
DECISION MAKING IN THE PRESENCE OF SUBJECTIVE
STOCHASTIC CONSTRAINTS

A Thesis
Presented to

The Academic Faculty

by

Yuwei Zhou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and System Engineering

Georgia Institute of Technology
December 2021

Copyright c© 2021 by Yuwei Zhou

DECISION MAKING IN THE PRESENCE OF SUBJECTIVE
STOCHASTIC CONSTRAINTS

Approved by:

Professor Sigrún Andradóttir, Advisor
School of Industrial and System
Engineering
Georgia Institute of Technology

Professor Enlu Zhou
School of Industrial and System
Engineering
Georgia Institute of Technology

Professor Seong-Hee Kim, Advisor
School of Industrial and System
Engineering
Georgia Institute of Technology

Professor Chuljin Park
Department of Industrial Engineering
Hanyang University

Professor Yajun Mei
School of Industrial and System
Engineering
Georgia Institute of Technology

Date Approved: 1 October 2021

There is only one true heroism in the world: to see the world as it is, and to

love it.

— Roman Rolland

iii

To my family and friends.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my research advisors, Dr. Sigrún Andradóttir

and Dr. Seong-Hee Kim for their caring, support, and guidance during my Ph.D. study.

Their encouragement and patience were always key for me to conquer all the obstacles. I

am also extremely grateful for their thoughtful suggestions for my research projects and

meaningful advice for my future career. Their passion and persistence for research would

be a forever inspiration for me, both for life and career. I am fortunate to be advised by

them.

I also hope to extend my thanks to Dr. Enlu Zhou, Dr. Yajun Mei, and Dr. Chuljin

Park for serving on my thesis committee and providing valuable advice during my proposal

and defense. Their detailed and highly constructive comments help this thesis become more

complete. I want to especially thank Dr. Chuljin Park for being a co-author. His effort and

feedback were critical as the research project was born and matured.

Besides my thesis committee, I am indebted to all the faculty members for their help and

support. I am fortunate to take many excellent courses which were helpful for my research.

Special thanks go to Dr. Brani Vidakovic and Dr. Roshan Joseph for their constant help

and guidance when I served as the head teaching assistant for their course for two and a

half years. The experience was invaluable for my future career.

Life during my Ph.D. study would be much more difficult without my wonderful friends.

I am grateful for their caring, encouragement, and support. I want to especially thank my

fellow students Yuang Chen for his generous support and valuable advice, Kaizhao Sun for

those great times of stress relief activities, Pornpawee Bumpensanti for cheering me up when

I was stressed, Guanlin Chen for frequently sharing life stories together, and Xinyu Liu for

warm encouragement. I also appreciate the constant support from my friends Liangci Xue,

Dongyu Lin, and Min Gong for being on my side and helping me whenever I needed it. I

am fortunate to have those friends in my life.

v

Last but not the least, my sincere thanks go to all my family members. I want to

thank my paternal grandparents, Peitian Wo and Yikang Zhou, and maternal grandparents,

Lanying Liu and Mingli Luo. I truly appreciate the love and support they gave me ever

since my childhood and feel sorry for not being able to accompany them frequently. Most

important, I would like to give special thanks to my parents Zhiyun Luo and Hao Zhou for

their unconditional love and for always being supportive of my decisions. Whenever I faced

difficulty, felt depressed and homesick, they were always by my side. This thesis could not

be done without them.

vi

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xii

SUMMARY . xiii

I INTRODUCTION . 1

II FINDING FEASIBLE SYSTEMS FOR SUBJECTIVE CONSTRAINTS
USING RECYCLED OBSERVATIONS 5

2.1 Introduction . 5

2.2 Problem and Notation . 7

2.3 Feasibility Check Procedures with Recycled Observations 9

2.3.1 Generic Procedure . 9

2.3.2 Implementation Parameters . 13

2.3.3 Adding More Thresholds . 14

2.4 Statistical Validity . 16

2.4.1 Statistical Validity for a Single System 17

2.4.2 Statistical Validity for Multiple Systems and Multiple Constraints . 19

2.5 Experiments . 20

2.5.1 A Single System with a Single Constraint 21

2.5.2 Implementation Parameters for Systems with Multiple Constraints 23

2.5.3 Comparison between Restartprod,Restartsum, and the other Procedures 25

2.5.4 A Single System and Multiple Constraints under Correlations . . . 27

2.5.5 Multiple Systems and Multiple Constraints under Correlation . . . 30

2.5.6 Inventory Policy Example . 32

2.6 Conclusions . 36

III SELECTION OF THE BEST IN THE PRESENCE OF SUBJECTIVE
STOCHASTIC CONSTRAINTS . 37

3.1 Introduction . 37

vii

3.2 Background . 38

3.2.1 Problem Formulation . 38

3.2.2 Correct Selection . 42

3.2.3 Notation and Assumptions . 43

3.3 Sequentially-Running Procedures . 45

3.3.1 Procedure ZAKR . 45

3.3.2 Statistical Validity of Procedure ZAKR 48

3.3.3 Procedure ZAK . 57

3.4 Simultaneously-Running Procedure . 59

3.4.1 Procedure ZAK+ . 59

3.4.2 Statistical Validity of the Simultaneously Running Procedure . . . 60

3.4.3 Implementation Parameters for Simultaneous Running Procedure . 65

3.5 Different Preference Orders of Input Threshold Vectors 66

3.6 Experimental Results . 68

3.6.1 Experimental Configurations . 70

3.6.2 Single Constraint . 72

3.6.3 PCS of ZAK+ when Different Number of Unacceptable Systems are
in Presence . 77

3.6.4 Two Constraints . 80

3.6.5 Four Constraints . 83

3.6.6 All Systems Infeasible . 84

3.6.7 Inventory Policy Example . 87

3.7 Conclusion . 88

IV FINDING A PORTFOLIO OF BEST SYSTEMS FOR SUBJECTIVE
CONSTRAINTS . 90

4.1 Introduction . 90

4.2 Background . 91

4.2.1 Problem Formulation . 92

4.2.2 Correct Selection . 93

4.2.3 Notation and Assumptions . 95

4.3 Sequentially-Running Procedures . 97

viii

4.3.1 Procedure FAPR . 97

4.3.2 Statistical Validity of Procedure FAPR 98

4.3.3 Procedure FAP . 108

4.4 Simultaneously-Running Procedure . 108

4.4.1 Procedure FAP+ . 109

4.4.2 Statistical Validity for the Simultaneously-Running Procedure . . . 110

4.5 Experimental Results . 113

4.5.1 Non-overlapping Regions . 114

4.5.2 Experimental Configurations . 116

4.5.3 Statistical Validity of the Proposed Procedures 117

4.5.4 Efficiency of the Proposed Procedures 119

4.6 Conclusion . 120

V FUTURE RESEARCH DIRECTIONS . 121

APPENDIX A . 123

APPENDIX B . 137

APPENDIX C . 143

REFERENCES . 144

ix

LIST OF TABLES

1 Average number of observations and estimated PCD for k = 1 system and
s = 1 constraint with two and four threshold values 22

2 Average number of observations and estimated PCD for k = 1 system and
s = 1 constraint with one hundred threshold values 23

3 Average number of observations and observed PCD (reported in parentheses)
for implementation parameters (i) and (ii) 24

4 Average number of observations and observed PCD (reported in parentheses)
for Restartprod,Restartsum and the other procedures 26

5 Average number of observations and observed PCD (reported in parenthe-
ses) for correlated constraint observations and four threshold values for each
constraint . 28

6 Average number of observations and observed PCD (reported in parenthe-
ses) for correlated constraint observations and ten threshold values for each
constraint . 29

7 Threshold configurations for a single system 29

8 Average number of observations and observed PCD (reported in parentheses)
for correlated constraint observations and two, three, or four threshold values
per constraint . 30

9 Average number of observations and observed PCD (reported in parentheses)
of k = 12 systems and s = 5 constraints with four thresholds per constraint 31

10 Average number of observations and observed PCD (reported in parentheses)
of k = 12 systems and s = 5 constraints with two, three, or four thresholds
per constraint . 32

11 Average number of observations and observed PCD (mean values and stan-
dard errors) with or without CRN applied across systems 35

12 Number of feasible systems with respect to all combinations of constraint
thresholds . 36

13 Average number of observations and observed PCS (reported in parentheses)
of ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with two
thresholds under the DM configuration . 74

14 Average number of observations and observed PCS (reported in parentheses)
of ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1
constraint with two thresholds under the DM configuration 74

15 Average number of observations and observed PCS (reported in parentheses)
of ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with four
thresholds under the DM configuration . 77

x

16 Average number of observations and observed PCD (reported in parentheses)
of ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1
constraint with four thresholds under the DM configuration 78

17 Average number of observations and observed PCS (reported in parentheses)
of ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with two
thresholds under the MIM configuration . 78

18 Average number of observations and observed PCS (reported in parentheses)
of ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1
constraint with two thresholds under the MIM configuration 79

19 Observed PCS of ZAK+ for k = 100 system and s = 1 constraint with ten
thresholds under the DM configuration and different number of unacceptable
systems with respect to q(θ∗) . 79

20 Observed PCS (reported in parentheses) of ZAK+ for k = 100 system and
s = 2 constraint under the DM configuration and different number of unac-
ceptable systems with respect to q(θ∗) . 79

21 Average number of observations and observed PCS (reported in parentheses)
of ZAK, RestartHAK, ZAK+ and RestartHAK+ for k = 100 system and
s = 2 constraint when no feasible systems exists to all thresholds under the
DM configuration and the ranked constraints formulation 87

22 Average number of observations and observed PCS (reported in parentheses)
of ZAK, RestartHAK, ZAK+ and RestartHAK+ for the inventory policy
example . 88

23 Average number of observations and observed PCS (reported in parentheses)
of FAPR,FAP, and FAP+ for k = 10 systems and s = 1 constraint under
different configurations . 117

24 Average number of observations and observed PCS (reported in parentheses)
of FAPR,FAP, and FAP+ for k = 10 systems and s = 2 constraints based
on the ranked constraints formulation . 118

25 Average number of observations and observed PCS (reported in parentheses)
of FAPR,FAP, and FAP+ for k = 10 systems and s = 2 constraints based
on the equally important constraints formulation 118

26 Average number of observations and observed PCS (reported in parentheses)
of FAP,FAP+,RestartAK, and RestartAK+ for k = 10 systems and s = 1
constraint . 119

27 Average number of observations and observed PCS (reported in parentheses)
of RestartHAK and RestartHAK+ for k = 10 systems and s = 2 constraints . 120

xi

LIST OF FIGURES

1 Changes in the interval
(
Ȳi`(ri)−R(ri; ε`, η`, S

2
i`(n0))/ri, Ȳi`+R(ri; ε`, η`, S

2
i`(n0))/ri

)
11

2 Crossing of vUB
i` and vLB

i` . 15

3 The values of the failure probability and expected cost per review 33

4 Estimated correlations between failure probability and cost per review . . . 34

5 The correlation between systems with respect to the failure probability and
expected cost per review . 34

6 A preference order where the “tightest” (“weakest”) combination of thresh-
olds is not “most” (“least”) preferred . 41

7 Two preference orders of threshold vectors 41

8 Regions for two secondary performance measures and six threshold vectors 49

9 Three preference orders . 69

10 Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint with four thresh-
olds and b = 50 under the MIM configuration and different variance config-
uration . 76

11 Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint with ten thresh-
olds and b = 50 under the DM and the MIM configuration 80

12 Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 2 constraint under the DM
configuration and Option 1 . 81

13 Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 2 constraint under the DM
configuration and Option 2 . 82

14 Average number of observations and observed PCS of ZAK and ZAK+ for
k = 100 systems and s = 4 constraint . 84

15 Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint under the DM
configuration with d ∈ {2, 4, 10} . 85

16 Three distribution of infeasible systems . 86

17 Two secondary performance measures and seven threshold vectors 101

18 Non-overlapping regions for a single constraint with d thresholds 115

19 Feasible region for two constraints . 116

xii

SUMMARY

Constrained Ranking and Selection considers optimizing a primary performance

measure over a finite set of alternatives subject to constraints on secondary performance

measures. When the constraints are stochastic, the corresponding performance measures

should be estimated by simulation. When the constraints are subjective, the decision maker

is willing to consider multiple constraint threshold values. In this thesis, we consider three

problem formulations when subjective stochastic constraints are present.

In Chapter 2, we consider the problem of finding a set of feasible or near-feasible sys-

tems among a finite number of simulated systems in the presence of subjective stochastic

constraints. A decision maker may want to test multiple constraint threshold values for the

feasibility check, or she may want to determine how a set of feasible systems changes as

constraints become more strict with the objective of pruning systems or finding the system

with the best performance. We present indifference-zone procedures that recycle observa-

tions for the feasibility check and provide an overall probability of correct decision for all

threshold values. Our numerical experiments show that the proposed procedures perform

well in reducing the required number of observations relative to four alternative procedures

(that either restart feasibility check from scratch with respect to each set of thresholds or

with the Bonferroni inequality applied in a conservative way) while providing a statistical

guarantee on the probability of correct decision.

Chapter 3 considers the problem of finding a system with the best primary performance

measure among a finite number of simulated systems in the presence of subjective stochastic

constraints on secondary performance measures. When no feasible system exists, the deci-

sion maker may be willing to relax some constraint thresholds. We take multiple threshold

values for each constraint as a user’s input and propose indifference-zone procedures that

perform the phases of feasibility check and selection-of-the-best sequentially or simultane-

ously. We prove that the proposed procedures yield the best system in the most desirable

xiii

feasible region possible with at least a pre-specified probability. Our experimental results

show that our procedures perform well with respect to the number of observations required

to make a decision, as compared with straightforward procedures that repeatedly solve the

problem for each set of constraint thresholds.

In Chapter 4, we consider the problem of finding a portfolio of systems with the best pri-

mary performance measure among finitely many simulated systems as stochastic constraints

on secondary performance measures are relaxed. By finding a portfolio of the best systems

under a variety of constraint thresholds, the decision maker can identify a robust solution

with respect to the constraints or consider the trade-off between the primary performance

measure and the level of feasibility of the secondary performance measures. We propose

indifference-zone procedures that perform the phases of feasibility check and selection-of-

the-best sequentially and simultaneously, and prove that the proposed procedures identify

the portolio of the best systems with at least a pre-specified probability. Our proposed

procedures show a significant reduction in the required number of observations compared

with straightforward procedures that repeatedly identify the best system with respect to

each set of constraint thresholds.

xiv

CHAPTER I

INTRODUCTION

Analyzing the performance of stochastic systems, such as identifying a set of feasible sys-

tems or a system with the best performance, can be challenging due to the randomness

in output data. Ranking and Selection (R&S) is one of the classical and actively studied

problems in the simulation community. When a finite number of systems are considered and

stochastic simulation is used to estimate the performance of the systems, R&S procedures

are statistical approaches for feasibility determination and selection-of-the-best. Two major

issues for R&S procedures are efficiency and validity, with the goal of reducing the number

of necessary observations to reach a decision while guaranteeing a nominal probability of

correct selection (PCS). [9] and [7] provide a good literature review of R&S.

When the problem requires not only selecting the best system with respect to a primary

performance measure but also determining the feasibility with respect to stochastic con-

straints on secondary performance measures, it becomes constrained R&S. There are three

major approaches in solving constrained R&S, namely the optimal computing budget allo-

cation (OCBA) approach, the Bayesian approach, and the indifference-zone (IZ) approach.

[13], [8], and [15] propose sampling frameworks that can approximate the OCBA consid-

ering stochastic constraints. [4] provide a procedure to solve a constrained R&S problem

from the OCBA perspective. [18] discuss a fully sequential policy for allocating simulation

effort to determine a set of several simulated systems that have mean performance exceed-

ing a threshold of known value via a Bayesian formulation. Among the procedures that

use the indifference-zone (IZ) approach, [1] propose constrained R&S procedures that find

the system with the best primary performance measure among a finite number of simulated

systems in the presence of a stochastic constraint on a single real-valued secondary perfor-

mance measure. [2] propose fully sequential feasibility check procedures that are designed

to find a feasible set in the presence of multiple constraints. [6] use dormancy to perform

1

constrained R&S more efficiently and [5] extend the work of [1] to the problem of finding the

best feasible system in the presence of multiple constraints. [14] propose an Adaptive Feasi-

bility Checking Procedure (AFCP) that can self-adjust the tolerance level of all constraints

to avoid the need for the decision maker to pre-determine IZ parameters.

Classical constrained R&S procedures consider stochastic constraints with fixed thresh-

old values. If the decision maker wants to identify feasible systems with respect to a thresh-

old, the procedures return a set of feasible systems or an empty set if there do not exist

feasible systems with respect to the threshold. On the other hand, if she wants to select

the best system in terms of the primary performance that also satisfies the constraints on

the secondary performance measures, the procedures identify the best feasible system or

declare there exists no feasible system with respect to the stochastic constraints. However,

it is natural for a decision maker to consider varying threshold values instead of fixed values

for the following reasons:

• When multiple systems are declared feasible with respect to the fixed threshold values,

the decision maker may want to consider “tighter” threshold values in order to prune

systems with worse performance on the stochastic constraints.

• When there do not exist feasible systems with respect to fixed threshold values and the

decision maker is flexible with some constraint thresholds, she may want to consider

“looser” threshold values such that some feasible systems may be identified.

• When the objective is to find the system with the best primary performance measure

but no system satisfies the stochastic constraints on the secondary performance mea-

sures with respect to the fixed threshold values, the decision maker may want to relax

the constraints so that she can identify the best system that is feasible to “looser”

threshold values.

