

1
2 ,

where (a) holds for some constant C ≥ 64 which is independent of λ, d and n; and (b)

holds by Stirling’s approximation and because e1−j ≤ 1. This proves Equation 5.11.

From Equation 5.11, observe that C > 1. Then, C
1
j ≤ C. Also, j

1
2j is maximized at

j = e, so j
1
2j ≤ exp (1

2e
). This completes the proof of Equation 5.12.

To prove Equation 5.13 we use Lemma 2.10. Then, replacing d = cnβ we obtain the

results.

5.8.3 Proof of Equation 2.5 for a load balancing system in continuous time

.

Proof of Equation 2.5 for load balancing system in continuous time. First observe that if g(x)

103

is a differentiable concave function on R+, we have that for any x, y ∈ R+

g(x)− g(y) ≤ g′(y)(x− y). (5.26)

Now, observe that W⊥(q) = ‖q⊥‖ =
√
‖q⊥‖2 and g(x) =

√
x is a concave function.

Therefore, by definition of drift in Definition 2.3, and the generator matrix in Equation 5.9,

we have

∆W⊥(q)

= λn

n∑

i=1

(
n−i
d−1

)
(
n
d

) (W⊥
(
q + e(ψq(i))

)
−W⊥ (q)

)

+
n∑

i=1

(
1− 1{qi=0}

) (
W⊥

(
q + e(i)

)
−W⊥(q)

)

(a)

≤ λn
n∑

i=1

(
n−i
d−1

)
(
n
d

)
(∥∥(q + e(ψq(i))

)
⊥

∥∥2 − ‖q⊥‖2

2 ‖q⊥‖

)

+
n∑

i=1

(
1− 1{qi=0}

)
(∥∥(q + e(i)

)
⊥

∥∥2 − ‖q⊥‖2

2 ‖q⊥‖

)

(b)
=

λn

2 ‖q⊥‖
n∑

i=1

(
n−i
d−1

)
(
n
d

) (V
(
q + e(ψq(i))

)
− V (q)−

(
V‖
(
q + e(ψq(i))

)
− V‖(q)

))

+
n∑

i=1

(
1− 1{qi=0}

2 ‖q⊥‖

)(
V
(
q + e(i)

)
− V (q)−

(
V‖
(
q + e(i)

)
− V‖(q)

))

(c)
=

1

2 ‖q⊥‖
(
∆V (q)−∆V‖(q)

)

where (a) holds by Equation 5.26 applied in the first and the second term in the following

way. In the first term we use x =
∥∥(q + e(ψq(i))

)
⊥

∥∥2 and y = ‖q⊥‖2, and in the second

term we use x =
∥∥(q + e(i)

)
⊥

∥∥2 and y = ‖q⊥‖2. Equality (b) holds by the definition of

V (·) and V‖(·) in Equation 5.14 and because for any vector x ∈ Rn, we have ‖x⊥‖2 =

‖x‖2 −
∥∥x‖

∥∥2; and (c) holds by reorganizing terms and by definition of drift.

104

5.9 Transform method: Proof of Theorem 5.10

The first proof of Theorem 5.10 that we present is motivated by the transform method

introduced in section 3.3. We use the key ideas and we extend them to use them in the

context of the load balancing system modeled in continuous time in the many-server heavy-

traffic regime, as described in section 5.7. In this case, the role of the unused service is

played by the indicator functions 1{qi(t)=0} for i ∈ [n], since no job can be served from the

ith queue if qi(t) = 0. In fact, this indicator function satisfies the key property 1{qi=0}qi = 0

with probability 1 for all i ∈ [n], which written in ‘exponential form’ yields 1{qi=0} =

1{qi=0} exp (θ̃qi), where θ̃ is any real number. We present the complete proof below.

5.9.1 Proof of Theorem 5.10 using the transform method

In this proof we use one-sided Laplace transform to illustrate a different transform that falls

in the scope of the transform method introduced in chapter 3. The exponential equation

required for Step 1 is accomplished by the following lemma.

Lemma 5.18. Consider a load balancing system operating under power-of-dwith d = cnβ ,

as described in Theorem 5.10. Then, if c and β are such that d ≥ 2, there exists n∗0 ∈ Z+

such that for any θ satisfying

|θ| < 1

8dα− 1edlog(n∗0)e(n∗0)1−α log
(

1 +
λ0(c(n∗0)β−1)

8n∗0

)
,

we have

(
exp (θn−αq(n)

Σ (t))− 1
)(n∑

i=1

1{
q
(n)
i (t)=0

}
)

= φ(q(n)(t), n),

where q(n)
Σ (t)

4
=
∑n

i=1 q
(n)
i (t). The function φ(q(n)(t), n) satisfies the following property.

If α + β > 3, then E
[
φ(q(n), n)

]
is of order o(n1−α), where the expectation is taken with

respect to the stationary distribution of the queue lengths.

105

The proof of Lemma 5.18 is presented in section 5.13. Observe that Proposition 5.14

plays a key role in bounding E
[
φ(q(n), n)

]
. Now we prove the theorem.

Proof of Theorem 5.10 using Transform method. We omit the dependence on n of the vari-

ables, and we work with d instead of cnβ for ease of exposition. This proof is based on the

use of the test function Vexp(q)
4
= exp (θn−αqΣ), where θ < 0. Using the definition of drift

from Definition 2.3, we obtain that for any q ∈ Zn+

∆Vexp(q)

= exp (θn−αqΣ)

(
n∑

i=1

λn

(
n−i
d−1

)
(
n
d

) (exp (θn−α)− 1) + n (exp (−θn−α)− 1)

)

−
(

n∑

i=1

1{qi=0}

)
exp (θn−αqΣ) (exp (−θn−α)− 1)

(a)
= (exp (−θn−α)− 1) exp (θn−αqΣ)

(
n (1− λ exp (θn−α))−

n∑

i=1

1{qi=0}

)

(b)
= (exp (−θn−α)− 1)

(
exp (θn−αqΣ)n (1− λ exp (θn−α))−

n∑

i=1

1{qi=0} − φ(q, n)

)
,

where (a) holds because
∑n

i=1

(
n−i
d−1

)
=
(
n
d

)
and rearranging terms; and (b) holds by Lemma

5.18.

Now we set to zero the drift of Vexp(q) in steady state. Observe that, since θ < 0, we

have E [exp (θn−αqΣ)] ≤ 1. Then, we know E [∆Vexp(q)] = 0. Therefore, taking expected

value with respect to stationary distribution in the expression above, replacing λ = 1−n−α,

using Lemma 5.15 and rearranging terms we obtain

E
[
θn−αqΣ

]
=

n1−α + E [φ(q, n)]

n (1− (1− n−α) exp (θn−α))
. (5.27)

This completes Step 1. Observe that Equation 5.27 gives an expression for the one-sided

Laplace transform of n−αqΣ that is valid for all n. However, the numerator depends on

E [φ(q, n)], which is not an explicit expression.

106

Now we move to the second step, where the goal is to take the many-server heavy-traffic

limit. The fraction in Equation 5.27 is of the form 0
0

in the limit as n → ∞, so we take

Taylor expansion of the exponential function in the denominator. Expanding up to second

order and canceling the factor n1−α from the numerator and the denominator we obtain

E [exp (θn−αqΣ)] =
1 + nα−1E [φ(q, n)]

1− θ +O(n−α)
.

Finally, taking the limit as n→∞ we obtain

lim
n→∞

E [exp (θn−αqΣ)] =
1

1− θ ,

which is the one-sided Laplace transform of an exponential random variable with mean 1.

This completes the proof.

Observe that Equation 5.27 is valid for all n. Hence, it can be used to obtain an error

bound between E [exp (θn−αqΣ)] and 1
1−θ , which is the limiting one-sided Laplace transform.

We do not perform this step for brevity.

5.10 Rate of convergence in Wasserstein’s distance

The proof we provide in this section is based on bounding the Wasserstein’s distance be-

tween the scaled total queue length and an exponential random variable, similarly to sec-

tion 5.4. Specifically, in the rest of this section we prove the following theorem.

Theorem 5.19. Consider a load balancing system operating under power-of-d choices with

d = cnβ , as described in Theorem 5.10. Let Υ be an exponential random variable with

mean 1. Then,

dW ((1− λ)qΣ,Υ) ≤ Ce

(
n3(1− λ)

cnβ − 1

)⌈
log
(

1
n(1−λ)

)⌉
+

5

3
(1− λ), (5.28)

107

where C is the constant from Proposition 5.14.

Note that if we let λ = 1 − n−α and α + β > 3, the right-hand side of Equation 5.28

converges to zero as n → ∞. Therefore, we can prove Theorem 5.10 as a direct conse-

quence of Theorem 5.19. Now we prove Theorem 5.19. We start with a result presented in

[93, Theorem 5.2 part 2].

Lemma 5.20. Let Y be a random variable with E [Y] < ∞, and let Υ be an exponential

random variable with mean 1. Define

FW 4
= {g : R→ R such that g(0) = 0, ‖g′‖ ≤ 1, ‖g′′‖ ≤ 2} .

Then,

dW (Y,Υ) ≤ sup
g∈FW

|E [g′(Y)− g(Y)]| .

Now we prove the theorem.

Proof of Theorem 5.19. Similarly to all our previous proofs, for ease of exposition we omit

the dependence on n of the variables and we use d instead of cnβ . We use Lemma 5.20 with

Y = (1 − λ)qΣ. Let f be a differentiable function such that g = f ′ ∈ FW . By assuming

differentiability we do not lose generality, for the following reason. Observe that f ′ ∈ FW
implies that f ∈ Lip(1) and, hence, it implies that f is integrable. Therefore, if f ′ ∈ FW ,

then f is well defined [94, Theorem 7.2].

By definition of drift, for any vector q ∈ Zn+, we have

∆f ((1− λ)qΣ)

=
n∑

i=1

λn

(
n−i
d−1

)
(
n
d

)
(
f
(
(1− λ)qΣ + 1− λ

)
− f

(
(1− λ)qΣ

))

+
n∑

i=1

(
1− 1{qi=0}

)(
f
(
(1− λ)qΣ − 1 + λ

)
− f

(
(1− λ)qΣ

))

108

(a)
= λn

(
f
(
(1− λ)qΣ + 1− λ

)
− f

(
(1− λ)qΣ

))

+

(
n−

n∑

i=1

1{qi=0}

)(
f
(
(1− λ)qΣ − (1− λ)

)
− f

(
(1− λ)qΣ

))

(b)
= λn

(
(1− λ)f ′

(
(1− λ)qΣ

)
+

(1− λ)2

2
f ′′
(
(1− λ)qΣ

)
+

(1− λ)3

6
f ′′′ (ξ1)

)

+ n

(
−(1− λ)f ′

(
(1− λ)qΣ

)
+

(1− λ)2

2
f ′′
(
(1− λ)qΣ

)
− (1− λ)3

6
f ′′′(ξ2)

)

+

(
n∑

i=1

1{qi=0}

)(
(1− λ)f ′

(
(1− λ)qΣ

)
− (1− λ)2

2
f ′′
(
(1− λ)qΣ

))

+

(
n∑

i=1

1{qi=0}

)
(1− λ)3

6
f ′′′(ξ3)

where ξ1 is between (1 − λ)qΣ and (1 − λ) (qΣ + 1), and ξ2, ξ3 are between (1 − λ) and

(1 − λ) (qΣ − 1). Here, (a) holds because
∑n

i=1

(
n−i
d−1

)
=
(
n
d

)
; and (b) holds by taking

Taylor approximation.

Since f ′ ∈ FW , we know that f is integrable. Then, we can set its drift to zero in steady

state. Taking expectation with respect to stationary distribution and reorganizing terms we

obtain

E
[
f ′
(
(1− λ)qΣ

)]

=
1

n(1− λ)
E

[(
n∑

i=1

1{qi=0}

)
f ′
(
(1− λ)qΣ

)
]

+

(
1 + λ

2

)
E
[
f ′′
(
(1− λ)qΣ

)]

− 1

2n
E

[(
n∑

i=1

1{qi=0}

)
f ′′
(
(1− λ)qΣ

)
]

+
λ(1− λ)

6
E [f ′′′(ξ1)]

−
(

1− λ
6

)
E [f ′′′ (ξ2)] +

(
1− λ

6n

)
E

[(
n∑

i=1

1{qi=0}

)
f ′′′(ξ3)

]
.

Using the last expression and the triangle inequality we have

∣∣E
[
f ′
(
(1− λ)qΣ

)
− f ′′

(
(1− λ)qΣ

)]∣∣ (5.29)

≤ 1

n(1− λ)
E

[(
n∑

i=1

1{qi=0}

)
∣∣f ′
(
(1− λ)qΣ

)∣∣
]

+

∣∣∣∣
λ− 1

2

∣∣∣∣E
[
|f ′′
(
(1− λ)qΣ

)
|
]

109

+
1

2n
E

[(
n∑

i=1

1{qi=0}

)
∣∣f ′′
(
(1− λ)qΣ

)∣∣
]

+
λ(1− λ)

6
E [|f ′′′(ξ1)|]

+

(
1− λ

6

)
E [|f ′′′ (ξ2)|] +

(
1− λ

6n

)
E

[(
n∑

i=1

1{qi=0}

)
|f ′′′(ξ3)|

]
.

We bound term by term. For the first term we expand f ′
(
(1−λ)qΣ

)
in Taylor series up

to first order, around 0. Since f ′ ∈ FW , we know that f ′(0) = 0. Then, f ′
(
1 − λ)qΣ

)
=

(1− λ)qΣf
′′(ξ4), where |ξ4| ∈ (0, qΣ). Therefore, we obtain

1

n(1− λ)
E

[(
n∑

i=1

1{qi=0}

)
∣∣f ′
(
(1− λ)qΣ

)∣∣
]

=
1

n
E

[(
n∑

i=1

1{qi=0}

)
qΣ |f ′′(ξ4)|

]

(a)

≤ 1

n
E

[(
n∑

i=1

1{qi=0}

)
qΣ

]

(b)
= E

[
n∑

i=1

1{qi=0}

(
qΣ

n
− qi

)]

(c)
= −E

[
n∑

i=1

1{qi=0}q⊥i

]

(d)

≤ E

[
n∑

i=1

1{qi=0}

]1− 1
j

E
[
‖q⊥‖jj

] 1
j

(e)

≤ C(1− λ)1− 1
j j

(
n3− 1

j

d− 1

)
,

where j > 1. Here, (a) holds because f ′ ∈ FW and, hence, |f ′′(ξ4)| ≤ 1; (b) holds because

1{qi=0}qi = 0 for all i ∈ [n]; (c) holds by definition of q⊥ in Equation 5.10; (d) holds by

Hölder’s inequality; and (e) holds by Lemma 5.15, because for any j ≥ 2 the j th norm

lower bounds the Euclidean norm, and by Proposition 5.14. Taking j =
⌈
log
(

1
n(1−λ)

)⌉

we obtain

1

n(1− λ)
E

[(
n∑

i=1

1{qi=0}

)
∣∣f ′
(
(1− λ)qΣ

)∣∣
]
≤ Ce

(
n3(1− λ)

d− 1

)⌈
log
(

1
n(1−λ)

)⌉
.

(5.30)

110

For the second term, since f ′ ∈ FW we obtain

(
1− λ

2

)
E
[∣∣f ′′

(
(1− λ)qΣ

)∣∣] ≤ 1− λ
2

. (5.31)

For the third term we obtain

1

2n
E

[(
n∑

i=1

1{qi=0}

)
∣∣f ′′
(
(1− λ)qΣ

)∣∣
]

(a)

≤ 1

2n
E

[
n∑

i=1

1{qi=0}

]

(b)
=

1− λ
2

, (5.32)

where (a) holds because f ′ ∈ FW ; and (b) holds by Lemma 5.15.

For the fourth term, since f ′ ∈ FW , we obtain

λ(1− λ)

6
E [|f ′′′(ξ1)|] ≤ λ(1− λ)

3
. (5.33)

Similarly, for the fifth term we have

(
1− λ

6

)
E [|f ′′′(ξ2)|] ≤ 1− λ

3
. (5.34)

For the last term, we obtain

(
1− λ

6n

)
E

[(
n∑

i=1

1{qi=0}

)
|f ′′′(ξ3)|

]
(a)

≤
(

1− λ
3n

)
E

[(
n∑

i=1

1{qi=0}

)]

(b)
=

(1− λ)2

3
, (5.35)

where (a) holds because f ′ ∈ FW ; and (b) holds by Lemma 5.15.

Using Equation 5.30–Equation 5.35 in Equation 5.29, and rearranging terms we obtain

E
[∣∣f ′
(
(1− λ)qΣ

)
− f ′′

(
(1− λ)qΣ

)∣∣]

≤ Ce

(
n3(1− λ)

d− 1

)⌈
log
(

1
n(1−λ)

)⌉
+

5

3
(1− λ).

111

Replacing d = cnβ , we complete the proof.

5.11 Rate of convergence of the first moment

In Theorem 5.10 we showed convergence in distribution of the average queue length scaled

by n1−α (or, equivalently, the total queue length scaled by n−α). However, convergence

in distribution is not a sufficient condition to conclude convergence of the expected value.

In other words, in Theorem 5.10 we showed n−αq(n)
Σ ⇒ Υ, where Υ is an exponential

random variable with mean 1. However, from this statement we cannot directly conclude

that limn→∞ E
[
n−αq

(n)
Σ

]
= 1. In this section we show that the last result holds using the

drift method [34, 14, 15, 22]. We first state the result formally.

Theorem 5.21. Consider a sequence of load balancing systems operating under power-of-

d with d = cnβ , parametrized by n as described in section 5.7. If c and β are such that

cnβ ≥ 2, then

∣∣∣∣∣E
[

n∑

i=1

qi

]
− nα

∣∣∣∣∣ ≤ 1 +

(
Ce

c

)
dα− 1e dlog(n)e

(
cnβ

cnβ − 1

)
n3−β, (5.36)

where C is the constant from Proposition 5.14. Additionally, if α + β > 3, then

lim
n→∞

n−αE
[
q

(n)
Σ

]
= 1.

Note that the second part of the theorem is an immediate consequence of the error

bound because, after multiplying everything by n−α, the right-hand side of Equation 5.36

converges to zero as n→∞.

Similarly to Theorem 5.10, the case of power-of-d choices with constant d and JSQ are

immediate consequences of Theorem 5.21. We formally state the results below.

Corollary 5.22. Consider a sequence of load balancing systems operating under power-

of-d choices with constant d, parametrized by n as described in section 5.7. If d ≥ 2 and

112

α > 3, then

lim
n→∞

n−αE
[
q

(n)
Σ

]
= 1.

The proof of Corollary 5.22 holds easily after letting β = 0 in Theorem 5.21. Now we

present the formal result for JSQ routing.

Corollary 5.23. Consider a sequence of load balancing systems operating under JSQ,

parametrized by n as described in section 5.7. If α > 2, then

lim
n→∞

n−αE
[
q

(n)
Σ

]
= 1.

The proof of Corollary 5.23 holds after realizing that JSQ is equivalent to power-of-d

choices with d = n. Hence, it suffices to replace c = β = 1 in Theorem 5.21.

In the rest of this section we prove Theorem 5.21 using the drift method. Recall that

in the drift method there are two main steps. First, one shows SSC (which we did in

Proposition 5.14), and secondly, one sets to zero the drift of V‖(q) = ‖q‖‖2 in steady state

(provided that its expectation is finite).

Proof of Theorem 5.21. Similarly to our previous proofs, we omit the dependence on n of

the variables and we work with d instead of cnβ for ease of exposition. We start com-

puting the drift of V‖(q) = ‖q‖‖2. From Equation 5.20 in the proof of SSC, and since
∑n

i=1

(
n−i
d−1

)
=
(
n
d

)
, we obtain

∆V‖(q) = λ

(
1 + 2

n∑

i=1

qi

)
+

1

n

(
n−

n∑

i=1

1{qi=0}

)(
1− 2

n∑

i=1

qi

)
.

Now we set to zero the drift of V‖(q). We skip the proof of E
[
V‖(q)

]
< ∞ for ease of

exposition. Taking expectation with respect to the stationary distribution, replacing λ =

1 − n−α, using Lemma 5.15 to replace E
[∑n

i=1 1{qi=0}
]

= n1−α and reorganizing terms

113

we obtain:

n−αE

[
n∑

i=1

qi

]
= 1− n−α +

1

n
E

[(
n∑

i=1

1{qi=0}

)(
n∑

`=1

q`

)]
. (5.37)

We bound the last term of Equation 5.37 using SSC. First, note 1{qi=0}qi = 0 with proba-

bility 1 for all i ∈ [n]. Then,

1

n

(
n∑

i=1

1{qi=0}

)(
n∑

`=1

q`

)
=

n∑

i=1

1{qi=0}

(
1

n

n∑

`=1

q` − qi

)

(a)
= −

n∑

i=1

1{qi=0}q⊥i,

where q⊥i is the ith element of q⊥ and (a) holds by the definition of q⊥ in Equation 5.20.

Then,

∣∣∣∣∣

(
n∑

i=1

1{qi=0}

)(
n∑

`=1

q`

)∣∣∣∣∣ =

∣∣∣∣∣E
[

n∑

i=1

1{qi=0}q⊥i

]∣∣∣∣∣

(a)

≤ E

[
n∑

i=1

1{qi=0}

]1− 1
j

E
[
‖q⊥‖j

] 1
j

(b)

≤ n(1−α)(1− 1
j)Cj

(
n2

cnβ − 1

)

= n(1−α)(1− 1
j)C

c
jn2−β

(
cnβ

cnβ − 1

)

=

(
C

c

)
jn3−α−βn

α−1
j

(
cnβ

cnβ − 1

)

(c)

≤
(
Ce

c

)
dα− 1e dlog(n)e

(
cnβ

cnβ − 1

)
n3−α−β,

where j is a positive integer. Here, (a) holds by Hölder’s inequality; (b) holds by Lemma 5.15

and by Proposition 5.14 for j ≥ 2 because of the inequalities of norms; and (c) holds by set-

ting j = dα− 1e dlog(n)e and because n
α−1

dα−1edlog(n)e ≤ e. Using this result in Equation 5.37

114

we obtain

∣∣∣∣∣n
−αE

[
n∑

i=1

qi

]
− 1

∣∣∣∣∣ ≤ n−α +

(
Ce

c

)
dα− 1e dlog(n)e

(
cnβ

cnβ − 1

)
n3−α−β.

This proves the theorem.

5.12 Details of proofs of Section section 5.8

5.12.1 Proof of Claim 5.17

Proof. We first prove that the first term of Claim 5.17 satisfies

(
d− 1

n

) n∑

i=1

(
q(1) − qi

)
≤ −

(
d− 1

n

)
‖q⊥‖ . (5.38)

We have:

(
d− 1

n

) n∑

i=1

(
q(1) − qi

) (a)
= −

(
d− 1

n

) n∑

i=1

∣∣qi − q(1)

∣∣

= −
(
d− 1

n

)∥∥q − q(1)1
∥∥

1

(b)

≤ −
(
d− 1

n

)∥∥q − q(1)1
∥∥

(c)

≤ −
(
d− 1

n

)
‖q⊥‖ ,

where (a) holds because q(1) = mini∈[n] qi; (b) holds because norm-1 upper bounds the

Euclidean norm; and (c) holds because, by definition of projection, the function g(x) =

‖q − x1‖ is minimized at x =
1

n

∑n
i=1 qi, and by definition of q‖ and q⊥ in Equation 5.10.

Now we only need to show that

n∑

i=1

(
γi −

n− d+ 1

n

)
q(i) − (d− 1)q(1) ≤ 0.

As shown in [71, Section A.2.a], it suffices to show that

115

(i)
n∑

i=1

γi − (d− 1) = n− d+ 1, and

(ii)
j∑

i=1

γi − (d− 1) ≥ j (n− d+ 1)

n
∀j ∈ [n− 1].

Indeed, we have

n∑

i=1

γi − (d− 1) =
n∑

i=1

n
(
n−i
d−1

)
(
n
d

) − (d− 1) = n− d+ 1.

To prove the second condition observe

∑̀

i=1

γi − (d− 1) = n− d+ 1−
n∑

i=`+1

γi.

Then, it suffices to show that for any ` ∈ [n] with ` ≥ 2 we have

n∑

i=`

γi ≤
(n− `+ 1)(n− d+ 1)

n
. (5.39)

Since γi = 0 for any i > n − d + 1, the condition is trivially satisfied for ` ≥ n − d + 2.

Now, if ` ≤ n− d+ 1 we have

n∑

i=`

γi =
n−d+1∑

i=`

n
(
n−i
d−1

)
(
n
d

)

= (n− `+ 1)

(
n−j
d−1

)
(
n−1
d−1

)

(a)

≤ (n− `+ 1)

(
n−2
d−1

)
(
n−1
d−1

)

= (n− `+ 1)

(
n− d
n− 1

)

where (a) holds because
(
n−`
d−1

)
is decreasing in ` and ` ≥ 2. Then, Equation 5.39 is satisfied

116

if

n− d+ 1

n
≥ n− d
n− 1

,

which is satisfied because d ≥ 2 by definition. This completes the proof.

5.13 Proof of Lemma 5.18

Proof of Lemma 5.18. We omit the dependence on n and t of the variables, for ease of

exposition. By definition of indicator function, for any i ∈ [n] we have

1{qi=0} exp (θn−αqΣ) = 1{qi=0} exp (−θn1−αqi) exp (θn−αqΣ)

(a)
= 1{qi=0} + 1{qi=0} (exp (−θn1−αq⊥i)− 1) ,

where q⊥i is the ith component of q⊥. Here, (a) holds by definition of q⊥ according to

Equation 5.10. Then, it suffices to show that

φ(q, n)
4
=

n∑

i=1

1{qi=0} (exp (−θn1−αq⊥i)− 1)

satisfies

lim
n→∞

1

n1−αE [φ(q, n)] = 0.

We bound |E [φ(q, n)]| and we show that the bound goes to zero for the given values of θ.

We have

|E [φ(q, n)]|
(a)

≤ E

[
n∑

i=1

1{qi=0} |exp (−θn1−αq⊥i)− 1|
]

(b)

≤ |θ|n1−αE

[
n∑

i=1

1{qi=0}|q⊥i| exp (|θ|n1−α|q⊥i|)

]

117

(c)

≤ |θ|n1−αE

[
n∑

i=1

1{qi=0}

]1− 1
j

E

[
n∑

i=1

|q⊥i|j exp (|θ|n1−αj|q⊥i|)

] 1
j

(d)
= |θ|n(1−α)(2− 1

j)E

[
n∑

i=1

|q⊥i|j exp (|θ|n1−αj|q⊥i|)

] 1
j

, (5.40)

where j > 1. Here, (a) holds by triangle inequality; (b) holds because |ex − 1| ≤ |x|e|x|

for all x ∈ R; (c) hods by Hölder’s inequality; and (d) holds by Lemma 5.15.

Now we bound the expectation in section 5.40 using Cauchy-Schwarz inequality and

Proposition 5.14. For j ≥ 2 we have

E

[
n∑

i=1

|q⊥i|j exp (|θ|n1−αj|q⊥i|)

] 1
j

(a)

≤ E
[
‖q⊥‖jj exp (|θ|n1−αj‖q⊥‖)

] 1
j

(b)

≤ E
[
‖q⊥‖j exp (|θ|n1−αj‖q⊥‖)

] 1
j

(c)

≤ E
[
‖q⊥‖2j

] 1
2j E [exp (|θ|n1−α2j‖q⊥‖)]

1
2j

(d)

≤ 2Cj

(
n2

cnβ − 1

)
exp

(
|θ|n3−α

λ0(cnβ−1)

)(λ0(cnβ − 1)

λ0(cnβ − 1) + 2n (1− exp (8j|θ|n1−α))

) 1
2j

,

where (a) holds using that |q⊥i| ≤ ‖q⊥‖ in the exponent and by definition of the j-norm;

(b) holds because the j-norm is smaller than the Euclidean norm for all j ≥ 2; (c) holds by

Cauchy-Schwarz inequality; and (d) holds by Proposition 5.14 for θ satisfying

|θ| ≤ 1

8jn1−α log
(

1 + λ0(cnβ−1)
8n

)
.

Taking j 4= dα− 1edlog(n)e we obtain

|E [φ(q, n)] | ≤ |θ|n2(1−α)ϕ(n),

118

where

ϕ(n)
4
= n

α−1
dα−1edlog(n)e

(
2C

cnβ − 1

)
n2dα− 1edlog(n)e exp

(
|θ|n3−α

λ0(cnβ−1)

)

×
(

λ0(cnβ − 1)

λ0(cnβ − 1) + 2n (1− exp (8|θ|n1−αdα−1edlog(n)e))

) 1
2dα−1edlog(n)e

and it converges to a constant as n→∞, since α + β > 3. Using j = dα− 1edlog(n)e in

the bound for θ yields

|θ| ≤ 1

8n1−αdα− 1edlog(n)e log
(

1 + λ0(cnβ−1)
8n

)
.

Since the upper bound grows to infinity as n → ∞, we obtain the existence of n∗0 as

described in the lemma. This completes the proof.

5.14 Conclusion and future work

In this chapter we study the load balancing system in the many-server heavy-traffic regime.

We parametrize the arrival rate so that the arrival rate per server is n−α, for α > 0 where n

is the number of servers. Specifically, we answer the question: how fast should the number

of servers grow with respect to the load to observe the classical heavy-traffic behavior of

the scaled average queue lengths?

We show that the answer strongly depends on the routing policy. If we model the system

in discrete time, then all the arrivals of each time slot are routed to the same server. Then, as

n increases, the deviations from the region where SSC occurs are large and, hence, higher

values of α are required to observe the heavy-traffic behavior. If we model the system in

continuous time, then the arrivals are routed one by one, and the value of α automatically

decreases. A line of future work is to explore routing algorithms that do not route all the

arrivals to the same server in discrete time.

The case of α ≤ 1 is well studied in the literature. Then, there is a gap between our

119

results and the literature. Future work is to explore how the system behaves if α ∈ (1, 3]

for power-of-d choices and if α ∈ (1, 2] JSQ in continuous time. We believe that there

are only two phase transitions for α ∈ (0,∞): one at α = 1
2

which corresponds to the

Halfin-Whitt regime; and one at α = 1 which corresponds to the NDS regime. Hence, we

need to develop new proof techniques to close the gap.

Another line of future work is to create a unifying framework for all α ∈ (0,∞). The

cases of α ∈ (0, 1] are well-studied in the literature. However, the proof techniques are

different for every phase of α. We believe there is a framework which gives a generic

result, where we can obtain the results from the literature by simply plugging in the desired

value of α.

120

CHAPTER 6

HEAVY-TRAFFIC ANALYSIS OF THE GENERALIZED SWITCH UNDER THE

CRP CONDITION

Based on:

D. Hurtado-Lange and S. T. Maguluri, “Transform methods for heavy-traffic analysis,”

Stochastic Systems, vol. 10, no. 4, pp. 275–309, 2020

6.1 Introduction

In this chapter we continue to develop the transform method introduced in chapter 3. In

this case, we use this approach in the context of one of the most general SPNs with control

on the service process: the generalized switch. The main goal of this chapter is to illustrate

the flexibility and simplicity of the MGF method, this time in a system that seems very

different from the single server queue and the load balancing system.

A secondary contribution, is that we allow the arrivals to different queues to be corre-

lated. We show that this generalization from the popular assumption of independent arrivals

does not bring additional difficulties in the proof.

6.2 Related work

In section 3.2 we discussed the use of moment generating functions and characteristic func-

tions in the queueing literature. In this section we discuss the literature on the generalized

switch and MaxWeight algorithm.

MaxWeight algorithm was first proposed in [21] in the context of scheduling for down-

links in wireless base stations. This algorithm was later adapted to be used in a variety

of systems including ad hoc wireless networks, input-queued switches [95], cloud com-

121

puting [63], was generalized into the back-pressure algorithm [21] in networks, and was

extensively studied in[8, 96, 97]. The generalized switch model subsumes many of these

systems, and has been studied under the CRP condition using the diffusion limit method

[8], and the drift method [34]. In [4] the authors generalize the results from [8] to SPNs

where the jobs can join a queue after being served.

6.3 Generalized switch model

Consider a system with n separate queues, as described in section 1.5. For each i ∈ [n], let

{ai(k) : k ∈ Z+} be a sequence of i.i.d. random variables such that ai(k) is the number of

arrivals to queue i in time slot k. Let Σa be the covariance matrix of the vector a(1).

The servers interfere with each other. Then, the vector of service rates must satisfy fea-

sibility constraints in each time slot. Additionally, there are conditions of the environment

that affect these constraints, which we group in a single random variable called channel

state. For each k ∈ Z+, let M(k) be the channel state in time slot k. The sequence of ran-

dom variables {M(k) : k ∈ Z+} is i.i.d. and it is independent of the queue length and the

arrival processes. We assume that the state space of the channel state is a finite setM and

we let ψ be the probability mass function of M(1), i.e., for each m ∈M the probability of

observing state m is ψm
4
= P [M(1) = m]. For each m ∈M, let S(m) be the set of feasible

service rate vectors under channel statem, i.e., the set of service rate vectors that satisfy the

interference constraints in channel state m. We assume that if x ∈ S(m) for some m ∈M,

then all vectors that are strictly dominated by x are feasible. In other words, if y is a

nonnegative vector that satisfies y ≤ x component-wise, then y is also a feasible service

rate vector if the channel state is m. In particular, the projection of x ∈ S(m) on each of

the coordinate axes is a feasible service rate vector as well. We assume that S(m) is finite

for each m ∈ M, so we only consider maximal feasible schedules and their projection on

the coordinate axes in S(m). With this assumption we do not lose much generality because

the vector s(k) is the potential (not actual) service rate vector and we are interested in the

122

heavy-traffic limit.

In this queueing system the control problem (which is a scheduling problem), is to

select s(k) in each time slot after realizing the channel state. Let s(k) be the solution of

the scheduling problem in time slot k. Since S(m) is finite for each m ∈ M andM is also

finite, there exists a constant Smax such that si(k) ≤ Smax for all i ∈ [n] and all k ∈ Z+.

It is known [34] that the capacity region of the generalized switch is

C =
∑

m∈M

ψm ConvexHull
{
S(m)

}
. (6.1)

Providing a formal proof of Equation 6.1 is beyond the scope of this document, but we

intuitively explain why it holds. First suppose that the channel state is fixed and the set of

feasible service rate vectors is S(1). Then, the capacity region should have all vectors x

that satisfy x ≤ s for all s ∈ S(1). Since S(1) contains the projection of its elements on the

coordinate axis, the set of such vectors x is ConvexHull
{
S(1)

}
. Now, if we consider the

channel state as a random variable, recall that ψm is the probability that the channel state is

m, and if the channel state is m then the set of feasible service rate vectors is S(m). Then,

Equation 6.1 just gives the capacity region associated to each channel state, weighted by

the probability that each channel state is observed. In some sense, it represents the expected

capacity region.

Recall that, by assumption, each set S(m) is finite. Then, for each m ∈ M the set

ConvexHull
{
S(m)

}
is the convex hull of finitely many points. Therefore, ConvexHull

{
S(m)

}

is a polytope, i.e., a bounded polyhedron. Also, the state space of the channel stateM is

finite by assumption. Then, Equation 6.1 is the weighted sum of finitely many polytopes.

This implies that C is also a polytope. In order to exploit this structure, we describe it as

the intersection of a finite number of half-spaces, where each half-space defines a facet of

C. Let L be the minimal number of half-spaces that are required to describe C, and for each

` ∈ [L] let c(`) ∈ Rn and b(`) ∈ R be the parameters that define each facet of the polytope.

123

In other words, we describe C as follows

C =
{
x ∈ Rn

+ : 〈c(`),x〉 ≤ b(`) ∀` ∈ [L]
}
. (6.2)

Without loss of generality we can assume c(`) ≥ 0, ‖c(`)‖ = 1 and b(`) > 0 for all

` ∈ [L]. We can assume these because the sets S(m) contain the projection on the coordinate

axes of all their feasible vectors. Therefore, the capacity region is coordinate convex. For

each ` ∈ [L], let F (`) 4=
{
x ∈ C : 〈c(`),x〉 = b(`)

}
be the `th facet of the polytope C.

In this document, we assume that the scheduling problem is solved using MaxWeight

algorithm in each time slot, i.e., if the channel state ism, then the selected schedule satisfies

s(k) ∈ arg max
x∈S(m)

〈x, q(k)〉, (6.3)

and ties are broken at random.

For technical reasons that will be apparent in the following sections, we introduce the

following definition. For each ` ∈ [L] and m ∈ M define the maximum c(`)-weighted

service rate available when channel state is m as

b(m,`) = max
x∈S(m)

〈c(`),x〉. (6.4)

Observe that c(`) and b(m,`) define a half-space that passes through the boundary of

ConvexHull
(
S(m)

)
, but this half-space does not necessarily define a facet of

ConvexHull
(
S(m)

)
. For each ` ∈ [L] and k ∈ Z+, let B`(k)

4
= b(M(k),`). Notice that B`(k)

is an i.i.d. sequence of random variables that satisfies P
[
B`(1) = b(m,`)

]
= ψm for each

m ∈ M. Let ΣB be the covariance matrix of the vector B(1)
4
= (B1(1), . . . , BL(1)), i.e.,

for each `1, `2 ∈ [L] we have

(ΣB)`1,`2
4
= E [B`1(k)B`2(k)]− E [B`1(k)]E [B`2(k)] .

124

From Equation 6.1 and Equation 6.3, observe that the service rate vector s(k) does not

necessarily belong to the capacity region C because ψm ≤ 1 for all m ∈ M. However,

the expected service rate vector does belong to the capacity region. We end this section

proving this result formally.

Lemma 6.1. Consider a generalized switch operating under MaxWeight as described above,

and let Eq [·] 4= E [· |q(k) = q]. Then, Eq [〈q(k), s(k)〉] = maxx∈C〈q,x〉.

Proof. Since s(k) is selected using MaxWeight algorithm (see Equation 6.3), we have

Eq [〈q(k), s(k)〉] =Eq
[

max
x∈S(M(k))

〈q(k),x〉
]

(a)
=
∑

m∈M

ψm max
x∈S(m)

〈q,x〉 (b)
= max

x∈C
〈q,x〉,

where (a) holds because the channel state process is independent from the queue lengths

process; and (b) holds by definition of the capacity region C presented in Equation 6.1.

6.4 Transform method applied to generalized switches

In this section we apply the MGF method in the context of a generalized switch operating

under MaxWeight. We compute the distribution of the scaled vector of queue lengths in

heavy traffic under the assumption that CRP is satisfied. The generalized switch is a model

that was first introduced in [8], and it represents a generalization of a variety of queue-

ing systems, such as the input-queued switch [95], cloud computing [63], down-links in

wireless base stations [21], etc.

To perform heavy-traffic analysis, we fix a facet F (`) and we study a set of generalized

switches where the vector of arrival rates approaches a fixed point in the relative interior of

F (`). Formally, we fix ν(`) in the relative interior of F (`) and we let ε ∈ (0, 1). Then, the

system parametrized by ε is such that E
[
a(ε)(k)

]
= ν(`) − εc(`) and Σ

(ε)
a is the covariance

matrix of a(ε)(1). In this case, since the point ν = ν(`) of the boundary of the capacity

125

region C is in the relative interior of the facet F (`) =
{
x ∈ C : 〈c(`),x〉 = b(`)

}
, the unique

outer normal vector to the capacity region C at ν(`) is the outer normal vector to the facet

F (`), i.e., it is c(`). Therefore, the CRP condition as defined in Definition 2.1 is satisfied.

Observe that if we approach a vector ν that lies at the intersection of two (or more) facets

in heavy traffic, then the CRP condition is not satisfied because there is a range of vectors

that are normal to C at ν.

In this subsection we state the main theorem of this section and we provide some ex-

amples. We prove the theorem in subsection 6.4.2.

Theorem 6.2. Let ε ∈ (0, 1). Given the `th facet of C, F (`), and a vector ν(`) in the relative

interior of F (`), consider a set of generalized switches operating under MaxWeight algo-

rithm as described in section 6.3, parametrized by ε as described above. For each ε, let q(ε)

be a steady-state vector such that the queue length process
{
q(ε)(k) : k ∈ Z+

}
converges

in distribution to q(ε). Further, let limε↓0 Σ
(ε)
a = Σa component-wise. Then, εq(ε) ⇒ Υc(`)

as ε ↓ 0, where Υ is an exponential random variable with mean 1
2

(
(c(`))TΣac

(`) + σ2
B`

)
,

where σ2
B`

= (ΣB)`,` is the variance of B`(1).

In the next corollary we present a particular example of a generalized switch operating

under MaxWeight.

Corollary 6.3. Consider a set of generalized switches operating under MaxWeight algo-

rithm as described in section 6.3, parametrized by εabove. Suppose thatM has only one

element, i.e., the channel state is fixed over time. Then, εq(ε) ⇒ Υ2c
(`), where Υ2 is an

exponential random variable with mean 1
2
(c(`))TΣac

(`).

The queueing system described in Corollary 6.3 is also known as ad hoc wireless net-

work. In an ad hoc wireless network we have σ2
B`

= 0 because the channel state is not

a random variable anymore. The input-queued switch or a cross-bar switch [36, 14, 15]

is yet another system that is well studied. When only one port of the switch is saturated,

126

it satisfies the CRP condition [8], and forms a special case of Corollary 6.3. In the next

subsection we present the model and we formalize this result.

6.4.1 MGF method applied to the input-queued switch

An input-queued switch is a generalized switch where n is a perfect square, i.e., there exists

an integer N such that n = N2. Then, it can be represented as a square matrix, where the

rows are input ports and the columns are output ports. The feasibility constraints are that,

in each time slot, at most one queue can be served from each input and output port, and all

jobs take exactly one time slot to be processed. Therefore, the set of feasible service rate

vectors is analogous to permutation matrices of N ×N .

For each ir ∈ [n] letχ(ir) be the normalized indicator vector of row ir, i.e., it is such that

for each i′r ∈ [n] we have χ(ir)
i′r

= 1√
N

if queue i′r corresponds to row ir of the switch and

χ
(ir)
i′r

= 0 otherwise. Similarly, for each ic ∈ [n] let χ̃(ic) be the normalized indicator vector

of column ic. With this notation, we can write the capacity region of the input-queued

switch as

Cswitch
4
=
{
x ∈ Rn

+ : 〈χ(ir),x〉 ≤ 1, 〈χ̃(ic ,x〉 ≤ 1 , ∀ir, ic ∈ [n]
}
,

which is the intersection of L = 2N half-spaces.

Only one port can be saturated in heavy traffic to ensure that the CRP condition is

satisfied. Without loss of generality, assume input port 1 is saturated, i.e., we consider

a vector ν(1) ∈ F (1), where F (1) 4=
{
x ∈ Cswitch : 〈χ(1),x〉 = 1

}
. For simplicity, we let

ν(1) = χ(1). Then, the heavy-traffic parametrization for ε ∈ (0, 1) is such that λ(ε) =

(1 − ε)χ(1). Unlike the generalized switch, for the input-queued switch we do not give

the scheduling algorithm. Instead, we write the result in terms of the conditions that this

algorithm must satisfy (similar to the load balancing case).

Similar to the case of the load balancing system, we say that an algorithmA is through-

127

put optimal for the input-queued switch if {q(ε)(k) : k ∈ Z+} is positive recurrent for all

ε ∈ (0, 1). Also, defining x‖
4
= 〈χ(1),x〉χ(1) and x⊥

4
= x − x‖ for any vector x, we say

that the switch operating under a scheduling algorithm A satisfies SSC if

E
[
‖q(ε)
⊥ ‖2

]
is o
(

1

ε2

)
.

In the next proposition we compute the distribution of the scaled vector of queue lengths

in heavy traffic.

Proposition 6.4. Let ε ∈ (0, 1) and consider a set of input-queued switches parametrized

by ε, as described above. Suppose that the scheduling algorithm is throughput optimal

and it satisfies SSC. For each ε ∈ (0, 1), let q(ε) be a steady-state random vector such

that the queue length process
{
q(ε)(k) : k ∈ Z+

}
converges in distribution to q(ε). As-

sume the MGF of ε〈χ(1), q(ε)〉 exists, and that limε↓0 Σ
(ε)
a = Σa component-wise. Then,

εq(ε) =⇒ Υsχ
(1) as ε ↓ 0, where Υs is an exponential random variable with mean

1
2

∑n
ir=1

∑n
ic=1 χ

(1)
ir
χ

(1)
ic

Cov [air , aic], where Cov [air , aic] = (Σa)ir,ic for each ir, ic ∈ [n].

Sketch of proof of Proposition 6.4. For ease of exposition we do not write the dependence

on ε of the variables. We use the MGF method. We only present a sketch of this proof,

since it is similar to the proofs of Theorem 3.5 and Theorem 6.2. We only show the main

differences.

Both prerequisites are satisfied by assumption. Now we go through the steps.

Step 1. Prove an equation of the form of Equation 3.1 and compute an expression for the

MGF of ε〈χ(1), q(ε)〉.

Proving an equation of the form of Equation 3.1 is similar to the proof of Lemma 3.9 and

Lemma 6.5. Then, following the steps sketched in Step 1 in section 3.3 we obtain

E
[
eθε〈χ

(1),q〉
(

1− eθε〈χ(1),a−s〉
)]

= 1− E
[
e−θε〈χ1,u〉]+ o(ε2).

128

Since s is a function of the queue lengths that is obtained through the scheduling problem,

s is not independent of q. However, 〈χ(1), s〉 = 1√
N

because all the feasible schedules s are

analogous to permutation matrices. Then, the sum of all the elements of s corresponding to

the first input port (row 1 of the switch) is 1. Then, 〈χ(1), s〉 is independent of the vector of

queue lengths q. Also, the vector of arrivals is independent of q. Therefore, reorganizing

terms we obtain

E
[
eθε〈χ

(1),q〉
]

=
1− E

[
e−θε〈χ

(1),u〉
]

+ o (ε2)

1− E
[
eθε〈χ(1),a−s〉

] .

Step 2. Bound unused service and take heavy-traffic limit.

This step is equivalent to Step 2 in the proof of Theorem 3.5 and Theorem 6.2, so we omit

the details.

In the case of a generalized switch, one of the difficulties is to handle the dependence

on the queue lengths of the potential service vector. In the case of an input-queued switch

this difficulty does not arise because, even though s(ε) depends on the queue lengths, the

projection s(ε)
‖

4
= 〈χ(1), s(ε)〉χ(1) is independent of q(ε). Therefore, we do not need to

assume that the scheduling problem is solved with MaxWeight. In general, for any special

case of the generalized switch such that s(ε)
‖ is independent of the queue lengths, we can

obtain a result similar to Proposition 6.4, i.e., where we assume properties of the scheduling

algorithm but not a specific algorithm.

6.4.2 Proof of Theorem 6.2

In the rest of this section we prove Theorem 6.2 using the MGF method. Before presenting

the proof, we introduce some notation.

Let M and B be steady-state random variables with the same distribution as M(1) and

B`(1), respectively.

129

Proof of Theorem 6.2. For ease of exposition we omit the dependence on ε of the variables

in this proof. We use the MGF method. Similarly to the proof of Theorem 3.5, we first

need to verify that the prerequisites are satisfied.

Prerequisite 1. Positive recurrence.

In fact, MaxWeight algorithm is throughput optimal [8, 34]. Then, for each ε > 0 the

Markov chain
{
q(ε)(k) : k ∈ Z+

}
is positive recurrent.

Prerequisite 2. SSC.

Let K =
{
x ∈ Rn

+ : x = ξc(`) , ξ ∈ R+

}
. Using the notation introduced in Prerequisite

2 in section 3.3, we have c = c(`), q(ε)
‖ = 〈c(`), q(ε)〉c(`) and q(ε)

⊥ = q(ε) − q(ε)
‖ . In [34],

the authors prove that E
[
eθ
∗‖q⊥‖

]
is bounded for some finite θ∗. In fact, the exponential

moment bound is not part of the SSC statement of [34], but their proof of Proposition

2 implies it.. Then, for each j ∈ Z+ with j ≥ 1, there exists a constant Jj such that

E
[∥∥∥q(ε)

⊥

∥∥∥
j
]
≤ Jj . Therefore, SSC as defined in section 3.3 is satisfied, and it occurs into

the one-dimensional subspaceK. In fact, in this case E
[
‖q(ε)
⊥ ‖j

]
isO(1), which is stronger.

Now we go through the steps of the MGF method.

Step 1. Prove an equation of the form of Equation 3.1 and compute an expression for the

MGF of ε〈c, q(ε)〉.

We first prove Lemma 6.5.

Lemma 6.5. Consider a generalized switch parametrized by ε as described in Theorem

6.2. Then, for any real number θ such that |θε| ≤ θ∗ we have

E
[(
eθε〈c

(`),(q(ε))
+
〉 − 1

)(
e−θε〈c

(`),u(ε)〉 − 1
)]

is o(ε2).

We present the proof of Lemma 6.5 in subsection 6.5.1.

130

Before continuing, we need to prove that the MGF of ε〈c(`), q(ε)〉 exists in an interval

around 0. The proof is presented in subsection 6.5.2. Then, following the steps sketched in

Step 1 in section 3.3 we obtain Equation 3.4.

When we applied the MGF method to the single server queue and to the load balancing

system, we used the fact that the service rate vector is independent of the queue length

vector to obtain Equation 2.7 and Equation 3.7, respectively. However, in the case of the

generalized switch this is no longer true. To overcome this difficulty we use the following

lemma.

Lemma 6.6. Consider a generalized switch operating under MaxWeight algorithm parametrized

by ε, as described in Theorem 6.2. Then, for any θ ∈ R we have

E
[(
eθε〈c

(`),q(ε)〉 − 1
)(

eθε(B−〈c
(`),s(ε)〉) − 1

)]
is o(ε2).

We present the proof in subsection 6.5.3. Working with the left hand side of Equa-

tion 3.4 we obtain

E
[
eθε〈c

(`),q〉
(

1− eθε〈c(`),a−s〉
)]

(a)
=E

[
eθε〈c

(`),q〉
(

1− eθε(〈c(`),a〉−B)
)]

+ E
[
eθε〈c

(`),q〉
(
eθε(〈c

(`),a−s〉) − eθε(〈c(`),a〉−B)
)]

(b)
=E

[
eθε〈c

(`),q〉
] (

1− E
[
eθε(〈c

(`),a〉−B)
])
− E

[
eθε(〈c

(`),a〉−B)
] (

1− E
[
eθε(B−〈c

(`),s〉)
])

+ E
[
eθε(〈c

(`),a〉−B)
]
E
[(
eθε〈c

(`),q〉 − 1
)(

eθε(B−〈c
(`),s〉) − 1

)]

(c)
=E

[
eθε〈c

(`),q〉
] (

1− E
[
eθε(〈c

(`),a〉−B)
])

− E
[
eθε(〈c

(`),a〉−B)
] (

1− E
[
eθε(B−〈c

(`),s〉)
])

+ o(ε2),

where (a) holds after adding and subtracting E
[
eθε(〈c

(`),q〉+〈c(`),a〉−B)
]
, and reorganizing

terms; (b) holds because a andB are independent of the queue lengths vector q and the po-

tential service vector s, and after adding and subtracting E
[
eθε(〈c

(`),a〉−B)
]
E
[
eθε(B−〈c

(`),s〉) − 1
]
;

and (c) holds by Lemma 6.6 and because a and B are bounded. Reorganizing terms we

131

obtain

E
[
eθε〈c

(`),q〉
]

=
1− E

[
e−θε〈c

(`),u〉
]

+ E
[
eθε〈c

(`),a〉
]
E
[
e−θε〈c

(`),s〉 − e−θεB
]

+ o(ε2)

1− E
[
eθε(〈c

(`),a〉−B)
] .

(6.5)

Step 2. Bound unused service and take heavy-traffic limit.

The right hand side of Equation 6.5 yields a 0
0

form in the limit as ε ↓ 0. Then, we take

Taylor expansion of each of its terms, using Lemma 3.1. Similar to the case of the load

balancing system, in this step we need to obtain bounds on E
[
〈c(`),u〉

]
. In this case we

use the following lemma.

Lemma 6.7. Consider a generalized switch parametrized by ε as described in Theorem 6.2.

Then,

E
[
〈c,u(ε)〉

]
+ b(`) − E

[
〈c(`), s(ε)〉

]
= ε.

Proof of Lemma 6.7. We set to zero the drift of V1(q) = 〈c(`), q〉. We obtain

0 =E
[
〈c(`), q+〉 − 〈c(`), q〉

]

=E
[
〈c(`), q + a− s+ u〉 − 〈c(`), q〉

]

=E
[
〈c(`),a〉

]
− E

[
〈c(`), s〉

]
+ E

[
〈c(`),u〉

]
. (6.6)

Now, observe that

E
[
〈c(`),a〉

]
=〈c(`),ν(`) − εc(`)〉

=〈c(`),ν(`)〉 − ε
∥∥c(`)

∥∥2

(a)
=b(`) − ε, (6.7)

132

where (a) holds because ν(`) ∈ F (`) and because
∥∥c(`)

∥∥ = 1. Then, using Equation 6.7 in

Equation 6.6 and rearranging terms we obtain the result.

Now we expand each term on the right-hand side of Equation 6.5. For the first term in

the numerator, we have

1− E
[
e−θε〈c

(`),u〉
]

=1− E
[
fε,−〈c(`),u〉(θ)

]

=θεE
[
〈c(`),u〉

]
− (θε)2

2
E
[(
〈c(`),u〉

)2
]

+O(ε3). (6.8)

In this case the numerator has more terms than in the case of the single server queue and

the load balancing system, so we will keep the first moment of the unused service in the

equation in order to use Lemma 6.7. However, we still need to bound the second moment.

Claim 6.8. Consider a generalized switch as described in Theorem 6.2. Then,

(θε)2

2
E
[(
〈c(`),u〉

)2
]

is O(ε3).

We present a proof of Claim 6.8 in subsection 6.5.4. Then, using Claim 6.8 in Equa-

tion 6.8 we obtain

1− E
[
e−θε〈c

(`),u〉
]

= θεE
[
〈c(`),u〉

]
+O(ε3). (6.9)

For the second term in the numerator, we have

E
[
eθε〈c

(`),a〉
]
E
[
e−θε〈c

(`),s〉 − e−θεB
]

= E
[
eθε(〈c

(`),a〉−B)
]
E
[
eθε(B−〈c

(`),s〉) − 1
]

= E
[
fε,(〈c(`),a〉−B)(θ)

]
E
[
fε,(B−〈c(`),s〉)(θ)− 1

]
. (6.10)

Claim 6.9. Consider a generalized switch as described in Theorem 6.2 and the notation

133

introduced in Lemma 3.1. Then,

E
[
fε,(〈c(`),a〉−B)(θ)

]
= 1 + θε2 +O(ε3),

and E
[
fε,(B−〈c(`),s〉)(θ)− 1

]
= θεE

[
B − 〈c(`), s〉

]
+O(ε3).

We prove the claim in subsection 6.5.5. Using Claim 6.9 in Equation 6.10, reorganizing

terms and using that B and si are bounded for all i ∈ [n], we obtain

E
[
eθε〈c

(`),a〉
]
E
[
e−θε〈c

(`),s〉 − e−θεB
]

=θεE
[
B − 〈c(`), s〉

]
+O(ε3)

Then, the numerator of Equation 6.5 yields

1− E
[
e−θε〈c

(`),u(ε)〉
]

+ E
[
eθε〈c

(`),a〉
]
E
[
e−θε〈c

(`),s〉 − e−θεB
]

+ o(ε2)

=
(
θεE

[
〈c(`),u〉

]
+ θεE

[
B − 〈c(`), s〉

]
+O(ε3)

)
+ o(ε2)

(a)
=θε

(
E
[
〈c(`),u〉+B − 〈c(`), s〉

])
+ o(ε2)

(b)
=θε2 + o(ε2), (6.11)

where (a) holds because O(ε3) is o(ε2); and (b) holds because E
[
B
]

= b(`) (we prove this

result in Lemma 7.1) and Lemma 6.7.

For the denominator, we obtain

1− E
[
e−θε(B−〈c,a〉)

]

=1− E
[
fε,(〈c,a〉−B)(θ)

]

=− θεE
[
〈c,a〉 −B

]
− (θε)2

2
E
[(
B − 〈c,a〉

)2
]

+O(ε3)

(a)
=θε2 − (θε)2

2

(
E
[
〈c(`),a〉2

]
+ E

[
B

2
]
− 2E

[
〈c(`),a〉B

])
+O(ε3)

(b)
=θε2 − (θε)2

2

(
n∑

i=1

n∑

j=1

Cov
[
a

(ε)
i , a

(ε)
j

]
+ σ2

B`
+
(
E
[
〈c(`),a〉

]
− E

[
B
])2

)
+O(ε3)

134

(c)
=θε2 − (θε)2

2

(
1TΣ(ε)

a 1 + σ2
B`

+ ε2
)

+O(ε3) (6.12)

where (a) holds by Equation 6.7 and expanding the square; (b) holds by definition of

variance and covariance, because a and B are independent, and reorganizing terms; and

(c) holds by Equation 6.7 and noticing that
∑n

i=1

∑n
i′=1 Cov

[
a

(ε)
i , a

(ε)
i′

]
= 1TΣ

(ε)
a 1.

Using Equation 6.11 and Equation 6.12 in Equation 6.5 we obtain

E
[
eθε〈c

(`),q〉
]

=
θε2 + o(ε2)

θε2 − (θε)2

2

(
1TΣ

(ε)
a 1 + σ2

B`
+ ε2

)
+O(ε3)

=
1 + o(1)

1− θ
2

(
1TΣ

(ε)
a 1 + σ2

B`
+ ε2

)
+O(ε)

.

Then, taking the heavy-traffic limit yields

lim
ε↓0

E
[
eθε〈c,q〉

]
=

1

1− θ
2

(
1TΣa1 + σ2

B`

) ,

which is the MGF of an exponential random variable with mean 1
2

(
1TΣa1 + σ2

B`

)
. This

implies that q(ε)
‖ = 〈c(`), q(ε)〉c(`) ⇒ Υc(`), where Υ is an exponential random variable

with mean 1
2

(
1TΣa1 + σ2

B`

)
.

Then, we conclude that εq(ε) = εq
(ε)
‖ + εq

(ε)
⊥ converges in distribution to Υc(`) as ε ↓ 0.

This proves Theorem 6.2.

6.5 Details of the proofs of Section 6.4

In this section we present the details of the proofs of Section 6.4.

6.5.1 Proof of Lemma 6.5

To prove Lemma 6.5 we use the following lemma, which is similar to Lemma 3.14.

Lemma 6.10. Consider a generalized switch parametrized by ε, as described in Theorem

135

6.2. Then, for any α ∈ R and all k ∈ Z+ we have

n∑

i=1

c
(`)
i u

(ε)
i (k)e

− α

c
(`)
i

q
(ε)
⊥i(k+1)

= 〈c(`),u(ε)(k)〉eα〈c(`),q(ε)(k+1)〉.

Proof of Lemma 6.10. First observe that if α = 0 the lemma trivially holds. Now we prove

the lemma for α 6= 0. From Equation 1.3 we know that qi(k + 1)ui(k) = 0 for all i ∈ [n].

Then, for all β ∈ R we have

ui
(
e−βqi(k+1) − 1

)
= 0 ∀i ∈ [n],

and this equation implies

c
(`)
i ui

(
e−βqi(k+1) − 1

)
= 0 ∀i ∈ [n].

Without loss of generality, we assume c(`)
i > 0 for all i ∈ [n] because otherwise the last

equation holds trivially. Let α ∈ R and for each i ∈ [n] let αi ∈ R be such that α = αic
(`)
i

for all i ∈ [n]. Then,

c
(`)
i ui

(
e−αiqi(k+1) − 1

)
= 0 ∀i ∈ [n].

Summing over all i ∈ [n] we obtain

0 =
n∑

i=1

c
(`)
i ui(k)

(
e−αiqi(k+1) − 1

)

=
n∑

i=1

c
(`)
i ui(k)

(
e−αiq‖i(k+1)−αiq⊥i(k+1) − 1

)

(a)
=

n∑

i=1

c
(`)
i ui(k)

(
e−αi〈c

(`),q(k+1)〉c(`)i −αiq⊥i(k+1) − 1
)

(b)
=

n∑

i=1

c
(`)
i ui(k)

(
e
−α〈c(`),q(k+1)〉− α

c
(`)
i

q⊥i(k+1)

− 1

)

136

(c)
=e−α〈c

(`),q(k+1)〉
n∑

i=1

c
(`)
i ui(k)e

− α

c
(`)
i

q⊥i(k+1)

− 〈c(`),u(k)〉,

where (a) holds by definition of q‖(k); (b) holds by definition of α; and (c) holds after

expanding the product and reorganizing terms. Therefore, we have

〈c(`),u(k)〉 = e−α〈c
(`),q(k+1)〉

n∑

i=1

c
(`)
i ui(k)e

− α

c
(`)
i

q⊥i(k+1)

.

Multiplying both sides by eα〈c(`),q(k+1)〉 we obtain

〈c(`),u(k)〉eα〈c(`),q(k+1)〉 =
n∑

i=1

c
(`)
i ui(k)e

− α

c
(`)
i

q⊥i(k+1)

,

which proves the lemma.

Now we prove Lemma 6.5.

Proof of Lemma 6.5. First observe that if θ = 0 the lemma holds trivially. Now assume

θ 6= 0. Since c(`) ≥ 0 and ui ≤ si ≤ Smax for all i ∈ [n], we have

0 ≤ 〈c(`),u〉 ≤ Smax〈c(`),1〉.