• When the decision maker is willing to consider multiple threshold values, she may

want to identify a portfolio of the best systems with respect to each set of threshold

values as this information is helpful in identifying a robust solution with respect to

2

the constraints or considering the trade-off between the primary performance measure

and the level of feasibility on the stochastic constraints.

For the problem of finding feasible systems, if each constraint threshold value is fixed

to one constant, procedures such as [2] can be used. When the objective is to find the

system with the best primary performance measure with fixed constraint thresholds, pro-

cedures due to [1] and [5] can be applied to systems with single or multiple constraints,

respectively. When multiple threshold values are considered, one may restart a constrained

R&S procedure “from scratch” for each threshold of each constraint and each system or

over each possible combination of threshold values. However, this approach is inefficient in

terms of computational costs because restarting from scratch wastes information contained

in the observations collected from previously completed executions of a constrained R&S

procedure with respect to different threshold values.

Given that there is no change in the simulation model of the systems under consideration,

it is natural to re-use observations collected from a feasibility check with different sets of

threshold values and obtain additional observations only when the changed set of threshold

values requires more observations to reach a decision. However, the guarantee of PCS with

respect to all the threshold values becomes questionable due to repeated tests on the same

data sets. Although the Bonferroni inequality can be used to avoid dependence among

tests, it makes the procedure overly conservative.

In this thesis, we introduce subjective constraints and consider the concept of recycling

observations for three problem formulations when the threshold values change. We aim to

develop procedures that avoid the overly conservative use of the Bonferroni inequality by

exploiting the fact that the underlying distribution of observations does not change. To the

best of our knowledge, [3] propose the idea of recycling simulation observations in computer

experiments by using pre-existing simulation outputs to improve the efficiency of the current

experiment when experiments are repeated periodically (e.g., a periodic credit risk evalu-

ation problem). They consider importance sampling and multiple importance sampling as

two particular output recycling implementations and show that multiple importance sam-

pling is an effective and robust way to recycle and reuse pre-existing outputs. But their

3

focus is on estimation rather than feasibility check.

The rest of the thesis is organized as follows: Chapter 2 proposes a procedure that

performs feasibility checks using recycled observations when multiple thresholds are con-

sidered. Chapter 3 proposes procedures that select the best system in the most desirable

feasible region possible by recycling simulation observations. In Chapter 4, we propose pro-

cedures that identify a portfolio of best systems when the stochastic constraints are relaxed.

Directions for further research are provided in Chapter 5.

We also note that the notation used in each chapter is self-contained. As each chapter

considers a different problem formulation, we redefine some notation within each chapter

to avoid an overly complicated system of notation.

4

CHAPTER II

FINDING FEASIBLE SYSTEMS FOR SUBJECTIVE CONSTRAINTS

USING RECYCLED OBSERVATIONS

2.1 Introduction

We consider the problem of finding a set of feasible systems among a finite number of

simulated systems when the values of constraint thresholds vary. For example, a manager

may want to control an inventory level with respect to two performance measures using an

(s, S) inventory policy (namely ordering products to increase the inventory level to S when

the inventory level at a review period is below s, with no order placed when the inventory

level is greater or equal to s). Specifically, she wants to identify the feasible combinations of

the values of s and S among finitely many choices such that the probability that a shortage

occurs between two successive review periods is less than or equal to q1, while the expected

cost per review period is less than or equal to q2 dollars, where q1 and q2 are some constant

threshold values. The manager may want to try different values for q1 (such as 0.01, 0.05,

and 0.1) and q2 (such as 115, 120, 125, 130, and 135) rather than two fixed values, and

observe the effects on the feasible set. Changing threshold values can also be used for finding

the best system. For example, if one wants to find a combination of the values of s and S

that results in the smallest expected cost per review period, one can start feasibility check

with a large threshold value such as 135 and then repeat the feasibility check by adjusting

the threshold value until there is only one feasible solution left. The decision maker can

also perform the same technique with the other performance measures, so that she can find

her preferred solution with respect to all the performance measures.

In this chapter, we consider the concept of recycling observations in the context of find-

ing a set of feasible or near-feasible systems when the threshold values change. Our aim is

to develop a procedure that avoids the overly conservative use of the Bonferroni inequality

by exploiting the fact that underlying distributions of observations do not change. To the

5

best of our knowledge, [3] propose the idea of recycling simulation observations in computer

experiments by using pre-existing simulation outputs to improve the efficiency of the current

experiment when experiments are repeated periodically (e.g., a periodic credit risk evalu-

ation problem). They consider importance sampling and multiple importance sampling as

two particular output recycling implementations, and show that multiple importance sam-

pling is an effective and robust way to recycle and reuse pre-existing outputs. But their

focus is on estimation rather than comparison or feasibility check.

We propose a procedure that recycles all observations collected from the previous fea-

sibility determinations (if needed to make a decision), prove that our procedure provides

the desired overall probability of correct decision, and show that it saves a significant num-

ber of observations as compared with four alternative statistically valid procedures that

perform feasibility checks with multiple thresholds: three with restart from scratch under

different circumstances and one with recycled observations but with the Bonferroni inequal-

ity applied in a conservative way. In our procedure, we use the green simulation concept

of recycling observations in consecutively applied feasibility checks. The specific contribu-

tions of the paper are three-fold, namely, we (1) suggest a summary statistic which can be

used to implement feasibility check over all threshold values in consideration or sequentially

added thresholds, (2) propose an efficient procedure based on the summary statistic when

threshold values change, and (3) mathematically and empirically document the statistical

guarantee and efficiency of the proposed procedure.

The rest of this paper is organized as follows: In Section 2.2, we define our problem and

notation. Section 2.3 introduces our procedure. Section 2.4 then provides the statistical

guarantee of our procedure. Experimental results for a single system or multiple systems

with either one constraint or multiple correlated constraints and multiple threshold values

are shown in Section 2.5, together with an illustration of how the procedure could be

applied to solve the inventory control example mentioned at the beginning of this section.

Concluding remarks are provided in Section 2.6. Finally, the Appendix contains some of our

proofs and derivations, a discussion of a special case when applying our proposed procedure,

and the descriptions and proofs of statistical validity of four alternative procedures.

6

2.2 Problem and Notation

In this section, we describe our problem and notation.

We consider k systems whose s performance measures can be estimated through stochas-

tic simulation. Let Θ denote the index set of all possible systems (i.e., Θ = {1, . . . , k}).

Let Yi`n, where i = 1, . . . , k, ` = 1, . . . , s, and n = 1, 2, . . ., be the nth observation of the

ith system for the `th performance measure. The expected value for system i regarding

performance measure ` is denoted as yi` = E[Yi`n] and the variance for system i regarding

performance measure ` is denoted as σ2
i` = Var(Yi`n). Observations are assumed to satisfy

the following normality assumption:

Assumption 1. For each i = 1, 2, . . . , k,
Yi1n

...

Yisn

 iid∼ Ns



yi1
...

yis

 ,Σi

 , n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, Ns denotes s-dimensional multi-

variate normal, and Σi is the s× s covariance matrix of the vector (Yi1n, . . . , Yisn).

Normally distributed observations are a common assumption used in many R&S pro-

cedures because Assumption 1 can be justified by the Central Limit Theorem when ob-

servations are either within-replication averages or batch means [12]. The observations of

different performance measures from a system are usually correlated, such as throughput

and expected waiting time for a queueing system, or expected cost and shortage probability

in an inventory example.

For a given threshold vector q = (q1, . . . , qs), [2] introduce procedure FB to determine a

set of systems with yi` ≤ q` for all ` = 1, 2, . . . , s. In this paper, instead of a fixed threshold

vector q, we consider a case where the threshold values change. We let d` denote the

number of threshold values for performance measure ` that the decision maker is interested

in, and let qm` denote the threshold value for performance measure ` with index m, where

m = 1, . . . , d`.

7

In order to check the feasibility of each system with respect to one constraint and a

fixed threshold, namely qm` , where m = 1, . . . , d`, Andradóttir and Kim (2010) introduce

a tolerance level, denoted by ε` for constraint `, that is a positive real number specified

by the decision maker. Any system with yi` ≤ qm` − ε` is considered desirable and feasible

with respect to constraint ` and threshold qm` . The set of all desirable systems with respect

to constraint ` and threshold qm` is denoted as D`(q
m
`). Systems with yi` ≥ qm` + ε` are

unacceptable and infeasible with respect to constraint ` and threshold qm` , placing them in

the set U`(q
m
`). Systems that fall within the tolerance level of qm` , so that qm` − ε` < yi` <

qm` + ε` are acceptable, and are placed in the set A`(q
m
`):

D`(q
m
`) = {i ∈ Θ | yi` ≤ qm` − ε`};

U`(q
m
`) = {i ∈ Θ | yi` ≥ qm` + ε`}; and

A`(q
m
`) = {i ∈ Θ | qm` − ε` < yi` < qm` + ε`}.

When performing feasibility check, we use CDi`(q
m
`) to denote a correct decision event of

system i with respect to constraint ` for threshold qm` , which is an event such that system i is

declared to be feasible with respect to constraint ` if i ∈ D`(q
m
`) and infeasible if i ∈ U`(qm`).

For i ∈ A`(qm`), any decision is considered as a correct decision.

We define CDi`, the correct decision event for system i with respect to constraint `,

as correctly determining feasibility for all possible thresholds qm` where m = 1, . . . , d`, i.e.

CDi` = ∩d`m=1CDi`(q
m
`). Then, a statistically-valid procedure that determines the feasibility

for all combinations of the threshold values with respect to all performance measures should

satisfy the following statement:

PCD = Pr
(
∩ki=1 ∩s`=1CDi`

)
≥ 1− α,

where α is the nominal confidence level for the feasibility check.

Throughout the paper, we need additional notation defined below:

n0 ≡ the initial sample size for each system (n0 ≥ 2);

ri ≡ the number of observations obtained so far for system i (ri ≥ n0);

S2
i`(n0) ≡ the sample variance of Yi`1, . . . , Yi`n0 for system i = 1, 2, . . . , k and constraint

8

` = 1, 2, . . . , s;

R(ri; v, w, z) ≡ max

{
0,

(n0 − 1)wz

v
− v

2c
ri

}
for v, w, z ∈ R+ and c ∈ {1, 2, · · · ,∞};

| · | ≡ the cardinality of a set.

The feasibility check procedures we present use the non-negative function R(ri; ·) to

specify an interval
(
−R(ri; ·), R(ri; ·)

)
called the continuation region after ri observations

have been collected. To determine the continuation region, we need to choose the value of

c (which will impact the value of w as will become clear in Section 2.3.1). The shape of the

continuation region defined by
(
−R(ri; ·), R(ri; ·)

)
becomes a longer and narrower triangle

as c increases (Kim and Nelson, 2001) and eventually becomes two parallel lines (−Ri`, Ri`)

for c =∞, where Ri` = (n0−1)wz
v (the values of v, z depend on the system i and constraint

` as v = ε` and z = S2
i`(n0)).

For feasibility check, we consider the monitoring statistic for system i and threshold qm`

on constraint ` as the cumulative sum of the difference between Yi`n and the threshold qm` ,

i.e.,
∑ri

n=1(Yi`n − qm`). When the monitoring statistic exits through the upper boundary

of the continuation region, we declare system i is infeasible for constraint ` and threshold

value qm` . On the other hand, if the monitoring statistic exits through the lower boundary

of the continuation region, system i is declared feasible for constraint ` and threshold value

qm` .

2.3 Feasibility Check Procedures with Recycled Observations

In this section, we discuss the generic procedure with recycled observations in Section 2.3.1,

the implementation parameters for our proposed procedure in Section 2.3.2, and the addition

of threshold values in Section 2.3.3.

2.3.1 Generic Procedure

In this section, we first discuss our approach for determining the feasibility of systems when

the threshold vector changes by recycling observations obtained so far. We then present the

details of our proposed procedure for multiple systems and multiple constraints.

9

For a given system i, constraint `, and thresholds {q1
` , q

2
` , . . . , q

d`
` }, the parameters

ri, ε`, η`, and S2
i`(n0) of R(ri; ε`, η`, S

2
i`(n0)) do not depend on the threshold values. More-

over, ri, ε`, η` are constants and S2
i`(n0) does not change when we recycle observations for

different thresholds. Thus R(ri; ε`, η`, S
2
i`(n0)) remains the same.

For a given threshold qm` , we declare system i as
feasible if

∑ri
n=1(Yi`n − qm`) ≤ −R(ri; ε`, η`, S

2
i`(n0)),

infeasible if
∑ri

n=1(Yi`n − qm`) ≥ R(ri; ε`, η`, S
2
i`(n0)),

(1)

which is equivalent to declaring system i as
feasible if Ȳi`(ri) +

R(ri; ε`, η`, S
2
i`(n0))

ri
≤ qm` ,

infeasible if Ȳi`(ri)−
R(ri; ε`, η`, S

2
i`(n0))

ri
≥ qm` ,

(2)

where we use Ȳi`(ri) to denote the average value of ri observations taken from system i

with respect to constraint `, i.e., Ȳi`(ri) =
∑ri

n=1 Yi`n/ri. Even though (1) and (2) are

equivalent, we choose (2) to determine the feasibility of each system with respect to each

constraint for different thresholds as (1) requires shifting the sample path
∑ri

n=1(Yi`n− qm`)

when the threshold value changes while (2) does not. Thus for a given set of thresholds

{q1
` , q

2
` , . . . , q

d`
` } for constraint ` = 1, 2, . . . , s, we update Ȳi`(ri)±R(ri; ε`, η`, S

2
i`(n0))/ri for

system i as we get more observations and declare the system is feasible or infeasible with

respect to threshold value qm` when one of the inequalities in (2) is satisfied. In other words,

we form an interval
(
Ȳi`(ri) − R(ri; ε`, η`, S

2
i`(n0))/ri, Ȳi`(ri) + R(ri; ε`, η`, S

2
i`(n0))/ri

)
for

each system with respect to each constraint and make feasibility check with respect to this

constraint if the threshold falls outside of the interval. Otherwise, we take more observations

and make a feasibility decision when (2) is satisfied.

Figure 1 shows the behavior of the interval
(
Ȳi`(ri) − R(ri; ε`, η`, S

2
i`(n0))/ri, Ȳi`(ri) +

R(ri; ε`, η`, S
2
i`(n0))/ri

)
as a function of the number of observations ri, as well as feasi-

bility decisions for two threshold values q1
` and q2

` with q1
` < q2

` . We can easily see that

the system i is declared infeasible with respect to q1
` at r1

i observations as q1
` falls below

Ȳi`(r
1
i) − R(r1

i ; ε`, η`, S
2
i`(n0))/r1

i , while the feasibility with respect to q2
` is undeclared at

10

time r1
i because q2

` is still within the interval
(
Ȳi`(r

1
i) − R(r1

i ; ε`, η`, S
2
i`(n0))/r1

i , Ȳi`(r
1
i) +

R(r1
i ; ε`, η`, S

2
i`(n0))/r1

i

)
. The feasibility decision with respect to q2

` is made at r2
i observa-

tions as q2
` is above Ȳi`(r

2
i) +R(r2

i ; ε`, η`, S
2
i`(n0))/r2

i .

Figure 1: Changes in the interval
(
Ȳi`(ri) − R(ri; ε`, η`, S

2
i`(n0))/ri, Ȳi` +

R(ri; ε`, η`, S
2
i`(n0))/ri

)
In Section 2.3.3, we discuss the addition of new threshold values after the execution of

Algorithm 1. This suggests that we might want to keep all the values of Ȳi`(ri) until the

feasibility determination is completed. However, this is not desirable due to a data storage

problem. Instead, we keep the following two quantities while system i is simulated:

vUB
i` ≡ min

{
Ȳi`(r

′) +
R(r′; ε`, η`, S

2
i`(n0))

r′

∣∣∣∣∣ n0 ≤ r′ ≤ ri

}
;

vLB
i` ≡ max

{
Ȳi`(r

′)−
R(r′; ε`, η`, S

2
i`(n0))

r′

∣∣∣∣∣ n0 ≤ r′ ≤ ri

}
.

11

Before we give the full description of our procedure, we need two additional definitions:

g(η) ≡


∑c

j=1(−1)j+1
(
1− 1

2I(j = c)
)
×
(

1 + 2η(2c−j)j
c

)−(n0−1)/2
, c ∈ N+,∫∞

0
1

1+exp(2ηx) ×
1

2(n0−1)/2Γ((n0−1)/2)
x(n0−1)/2−1e−x/2dx, c =∞,

(3)

β ≡

 1− (1− α)1/k, when systems are independent,

α/k, when systems are dependent,
(4)

where Γ(·) is the gamma function and I(·) is the indicator function.

Algorithm 1 Procedure RF

[Setup:] Choose confidence level 1−α, tolerance level ε`, and thresholds
{
q1
` , q

2
` , . . . , q

d`
`

}
for constraint ` = 1, 2, . . . , s. Also, choose the value of c and set Θ = {1, 2, . . . , k}. For
` = 1, . . . , s, set η` such that g(η`) = β`, where β satisfies (4), and either

(i) β` = (β/s) · I(d` = 1) + [β/(2s)] · I(d` > 1) for ` = 1, 2, . . . , s, or

(ii) β` = β/D; D =
∑s

`=1 min{d`, 2} for ` = 1, . . . , s.

for each system i ∈ Θ do
[Initialization:]

• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0 for ` = 1, 2, . . . , s.

• Compute Ȳi`(n0) and S2
i`(n0).

• Set ri = n0,ON = {1, 2, . . . , s}, and ON` = {1, 2, . . . , d`} for ` = 1, 2, . . . , s.