Then, from facts item (i) and item (ii) stated in subsection 3.6.3, we have

∣∣∣e−θε〈c(`),u〉
∣∣∣ ≤
∣∣θε〈c(`),u〉

∣∣
(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
. (6.13)

Now, by properties of expected value, we have

∣∣∣E
[(
eθε〈c

(`),q+〉 − 1
)(

e−θε〈c
(`),u〉 − 1

)]∣∣∣

≤E
[∣∣∣eθε〈c(`),q+〉 − 1

∣∣∣
∣∣∣e−θε〈c(`),u〉 − 1

∣∣∣
]

(a)

≤|θε|
(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
E
[∣∣∣〈c(`),u〉

(
eθε〈c

(`),q+〉 − 1
)∣∣∣
]

137

(b)
=|θε|

(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
E



∣∣∣∣∣∣

n∑

i=1

c
(`)
i ui


e
−
(

θε

c
(`)
i

)
q+
⊥i



∣∣∣∣∣∣




(c)

≤|θε|
(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
E




n∑

i=1

ciui

∣∣∣∣∣∣
e
−
(

θε

c
(`)
i

)
q+
⊥i − 1

∣∣∣∣∣∣




(d)

≤|θε|
(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
E

[
n∑

i=1

(
c

(`)
i ui

)j
] 1
j

E




n∑

i=1

∣∣∣∣∣∣
e
−
(

θε

c
(`)
i

)
q+
⊥i − 1

∣∣∣∣∣∣

j
j−1




j−1
j

,

where j ∈ Z+ satisfies j > 1. Here (a) holds by Equation 6.13; (b) holds by Lemma 6.10

with α = θε; (c) holds by triangle inequality; and (d) holds by Hölder’s inequality.

But

E

[
n∑

i=1

(
c

(`)
i ui

)j
]
≤(cmaxSmax)j−1E

[
n∑

i=1

c
(`)
i ui

]
≤ (cmaxSmax)j−1ε,

where cmax = maxi∈[n] c
(`)
i and the last equality holds by the following reason. By Lemma 6.7

we have

E
[
〈c(`),u〉

]
=ε− b(`) + E

[
〈c(`), s〉

]
.

Also, recall that E
[
〈c(`), s〉

]
∈ C, by Lemma 6.1. Then,

−b(`) + E
[
〈c(`), s〉

]
≤ 0. (6.14)

Therefore,

∣∣∣E
[(
eθε〈c

(`),q+〉 − 1
)(

e−θε〈c
(`),u〉 − 1

)]∣∣∣

≤|θ|ε1+ 1
j (cmaxSmax)

j−1
j

(
e−θεSmax〈c(`),1〉 − 1

−θεSmax〈c(`),1〉

)
E




n∑

i=1

∣∣∣∣∣∣
e
−
(

θε

c
(`)
i

)
q+
⊥i − 1

∣∣∣∣∣∣

j
j−1




j−1
j

.

138

The rest of the argument is similar to the last steps in the proof of Lemma 3.9. However,

in this case we do not need to use existence of the MGF of ε
∑n

i=1 qi because we know

E
[
eθε‖q⊥‖

]
is bounded for θε ≤ θ∗ from SSC.

6.5.2 Existence of MGF of ε ‖q‖ in the generalized switch

We prove the following lemma.

Lemma 6.11. Consider a generalized switch parametrized by ε as described in Theorem

6.2. Then, there exists Θ > 0 (which is independent of ε) such that E
[
eθε〈c

(`),q〉
]
< ∞ for

all θ ∈ [−Θ,Θ].

Lemma 6.11 can be proved using Foster-Lyapunov theorem (Theorem 2.4), following

similar steps to the proof of Lemma 3.13. However, here we propose a different approach.

We use the Lemma 6.12, which presents explicit bounds for the setting of Lemma 2.7.

Lemma 6.12. For an irreducible and aperiodic Markov chain {X(k) : k ≥ 1} over a

countable state space X , suppose Z : X → R+ is a nonnegative valued Lyapunov function

and consider its drift ∆Z(x) as defined in Definition 2.2. Suppose the following conditions

are satisfied:

(C1) There exists η > 0 and κ <∞ such that E [∆Z(x) | X(k) = x] ≤ −η for all x ∈ X

with Z(x) ≥ κ,

(C2) There exists D <∞ such that |∆Z(x)| ≤ D with probability 1 for all x ∈ X

and η2 ≤ 4(eD − 1−D). Define

Θ∗
4
= min

{
1,

η

2(eD − 1−D)

}
.

139

Then, for any θ∗ ∈ (0,Θ∗) we have

lim
k→∞

E
[
eθ
∗V (Xk)

]
≤ 2

(
1 +

D

η

)
eθ
∗κ.

We present the proof of the lemma at the end of this section. Now we prove existence

of MGF for the generalized switch.

Proof of Lemma 6.11. First observe that if θ ≤ 0 the lemma holds trivially. Therefore, in

this proof we assume θ > 0.

We use Lemma 6.12 with Z(q) = ‖q‖.

To show that condition (C1) is satisfied, we first observe that f(x) =
√
x is a concave

function, and Z(q) =
√
‖q‖2. Then,

Eq [∆Z(q)] ≤ 1

2‖q‖Eq
[
‖q(k + 1)‖2 − ‖q‖2

]
. (6.15)

We now compute an upper bound on Eq [‖q(k + 1)‖2 − ‖q‖2]. For every k ∈ Z+, we have

‖q(k + 1)‖2 − ‖q(k)‖2

= ‖q(k + 1)− u(k) + u(k)‖2 − ‖q(k)‖2

(a)
= ‖q(k) + a(k)− s(k)‖2 + ‖u(k)‖2 + 2〈q(k + 1)− u(k),u(k)〉 − ‖q(k)‖2

(b)

≤ ‖a(k)− s(k)‖2 + 2〈q(k),a(k)− s(k)〉, (6.16)

where (a) holds by Equation 1.2; and (b) holds by Equation 1.3, because ‖u(k)‖2 ≥ 0, and

expanding the first term. Next we bound the conditional expectation of each of the terms

in Equation 6.16. For the first term we have,

Eq
[
‖a(k)− s(k)‖2

] (a)

≤ E
[
‖a(k)‖2

]
+ Eq

[
‖s(k)‖2

]
(6.17)

(b)

≤
n∑

i=1

(
(λ

(ε)
i)2 + σ2

ai

)
+ nS2

max, (6.18)

140

where (a) holds by triangle inequality and because the arrival process is independent of the

queue length process; and (b) holds by definition of variance and because the potential ser-

vice to each of the queues is upper bounded by Smax. Define ζ1
4
=
∑n

i=1

(
(λ

(ε)
i)2 + σ2

ai

)
+

nS2
max.

For the second term in Equation 6.16 we obtain

Eq [〈q,a(k)− s(k)〉] (a)
= 〈q,ν(`) − εc(`)〉 − 〈q,Eq [s(k)]〉
(b)

≤ 〈q,ν(`) − εc(`)〉 − 〈q, s∗〉,

where s∗ ∈ C. Here, (a) holds because the arrival processes are independent of the queue

lengths, and by definition of λ(ε); and (b) holds for any s∗ ∈ C because scheduling occurs

according to MaxWeight algorithm, and by Lemma 6.1.

We now compute a vector s∗ ∈ C. Define a vector d(`) with elements d(`)
i

4
= 1{

c
(`)
i =0

}
for each i ∈ [n], and observe that d(`) is orthogonal to c(`). Since ν(`) is in the relative

interior of the facet F (`), there exists a positive number δ ∈ (0, 1) such that

ν(`) + εδd(`) ∈ RelativeInterior(F (`)).

Set s∗ = ν(`) + εδd(`), and note that if all the components of c(`) are strictly positive, then

d(`) = 0 and s∗ = ν(`). Then, we obtain

Eq [〈q,a(k)− s(k)〉] ≤ −ε〈q, c(`) + δd(`)〉
(a)

≤ −ερ(`)
√
n‖q‖, (6.19)

where ρ(`) 4= mini∈[n]{c(`)
i + δd

(`)
i }. Here, (a) holds by the Cauchy-Schwarz inequality.

Observe that ρ(`) is a constant independent of ε and that ρ(`) > 0 by definition of δ and d(`).

Using Equation 6.16, Equation 6.17 and Equation 6.19 in Equation 6.15, and rearrang-

141

ing terms we obtain

Eq [∆Z(q)] ≤ ζ1

2‖q‖ − ερ
(`)
√
n.

Therefore, condition (C1) is satisfied with

η
4
=
ερ(`)
√
n

2
, and κ

4
=

ζ1

ερ(`)
√
n
.

Now we show condition (C2). We have

|∆Z(q)| = |‖q(k + 1)‖ − ‖q(k)‖|1{q(k)=q}

(a)

≤ ‖q(k + 1)− q(k)‖1{q(k)=q}

(b)

≤ ‖a(k)− s(k) + u(k)‖1{q(k)=q}

(c)

≤ (‖a(k)‖+ ‖s(k)− u(k)‖)1{q(k)=q}

(d)

≤ √n(Amax + Smax),

where (a) holds by triangle inequality; (b) holds by Equation 1.2; (c) holds by triangle

inequality; and (d) because for each i ∈ [n] we have ai(k) ≤ Amax and si(k) − ui(k) ≤

si(k) ≤ Smax with probability 1. Hence, condition (C2) is satisfied with D 4
=
√
n(Amax +

Smax). Observe that η ≤ 1
2

and D ≥ 2 because we must have Amax ≥ 1 and Smax ≥ 1.

Then, η2 ≤ 4(eD − 1−D) holds trivially.

Therefore, setting θ∗ 4= θε in Lemma 6.12 we obtain

E
[
eθε‖q‖

]
≤ 2

(
1 +

2
√
n(Amax + Smax)

ερ(`)
√
n

)
e

θζ1

ρ(`)
√
n

142

for any θ ≤ Θ, where, using that ε < 1 we obtain

Θ = min

{
1,

ρ(`)
√
n

2
(
e
√
n(Amax+Smax) − 1−√n(Amax + Smax)

)
}
.

Since 〈c(`), q〉 = ‖q‖‖ and the projection is nonexpansive, we have 〈c(`), q〉 ≤ ‖q‖.

Hence, for every θ ∈ (0,Θ] we have

E
[
eθε〈c

(`),q〉
]
≤ 2

(
1 +

2
√
n(Amax + Smax)

ερ(`)
√
n

)
e

θζ1

ρ(`)
√
n .

We finish this section with the proof of Lemma 6.12, which is based on [38, Lemma

2.2]. We state this lemma for completeness.

Lemma 6.13. [38, Lemma 2.2] Suppose Y1 and Y2 are random variables such that |Y1|

is stochastically dominated by Y2 and E
[
eθmaxY2

]
< ∞ for some θmax > 0. Then, for

θ∗ ∈ [0, θmax]

E
[
eθ
∗Y1
]
≤ 1 + θ∗E [Y1] + (θ∗)2

∞∑

i=2

(θmax)i−2

i!
E
[
Y i

2

]
.

Now we prove Lemma 6.12.

Proof of Lemma 6.12. We use Lemma 6.13 with Y1 = ∆Z(x) and Y2 = D. Since D is a

constant, we have E
[
eθmaxD

]
< ∞ for any finite θmax. For simplicity, we pick θmax = 1.

Then, for any θ∗ ∈ [0, 1] we have

E
[
eθ
∗∆Z(Xk)|Xk = x

]

≤ 1 + θ∗E [∆Z(Xk)|Xk = x] + (θ∗)2

∞∑

i=2

Di

i!

(a)

≤ 1 + θ∗E
[
−η1{Z(Xk)≥κ} +D1{Z(Xk)<κ}

∣∣Xk = x
]

+ (θ∗)2
(
eD − 1−D

)

143

(b)
= 1− θ∗η + θ∗(η +D)1{Z(x)<κ} + (θ∗)2

(
eD − 1−D

)
. (6.20)

where (a) holds by conditions (C1) and (C2), and solving the series in the last term; and

(b) holds reorganizing terms.

Now we compute a bound for E
[
eθ
∗Z(Xk+1)

]
as follows. Observe

E
[
eθ
∗Z(Xk+1)

]

= E
[
E
[
eθ
∗Z(Xk)eθ

∗∆Z(Xk)
∣∣Xk

]]

(a)

≤
(
1− ηθ∗ + (θ∗)2

(
eD − 1−D

))
E
[
eθ
∗Z(Xk)

]
+ θ∗(η +D)eθ

∗κ

(b)

≤
(
1− ηθ∗ + (θ∗)2

(
eD − 1−D

))k+1 E
[
eθ
∗Z(X0)

]

+ θ∗(η +D)eθ
∗κ

k∑

i=0

(
1− ηθ∗ + (θ∗)2

(
eD − 1−D

))i

where (a) holds by Equation (6.20) and reorganizing terms; and (b) holds using the recur-

sion from the previous line k+ 1 times because the condition η2 ≤ 4(eD − 1−D) ensures

that
(
1− ηθ∗ + (θ∗)2

(
eD − 1−D

))
≥ 0.

The upper bound converges only if 1− ηθ∗ + (θ∗)2
(
eD − 1−D

)
< 1, so we solve for

θ∗ such that

1− ηθ∗ + (θ∗)2
(
eD − 1−D

)
≤ 1− ηθ∗

2
.

We obtain that

θ∗ ≤ η

2(eD − 1−D)
.

For such θ∗, we have

E
[
eθ
∗Z(Xk+1)

]
≤
(

1− ηθ∗

2

)k+1

E
[
eθ
∗Z(X0)

]
+ θ∗(η +D)eθ

∗κ
k+1∑

i=0

(
1− ηθ∗

2

)i

144

Then, taking the limit of the recursion as k →∞ we obtain the result.

6.5.3 Proof of Lemma 6.6

In this proof we use a geometric vision of MaxWeight algorithm. Before presenting the

technical details we present an intuitive overview of the proof. Recall that, given the chan-

nel state, MaxWeight algorithm maximizes 〈q(k),x〉 over the set of feasible service rate

vectors. Then, MaxWeight solves an optimization problem with linear objective function.

Equivalently, MaxWeight finds a vector x∗ which is an optimal solution of

max 〈q(k),x〉

s.t. x ∈ ConvexHull
(
S(m)

) (6.21)

and sets s(k) as one of these optimal solutions. To make the optimization problem linear,

we use ConvexHull
(
S(m)

)
as the feasible region instead of S(m). However, this does

not change the problem because the objective function is linear and, therefore, an optimal

solution of Equation 6.21 is at an extreme point, i.e. at a point in S(m).

The gradient of the objective function is q(k). Then, depending on its direction, the

optimal solution(s) x∗ will belong to a different facet or vertex of ConvexHull
(
S(m)

)
. In

Figure 6.1 we present pictorial examples where we show the optimal solution(s) when the

vector of queue lengths goes in three different directions.

Recall that q‖(k) goes in the same direction as c(`). Also, if ε is small we expect that

q(k) ≈ q‖(k) by SSC. Then, if ε is small we expect that any optimal solution x∗ to the

linear program presented in Equation 6.21 satisfies 〈c(`),x∗〉 = b(m,`) with high probability.

Now we present the technical details of the proof.

Proof of Lemma 6.6. First observe that if θ = 0 the proof holds trivially. Now assume

θ 6= 0.

We start with a definition. Let m ∈ M and suppose that the channel state is M = m.

145

ConvexHull
(
S(t)

)
q(k)

x∗

(a) Example 1: Multiple so-
lutions, since q(k) is per-
pendicular to the second
facet from left to right.

ConvexHull
(
S(t)

)

q(k)

x∗b

(b) Example 2: Unique so-
lution.

ConvexHull
(
S(t)

)q(k)

x∗

(c) Example 3: Another ex-
ample of multiple solutions.

Figure 6.1: Example of optimal solutions depending on the queue lengths vector.

Then, let ϕ(m) ∈
(
0, π

2

]
be an angle such that 〈c(`), s〉 = b(m,`) if ‖q‖‖‖q‖ ≥ cos

(
ϕ(m)

)
. Let

ϕq be the angle between q‖ and q and define ϕmin
4
= minm∈M ϕ(m). Therefore, since s is

scheduled using MaxWeight algorithm, if channel state is m we have

b(m,`) 6= 〈c(`), s〉 implies ϕ(m) < ϕq. (6.22)

In this proof we use the notation Em [·] = E
[
· |M = m

]
. By definition of conditional

expectation we have

E
[(
eθε〈c

(`),q(ε)〉 − 1
)(

eθε(B−〈c
(`),s(ε)〉) − 1

)]

=
∑

m∈M

ψmEm
[(
eθε〈c

(`),q(ε)〉 − 1
)(

eθε(b
(m,`)−〈c(`),s(ε)〉) − 1

)]
,

where

Em
[(
eθε〈c

(`),q(ε)〉 − 1
)(

eθε(b
(m,`)−〈c(`),s(ε)〉) − 1

)]

(a)
=Em

[(
eθε‖q‖‖ − 1

)(
eθε(b

(m,`)−〈c(`),s〉) − 1
)
1{b(m,`) 6=〈c(`),s〉}

]

(b)

≤Em
[(
eθε‖q‖‖ − 1

)(
eθε(b

(m,`)−〈c(`),s〉) − 1
)
1{ϕq>ϕ(m)}

]

146

=Em
[(
eθε‖q⊥‖ cot(ϕq) − 1

) (
eθε(b

(m,`)−〈c(`),s〉) − 1
)
1{ϕq>ϕ(m)}

]

(c)

≤Em
[(
eθε‖q⊥‖ cot(ϕ(m)) − 1

)(
eθε(b

(m,`)−〈c(`),s〉) − 1
)
1{ϕq>ϕ(m)}

]

(d)
=Em

[(
eθε‖q⊥‖ cot(ϕ(m)) − 1

)(
eθε(b

(m,`)−〈c(`),s〉) − 1
)]

(e)

≤Em
[(
eθε‖q⊥‖ cot(ϕ(m)) − 1

)j] 1
j

Em
[(
eθε(b

(m,`)−〈c(`),s〉) − 1
) j
j−1

] j−1
j

,

where j ∈ Z+ satisfies j > 1. Here (a) holds by definition of indicator function and

because q‖ = 〈c(`), q〉c(`) by definition of projection; (b) holds by Equation 6.22; (c) and

(d) hold because cot(ϕ) is decreasing for ϕ ∈
(
0, π

2

]
; (d) holds by Equation 6.22 and by

definition of indicator function; and (e) holds by Hölder’s inequality.

Using an argument similar to the one at the end of Lemma 3.9, it can be proved that

0 ≤ Em
[(
eθε‖q⊥‖ cot(ϕ(m)) − 1

)j] 1
j

converges to a constant as ε ↓ 0. On the other hand,

Em
[(
eθε(b

(m,`)−〈c(`),s〉) − 1
) j
j−1

]

=Em
[(
eθε(b

(m,`)−〈c(`),s〉) − 1
) j
j−1

1{b(m,`) 6=〈c(`),s〉}
]

=E



(
eθε(b

(m,`)−〈c(`),s〉) − 1

θε (b(m,`) − 〈c(`), s〉)

) j
j−1 (

θε
(
b(m,`) − 〈c(`), s〉

)) j
j−1

1{b(m,`) 6=〈c(`),s〉}




≤
(
eθε(Bmax−〈c(`),Smax1〉) − 1

θε
(
Bmax − 〈c(`), Smax1〉

)
) j

j−1 (
θε
(
Bmax − 〈c(`), Smax1〉

)) j
j−1 P

[
b(m,`) 6= 〈c(`), s〉

]
,

where Bmax = maxm∈M b(m,`). In [34] , the authors prove that P
[
b(m,`) 6= 〈c(`), s〉

]
= Kε

for a finite constant K, and their proof also holds here. Therefore,

E
[(
eθε(b

(m,`)−〈c(`),s〉) − 1
) j
j−1

]
is O

(
ε1+ j

j−1

)

147

This completes the proof.

6.5.4 Proof of Claim 6.8

Proof of Claim 6.8. We have

0 ≤ (θε)2

2
E
[(
〈c(`),u〉

)2
] (a)

≤ε2
(〈c(`), Smax1〉θ2

2

)
E
[
〈c(`),u〉

]

(b)

≤ε3
(〈c(`), Smax1〉θ2

2

)

where (a) holds because ui ≤ si ≤ Smax and c(`) ≥ 0; and (b) holds by Lemma 6.7,

because E
[
〈c(`), s〉 −B

]
≤ 0.

Therefore,

(θε)2

2
E
[(
〈c(`),u〉

)2
]

is O(ε3).

6.5.5 Proof of Claim 6.9

Proof of Claim 6.9. For the first expression, from Lemma 3.1 we have

E
[
fε,(〈c(`),a〉−B)(θ)

]
=1 + θεE

[
〈c(`),a〉 −B

]
+

(θε)2

2
E
[(
〈c(`),a〉 −B

)2
]

+O(ε3)

=1 + θε2 +
(θε)2

2
E
[(
〈c(`),a〉 −B

)2
]

+O(ε3),

where the last equality holds by Equation 6.7. Also,

0 ≤ (θε)2

2
E
[(
〈c(`),a〉 −B

)2
] (a)

≤ε2
(

(〈c(`), Amax1〉+Bmax)θ2

2

)
E
[
〈c(`),a〉 −B

]

(b)
=ε3

(
(〈c(`), Amax1〉+Bmax)θ2

2

)

148

where (a) holds because ai ≤ Amax with probability 1 for all i ∈ [n], c(`) ≥ 0, B is

bounded by a constant that we denote Bmax and because all quantities are nonnegative; and

(b) holds by Equation 6.7. Then,

(θε)2

2
E
[(
〈c(`),a〉 −B

)2
]

is O(ε3).

Therefore,

E
[
fε,(〈c(`),a〉−B)(θ)

]
= 1 + θε2 +O(ε3).

This proves the first equation of the claim.

For the second expression, using Lemma 3.1 we obtain

E
[
fε,(B−〈c(`),s〉)(θ)

]
− 1 =θεE

[
B − 〈c(`), s〉

]
+

(θε)2

2
E
[(
B − 〈c(`), s〉

)2
]

+O(ε3).

But

0 ≤ (θε)2

2
E
[(
B − 〈c(`), s〉

)2
] (a)

≤ε2
((

Bmax + 〈c(`), Smax1〉
)
θ2

2

)
E
[
B − 〈c(`), s〉

]

(b)

≤ε3
((

Bmax + 〈c(`), Smax1〉
)
θ2

2

)

where (a) holds because si ≤ Smax with probability 1 for all i ∈ [n], c(`) ≥ 0, B ≤ Bmax

and all quantities are nonnegative (see Equation 6.14 to see why E
[
B − 〈c(`), s〉

]
≥ 0);

and (b) holds by Lemma 6.7 and because E
[
〈c(`),u〉

]
≥ 0 since u ≥ 0 and c(`) ≥ 0.

Then,

(θε)2

2
E
[(
B − 〈c(`), s〉

)2
]

is O(ε3).

149

Therefore,

E
[
fε,(B−〈c(`),s〉)(θ)

]
− 1 = θεE

[
B − 〈c(`), s〉

]
+O(ε3).

This completes the proof.

6.6 Conclusion and future work

In this chapter we presented the last SPN that we analyze with the transform method in

this thesis. As mentioned before, the transform method is a simple and flexible approach

to compute the distribution of the scaled heavy-traffic queue lengths. Future work is to

generalize this method to other queueing systems, including SPNs that do not satisfy the

CRP condition.

Another question for future research is to use the MGF method to study the rate of con-

vergence to the heavy-traffic limit. In addition to obtaining the results on the heavy-traffic

limiting behavior, the drift method also gives upper and lower bounds that are applicable in

all traffic [34, 14, 15]. These bounds give the rate of convergence to the heavy-traffic limit.

Since the MGF method is a natural generalization of the drift method, it may be used to

obtain results on rate of convergence too, which is a topic for future study.

The next set of future work is on developing the MGF method for its use in systems

that do not satisfy the CRP condition, and this will be the culmination of the present work

because the main motivation in developing the MGF method is to study systems when the

CRP condition is not met. We believe that the MGF method is a promising approach to

obtain the heavy-traffic distribution of the queue lengths when CRP condition does not

hold, even though the drift method is known to fail in this case (see chapter 7), because

of the following reason. The queue lengths process is a multi-dimensional DTMC (or a

CTMC in some cases). For a positive recurrent and irreducible DTMC, it is known that

the stationary distribution exists and is unique. One first establishes positive recurrence of

150

the DTMC using Foster-Lyapunov Theorem. This has an added benefit that one typically

obtains as a consequence a (possibly loose) upper bound on an expression of them form

E [ε
∑

i qi]. If P is the transition matrix, then the stationary distribution is a unique solu-

tion of the equation, π = πP . Clearly, solving for the stationary distribution in general

is hard. However, we know that it is unique and is characterized by this equation. If we

take two-sided Laplace transform of the equation π = πP we obtain an equation which is

same as the one we obtain by setting the drift of the exponential test function to zero. Since

Laplace transform is invertible, solving this equation uniquely characterizes the stationary

distribution through its MGF. However , even for the single server queue it is challenging

to obtain a solution for this equation in all traffic. Therefore, using the MGF approach, we

seek to solve it in the heavy-traffic limit. To do this, one first needs to prove tightness of

the sequence of the stationary distributions as the heavy-traffic parameter ε goes to zero.

Tightness follows directly from the bound on E[ε
∑

i qi] that one obtains from the Foster-

Lyapunov Theorem. Therefore, we expect that the MGF drift equation that we have in the

heavy-traffic limit must have a unique solution. Typically, since the system is tractable in

steady-state, we expect to solve this equation explicitly to get the joint stationary distribu-

tion in steady-state. Even in cases when this equation may not be solved explicitly, one

may be able to obtain moments from this equation. For instance, one may be able to obtain

the moment bounds computed in [14, 15, 22] from such an equation.

151

CHAPTER 7

HEAVY-TRAFFIC ANALYSIS WITH NO COMPLETE RESOURCE POOLING

Based on:

D. Hurtado-Lange and S. T. Maguluri, “Heavy-traffic analysis of queueing systems with no

complete resource pooling,” arXiv preprint arXiv:1904.10096, 2019

D. Hurtado-Lange, S. M. Varma, and S. T. Maguluri, “Logarithmic heavy traffic error

bounds in generalized switch and load balancing systems,” arXiv preprint arXiv:2003.07821,

2020

7.1 Introduction

In this chapter we study a generalized switch without assuming that the CRP condition is

satisfied, and so SSC may occur to a multidimensional subspace. Also, we assume that

the arrival process to each queue is a sequence of independent and identically distributed

(i.i.d.) random variables, but we do not require that these sequences are independent of

each other. The main contributions of this chapter are:

(i) In Theorem 7.5 we characterize the heavy-traffic scaled mean of certain linear com-

binations of the queue lengths in steady state under the MaxWeight algorithm. More-

over, we obtain lower and upper bounds that are valid in all regimes (not necessarily

heavy traffic), but are tight in the heavy-traffic regime. This result is immediately

applicable in several systems, as we showcase in section 7.5, and it includes both,

the CRP and the non-CRP cases. Little is known about SPNs that do not satisfy CRP,

since the most common approach in the literature is the use of diffusion limits, and

152

solving a multidimensional RBM is an open question. In this chapter we contribute

to understanding the heavy-traffic behavior of non-CRP systems by providing the

mean of some linear combinations of the queue lengths.

(ii) In Corollary 7.8 we compute the heavy-traffic limit of the total queue length in an

input-queued switch with correlated arrivals. As mentioned above, the input-queued

switch has had considerable attention in the literature. However, it has only been

studied under independent arrival processes [14, 15]. The input-queued switch is

a model for an ideal data center network, and independent arrivals is an unrealistic

assumption in this setting. In fact,data centers experience hot-spots, and, hence, the

arrivals to different queues are highly correlated [100, 101].

(iii) We illustrate how Theorem 7.5 can be immediately applied to a variety of systems.

Specifically, we show how to apply it to parallel-server systems (Corollary 7.13,

and Corollary 7.15), the so-called N -system (Corollary 7.16) and ad hoc wireless

networks (Corollary 7.11).

(iv) In Section 7.5.2 we show that, if SSC is full-dimensional, then the heavy-traffic limit

of the mean queue lengths does not depend on the correlation among arrival pro-

cesses. In other words, if the systems experience full-dimensional SSC, the expected

linear combination of queue lengths behaves as if the queues were independent. This

result is rather surprising, and it was not known.

(v) In Theorem 7.24 we show that using the drift method with polynomial test functions,

it is impossible to obtain the moments of all linear combinations of the queue lengths.

We prove this result by presenting an alternate way of thinking of the drift method.

Traditionally, the key step in using this approach, is to design the correct test function

to obtain all the moments. However, it is not clear a priori if there are test functions

that give all these moments. Instead of trying to guess the right test function, this

point of view shows that one can think about solving a set of linear equations. This

153

system of linear equations turns out to be under-determined, and the major challenge

is to obtain more equations using the constraints in the system, in order to solve for

all the unknowns and obtain the complete joint distribution of the queue lengths when

the CRP condition is not satisfied.

(vi) In Theorem 7.27 we obtain lower and upper bounds on the steady-state mean of an

arbitrary linear combination of queue lengths. We do this by formulating a Linear

Program (LP) using the under-determined system of equations from Theorem 7.24.

We present numerical results in the case of Bernoulli arrivals, for different values of

the traffic intensity. For simplicity of exposition, we do this only in the special case

of an input-queued switch, and the same approach can be used for the generalized

switch. We discuss this generalization in section 4.5

7.2 Related work

In section 6.2 we discussed the related work on MaxWeight algorithm.

The study of SPNs that do not satisfy the CRP condition is relatively new. The most

relevant literature for this chapter is [34, 14, 15]. In [34], the authors develop the drift

method and they apply it to the generalized switch under the CRP condition. In [14, 15]

an input-queued switch that does not satisfy the CRP condition is studied using the drift

method too.

The results in this chapter are clearly a generalization of the work of [34, 14, 15], but

due to the generality of the model, several challenges arise.

We use the drift method to analyze the heavy-traffic behavior of the mean queue lengths

in a generalized switch. The drift method is a two-step procedure to compute bounds on

linear combinations of the queue lengths that are tight in heavy traffic. The first step is to

prove SSC, which we do in Proposition 7.4, and the second step is to set to zero the drift of

V (q) = ‖q‖H‖2,i.e., of the squared norm of the projection of the vector of queue lengths

on the subspace where SSC occurs. While these steps are standard for the drift method

154

as developed in [34, 14, 15, 22], different challenges arise in each case depending on the

system that one is studying. In this case we are working with the generalized switch, which

is a very general model. Hence, we overcome difficulties that were not part of the work

listed above. We summarize these below:

(a) Since the effective capacity region is the average of several individual capacity re-

gions (see the definition of the capacity region in Equation 6.1), the vector of poten-

tial service does not necessarily belong to the effective capacity region. Then, it is

not obvious how to deal with the terms that involve the service vector.

(b) In the case of an input-queued switch as studied in [14], the projected service vector

s‖H is constant due to the structure of the system. In the case of the generalized

switch, this is not the case, and this leads to significant challenges. In particular, the

computation of the term E
[
〈q‖H, s‖H〉

]
is not trivial. We used the properties of the

system and MaxWeight algorithm to bound this term.

(c) The final closed-form expression that we obtain for the steady-state expectation of

the queue lengths is novel, and is a contribution by itself. To compute this expres-

sion (the term T2 in the proof of Theorem 7.5), we use the least squares problem

to obtain an expression that is valid for any generalized switch. In [34, 14, 15] the

underlying symmetry of the specific systems that were studied is explicitly used in

the computations, and therefore, it is not clear how to generalize.

Challenge (a) is addressed in Lemmas 7.1 and 7.2, that we prove in the next section.

These lemmas form an important part of the entire proof and are used repeatedly. Challenge

(b) is addressed in 7.21. Finally, overcoming challenge (c) using the least square problem

gave us the closed form expression for the right-hand side in Theorem 7.5.

155

7.3 Useful lemmas

In this section we present preliminary results that form the base of the analysis of the

generalized switch. We use these results repeatedly in this chapter and, hence, we present

them below.

Recall that B`
4
= b(M,`) and that, for each m ∈M, b(m,`) is the maximum c(`)-weighted

service rate in S(m). Similarly, b(`) can be interpreted as the maximum c(`)-weighted service

rate in C, and c(`) and b(`) define a facet of C. Hence, since the values ofB` occur according

to the probability mass function of the channel state, and the capacity region C can be

interpreted as the ‘expected capacity region’ according to Equation 6.1, we should expect

E
[
B`

]
= b(`). Additionally, c(`) and b(m,`) define a half-space that passes through the

boundary of ConvexHull(S(m)) and, hence, there must exist a vector ν(m) such that b(m,`) =

〈c(`),ν(m)〉. We formalize these results in Lemma 7.1.

Lemma 7.1. Let ` ∈ P and m ∈ M. Then, there exists ν(m) ∈ S(m) such that b(m,`) =

〈c(`),ν(m)〉. This implies that b(`) = E
[
B`

]
for all ` ∈ P .

The proof of Lemma 7.1 follows immediately from the definition of the capacity region

C in Equation 6.1, and of the parameters b(m,`) in Equation 6.4. We present the details

below.

Proof of Lemma 7.1. First, recall ν ∈ C and C is a weighted sum of ConvexHull(S(m)) for

m ∈ M. Then, since each S(m) is finite, for each m ∈ M there exists ν(m) ∈ S(m) such

that

ν =
∑

m∈M

ψmν
(m)

Also, by definition of the `th hyperplane, for each ` ∈ P we have

b(`) = max
x∈C
〈c(`),x〉

156

=
∑

m∈M

ψm max
{
〈c(`),x〉 : x ∈ ConvexHull

(
S(m)

)}

(a)
=
∑

m∈M

ψm max
x∈S(m)

〈c(`),x〉

(b)
=
∑

m∈M

ψmb
(m,`)

where (a) holds because the objective function of the maximization is linear and, therefore,

the optimal solution is an extreme point of ConvexHull
(
S(m)

)
, which must be an element

of S(m) by definition of convex hull; and (b) holds by definition of b(m,`). This proves that

b(`) = E
[
B`

]
.

Observe that the last equality also implies that 〈c(`),ν(m)〉 = b(m,`) for all m ∈ M, for

the following reason. First, by definition of b(m,`) we know 〈c(`),ν(m)〉 ≤ b(m,`). Also, if

there exists m∗ ∈M with 〈c(`),ν(m∗)〉 < b(m∗,`), then

∑

m∈M

ψm〈c(`),ν(m)〉 <
∑

m∈M

ψmb
(m,`).

But

〈c(`),ν〉 =
∑

m∈M

ψm〈c(`),ν(m)〉 and b(`) =
∑

m∈M

ψmb
(m,`).

Therefore, we got a contradiction because ν ∈ ⋂`∈P F (`) and, hence, 〈c(`),ν〉 = b(`).

As ε gets closer to zero, we know that λ(ε) gets closer to ν, and SSC implies that the

vector of queue lengths can be approximated by its projection onK. In other words, as ε ↓ 0

the vector of queue lengths can be well approximated by a conic combination of the vectors

c(`) with ` ∈ P . Therefore, since the scheduling problem is solved using MaxWeight

algorithm, and given that the channel state is m, one should expect that 〈c(`), s〉 = b(m,`)

with high probability. In the next lemma we formalize this intuition.

Lemma 7.2. For eachm ∈M and ` ∈ P , define π(m,`) 4= P
[
〈c(`), s〉 = b(m,`)

∣∣ M = m
]
.

157

Then, 1− π(m,`) is O(ε).

The proof of Lemma 7.2 is a generalization of [34, Claim 1], and we present below for

completeness.

Proof of Lemma 7.2. For ease of exposition, we omit the dependence on ε of the variables,

and we use the notation Em [·] 4= E
[
·|M = m

]
. Define

γ(m) 4= min
{
b(m,`) − 〈c(`),x〉 : 〈c(`),x〉 < b(m,`), for ` ∈ P, x ∈ S(m)

}
.

Observe that, for each m ∈ M we have γ(m) > 0 because each S(m) is a finite set and,

therefore, b(m,`) − 〈c(`),x〉 cannot be arbitrarily close to zero.

From stability, for each ` ∈ P we have

E
[
〈c(`), s〉

]
≥E

[
〈c(`),a〉

]
.

Then, using Lemma 7.1, we obtain that for each m ∈M

Em
[
〈c(`), s〉

]
≥ E

[
〈c(`),a〉

]
= (1− ε)〈c(`),ν(m)〉 = (1− ε)b(m,`)

On the other hand, by definition of π(m,`) we have

Em
[
〈c(`), s〉

]
= π(m,`)b(m,`) +

(
1− π(m,`)

)
Em
[
〈c(`), s〉

∣∣ b(m,`) 6= 〈c(`), s〉
]

Putting these two results together we obtain

(1− ε)b(m,`) ≤ b(m,`)π(m,`) +
(
1− π(m,`)

)
Em
[
〈c(`), s〉

∣∣ b(m,`) 6= 〈c(`), s〉
]

(7.1)

158

Also, by definition of γ(m) we have

Em
[
〈c(`), s〉

∣∣ b(m,`) 6= 〈c(`), s〉
]
≤ b(m,`) − γ(m).

Using the last result in Equation 7.1 and rearranging terms we obtain

1− π(m,`) ≤ εb(m,`)

γ(m)
.

Since the sets P and S(m) for eachm ∈M are finite, there exists bmax = maxm∈M, `∈P{b(m,`)}

and bmax <∞. Therefore, we have 1− π(m,`) is O(ε).

7.4 Heavy-traffic analysis of the generalized switch.

In this section we perform heavy-traffic analysis of the generalized switch. Before pre-

senting the details we specify the heavy-traffic parametrization, which is similar to the

parametrization we used in Chapter 6. We fix a vector ν in the boundary of C and we

consider a set of generalized switches operating under MaxWeight as described above,

parametrized by ε ∈ (0, 1). The heavy-traffic limit is the limit as ε ↓ 0 and, as ε gets small,

the vector of mean arrival rates approaches ν. Formally, we parametrize the queueing sys-

tem in the following way. We let q(ε)(k), a(ε)(k), s(ε)(k) and u(ε)(k) be the vectors of

queue lengths, arrivals, potential service and unused service, respectively, in time slot k, in

the system parametrized by ε. The parametrization is such that the vector of mean arrival

rate is λ(ε) 4= E
[
a(ε)(1)

]
= (1− ε)ν. Therefore, λ(ε) belongs to the interior of C for each

ε ∈ (0, 1) and, as ε ↓ 0, the arrival rate vector λ(ε) approaches the boundary of the capacity

region at ν.

Heavy-traffic analysis of the generalized switch has been performed in the past, using

the diffusion limits approach [8], and the Drift method [34]. However, in both cases, the

analysis is under the assumption that SSC occurs into a one-dimensional subspace (CRP

159

condition), i.e., when the vector ν is in the interior of a facet of the capacity region C. In this

chapter, we focus on cases where the vector ν may live at the intersection of facets. Define

P
4
=
{
` ∈ [L] : ν ∈ F (`)

}
, that is, P is the set of indices of all the facets that intersect at ν.

Observe that, if P has only one element, we are under the CRP condition, and our results in

this case agree with the results proved by [34]. In this chapter, we focus on the case where

P is allowed to have more than one element.

For each ε ∈ (0, 1), let q(ε) be a steady-state random vector such that the Markov

chain
{
q(ε)(k) : k ∈ Z+

}
converges in distribution to q(ε) as k ↑ ∞. Since MaxWeight

is throughput optimal, the Markov chain
{
q(ε)(k) : k ∈ Z+

}
is positive recurrent for each

ε ∈ (0, 1), so q(ε) is well defined. Let a(ε) be a steady-state vector which is equal in

distribution to a(ε)(1). Then, E
[
a(ε)
]

= λ(ε) and for each i ∈ [n] we have a(ε)
i ≤ Amax

with probability 1. Let Σ
(ε)
a be the covariance matrix of the vector a(ε). Let M and B`

be steady-state random variables that are equal in distribution to M(1) and B`(1) for each

` ∈ [L], respectively. Let s(ε) 4= s(q(ε),M) be the vector of potential service in steady-

state, and u(ε) 4= u(q(ε),M,a(ε)) be the vector of unused service. Define
(
q(ε)
)+ 4

= q(ε) +

a(ε) − s(ε) + u(ε) as the vector of queue lengths one time slot after q(ε) is observed, given

that the vectors of arrivals and potential service are a(ε) and s(ε), respectively.

In Section 7.4.2 we prove that the state space collapses into the coneK described below.

In other words, we show that the vector of queue lengths can be approximated by a vector

inK in heavy traffic. LetK be the cone generated by
{
c(`) : ` ∈ P

}
andH be the subspace

generated by the same set of vectors. Formally,

K =

{
x ∈ Rn

+ : x =
∑

`∈P

ξ`c
(`) , ξ` ≥ 0 ∀` ∈ P

}
. (7.2)

A pictorial example of the capacity region C and the cone K when n = 3 is presented

in Figure 7.1. Let P̃ ⊂ P be a set of indices such that the set
{
c(`) : ` ∈ P̃

}
is linearly in-

dependent, and let C =
[
c(`)
]
`∈P̃ be a matrix where the columns are a linearly independent

160

Figure 7.1: Example of capacity region C and cone K.

subset of the vectors that generate the cone K. Observe that the column space of the matrix

C is exactly the subspaceH.

In subsection 7.4.1 we present a Universal Lower Bound (ULB), that is independent of

the scheduling policy; in subsection 7.4.2 we present the SSC result formally; and in sub-

section 7.4.3 we present the main result of this chapter (Theorem 7.5), where we compute

asymptotically tight bounds on linear combinations of the queue lengths.

7.4.1 Universal lower bound

In this section we compute a ULB for certain linear combinations of the vector of queue

lengths. The bound is universal in the sense that it remains valid for all scheduling policies.

Proposition 7.3. Consider a generalized switch parametrized by ε ∈ (0, 1), as described

in at the beginning of this section. Let z ∈ K with z 6= 0 and r ∈ R|P |+ be such that

z =
∑L

`=1 r`c
(`). Then, for each ε ∈ (0, 1) we have

E
[
〈z, q(ε)〉

]
≥ 1

2ε〈z,ν〉
(
zTΣ(ε)

a z + rTΣBr
)
− f(ε),

where f(ε) = bmax〈1,r〉
2
− ε〈z,ν〉

2
is o
(

1
ε

)
(i.e., limε↓0 εf(ε) = 0) and bmax = maxm∈M,`∈P b

(m,`).

The proposition is proved by coupling the queue length vector of the generalized switch

161

with a single server queue
{

Φ(ε)(k) : k ∈ Z+

}
constructed as follows. We let α(ε)(k)

4
=

〈z,a(ε)(k)〉 be the number of arrivals in time slot k and β(k) be the potential service,

where P
[
β(k) =

∑
`∈P r`b

(m,`)
]

= ψm for each m ∈ M. Then, it is easy to see that

Φ(ε)(k) is stochastically smaller than 〈z, q(ε)(k)〉 (by definition of b(m,`) in Equation 6.4).

Therefore, a lower bound to the expected value of Φ(ε)(k) in steady state is also a lower

bound to E
[
〈z, q(ε)〉

]
. The last step in the proof is to compute such lower bound, which we

do by setting to zero the drift of VULB(Φ) = Φ2. Note that it is essential that the weights r`

are nonnegative to obtain a lower bound in the proof. This is the reason why z ∈ H is not

enough and we require z ∈ K. The rest of the proof is presented below.

Proof of Proposition 7.3. Let χ(ε)(k) the unused service in time slot k. We assume that in

each time slot, arrivals occur before service. Then, for each k ∈ Z+ we have

Φ(ε)(k + 1) = Φ(ε)(k) + α(ε)(k)− β(k) + χ(ε)(k). (7.3)

Before computing the lower bound we need verify that the DTMC
{

Φ(ε)(k) : k ∈ Z+

}

is positive recurrent for each ε ∈ (0, 1). To do that we show that E
[
β(k)− α(ε)(k)

]
> 0

for all ε ∈ (0, 1). By definition of α(ε)(k) we have

E
[
α(ε)(k)

]
= E

[
〈z,a(ε)(k)〉

]
= (1− ε)〈z,ν〉 (7.4)

where the last equality holds because E
[
a(ε)
]

= (1− ε)ν. By definition of β(k) we have

E [β(k)] =
∑

`∈P

r(`)
∑

m∈M

ψmb
(m,`)

(a)
=
∑

`∈P

r`b
(`)

(b)
=
∑

`∈P

r`〈c(`),ν〉

(c)
= 〈z,ν〉, (7.5)

162

where (a) holds because b(`) = E [B`(1)]
∑

m∈M ψmb
(m,`) (as we proved Lemma 7.1); (b)

holds because ν ∈ F (`) for all ` ∈ P ; and (c) holds by definition of z. Then, from

Equation 7.4 and Equation 7.5 we obtain

E
[
β(k)− α(ε)(k)

]
= ε〈z,ν〉,

which is a positive number. Let Φ
(ε)

be a steady-state vector which is limit in distribution

of
{

Φ(ε)(k) : k ≥ 1
}

, and
(

Φ
(ε)
)+ 4

= Φ
(ε)

+ α(ε) − β
(ε)

+ χ(ε), where α(ε) and β
(ε)

are

steady-state random variables with the distribution of α(ε)(1) and β(ε)(1), respectively and

χ(ε) represents the unused service.

Now we show the result. We omit the dependence on ε in the rest of this proof, for ease

of exposition. It can be easily proved that E
[
Φ

2
]
<∞ (e.g., we can use Lemma 2.7), and

we omit the proof for brevity. Then, we set to zero the drift of V (Φ) = Φ2 in steady state,

and we obtain

0 =E
[(

Φ
+
)2

− Φ
2
]

=E
[(

Φ
+ − χ

)2

+ χ2 + 2
(

Φ
+ − χ

)
χ− Φ

2
]

(a)
=E

[(
Φ + α− β

)2 − χ2 − Φ
2
]

(b)
=E

[
α2
]

+ E
[
β

2
]
− 2E [α]E

[
β
]
− 2E

[
Φ
]
E
[
α− β

]
− E [χ] (7.6)

where (a) holds after expanding the product, and because Φ
+
χ = 0 by definition of unused

service; and (b) holds after expanding the product and using independence of the arrival,

service and queue length processes.

We compute the terms in Equation 7.6 one by one. We already established that E [α] =

(1 − ε)〈z,ν〉 and E
[
β
]

= 〈z,ν〉. Now we compute the quadratic terms. By definition of

163

α we have

E
[
α2
]

=E



(

n∑

i=1

ziai

)2



=
n∑

i=1

n∑

i′=1

zizi′E [aiai′]

(a)
=

n∑

i=1

n∑

i′=1

zizi′Cov [ai, ai′] +
n∑

i=1

n∑

i′=1

zizi′E [ai]E [ai′]

(b)
=zTΣ(ε)

a z + (1− ε)2〈z,ν〉2

where (a) holds by definition of covariance; and (b) holds by definition of covariance

matrix and because E [a] = λ(ε) = (1 − ε)ν. For the service process, by definition of

covariance matrix we obtain

E
[
β

2
]

=rTΣBr + 〈z,ν〉2,

where the last equality holds because ν ∈ F (`) for all ` ∈ P and by definition of z. For

the last term we compute an upper bound. By definition of unused service, we have χ ≤ β

with probability 1. Then,

E
[
χ2
]
≤E

[
βχ
]

(a)

≤bmax

(∑

`∈P

r(`)

)
E [χ]

(b)
=bmax

(∑

`∈P

r(`)

)
E
[
β − α

]

(c)
=ε〈z,ν〉bmax

(∑

`∈P

r(`)

)
,

where (a) holds by definition of β and bmax; (b) holds because E [χ] = E
[
β − α

]
, which

can be easily proved by setting to zero the drift of Vl(Φ) = Φ; and (c) holds by Equation 7.4

164

and Equation 7.5.

Putting everything together in Equation 7.6 and rearranging terms we obtain the result.

7.4.2 State space collapse.

We prove SSC into the coneK defined in Equation 7.2 in heavy traffic. We start introducing

the notation. For each ε ∈ (0, 1), let q(ε)
‖K(k) be the projection of q(ε)(k) onK and q(ε)

⊥K(k)
4
=

q(ε)(k)−q(ε)
‖K(k). Similarly, define q(ε)

‖H(k) as the projection of q(ε)(k) onH and q(ε)
⊥H(k)

4
=

q(ε)(k) − q(ε)
‖H(k). We know the Markov chain {q(ε)(k) : k ∈ Z+} is positive recurrent

for each ε ∈ (0, 1), so by definition of projection we also have that {q(ε)
‖K(k) : k ∈ Z+},

{q(ε)
⊥K(k) : k ∈ Z+}, {q(ε)

‖H(k) : k ∈ Z+} and {q(ε)
⊥H(k) : k ∈ Z+} are positive recurrent

for each ε ∈ (0, 1). Then, we define q(ε)
‖K, q(ε)

⊥K, q(ε)
‖H and q(ε)

⊥H as steady-state vectors which

are limit in distribution of each them, respectively. In the next proposition we state SSC

formally.

Proposition 7.4. Given a vector ν in the boundary of C and ε ∈ (0, 1), consider a gener-

alized switch operating under MaxWeight as described in Section 6.3, parametrized by ε

as described at the beginning of Section 7.4, and let P be defined as in there as well. Let

δ > 0 be such that δ ≤ b(`) − 〈c(`),ν〉 for all ` ∈ [L] \ P if [L] \ P 6= ∅, and δ = 1 if

[L] \ P = ∅. If ε < δ
2‖ν‖ , then for each j ∈ Z+ with j ≥ 1, we have

E
[
‖q(ε)
⊥H‖j

]
≤ E

[
‖q(ε)
⊥K‖j

]
≤ Jj,

where, defining Λ = max{Amax, Smax},

Jj
4
=

(
8nΛ2

δ

)j
+ (8
√
nΛ)j

(
8
√
nΛ + δ

δ

)j
j!

To prove Proposition 7.4, we adopt the technique introduced by [34] so our proof is sim-

ilar to theirs. We present as sketch of the proof at the end of this subsection. The challenges

165

in obtaining our result arise in the second step of the drift method, which corresponds to

Theorem 7.5.

SSC is a consequence of Proposition 7.4 for the following reason. As ε ↓ 0,
∥∥q(ε)

∥∥ goes

to infinity (this can be easily concluded from Theorem 7.5). Therefore, Proposition 7.4

implies that as ε gets small, we can approximate q(ε) ≈ q(ε)
‖K because all the moments of

‖q(ε)
⊥K‖ are bounded.

Observe that the cone K is determined by the facets that intersect at ν. Moreover, the

dimension of the cone is n−dν , where dν is the dimension of the face of C where ν is. For

example, if ν is in the relative interior of a facet then dν = n − 1, and this implies that K

is one-dimensional. This is the CRP case, which was studied in [34] and [8]. Similarly, if

ν is a vertex of C then dν = 0 and, hence, K is n-dimensional. In the last case, we say that

SSC is full dimensional. We study the full-dimensional case in subsection 7.5.2.

Now we present a proof sketch of Proposition 7.4. We use Lemma 2.7. Then, the main

idea is to show that the conditions (C1) and (C2) are satisfied for Z(q) = ‖q⊥‖.

Proof sketch of Proposition 7.4. For ease of exposition, we omit the dependence on ε of

the random variables in this proof. First observe that K ⊂ H by definition. Therefore, for

all j ∈ Z+ with j ≥ 1, we have
∥∥∥q(ε)
⊥H

∥∥∥
j

≤
∥∥∥q(ε)
⊥K

∥∥∥
j

with probability 1. This proves the

first inequality.

To prove the second inequality, we introduce the following notation. Let

V (q)
4
= ‖q‖2, V‖(q)

4
= ‖q‖K‖2, V⊥(q)

4
= ‖q⊥K‖2 and W⊥(q)

4
= ‖q⊥K‖.

We use Lemma 2.7 with Lyapunov function W⊥(q). We first prove that condition (C2) is

satisfied. By definition of drift, we have

∣∣∆W⊥(q)
∣∣ =
∣∣W⊥(q(k + 1))−W⊥(q(k))

∣∣1{q(k)=q}

=
∣∣∣
∥∥∥q⊥K(k + 1)

∥∥∥−
∥∥∥q⊥K(k)

∥∥∥
∣∣∣1{q(k)=q}

166

(a)

≤
∥∥∥q⊥K(k + 1)− q⊥K(k)

∥∥∥1{q(k)=q}

(b)
=
∥∥q(k + 1)− q(k)−

(
q‖K(k + 1)− q‖K(k)

)∥∥1{q(k)=q}

(c)

≤
(∥∥∥q(k + 1)− q(k)

∥∥∥+
∥∥∥q‖K(k + 1)− q‖K(k)

∥∥∥
)
1{q(k)=q}

(d)

≤2
∥∥∥q(k + 1)− q(k)

∥∥∥1{q(k)=q}

(e)
=2
∥∥∥q + a(k)− s(k) + u(k)− q

∥∥∥1{q(k)=q}

=


2

√√√√
n∑

i=1

∣∣ai(k)− si(k) + ui(k)
∣∣2

 1{q(k)=q}

(f)

≤2
√
nmax{Amax, Smax} with probability 1, (7.7)

where (a) holds by triangle inequality; (b) holds by definition of q⊥K; (c) holds by triangle

inequality; (d) holds because projection on the cone K is nonexpansive; (e) holds by the

dynamics of the queues presented in Equation 1.2; and (f) holds because ai(k) ≤ Amax

with probability 1 and si(k) ≤ Smax for all i ∈ [n] and all k ∈ Z+. Therefore, if we let

D = 2
√
nmax{Amax, Smax} we have that condition (C2) is satisfied.

Now we prove condition (C1). We start with an observation that was first used in [34,

Lemma 7, part 1]. Note that W⊥(q) =
√
‖q⊥K‖2 and f(x) =

√
x is a concave function.

Then, using the definition of concavity and reorganizing terms we have

∆W⊥(q) ≤ 1

2‖q⊥K‖
(
∆V (q)−∆V‖(q)

)
. (7.8)

We bound the conditional expectation of the terms in the brackets separately. We start

with Eq [∆V (q)]. We obtain

Eq [∆V (q)]

=Eq
[∥∥q(k + 1)

∥∥2 −
∥∥q(k)

∥∥2
]

=Eq
[∥∥q(k + 1)− u(k) + u(k)

∥∥2 −
∥∥q(k)

∥∥2
]

167

=Eq
[∥∥q(k + 1)− u(k)

∥∥2
+
∥∥u(k)‖2 + 2〈q(k + 1)− u(k), u(k)〉 −

∥∥q(k)
∥∥2
]

(a)
=Eq

[∥∥q(k) + a(k)− s(k)
∥∥2 −

∥∥u(k)
∥∥2 −

∥∥q(k)
∥∥2
]

=Eq
[∥∥q(k)‖2 +

∥∥a(k)− s(k)
∥∥2

+ 2〈q(k),a(k)− s(k)〉 −
∥∥u(k)‖2 −

∥∥q(k)
∥∥2
]

(b)

≤Eq
[∥∥a(k)− s(k)

∥∥2
]

+ 2Eq
[
〈q(k), a(k)− s(k)〉

]
(7.9)

where (a) holds by the dynamics of the queues presented in Equation 1.2, by definition of

inner product and by Equation 1.3; and (b) holds because Eq
[∥∥u(k)

∥∥2
]
≥ 0 by definition

of norm.

We bound the terms in Equation 7.9 separately. First, observe

Eq
[∥∥a(k)− s(k)

∥∥2
]

=Eq

[
n∑

i=1

(
ai(k)− si(k)

)2

]

=Eq

[
n∑

i=1

(
a2
i (k) + s2

i (k)− 2ai(k)si(k)
)
]

≤n(A2
max + S2

max), (7.10)

where the inequality holds because 2ai(k)si(k) ≥ 0 with probability 1 for all i ∈ [n] and

all k ∈ Z+; and because 0 ≤ ai(k) ≤ Amax with probability 1 and 0 ≤ si(k) ≤ Smax for

all i ∈ [n] and all k ∈ Z+. Let ζ 4= n(A2
max + S2

max).

On the other hand,

Eq [〈q(k), a(k)− s(k)〉] =〈q,λ(ε)〉 − Eq [〈q(k), s(k)〉]
(a)
=〈q, (1− ε)ν〉 −max

x∈C
〈q,x〉

=− ε〈q,ν〉+ min
x∈C
〈q,ν − x〉

≤ − ε〈q,ν〉+ 〈q,ν − x∗〉, (7.11)

for any x∗ ∈ C. Here, equality (a) holds by definition of λ(ε) and by Lemma 6.1.

168

We pick x∗ = ν + δ
2‖q⊥K‖

q⊥K. Before proceeding with the proof, we show that such

x∗ ∈ C. To do that, we show that 〈c(`),x∗〉 ≤ b(`) for all ` ∈ [L]. We have two cases. If

` ∈ P , then

〈c(`),x∗〉 = 〈c(`),ν〉+
δ

‖q⊥K‖
〈c(`), q⊥K〉

(a)
= 〈c(`),ν〉 (b)

= b(`)

where (a) holds because 〈c(`), q⊥K〉 = 0 for all ` ∈ P , by the orthogonality principle; and

(b) holds because ν ∈ ⋂`∈P F (`).

If [L]\P 6= ∅ and ` ∈ [L]\P we have 〈c(`),ν〉 < b(`). Then, for each ` /∈ P there exists

δ(`) > 0 such that ν + δ(`)

2‖q⊥K‖
q⊥K ∈ C. Then, since there are finitely many hyperplanes

defining C, we can pick δ = min
`∈[L]\P

{
δ`
}

.

Then, from Equation 7.11 we obtain

Eq [〈q(k), a(k)− s(k)〉] ≤ −ε〈q,ν〉+ 〈q,ν −
(
ν +

δ∥∥q⊥K
∥∥q⊥K

)
〉

= −ε〈q,ν〉+
δ∥∥q⊥K
∥∥〈q, q⊥K〉

= −ε〈q,ν〉+ δ‖q⊥K‖, (7.12)

where the last equality holds because q = q‖K + q⊥K and 〈q‖K, q⊥K〉 = 0. Then, using

Equation 7.10 and Equation 7.12 in Equation 7.9 we obtain

Eq [∆V (q)] ≤ ζ − 2ε〈q,ν〉 − 2δ
∥∥q⊥K

∥∥. (7.13)

To bound the second term in Equation 7.8 we use properties of projection. We have

Eq
[
∆V‖(q)

]

=Eq
[∥∥q‖K(k + 1)

∥∥2 −
∥∥q‖K(k)

∥∥2
]

=Eq
[
〈q‖K(k + 1) + q‖K(k), q‖K(k + 1)− q‖K(k)〉

]

169

=Eq
[∥∥q‖K(k + 1)− q‖K(k)

∥∥2
]

+ 2Eq
[
〈q‖K(k), q‖K(k + 1)− q‖K(k)〉

]

(a)

≥2Eq
[
〈q‖K(k), q‖K(k + 1)− q‖K(k)〉

]

(b)
=2Eq

[
〈q‖K(k), q(k + 1)− q(k)〉

]
− 2Eq

[
〈q‖K(k), q⊥K(k + 1)− q⊥K(k)〉

]

=2Eq
[
〈q‖K(k), a(k)− s(k) + u(k)〉

]
− 2Eq

[
〈q‖K(k), q⊥K(k + 1)〉

]

+ 2Eq
[
〈q‖K(k), q⊥K(k)〉

]

(c)

≥2Eq
[
〈q‖K(k), a(k)− s(k)〉

]

=2〈q‖K, (1− ε)ν〉 − 2Eq
[
〈q‖K(k), s(k)〉

]

=− 2ε〈q‖K,ν〉+ 2Eq
[
〈q‖K,ν − s(k)〉

]
(7.14)

where (a) holds because Eq
[∥∥q‖K(k + 1)− q‖K(k)

∥∥2
]
≥ 0; (b) holds because q‖K(k) =

q(k)−q⊥K(k) for all k ∈ Z+; (c) holds because, since q‖K(k) ≥ 0 and u(k) ≥ 0 by defini-

tion, we have 〈q‖K(k),u(k)〉 ≥ 0, because 〈q‖K(k), q⊥K(k)〉 = 0 since they are orthogonal

by definition, and 〈q‖K(k), q⊥K(k + 1)〉 ≤ 0 because q‖K(k) belongs to the cone K and

q⊥K(k+1) belongs to the polar cone ofK, defined asK◦ 4= {y ∈ Rn : 〈x,y〉 ≤ 0 ∀x ∈ K}.

Since q‖K(k) is the projection of q(k) on K, there exist coefficients ξ` ≥ 0 with ` ∈ P

such that

q‖K(k) =
∑

`∈P

ξ`c
(`).

Then,

Eq
[
〈q‖K, ν − s(k)〉

]
=
∑

`∈P

ξ`Eq
[
〈c(`),ν〉 − 〈c(`), s(k)〉

]

(a)
=
∑

`∈P

ξ`

(
b` − 〈c(`), arg max

x∈C
〈q,x〉〉

)

(b)
=
∑

`∈P

ξ`
(
b(`) − 〈c(`),x〉

)

170

(c)

≥
∑

`∈P

ξ`(b
(`) − b(`)) = 0

for some x ∈ C. Here, (a) holds because ν ∈ ⋂`∈P F (`) and by Lemma 6.1; (b) holds for

some x ∈ C because C is a closed and bounded set, so the maximum is attained at some

point in C; and (c) holds because, since x ∈ C, then 〈c(`),x〉 ≤ b(`) for all ` ∈ [L].

Therefore, from Equation 7.14 we obtain

Eq
[
∆V‖(q)

]
≥ −2ε〈q‖K,ν〉. (7.15)

Then, using Equation 7.13 and Equation 7.15 in Equation 7.8 we obtain

Eq [∆W⊥(q)] ≤ 1

2
∥∥q⊥K

∥∥
(
ζ − 2ε〈q,ν〉 − 2δ

∥∥q⊥K
∥∥+ 2ε〈q‖K, ν〉

)

=
ζ

2
∥∥q⊥K

∥∥ − δ +
ε∥∥q⊥K
∥∥
(
〈q‖K,ν〉 − 〈q,ν〉

)

(a)
=

ζ

2
∥∥q⊥K

∥∥ − δ +
ε∥∥q⊥K
∥∥ (−〈q⊥K,ν〉)

(b)

≤ ζ

2
∥∥q⊥K

∥∥ − δ + ε‖ν‖

where (a) holds because q = q‖K + q⊥K; and (b) holds by Cauchy-Schwarz inequality.

Therefore, if ε ≤ δ
2‖ν‖ we have

Eq [∆W⊥(q)] ≤ ζ

2
∥∥q⊥K

∥∥ −
δ

2
.