• Set vUB
i` =∞ and vLB

i` = −∞ for ` = 1, 2, . . . , s.

[Feasibility Check:]
for ` ∈ ON do

vUB
i` = min(vUB

i` , Ȳi`(ri) + R(ri; ε`, η`, S
2
i`(n0))/ri). If vUB

i` is updated, set LASTi`

= UB.
vLB
i` = max(vLB

i` , Ȳi`(ri)−R(ri; ε`, η`, S
2
i`(n0))/ri). If vLB

i` is updated, set LASTi` =
LB.

for m ∈ ON` do,
If vUB

i` ≤ qm` , set Zmi` = 1 and ON` = ON` \ {m}.
If vLB

i` ≥ qm` , set Zmi` = 0 and ON` = ON` \ {m}.
end for
If ON` = ∅, set ON = ON \ {`}.

end for
[Stopping Condition:]

• If ON = ∅, return Zmi` for ` = 1, 2, . . . , s and m = 1, 2, . . . , d`.

• Otherwise, set ri = ri + 1, take one additional observation Yi`ri and update Ȳi`(ri)
for ` ∈ ON, then go to [Feasibility Check].

end for

The full description of our procedure RF is provided in Algorithm 1 for k systems, s

12

constraints, and thresholds {q1
` , q

2
` , . . . , q

d`
` }, where ` = 1, . . . , s. Note that if each constraint

has one threshold value (d` = 1 for all `), then Procedure RF becomes the same as a

feasibility check procedure presented in [5]. Also, in the full description of our procedure, the

variable Zmi` indicates the feasibility of system i with respect to threshold qm` on constraint

`. More specifically, Zmi` = 1 means system i is feasible with respect to threshold qm` on

constraint `, and Zmi` = 0 otherwise. To declare the feasibility of the system with respect

to all the constraints for a given threshold vector q = (qm1
1 , . . . , qmss), we check the product

of Zm`i` for all ` = 1, . . . , s, where m` is the index of the threshold value with respect to

constraint `. That is, we declare system i is feasible with respect to q = (qm1
1 , . . . , qmss) if∏s

`=1 Z
m`
i` = 1, and declare system i is infeasible if

∏s
`=1 Z

m`
i` = 0. The variables LASTi`,

where i = 1, . . . , k and ` = 1, . . . , s, are needed if we would like to be able to add threshold

values efficiently after the execution of Algorithm 1 (see Section 2.3.3).

2.3.2 Implementation Parameters

In this section, we discuss the two choices for β` in Algorithm 1. Comparison between the

two choices is provided in Section 2.5.2.

First, note that β can be interpreted as the nominal probability of error for each system.

This error β needs to be split among different constraints and different threshold values for

each system. Theorem 1 in Section 2.4.1 shows that the effective number of threshold values

for each constraint with multiple threshold values is two. The first choice (i) in Algorithm 1

is to split the error β among constraints equally for each system and then split it further

among threshold values. The second choice (ii) is to count the total effective number of

threshold values over all constraints and split β equally among them. Thus the first choice

(i) gives β/s to each constraint and then it is further split among the effective number of

threshold values (thus β/s to a constraint with only one threshold value and β/(2s) to a

constraint with two or more threshold values). On the other hand, the total number of

effective threshold values is D (i.e., D =
∑s

`=1 min{d`, 2}) and the second choice (ii) is to

split β equally among them.

For example, suppose we consider a feasibility check problem among k systems and two

13

performance measures. The first constraint has one threshold q1
1 but the second constraint

has two thresholds q1
2 and q2

2. We set β as in (4). Then the first choice (i) sets β1 = β/2 and

β2 = β/4, while the second choice (ii) sets β1 = β2 = β/3. Notice that choices (i) and (ii)

become identical if all the constraints have either one or multiple thresholds to be tested

(i.e., d` = 1 for ` = 1, . . . , s or d` ≥ 2 for all ` = 1, . . . , s).

2.3.3 Adding More Thresholds

A decision maker may want to add a new threshold value qd`+1
` once feasibility with respect

to thresholds {q1
` , q

2
` , . . . , q

d`
` } is determined. For example, suppose that a manager wants to

identify an (s, S) inventory policy whose expected cost per review period is less than 115 or

120 dollars. If there is no feasible policy with these two thresholds, the manager may want

to test a new threshold value, say, 125 dollars. We call the feasibility check for the initial

set of threshold values {q1
` , . . . , q

d`
` }, where ` = 1, . . . , s, the first pass, and the feasibility

check for the newly-added threshold qd`+1
` the second pass.

Suppose first that d` ≥ 2. Then there is no change in the values of β1, . . . , βs in RF

when more thresholds are added. When a new threshold value qd`+1
` is added after the

first pass, one can compare the values of vUB
i` and vLB

i` with qd`+1
` . More specifically, if

vUB
i` ≤ qd`+1

` and vLB
i` < qd`+1

` (vLB
i` ≥ qd`+1

` and vUB
i` > qd`+1

`), we immediately declare

system i is feasible (infeasible) with respect to qd`+1
` and there is no need for additional

observations. If vUB
i` > qd`+1

` and vLB
i` < qd`+1

` , we take additional observations until (2) is

satisfied.

When the first pass of feasibility decisions is over, since we calculate the values of vLB
i`

and vUB
i` only at integer times (for ri = n0, n0 + 1, . . .) rather than continuously in time, it

is possible that vUB
i` ≤ vLB

i` happens at the last stage (i.e., the integer time when the first

pass of feasibility decisions are concluded for constraint ` on system i). If the new threshold

value qd`+1
` satisfies vUB

i` ≤ qd`+1
` ≤ vLB

i` , we need to know which value was updated last in

the first pass. Consider the example in Figure 2. At the last stage of the first pass (shown

as the feasibility check for qd``), we have vUB
i` ≤ vLB

i` . When qd`+1
` is added after the first

pass, we have vUB
i` ≤ qd`+1

` ≤ vLB
i` and vUB

i` is the last updated value in the first pass. As

14

Figure 2: Crossing of vUB
i` and vLB

i`

shown in Figure 2, the upper bound of the interval
(
Ȳi`(ri)− R(ri; ε`, η`, S

2
i`(n0))/ri, Ȳi` +

R(ri; ε`, η`, S
2
i`(n0))/ri

)
is greater than vLB

i` before the last stage of the first pass and qd`+1
`

would have satisfied vLB
i` ≥ qd`+1

` before it satisfied vUB
i` ≤ qd`+1

` if it had been included in

the initial set of threshold values. Thus we should declare system i infeasible with respect

to qd`+1
` . In general, when vUB

i` ≤ qd`+1
` ≤ vLB

i` , if the last updated value in the first pass

is vUB
i` , we declare the system infeasible with respect to qd`+1

` and we declare the system

feasible with respect to qd`+1
` if the last updated value in the first pass is vLB

i` .

The description of the procedure when d` ≥ 2 and a new threshold qd`+1
` is added

for constraint ` is shown in Algorithm 2. We find the value of Zd`+1
i` and declare the

feasibility with respect to q = (qm1
1 , . . . , qd`+1

` , . . . , qmss) by checking the value of Zd`+1
i` ·∏

`′ 6=`,`′=1,2,...,s Z
m`′
i`′ . When q contains multiple additional thresholds, let L denote the set

of constraints that have new thresholds. The feasibility with respect to q is declared based

on the value of
∏
`∈L Z

d`+1
i` ·

∏
` 6∈L Z

m`
i` .

However, if ` is such that d` = 1, then adding new threshold values to constraint `

15

Algorithm 2 When d` ≥ 2 and qd`+1
` is added

for each system i ∈ Θ do
Set ON = {`} and ON` = {d` + 1}.
If vUB

i` ≤ q
d`+1
` and vLB

i` < qd`+1
` , set Zd`+1

i` = 1 and ON` = ON`\{d` + 1};
Else if vLB

i` ≥ q
d`+1
` and vUB

i` > qd`+1
` , set Zd`+1

i` = 0 and ON` = ON`\{d` + 1};
Else if vUB

i` ≤ q
d`+1
` ≤ vLB

i` ,

set Z
d`+1

i` = 0 if LASTi` = UB, and set ON` = ON`\{d` + 1};

set Z
d`+1

i` = 1 if LASTi` = LB, and set ON` = ON`\{d` + 1}.
If ON` = ∅, set ON = ON\{`}.
If ON = ∅, return Zd`+1

i` ; otherwise, set ri = ri + 1, take one additional observation
Yi`ri and update Ȳi`(ri) for ` ∈ ON, then go to [Feasibility Check] of Procedure RF .
end for

requires updating β1, . . . , βs if they are set as in (ii) in Algorithm 1 or just β` if β1, . . . , βs

are set as in (i) in Algorithm 1. A detailed discussion for this case is provided in Appendix

A.1.

2.4 Statistical Validity

We prove the statistical validity ofRF in this section. We first address statistical validity for

a single system, one or more constraints, and multiple constraint thresholds in Section 2.4.1,

and then discuss the overall probability of correct decision in Section 2.4.2 to illustrate that

our procedure for handling multiple constraint thresholds can be generalized to multiple

systems and multiple constraints.

We first introduce the following lemma which is critical in proving the statistical validity

of Algorithm 1. Recall that RF ensures that η` satisfies g(η`) = β` where g(·) is defined in

(3). Discussion about the existence of η` for c ∈ {1,∞} is provided in Appendix A.2.

Lemma 1. For system i and constraint ` with specific threshold value qm` , RF guarantees

Pr(CDi`(q
m
`)) ≥ 1− β`.

Proof. For c ∈ N+, if system i and constraint ` with threshold value qm` are considered

separately, then it is easy to see that Procedure RF is essentially the same as a statistically-

valid feasibility check procedure in [1] for a single system and a single constraint with one

threshold value and confidence level 1−β`. Thus the lemma holds. For c =∞, see Appendix

16

A.3.

2.4.1 Statistical Validity for a Single System

In this section, we first prove the statistical validity of RF for a single system with a single

constraint and then for a single system with multiple constraints. For simplicity, we use

{q1, q2, . . . , qd} to denote the changing threshold values with respect to the single constraint.

Thus, we drop the subscripts in some notation as follows:

y = Performance measure;

ε = Tolerance level for the single constraint;

CD(q) = Correct decision event with constraint threshold q.

In the following theorem, we use Pr(CD(y − ε),CD(y + ε)) to denote the joint probability

of the events CD(y − ε) and CD(y + ε).

Theorem 1. Given a single system and a single constraint with threshold constants {q1, q2, . . . , qd},

the joint probability of correct decision with respect to thresholds y − ε and y + ε is a lower

bound on the joint probability of correct decision with respect to all thresholds, i.e.,

Pr(∩dm=1CD(qm)) ≥ Pr(CD(y − ε),CD(y + ε)).

Proof. Without loss of generality, we can assume q1 < · · · < qd. We consider the following

three cases.

When q1 < · · · < qd ≤ y − ε, the correct decision is to declare the system infeasible for

all threshold constants q1, . . . , qd. By (2), we have CD(y − ε) ⊆ CD(qd) ⊆ · · · ⊆ CD(q1).

Thus, we have

Pr(∩dm=1CD(qm)) ≥ Pr(CD(y − ε)) ≥ Pr(CD(y − ε),CD(y + ε)).

When y + ε ≤ q1 < · · · < qd, by similar arguments and (2), we have CD(y + ε) ⊆

CD(q1) ⊆ · · · ⊆ CD(qd) and

Pr(∩dm=1CD(qm)) ≥ Pr(CD(y + ε)) ≥ Pr(CD(y − ε),CD(y + ε)).

17

In general, there exist m and m where 0 ≤ m < m ≤ d + 1 such that q1 < · · · < qm ≤

y − ε < qm+1 < · · · < qm−1 < y + ε ≤ qm < · · · < qd. Then the correct decision is to

declare the system infeasible for threshold constants q1, . . . , qm and feasible for threshold

constants qm, . . . , qd. By (2), it is clear that CD(y − ε) ⊆ CD(qm) ⊆ · · · ⊆ CD(q1) and

CD(y + ε) ⊆ CD(qm) ⊆ · · · ⊆ CD(qd). It is also clear that the procedure always makes

correct decisions for acceptable systems, i.e., CD(q) = 1 when q ∈ {qm+1, . . . , qm−1}, and

thus the overall probability of correct decision does not decrease due to acceptable systems.

Finally, we have

Pr(∩dm=1CD(qm)) ≥ Pr(CD(y − ε),CD(y + ε))

as claimed.

Based on the above theorem, we know that the PCD over {q1, q2, . . . , qd} has as lower

bound the PCD with two threshold values, y − ε and y + ε. Thus, when there are multiple

threshold values, the CD event is achieved as long as we make a correct decision for these

two threshold values, and thus the effective number of threshold values for any constraint

with multiple threshold values is just two.

Based on Theorem 1, we introduce the following theorem that gives the lower bound on

the PCD with respect to all thresholds for a single system and s constraints.

Theorem 2. For system i with s constraints and threshold constants {q1
` , q

2
` , . . . , q

d`
` } for

` = 1, 2, . . . , s, the RF procedure guarantees Pr(∩s`=1CDi`) ≥ 1− β.

Proof. We first discuss the case when β` in Algorithm 1 is determined based on (i), so that

β` =


β/s, if d` = 1;

β/(2s), if d` > 1.

For ` such that d` = 1,

Pr(CDi`) = Pr(CDi`(q
1
`)) ≥ 1− β` = 1− (β/s),

18

where the inequality holds due to Lemma 1. For ` such that d` > 1,

Pr(CDi`) = Pr(∩d`m=1CDi`(q
m
`))

≥ Pr(CDi`(y` − ε`),CDi`(y` + ε`))

≥ Pr(CDi`(y` − ε`)) + Pr(CDi`(y` + ε`))− 1

≥ 1− β` + 1− β` − 1 = 1− 2β` = 1− 2(β/(2s)) = 1− (β/s),

where the first inequality holds due to Theorem 1 and the third inequality holds due to

Lemma 1. Thus, the Bonferroni inequality yields

Pr(∩s`=1CDi`) ≥ 1−
s∑
`=1

Pr(ICDi`) ≥ 1− s(β/s) = 1− β.

We then discuss the case when β` in Algorithm 1 is determined based on (ii). We let s1

denote the number of constraints that have one threshold (i.e., the constraints with d` = 1),

and let s2 denote the number of constraints that have two or more thresholds (i.e., the

constraints with d` > 1). Then β` = β/D, where D =
∑s

`=1 min{d`, 2} = s1 + 2s2. Then,

based on a similar argument as for case (i), we have that for ` such that d` = 1,

Pr(CDi`) ≥ 1− β` = 1− β

s1 + 2s2
.

For ` such that d` > 1,

Pr(CDi`) ≥ 1− 2β` = 1− 2β

s1 + 2s2
.

Thus, the Bonferroni inequality yields

Pr(∩s`=1CDi`) ≥ 1−
s∑
`=1

Pr(ICDi`) ≥ 1−

(
s1

β

s1 + 2s2
+ s2

2β

s1 + 2s2

)
= 1− β.

2.4.2 Statistical Validity for Multiple Systems and Multiple Constraints

In this section, we extend Theorem 2 (which covers a single system with multiple con-

straints) to the general case with multiple systems and multiple constraints in the following

theorem.

Theorem 3. Procedure RF guarantees PCD ≥ 1− α.

19

Proof. When systems are simulated with common random numbers (CRN), we have

PCD = Pr

(
∩ki=1 ∩s`=1CDi`

)

≥ 1−
k∑
i=1

Pr

(
∩s`=1 CDi`

)c
≥ 1− kβ

= 1− kα
k

= 1− α,

where the first inequality follows from the Bonferroni inequality, the second inequality holds

due to Theorem 2, and we have used equation (4).

Similarly, when systems are simulated independently, we have

PCD = Pr

(
∩ki=1 ∩s`=1CDi`

)

=

k∏
i=1

Pr

(
∩s`=1 CDi`

)

≥ [1− β]k =
[
1− (1− (1− α)1/k)

]k
= 1− α,

where the inequality follows from Theorem 2 and we have used equation (4).

2.5 Experiments

In this section, we provide the results of our numerical experiments to demonstrate the

performance of procedure RF compared with the performance of four alternative statisti-

cally valid procedures: (a) recycling observations but with the Bonferroni inequality for all

systems, all constraints, and all thresholds (RecycleB); (b) performing feasibility check for

each combination of thresholds of all constraints (Restartprod) and restarting procedure FB

“from scratch” for each combination of thresholds; (c) performing feasibility check for all

systems, all constraints, and all thresholds based on a pre-defined order of constraints and

thresholds and restarting procedure FB every time “from scratch” (Restartsum); and (d)

combining the thresholds into max`=1,...,s d` threshold vectors (with at most one threshold

for each constraint) and performing feasibility check for each threshold vector (Restartmax).

Specifically, for the Restartsum procedure, we assume that a decision maker runs the feasi-

bility check procedure FB for constraints ` = 1, 2, . . . , s and thresholds m = 1, 2, . . . , d` in

20

the stated order, restarting each time a constraint or a threshold is changed. We provide the

detailed descriptions of the RecycleB, Restartprod, Restartsum, and Restartmax procedures

and proofs for their statistical validity in Appendices A.4, A.5, A.6, and A.7, respectively.

Notice that RF and RecycleB become identical (except RecycleB is not designed for

adding constraint thresholds) when all constraints have either one or two threshold val-

ues and thus the two procedures will perform the same in those cases. When there are

constraints with more than two threshold values, RF is expected to perform better than

RecycleB. Similarly, RF is expected to perform better than Restartprod, Restartsum, and

Restartmax if there exist any constraints that have multiple thresholds.