Further, if
∥∥q⊥K

∥∥ ≥ 2ζ
δ

we have Eq [∆W⊥(q)] ≤ − δ
4
. The last inequality verifies

condition (C1) with η = δ
4

and κ = 2ζ
δ

. This completes the proof.

7.4.3 Asymptotically tight bounds.

In subsection 7.4.2 we showed SSC into the cone K, which implies SSC into the subspace

H. In this section we present the main result of this chapter (Theorem 7.5), where we

171

provide asymptotically tight bounds to the expected value of certain linear combinations

of the queue lengths in steady state. After the statement of the theorem we present some

remarks and applications, and we delay the proof to section 7.6.

Theorem 7.5. Given a vector ν in the boundary of C, let P be defined at the beginning of

Section 7.4. Consider a set of generalized switches operating under MaxWeight, indexed by

the heavy-traffic parameter ε ∈ (0, 1) as described at the beginning of Section 7.4. Then,

for any vector w ∈ ∩`∈PF (`) we have

∣∣∣∣E
[
〈q(ε),w〉

]
− 1

2ε
1T
(
H ◦ Σ(ε)

a

)
1− 1

2ε
1T
(
(CTC)−1 ◦ ΣB

)
1

∣∣∣∣ ≤ ζ log

(
1

ε

)
, (7.16)

where H
4
= C(CTC)−1CT is the projection matrix intoH and ζ is a constant independent

of ε and w. This implies that, if limε↓0 Σ
(ε)
a = Σa component-wise, then,

lim
ε↓0

εE
[
〈q(ε),w〉

]
=

1

2

(
1T (H ◦ Σa)1 + 1T

(
(CTC)−1 ◦ ΣB

)
1
)
. (7.17)

First observe that Equation 7.16 gives bounds that are valid for all regimes, not nec-

essarily heavy traffic. Additionally, it shows that the queue lengths grow to infinity as the

traffic intensity grows (i.e., as ε ↓ 0).

In Equation 7.17, observe that the right-hand side has two terms: one corresponding to

randomness in the arrival process, and the other one to randomness in the service process.

The first term is a linear combination of the covariance matrix of the arrival process, and the

weights of the linear combination are determined by the projection matrix on the subspace

H, which is where SSC occurs. The second term is a linear combination of the elements

of a covariance matrix which is related to the channel state. Since the potential service rate

vector is selected using MaxWeight algorithm (see Equation 6.3), it is not actually random

once queue lengths and channel state are observed. However, the channel state is a random

variable that defines the feasible set where MaxWeight is solved. Hence, the second term

in Equation 7.17, which includes a covariance matrix related to channel state, represents

172

the randomness on the service process.

A third observation is that, in order to project on the subspaceH generated by the cone

K, we had to drop the vectors c(`) with ` ∈ P that are linearly dependent (recall that the

columns of the matrix C are a linearly independent subset of the vectors that generate K).

Clearly, the cone generated by the columns of C is not equal to K. However, projecting on

the subspace H is sufficient, and we do not need to worry about these linearly dependent

vectors that we dropped.

In the next remark we write Equation 7.17 in different ways to facilitate interpretation

of the result.

Remark 7.6. Equation 7.17 can be also written as

lim
ε↓0

εE
[
〈q(ε),w〉

]

=
1

2




n∑

i=1

n∑

i′=1

〈e(i), e
(i′)
‖H〉(Σa)i,j +

∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

(ΣB)`1,`2


 (7.18)

=
1

2

(
Trace

(
HΣT

a

)
+ Trace

(
(CTC)−1ΣT

B

)
)
, (7.19)

where the subscript ‖H denotes projection on the subspace H, (Σa)i,j is the element (i, j)

of the covariance matrix Σa for each i, j ∈ [n], and (ΣB)`1,`2 is the element (`1, `2) of ΣB

for each `1, `2 ∈ P̃ .

In some cases, the projection of a vector onH is known in closed form, and it is simpler

to work with than the projection matrix. For example, in the case of a completely saturated

input-queued switch, one can directly compute the projections as in [14], but writing down

the projection matrix is more involved.

We present the proof of Remark 7.6 below.

Proof of Remark 7.6. If we expand the products on the right-hand side of Equation 7.17

173

we obtain

1

2

(
1T (H ◦ Σa)1 + 1T

(
(CTC)−1 ◦ ΣB

)
1
)

(a)
=

1

2




n∑

i=1

n∑

i′=1

hi,i′(Σa)i,i′ +
∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

(ΣB)`1,`2




(b)
=

1

2




n∑

i=1

n∑

i′=1

(
e(i)
)T
He(i′)(Σa)i,i′ +

∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

(ΣB)`1,`2




(c)
=

1

2




n∑

i=1

n∑

i′=1

〈e(i), e
(i′)
‖H〉(Σa)i,i′ +

∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

(ΣB)`1,`2


 ,

where (a) holds by definition of Hadamard’s product; (b) holds by definition of the canon-

ical vectors e(i) and by definition of matrix product; and (c) holds by definition of inner

product and because He(i′) is the projection of e(i′) on the subspaceH.

The proof of Equation 7.19 holds by properties of Hadamard’s product and trace, and

we omit it.

Observe that the bounds presented in Proposition 7.3 and Theorem 7.5 may be for

different linear combinations of the vector of queue lengths. In Proposition 7.3 the vector

of weights is z ∈ K and in Theorem 7.5 it is w ∈ ∩`∈PF (`). In the next remark we give

sufficient conditions under which these bounds correspond to the same linear combination

of the queue lengths.

Remark 7.7. Let A be a matrix with columns c(`) for ` ∈ P and bP be a vector with ele-

ments b(`) for ` ∈ P . Observe that the column space ofA is equal to the column space of C,

but the columns of A may not be linearly independent. In fact, if the columns of A are lin-

early independent, then A = C. Then, Proposition 7.3 and Theorem 7.5 give bounds to the

same linear combination of the queue lengths ifA 4
=
{
x ∈ R|P | : xTATA ≥ 0 , xTbP < 0

}

is empty.

Proof of Remark 7.7. We can obtain bounds to the same linear combination of the queue

174

lengths if there exists a vector y ∈ K ∩
(
∩`∈PF (`)

)
. In other words, if the set Y 4

=
{
y ∈ R|P |+ : AATy = bP

}
is nonempty. By Farkas’ lemma [102, Theorem 4.6], proving

that Y 6= ∅ is equivalent to proving that A = ∅.

7.5 Applications of Theorem 7.5

The generalized switch is a model that subsumes several SPNs, such as ad hoc wireless net-

works, the input-queued switch, down-link base stations and the parallel-server system. In

this section we elaborate on a few applications to give examples of the use of Theorem 7.5,

and it is by no means an exhaustive list. We start with an input-queued switch in subsec-

tion 7.5.1, and then, in subsection 7.5.2, we present examples where full-dimensional SSC

is observed.

7.5.1 Input-queued switch.

The drift method has been used to perform heavy-traffic analysis of the input-queued switch

operating under MaxWeight in both, completely and incompletely saturated cases [14, 15],

respectively. In both scenarios, the analysis is performed under the assumption that the

arrivals to different queues are independent. However, this is an unrealistic assumption

in data center networks. Indeed, it has been shown that the traffic exhibits hot-spots, i.e.,

there are subsets of queues that simultaneously perceive a surge on traffic [100, 101]. This

implies that the arrival processes are highly correlated. In this section we focus on the com-

pletely saturated input-queued switch, and we obtain the heavy-traffic limit of the scaled

total queue length when the arrivals are correlated, as a corollary of Theorem 7.5. Corol-

lary 7.8 generalizes the main result proved by [14] and it is of special interest by itself,

given the nature of the arrival processes to data center networks observed in reality. We

start specifying the model.

Consider a system with N2 queues operating in discrete time. There are N input ports,

N output ports, and there is a different queue for each input/output pair. Each of these pairs

175

In
p
u
t
p
o
rt
s

Output ports

q1 q2

q3 q4

(a) 2× 2 switch.

In
p
u
t
p
o
rt
s

Output ports

q1 q2 q3

q4 q5 q6

q7 q8 q9

(b) 3× 3 switch.

Figure 7.2: Diagram of the queue length vector for the input-queued switch.

has its own arrival process and all the arriving packets have the same size, which is equal to

one time slot. The service process must satisfy the following feasibility constraints. In each

time slot, at most one packet can be transmitted from each input port, and each output port

can process at most one packet. We can think of this system as a matrix of input/output

pairs, where rows represent inputs and columns represent outputs. Then, the constraint

described above can be also stated as follows. In each time slot, at most one queue can be

active (i.e., processing jobs) in each row and each column.

This model corresponds to a generalized switch with n = N2 queues, where the channel

state is constant over time. As mentioned above, the input-queued switch has a natural

matrix-shape interpretation. In [14, 15] represent the vectors of queue lengths, arrivals and

services by N × N matrices, but they are treated as vectors. Specifically, dot products

and norms are computed as if these matrices were column vectors. In this paper, however,

we will write them as column vectors to be consistent with the notation we introduced in

section 6.3. We enumerate the elements of the vectors row by row. For each i ∈ [n] we

have that qi(k) is the number of packets in line in input port
⌈
i
N

⌉
, waiting for service from

output imod N if i is not a multiple of N , and output N otherwise. Similarly for the

vectors of arrivals, potential service and unused service. In Figure 7.2 we show how to

build the vectors in the case of N = 2 (Figure 7.2a) and N = 3 (Figure 7.2b).

176

For ease of exposition, we introduce the following notation. For each i ∈ [N2] let

row(i)
4
=

{(⌈
i

N

⌉
− 1

)
N + j : j ∈ [N]

}
\ {i}

col(i)
4
=
{
j ∈

[
N2
]

: i mod N = j mod N
}
\ {i}

other(i)
4
=
[
N2
]
\
(
row(i) ∪ col(i) ∪ {i}

)
.

In words, the set row(i) contains the index of all elements in the same row as i, except by i;

col(i) contains the index of the elements in the same column as i, except by i; and other(i)

contains all indexes that do not correspond to the same row or column as i, or i itself.

We explicitly know the feasibility constraints in the input-queued switch. Then, we can

compute the set of feasible service rate vectors S and the capacity region C. We obtain

S =

{
x ∈ {0, 1}N2

:
N∑

i=1

xN(j−1)+i ≤ 1 ∀j ∈ [N] and
N∑

j=1

xN(j−1)+i ≤ 1 ∀i ∈ [N]

}
,

and

C = ConvexHull(S)

=

{
x ∈ RN2

+ :

N∑

i=1

xN(j−1)+i ≤ 1 ∀j ∈ [N] and
N∑

j=1

xN(j−1)+i ≤ 1 ∀i ∈ [N]

}
. (7.20)

Then, the number of hyperplanes that define the capacity region is L = 2N , the right-hand

side parameters are b(`) = 1 for all ` ∈ [2N], and the left-hand side vectors c(`) are defined

177

as follows.

c(`) =





N∑̀

i=N(`−1)+1

e(i) , if ` ∈ [N]

∑

i∈{i′:i′ mod N=` mod N}

e(i) , if ` ∈ [2N] \ [N].

(7.21)

Completely saturated switch means that the vector ν that we approach in the heavy-

traffic limit satisfies all the inequalities in Equation 7.20 at equality. Formally, ν satisfies

〈c(`),ν〉 = b(`) for all ` ∈ [2N]. Then, P = [2N]. If ν does not satisfy all the inequal-

ities at equality, it is said that the switch is incompletely saturated. We do not study the

incompletely saturated case here.

Recall that the cone K where SSC occurs is the cone generated by the vectors c(`) with

` ∈ P . In this case, since P = [2N] and since we explicitly know the vectors c(`), it can be

easily proved that the cone K can be described as

K =



x ∈ RN2

+ : xi =
1

N

∑

j∈row(i)∪{i}

xj +
1

N

∑

j∈col(i)∪{i}

xj −
1

N2

N2∑

j=1

xj



 . (7.22)

The proof of this claim is just algebra, and we omit it for brevity. In this case, it can be also

proved that the subspaceH generated by the cone K satisfies K = H ∩ RN2

+ .

Now we present the heavy-traffic limit of the scaled sum of the queue lengths in a com-

pletely saturated switch with correlated arrival processes, as a corollary of Theorem 7.5.

This corollary by itself is a contribution because, to the best of our knowledge, the input-

queued switch has been studied only under independent arrivals assumption. However,

it is known that in data centers this is not satisfied and, in fact, hot-spots are frequently

observed.

Corollary 7.8. Let ν be an N2-dimensional vector that satisfies 〈c(`),ν〉 = b(`) for all

` ∈ [2N], for c(`) as defined in Equation 7.21 and b(`) = 1 for all ` ∈ [2N]. Consider

a set of N × N input-queued switches as described above, parametrized by ε ∈ (0, 1) as

178

described in Theorem 7.5. For each i ∈ [N2], let σ2
ai

= (Σa)i,i. Then,

lim
ε↓0

εE

[
N2∑

i=1

q
(ε)
i

]

=
1

2N

N2∑

i=1


(2N − 1)σ2

ai
+ (N − 1)

∑

j∈row(i)∪col(i)

(Σa)i,j −
∑

j∈other(i)

(Σa)i,j


 .

Proof of Corollary 7.8. We use Remark 7.6. We first compute e(i)
‖H for each i ∈ [N2]. For

any vector y ∈ RN2

+ we have y‖H has elements

y‖Hj =
1

N

∑

j′∈row(j)∪{j}

yj′ +
1

N

∑

j′∈col(j)∪{j}

yj′ −
1

N2

N2∑

j′=1

yj′ ∀j ∈ [N2].

Then, for each i ∈ [N2] the vector e(i)
‖H has elements

e
(i)
‖Hj =





2N−1
N2 , if j = i

N−1
N2 , if j ∈ row(i) or j ∈ col(i)

− 1
N2 , if j ∈ other(i)

∀j ∈ [N2].

Using this expression in Remark 7.6 we immediately obtain the result.

A special case of Corollary 7.8 is when the arrival processes to different input ports are

independent. In this case, we recover the result from [14, Theorem 1], where they explicitly

set to zero the drift of V‖H(q) =
∥∥q‖H

∥∥2 (similarly to our approach in the proof of 7.5).

We present the result below for completeness.

Corollary 7.9. Consider a set ofN×N input-queued switches operating under MaxWeight,

parametrized by ε ∈ (0, 1) as described in Corollary 7.8. Further, assume that the arrival

179

processes to different queues are independent. Then,

lim
ε↓0

εE

[
N2∑

i=1

q
(ε)
i

]
=

(
1− 1

2N

) N2∑

i=1

σ2
ai
.

The proof of Corollary 7.9 is easy after considering Corollary 7.8, since (Σa)i,j = 0 for

all i 6= j under the independent arrivals assumption.

7.5.2 Full-dimensional SSC.

As mentioned in subsection 7.4.2, if the point ν is a vertex of the capacity region C, the

cone K is n-dimensional. In other words, K is full-dimensional. In this section we explore

this situation, and we present examples of SPNs where this phenomenon is observed. In

particular, we present the case of an ad hoc wireless network, a parallel-server system

operating in discrete time, an N -system.

We first present the result in a general case.

Corollary 7.10. Consider a set of generalized switches operating under MaxWeight, parametrized

by ε ∈ (0, 1) as described in Theorem 7.5. Let P , P̃ and ν be as in Theorem 7.5 and sup-

pose the cone K is n-dimensional. Let σ2
ai

4
= (Σa)i,i for each i ∈ [n] and σa be a vector

with elements σai . Then,

lim
ε↓0

εE
[
〈q(ε),w〉

]
=

1

2

(
‖σa‖2 + 1T

(
(CTC)−1 ◦ ΣB

)
1
)
.

Observe that Corollary 7.10 gives a rather surprising result. The right-hand side of the

limit does not depend on the correlation among arrivals to different queues. In other words,

in the heavy-traffic limit, these linear combinations of the queue lengths behave as if the

arrival processes were independent when SSC is full-dimensional.

The proof of Corollary 7.10 follows immediately from Theorem 7.5 because, if the cone

K is full-dimensional, then the subspace H = Rn and, therefore, the projection matrix on

180

(a) Example of an interfer-
ence graph for an ad hoc wire-
less network with four links.

K

λ1

λ2
b

b

b

+

+

1

1

2
3

2
3

1
3

1
3

C

ν

| |

(b) Capacity region and
cone for SPN in subsubsec-
tion 7.5.2.

Figure 7.3: Diagram of ad hoc wireless networks.

H satisfies H = I. In the rest of this section, we present examples of SPNs that experience

full-dimensional SSC.

Ad hoc wireless network.

An ad hoc wireless network is composed by a set of nodes with no infrastructure for central

coordination, and packets are transmitted between nodes (a transmitter and a receiver) if

there is a link. The links interfere with each other and, therefore, not all of them can be

active at the same time. These interference constraints are frequently represented with a

graph, where the vertices represent links and an edge between two links represents interfer-

ence. In Figure 7.3a we present an example of the interference graph of an ad hoc wireless

network with four links, where all links interfere with each other. The packets to be trans-

mitted arrive to each of the links and wait in line until they can be processed. This model

has been studied in a long line of literature, including but not limited to [103, 104, 34, 105],

but in most of the cases the focus is on studying stability or optimality of the scheduling

policy. Here we provide the heavy-traffic limit of linear combinations of the queue lengths

under MaxWeight algorithm. A particular case of our result are the results obtained in [34].

An ad hoc wireless network can be modeled as a generalized switch with fixed channel

state. Then, Theorem 7.5 can be immediately applied. In this section we provide an exam-

181

ple of an ad hoc wireless network that experiences full-dimensional SSC. We focus on a

network with two links to illustrate the geometry of the capacity region and the cone where

SSC occurs, but similar work can be done for larger networks.

Let σ2
1

4
= Var

[
a

(ε)
1

]
, σ2

2

4
= Var

[
a

(ε)
2

]
, and ϕ

4
= Cov

[
a

(ε)
1 , a

(ε)
2

]
, where these three

parameters do not depend on ε. Suppose the set of feasible service rate vectors is S =
{

(1, 0), (0, 1),
(

2
3
, 2

3

)}
. Then, the capacity region is

C =
{
x ∈ R2

+ : x1 + 2x2 ≤ 2, 2x1 + x2 ≤ 2
}
.

Applying Theorem 7.5 we obtain the following corollary.

Corollary 7.11. Consider an ad hoc wireless network as described above. Then,

lim
ε↓0

εE
[
q

(ε)
1 + q

(ε)
2

]
=

3

4

(
σ2

1 + σ2
2

)

In the proof of Corollary 7.11 we take the heavy-traffic limit as the vector of arrival rate

approaches the point ν = 2
3
(1, 1) in the boundary of C. The proof is simple, so we omit it.

In Figure 7.3b we plot the capacity region, the point ν and the cone K where SSC occurs.

Observe that the cone K is two-dimensional and, therefore, this ad hoc wireless network

experiences full-dimensional SSC.

Remark 7.12. The input-queued switch can be modeled similarly to an ad hoc wireless

network. However, the input-queued switch cannot experience full-dimensional SSC since

all the vertices of its capacity region are on the coordinate axes. In other words, all the

vertices in the capacity region of the input-queued switch require that the arrival rate to

(at least) one queue is zero. This is equivalent to considering a queueing system where the

zero-arrival rate queue does not exist, which already has a lower-dimensional state space.

182

Figure 7.4: Diagrams of examples of parallel-server systems. The dotted lines represent
the compatibility between job-types and servers.

(a) Fully flexible servers. (b) Dedicated servers. (c) N -system.

Parallel-server system.

Consider a parallel-server system as follows. There are n types of jobs that arrive accord-

ing to arrival processes as described in section 6.3. Each job type can be processed by a

subset of servers, and these subsets are modeled by a compatibility graph. In Figure 7.4

we present three examples of parallel-server systems, where the dotted lines represent the

compatibility of the job types with the servers. In Figure 7.4a, all jobs can be served by all

servers (fully flexible system), in Figure 7.4b each job can be processed by only one server

(dedicated system), and in Figure 7.4c, the jobs from the first queue can be processed by

any server and the jobs from the second queue can only be processed by the second server

(N -system, to be studied in subsubsection 7.5.2). The parallel-server systems (also called

process flexibility) have received plenty of attention in the literature [106, 107, 7, 3, 108,

13]. However, most of the prior work is under the CRP condition. In this section we show

that the parallel-server system can be studied as an immediate application of Theorem 7.5,

regardless of the CRP condition being satisfied.

To model a parallel-server system as a generalized switch, we assume that the service

rate offered by each server in each time slot is a random variable that may depend on the

service rate of other servers, but it is independent of the arrival and queueing processes.

The joint distribution of the offered service rates is known, and we assume its state space

is finite. Hence, the joint distribution of the offered service can be modeled as the channel

state, and the compatibility graph determines the feasible service rate vectors in each time

183

slot. Since we need the set of feasible service rate vectors in each channel state to be finite,

we only consider the maximal vectors and their projection on the coordinate axes. Once the

offered service rates are observed, the scheduler follows MaxWeight algorithm to decide

which job types will be served and at which rate. We obtain the following result.

Corollary 7.13. Consider a set of parallel-server systems as described above, parametrized

by ε as described in Theorem 7.5. Suppose the capacity region C has vertices that do not

lie on the coordinate axes, and thatw is one of them. Let ΣB be as in Theorem 7.5 and σa

be as in Corollary 7.10. Then,

lim
ε↓0

εE
[
〈q(ε),w〉

]
=

1

2

(
‖σa‖2 + 1T

(
(CTC)−1 ◦ ΣB

)
1
)
.

The proof of Corollary 7.13 only requires modeling the parallel-server system as a

generalized switch as we showed above, so we omit it.

Remark 7.14. In Corollary 7.13 we considered a vector w in a vertex of the capacity

region. However, Theorem 7.5 is immediately applicable for any w in the boundary of the

capacity region. Here we focused on a special case to illustrate the full-dimensional SSC

result.

Before finishing this section we present one of the simplest parallel-server systems to

illustrate the result in Corollary 7.13. Specifically, we work with a dedicated system, where

every job type can be processed by exactly one server. A diagram with three job-types and

three servers is presented in Figure 7.4b.

Consider an SPN with n servers, each with its own queue. Let {ŝ(k) : k ∈ Z+} be a

sequence of i.i.d. random vectors, such that ŝi(k) is the potential service in queue i in time

slot k. Let µ = E [ŝ(1)] and Σs be the covariance matrix of ŝ(1). Suppose the vector ŝ(1)

has finite state space and that ŝi(1) ≤ Smax with probability 1 for all i ∈ [n]. Suppose

mini∈[n] µi > 0.

184

The arrival process is defined as in section 6.3, and we model heavy traffic as de-

scribed at the beginning of section 7.4. Specifically, let ε ∈ (0, 1) be the heavy-traffic

parameter. Then, for each ε ∈ (0, 1) and each i ∈ [n], let the arrival process to the

system be
{
a(ε)(k) : k ∈ Z+

}
, which is a sequence of i.i.d. random vectors with mean

λ(ε) = E
[
a(ε)(1)

]
= (1− ε)µ and covariance matrix Σ

(ε)
a .

Corollary 7.15. Consider a set of dedicated parallel-server systems as described above,

parametrized by ε ∈ (0, 1) as described in Theorem 7.5. Suppose limε↓0 Σ
(ε)
a = Σa

component-wise. Let σ2
ai

= (Σa)i,i and σ2
si

= (Σs)i,i for each i ∈ [n]. Then,

lim
ε↓0

εE

[
n∑

i=1

µiq
(ε)
i

]
=

1

2

n∑

i=1

(
σ2
ai

+ σ2
si

)
.

From the discussion after Corollary 7.13, we expected that the correlation among the

arrival processes would not be part of the right-hand side of the limit. However, observe

that the correlation among the service processes does not appear in the answer either. Then,

even though the arrival and potential service processes are correlated among queues, the

linear combination of the mean queue lengths behaves as if the queues were independent.

Moreover, Corollary 7.15 recovers Kingman’s bound. We present the proof below.

Proof of Corollary 7.15. The capacity region of this queueing system is

C =
{
x ∈ Rn

+ : xi ≤ µi , i ∈ [n]
}
.

Then, we have L = n, and for each i ∈ [n] we set c(i) = e(i) and b(i) = µi. Therefore,

the matrix C is the identity matrix, which implies that the projection matrix H is also the

identity matrix.

Let P = [n]. Then, ∩`∈PF (`) = {µ}, and the left-hand side of Equation 7.17 yields

lim
ε↓0

εE

[
n∑

i=1

µiq
(ε)
i

]

185

Since the projection matrix satisfies H = I, the first term on the right-hand side of

Equation 7.17 yields

1

2
1T (H ◦ Σa)1 =

1

2
1T (I ◦ Σa)1 =

1

2

n∑

i=1

σ2
ai
.

To compute the second term of the right-hand side of Equation 7.17, we consider the

following interpretation of the channel state. LetM be an enumeration of the elements of

the state space of ŝ(1), and s(m) be its mth element for each m ∈M. For each m ∈M, let

the set of feasible service rate vectors in channel state m be

S(m) =
{
s(m)

}
∪
{
s(m) − s(m)

i e(i) : i ∈ [n]
}
,

i.e., the set S(m) contains s(m) and its projection on the coordinate axes. We assume that

MaxWeight breaks ties by choosing maximal schedules. Then, if the channel state is m

then the service rates vector is always s(m). With this assumption we lose some generality

because arrivals occur after deciding the optimal schedule. However, we are interested in

heavy-traffic analysis so this slight loss of generality does not affect our result. Then, the

probability mass function of the channel state ψ satisfies ψm
4
= P

[
ŝ(1) = s(m)

]
for each

m ∈M.

By definition of b(m,`) in Equation 6.4 and by definition of the sets S(m) and the vectors

c(`) above, we obtain that for each ` ∈ [n] we have

b(m,`) =〈c(`), s(m)〉 = 〈e(`), s(`)〉 = s
(m)
` .

Then, for each ` ∈ [n] the random variable B`(1) is such that P
[
B`(1) = s

(m)
`

]
= ψm

and E [B`(1)] = µ`. Therefore, the vectors (B1(1), . . . , Bn(1)) and ŝ(1) have the same

distribution. Hence, (ΣB)i,j = Cov [ŝi, ŝj], and the second term in the right-hand side of

186

Equation 7.17 becomes

1

2
1T
(
(CTC)−1 ◦ ΣB

)
1

(a)
=

1

2
1T (I ◦ ΣB)1

(b)
=

n∑

i=1

σ2
si
,

where (a) holds because C = I; and (b) holds by definition of Hadamard’s product and

because the diagonal of ΣB contains the variance of ŝi(1) for each i ∈ [n].

N -system.

The N -system model is a parallel-server system with two servers and two job types. One

of the servers exclusively serves the jobs type 1, and the other server can process both. A

diagram of the N -system is presented in Figure 7.4c. According to [109], “the N -system

is one of the simplest parallel server system models that retains much of the complexity

inherent in more general models”. Consequently, it has received plenty of attention over

the years and there is vast literature that only focuses on its performance under the CRP

condition [106, 107, 7, 108]. Theorem 7.5 is immediately applicable to this system, and

gives information about the mean queue lengths in both, the CRP and non-CRP cases. In

this section we focus on the non-CRP case.

Let the arrival processes be as described in section 6.3 and suppose that each server

processes jobs at rate 1. Then, the capacity region of this system is

C =
{
x ∈ R2

+ : x1 ≤ 1, x2 ≤ 1
}
.

We consider the heavy-traffic parametrization λ(ε) = (1 − ε)1, for ε ∈ (0, 1). Then, as

ε ↓ 0, the arrival rate vector approaches a vertex of the capacity region and, hence, the

N -system experiences full-dimensional SSC. We now present the result formally.

Corollary 7.16. Consider a set of N -systems parametrized by ε ∈ (0, 1), as described

187

above. Let σa be as in 7.13. Then,

lim
ε↓0

εE
[
q

(ε)
1 + q

(ε)
2

]
=
σ2
a1

+ σ2
a2

2
.

Corollary 7.16 can be easily proved as an immediate application of Corollary 7.10.

Here we present an alternative proof, where we explicitly set to zero the drift of the function

V (q) = ‖q‖2. Recall that, since SSC occurs into a two-dimensional subspace, in this case

we have q = q‖H.

Alternative proof of Corollary 7.16. We set to zero the drift of V (q) = ‖q‖2 = q2
1 + q2

2 .

We obtain

0 =E
[
(q1 + a1 − s1 + u1)2 + (q2 + a2 − s2 + u2)2 − q2

1 − q2
2

]

=E
[
a2

1

]
+ E

[
s2

1

]
− 2E [a1]E [s1] + E

[
a2

2

]
+ E

[
s2

2

]
− 2E [a2]E [s2]

+ 2E [q1 (a1 − s1)] + 2E [q2(a2 − s2)]− E
[
u2

1

]
− E

[
u2

2

]

=σ2
a1

+ σ2
a2

+ E
[
(1− ε− s1)2

]
+ E

[
(1− ε− s2)2

]
− 2εE [q1]− 2εE [q2]

+ 2E [q1(1− s1)] + 2E [q2(1− s2)]− E
[
u2

1

]
− E

[
u2

2

]
,

(7.23)

where the last equality holds by definition of variance and because E [ai] = 1− ε. Now we

compute each of the terms of Equation 7.23.

We start with the quadratic terms on the first line.

Claim 7.17. E [1− ε− s1)2] + E [(1− ε− s2)2] is O(ε).

Proof. To prove it, define φ = P [s = (1, 1)]. Then, observe that for i ∈ {1, 2}, we have

E [si] = φ+ 0(1− φ) = φ.

On the other hand, by stability we know E [si] ≥ E [ai] = 1− ε. Putting both together and

188

rearranging terms we obtain

1− φ ≤ ε,

which means that 1− φ is O(ε). Therefore, we have

E
[
(1− ε− si)2

]
=φε2 + (1− φ)(1− ε)2 = O(ε).

Now we show E [u2
1] + E [u2

2] is O(ε).

Claim 7.18. E [u2
1] + E [u2

2] is O(ε)

Proof. By definition of unused service, and because potential service is bounded above by

2, we have

0 ≤ E
[
u2
i

]
≤ 2E [ui] ∀i ∈ {1, 2}.

Then, it suffices to show that E [ui] is O(ε) for i = 1, 2. To do that, we set to zero the drift

of the linear function Vi(q) = qi, for i = 1, 2. We obtain

0 =E [(qi + ai − si + ui)− qi]
(a)
=(1− ε)− E [si] + E [ui]

=− ε− E [si − 1] + E [ui] ,

where (a) holds because E [ai] = 1 − ε. From the proof of Claim 7.17, we know that

E [1− si] = 1− φ is O(ε). Therefore, rearranging terms we obtain

E [ui] = ε+O(ε).

189

This concludes the proof of the claim.

To compute the remaining terms we use MaxWeight algorithm. We know

E [q1(1− s1) + q2(1− s2)] ≤ 0, (7.24)

because (1, 1) is one of the two feasible schedules. It remains to show a lower bound that

increases to 0 as ε ↓ 0. We prove such result in the following claim, and observe the proof

is based on SSC.

Claim 7.19. E [q1(1− s1) + q2(1− s2)] is Θ(
√
ε).

Proof. We already know Equation 7.24. Now we show a lower bound that is Θ(
√
ε) using

SSC to the cone K.

Consider a vector x ∈ R2
+. If x /∈ K, then projecting x on the cone K is equivalent to

projecting it on the line L =
{
y ∈ R2

+ : y1 = y2

}
. Then, if x /∈ K we have

x‖K =

(
x1 + x2

2
,
x1 + x2

2

)
, x⊥K =

x2 − x1

2
(−1, 1) . (7.25)

Then, we have

0 ≥E [q1(1− s1) + q2(1− s2)]

(a)
=E

[
(q1(1− s1) + q2(1− s2))1{s=(2,0)}

]

=µ1E
[
(q1 − q2)1{s=(0,µ1+µ2)}

]

(b)
=E

[
(q1 − q2)1{q2<q1}

]

(c)
= −

√
2E
[
‖q⊥‖1{q2<q1}

]

(d)

≥ −
√

2
√

E
[
‖q⊥‖2] (1− φ)

(e)

≥ −
√

2J1

√
1− φ

190

where (a) holds because the set of feasible service rates is S = {(1, 1), (2, 0)}; (b) holds

because, since we are using MaxWeight algorithm, the events {s = (2, 0)} and {q2 < q1}

are equivalent; (c) holds by definition of Euclidean norm and by Equation 7.25; (d) holds

by Cauchy-Schwarz inequality; and (e) holds by SSC as established in Proposition 7.4.

From the proof of Claim 7.17, we know that (1 − φ) is O(ε). Therefore, we have

completed the proof.

Putting all the claims together in Equation 7.23, we obtain

2εE [q1 + q2] = σ2
1 + σ2

2 + f(ε),

where f(ε) goes to zero as ε ↓ 0, and so we get

lim
ε↓0

εE [q1 + q2] =
σ2

1 + σ2
2

2
.

Remark 7.20. Observe that we only use SSC in the last step of the proof. This implies

that, if we did not have a SSC result, we can still obtain an upper bound. In fact, using

Equation 7.24 along with Claim 7.17 and Claim 7.18 in Equation 7.23, we obtain

2εE [q1 + q2] ≤ σ2
1 + σ2

2 + f(ε),

where f(ε) goes to zero as ε ↓ 0, and so we get

lim
ε↓0

εE [q1 + q2] ≤ σ2
1 + σ2

2

2
.

This example shows that, in order to obtain bounds that are asymptotically tight in heavy

traffic, we must use SSC.

191

7.6 Proof of Theorem 7.5.

In this section we present the proof of the main theorem of this chapter. We use the notation

Em [·] = E
[
·
∣∣M = m

]
, and we omit the dependence on ε of the variables for simplicity

of exposition.

Proof of Theorem 7.5. First observe that 〈q,w〉 = 〈q‖H,ν〉. To show this statement, define

w⊥
4
= w − ν for all w ∈ ∩`∈PF (`), and observe that 〈c(`),w⊥〉 = 0 because both ν,w ∈

F (`) for all ` ∈ P . Then,

〈q‖H,ν〉 = 〈q‖H,w −w⊥〉 = 〈q‖H,w〉
(a)
= 〈q,w〉,

where (a) holds becausew ∈ ∩`∈PF (`) and because q‖H = q− q⊥H. Hence, in the rest of

the proof we focus on computing bounds for E
[
〈q‖H,ν〉

]
.

We set to zero the drift of V‖H(q) =
∥∥q‖H

∥∥2, and bound the terms that arise one by

one. Before setting the drift to zero we need to make sure that E
[
V‖H(q‖H)

]
is finite. This

result can be proved using the Foster-Lyapunov theorem with Lyapunov function Z(q) =

‖q‖2. This proves that E
[
‖q‖2] is finite. Then, since projection is nonexpansive we have

E
[∥∥q‖H

∥∥2
]

is also finite. The proof is simple, so we omit the details for ease of exposition.

Now, setting to zero the drift of V‖H(q) we obtain

0 = E
[∥∥∥q+

‖H

∥∥∥
2

−
∥∥q‖H

∥∥2
]

(a)
= E

[∥∥a‖H − s‖H
∥∥2

+ 2〈q‖H, a‖H − s‖H〉 −
∥∥u‖H

∥∥2
+ 2〈q+

‖H, u‖H〉
]

(7.26)

where (a) holds by the dynamics of the queues presented in Equation 1.2, and reorganizing

terms. Let

T1
4
= 2E

[
〈q‖H, s‖H − a‖H〉

]
, T2

4
= E

[∥∥a‖H − s‖H
∥∥2
]
,

192

T3
4
= E

[∥∥u‖H
∥∥2
]

and T4
4
= 2E

[
〈q+
‖H, u‖H〉

]
.

Then, reorganizing the terms in Equation 7.26 we obtain T1 = T2 − T3 + T4. We compute

each term separately. We start with T1.

T1
(a)
= 2E

[
〈q‖H, s− a〉

]

(b)
= 2εE

[
〈q‖H,ν〉

]
+ E

[
〈q‖H, s− ν〉

]

(c)
= 2εE

[
〈q‖H,ν〉

]
+O

(
ε log

(
1
ε

))
, (7.27)

where (a) holds by the orthogonality principle; (b) holds because E [a] = (1 − ε)ν and

because a is independent of the vector of queue lengths; and (c) holds by Claim 7.21 stated

below.

Claim 7.21. Consider a set of generalized switches as described in Theorem 7.5. Then,

there exists ε′0 ∈ (0, 1) and a finite constant ζ1 > 0 such that

∣∣E
[
〈q‖H, s− ν〉

]∣∣ ≤ ζ1ε log
(

1
ε

)
∀ε < ε′0.

We present the proof of Claim 7.21 in subsection 7.7.1. Now we compute T2. Expand-

ing the product we obtain

T2 = E
[∥∥a‖H − s‖H

∥∥2
]

= E
[∥∥a‖H

∥∥2
]

+ E
[∥∥s‖H

∥∥2
]
− 2E

[
〈a‖H, s‖H〉

]
. (7.28)

We compute each term in Equation 7.28 separately. For the first two terms, we solve

the least squares problem and we use the projection matrix on the subspace H, denoted as

H . Let hi,j be its element (i, j) for each i, j ∈ [n]. For the first term we have

E
[∥∥a‖H

∥∥2
]

= E
[
‖H a‖2]

193

(a)
=

n∑

i=1

n∑

i′=1

hi,i′Cov [ai, ai′] +
n∑

i=1

n∑

i′=1

hi,i′E [ai]E [ai′]

(b)
= 1T

(
H ◦ Σ(ε)

a

)
1 + (1− ε)2νTHν, (7.29)

where (a) holds solving the least squares problem, by definition of norm, because H is a

projection matrix (and therefore H = HT = H2), and by definition of covariance; and (b)

holds by definition of the Hadamard’s product and because E [ai] = λ
(ε)
i = (1 − ε)νi for

each i ∈ [n]. For the second term in Equation 7.28 we obtain

E
[∥∥s‖H

∥∥2
]

= E
[
‖Hs‖2

]

(a)
= E

[
sTC(CTC)−1CTs

]

(b)
=
∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

E
[
〈c(`1), s〉〈c(`2), s〉

]

(c)
=
∑

`1∈P̃

∑

`2∈P̃

(CTC)−1
`1,`2

∑

m∈M

ψmEm
[
〈c(`1), s〉〈c(`2), s〉

]

(d)
= 1T

(
(CTC)−1 ◦ ΣB

)
1 + νTHν −O(ε), (7.30)

where (CTC)−1
`1,`2

is the element (`1, `2) of the matrix (CTC)−1 for each `1, `2 ∈ P̃ . Here,

(a) holds solving the least squares problems, and becauseH = C(CTC)−1CT by definition

of projection matrix; (b) holds by definition of matrix multiplication, and because CTs is a

vector with elements 〈c(`), s〉 for ` ∈ P̃ ; (c) holds by law of total probability, conditioning

on the channel state; and (d) holds using Lemma 7.2, the definition of covariance and

reorganizing the terms. Now we compute the last term in Equation 7.28. We obtain

−2E
[
〈a‖H, s‖H〉

] (a)
= −2E

[
aTHs

]

(b)
= −2(1− ε)νTE [Hs]

(c)
= −2(1− ε)νTHν +O(ε), (7.31)

194

where (a) holds because for any vector x, we have x‖H = Hx by the solution of the least

squares problem, and because H is a projection matrix; (b) holds because a is independent

of s and E [a] = λ(ε) = (1 − ε)ν; and (c) because H = C
(
CTC

)−1
CT , because CTs

has elements 〈c(`), s〉 with ` ∈ P̃ , by Lemma 7.1 and Lemma 7.2, and because ν ∈ F (`).

Therefore, using Equation 7.29, Equation 7.30 and Equation 7.31 in Equation 7.28 we

obtain

∣∣T2 −
(
1T
(
H ◦ Σ(ε)

a

)
1 + 1T

(
(CTC)−1 ◦ ΣB

)
1 + ε2νTHν

)∣∣ is O(ε).

In other words, there exists a finite constant ζ2 > 0 such that

∣∣T2 −
(
1T
(
H ◦ Σ(ε)

a

)
1 + 1T

(
(CTC)−1 ◦ ΣB

)
1 + ε2νTHν

)∣∣ ≤ ζ2ε. (7.32)

Now we compute T3. We obtain

0 ≤ T3 = E
[∥∥u‖H

∥∥2
]

(a)

≤
∑

`∈P

E
[
〈c(`),u〉2

]

(b)

≤ nSmaxCmax

∑

`∈P

E
[
〈c(`),u〉

] (c)
= O(ε),

where Cmax = max
`∈P,i∈[n]

{
c

(`)
i

}
and it is a finite constant. Here, (a) holds because the vectors

c(`) are not necessarily orthogonal for all ` ∈ P ; (b) holds because u ≤ s ≤ Smax1 with

probability 1 by definition of the unused service; and (c) holds by Claim 7.22.

Claim 7.22. Consider a set of generlized switches, as described in Theorem 7.5. Then,

∑

`∈P

E
[
〈c(`),u〉

]
= ε

∑

`∈P

b(`) −O(ε). (7.33)

We present the proof of Claim 7.22 in subsection 7.7.2. Therefore, T3 is O(ε), which

195

implies the existence of a finite constant ζ3 > 0 such that

T3 ≤ ζ3ε. (7.34)

Finally, we compute a bound for T4 as follows.

Claim 7.23. Consider the system described in Theorem 7.5. Then, there exist ε′′0 ∈ (0, 1)

and a finite constant ζ4 such that

T4 ≤ ζ4ε log

(
1

ε

)
∀ε < ε′′0. (7.35)

We provide the proof of Claim 7.23 in subsection 7.7.3. Putting equations Equa-

tion 7.27, Equation 7.32, Equation 7.34 and Equation 7.35 together we obtain

∣∣∣∣E
[
〈q(ε),w〉

]
− 1

2ε
1T
(
H ◦ Σ(ε)

a

)
1− 1

2ε
1T
(
(CTC)−1 ◦ ΣB

)
1

∣∣∣∣ ≤ ζ log

(
1

ε

)
,

where ζ = max{ζ1, ζ2, ζ3, ζ4}. This completes the proof.

Clearly, the above result and proof are much more general and more involved than the

proof in the special case of an input-queued switch developed in [14, 15]. The bound

in Theorem 7.5 is expressed in terms of a general projection of the second moments of

arrival and service processes onto the spaceH, and we obtain a tighter rate of convergence

compared to [34, 14, 15].

The key idea in obtaining a logarithmic error bound is in picking the right exponent j in

Hölder’s inequality while bounding terms T1 and T4. We do this by minimizing the upper

bound over j (for a fixed ε), which gives j =
⌊
log
(

1
ε

)⌋
. The idea of optimizing over the

exponent in Hölder’s inequality is motivated by [110].

We would like to point out a couple of conceptual differences from the proof in the case

of input-queued switch. Firstly, in the proof of asymptotic upper bounds in an input-queued

switch, the scheduling policy is not used. This means that for an input-queued switch, any

196

scheduling policy that exhibits SSC also has the same asymptotic upper bounds. In our

proof here, we use the scheduling policy to upper bound the term T1 in Claim 7.21. Thus,

we may not claim that any scheduling policy that exhibits SSC in Proposition 7.4 satisfies

the bound in Theorem 7.5. Secondly, while SSC into the cone K was established in [14,

15] in the case of an input-queued switch, only the weaker result about collapse into the

space H was used to obtain heavy-traffic queue length bounds. In contrast, we use the

collapse into the cone K in the proof of Theorem 7.5 to lower bound the term T1. Both

these differences are due to the fact that s‖H is constant for all maximal schedules s ∈ S

in the case of an input-queued switch, whereas in the case of the generalized switch this is

not necessarily true.

7.7 Details of proof of Theorem 7.5

In this section we prove the claims used in the proof of Theorem 7.5.

7.7.1 Proof of Claim 7.21.

Proof of Claim 7.21. Conditioning on the channel state, we get

E
[
〈q‖H, s− ν〉

]
=
∑

m∈M

ψmEm
[
〈q‖H, s− ν(m)〉

]

(a)
=
∑

m∈M

ψmEm
[
〈q‖H, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]
,

where ν(m) is defined as in Lemma 7.1. Equality (a) holds because q‖H =
∑

`∈P̃ ξ̃`c
(`) for

ξ̃` ∈ R for all ` ∈ P̃ (by definition of projection on the subspaceH) and if the channel state

is m we have

〈c(`), s− ν(m)〉1{〈c(`),s〉=b(m,`)} =
(
b(m,`) − 〈c(`),ν(m)〉

)
1{〈c(`),s〉=b(m,`)} = 0,

where the last equality holds by definition of ν(m).

197

It suffices to show that Em
[
〈q‖H, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]
is O

(
ε log

(
1
ε

))
because

ψ = (ψm)m∈M is a probability mass function and, therefore, each ψm is bounded.

Observe that q = q‖H + q⊥H = q‖K + q⊥K, thus

Em
[
〈q‖H, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]

= Em
[
〈q‖K, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]
(7.36)

+ Em
[
〈q⊥K − q⊥H, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]
. (7.37)

Now, we show that the terms in Equation 7.36 and Equation 7.37 are O
(
ε log

(
1
ε

))
. For

Equation 7.36, we have Em
[
〈q‖K, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]
≤ 0 by the definition of

projection on the cone K and by definition of ν(m) and b(m,`) in Lemma 7.1. Now, we have

0 ≥ Em
[
〈q‖K, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]

(a)

≥ −Em
[
〈q⊥K, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]

(b)

≥ −E
[
‖q⊥K‖j

] 1
j Em

[∥∥s− ν(m)
∥∥j′ 1{〈c(`),s〉6=b(m,`)}

] 1
j′

(c)

≥ −J
1
j

j Em
[∥∥s− ν(m)

∥∥j′ 1{〈c(`),s〉6=b(m,`)}
] 1
j′
,

where j, j′ ∈ Z+ satisfy j, j′ > 1 and 1
j

+ 1
j′

= 1. Here, (a) holds because q‖K = q− q⊥K,

and because 〈q, s − ν(m)〉 ≥ 0 by the definition of MaxWeight in Equation 6.3 and since

ν(m) ∈ S(m); (b) holds using Hölder’s inequality; and (c) holds by SSC in Proposition 7.4.

Now, by the definition of Jj , we have

J
1
j

j =

((
8nΛ2

δ

)j
+
(
8
√
nΛ
)j
(

8
√
nΛ + δ

δ

)j
j!

) 1
j

≤ ζ ′1(j!)
1
j

(a)

≤ ζ ′1e
1
j
−1j1+ 1

2j ,

where ζ ′1
4
= 8nΛ2

δ
+ 8
√
nΛ
(

8
√
nΛ+δ
δ

)
. Here, (a) follows from Stirling’s approximation for

198

the factorial.

Now we bound the remaining term Em
[∥∥s− ν(m)

∥∥j′ 1{〈c(`),s〉6=b(m,`)}
] 1
j′ as follows.

0 ≤Em
[∥∥s− ν(m)

∥∥j′ 1{〈c(`),s〉6=b(m,`)}
] 1
j′

(a)
=Em

[∥∥s− ν(m)
∥∥j′
∣∣∣ 〈c(`), s〉 6= b(m,`)

] 1
j′ (

1− π(m,`)
) 1
j′

(b)

≤n
(
Sj
′

max + V j′

max

) (
1− π(m,`)

) 1
j′ (c)

= ζ ′2ε
1
j′ , (7.38)

where (a) holds by definition of π(m,`) in Lemma 7.2; (b) holds with Vmax = maxm∈M,i∈[n] ν
(m)
i ;

and (c) holds by Lemma 7.2 for ζ ′2
4
= n

(
Sj
′

max + V j′
max

)
b(m,`)

γ(m) .

Putting everything together, we obtain

0 ≥ Em
[
〈q‖K, s− ν(m)〉1{〈c(`),s〉6=b(m,`)}

]

≥ −ζ ′1ζ ′2e
1
j
−1j1+ 1

2j ε
1
j′

(a)
= −ζ ′1ζ ′2e

1

blog(1
ε)c−1

⌊
log

(
1

ε

)⌋1+ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c ε

(b)

≥ −2ζ ′1ζ
′
2ε log

(
1

ε

)
∀ε < ε′0,

where (a) holds after choosing j 4=
⌊
log
(

1
ε

)⌋
; and (b) follows for ε′0 as defined below, and

because by the definition of floor function we have

lim
ε↓0

e

1

blog(1
ε)c−1

⌊
log

(
1

ε

)⌋ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c

≤
(

lim
ε↓0

e

1

log(1
ε)−1

−1
)(

lim
ε↓0

log

(
1

ε

) 1

2 log(1
ε)−2

)(
lim
ε↓0

ε
− 1

log(1
ε)
)

=
1

e
× 1× e = 1.

199

By definition of limit, there exists ε̃′0 > 0 such that for all ε < ε̃′0 we have

e

1

blog(1
ε)c−1

⌊
log

(
1

ε

)⌋ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c ≤ 2.

The proof that Equation 7.37 is O
(
ε log

(
1
ε

))
follows similarly by linearity of dot product,

Hölder’s inequality with j =
⌊
log
(

1
ε

)⌋
and Equation 7.38. We omit the details for brevity.

7.7.2 Proof of Claim 7.22.

Proof of Claim 7.22. We set to zero the drift of Vl(q) =
∑

`∈P 〈c(`), q〉. We obtain

0 =E

[∑

`∈P

〈c(`), q+〉 −
∑

`∈P

〈c(`), q〉
]

= E

[∑

`∈P

〈c(`),a− s+ u〉
]
,

where the last equality holds by definition of q+ and by the dynamics of the queues pre-

sented in Equation 1.2. Rearranging terms we obtain

∑

`∈P

E
[
〈c(`),u〉

]
=
∑

`∈P

E
[
〈c(`), s〉

]
−
∑

`∈P

E
[
〈c(`),a〉

]

=
∑

`∈P

E
[
〈c(`), s〉

]
−
∑

`∈P

〈c(`), (1− ε)ν〉.

But

∑

`∈P

E
[
〈c(`), s〉

]

= E

[∑

`∈P

(
〈c(`), s〉 − b(`)

)
]

+
∑

`∈P

b(`)

(a)
=
∑

`∈P

∑

m∈M

ψmEm
[(
〈c(`), s〉 − b(m,`)

)∣∣ 〈c(`), s〉 6= b(m,`)
] (

1− π(m,`)
)

+
∑

`∈P

〈c(`),ν〉

(b)
=
∑

`∈P

〈c(`),ν〉 −O(ε),

200

where (a) holds because 〈c(`),ν〉 = b(`) for all ` ∈ P .; and (b) holds by Lemma 7.2. Then,

since 〈c(`),ν〉 = b(`), we have

∑

`∈P

E
[
〈c(`),u〉

]
= ε

∑

`∈P

b(`) −O(ε).

7.7.3 Proof of Claim 7.23

Proof of Claim 7.23. In this proof we use ideas and notation from [34, Equation (56)]. For

each ` ∈ P , let L(`)
+
4
=
{
i ∈ [n] : c

(`)
i > 0

}
and define

c̃(`) =
[
c

(`)
i

]
i∈L(`)

+

, q̃
(`)

= [qi]i∈L(`)
+

and ũ
(`)

= [ui]i∈L(`)
+
.

Then,

0 ≤
∣∣∣∣
T4

2

∣∣∣∣ =
∣∣∣E
[
〈q+
‖H, u‖H〉

]∣∣∣ (a)
=

∣∣∣∣E
[
−〈
(
q̃

(`)

⊥H

)+

, ũ
(`)〉
]∣∣∣∣

(b)

≤ E

[∥∥∥∥
(
q̃

(`)

⊥H

)+
∥∥∥∥
j
] 1
j

E
[∥∥∥ũ(`)

∥∥∥
j′
] 1
j′

,

where j, j′ ∈ Z+ satisfy j, j′ > 1 and 1
j

+ 1
j′

= 1. Here, (a) follows using the definition

of projection on the subspace to substitute q+
‖H =

∑
`∈P 〈c(`), q+〉c(`), then the key prop-

erty Equation 1.3, and that
(
q̃

(`)
)+

=
(
q̃

(`)

‖H

)+

+
(
q̃

(`)

⊥H

)+

. Then, (b) holds by Hölder’s

inequality.

Now we bound each of the terms. For the first term we use SSC as presented in Propo-

sition 7.4, and we obtain

E

[∥∥∥∥
(
q̃

(`)

⊥H

)+
∥∥∥∥
j
] 1
j

≤ E
[∥∥q+

⊥H
∥∥j
] 1
j ≤ J

1
j

j

(a)

≤ ζ ′1e
1
j
−1j1+ 1

2j ,

201

where (a) holds by Stirling’s approximation for the factorial and ζ ′1 is defined as in the

proof of Claim 7.21. For the second term we obtain

0 ≤ E
[∥∥∥ũ(`)

∥∥∥
j′
]

(a)

≤
∑

`∈P

∑

i∈L(`)
+

c̃
(`)
i

c̃
(`)
i

E
[
ũj
′

i

] (b)

≤ Sj
′−1

max

c̃min

∑

`∈P

E
[
〈c̃(`), ũ

(`)〉
] (c)

≤ ζ ′3ε,

where c̃min = min
`∈P,i∈[n]

{c̃(`)
i }. Here, (a) follows as all the terms in the summation are non

negative; (b) holds by definition of dot product; and (c) follows from [98, Equation (43)] for

a finite constant ζ ′3, using a similar argument to the properties used to obtain Equation 7.34.

Now, pick j 4=
⌊
log
(

1
ε

)⌋
to get

0 ≤
∣∣∣∣
T4

2

∣∣∣∣

≤ ζ ′1ζ
′
3

S
1− 1

j′
max

c̃
1
j′
min

|P |
1
j′ e

1
j
−1j1+ 1

2j ε
1
j′

= ζ ′1ζ
′
3S

1

blog(1
ε)c

max

(|P |
c̃min

)1− 1

blog(1
ε)c e

1

blog(1
ε)c−1

⌊
log

(
1

ε

)⌋1+ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c ε

(a)

≤ 2ζ ′1ζ
′
3

|P |
c̃min

ε log

(
1

ε

)
∀ε < ε̃′′0,

where (a) follows as

lim
ε↓0
S

1

blog(1
ε)c

max

(|P |
ec̃min

)1− 1

blog(1
ε)c
⌊

log

(
1

ε

)⌋ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c

≤ 1× |P |
ec̃min

× 1× e =
|P |
c̃min

.

Thus, there exists ε̃′′0 > 0 such that for all ε < ε̃′′0 we have

S

1

blog(1
ε)c

max

(|P |
ec̃min

)1− 1

blog(1
ε)c
⌊

log

(
1

ε

)⌋ 1

2blog(1
ε)c ε

− 1

blog(1
ε)c ≤ 2|P |

c̃min

.

This completes the proof.

202

7.8 Individual queue lengths and higher moments in the input-queued switch

In this section we show that the drift method with polynomial test functions does not pro-

vide all the information that is necessary to compute the moments of all the linear combi-

nations of the scaled queue lengths in systems that do not satisfy the CRP condition. We

do this by presenting an alternate view of the drift method.

In the proof of Theorem 7.5 we use V (q) =
∥∥q‖H

∥∥2 as test function to obtain bounds

on certain linear combinations of the queue lengths in a generalized switch. This choice

of test function was first proposed in [14], and the main reason to use it is that the term

T4 consisting of the ‘qu’ terms (i.e., cross terms between the queue length and the unused

service) converges to zero in the heavy-traffic limit. All of queueing theory in some sense

is to get a handle on the unused service terms, and the drift method handles these terms by

making sure that they ‘cancel out’ in heavy traffic, using SSC and our choice of the test

function. In this section, instead of trying to cancel out the ‘qu’ terms, we consider them

as unknowns and try to solve for them along with the mean queue lengths. We will see that

this is impossible even if we use all possible quadratic test functions.

For simplicity of exposition, we present this result in the context of an input-queued

switch, which is one of the simplest queueing systems that experience multidimensional

SSC and it is a special case of the generalized switch, as shown in subsection 7.5.1. The

organization of this section is as follows. In subsection 7.8.1 we present the main result, in

subsection 7.8.2 we use this result to compute bounds on the first moment of linear com-

binations of the scaled queue lengths and in subsection 7.9.3 we discuss how to generalize

this approach to other queueing systems that experience multidimensional SSC.

203

7.8.1 System of equations to compute linear combinations of the first moment of scaled

queue lengths.

In this section we prove that the drift method with polynomial test functions is not sufficient

to compute all the linear combinations of the first moment of the scaled queue lengths in

queueing systems that do not satisfy the CRP condition. Specifically, we show that the use

of polynomial test functions yields an under-determined system of equations.

In the drift method, one of the key challenges is to get a handle on the unused service.

In general, when one sets to zero the drift of a polynomial test function in steady state,

terms of the form qi(k + 1)uj(k) arise. The idea is to use a test function that captures the

geometry of SSC so that we can show that all these cross terms are small. Therefore, the

choice of the test function is important, and the region into which SSC happens must be

used in this choice. The quadratic test function, V (q) = ‖q‖H‖2 has been successfully

used [34, 14, 15, 22] to obtain the mean sum of the queue lengths, similarly to Theorem

7.5. Typically one uses polynomial test functions of degree (m + 1) to get bounds on

the expected value of the mth power of the queue lengths. Therefore, in order to obtain

bounds on the mean queue lengths, one must use quadratic test functions. In order to get

all the linear combinations of the queue lengths, one can search through all the quadratic

test functions, and this is equivalent to searching through all the quadratic monomials. The

following theorem presents the result of using all the quadratic monomial test functions.

For ease of exposition, in this section we prove our result in the case of N = 2 and

independent arrivals, i.e., in the case of a 2 × 2 input-queued switch with independent

arrivals. We present generalizations to this result in section 7.9. Specifically, we present

the case of a 2 × 2 input-queued switch with correlated arrivals in subsection 7.9.1, and

the case of an N × N input-queued switch with independent arrivals in subsection 7.9.2.

The latter result can be easily generalized to the case of correlated arrivals, but we do not

present the result here for ease of exposition.

204

Theorem 7.24. Consider a set of 2 × 2 input-queued switches with independent arrival

processes, operating under MaxWeight, indexed by ε ∈ (0, 1) as described in Corollary

7.9. Let (Σ
(ε)
a)i,i = σ

(ε)
ai and suppose limε↓0 σ

(ε)
ai = σai for all i ∈ [4]. Then, the following

system of equations is satisfied

lim
ε↓0

εE [q1]

=
9σ2

a1
+ σ2

a2
+ σ2

a3
+ σ2

a4

16
+

1

2
lim
ε↓0

E
[
q+

1 (u2 + u3)
]
− 1

2
lim
ε↓0

E
[(
q+

2 + q+
3

)
u4

] (7.39)

lim
ε↓0

εE [q2]

=
σ2
a1

+ 9σ2
a2

+ σ2
a3

+ σ2
a4

16
+

1

2
lim
ε↓0

E
[
q+

2 (u1 − u3 + u4)
] (7.40)

lim
ε↓0

εE [q3]

=
σ2
a1

+ σ2
a2

+ 9σ2
a3

+ σ2
a4

16
+

1

2
lim
ε↓0

E
[
q+

3 (u1 − u2 + u4)
] (7.41)

lim
ε↓0

εE [q1 + q2]

=
3σ2

a1
+ 3σ2

a2
− σ2

a3
− σ2

a4

8
+

1

2
lim
ε↓0

E
[
q+

1 (3u2 − u3)
]

+
1

2
lim
ε↓0

E
[
q+

2 (3u1 + u3)
]

+
1

2
lim
ε↓0

E
[
q+

3 u4

]
(7.42)

lim
ε↓0

εE [q1 + q3]

=
3σ2

a1
− σ2

a2
+ 3σ2

a3
− σ2

a4

8
+

1

2
lim
ε↓0

E
[
q+

1 (−u2 + 3u3)
]

+
1

2
lim
ε↓0

E
[
q+

2 u4

]
+

1

2
lim
ε↓0

E
[
q+

3 (3u1 + u2)
]

(7.43)

lim
ε↓0

εE [q2 + q3]

=
σ2
a1
− 3σ2

a2
− 3σ2

a3
+ σ2

a4

8
+

1

2
lim
ε↓0

E
[
q+

2 (u1 + 3u3 + u4)
]

+
1

2
lim
ε↓0

E
[
q+

3 (u1 + 3u2 + u4)
]
,

(7.44)

where we omitted the dependence on ε of the variables for ease of exposition.

205

The proof of Theorem 7.24 is presented in section 7.10. Observe that in Theorem 7.24

we have system of 6 equations and 11 variables, where the variables are

lim
ε↓0

εE [q1] , lim
ε↓0

εE [q2] , lim
ε↓0

εE [q3] ,

lim
ε↓0

E
[
q+

1 u2

]
, lim
ε↓0

E
[
q+

1 u3

]
,

lim
ε↓0

E
[
q+

2 u1

]
, lim
ε↓0

E
[
q+

2 u3

]
, lim
ε↓0

E
[
q+

2 u4

]
,

lim
ε↓0

E
[
q+

3 u1

]
, lim
ε↓0

E
[
q+

3 u2

]
, lim
ε↓0

E
[
q+

3 u4

]
.

Therefore, it cannot be solved uniquely. However, a specific linear combination of the

scaled queue lengths can be obtained, as shown in the next Corollary.

Corollary 7.25. Consider a set of 2 × 2 input-queued switches as described in Theorem

7.24. Then,

lim
ε↓0

εE [q2 + q3] =
3

8

(
σ2
a1

+ σ2
a2

+ σ2
a3

+ σ2
a4

)

Proof of Corollary 7.25. Consider the following linear combination of the equations in

Theorem 7.24:

Equation 7.39 + Equation 7.40 + Equation 7.41

− 1

2
Equation 7.42− 1

2
Equation 7.43 +

1

2
Equation 7.44.

Then, reorganizing terms we obtain the result.

Corollary 7.25 can be also obtained as a consequence of Corollary 7.9 in the following

way.