We first discuss feasibility check for a single system with a single constraint and mul-

tiple threshold values in Section 2.5.1. We then address the choice of the implementation

parameter β` in Section 2.5.2 and compare Restartprod and Restartsum with the other pro-

cedures in Section 2.5.3. Section 2.5.4 provides results for a single system with multiple

correlated constraints and multiple threshold values. Section 2.5.5 shows results for multi-

ple systems with multiple constraints, and Section 2.5.6 illustrates the performance of the

different procedures for an inventory example (see Section 2.1). All the experiments are

based on 100,000 replications with α = 0.05 and n0 = 20, and the experimental results

are shown for a triangular-shaped (c = 1) or a straight-line (c = ∞) continuation region

or both. We report estimated PCD and average total number of observations (OBS) for

each experiment, where we consider (Yi1n, . . . , Yisn) (and any subset thereof) as one obser-

vation for system i. With 100,000 replications, the estimated PCD shown in our tables are

meaningful up to the 0.001th digit, while the first four digits of OBS are meaningful.

2.5.1 A Single System with a Single Constraint

We consider a single system and a single constraint with feasibility checks for two, four,

and one hundred threshold values. The observations from the single system are from a

standard normal distribution and we set ε = 0.1 in this subsection. As there are multiple

thresholds in all cases, the choices (i) and (ii) for setting β1, . . . , βs in RF , RecycleB, and

Restartsum are identical. Since the number of combinations of thresholds is just the number

21

of thresholds on the single constraint, Restartprod, Restartsum and Restartmax are identical.

We only report the results of Restartmax for all three procedures.

We first consider two threshold values q1 = −ε and q2 = ε. The system is infeasible

with respect to q1 and feasible with respect to q2. This case is considered as the “most

difficult” case for a single system with a single constraint as the mean performance (y = 0)

is at the boundary of the unacceptable or desirable regions. For four threshold values, we

consider q1 = −1.1ε, q2 = −ε, q3 = ε, and q4 = 1.1ε. The estimated PCD and OBS required

to complete the feasibility checks are shown in Table 1 for both triangular and straight-line

continuation regions.

Table 1: Average number of observations and estimated PCD for k = 1 system and s = 1
constraint with two and four threshold values

Two threshold values Four threshold values

Triangular Straight-line Triangular Straight-line

PCD OBS PCD OBS PCD OBS PCD OBS

RF 0.9539 305.09 0.9552 313.86 0.9542 307.26 0.9555 316.90

RecycleB 0.9539 305.09 0.9552 313.86 0.9769 387.18 0.9773 390.27
Restartmax 0.9526 465.32 0.9555 436.37 0.9608 1164.85 0.9622 1055.30

It is clear that RF ,RecycleB, and Restartmax guarantee PCD greater than 1− α. The

estimated PCD of RF is around 0.95 for both two and four thresholds. For RecycleB and

Restartmax, the PCD increases to around 0.97 and 0.96 for the four-value case from about

0.95 for the two-value case, respectively.

In terms of the number of observations, RF performs identically in the two-value case

compared with RecycleB as expected, and spends 28.07%–34.43% fewer observations than

Restartmax. In the four-value case, RF saves 18.80%–20.64% and 69.97%–73.62% on the

number of observations compared with RecycleB and Restartmax, respectively.

We then consider one hundred threshold values qm, where m = 1, . . . , 100, as follows:

qm =


−6ε+ 0.1m× ε, if m ≤ 50,

ε+ 0.1(m− 51)× ε, if m ≥ 51.

22

The experimental results are shown in Table 2.

Table 2: Average number of observations and estimated PCD for k = 1 system and s = 1
constraint with one hundred threshold values

Triangular Straight-line

PCD OBS PCD OBS

RF 0.9534 310.54 0.9557 323.03

RecycleB 0.9992 765.71 0.9990 813.80
Restartmax 0.9982 30360.27 0.9977 21433.57

When the number of thresholds increases dramatically, while RF still performs similar

to the case when the number of thresholds is two, RecycleB and Restartmax require a lot

more OBS and are also more conservative in terms of PCD. It is expected that RF needs

much fewer OBS than RecycleB and Restartmax if the number of thresholds is significantly

large for both triangular and straight-line continuation regions. We see that the straight-line

continuation region requires more observations compared with the triangular continuation

region in RF and RecycleB while it requires fewer observations in Restartmax. The exper-

iments in the remaining sections are based on triangular continuation regions (except for

one experiment in Section 2.5.5.1).

2.5.2 Implementation Parameters for Systems with Multiple Constraints

In this section, we provide a numerical example and a discussion about the performance

of RF ,RecycleB, and Restartsum as a function of the two different ways of setting the

implementation parameters β` (see Section 2.3.2). As Restartprod and Restartmax only

have one way of setting the implementation parameter, we omit them in this section. We

use RF1,RecycleB1 , and Restartsum
1 to denote the versions of the procedures that set the

parameters β1, . . . , βs based on choice (i), and use RF2,RecycleB2 , and Restartsum
2 to denote

the corresponding procedures with choice (ii) in each algorithm.

We first test the performance of the four procedures applied to four configurations.

We consider a single system with two constraints, where the first constraint has one fixed

threshold and the second constraint has two thresholds. In all the configurations shown

below, we choose y = (0, 0) and ε = 0.1. The observations of the two constraints are

23

Table 3: Average number of observations and observed PCD (reported in parentheses) for
implementation parameters (i) and (ii)

RF1(RecycleB1) RF2(RecycleB2) Restartsum
1 Restartsum

2

Configuration 1
408.45 396.11 833.34 815.37
(0.954) (0.954) (0.953) (0.953)

Configuration 2
285.62 303.28 596.86 602.17
(0.977) (0.983) (0.975) (0.983)

Configuration 3
242.40 276.55 435.10 456.13
(0.976) (0.984) (0.977) (0.984)

Configuration 4
385.50 352.42 679.86 635.75
(0.977) (0.968) (0.977) (0.968)

independent standard normal random variables.

Configuration 1: Set q1
1 = −ε, q1

2 = −ε, and q2
2 = ε.

Configuration 2: Set q1
1 = −ε, q1

2 = −2ε, and q2
2 = 2ε.

Configuration 3: Set q1
1 = −ε, q1

2 = −4ε, and q2
2 = 4ε.

Configuration 4: Set q1
1 = −4ε, q1

2 = −ε, and q2
2 = ε.

One may notice that the mean performance of the first constraint is at the boundary of

the unacceptable region in the first three configurations, which is a “most difficult” case for

one constraint with a single threshold. Configuration 1 sets the mean performance of the

second constraint at either the boundary of the unacceptable region (q1
2) or the boundary

of the desirable region (q2
2), while Configurations 2 and 3 set the mean performance further

from the boundaries of the unacceptable (desirable) region. Configuration 4 has the same

(difficult) thresholds on the second constraint as in Configuration 1 but sets the mean

performance of the first constraint far from the boundary of the unacceptable region. Notice

that the performance of RF and RecycleB are expected to be identical as d` ≤ 2, where

` = 1, 2. Table 3 shows the estimated PCD and OBS of the RF ,RecycleB, and Restartsum

procedures under triangular-shaped continuation regions for all configurations.

We see that under both choices (i) and (ii), all the procedures guarantee statistical

validity of all configurations. Choice (i) is dominated by choice (ii) for under Configuration

24

1 and 4 for all three procedures, while choice (i) performs better than choice (ii) under

Configuration 2 and 3.

In Configuration 1, since all the thresholds for both constraints are considered as “most

difficult”, assigning error evenly to each feasibility check, which follows choice (ii), is plau-

sible. However, as Configuration 2 has a “difficult” threshold on the first constraint but

“easy” thresholds on the second constraint, allocating more error to the threshold for the

first constraint and less error to the threshold for the second constraint, which follows choice

(i), is beneficial. Configuration 3 has even “easier” thresholds on the second constraint, sug-

gesting that choice (i) is more beneficial for all three procedures. In these cases, choosing

between (i) and (ii) depends on the difficulty of the feasibility checks. Although Configura-

tion 4 has the same number of thresholds as the other three configurations, it has an “easy”

threshold on the first constraint but two “difficult” thresholds on the second constraint.

Choice (ii) allows more error allocation to the second constraint and less error allocation to

the first constraint, which performs better than choice (i).

It is clear that the total number of required observations depends on the difficulty of the

feasibility checks and the number of thresholds on each constraint. Of course, the decision

maker may not have the information about the mean configuration before she performs

feasibility check. Thus it is difficult to predict in advance whether (i) or (ii) will result in

better performance. Choice (i) also has value if it may be of interest to add thresholds later

(see Appendix A.1).

2.5.3 Comparison between Restartprod,Restartsum, and the other Procedures

In this section, we compare the performance of Restartprod and Restartsum with the other

procedures. Based on the decriptions shown in Appendix A.5 for Restartprod, A.6 for

Restartsum and A.7 for Restartmax, the number of “restarts” depends highly on the num-

ber of thresholds on each constraint. As Restartprod performs feasibility checks for each

combination of thresholds of all constraints, it requires
∏s
`=1 d` “restarts” to determine

feasibility for one system, whereas Restartsum performs feasibility checks independently for

each system, each constraint, and each threshold, and hence requires
∑s

`=1 d` “restarts” for

25

one system. On the other hand, Restartmax performs feasibility check by restarting inde-

pendently for threshold vectors that contain thresholds from all constraints with thresholds

that have not yet received feasibility decisions until the feasibility of each threshold on each

constraint is determined. This requires max`=1,...,s d` “restarts” for one system.

We consider three configurations of a single system with two constraints and indepen-

dent standard normal observations. The first configuration has one threshold on the first

constraint and two thresholds on the second constraints. The second configuration has

two thresholds on both constraints, and the third configuration has two thresholds on the

first constraint and four thresholds on the second constraint. In all configurations, we set

y = (0, 0) and ε = 0.1. More specifically, we have

Configuration 1 (C1): q1 = (−ε), q2 = (−ε, ε).

Configuration 2 (C2): q1 = (−ε, ε), q2 = (−ε, ε).

Configuration 3 (C2): q1 = (−ε, ε), q2 = (−1.25ε,−ε, ε, 1.25ε).

The experimental results for the average number of observations and observed PCD for

RF ,RecycleB,

Restartsum, Restartmax and Restartprod under triangular-shaped continuation regions are

shown in Table 4.

Table 4: Average number of observations and observed PCD (reported in parentheses) for
Restartprod,Restartsum and the other procedures

RF1 RF2 RecycleB1 RecycleB2 Restartmax Restartsum
1 Restartsum

2 Restartprod

C1
408.45 396.11 408.45 396.11 622.71 833.34 815.37 765.38
(0.954) (0.954) (0.954) (0.954) (0.953) (0.953) (0.953) (0.953)

C2
466.57 466.57 466.57 466.57 766.26 1201.05 1201.05 1871.00
(0.954) (0.954) (0.954) (0.954) (0.954) (0.954) (0.954) (0.954)

C3
467.17 467.17 523.40 524.67 1476.79 1981.91 1953.23 4315.16
(0.953) (0.953) (0.965) (0.969) (0.964) (0.960) (0.964) (0.962)

We can easily see that Configuration 1 has two combinations of thresholds, while Config-

urations 2 and 3 have four and eight combinations, respectively. This means that Restartprod

needs to perform two, four, and eight restarts to conclude feasibility checks for Configura-

tion 1, 2, and 3, respectively. However, Restartsum performs three, four, and six restarts

26

as it performs feasibility check independently for each system, constraint, and threshold.

One the other hand, Restartmax performs two restarts for Configurations 1 and 2, and per-

forms four restarts for Configuration 3. One may notice that when
∑s

`=1 d` is smaller than∏s
`=1 d`, Restartsum is likely to perform better than Restartprod. As max`=1,...,s d` is always

smaller than
∑s

`=1 d` and
∏s
`=1 d`, Restartmax is superior compared with Restartprod and

Restartsum.

In the remaining experimental results, we omit the Restartprod and Restartsum proce-

dures and only demonstrate the perfomance of the RF ,RecycleB, and Restartmax proce-

dures.

2.5.4 A Single System and Multiple Constraints under Correlations

We consider a single system with multiple constraints when the constraints are correlated.

The observations satisfy Assumption 1 and the covariance matrix is chosen as a square

matrix with diagonal elements σ2
` for ` = 1, 2, . . . , s and non-diagonal elements ρσ`σν for

` 6= ν where `, ν = 1, 2, . . . , s. Thus, we consider equal correlation, ρ, between each pair

of constraints, where the value of ρ is chosen over {−0.25,−0.15, 0, 0.3, 0.7} which ensures

Σi to be positive definite. The marginal variances σ2
` are in one of three configurations:

constant variances (CV), increasing variances (IV), and decreasing variances (DV). The

variances σ2
` in the CV configuration are all set to 1, while the variances in IV and DV

are set to 1 + (` − 1)ε` and 1 + (s − `)ε`, where ` = 1, 2, . . . , s, respectively. We provide

experimental results for a single system and multiple constraints, with either an equal or

a varying number of threshold values for each constraint, in Section 2.5.4.1 and Section

2.5.4.2, respectively.

2.5.4.1 Multiple correlated constraints with the same number of thresholds for each
constraint

We consider the case of a single system and five constraints where each constraint has four

threshold values. As each constraint has the same number of thresholds, choices (i) and (ii)

for β` are identical for RF and RecycleB. We choose the mean vector y = (0, 0, 0, 0, 0), q1 =

(−1.25ε,−1.25ε,−1.25ε,−1.25ε,−1.25ε), q2 = (−ε,−ε,−ε,−ε,−ε), q3 = (ε, ε, ε, ε, ε), and

27

q4 = (1.25ε, 1.25ε, 1.25ε, 1.25ε, 1.25ε), where ε = 1/
√
n0. Table 5 shows that all the proce-

dures are statistically valid and that the savings of RF in the average number of observa-

tions is 14.21% – 14.71% and 72.15% – 74.16% compared with RecycleB and Restartmax,

respectively.

Table 5: Average number of observations and observed PCD (reported in parentheses) for
correlated constraint observations and four threshold values for each constraint

CV IV DV

ρ RF RecycleB Restartmax RF RecycleB Restartmax RF RecycleB Restartmax

−0.25 144.14 168.06 557.80 224.77 262.33 855.46 224.66 262.91 855.82
(0.958) (0.979) (0.974) (0.957) (0.978) (0.973) (0.958) (0.978) (0.972)

−0.15 145.45 169.55 555.37 226.05 264.48 852.84 226.13 264.35 853.37
(0.957) (0.979) (0.974) (0.957) (0.977) (0.972) (0.957) (0.978) (0.973)

0 146.17 170.50 549.59 226.91 265.58 846.63 227.03 265.59 845.74
(0.957) (0.978) (0.974) (0.956) (0.978) (0.972) (0.957) (0.978) (0.972)

0.3 143.69 167.74 529.31 224.32 262.31 819.99 224.37 262.25 820.27
(0.958) (0.979) (0.974) (0.957) (0.978) (0.973) (0.957) (0.978) (0.974)

0.7 132.38 154.81 477.05 210.93 247.13 757.28 210.84 247.20 757.13
(0.967) (0.982) (0.977) (0.967) (0.982) (0.978) (0.965) (0.982) (0.977)

We also consider the case where each constraint has ten threshold values. That is, for

each constraint `, where ` = 1, . . . , 5, we choose y` = 0 and q1
` = −1.4ε`, q

2
` = −1.3ε, q3

` =

−1.2ε, q4
` = −1.1ε, q5

` = −ε, q6
` = ε, q7

` = 1.1ε, q8
` = 1.2ε, q9

` = 1.3ε, and q10
` = 1.4ε, where

ε = 1/
√
n0. Table 6 shows the savings from RF increases significantly when the number

of thresholds is increased up to ten. While all three procedures guarantee statistical valid-

ity, RF saves 28.68%–29.39% observations compared with RecycleB, and 90.49%–91.03%

observations compared with Restartmax. The relative performance of RF compared with

RecycleB and Restartmax is about the same among all variance configurations with all three

methods performing better under CV than under IV and DV (which have larger variances

than CV). The effect of ρ in both cases is only significant for ρ = 0.7.

2.5.4.2 Multiple correlated constraints with a different number of thresholds for each
constraint

We consider the setting when s = 5 and each constraint has the threshold values shown in

Table 7. In this setting, the first two constraints have three thresholds, the third constraint

has four thresholds, and the fourth and fifth constraints have two thresholds. We choose

y = (0, 0, 0, 0, 0) and set ε = 1/
√
n0.