206

Alternative proof of Corollary 7.25. From Corollary 7.9 for N = 2 we know

lim
ε↓0

εE [q1 + q2 + q3 + q4] =
3

4

(
σ2
a1

+ σ2
a2

+ σ2
a3

+ σ2
a4

)
. (7.45)

From SSC as proved in Proposition 7.4 and by definition of the coneK in Equation 7.22

we also know that for all i ∈ [4] we have

lim
ε↓0

εE
[
q‖Hi

]
= lim

ε↓0
εE [qi] ,

where q‖Hi is the ith element of q‖H. Also, one interpretation of the cone K presented

in [14] is that for each vector in K, all schedules have the same weight in MaxWeight

algorithm. This can be easily verified by definition of the cone K in Equation 7.22. Then,

q‖H1 + q‖H4 = q‖H2 + q‖H3. (7.46)

Putting everything together we obtain the result in Corollary 7.25.

A special case where we can solve for each of the expected individual queue lengths

is the symmetric case, i.e., when all the arrival processes have the same distribution. We

present the result below.

Corollary 7.26. Consider a set of 2 × 2 input-queued switches as described in Theorem

7.24, where all the arrival processes have the same distribution. Let σ(ε)
a

4
= σ

(ε)
ai for all

i ∈ [4] and suppose limε↓0 σ
(ε)
a = σa. Then, for each i ∈ [4], we have

lim
ε↓0

εE [qi] =
3

4
σ2
a.

Proof of Corollary 7.26. In this case, since the arrivals are symmetric, all the queue lengths

have the same expectation. Using this fact in Corollary 7.25 we obtain the result.

In Theorem 7.24 we prove that setting to zero the drift of all monomials of degree 2

207

leads to a system of 6 equations in 11 variables. Therefore, the solution is not unique.

However, in [14, 15] the authors obtain the limit of specific linear combinations of the

scaled queue lengths. These linear combinations can be obtained because some of the

variables cancel out, as shown in the first proof of Corollary 7.25. However, to obtain other

linear combinations of the expected heavy-traffic scaled queue lengths we need to actually

work with all the variables of the system of equations. Therefore, we need additional

equations.

To better understand this argument, consider a tandem queue system with memory-

less interarrival and service times in any (not necessarily heavy) traffic. We know that the

steady-state joint distribution is product of two geometrics, and can be obtained using re-

versibility arguments. Using the drift approach described above, we get 3 equations in 4

unknowns. However, in addition to the drift arguments, if we use reversibility to sepa-

rately prove that the queues are independent in steady state and impose it as an additional

condition, we can solve for all the unknowns.

7.8.2 Bounds on linear combinations of the scaled queue lengths in heavy-traffic.

In subsection 7.8.1 we presented a linear system of equations that the vector of queue

lengths must satisfy in heavy-traffic. In this section we use this system of equations to

obtain bounds on linear combinations of the expected scaled queue lengths in heavy traf-

fic. A similar approach was studied in [111, 112], where an under-determined set of linear

systems of equations was obtained and linear programming was used to obtain bounds.

However, the focus in those papers was on queueing networks under fixed arrival and ser-

vice rates, as opposed to the heavy-traffic analysis in the current paper.

In the next theorem we provide an upper and a lower bound for the heavy-traffic limit of

the expected value of any linear combination of the queue lengths in a 2× 2 input-queued

switch.

208

Theorem 7.27. Consider the equations

v1 −
w1 − w2 + w5 + w8

2
=

9σ2
a1

+ σ2
a2

+ σ2
a3

+ σ2
a4

16
(7.47)

v2 −
w3 + w4 − w5

2
=
σ2
a1

+ 9σ2
a2

+ σ2
a3

+ σ2
a4

16
(7.48)

v3 −
w6 + w7 − w8

2
=
σ2
a1

+ σ2
a2

+ 9σ2
a3

+ σ2
a4

16
(7.49)

v1 + v2 −
3w+w2 − 3w3 − w4 − w8

2
=

3σ2
a1

+ 3σ2
a2
− σ2

a3
− σ2

a4

8
(7.50)

v1 + v3 +
w1 − 3w2 − w5 − 3w6 − w7

2
=

3σ2
a1
− σ2

a2
+ 3σ2

a3
− σ2

a4

8
(7.51)

v2 + v3 −
w3 − 3w4 − w5 − w6 − 3w7 − w8

2
=
σ2
a1
− 3σ2

a2
− 3σ2

a3
+ σ2

a4

8
(7.52)

− v1 + v2 + v3 ≥ 0 (7.53)

− w1 + w7 ≥ 0 (7.54)

− w2 + w4 ≥ 0 (7.55)

and define P 4
=
{

(v,w) ∈ R3
+ × R8

+ : Equation 7.47-Equation 7.55 are satisfied
}

. For

α ∈ R3, define

f(α)
4
= min {〈α,v〉 : ∃w such that (v,w) ∈ P}

and f(α)
4
= max {〈α,v〉 : ∃w such that (v,w) ∈ P} .

Then,

f(α) ≤ lim
ε↓0

εE
[
〈α, q(ε)〉

]
≤ f(α), (7.56)

where ε and q(ε) are defined as in Theorem 7.24. Furthermore, for any B ∈ R+

P
[
lim
ε↓0

ε〈α, q(ε)〉 ≥ B

]
≤ f(α)

B
. (7.57)

209

Proof of Theorem 7.27. For ease of exposition we omit the dependence on ε of the vari-

ables. Let

v1 = lim
ε↓0

εE [q1] , v2 = lim
ε↓0

εE [q2] , v3 = lim
ε↓0

εE [q3] ,

w1 = lim
ε↓0

E
[
q+

1 u2

]
, w2 = lim

ε↓0
E
[
q+

1 u3

]
,

w3 = lim
ε↓0

E
[
q+

2 u1

]
, w4 = lim

ε↓0
E
[
q+

2 u3

]
,

w5 = lim
ε↓0

E
[
q+

2 u4

]
, w6 = lim

ε↓0
E
[
q+

3 u1

]
,

w7 = lim
ε↓0

E
[
q+

3 u2

]
, w8 = lim

ε↓0
E
[
q+

3 u4

]
.

Then, the proof of Equation 7.56 follows from Theorem 7.24 because the set P repre-

sents the system of equations presented there together with non-negativity constraints for

all the variables. In particular, Equation 7.53-Equation 7.55 represent non-negativity con-

straints associated to q4. These must be considered because, even though q4 does not appear

in the system of equations explicitly, there are underlying constraints of the system related

to q4 that affect its performance. Specifically, using Equation 7.46 and the definition of the

variables above, we obtain that the inequalities

lim
ε↓0

εE [q4] ≥ 0 , lim
ε↓0

E
[
q+

4 ui
]
≥ 0 ∀i ∈ {1, 2, 3}

can be rewritten as Equation 7.53, Equation 7.54, Equation 7.55 and w3 + w6 ≥ 0 but the

last inequality is implied by w3 ≥ 0 and w6 ≥ 0, so we do not write it in the definition of

P .

Also, from Markov’s inequality we know

P
[
lim
ε↓0

ε〈α, q(ε)〉 ≥ B

]
≤ limε↓0 εE

[
〈α, q(ε)〉

]

B
≤ f(α)

B
,

where the last inequality holds by Equation 7.56.

210

Table 7.1: Numerical results for LP with objective function limε↓0 εE
[
q

(ε)
2 + q

(ε)
3

]
.

ε Solution to LP Mean from simulation Error
0.01 0.375 0.378 0.87%
0.05 0.374 0.351 6.69%
0.10 0.371 0.336 10.38%

Theorem 7.27 gives explicit bounds for all linear combinations of the expected scaled

queue lengths. Similar linear programs can be written to obtain bounds on higher moments,

and consequently tighter tail probabilities.

In the rest of this section we present numerical results to compare the bounds that we

obtain from the linear program presented in Theorem 7.27 with the mean values that we

obtain from simulation. We test four different objective functions, viz. limε↓0 εE [qi] for

i ∈ {1, 2, 3} and limε↓0 εE [q2 + q3]. We use the last function because in this case the

system of equations has a unique solution, as shown in Corollary 7.25.

For simplicity, we assume that the arrivals to each queue are Bernoulli processes with

mean λ(ε)
i = 1−ε

2
for all i ∈ [4]. We take ε ∈ {0.01, 0.05, 0.1} to evaluate the performance

under different traffic intensities.

To allow the system to reach steady-state, we ran the simulation for 109 time slots when

ε ∈ {0.05, 0.1} and for 1010 time slots in the case of ε = 0.01. The reason is that, for

smaller ε, the system takes more time to reach steady state. In both cases we compute the

mean value of the variables considering the last 2× 106 time slots1. We present our results

in Table 7.1 and Table 7.2. We ran three replicas of each experiment, and we obtained

similar results. The results we present in Table 7.1 and Table 7.2 were computed as an

average of the three replicas.

In Table 7.1 we present the right-hand side of the expression proved in Corollary 7.25,

the mean value of ε
(
q

(ε)
2 + q

(ε)
3

)
obtained from the simulation, and the percentage error of

the solution of the system of equations with respect to the simulation.

Observe that, as ε decreases, the solution to the LP becomes a better approximation for

1The code is publicly available here: https://github.com/dhurtadolange/2x2-switch-simulation

211

https://github.com/dhurtadolange/2x2-switch-simulation

Table 7.2: Numerical results for individual queue lengths.

ε Min Max
Average min Simulation

and max Mean εq1 Mean εq2 Mean εq3 Mean εq4

0.01 0.062 0.312 0.187 0.187 0.187 0.192 0.191
0.05 0.062 0.312 0.187 0.174 0.176 0.175 0.176
0.10 0.062 0.309 0.186 0.168 0.168 0.168 0.169

the simulated result. In fact, when ε = 0.01, the error is below 1%. Even in the case of

ε = 0.1, which is not considered heavy-traffic, the error is around 10%.

In Table 7.2 we compute a lower and an upper bound to the mean individual queue

lengths, and we compare these results with the mean value of εq1, εq2, εq3 and εq4 obtained

from simulation. The reason to present only one optimal value for all the queue lengths is

that solving the linear program presented in Theorem 7.27 with objective function εE
[
q

(ε)
i

]

gives the same optimal value for all i = 1, 2, 3, because of the symmetric arrival pattern.

We additionally present the average between the minimum and maximum value of the

individual queue lengths.

Observe that for all the cases presented in Table 7.2, the mean obtained by simulation is

between the lower and upper bound obtained solving the LP. The bounds are not necessarily

tight, but the average of both gives a good approximation of the mean individual queue

lengths. Additionally, the LP presented in Theorem 7.5 is simple and, hence, it can be

solved in fractions of a second, as opposed to the simulation that may take hours.

7.9 Generalizations of Theorem 7.24

In this section we present generalizations of Theorem 7.24. We first present the result for a

2× 2 switch with correlated arrivals, then for an N ×N switch with independent arrivals,

and at the end, we discuss the number of variables and equations that one would obtain in

a generalized switch with n queue and SSC into a d-dimensional subspace, with d > 1.

212

7.9.1 System of equations for the 2× 2 input-queued switch with correlated arrivals.

In this section we provide a generalization of Theorem 7.24 to the case of a switch with

correlated arrivals. We omit the proof, since it is similar to the proof of Theorem 7.24.

Theorem 7.28. Consider a set of 2×2 input-queued switches operating under MaxWeight,

indexed by ε ∈ (0, 1) as described in Corollary 7.8. Suppose Σ(ε) is the covariance matrix

of the arrival processes, and limε↓0 Σ(ε) = Σ component-wise. Then, the following system

of equations is satisfied

lim
ε↓0

εE [q1]

=
9Σ1,1 + 6Σ1,2 + 6Σ1,3 − 6Σ1,4 + Σ2,2 + 2Σ2,3 − 2Σ2,4 + Σ3,3 − 2Σ3,4 + Σ4,4

16

+
1

2
lim
ε↓0

E
[
q+

1 (u2 + u3)
]
− 1

2
lim
ε↓0

E
[(
q+

2 + q+
3

)
u4

]

lim
ε↓0

εE [q2]

=
Σ1,1 + 6Σ1,2 − 2Σ1,3 + 2Σ1,4 + 9Σ2,2 − 6Σ2,3 − 6Σ2,4 + Σ3,3 − 2Σ3,4 + Σ4,4

16

+
1

2
lim
ε↓0

E
[
q+

2 (u1 − u3 + u4)
]

lim
ε↓0

εE [q3]

=
Σ1,1 − 2Σ1,2 + 6Σ1,3 + 2Σ1,4 + Σ2,2 − 6Σ2,3 − 2Σ2,4 + 9Σ3,3 + 6Σ3,4 + Σ4,4

16

+
1

2
lim
ε↓0

E
[
q+

3 (u1 − u2 + u4)
]

lim
ε↓0

εE [q1 + q2]

=
3Σ1,1 + 18Σ1,2 − 6Σ1,3 + 6Σ1,4 + 3Σ2,2 − 2Σ2,3 + 2Σ2,4 − Σ3,3 + 2Σ3,4 − Σ4,4

8

+
1

2
lim
ε↓0

E
[
q+

1 (3u2 − u3)
]

+
1

2
lim
ε↓0

E
[
q+

2 (3u1 + u3)
]

+
1

2
lim
ε↓0

E
[
q+

3 u4

]

213

lim
ε↓0

εE [q1 + q3]

=
3Σ1,1 − 6Σ1,2 + 18Σ1,3 + 6Σ1,4 − Σ2,2 + 6Σ2,3 + 2Σ2,4 + 3Σ3,3 + 6Σ3,4 − Σ4,4

8

+
1

2
lim
ε↓0

E
[
q+

1 (−u2 + 3u3)
]

+
1

2
lim
ε↓0

E
[
q+

2 u4

]
+

1

2
lim
ε↓0

E
[
q+

3 (3u1 + u2)
]

lim
ε↓0

εE [q2 + q3]

=
Σ1,1 − 2Σ1,2 + 6Σ1,3 + 2Σ1,4 − 3Σ2,2 + 18Σ2,3 + 6Σ2,4 − 3Σ3,3 − 2Σ3,4 + Σ4,4

8

+
1

2
lim
ε↓0

E
[
q+

2 (u1 + 3u3 + u4)
]

+
1

2
lim
ε↓0

E
[
q+

3 (u1 + 3u2 + u4)
]
,

where we omitted the dependence on ε of the variables for ease of exposition.

7.9.2 System of equations for the N ×N input-queued switch.

For ease of exposition, in this section we use the matrix-shape interpretation of the switch

and we assume the arrivals to different input ports are independent of each other. With a

slight abuse of notation, we adhere to the notation introduced in section 7.8 for the vari-

ables, and we use two subscripts, one for the input port and one for the output port. For ex-

ample, qi,j(k) is the number of packets in line at input port i and output port j, for i, j ∈ [N].

Before presenting the theorem we introduce the following notation. For i, j ∈ [N], define

[N]i
4
= [N] \ {i} and [N]i,j

4
= [N] \ {i, j}

Theorem 7.29. Consider a set of input-queued switches operating under MaxWeight, in-

dexed by ε ∈ (0, 1) as described in Corollary 7.9. Further, for all i, j ∈ [N] let σ(ε)
i,j

4
=

Var
[
a

(ε)
i,j

]
and assume σ2

i,j = limε↓0

(
σ

(ε)
i,j

)2

. Then, the following system of equations is

satisfied, where we omit the dependence on ε of the variables by ease of exposition.

〈q‖,p〉 =
n∑

i=1

q‖i,i ∀p ∈ S. (7.58)

214

lim
ε↓0

εE
[
q1,j

]

=
1

2N3


(2N − 1)2σ2

1,j + (N − 1)2


 ∑

i′∈[N]1

σ2
i′,j +

∑

j′∈[N]j

σ2
1,j′


+

∑

i′∈[N]1

∑

j′∈[N]j

σ2
i′,j′




+
1

N
lim
ε↓0

E


(N − 1)


∑

i∈[N]1

q+
1,jui′,j +

∑

j′∈[N]j

q+
1,ju1,j′


−

∑

i′∈[N]1

∑

j′∈[N]j

q+
1,jui′,j′




∀j ∈ [N]

(7.59)

lim
ε↓0

εE
[
qi,1
]

=
1

2N3


(2N − 1)2σ2

i,1 + (N − 1)2


 ∑

i′∈[N]i

σ2
i′,1 +

∑

j∈[N]1

σ2
i,j′


+

∑

i∈[N]i

∑

j′∈[N]1

σ2
i′,j′




+
1

N
lim
ε↓0

E


(N − 1)


 ∑

i′∈[N]i

q+
i,1ui′,1 +

∑

j′∈[N]1

q+
i,1ui,j′


−

∑

i′∈[N]i

∑

j′∈[N]1

q+
i,1ui′,j′




∀i ∈ [N]1

(7.60)

215

lim
ε↓0

εE
[
q1,1 + qi,1

]

=
(N − 1)

N3


(2N − 1)

(
σ2

1,1 + σ2
i,1

)
+ (N − 1)

∑

i∈[N]1,i

σ2
i′,1 −

∑

j′∈[N]1

σ2
1,j′ −

∑

j′∈[N]1

σ2
i,j′




+
1

N3

∑

i′∈[N]1,i

∑

j∈[N]1

σ2
i′,j′

+
1

N
lim
ε↓0

E


(2N − 1)q+

1,1ui,1 + (N − 1)


 ∑

i′∈[N]1,i

q+
1,1ui′,1 +

∑

j′∈[N]1

q+
1,1ui,j′






+
1

N
lim
ε↓0

E


(2N − 1)q+

i,1u1,1 + (N − 1)


 ∑

i′∈[N]1,i

q+
i,1ui′,1 +

∑

j′∈[N]1

q+
i,1u1,j′






− 1

N
lim
ε↓0

E


 ∑

i′∈[N]i

∑

j′∈[N]1

q+
1,1ui′,j′ +

∑

i′∈[N]1

∑

j′∈[N]1

q+
i,1ui′,j′




∀i ∈ [N]1

(7.61)

lim
ε↓0

εE
[
q1,j + q1,m

]

=
(N − 1)

N3


(2N − 1)

(
σ2

1,j + σ2
1,m

)
+ (N − 1)

∑

j′∈[N]j,m

σ2
1,j′




− (N − 1)

N3


 ∑

i′∈[N]1

σ2
i′,j −

∑

i′∈[N]m

σ2
i′,m


+

1

N3

∑

i′∈[N]1

∑

j′∈[N]j,m

σ2
i′,j′

+
1

N
lim
ε↓0

E


(2N − 1)q+

1,ju1,m + (N − 1)


 ∑

i′∈[N]1

q+
1,jui′,m +

∑

j′∈[N]j,m

q+
1,ju1,j′






+
1

N
lim
ε↓0

E


(2N − 1)q+

1,mu1,j + (N − 1)


 ∑

i′∈[N]1

q+
1,mui′,j +

∑

j′∈[N]j,m

q+
1,mu1,j′






− 1

N
lim
ε↓0

E


 ∑

i′∈[N]1

∑

j′∈[N]m

q+
1,jui′,j′ +

∑

i′∈[N]1

∑

j′∈[N]j

q+
1,mui′,j′




∀(j,m) ∈ A1

(7.62)

216

lim
ε↓0

εE
[
qi,1 + ql,1

]

=
(N − 1)

N3


(2N − 1)

(
σ2
i,1 + σ2

l,1

)
+ (N − 1)

∑

i′∈[N]i,l

σ2
i′,1




− (N − 1)

N3


 ∑

j′∈[N]1

σ2
i,j′ −

∑

j′∈[N]1

σ2
l,j′


+

1

N3

∑

i′∈[N]i,l

∑

j′∈[N]1

σ2
i′,j′

+
1

N
lim
ε↓0

E


(2N − 1)q+

i,1ul,1 + (N − 1)


 ∑

i′∈[N]i,l

q+
i,1ui′,1 +

∑

j′∈[N]1

q+
i,1ul,j′






+
1

N
lim
ε↓0

E


(2N − 1)q+

l,1ui,1 + (N − 1)


 ∑

i′∈[N]i,l

q+
l,1ui′,1 +

∑

j′∈[N]1

q+
l,1ui,j′






− 1

N
lim
ε↓0

E


 ∑

i′∈[N]l

∑

j′∈[N]1

q+
i,1ui′,j′ +

∑

i′∈[N]i

∑

j′∈[N]1

q+
l,1ui′,j′




∀(i, l) ∈ A2

(7.63)

lim
ε↓0

εE
[
q1,j + qi,1

]

=
1

N3


−(2N − 1)

(
σ2

1,j + σ2
i,1

)
+ (N − 1)2σ2

1,1 +
∑

i′∈[N]1,i

∑

j′∈[N]1,j

σ2
i′,j′




− (N − 1)

N3


∑

i∈[N]1

σ2
i′,j +

∑

j′∈[N]1,j

σ2
1,j′ +

∑

i′∈[N]1,i

σ2
i′,1 +

∑

j′∈[N]1,j

σ2
1,j′




+
1

N
lim
ε↓0

E


(2N − 1)q+

1,jui,1 + (N − 1)


 ∑

i′∈[N]i

q+
1,jui′,1 +

∑

j′∈[N]1

q+
1,jui,j′






+
1

N
lim
ε↓0

E


(2N − 1)q+

i,1u1,j + (N − 1)


 ∑

i′∈[N]1

q+
i,1ui′,j +

∑

j′∈[N]j

q+
i,1u1,j′






− 1

N
lim
ε↓0

E


 ∑

(i′,j′)∈[N]i×[N]1\{(1,j)}

q+
1,jui′,j′ +

∑

(i′,j′)∈[N]1×[N]j\{(i,1)}

q+
i,1ui′,j′




∀i, j ∈ [N]1

(7.64)

217

where P is the set of N ×N permutation matrices and

A1 = {(x, y) ∈ [N]× [N] : y ≥ x+ 1}

A2 = {(x, y) ∈ [N]× [N] : y ≥ x+ 1 , 2 ≤ x ≤ N − 1} .

Equation 7.58 is one interpretation of SSC, which says that all the schedules have the

same weight in the cone K. Observe that in Theorem 7.24 we did not have an equation of

the form of Equation 7.58. However, we used this condition in the proof to obtain a system

of equations (see Claim 7.31). In this case, we decided to write it as an equation to make

explicit the use of SSC.

7.9.3 Generalization to other queueing systems and higher moments.

In this section we focused on an input-queued switch in heavy traffic. We chose this system

because it is one of the simplest queueing systems where the CRP condition is not satis-

fied. However, the same approach can be applied to any queueing system where the CRP

condition is not met, which is what we discuss in this subsection. Specifically, we focus on

a generalized switch with n queues, where SSC occurs into a d-dimensional subspace.

In [34], the authors show how to compute the moments of ‖q‖H‖ using the drift method

in queueing systems that satisfy the CRP condition. In this case, setting to zero the drift

of V (q) = ‖q‖H‖m+1 in steady state and using SSC allows to compute the mth moment

because of the following reason. When one sets to zero the drift of V (q), terms of the form

q+
‖Hiu‖Hi arise and, since q+

‖H and u‖H belong to the same one-dimensional subspace, these

terms can be approximated by q+
i ui, which is zero by definition of unused service.

On the other hand, if the CRP condition is not satisfied, then q lives in a d-dimensional

subspace, where d > 1. In this case, for each i, q+
‖Hiu‖Hi cannot be approximated by q+

i ui

because of the following reason. In heavy traffic we only have the approximation (with

some abuse of notation) q+
‖Hiu‖Hi ≈ q+

i (uk1 + uk2 + · · ·+ ukd), where k1, . . . , kd represent

218

the d dimensions that characterize SSC. In other words, cross terms arise exactly as the

‘qu’ terms in Theorem 7.24, Theorem 7.28 and Theorem 7.29 for the input-queued switch.

In the following analysis we present the number of equations and variables that appear in a

general queueing system with d-dimensional SSC.

In order to obtain the mth moment of the queue lengths, we should construct a system

of equations that yields from setting to zero the drift of all the monomials of degree m+ 1.

Since SSC occurs into a d-dimensional subspace, we need to consider all the possible

monomials of degree m + 1 in d variables. Setting to zero the drift of each monomial

will lead to an equation, so we will have
(
m+d
d−1

)
equations. Now we count the number of

‘new’ variables with respect to the system of equations that arises after setting to zero the

drift of monomials of degree k, for all k ≤ m. We say a variable is ‘new’ for the system

of equations that arises after setting to zero the monomials of degree m + 1 if it does not

appear in any system of equations of degree k < m + 1. Observe that there are two types

of ‘new’ variables that do not vanish in the heavy-traffic limit. On one hand, we have the

heavy-traffic limit of the expected value of products of the elements of q‖H and, on the

other hand, we have the heavy-traffic limit of the expected value of the product between

the elements of q‖H and of the vector of unused service. We will call them the ‘q’ variables

and the ‘qu’ variables, respectively. Specifically, the ‘q’ variables are all monomials of

degree m in d variables, so there are
(
m+d−1
d−1

)
‘q’ variables. The ‘qu’ variables that do

not vanish in heavy traffic are of degree m in ‘q’ and degree 1 in ‘u’. Also, the element

corresponding to the unused service vector has to be different to the elements of the vector

of queue lengths because the product between the queue length and the unused service of

the same queue is zero by definition of unused service. Therefore, for each element of

u‖H we need to consider all possible combinations of ‘q’s, i.e., all monomials of degree m

in d − 1 variables. Therefore, there are d
(
m+d−2
d−2

)
‘qu’ variables. Thus, in total we have

(
m+d−1
d−1

)
+ d
(
m+d−2
d−2

)
variables and this number is larger than the number of equations.

Summarizing, if we use the method introduced in this section to compute the mth mo-

219

ment of the queue lengths of a queueing system that experiences d-dimensional SSC, we

obtain a system of equations of
(
m+d
d−1

)
equations and

(
m+d−1
d−1

)
+d
(
m+d−2
d−2

)
variables. There-

fore, it is under-determined. In other words, we need extra equations to find a unique

solution to this system of equations. This analysis shows that the issues illustrated in The-

orem 7.24 arise in any queueing system with multidimensional SSC.

7.10 Proof of Theorem 7.24.

For ease of exposition, in this proof we use subscript ‖ instead of ‖ H, since we only use

projection on the subspaceH and not on the cone K.

Proof of Theorem 7.24. We know that SSC occurs into a subspace of dimension 2N − 1 =

3. Therefore, 3 variables are necessary to compute the most general quadratic polynomial.

In fact, we know q‖4 = q‖2 + q‖3 − q‖1. Then, we only need to consider the variables q‖1,

q‖2 and q‖3. The most general quadratic polynomial with these variables is

V (q) =α1q
2
‖1 + α2q

2
‖2 + α3q

2
‖3 + α4q‖1q‖2 + α5q‖1q‖3 + α6q‖2q‖3,

where αi ∈ R for all i ∈ [6].

Setting to zero the drift of V (q) is equivalent to setting to zero the drift of each mono-

mial separately. Then, we set to zero the drift of the following 6 test functions:

V1(q) = q2
‖1, V2(q) = q2

‖2, V3(q) = q2
‖3,

V4(q) = q‖1q‖2, V5(q) = q‖1q‖3 and V6(q) = q‖2q‖3.

Before setting to zero the drift of Vi(q) for i ∈ [6] observe that, by definition of the

cone K in Equation 7.22 we have for any vector y ∈ R4

y‖1 =
y1 + y2

2
+
y1 + y3

2
− y1 + y2 + y3 + y4

4
=

3y1 + y2 + y3 − y4

4
, (7.65)

220

y‖2 =
y1 + y2

2
+
y2 + y4

2
− y1 + y2 + y3 + y4

4
=
y1 + 3y2 − y3 + y4

4
, (7.66)

y‖3 =
y3 + y4

2
+
y1 + y3

2
− y1 + y2 + y3 + y4

4
=
y1 − y2 + 3y3 + y4

4
. (7.67)

Then, since the switch is completely saturated, we have

E
[
a‖i
]

=
1− ε

2
+

1− ε
2
− 2(1− ε)

4
=

1− ε
2

∀i ∈ [4] (7.68)

and since s is a maximal schedule we have

s‖i =
1

2
+

1

2
− 2

4
=

1

2
∀i ∈ [4]. (7.69)

We first set to zero the drift of V1(q). We obtain

0 = E
[(
q+
‖1

)2

− q2
‖1

]

= E
[(
q+
‖1 − u‖1 + u‖1

)2

− q2
‖1

]

= E
[(
q+
‖1 − u‖1

)2

+ u2
‖1 + 2

(
q+
‖1 − u‖1

)
u‖1 − q2

‖1

]

(a)
= E

[(
q‖1 + a‖1 − s‖1

)2 − u2
‖1 + 2q+

‖1u‖1 − q2
‖1

]

= E
[(
a‖1 − s‖1

)2
+ 2q‖1

(
a‖1 − s‖1

)
− u2

‖1 + 2q+
‖1u‖1

]
, (7.70)

where (a) holds by Equation 1.2 and reorganizing the terms. We compute each term sepa-

rately. For the first term we have

E
[(
a‖1 − s‖1

)2
]

(a)
= E

[(
a‖1 −

1

2

)2
]

(b)
= Var

[
a‖1
]

+
(
E
[
a‖1
])2

+
1

4
− E

[
a‖1
]

= Var
[
a‖1
]

+

(
E
[
a‖1
]
− 1

2

)2

221

(c)
= Var

[
3a1 + a2 + a3 − a4

4

]
+
ε2

4

(d)
=

9
(
σ

(ε)
a1

)2

+
(
σ

(ε)
a2

)2

+
(
σ

(ε)
a3

)2

+
(
σ

(ε)
a4

)2

16
+
ε2

4
, (7.71)

where (a) holds by Equation 7.69; (b) holds by definition of variance and reorganizing

terms; (c) holds by definition of a‖1 as in Equation 7.65, and by Equation 7.68; and (d)

holds because the arrival processes to different queues are independent. For the second

term we obtain

2E
[
q‖1
(
a‖1 − s‖1

)] (a)
= 2E

[
q‖1

(
a‖1 −

1

2

)]

(b)
= 2E

[
q‖1
](

E
[
a‖1
]
− 1

2

)

(c)
= −εE

[
q‖1
]
, (7.72)

where (a) holds by Equation 7.69; (b) holds because the arrival processes are independent

of the queue lengths; and (c) holds by Equation 7.68. For the third term, observe

0 ≤ E
[
u2
‖1
]
≤ E

[∥∥u‖
∥∥2
]
.

From the proof of Theorem 7.5, we know E
[∥∥u‖

∥∥2
]

is O(ε) (see Equation 7.34). There-

fore,

E
[
u2
‖1
]

is O(ε). (7.73)

Now we compute the last term. By definition of q‖ and q⊥ we have

2E
[
q+
‖1u‖1

]
=2E

[
q+

1 u‖1
]
− 2E

[
q+
⊥1u‖1

]
.

222

Claim 7.30. Consider the queueing system described in Theorem 7.24. Then,

E
[
q+
⊥1u‖1

]
is O(

√
ε).

The proof of Claim 7.30 is presented in subsection 7.11.1. Then,

2E
[
q+
‖1u‖1

]
=2E

[
q+

1 u‖1
]

+O(
√
ε)

(a)
=

1

2
E
[
q+

1 (3u1 + u2 + u3 − u4)
]

+O(
√
ε)

(b)
=

1

2
E
[
q+

1 (u2 + u3 − u4)
]

+O(
√
ε)

where (a) holds by Equation 7.65; and (b) holds by Equation 1.3.