28

Table 6: Average number of observations and observed PCD (reported in parentheses) for
correlated constraint observations and ten threshold values for each constraint

CV IV DV

ρ RF RecycleB Restartmax RF RecycleB Restartmax RF RecycleB Restartmax

−0.25 144.15 202.12 1606.55 224.86 316.52 2477.48 224.66 316.85 2477.89
(0.958) (0.992) (0.983) (0.957) (0.991) (0.982) (0.957) (0.991) (0.983)

−0.15 145.46 204.06 1603.13 226.14 318.57 2472.91 226.13 318.95 2472.10
(0.957) (0.992) (0.983) (0.957) (0.991) (0.983) (0.957) (0.992) (0.982)

0 146.18 204.95 1590.65 226.97 319.55 2457.41 227.10 319.42 2456.58
(0.957) (0.991) (0.982) (0.956) (0.991) (0.983) (0.957) (0.991) (0.983)

0.3 143.69 201.68 1537.17 224.31 316.01 2390.19 224.37 316.32 2392.14
(0.958) (0.992) (0.983) (0.957) (0.991) (0.983) (0.957) (0.991) (0.983)

0.7 132.39 186.27 1391.54 210.91 298.69 2216.82 210.87 298.38 2217.65
(0.967) (0.992) (0.985) (0.966) (0.993) (0.984) (0.965) (0.992) (0.984)

Table 7: Threshold configurations for a single system

Constraint Threshold values of constraint `

` = 1 −2ε,−1.25ε,−ε
` = 2 ε, 1.25ε, 2ε
` = 3 −1.25ε,−ε, ε, 1.25ε
` = 4 −2ε, 2ε
` = 5 −ε, ε

We show the estimated PCD and OBS under CV, IV, and DV with correlation ρ =

−0.25, 0, 0.25 for the two choices of the parameter β` in Table 8. As all five constraints have

at least two thresholds, the two choices of β` for RF are identical in this setting.

All the procedures are statistically valid and RF still shows savings up to 10.89% and

69.61% compared with RecycleB and Restartmax, respectively. The relative performance of

RF ,RecycleB, and Restartmax is similar in all cases.

We see that RF ,RecycleB, and Restartmax require fewer observations compared with

the case when all constraints have four thresholds (shown in Table 5) or ten thresholds

(shown in Table 6). Similarly, the PCD in Table 8 is higher than in Table 5. This is

consistent with the fact that the configuration of the thresholds in this case is easier.

For RecycleB, choice (ii) dominates choice (i) under CV and DV while it is dominated by

choice (i) under IV. Constraints 1 and 2 have one “most difficult” threshold while constraints

3 and 5 have two “most difficult” thresholds. IV makes the later constraints more difficult,

while DV makes the later constraints less difficult. Choice (i) sets larger β` for constraints

29

Table 8: Average number of observations and observed PCD (reported in parentheses) for
correlated constraint observations and two, three, or four threshold values per constraint

RF RecycleB1 RecycleB2 Restartmax

CV

ρ = −0.25 130.75 143.58 141.44 415.66
(0.975) (0.981) (0.981) (0.980)

ρ = 0 132.42 145.08 143.18 420.75
(0.975) (0.981) (0.982) (0.980)

ρ = 0.25 131.37 144.14 142.25 421.08
(0.975) (0.981) (0.982) (0.980)

IV

ρ = −0.25 207.89 219.21 224.82 616.50
(0.973) (0.980) (0.981) (0.979)

ρ = 0 209.24 220.77 226.37 621.88
(0.974) (0.980) (0.981) (0.979)

ρ = 0.25 208.24 219.89 224.72 621.64
(0.974) (0.981) (0.981) (0.979)

DV

ρ = −0.25 197.29 221.40 213.86 636.15
(0.974) (0.982) (0.981) (0.978)

ρ = 0 199.85 223.73 216.56 643.54
(0.973) (0.981) (0.981) (0.979)

ρ = 0.25 199.49 223.30 216.61 644.06
(0.974) (0.982) (0.981) (0.979)

4 and 5 compared with choice (ii), which is beneficial under the IV configuration. As in

Section 2.5.4.1, the methods perform better under CV than under IV and DV. The effect

of ρ in all cases is not significant.

2.5.5 Multiple Systems and Multiple Constraints under Correlation

In this section, we consider multiple independent systems with multiple correlated con-

straints, and provide experimental results for the cases of equal and different number of

thresholds per constraint in Sections 2.5.5.1 and Section 2.5.5.2, respectively.

2.5.5.1 Multiple systems and multiple correlated constraints with the same number of
thresholds for each constraint

In this section, we consider k = 12 systems with s = 5 constraints. For each system, we

choose the same mean and threshold configurations as in the four threshold case in Section

2.5.4.1. Three of the twelve systems are from the CV, IV, and DV variance configurations,

respectively. We test correlations ρ = −0.25, 0, 0.25, and 0.7 under both triangular-shaped

30

and straight line continuation regions. The results are provided in Table 9.

Table 9 shows that all the procedures have estimated PCD greater than the nominal

value and RF achieve savings up to 11.43% and 73.48% compared with RecycleB and

Restartmax, respectively. The relative savings compared with RecycleB is sightly less than

for a single system, five constraints, and four thresholds (shown in Table 5), while it is

similar compared with Restartmax. As in Tables 5 and 6, the effect of ρ is only significant

for ρ = 0.7.

Table 9: Average number of observations and observed PCD (reported in parentheses) of
k = 12 systems and s = 5 constraints with four thresholds per constraint

Triangular Straight-line

RF RecycleB Restartmax RF RecycleB Restartmax

ρ = −0.25 3915.09 4420.49 14760.83 3826.57 4253.85 13292.81
(0.954) (0.977) (0.974) (0.962) (0.980) (0.976)

ρ = 0 3956.83 4463.58 14685.11 3876.77 4306.32 13029.37
(0.956) (0.977) (0.975) (0.961) (0.980) (0.976)

ρ = 0.25 3921.11 4426.11 14395.44 3835.64 4262.10 12613.39
(0.955) (0.977) (0.974) (0.960) (0.980) (0.975)

ρ = 0.7 3676.17 4147.50 13260.89 3550.95 3955.76 11340.57
(0.961) (0.980) (0.976) (0.964) (0.982) (0.978)

2.5.5.2 Multiple systems and multiple correlated constraints with a different number of
thresholds for each constraint

In this section, we consider k = 12 systems with s = 5 constraints, and the constraints for

each system have the thresholds shown in Table 7. Four of the 12 systems have each of

the variance configurations CV, IV, and DV, respectively. As each constraint has multiple

thresholds, the two ways of choosing β` for RF are identical. However, as the numbers

of thresholds on each constraint are different, the two ways of setting β` are different in

RecycleB. We test the performance of RF and Restartmax, and the performance for the

two different choices of β` for RecycleB. Table 10 shows the estimated PCD and OBS to

perform the feasibility check for all twelve systems under correlation ρ ∈ {−0.25, 0, 0.25}.

All three procedures guarantee statistical validity and the savings from RF are 5.86%–

6.26% compared with RecycleB and 68.36%–68.76% compared with Restartmax. The savings

31

are similar to the single system case (Table 8). Setting β` based on choice (ii) dominates

(i) in this case for RecycleB. In the results from the case of single system with different

number of thresholds per constraint (Table 8), we see that (ii) dominates (i) under both

CV and DV for RecycleB and (i) dominates (ii) only under IV. Therefore, it is expected

that choice (ii) dominates (i) here as more systems come from CV and DV configurations.

The correlation ρ does not have a significant impact in this case.

Table 10: Average number of observations and observed PCD (reported in parentheses) of
k = 12 systems and s = 5 constraints with two, three, or four thresholds per constraint

RF RecycleB1 RecycleB2 Restartmax

ρ = −0.25 3579.42 3816.45 3804.25 11313.39
(0.974) (0.980) (0.980) (0.981)

ρ = 0 3612.68 3853.91 3839.10 11416.95
(0.972) (0.980) (0.980) (0.981)

ρ = 0.25 3595.26 3832.25 3819.15 11403.96
(0.973) (0.980) (0.981) (0.981)

2.5.6 Inventory Policy Example

In this section, we test RF , RecycleB, and Restartmax on the (s, S) inventory policy prob-

lem discussed in Section 2.1. The problem is from [11]. Two performance measures are

considered: the failure probability (` = 1), which is the probability that a shortage occurs

between two successive review periods, and the expected cost per review period (` = 2),

which denotes the average total cost for each review period, including ordering cost, holding

cost, and penalty cost when demand is more than the inventory level. The ordering cost is

3 per item as well as a fixed ordering cost of 32 per order. The holding cost is 1 per item

per review period, and the penalty cost is 5 per item of unsatisfied demand. As in Section

2.1, consider three threshold values for the first constraint (q1 ∈ {0.01, 0.05, 0.1}) and five

threshold values for the second constraint (q2 ∈ {115, 120, 125, 130, 135}).

Demand during each review period is assumed to follow a Poisson distribution with

mean 25 and is independent for different review periods. We consider Θ = {(s, S)|s =

20 + 2m,S = 40 + 10n where m = 0, 1, 2, . . . , 10 and n = 0, 1, 2, . . . , 6}, which consists of

77 systems. We compute the two performance measures based on 30 review periods. The

32

analytical results for both performance measures can be obtained by using a Markov chain

model. The analytical result for the failure probability is presented in Figure 3a and the

expected cost per review is provided in Figure 3b.

Observations corresponding to the two performance measures from each replication are

not necessarily normally distributed and they are correlated. The values of the correlation

between these two performance measures among all 77 systems are estimated based on

simulation with 1,000,000 replications. The estimated correlations range from -0.23 to 0.52,

and the results are shown in Figure 4.

(a) The values of the failure probability (b) The values of the expected cost per review

Figure 3: The values of the failure probability and expected cost per review

We apply procedures RF , RecycleB, and Restartmax and obtain the average values of

PCD and OBS, as well as their standard errors, based on 100,000 replications. For RecycleB,

we set β` based on the second choice (ii) for the purpose of demonstration (the two choices

are identical for RF). Table 11 shows the results with and without CRN applied across

systems. By applying CRN across systems, the correlation between systems with respect

to the observed shortage between review periods has the range from -0.29 to 1, and the

correlation between systems with respect to the observed cost per review period has the

range from 0.25 to 1. These two correlations are shown in Figures 5a and 5b, respectively,

where we order the 77 systems first by their values of S and then by their values of s (i.e.,

we set the index of system (20,40) as 1, the index of system (20,50) as 2, the index of system

(22,40) as 8 and so on).

33

Figure 4: Estimated correlations between failure probability and cost per review

(a) The correlation between systems with respect
to the
failure probability

(b) The correlation between systems with respect
to the expected cost per review

Figure 5: The correlation between systems with respect to the failure probability and
expected cost per review

From Table 11, we observe that the RF ,RecycleB, and Restartmax procedures are sta-

tistical valid and that RF achieves savings around 8% OBS compared with RecycleB, and

34

Table 11: Average number of observations and observed PCD (mean values and standard
errors) with or without CRN applied across systems

Without CRN With CRN
Mean Standard Error Mean Standard Error

RF PCD 0.998 0.00014 0.998 0.00015
OBS 92475 24 92945 32

RecycleB
PCD 0.998 0.00013 0.998 0.00013
OBS 100616 26 101119 35

Restartmax PCD 0.998 0.00012 0.998 0.00013
OBS 148739 28 148883 48

around 38% compared with Restartmax. The case using CRN requires slightly more OBS

compared with the case that does not use CRN. This is due to the fact that the value of

β` when CRN applied is set to incorporate the correlation between systems as compared

with the case without CRN (see equations (4) and (13)), but CRN does not yield the same

benefit for feasibility check as it does for comparing systems. The estimated PCD equals

0.998 in all cases.

Finally, we illustrate how to use the above results for finding the best system for a multi-

objective problem. In our example, we want to minimize the failure probability and the

expected cost per review period. From one single replication of the (s, S) policy example, one

can enumerate all the systems that are feasible or infeasible with respect to each constraint

and for each threshold using the Zmi` variables (see Algorithm 1). Table 12 shows the

number of feasible systems with respect to each combination of constraint thresholds for

one particular run. As q1 = 0.01 and q2 = 115 corresponds to the tightest constraints, the

systems that are feasible with respect to both thresholds should be considered as the best

system. In our example, (s, S) = (32, 60) is the best system.

If there are multiple feasible systems for the tightest threshold values, one may add

additional thresholds that make the constraints tighter and run Algorithm 2. For example,

there are 63 systems declared feasible with respect to q1 = 0.05 and q2 = 130. By considering

a tighter threshold 0.01 for q1, one will obtain 42 feasible systems, which is fewer than for

q1 = 0.05 and q2 = 130. On the other hand, if there is no feasible system for the tightest

constraints, then one may add easier thresholds and run Algorithm 2. For example, if a

35

Table 12: Number of feasible systems with respect to all combinations of constraint thresh-
olds

q1

q2 115 120 125 130 135

0.01 1 17 27 42 44

0.05 8 33 48 63 65

0.1 14 41 56 71 73

decision maker uses tigher thresholds instead of q1 = 0.01 and q2 = 115, then it is likely

that there do not exist any feasible systems. In this case, one may consider using “looser”

thresholds on either constraint to see whether any systems are declared feasible.

2.6 Conclusions

In this chapter, we consider the problem of determining a feasible set of systems among

finitely many systems when threshold constants in one or more constraints are subjective.

We propose an indifference-zone procedure that recycles observations and performs feasi-

bility check with respect to all thresholds for each constraint simultaneously. We prove the

statistical validity of the proposed procedure and show by experiments that the procedure

saves a significant number of observations compared with four alternative statistical valid

procedures and also scales well with respect to the number of thresholds. We also explain

that our procedure is useful in finding the best system for multi-objective optimization

problems based on an application of determining an optimal inventory policy.

36

CHAPTER III

SELECTION OF THE BEST IN THE PRESENCE OF SUBJECTIVE

STOCHASTIC CONSTRAINTS

3.1 Introduction

We consider the problem of selecting the best or near-best system with respect to a primary

performance measure among a finite number of simulated systems while also satisfying

stochastic constraints on one or more secondary performance measures. When no feasible

system exists with respect to a given set of threshold values, the decision maker may be

willing to relax the threshold values of some constraints so that a feasible system can be

found. In that sense, constraints with varying thresholds can be considered as subjective

constraints. We illustrate this problem with an example.

Suppose a decision maker wants to design an inventory policy such that the expected

fill rate within each review period is maximized. She considers using an (s, S) inventory

policy (namely ordering products to increase the inventory level up to S when the inventory

level at a review period is below s and placing no order, otherwise). Two constraints exist,

namely the probability that a shortage occurs between two successive review periods should

be less than or equal to q1 = 1% and the expected cost per review period should be less

than or equal to q2, where the value of q2 is small. The decision maker thinks q2 = $100,000

is small but is willing to relax the threshold to $105,000 or $110,000 if no feasible system

can be found with q2 = $100,000. If there is still no feasible systems with respect to q2 =

$110,000, then the decision maker is willing to raise the threshold q1 to 5%, still with three

possible values for q2.

In this chapter, we adopt the concept of recycling simulation observations in the context

of constrained R&S when constraint thresholds vary. We provide fully sequential procedures

that return the best feasible system with respect to the most preferred threshold values

possible, where the preference order among thresholds is specified by the user. The threshold

37

values for constraints are relaxed until there is at least one feasible solution. We prove that

our procedures achieve a desired overall probability of correct selection and also perform

well in reducing the required number of observations until a decision is made compared with

straight-forward repeating procedures, namely applying procedures of [1] or [5] iteratively

to each possible set of threshold values depending on whether the problem has a single

constraint or multiple constraints.

The rest of this chapter is organized as follows: Section 3.2 provides the background for

our problem. Sections 3.3 and 3.4 propose and analyze sequentially-running and simultaneously-

running procedures, respectively, for the feasibility check and comparison phases. Section

3.5 discusses three major preference orders of the constraint thresholds and demonstrates

how each preference order can be constructed automatically from users’ inputed threshold

values for each constraint. In Section 3.6, we present numerical results for the proposed

procedures and compare their performances with the straight-forward procedures which ap-

ply existing constrained R&S procedures repeatedly to each set of thresholds. Concluding

remarks are provided in Section 3.7. A discussion of two alternative procedures that we

compare with our proposed procedures is included in Appendices B.1 and B.2.

3.2 Background

In this section, we formulate our problem in Section 3.2.1 and discuss how we define the

correct selection event in Section 3.2.2. The necessary assumptions for the statistical validity

of our proposed procedures are presented in Section 3.2.3.

3.2.1 Problem Formulation

We consider k systems whose primary performance measures, as well as s secondary perfor-

mance measures, can be estimated through stochastic simulation. Let Γ denote the index

set of all possible systems (i.e., Γ = {1, . . . , k}). Let Xin be the observation associated with

the primary performance measure of system i from replication n, and Yi`n be the obser-

vation associated with the `th stochastic constraint of system i from replication n, where

` = 1, . . . , s. We also define the expected values of the primary and secondary performance

measures for each system i ∈ Γ and constraint ` = 1, . . . , s as xi = E[Xin] and yi` = E[Yi`n],

38

respectively. Constrained R&S is to select

arg maxi∈Γ xi

s.t. yi` ≤ q` for all ` = 1, . . . , s,

where q` denotes the constraint threshold for constraint `.

For a given threshold vector q = (q1, . . . , qs), procedures due to [1] can be used to find

the best system if there is only one constraint. If there are multiple constraints, procedures

due to [5] are suitable. In this paper, we assume that the decision maker has a list of possible

threshold values in consideration for each constraint and hopes to select the best system

with respect to the most preferable thresholds possible. We let d` denote the number of

distinct threshold values and qm` denote the mth distinct threshold value on constraint `,

where m = 1, . . . , d` and ` = 1, . . . , s. We assume q1
` < · · · < qd`` , where ` = 1, . . . , s.

The threshold values for individual constraints are combined into an ordered list of vec-

tors of threshold values {q(1), q(2), . . . , q(d)}, where d denotes the total number of threshold

vectors that the decision maker is interested to test. We assume that q(1) is preferred to

q(2), q(2) is preferred to q(3), and so on. For the implementation of our procedures, a deci-

sion maker can input the ordered list of threshold vectors, or the decision maker can input

an ordered list of threshold values for each constraint and a mechanism for constructing an

ordered list of threshold vectors from the inputed threshold values (see Section 3.5). We

let q
(θ)
` be the threshold value on constraint ` in q(θ), where θ = 1, . . . , d and ` = 1, . . . , s.

Then we introduce the threshold index vector I(θ) to include the indices of the threshold

values that form q(θ). Similar to the definition of q
(θ)
` , I

(θ)
` represents the threshold index

on constraint `.

Consider the example of selecting the best inventory control policy discussed in Section

2.1. Then s = 2, d1 = 2 (i.e., two threshold values for the first constraint), d2 = 3 (i.e., three

threshold values for the second constraint), q1
1 = 1, q2

1 = 5, and q1
2 = 100000, q2

2 = 105000,

and q3
2 = 110000. Moreover, we consider the following d = 6 ordered threshold vectors

q(1) =

 1

100000

 , q(2) =

 1

105000

 , q(3) =

 1

110000

 ,

39

q(4) =

 5

100000

 , q(5) =

 5

105000

 , and q(6) =

 5

110000

 .
Note that q

(1)
1 = q

(2)
1 = q

(3)
1 = 1, q

(4)
1 = q

(5)
1 = q

(6)
1 = 5, while q

(1)
2 = q

(4)
2 = 100000, q

(2)
2 =

q
(5)
2 = 105000, and q

(3)
2 = q

(6)
2 = 110000. The threshold index vectors are

I(1) =

1

1

 , I(2) =

1

2

 , I(3) =

1

3

 , I(4) =

2

1

 , I(5) =

2

2

 , and I(6) =

2

3

 .
Hence I

(1)
1 = I

(2)
1 = I

(3)
1 = 1, I

(4)
1 = I

(5)
1 = I

(6)
1 = 2, while I

(1)
2 = I

(4)
2 = 1, I

(2)
2 = I

(5)
2 = 2,

and I
(3)
2 = I

(6)
2 = 3.

For θ ≤ d, we use Aθ to denote the region that is feasible under threshold vector q(θ) but

not under threshold vectors q(1), . . . , q(θ−1) (if θ > 1), and use Ad+1 to denote the region

that is infeasible to all q(1), . . . , q(d). More specifically, we let

Aθ =



{
(z1, z2, . . . , zs) : z` ≤ q

(θ)
` , ` = 1, 2, . . . , s

}
, if θ = 1;{

(z1, z2, . . . , zs) : z` ≤ q
(θ)
` , ` = 1, 2, . . . , s

}
\ ∪θ−1

κ=1Aκ, if θ = 2, . . . , d;

Rs \ ∪dκ=1Aκ, if θ = d+ 1.

(5)

With this definition of Aθ, we can say that the decision maker wants to find the best among

systems whose constraint mean configurations fall in A1 but would consider systems in A2

if no systems fall in A1. She would further consider systems in A3 if no systems fall in A1

and A2 and d ≥ 3, etc.

We assume that the ordered list of threshold vectors is such that when there is no trade-

off, the decision maker always prefers “tighter” combinations of threshold values. Consider

a case where there are two (non-negative) constraints, the first constraint has three thresh-

olds, and the second constraint has two thresholds. Then it is not possible for the decision

maker to prefer (q3
1, q

1
2) to (q2

1, q
1
2) in the preference order. Figure 6 shows A1, . . . , A5 for an

example with d = 4 combinations of threshold vectors. We see that q(1) = (q2
1, q

1
2) does not

correspond to the “tightest” combination of threshold values (i.e., (q1
1, q

1
2)), and similarly

q(d) = (q3
1, q

1
2) does not correspond to the “weakest” combination of threshold values (i.e.,

(q3
1, q

2
2)).

40

yi2

yi1

q1
2

q2
2

q1
1 q2

1 q3
1

A1

A2 A3

A4

A5

Figure 6: A preference order where the “tightest” (“weakest”) combination of thresholds is
not “most” (“least”) preferred

The following definition will facilitate the efficient implementation of our approaches.

Definition 1. Constraint ` has an increasing preference if q
(θ)
` ≤ q

(θ′)
` for any θ, θ′ =

1, 2, . . . , d with θ < θ′.

We consider the following two examples to further explain Definition 1. Figure 7 shows

two preference orders of threshold vectors for two (non-negative) constraints with d1 =

d2 = 3. Based on our definition of threshold vectors, we have d = 3, q(1) = (q1
1, q

1
2), q(2) =

(q2
1, q

2
2), and q(3) = (q3

1, q
3
2) in Figure 7a, which satisfies Definition 1 for both constraints.

On the other hand, Figure 7b formulates the threshold vectors as q(1) = (q1
1, q

1
2), q(2) =

(q1
1, q

2
2), q(3) = (q1

1, q
3
2), q(4) = (q2

1, q
1
2), etc. We see that constraint 1 has increasing preference

whereas constraint 2 does not have increasing preference. Finally, in Figure 6, neither

constraint has increasing preference.

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

A1

A2

A3

A4

(a)

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

(b)

Figure 7: Two preference orders of threshold vectors

41

3.2.2 Correct Selection

To solve the constrained R&S problem with subjective constraints described in Section

3.2.1, we consider two phases, namely Phase I to identify feasible systems and Phase II to

select a system with the largest xi based on a comparison among feasible systems. These

phases are designed to correctly select the best feasible system with respect to the most

preferred threshold vector possible, as described in this section.

To check the feasibility of each system with respect to constraint `, [1] introduce a

tolerance level, namely ε` > 0, for constraint `, which is a positive real value predefined by

the decision maker. This is often interpreted as the amount the decision maker is willing to

be off from a given threshold value. Consider a threshold value qm` for m = 1, 2, . . . , d`. Any

systems with yi` ≤ qm` − ε` are considered as desirable systems with respect to constraint `

and threshold value qm` . We let D`(q
m
`) denote the set of desirable systems for constraint `

and qm` . Systems with yi` ≥ qm` + ε` are considered as unacceptable systems for constraint

` and threshold qm` , and are placed in set U`(q
m
`). Systems that fall within a tolerance level

of qm` , which means qm` − ε` < yi` < qm` + ε`, are considered as acceptable systems, placing

them in the set A`(q
m
`). More specifically,

D`(q
m
`) = {i ∈ Γ|yi` ≤ qm` − ε`};

U`(q
m
`) = {i ∈ Γ|yi` ≥ qm` + ε`}; and

A`(q
m
`) = {i ∈ Γ|qm` − ε` < yi` < qm` + ε`}.

When feasibility check is performed to completion (until a decision is made), we let

CDi`(q
m
`) denote the correct decision event of system i with respect to constraint ` and

threshold qm` , which is defined as declaring system i as feasible if i ∈ D`(q
m
`) and as infeasible

if i ∈ U`(qm`). Any feasibility decision is considered correct if i ∈ A`(qm`). For any threshold

vector q(θ), we say that system i is desirable with respect to q(θ) when it is desirable with

respect to all the constraints, i.e., i ∈ D`(q
(θ)
`) for all ` = 1, . . . , s. System i is unacceptable

with respect q(θ) if it is unacceptable with respect to at least one constraint, i.e., there exists

` such that i ∈ U`(q
(θ)
`). When system i is acceptable to some (or all) the constraints and

desirable with respect to the other constraints, system i is called acceptable with respect

42

to q(θ).

To select the best system with respect to the primary performance measure in Phase II,

the decision maker needs to choose an indifference-zone parameter δ, which is the smallest

absolute difference that the decision maker considers significant. More specifically, any

system whose primary performance measure is at least δ smaller (larger) than system i is

considered as inferior (superior) to system i.

Let θ∗ be the smallest θ such that D`

(
q

(θ)
`

)
6= ∅ for all `. If for each θ = 1, . . . , d, there

exists at least one constraint `θ such that D`θ

(
q

(θ)
`θ

)
= ∅, i.e., θ∗ does not exist, then we

set θ∗ = d+ 1. If θ∗ ≤ d, then q(θ∗) is the most preferable threshold vector possible where

at least one desirable system exists. Further, let B denote the set of desirable systems with

respect to q(θ∗) (i.e., B = ∩s`=1D`

(
q

(θ∗)
`

)
) and let [b] be the index of the best system among

the systems in B, so that x[b] ≥ xi for i, [b] ∈ B. Then if θ∗ ≤ d, the correct selection

event is to select a desirable or acceptable system with respect to q(θ∗) whose primary

performance is not inferior to the best system, or an acceptable system with respect to a

preferred threshold vector. More specifically,

CS =

{
select i such that either i ∈ ∩s`=1

(
D`

(
q

(θ∗)
`

)
∪A`

(
q

(θ∗)
`

))
and xi > x[b] − δ

or i ∈ ∪θ<θ∗ ∩s`=1

(
D`

(
q

(θ)
`

)
∪A`

(
q

(θ)
`

))}
.

If θ∗ = d+1, CS is to either declare that no feasible systems exist or identify any acceptable

system with respect to any of the threshold vectors q(1), . . . , q(d).

3.2.3 Notation and Assumptions

Throughout the paper, we let 1(·) be the indicator function and use the additional notation

defined below:

n0 ≡ initial sample size for each system (n0 ≥ 2);

ri ≡ number of observations so far for system i (ri ≥ n0);

X̄i(ri) ≡ average value of Xi1, . . . , Xiri for system i;

Ȳi`(ri) ≡ average value of Yi`1, . . . , Yi`ri for system i and constraint `;

43

S2
Xij (n0) ≡ sample variance of Xi1 −Xj1, . . . , Xin0 −Xjn0 between system i and j;

S2
Yi`

(n0) ≡ sample variance of Yi`1, . . . , Yi`n0 for system i and constraint `;

R(ri; v, w, z) ≡ max

{
0,

(n0 − 1)wz

v
− v

2c
ri

}
for v, w, z ∈ R+ and c ∈ {1, 2, . . .};

g(η) ≡
c∑
j=1

(−1)j+1

(
1− 1

2
1(j = c)

)
×

(
1 +

2η(2c− j)j
c

)−(n0−1)/2

;

α ≡ overall nominal error for a procedure under consideration.

Note that an integer parameter c is required for both R(ri; v, w, z) and g(η). This

is a user-defined parameter that impacts the shape of the continuation region defined by

(−R(ri; v, w, z), R(ri; v, w, z)) (it becomes a longer triangle as c increases). The choice

c = 1 is recommended as it guarantees a unique and easy solution when computing the

implementation parameter η from g(η). [10] also suggest that c = 1 is a good choice when

the decision maker does not have information about the systems’ mean configuration. The

experimental results in the paper are based on c = 1.

Our statistical analysis of our proposed procedures will rely on the following two as-

sumptions.

Assumption 2. For each system i, where i = 1, . . . , k, we have

Xin

Yi1n
...

Yisn


iid∼ Ns+1





xi

yi1
...

yis


,Σi


, n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, Ns+1 denotes (s+ 1)-dimensional

multivariate normal, and Σi is the (s+1)×(s+1) covariance matrix of the vector (Xin, Yi1n, . . . , Yisn).

Normally distributed data is a common assumption used in many R&S procedures due

to the fact that it can be justified by the Central Limit Theorem when observations are

either within-replication averages or batch means [12]. Moreover, primary and secondary

performance measures are usually correlated. When common random numbers (CRN) are

44

introduced in simulating observations from each system, observations between systems are

correlated. Our formulation allows correlations between both performance measures and

systems.

Assumption 3. If θ∗ ≤ d, then for any system i ∈ ∩s`=1

(
D`(q

(θ∗)
`) ∪A`(q

(θ∗)
`)

)
, where

i 6= [b], we assume xi ≤ x[b] − δ.

Assumption 3 implies that there exists only one best system [b] and any systems that

are desirable or acceptable with respect to q
(θ∗)
` for all constraint ` = 1, . . . , s are inferior

to system [b]. This assumption is a standard assumption for proving the statistical validity

of IZ approaches in the R&S literature.

3.3 Sequentially-Running Procedures

In this section, we present procedures that implement Phases I and II sequentially. The

outline of this section is as follows. Section 3.3.1 describes a sequentially-running procedure

and Section 3.3.2 proves its statistical validity. A variation of the sequentially-running

procedure is discussed in Section 3.3.3.

3.3.1 Procedure ZAKR

A proposed sequentially-running procedure named ZAKR (“restart”) is described in Algo-

rithm 3 (we use |S| to denote the cardinality of a set S). ZAKR starts by executing Phase I

for all systems to identify the most preferred threshold vector possible, q(θ∗), as well as the

feasible systems with respect to q(θ∗). The parameter θ keeps track of our current estimate

of θ∗ (initially θ = d), M is a set of systems that are in consideration (initially M contains

all the systems, i.e., M = Γ), and F is a set of systems that are declared feasible with

respect to threshold vector q(θ) (initially F = ∅). The procedure returns Zmi` = 1(Zmi` = 0)

if system i is declared feasible (infeasible) with respect to constraint ` and threshold qm` ,

and Zmi` = 2 if no decision is made about the feasibility of system i with respect to threshold

qm` on constraint `. Notice that once a system is declared feasible with respect to threshold

vector q(θ) where 1 ≤ θ ≤ d − 1, we do not need to check feasibility for any systems with

respect to the less preferred threshold vectors q(θ+1), . . . , q(d). Similarly, once a system is

45

declared feasible with respect to q(θ) where 1 ≤ θ ≤ d, then we do not need to collect addi-

tional observations from any inferior systems whose feasibility with respect to q(θ) is known

and that are infeasible with respect to all the preferred threshold vectors q(1), . . . , q(θ−1).

Our approach for handling multiple threshold values builds on the work of RF discussed

in Chapter 2, an efficient fully-sequential procedure for checking the feasibility of all systems

with respect to all constraints and all thresholds simultaneously. Theorem 1 in Chapter 2

shows that once a system i is declared feasible with respect to a threshold qm` such that

qm` ≥ yi`+ε`, this system will be declared feasible with respect to all thresholds qm+1
` , . . . , qd``

on constraint `. Similarly, if a system i is declared infeasible with respect to a threshold qm`

such that qm` ≤ yi` − ε`, then this system will be declared infeasible with respect to all the

thresholds q1
` , . . . , q

m−1
` . This fact is essential in our proposed procedures.

The sequentially-running procedure ZAKR performs Phase II on the surviving systems

from the completion of Phase I. More specifically, it selects the best system with respect to

the primary performance measure among the subset of systems that are declared feasible

with respect to the most preferred threshold vector possible identified in Phase I. In order

to prove the statistical validity of our proposed sequentially-running procedure and avoid

storing simulation results, we avoid the correlation between the primary and secondary

performance measures by not recycling any observations from Phase I and instead restarting

“from scratch” when implementing comparisons in Phase II. Moreover, when CRN are used

to compare systems in Phase II, we assume that the implementation of CRN is such that

the simulation results for any survising system in Phase II do not depend on the set of

surviving systems F .

Remark: In ZAKR, it is possible to use r rather than ri in Phase I. However, in Sec-

tion 3.3.3 we propose a more efficient heuristic version of ZAKR (namely ZAK) that

recycles observations from Phase I in Phase II and that procedure requires the number of

observations taken in Phase I for each system. Therefore, we state ZAKR with ri rather

than r in Phase I.

46

Algorithm 3 Procedure ZAKR

[Setup:] Select the overall nominal confidence level 1 − α and choose αf , αc > 0 such that (1 −
αf)(1 − αc) = 1 − α. Choose tolerance levels ε1, . . . , εs, indifference-zone parameter δ, threshold vec-

tors {q(1), q(2), . . . , q(d)}, and associated index vectors {I(1), I(2), . . . , I(d)}. Set M = Γ and Zmi` = 2 for
all i ∈M, ` = 1, . . . , s, and m = 1, . . . , d`. Set F = ∅ and θ = d. Set ηf such that g(ηf) = α′f , where α′f is
set as the solution to(

1−min{s, d}α′f
)k−1 × (1− sα′f) = 1− αf , if systems are simulated independently;

and set as
α′f = αf/ [(k − 1) min{s, d}+ s] , if systems are simulated under CRN.

Add any constraint `, where ` = 1, . . . , s, with increasing preference to set IP.
[Initialization for Phase I:]
for each system i ∈M do

• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0 for ` = 1, 2, . . . , s.

• Compute Ȳi`(n0) and S2
Yi`

(n0).

• Set ri = n0,ONi = {1, 2, . . . , s}, and ONi` = {1, . . . , d`} for ` = 1, 2, . . . , s.

end for
[Feasibility Check:]
for each system i ∈M do

for ` ∈ ONi do
for m ∈ ONi` do,

If Ȳi`(ri) +R(ri; ε`, ηf , S
2
Yi`

(n0))/ri ≤ qm` , set Zmi` = 1 and ONi` = ONi` \ {m}.
If Ȳi`(ri)−R(ri; ε`, ηf , S

2
Yi`

(n0))/ri ≥ qm` , set Zmi` = 0 and ONi` = ONi` \ {m}.
end for
If ONi` = ∅, set ONi = ONi \ {`}.

end for

If ∃ minimum κ ≤ θ s.t.
∏s
`=1 Z

I
(κ)
`
i` = 1, and either κ < θ or i 6∈ F , then

• If κ < θ, then set F = ∅, θ = κ, and for all j ∈ M delete qm` from ONj` if ` ∈ IP and m > I
(θ)
` (if

` 6∈ IP, then qm` can be removed from ONj` if I
(θ′)
` 6= m for all θ′ ≤ κ), and set ONj = ONj \ {`} if

ONj` = ∅.
• Add system i to F .