Claim 7.31. Consider the queueing system described in Theorem 7.24. Then,

E
[
q+

1 u4

]
= E

[
q+

2 u4

]
+ E

[
q+

3 u4

]
+O(

√
ε).

The proof of Claim 7.31 is presented in subsection 7.11.2. Therefore, we obtain

2E
[
q+
‖1u‖1

]
=

1

2
E
[
q+

1 (u2 + u3)
]
− 1

2
E
[
q+

2 u4

]
− 1

2
E
[
q+

3 u4

]
+O(

√
ε) (7.74)

Using Equation 7.71, Equation 7.72, Equation 7.73 and Equation 7.74 in Equation 7.70,

and reorganizing the terms we obtain

εE
[
q‖1
]

=
9
(
σ

(ε)
a1

)2

+
(
σ

(ε)
a2

)2

+
(
σ

(ε)
a3

)2

+
(
σ

(ε)
a4

)2

16
+

1

2
E
[
q+

1 (u2 + u3)
]
− 1

2
E
[
q+

2 u4

]

− 1

2
E
[
q+

3 u4

]
+
ε2

4
+O(

√
ε).

Taking the limit as ε ↓ 0 on both sides we obtain Equation 7.39. The proof of Equa-

223

tion 7.40 and of Equation 7.41 hold similarly, after setting to zero the drift of V2(q) and

V3(q) respectively. We omit the details for brevity.

To obtain Equation 7.42 we set to zero the drift of V4(q). After similar manipulation as

above, we obtain

0 = E
[
q+
‖1q

+
‖2 − q‖1q‖2

]

= E
[
q‖1
(
a‖2 − s‖2

)]
+ E

[
q‖2
(
a‖1 − s‖1

)]
+ E

[(
a‖1 − s‖1

) (
a‖2 − s‖2

)]

+ E
[
q+
‖1u‖2

]
+ E

[
q+
‖2u‖1

]
− E

[
u‖1u‖2

]
.

(7.75)

We compute term by term. For the first term we have

E
[
q‖1
(
a‖2 − s‖2

)]
= − ε

2
E
[
q‖1
]
, (7.76)

where we used that s‖2 = 1
2

and independence of the arrivals and queue lengths processes.

Similarly, for the second term we obtain

E
[
q‖2
(
a‖1 − s‖1

)]
=− ε

2
E
[
q‖2
]
. (7.77)

For the third term we have

E
[(
a‖1 − s‖1

) (
a‖2 − s‖2

)]
(7.78)

(a)
= E

[(
a‖1 −

1

2

)(
a‖2 −

1

2

)]

(b)
= Cov

[
a‖1, a‖2

]
+ E

[
a‖1
]
E
[
a‖2
]
− 1

2
E
[
a‖1
]
− 1

2
E
[
a‖2
]

+
1

4

(c)
= Cov

[
3a1 + a2 + a3 − a4

4
,
a1 + 3a2 − a3 + a4

4

]
+
ε2

4

(d)
=

3
(
σ

(ε)
a1

)2

+ 3
(
σ

(ε)
a2

)2

−
(
σ

(ε)
a3

)2

−
(
σ

(ε)
a4

)2

16
+
ε2

4
(7.79)

where (a) holds by Equation 7.69; (b) holds by definition of covariance and reorganizing

224

terms; (c) holds by Equation 7.65, Equation 7.66 and Equation 7.68; and (d) holds because

the arrival processes to different queues are independent. For the fourth term we have

E
[
q+
‖1u‖2

]
(a)
= E

[
q+

1 u‖2
]
− E

[
q+
⊥1u‖2

]

(b)
= E

[
q+

1 u‖2
]

+O(
√
ε)

(c)
=

1

4
E
[
q+

1 (u1 + 3u2 − u3 + u4)
]

+O(
√
ε)

(d)
=

1

4
E
[
q+

1 (3u2 − u3 + u4)
]

+O(
√
ε)

(e)
=

1

4
E
[
q+

1 (3u2 − u3)
]

+
1

4
E
[
q+

2 u4

]
+

1

4
E
[
q+

3 u4

]
+O(

√
ε), (7.80)

where (a) holds by definition of q‖ and q⊥; (b) holds similarly to Claim 7.30; (c) holds by

Equation 7.66; (d) holds by Equation 1.3; and (e) holds by Claim 7.31. Similarly, for the

fifth term we have

E
[
q+
‖2u‖1

]
=

1

4
E
[
q+

2 (3u1 + u3 − u4)
]

+O(
√
ε). (7.81)

For the sixth term we have

0 ≤ E
[
u‖1u‖2

] (a)

≤
√

E
[
u2
‖1

]
E
[
u2
‖2

]

≤
√

E
[∥∥u‖

∥∥2
]
E
[∥∥u‖

∥∥2
]

=E
[∥∥u‖

∥∥2
]

where (a) holds by the Cauchy-Schwarz inequality. Also, since E
[∥∥u‖

∥∥2
]

is O(ε), we

obtain

E
[
u‖1u‖2

]
is O(ε). (7.82)

Using Equation 7.76, Equation 7.77, Equation 7.79, Equation 7.80, Equation 7.81 and

225

Equation 7.82 in Equation 7.75, and reorganizing terms we obtain

εE
[
q‖1
]

+ εE
[
q‖2
]

=
3
(
σ

(ε)
a1

)2

+ 3
(
σ

(ε)
a2

)2

−
(
σ

(ε)
a3

)2

−
(
σ

(ε)
a4

)2

8
+
ε2

2
+O(

√
ε)

+
1

2
E
[
q+

1 (3u2 − u3)
]

+
1

2
E
[
q+

3 u4

]
+

1

2
E
[
q+

2 (3u1 + u3)
]
.

Taking the limit as ε ↓ 0 on both sides we obtain Equation 7.42. The proof of Equation 7.43

and Equation 7.44 hold similarly, after setting to zero the drift of V5(q) and V6(q), respec-

tively. This completes the proof of Theorem 7.24.

7.11 Details of the proof of Theorem 7.24

We prove the claims we made in the proof of Theorem 7.24.

7.11.1 Proof of Claim 7.30

Proof of Claim 7.30. Observe

E
[
q+
⊥1u‖1

]
≤ E

[∣∣q+
⊥1

∣∣ ∣∣u‖1
∣∣]

≤ E

[
4∑

i=1

∣∣q+
⊥i
∣∣ ∣∣u‖i

∣∣
]

(a)

≤
√

E
[
‖q⊥‖2]E

[∥∥u‖
∥∥2
]

(b)

≤
√
J2

√
E
[∥∥u‖

∥∥2
]
,

where (a) holds by Cauchy-Schwarz inequality; and (b) holds by Proposition 7.4. Simi-

larly,

E
[
q+
⊥1u‖1

]
≥− E

[∣∣q+
⊥1

∣∣ ∣∣u‖1
∣∣] ≥ −

√
J2

√
E
[∥∥u‖

∥∥2
]
.

226

Then,

∣∣E
[
q+
⊥1u‖1

]∣∣ ≤
√
J2

√
E
[∥∥u‖

∥∥2
]

and E
[∥∥u‖

∥∥2
]

is O(ε). This proves the claim.

7.11.2 Proof of Claim 7.31

Proof of Claim 7.31. We use Claim 7.30. We obtain

E
[
q+

1 u4

]
=E

[
q+
‖1u4

]
+O(

√
ε)

(a)
=E

[(
q+
‖2 + q+

‖3 − q+
‖4

)
u4

]
+O(

√
ε)

(b)
=E

[(
q+

2 + q+
3 − q+

4

)
u4

]
+O(

√
ε)

(c)
=E

[(
q+

2 + q+
3

)
u4

]
+O(

√
ε)

where (a) holds by SSC; (b) holds by Claim 7.30; and (c) holds by Equation 1.3.

7.12 Conclusion and future work

In this chapter we studied one of the most general single-hop SPNs with control in service:

the generalized switch. This model subsumes several queueing systems, such as the input-

queued switch, parallel-server systems, ad hoc wireless networks, etc. Our result is widely

applicable, since we do not assume the CRP condition, neither independence of the arrival

processes.

We showcase the generality of our result with three particular SPNs: the input-queued

switch, parallel-server systems, and an ad hoc wireless network. Each of these results are

interesting by themselves since they have been studied separately in the literature, and we

can easily compute them as applications of Theorem 7.5.

Additionally, we prove that if the heavy-traffic limit is to a vertex of the capacity region,

227

then SSC does not result in a reduction on the dimension of the state space. In other

words, in this case we observe full-dimensional SSC. Under this condition, regardless of

the correlation among arrival processes, the mean of the linear combinations of the queue

lengths that we obtain behave as if the queues were independent in heavy traffic.

Our result is widely applicable to several SPNs, but it only allows to compute certain

linear combinations of the queue lengths. In the case of an input-queued switch, this lin-

ear combination turns out to be the total queue length, and in parallel-server systems, the

weights of the linear combination are the mean service rates.

We also show that obtaining other linear combinations is a nontrivial problem, since

using the drift method with polynomial test functions is equivalent to solving an under-

determined system of linear equations. The results we obtain in this paper can be also ob-

tained by taking specific linear combinations of these equations, such that some unknowns

cancel out. An immediate line of future work is to extend the method so that all the linear

combinations can be computed. This would allow us to also obtain higher moments and,

eventually, the joint distribution of the queue lengths.

228

REFERENCES

[1] Y. Einav, “Amazon found every 100ms of latency cost them 1% in sales,” Gigaspaces.–
01.20, 2019.

[2] J Harrison and M López, “Heavy traffic resource pooling in parallel-server sys-
tems,” Queueing Systems, pp. 339–368, 1999.

[3] R Williams, “On dynamic scheduling of a parallel server system with complete
resource pooling,” Fields Institute Communications, vol. 28, no. 49-71, pp. 5–1,
2000.

[4] J. Dai and W. Lin, “Asymptotic optimality of maximum pressure policies in stochas-
tic processing networks,” The Annals of Applied Probability, vol. 18, no. 6, pp. 2239–
2299, 2008.

[5] D. Gamarnik and A. Zeevi, “Validity of heavy traffic steady-state approximations
in Generalized Jackson Networks,” The Annals of Applied Probability, pp. 56–90,
2006.

[6] J Harrison, “Brownian models of queueing networks with heterogeneous customer
populations,” in Stochastic Differential Systems, Stochastic Control Theory and Ap-
plications, Springer, 1988, pp. 147–186.

[7] J Harrison, “Heavy traffic analysis of a system with parallel servers: Asymptotic
optimality of discrete review policies,” Annals of Applied Probability, pp. 822–
848, 1998.

[8] A Stolyar, “MaxWeight scheduling in a generalized switch: State space collapse
and workload minimization in heavy traffic,” Annals of Applied Probability, pp. 1–
53, 2004.

[9] R Williams, “Diffusion approximations for open multiclass queueing networks:
Sufficient conditions involving state space collapse,” Queueing Systems Theory and
Applications, pp. 27 –88, 1998.

[10] W Kang and R Williams, “Diffusion approximation for an input-queued switch
operating under a maximum weight matching policy,” Stochastic Systems, vol. 2,
no. 2, pp. 277–321, 2012.

[11] J. Dai, “Steady-state approximations: Achievement lecture,” in Abstracts of the
2018 ACM International Conference on Measurement and Modeling of Computer
Systems, ACM, 2018, pp. 1–1.

229

[12] D. Shah, J. Tsitsiklis, and Y. Zhong, “Optimal scaling of average queue sizes in
an input-queued switch: An open problem,” Queueing Systems, vol. 68, no. 3-4,
pp. 375–384, 2011.

[13] R. Williams, “Stochastic processing networks,” Annual Review of Statistics and Its
Application, vol. 3, pp. 323–345, 2016.

[14] S. T. Maguluri and R Srikant, “Heavy traffic queue length behavior in a switch
under the MaxWeight algorithm,” Stochastic Systems, vol. 6, no. 1, pp. 211–250,
2016.

[15] S. T. Maguluri, S. Burle, and R Srikant, “Optimal heavy-traffic queue length scaling
in an incompletely saturated switch,” Queueing Systems, vol. 88, no. 3-4, pp. 279–
309, 2018.

[16] G Foschini and J. Salz, “A basic dynamic routing problem and diffusion,” IEEE
Transactions on Communications, vol. 26, no. 3, pp. 320–327, 1978.

[17] W. Winston, “Optimality of the shortest line discipline,” Journal of Applied Prob-
ability, vol. 14, no. 1, 181–189, 1977.

[18] N Vvedenskaya, R Dobrushin, and F Karpelevich, “Queueing system with selection
of the shortest of two queues: An asymptotic approach,” Problems of Information
Transmission, vol. 32, no. 1, pp. 15–27, 1996.

[19] M. Mitzenmacher, “Load balancing and density dependent jump Markov processes,”
in FOCS, IEEE, 1996, p. 213.

[20] M. Mitzenmacher, “The power of two choices in randomized load balancing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp. 1094–1104,
2001.

[21] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing sys-
tems and scheduling policies for maximum throughput in multihop radio networks,”
IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, 1992.

[22] W. Wang, S. Maguluri, R. Srikant, and L. Ying, “Heavy-traffic insensitive bounds
for weighted proportionally fair bandwidth sharing policies,” arXiv preprint arXiv:1808.02120,
2018.

[23] J Kingman, “On queues in heavy traffic,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 383–392, 1962.

230

[24] A. Braverman, J. Dai, and M. Miyazawa, “Heavy traffic approximation for the
stationary distribution of a Generalized Jackson Network: The BAR approach,”
Stochastic Systems, vol. 7, no. 1, pp. 143–196, 2017.

[25] I. Gurvich, “Diffusion models and steady-state approximations for exponentially
ergodic Markovian queues,” The Annals of Applied Probability, vol. 24, no. 6,
pp. 2527–2559, 2014.

[26] A. Braverman, “Steady-state analysis of the join-the-shortest-queue model in the
Halfin–Whitt regime,” Mathematics of Operations Research, 2020.

[27] A. Braverman, J. Dai, and J. Feng, “Stein’s method for steady-state diffusion ap-
proximations: An introduction through the Erlang-A and Erlang-C models,” Stochas-
tic Systems, vol. 6, no. 2, pp. 301–366, 2017.

[28] A. Braverman and J. Dai, “Stein’s method for steady-state diffusion approximations
of M/Ph/n+ M systems,” The Annals of Applied Probability, vol. 27, no. 1, pp. 550–
581, 2017.

[29] X. Liu and L. Ying, “A simple steady-state analysis of load balancing algorithms
in the sub-Halfin-Whitt regime,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 46, no. 2, pp. 15–17, 2019.

[30] A. Stolyar, “Tightness of stationary distributions of a flexible-server system in the
halfin-whitt asymptotic regime,” Stochastic Systems, vol. 5, no. 2, pp. 239–267,
2015.

[31] L. Ying, “On the approximation error of mean-field models,” in Proceedings of the
2016 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Science, ser. SIGMETRICS ’16, Antibes Juan-les-Pins, France: ACM,
2016, pp. 285–297, ISBN: 978-1-4503-4266-7.

[32] L. Ying, “Stein’s method for mean field approximations in light and heavy traffic
regimes,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, 12:1–12:27, Jun.
2017.

[33] C. Stein, “A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables,” in Proceedings of the Sixth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 2: Probability Theory,
The Regents of the University of California, 1972.

[34] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue length bounds
implied by drift conditions,” Queueing Systems, vol. 72, no. 3-4, pp. 311–359,
2012.

231

[35] A. Skorokhod, “Stochastic equations for diffusion processes in a bounded region,”
Theory of Probability & Its Applications, vol. 6, no. 3, pp. 264–274, 1961.

[36] R. Srikant and L. Ying, Communication Networks: An Optimization, Control and
Stochastic Networks Perspective. Cambridge University Press, 2014, ISBN: 9781107036055.

[37] B. Hajek, Random Processes for Engineers. Cambridge university press, 2015.

[38] B. Hajek, “Hitting-time and occupation-time bounds implied by drift analysis with
applications,” Advances in Applied Probability, pp. 502–525, 1982.

[39] D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis, “Performance of multiclass marko-
vian queueing networks via piecewise linear Lyapunov functions,” The Annals of
Applied Probability, vol. 11, no. 4, pp. 1384–1428, Nov. 2001.

[40] A. Gut, Probability: A Graduate Course. Springer Science & Business Media,
2012, vol. 75.

[41] S. Mou and S. T. Maguluri, “Heavy traffic queue length behaviour in a switch under
markovian arrivals,” arXiv preprint arXiv:2006.06150, 2020.

[42] P. Jhunjhunwala and S. T. Maguluri, “Heavy traffic steady state distribution of
switch system under maxweight scheduling,” Working paper.

[43] S. M. Varma and S. T. Maguluri, “A heavy traffic theory of two-sided queues,”
Working paper.

[44] D. Hurtado-Lange and S. T. Maguluri, “Transform methods for heavy-traffic anal-
ysis,” Stochastic Systems, vol. 10, no. 4, pp. 275–309, 2020.

[45] P Harrison and N Patel, Performance Modeling of Communication Networks and
Computer Architectures. Addison-Wesley Longman Publishing Co., Inc., 1992.

[46] J. Köllerström, “Heavy traffic theory for queues with several servers. i,” Journal of
Applied Probability, vol. 11, no. 3, pp. 544–552, 1974.

[47] J Kingman, “The single server queue in heavy traffic,” in Mathematical Proceed-
ings of the Cambridge Philosophical Society, Cambridge University Press, vol. 57,
1961, pp. 902–904.

[48] J Lehoczky, “Real-time queueing theory,” Real-Time Systems Symposium, p. 186,
1996.

232

[49] J. Lehoczky, “Using real-time queueing theory to control lateness in real-time sys-
tems,” ACM SIGMETRICS Performance Evaluation Review, vol. 25, no. 1, pp. 158–
168, 1997.

[50] J Kingman, “Some inequalities for the queue GI/G/1,” Biometrika, pp. 315–324,
1962.

[51] K. Marshall, “Some inequalities in queuing,” Operations research, vol. 16, no. 3,
pp. 651–668, 1968.

[52] D. Lindley, “The theory of queues with a single server,” in Mathematical Proceed-
ings of the Cambridge Philosophical Society, Cambridge University Press, vol. 48,
1952, pp. 277–289.

[53] R. Weber, “On the optimal assignment of customers to parallel servers,” Journal of
Applied Probability, vol. 15, no. 2, pp. 406–413, 1978.

[54] A. Ephremides, P. Varaiya, and J. Walrand, “A simple dynamic routing problem,”
IEEE Transactions on Automatic Control, vol. 25, no. 4, pp. 690–693, 1980.

[55] H. Chen and H. Ye, “Asymptotic optimality of balanced routing,” Operations Re-
search, vol. 60, no. 1, pp. 163–179, 2012.

[56] B. Li, X. Kong, and L. Wang, “Optimal load-balancing for high-density wireless
networks with flow-level dynamics,” Proceedings of the Eighteenth ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, pp. 316–317,
2018.

[57] X. Zhou, J. Tan, and N. Shroff, “Flexible load balancing with multi-dimensional
state-space collapse: Throughput and heavy-traffic delay optimality,” Performance
Evaluation, vol. 127, pp. 176–193, 2018.

[58] P. Eschenfeldt and D. Gamarnik, “Join the Shortest Queue with many servers. The
heavy-traffic asymptotics,” Mathematics of Operations Research, vol. 43, no. 3,
pp. 867–886, 2018.

[59] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg, “Join-Idle-Queue:
A novel load balancing algorithm for dynamically scalable web services,” Perfor-
mance Evaluation, vol. 68, no. 11, pp. 1056–1071, 2011.

[60] A Stolyar, “Pull-based load distribution among heterogeneous parallel servers: The
case of multiple routers,” Queueing Systems, vol. 85, no. 1-2, pp. 31–65, 2017.

233

[61] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than one sample in
randomized load balancing,” Mathematics of Operations Research, vol. 42, no. 3,
pp. 692–722, 2017.

[62] M. van der Boor, S. Borst, J. van Leeuwaarden, and D. Mukherjee, “Scalable
load balancing in networked systems: A survey of recent advances,” arXiv preprint
arXiv:1806.05444, 2018.

[63] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource allocation
algorithms for cloud computing clusters,” Performance Evaluation, vol. 81, pp. 20–
39, 2014.

[64] C.-H. Wang, S. T. Maguluri, and T. Javidi, “Heavy traffic queue length behavior
in switches with reconfiguration delay,” in INFOCOM 2017-IEEE Conference on
Computer Communications, IEEE, IEEE, 2017, pp. 1–9.

[65] E. Lukacs, Characteristic Functions. Griffin, 1970.

[66] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On
the Lambert W function,” Advances in Computational mathematics, vol. 5, no. 1,
pp. 329–359, 1996.

[67] D. Hurtado-Lange and S. T. Maguluri, “Throughput and delay optimality of power-
of-d choices in inhomogeneous load balancing systems,” Operations Research Let-
ters, 2021.

[68] A. Mukhopadhyay and R. R. Mazumdar, “Analysis of randomized Join-the-Shortest-
Queue (JSQ) schemes in large heterogeneous processor-sharing systems,” IEEE
Transactions on Control of Network Systems, vol. 3, no. 2, pp. 116–126, 2015.

[69] A. Mukhopadhyay, A Karthik, and R. R. Mazumdar, “Randomized assignment of
jobs to servers in heterogeneous clusters of shared servers for low delay,” Stochastic
Systems, vol. 6, no. 1, pp. 90–131, 2016.

[70] S. Foss and N. Chernova, “On the stability of a partially accessible multi-station
queue with state-dependent routing,” Queueing Systems, vol. 29, no. 1, pp. 55–73,
1998.

[71] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: theory of majorization
and its applications. Springer, 1979, vol. 143.

[72] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations,” SIAM
Journal on Computing, vol. 29, no. 1, pp. 180–200, 1999.

234

[73] R. Menich and R. F. Serfozo, “Optimality of routing and servicing in dependent
parallel processing systems,” Queueing Systems, vol. 9, no. 4, pp. 403–418, 1991.

[74] D. Hurtado-Lange and S. T. Maguluri, “Load balancing system under join the short-
est queue: Many-server-heavy-traffic asymptotics,” arXiv preprint arXiv:2004.04826v2,
2020.

[75] S. Halfin and W. Whitt, “Heavy-traffic limits for queues with many exponential
servers,” Operations research, vol. 29, no. 3, pp. 567–588, 1981.

[76] R. Atar, “A diffusion regime with nondegenerate slowdown,” Operations Research,
vol. 60, no. 2, pp. 490–500, 2012.

[77] R. Badonnel and M. Burgess, “Dynamic pull-based load balancing for autonomic
servers,” in NOMS 2008-2008 IEEE Network Operations and Management Sympo-
sium, IEEE, 2008, pp. 751–754.

[78] D. Mukherjee, S. C. Borst, J. S. Van Leeuwaarden, and P. A. Whiting, “Universality
of power-of-d load balancing in many-server systems,” Stochastic Systems, vol. 8,
no. 4, pp. 265–292, 2018.

[79] V. Gupta and N. Walton, “Load balancing in the Nondegenerate Slowdown Regime,”
Operations Research, vol. 67, no. 1, pp. 281–294, 2019.

[80] S. Foss and A. L. Stolyar, “Large-scale join-idle-queue system with general service
times,” Journal of Applied Probability, pp. 995–1007, 2017.

[81] S. Banerjee and D. Mukherjee, “Join-the-shortest queue diffusion limit in Halfin–
Whitt regime: Tail asymptotics and scaling of extrema,” The Annals of Applied
Probability, vol. 29, no. 2, pp. 1262–1309, 2019.

[82] S. Banerjee and D. Mukherjee, “Join-the-shortest queue diffusion limit in Halfin–
Whitt regime: Sensitivity on the heavy-traffic parameter,” The Annals of Applied
Probability, vol. 30, no. 1, pp. 80–144, 2020.

[83] D. Mukherjee, S. C. Borst, J. S. Van Leeuwaarden, P. A. Whiting, et al., “Uni-
versality of load balancing schemes on the diffusion scale,” Journal of Applied
Probability, vol. 53, no. 4, pp. 1111–1124, 2016.

[84] X. Liu and L. Ying, in On Universal Scaling of Distributed Queues under Load
Balancing, arXiv preprint arXiv:1912.11904, 2019.

[85] Z. Zhao, S. Banerjee, and D. Mukherjee, “Many-server asymptotics for join-the-
shortest queue in the super-halfin-whitt scaling window,” arXiv preprint arXiv:2106.00121,
2021.

235

[86] W. Weng and W. Wang, “Dispatching parallel jobs to achieve zero queuing delay,”
arXiv preprint arXiv:2004.02081, 2020.

[87] M. Bramson, “State space collapse with application to heavy-traffic limits for mul-
ticlass queueing networks,” Queueing Systems Theory and Applications, pp. 89 –
148, 1998.

[88] J. Dai and T. Tezcan, “State space collapse in many-server diffusion limits of par-
allel server systems,” Mathematics of Operations Research, vol. 36, no. 2, pp. 271–
320, 2011.

[89] W Kang, F Kelly, N Lee, and R Williams, “State space collapse and diffusion
approximation for a network operating under a fair bandwidth sharing policy,” The
Annals of Applied Probability, pp. 1719–1780, 2009.

[90] D. Shah and D. Wischik, “Switched networks with maximum weight policies:
Fluid approximation and multiplicative state space collapse,” The Annals of Ap-
plied Probability, vol. 22, no. 1, pp. 70–127, 2012.

[91] M. Miyazawa, “Diffusion approximation for stationary analysis of queues and their
networks: A review,” Journal of the Operations Research Society of Japan, vol. 58,
no. 1, pp. 104–148, 2015.

[92] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” Inter-
national statistical review, vol. 70, no. 3, pp. 419–435, 2002.

[93] N. Ross, “Fundamentals of Stein’s method,” Probability Surveys, vol. 8, pp. 210–
293, 2011.

[94] R. L. Wheeden, Measure and integral: an introduction to real analysis. CRC press,
2015, vol. 308.

[95] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an
input queued switch,” in Proceedings of IEEE INFOCOM, 1996, pp. 296–302.

[96] G. Gupta and N. Shroff, “Delay analysis for wireless networks with single hop traf-
fic and general interference constraints,” IEEE/ACM Transactions on Networking
(TON), vol. 18, no. 2, pp. 393–405, 2010.

[97] S. Meyn, “Stability and asymptotic optimality of generalized maxweight policies,”
SIAM Journal on Control and Optimization, vol. 47, no. 6, pp. 3259–3294, 2009.

[98] D. Hurtado-Lange and S. T. Maguluri, “Heavy-traffic analysis of queueing systems
with no complete resource pooling,” arXiv preprint arXiv:1904.10096, 2019.

236

[99] D. Hurtado-Lange, S. M. Varma, and S. T. Maguluri, “Logarithmic heavy traffic
error bounds in generalized switch and load balancing systems,” arXiv preprint
arXiv:2003.07821, 2020.

[100] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data cen-
ters in the wild,” Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pp. 267–280, 2010.

[101] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of
data center traffic: Measurements & analysis,” Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement, pp. 202–208, 2009.

[102] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization. Athena Sci-
entific Belmont, MA, 1997, vol. 6.

[103] A. Dimakis and J. Walrand, “Sufficient conditions for stability of longest queue
first scheduling,” Adv. Appl. Prob., pp. 505–521, 2006.

[104] B. H. Siva Theja Maguluri and R. Srikant, “The stability of longest-queue-first
scheduling with variable packet sizes,” in Proc. Conf. on Decision and Control,
2011.

[105] X. Kang, W. Wang, J. J. Jaramillo, and L. Ying, “On the performance of largest-
deficit-first for scheduling real-time traffic in wireless networks,” IEEE/ACM Trans-
actions on Networking, vol. 24, no. 1, pp. 72–84, 2014.

[106] S. L. Bell and R. J. Williams, “Dynamic scheduling of a system with two parallel
servers in heavy traffic with resource pooling: Asymptotic optimality of a threshold
policy,” Annals of Applied Probability, vol. 11, no. 3, pp. 608–649, 2001.

[107] O. Garnett and A. Mandelbaum, “An introduction to skills-based routing and its
operational complexities,” Teaching notes, 2000.

[108] C. Shi, Y. Wei, and Y. Zhong, “Process flexibility for multiperiod production sys-
tems,” Operations Research, 2019.

[109] S. Ghamami and A. R. Ward, “Dynamic scheduling of a two-server parallel server
system with complete resource pooling and reneging in heavy traffic: Asymptotic
optimality of a two-threshold policy,” Mathematics of Operations Research, vol. 38,
no. 4, pp. 761–824, 2013.

[110] Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam, “Finite-sample anal-
ysis of contractive stochastic approximation using smooth convex envelopes,” Ad-
vances in Neural Information Processing Systems, vol. 33, 2020.

237

[111] S. Kumar and P. R. Kumar, “Performance bounds for queueing networks and schedul-
ing policies,” IEEE Transactions on Automatic Control, vol. 39, no. 8, pp. 1600–
1611, 1994.

[112] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis, “Optimization of multiclass
queueing networks: Polyhedral and nonlinear characterizations of achievable per-
formance,” The Annals of Applied Probability, pp. 43–75, 1994.

238

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction and Background
	Introduction
	Main contributions
	Diffusion limits and direct methods for heavy-traffic analysis
	Notation
	A general single-hop SPN

	2 | Preliminaries
	Definition of drift
	Stability criteria
	Moment bounds based on drift arguments
	Overview of the drift method
	Transform method based on the drift method

	3 | Heavy-Traffic Analysis of Load-Balancing Systems
	Introduction
	Related work
	General MGF framework
	Load balancing system model
	MGF method applied to load balancing systems
	Details of the proofs of 3.5
	Conclusion and future work

	4 | Power-of-d Choices Under Heterogeneous Servers
	Introduction
	Related work
	Throughput optimality of power-of-d choices
	Heavy-traffic optimality
	Generalization to other routing policies
	Details of the proofs in 4.4
	Conclusion and future work

	5 | Load Balancing Under Many-Server Heavy-Traffic Regime
	Introduction
	Related work
	Load balancing under JSQ
	Rate of convergence in Wasserstein's distance
	Load balancing under power-of-d choices
	Details of the proofs of 5.3
	Load balancing in continuous time model and asymptotic result
	Multiplicative state space collapse
	Transform method: Proof of Theorem 5.10
	Rate of convergence in Wasserstein's distance
	Rate of convergence of the first moment
	Details of proofs of Section 5.8
	Proof of Lemma 5.18
	Conclusion and future work

	6 | Heavy-traffic analysis of the generalized switch under the CRP condition
	Introduction
	Related work
	Generalized switch model
	Transform method applied to generalized switches
	Details of the proofs of sec:generalized.switch.theorem
	Conclusion and future work

	7 | Heavy-Traffic Analysis With No Complete Resource Pooling
	Introduction
	Related work
	Useful lemmas
	Heavy-traffic analysis of the generalized switch.
	Applications of gs.thm:bounds
	Proof of Theorem 7.5.
	Details of proof of Theorem 7.5
	Individual queue lengths and higher moments in the input-queued switch
	Generalizations of s.theorem:2switch
	Proof of Theorem 7.24.
	Details of the proof of s.theorem:2switch
	Conclusion and future work

	References