If
∏s
`=1 Z

I
(θ)
`
i` = 0 or 1 and either θ = 1 or

∏s
`=1 Z

I
(κ)
`
i` = 0 for all κ = 1, . . . , θ− 1, then remove system

i from M .
end for
[Stopping Condition for Phase I]:
If M 6= ∅, then for each system i ∈ M , set ri = ri + 1, take one additional observation Yi`ri , and update
Ȳi`(ri) for ` ∈ ONi, then go to [Feasibility Check]. Else, check the following conditions.

• If |F | = 0, stop and conclude no feasible systems;

• If |F | = 1, stop and return the system in F as the best; or

• If |F | > 1, go to [Initialization for Phase II].

[Initialization for Phase II:] Let ηc be a solution to g(ηc) = α′c, where

α′c =

{
1− (1− αc)1/(k−1), if systems are simulated independently;
αc/(k − 1), if systems are simulated under CRN.

Let M = F be the set of systems still in contention. For each system i ∈ M , perform an entirely new
simulation and obtain Xi1, . . . , Xin0 independent of any Yj`n generated in Phase I. Compute X̄i(n0) and
S2
Xij

(n0) for i, j ∈M and i 6= j. Set r = n0 and go to [Comparison].

[Comparison:] For i, j ∈M s.t. i 6= j and

rX̄i(r) > rX̄j(r) +R(r; δ, ηc, S
2
Xij (n0)),

eliminate j from M .
[Stopping Condition for Phase II:] If |M | = 1, then stop and select the system in M as the best.
Otherwise, for each system i ∈ M , take one additional observation Xi,r+1 independent of any Yj`n
generated in Phase I and compute X̄i(r + 1). Then, set r = r + 1 and go to [Comparison].

47

3.3.2 Statistical Validity of Procedure ZAKR

In this section, we prove the statistical validity of the ZAKR procedure presented in Algo-

rithm 3. Before presenting the main results, we need more definitions. Let θ∗ be defined as

in Section 3.2.2. We define the sets Sa and Su as follows:

Sa = set of acceptable systems with respect to at least one of the threshold vectors q(1), . . . , q(θ∗−1);

Su =


set of unacceptable systems with respect to q(θ∗) among systems in Γ\Sa, if θ∗ ≤ d;

Γ \ Sa, if θ∗ = d+ 1.

We further define

Sa′ =


set of acceptable systems with respect to q(θ∗) among systems in Γ\Sa, if θ∗ ≤ d;

∅, if θ∗ = d+ 1;

Sd =


set of desirable systems with respect to q(θ∗) among systems in Γ\(Sa ∪ [b]), if θ∗ ≤ d;

∅, if θ∗ = d+ 1.

We then let ja = |Sa|, ja′ = |Sa′ |, jd = |Sd|, and ju = |Su|, and therefore ja + ja′ + jd + ju +

1(θ∗ ≤ d) = k. For correct selection, we must select a system in Sa∪{[b]} and eliminate the

systems in Sa′ ∪ Sd ∪ Su when θ∗ ≤ d (under Assumption 3); when θ∗ = d+ 1, CS involves

eliminating all systems in Su, and either declaring all systems infeasible or selecting a system

in Sa.

To illustrate, consider a problem with two constraints where the first constraint has

two thresholds and the second constraint has three thresholds. We consider all d = 6

possible threshold vectors q(1), . . . , q(6). Figure 8 shows possible (non-negative) secondary

performance means and thresholds where the shaded areas represent acceptable regions

with respect to one or more threshold vectors, and A1, . . . , A6 are defined as in equation

(5) and are separated by the solid lines. Suppose θ∗ = 5 in this example. Due to the

definition of θ∗, there do not exist any desirable systems with respect to q(1), . . . , q(4), but

there exists at least one system that falls in the desirable region of q(5). It is possible

that there exist acceptable systems with respect to q(1), . . . , q(4). Figure 8 shows systems

a and b as two examples of acceptable systems with respect to preferred threshold vectors

(i.e., a, b ∈ Sa). Note that system a is acceptable with respect to q(1), q(2), q(3), and q(4)

48

and desirable with respect to q(5), while system b is acceptable with respect to q(3) but

unacceptable to q(1), q(2), q(4), and q(5). System c is acceptable with respect to q(5) (i.e.,

c ∈ Sa′) and unacceptable with respect to q(1), . . . , q(4).

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1

A1

A2

A3

A4

A5

A6

a

b

c

Figure 8: Regions for two secondary performance measures and six threshold vectors

To prove the statistical validity of ZAKR, we start with the following lemma.

Lemma 2. For system i and constraint ` with specific threshold value qm` , the [Feasibility

Check] steps in ZAKR that run to completion ensure Pr(CDi`(q
m
`)) ≥ 1− α′f .

Proof. When system i and constraint ` with specific threshold qm` are considered separately,

the [Feasibility Check] steps in ZAKR either conclude a feasibility decision or eliminate

threshold qm` for further consideration (when system i is declared feasible with respect to

a threshold vector and all preferred threshold vectors do not involve threshold value qm`

on constraint `). We see that when a feasibility decision is concluded, the [Feasibility

Check] steps in ZAKR are essentially the same as for the statistically-valid feasibility

check procedure F in [1] for a single system and a single constraint with one threshold

value with confidence level 1−α′f . The result now follows from the special case of Theorem

1 in [1] with k = 1.

We then introduce the following definitions for i ∈ Γ and present a lemma that is

49

essential in proving the statistical validity of ZAKR:

A∗1(i) = system i is declared infeasible to q(1), . . . , q(min{θ∗,d});

A∗2(i) = system i is declared infeasible to q(1), . . . , q(θ∗−1) if 1 < θ∗ ≤ d;

B∗1 = system [b] is declared feasible to q(θ∗) if θ∗ ≤ d.

Lemma 3. For a particular system i, the [Feasibility Check] steps in ZAKR ensure

Pr (A∗1(i)) ≥ 1−min{s, d}α′f , if i ∈ Su;

Pr (A∗2(i)) ≥ 1−min{s, d− 1}α′f , if i ∈ Sd ∪ Sa′ and 1 < θ∗ ≤ d;

Pr (B∗1) ≥ 1− sα′f , if θ∗ ≤ d.

Proof. First, consider i ∈ Su. Then system i must be unacceptable to q(1), . . . , q(θ∗) because

it is unacceptable to q(θ∗), not in Sa, and there are no desirable systems with respect to

q(1), . . . , q(θ∗−1).

When θ∗ ≤ d, as system i is unacceptable with respect to q1, . . . , q(θ∗), then for each

κ = 1, . . . , θ∗, there exist at least one constraint `κ such that yi`κ ≥ q
(κ)
`κ

+ ε`κ . Then we

have

Pr (A∗1(i)) ≥ Pr
(
∩θ∗κ=1CDi`κ(q

(κ)
`κ

)
)
≥ 1−

θ∗∑
κ=1

Pr
(

ICDi`κ(q
(κ)
`κ

)
)
≥ 1− dα′f , (6)

where we use ICDi`(q
m
`) to denote the event of incorrect decision of system i with respect

to constraint ` and threshold qm` . The first inequality holds because declaring system i

infeasible to constraint `κ is sufficient to declare system i infeasible to threshold vector q(κ)

and it is not possible to declare a system feasible with respect to a threshold vector without

completing the comparison with all thresholds in that vector. The second inequality holds

due to the Bonferroni inequality, and the last inequality holds due to Lemma 2 and the fact

of θ∗ ≤ d.

Observe that since there are only s constraints, the set L = {`1, . . . , `θ∗} can have at

most s distinct values. For ` ∈ L, let Ii` denote the largest threshold index on constraint `

that system i is unacceptable to, i.e.,

Ii` = max
1≤m≤d`

{m : yi` ≥ qm` + ε`} .

50

Thus, we know that q1
` < q2

` < · · · < qIi`` ≤ yi` − ε` on constraint `. Due to the discussion

in Theorem 1 of Chapter 2, we know that CDi`(q
Ii`
`) ⊆ · · · ⊆ CDi`(q

2
`) ⊆ CDi`(q

1
`). Then

CDi`(q
Ii`
`) ⊆ CDi`(q

(κ)
`) for κ = 1, . . . , θ∗ with `κ = `. Thus, we also have

Pr (A∗1(i)) ≥ Pr
(
∩θ∗κ=1CDi`κ(q

(κ)
`κ

)
)
≥ Pr

(
∩`∈LCDi`(q

Ii`
`)
)

≥ 1−
∑
`∈L

Pr
(

ICDi`(q
Ii`
`)
)
≥ 1− |L|α′f ≥ 1− sα′f , (7)

where the third inequality is due to the Bonferroni inequality and the forth inequalty is

due to Lemma 2. By comparing equations (6) and (7), we conclude that Pr (A∗1(i)) ≥

1−min{s, d}α′f .

When θ∗ = d+ 1, a similar argument yields

Pr (A∗1(i)) ≥ Pr
(
∩dκ=1CDi`κ(q

(κ)
`κ

)
)
≥ 1−

d∑
κ=1

Pr
(

ICDi`κ(q
(κ)
`κ

)
)
≥ 1− dα′f ,

and, defining L = {`1, . . . , `d},

Pr (A∗1(i)) ≥ Pr
(
∩dκ=1CDi`κ(q

(κ)
`κ

)
)
≥ Pr

(
∩`∈LCDi`(q

Ii`
`)
)

≥ 1−
∑
`∈L

Pr
(

ICDi`(q
Ii`
`)
)
≥ 1− |L|α′f ≥ 1− sα′f .

Therefore, Pr (A∗1(i)) ≥ 1−min{s, d}α′f .

Now, consider i ∈ Sd ∪ Sa′ with 1 < θ∗ ≤ d. As system i is not in Sa and there are

no desirable systems with respect to q(1), . . . , q(θ∗−1), system i must be unacceptable with

respect to q1, . . . , q(θ∗−1). Then for each κ = 1, . . . , θ∗−1, there exist at least one constraint

`κ such that yi`κ ≥ q
(κ)
`κ

+ ε`κ . Due to a similar argument as for i ∈ Su, we have

Pr (A∗2(i)) ≥ Pr
(
∩θ∗−1
κ=1 CDi`κ(q

(κ)
`κ

)
)
≥ 1−

θ∗−1∑
κ=1

Pr
(

ICDi`κ(q
(κ)
`κ

)
)
≥ 1− (d− 1)α′f .

Based on a similar definition L = {`1, . . . , `θ∗−1} and the discussion above, we have

Pr (A∗2(i)) ≥ Pr
(
∩θ∗−1
κ=1 CDi`κ(q

(κ)
`κ

)
)
≥ Pr

(
∩`∈LCDi`(q

Ii`
`)
)

≥ 1−
∑
`∈L

Pr
(

ICDi`(q
Ii`
`)
)
≥ 1− |L|α′f ≥ 1− sα′f .

Therefore, we have Pr (A∗2(i)) ≥ 1−min{s, d− 1}α′f .

51

Finally, for [b], when θ∗ ≤ d, we have

Pr (B∗1) = Pr
(
∩s`=1CDi`(q

(θ∗)
`)

)
≥ 1−

s∑
`=1

Pr
(

ICDi`(q
(θ∗)
`)

)
≥ 1− sα′f ,

where the last inequality is due to Lemma 2.

For Lemma 3, one may notice that d > s holds in most cases, and therefore Pr (A∗1(1)) ≥

1−sα′f and Pr (A∗2(1)) ≥ 1−sα′f hold in most cases. Note that when d ≥ s and the systems

are simulated independently, the inplementation parameter α′f has a closed-form solution

as

α′f =
1

s

[
1− (1− αf)1/k

]
.

When d < s, one may need to find α′f by numerically solving (1−dα′f)k−1×(1−sα′f) = 1−αf .

We then use CSi to denote the correct selection between system i ∈ Sa′ ∪ Sd and the

best system [b] and introduce the following lemma.

Lemma 4. Given i such that xi ≤ x[b] − δ, the [Comparison] steps for system i and [b]

in ZAKR that run to completion ensure

Pr (CSi) ≥ 1− α′c.

Proof. When only system i and [b] are considered, the [Comparison] steps in ZAKR are

the same as the statistically-valid selection-of-the-best procedure provided in [10] when two

systems are considered with confidence level 1− α′c. Therefore, the result follows from the

special case of Theorem 1 of [10] with k = 2.

We are now ready to prove the statistical validity of ZAKR.

Theorem 4. Under Assumptions 2 and 3, the ZAKR procedure guarantees

Pr{CS} ≥ 1− α.

Proof. We consider two cases, namely when θ∗ ≤ d and θ∗ = d+ 1.

Case 1: θ∗ ≤ d.

Note that any systems in (Sa′ ∪ Sd) should not be declared feasible with respect to a more

52

preferred threshold vector q(1), . . . , q(θ∗−1) as they could be selected as the best system

otherwise. More specifically, we consider the following four events.

A∗1 = all systems in Su are eliminated by infeasibility = ∩i∈SuA∗1(i);

A∗2 = all systems in (Sa′ ∪ Sd) are declared infeasible to thresholds q(1), . . . , q(θ∗−1)

= ∩i∈Sa′∪SdA
∗
2(i) when θ∗ > 1;

B∗2 = system [b] would be selected as the best system among the systems in Sa′ ∪ Sd;

B∗ = system [b] is declared feasible with respect to q(θ∗) and is selected as the best system

among the surviving systems from Phase I.

Notice that B∗1 ∩ B∗2 ⊆ B∗ and A∗2 is not defined when θ∗ = 1. This means

Pr{CS} ≥


Pr(A∗1 ∩ B∗), if θ∗ = 1;

Pr(A∗1 ∩ A∗2 ∩ B∗), if θ∗ > 1.

We see that Pr{CS} achieves its lower bound when θ∗ > 1 (because the bounds on

Pr(A∗1),Pr(B∗1), and Pr(B∗2) below do not depend on the value of θ∗), and thus we fo-

cus on the case when θ∗ > 1. We also see that A∗1,A∗2, and B∗1 are independent events when

systems are simulated independently but are dependent events when systems are simulated

under CRN. As we discard observations from Phase I and completely restart for Phase II,

and as B∗2 involves making the correct selection from all systems in Sa′ ∪ Sd (not only the

ones surviving from Phase I), B∗2 is independent from A∗1,A∗2, and B∗1. We have

Pr{CS} ≥ Pr(A∗1 ∩ A∗2 ∩ B∗) ≥ Pr(A∗1 ∩ A∗2 ∩ B∗1 ∩ B∗2)

=


Pr(A∗1)× Pr(A∗2)× Pr(B∗1)× Pr(B∗2), if systems are simulated independently;

[Pr(A∗1) + Pr(A∗2) + Pr(B∗1)− 2]× Pr(B∗2), if systems are simulated under CRN.

We discuss the cases depending on whether systems are simulated independently or

under CRN. When systems are simulated independently, by Lemma 3, we have

Pr(A∗1) ≥ (1−min{s, d}α′f)ju ;

Pr(A∗2) ≥ (1−min{s, d− 1}α′f)ja′+jd = (1−min{s, d− 1}α′f)k−ja−ju−1;

Pr(B∗1) ≥ 1− sα′f .

53

Let Nij denote the number of observations taken for system i before a comparison

decision is made between systems i and j, and let Ni denote the maximum number of

observations that system i takes within Phase II. That is

Nij =

⌈
2cηc(n0 − 1)S2

Xij
(n0)

δ2

⌉
, and Ni = max

j 6=i
Nij .

Then we have

Pr(B∗2) ≥ Pr
(
∩i∈Sa′∪SdCSi

)
= E

[
Pr
{
∩i∈(Sd∪Sa′)CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]
= E

 ∏
i∈(Sd∪Sa′)

Pr
{

CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}
≥

∏
i∈(Sd∪Sa′)

E
[
Pr
{

CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]
=

∏
i∈(Sd∪Sa′)

Pr {CSi} ≥
∏

i∈(Sd∪Sa′)

(1− α′c)

= (1− α′c)jd+ja′ ≥ (1− α′c)k−ju−ja−1,

where the second inequality holds due to Lemma 2.4 in [17] and the third inequality follows

from Lemma 4.

Thus, we know that

Pr{CS} ≥ (1−min{s, d}α′f)ju × (1−min{s, d− 1}α′f)k−ja−ju−1 × (1− sα′f)× (1− α′c)k−ju−ja−1

≥ (1−min{s, d}α′f)ju × (1−min{s, d}α′f)k−ja−ju−1 × (1− sα′f)× (1− α′c)k−ju−ja−1

= (1−min{s, d}α′f)k−ja−1 × (1− sα′f)× (1− α′c)k−ju−ja−1

≥ (1−min{s, d}α′f)k−1 × (1− sα′f)× (1− α′c)k−1

= (1− αf)×
[
(1− αc)1/(k−1)

]k−1

= (1− αf)(1− αc) = 1− α,

where the third inequality holds since the lower bound of (1−min{s, d}α′f)k−ja−1 is achieved

when ja = 0 for 0 ≤ 1−min{s, d}α′f < 1, and the lower bound of (1−α′c)k−ju−ja−1 is achieved

when ja = ju = 0 for 0 ≤ 1− α′c < 1.

When systems are simulated under CRN, by Lemmas 3, 4, and the Bonferroni inequality,

54

we have

Pr(A∗1) ≥ 1− ju min{s, d}α′f ;

Pr(A∗2) ≥ 1− (ja′ + jd) min{s, d− 1}α′f = 1− (k − ja − ju − 1) min{s, d− 1}α′f ;

Pr(B∗1) ≥ 1− sα′f ;

Pr(B∗2) ≥ Pr
(
∩i∈Sa′∪SdCSi

)
≥ 1−

∑
i∈(Sd∪Sa′)

Pr(ICSi) ≥ 1− (jd + ja′)α
′
c

= 1− (k − ju − ja − 1)α′c,

where ICSi denotes the incorrect selection event between system i ∈ Sd ∪ Sa′ and system

[b]. Thus,

Pr{CS} ≥
[
1− ju min{s, d}α′f + 1− (k − ja − ju − 1) min{s, d− 1}α′f + 1− sα′f − 2

]
× [1− (k − ju − ja − 1)α′c]

≥
[
1− ju min{s, d}α′f + 1− (k − ja − ju − 1) min{s, d}α′f + 1− sα′f − 2

]
× [1− (k − ju − ja − 1)α′c]

=
[
1− (k − ja − 1) min{s, d}α′f − sα′f

]
× [1− (k − ju − ja − 1)α′c]

≥
[
1− (k − 1) min{s, d}α′f − sα′f

]
× [1− (k − 1)α′c] = (1− αf)(1− αc) = 1− α,

where the third inequality holds since the lower bound of (k−ja−1) min{s, d}α′f is achieved

when ja = 0, and the lower bound of 1− (k − ju − ja − 1)α′c is achieved when ja = ju = 0.

Case 2: θ∗ = d+ 1.

If θ∗ = d+1, there are no desirable systems for any threshold vector. Based on the definition

of CS, CS is to either declare all systems are infeasible or to select an acceptable system

with respect to any of the threshold vectors q(1), . . . , q(d). Therefore, CS is ensured by

correctly concluding feasibility decisions for all system i ∈ Su. Then Pr (CS) ≥ Pr(A∗1) and

Lemma 3 and the Bonferroni inequality yield

Pr{CS} ≥


(1−min{s, d}α′f)ju . if systems are simulated independently,

1− ju min{s, d}α′f , if systems are simulated under CRN

≥


(1−min{s, d}α′f)k, if systems are simulated independently,

1− kmin{s, d}α′f , if systems are simulated under CRN,

55

where the last inequality is due to the fact that 1 ≤ ju ≤ k and 0 ≤ min{s, d}α′f ≤ 1. When

systems are simulated independently, we have

Pr{CS} ≥ (1−min{s, d}α′f)k ≥ (1−min{s, d}α′f)k−1 · (1− sα′f)

= 1− αf > 1− α.

When systems are simulated under CRN, we have

Pr{CS} ≥ 1− kmin{s, d}α′f ≥ 1− (k − 1) min{s, d}α′f − sα′f

= 1− αf > 1− α.

The choices of αf and αc affect the performance of the ZAKR procedure. If Phase I

is difficult (e.g., the secondary performance measures of many systems are close to some of

the threshold values in threshold vectors q(1), . . . , q(θ∗)), one may want to choose a larger

value for αf than αc to improve the efficiency. On the other hand, if Phase I is relatively

easy compared with Phase II, then it is more efficient to assign a larger value of αc than

αf . If the decision maker has knowledge on the relative difficulty of the feasibility checks

and the comparison, she may first decide the choice of e = αf/αc, the ratio of the nominal

error of Phase I to Phase II. One may then find αc by solving

(1− e× αc)(1− αc) = 1− α,

and find the corresponding αf = e× αc.

However, the decision maker usually does not have the information about the mean

configurations of the primary and secondary performance measures of the systems. One

possibility is to select αf = αc = 1− (1− α)1/2. If s ≤ d, the formulas for selecting α′f and

α′c in Algorithm 3 suggest one may first choose e = sα′f/α
′
c (the ratio of the nominal error

for feasibility checks across all the constraints for one system and the nominal error for the

comparison between best system [b] and one inferior system) and further find α′f and α′c

depending on the value of e. Similarly, one may consider e = dα′f/α
′
c if d < s.

We start with the case when s ≤ d. When systems are simulated independently, we

know that

1− α = (1− αf)(1− αc) = (1− sα′f)k × (1− α′c)k−1 = (1− eα′c)k(1− α′c)k−1,

56

where one can numerically solve for α′c and α′f = eα′c/s. When systems are simulated under

CRN, we know that

1− α = (1− αf)(1− αc) = (1− ksα′f)× (1− (k − 1)α′c) = (1− keα′c)× (1− (k − 1)α′c),

= ek(k − 1)(α′c)
2 − (ek + k − 1)α′c + 1.

As we also know that 0 < αc < 1 and αc = (k − 1)α′c, we may solve the above quadratic

expression as α′c =
ek+k−1−

√
(ek+k−1)2−4ek(k−1)α

2ek(k−1) (the other root does not satisfy α′c <
1

k−1).

We then discuss the case when d < s. One set e = dα′f/α
′
c and find α′c by solving

(1− eα′c)k−1 × (1− e sdα
′
c)× (1− α′c)k−1 = 1− α, if systems are simulated independently;(

1− e
(
k − 1 + s

d

)
α′c
)
× [1− (k − 1)α′c] = 1− α, if systems are simulated under CRN.

where the former can be solved numerically and the latter can be found by solving the

above quadratic expression as α′c =
e(k−1+ s

d
)+k−1−

√
[e(k−1+ s

d
)+k−1]2−4e(k−1+ s

d
)(k−1)α

2e(k−1+ s
d

)(k−1) as the

other root does not satisfy α′c <
1

k−1 .

Note that e = 1 is the case when the decision maker sets the nominal error for feasibility

checks across all the constraints for one system equals the nominal error for the comparison

between best system [b] and one inferior system, while e = s is the case when the decision

maker wants the same nominal error for the feasibility check for one system, one constraint,

and one threshold value as for the comparison between the best system [b] and one inferior

system. Our experimental results (see Section 3.6) consider the cases when e = 1 and e = s.

3.3.3 Procedure ZAK

In this section, we discuss a variation of the ZAKR procedure that collects observations on

the primary performance measure in Phase I and recycles them in Phase II.

As ZAKR starts “from scratch” when performing the comparison, it discards all the

information related to the primary performance measure obtained in Phase I, which can

be quite inefficient in terms of the computation effort. One may consider collecting and

storing all the observations of the primary performance measure in Phase I and then ex-

tracting information related to the primary performance measure when performing Phase

57

II. However, as Phase I may require a lot of observations, this approach requires significant

memory for storing the observations from Phase I.

[16] propose the sequential selection with memory procedure (SSM) that is specifi-

cally for use within an optimization-via-simulation algorithm when simulation is costly, and

partial or complete information on solutions previously visited is maintained. When data

storage is prohibitive, the procedure requires only summary statistics of the simulation out-

put, which solves the memory space issue discussed above. We then present a sequentially-

running procedure, namely ZAK, that adopts the SSM procedure as its Phase II. The

detailed description is shown in Algorithm 4.

Algorithm 4 Procedure ZAK
[Setup:] Same as in ZAKR except for choosing αf , αc > 0 such that αf + αc = α.
[Initialization for Phase I:] Same as in ZAKR except for the following additional steps
for each system i ∈M :

Obtain n0 observations Xin, n = 1, . . . , n0.

For each system i, compute X̄i(n0).

For all systems i 6= j, compute S2
Xij

(n0).

[Feasibility Check:] Same as in ZAKR.
[Stopping Condition for Phase I:] Same as in ZAKR except that we also take one
additional observation Xi,ri+1, and update X̄i(ri) whenever we take one additional ob-
servation Yi,ri+1 from i ∈M .
[Initialization for Phase II:] Same as in ZAKR except we do not perform new sim-
ulations, do not compute X̄i(n0) and S2

Xij
(n0), and set ηc as a solution to g(ηc) = α′c,

where

α′c =

{
1− (1− αc)1/(|F |−1), if systems are simulated independently;

αc/(|F | − 1), if systems are simulated under CRN.

Set r = mini∈F ri and go to [Comparison].
[Comparison:] For i, j ∈M s.t. i 6= j and

rX̄i(ri) > rX̄j(rj) +R(r; δ, ηc, S
2
Xij (n0)),

eliminate j from M .
[Stopping Condition for Phase II:] If |M | = 1, then stop and return the system
in M as the best. Otherwise, for each system i ∈ M with ri ≤ r, take one additional
observation Xi,ri+1, set ri = ri + 1 and compute X̄i(ri). Then, set r = r + 1 and go to
[Comparison].

Similar to the discussion in [1], there are two difficulties in proving the statistical validity

58

of ZAK. First, as ri, the number of observations Xin collected in Phase I, depends on Yi`n

for system i, this dependency affects the comparison in Phase II. This dependency issue

can be resolved by performing ZAKR instead as it restarts “from scratch” for the surviving

systems of Phase I. Second, we use g(ηc) = αc/(|F | − 1) instead of g(ηc) = αc/(k − 1) to

compute the implementation parameter ηc for Phase II. Thus we only allocate the nominal

error for Phase II to the comparison between the best system [b] and the surviving systems

from Phase I, rather than all k − 1 other systems. As the comparison between [b] and the

other surviving systems is done with a larger nominal error, the resulting ηc is smaller,

which helps improve the efficiency of our approach. However, the continuation region in

Phase II now depends on the number of surviving systems from Phase I. We address the

dependency between Phases I and II in ZAK by choosing the nominal errors αf and αc

for Phases I and II as αf + αc = α to incorporate the correlation between the two phases.

While (1− αf)(1− αc) is always larger than 1− (αf + αc), the difference is typically quite

small. Although we have not proved the statistical validity of ZAK, our experimental

results (discussed in Section 3.6) do not show any violation of its validity.

3.4 Simultaneously-Running Procedure

In this section, we provide a procedure that implements Phases I and II simultaneously.

Section 3.4.1 describes the simultaneously-running procedure and Section 3.4.2 proves its

statistical validity. Section 3.4.3 discusses how to choose the implementation parameters

for the proposed simultaneously-running procedure.

3.4.1 Procedure ZAK+

In this section, we provide a procedure that runs Phases I and II simultaneously in Algorithm

5. Similar to the sequentially-running procedures ZAKR and ZAK, we use the variable

θ to keep track of the current most preferred threshold vector for which we are trying to

determine feasibility. Initially, θ is set to d, which is the index of the least preferred threshold

vector. We use sets M and F defined as in Section 4.3.1 and additionally define set SSi

as a set of systems found to be superior to system i in terms of the primary performance

measure.

59

Rather than performing Phase II on the surviving systems from Phase I as ZAKR and

ZAK do, we now perform both feasibility check and pairwise comparison for all systems

that are still in consideration (i.e., i ∈M) within each iteration. More specifically, for each

system i ∈ M , we check whether there exists a minimum threshold vector that system i is

feasible with respect to, use θ to keep track of this threshold index, and update set F if

appropriate. When a feasible decision is made for system i, we perform an additional step

in Phase I: eliminate system j ∈ (M ∪ F) if i ∈ SSj (system i ∈ F is shown to be superior

compared with system j) and system j is not feasible with respect to any of q(1), . . . , q(θ−1).

In Phase II, once a system i is declared superior compared with system j in Phase II, we

add system i to SSj . Furthermore, if system i ∈ (F ∩ SSj) and system j is infeasible

with respect to all q(1), . . . , q(θ−1), then we eliminate system j from M and F . A detailed

description of the simultaneously-running procedure ZAK+ is shown in Algorithm 5.

3.4.2 Statistical Validity of the Simultaneously Running Procedure

In this section, we present the proof of the statistical validity of the simultaneously-running

procedure ZAK+.

Lemma 5. For a particular system i, the [Feasibility Check] steps in ZAK+ ensure

Pr (A∗1(i)) ≥ 1−min{s, d}βf , if i ∈ Su;

Pr (A∗2(i)) ≥ 1−min{s, d− 1}βf , if i ∈ Sd ∪ Sa′ and 1 < θ∗ ≤ d;

Pr (B∗1) ≥ 1− sβf , if θ∗ ≤ d.

Lemma 6. Given i such that xi ≤ x[b] − δ, the [Comparison] steps in ZAK+ run to

completion ensure

Pr (CSi) ≥ 1− βc

The proofs of Lemmas 5 and 6 are essentially same as those of Lemmas 3 and 4 because

both α′f of ZAK and βf of ZAK+ are the nominal error of feasibility check for one constraint

of one single system with a fixed threshold, and both α′c of ZAK and βc of ZAK+ are the

nominal error of comparison between an inferior system and the best system [b].

We are now ready to prove the statistical validity of ZAK+.

60

Algorithm 5 ZAK+

[Setup:] Choose confidence level 1 − α, tolerance levels ε1, . . . εs, indifference-zone parameter

δ, threshold vectors {q(1), q(2), . . . , q(d)}, and associated index vectors {I(1), I(2), . . . , I(d)}. Set
M = Γ, SSi = ∅, and Zmi` = 2 for all i ∈M, ` = 1, . . . , s, and m = 1, . . . , d`. Set F = ∅ and θ = d.
Choose βf , βc > 0 such that βf and βc satisfy

min
0≤j≤k−1

[
(1−min{s, d}βf)j + (1−min{s, d− 1}βf − βc)k−j−1

]
= 2− α+ sβf ,

if systems are simulated independently; and

max
0≤j≤k−1

[[jmin{s, d}+ (k − j − 1) min{s, d− 1}+ s]βf − (k − j − 1)βc] = α,

if systems are simulated under CRN.

Set ηf and ηc such that g(ηf) = βf and g(ηc) = βc. Add any constraint `, where ` = 1, . . . , s,
with increasing preference to set IP.
[Initialization:]
for each system i ∈M do

• Obtain n0 observations from system i.

• Compute X̄i(n0), Ȳi`(n0), S2
Xij

(n0), and S2
Yi`

(n0) for all i, j ∈ M , where i 6= j, and ` =
1, . . . , s.

• Set r = n0,ONi = {1, . . . , s}, and ONi` = {1, . . . , d`} for ` = 1, . . . , s.

end for
[Feasibility Check:]
for i ∈M do

for ` ∈ ONi do
for m ∈ ONi` do

If Ȳi`(r) +R(r; ε`, ηf , S
2
Yi`

(n0))/r ≤ qm` , set Zmi` = 1 and ONi` = ONi` \ {m};
If Ȳi`(r)−R(r; ε`, ηf , S

2
Yi`

(n0))/r ≥ qm` , set Zmi` = 0 and ONi` = ONi` \ {m}.
end for
If ONi` = ∅, set ONi = ONi \ {`}.

end for

If ∃ minimum κ ≤ θ s.t.
∏s
`=1 Z

I
(κ)
`

i` = 1, and either κ < θ or i 6∈ F , then

• If κ < θ, then set F = ∅, θ = κ, and for all j ∈ M delete qm` from ONj` if ` ∈ IP and

m > I
(θ)
` (if ` 6∈ IP, then qm` can be removed from ONj` if I

(θ′)
` 6= m for all θ′ ≤ κ), and set

ONj = ONj \ {`} if ONj` = ∅.
• Add system i to F .

• For all j ∈ M , if i ∈ SSj and either θ = 1 or
∏s
`=1 Z

I
(κ)
`

j` = 0 for all κ = 1, . . . , θ − 1, then

remove system j from M and F (if j ∈ F) and delete SSj .

If either
∏s
`=1 Z

I
(κ)
`

i` = 0 for all 1 ≤ κ ≤ θ, or θ > 1,
∏s
`=1 Z

I
(κ)
`

i` = 0 for all 1 ≤ κ ≤ θ − 1, and
there exists j ∈ F ∩ SSi, then remove i from M and delete SSi.
end for
[Comparison:] For i, j ∈M s.t. i 6= j, i 6∈ SSj , j 6∈ SSi, and

rX̄i(r) > rX̄j(r) +R(r; δ, ηc, S
2
Xij (n0)),

add system i to SSj . If i ∈ F , then remove system j from M and F (if j ∈ F) if either θ = 1 or∏s
`=1 Z

I
(κ)
`

j` = 0 for all κ = 1, . . . , θ − 1, and delete SSj .

[Stopping Condition:] If M = F and |F | = 1, then stop and return the system in F as the best
system. Else if M = F and |F | = 0, then stop and return no feasible systems exist. Otherwise, for
all i ∈M , set r = r+ 1, take one additional observation, update X̄i(r) and Ȳi`(r) for all ` ∈ ONi,
and go to [Feasibility Check].

61

Theorem 5. Under Assumptions 2 and 3, the ZAK+ procedure guarantees

Pr{CS} ≥ 1− α.

Proof. We consider two cases, namely when θ∗ ≤ d and θ∗ = d+ 1.

Case 1: θ∗ ≤ d.

Similar to the proof of statistical validity of ZAKR, systems in (Sa′ ∪ Sd) should not be

declared feasible with respect to a more preferred threshold vector q(1), . . . , q(θ∗−1). We

consider the events A∗1,A∗2,B∗1, and B∗2 defined in Section 4.3.2. As ZAK+ performs Phases

I and II simultaneously, events A∗1,A∗2,B∗1, and B∗2 are dependent. We then have

Pr{CS} ≥ Pr{A∗1 ∩ A∗2 ∩ B∗1 ∩ B∗2} ≥ Pr(A∗1) + Pr(A∗2 ∩ B∗2) + Pr(B∗1)− 2.

Notice that A∗2 ∩ B∗2 is the event that all systems in Sa′ ∪ Sd are declared infeasible to

threshold vectors q(1), . . . , q(θ∗−1) and are eliminated by comparison with system [b], i.e.,

A∗2 ∩ B∗2 = ∩i∈Sd∪Sa′A
∗
2(i) ∩ CSi. Similarly, A∗1 = ∩i∈SuA∗1(i).

We discuss the cases depending on whether systems are simulated independently or

under CRN. When systems are simulated independently, by Lemma 5, we have

Pr(A∗1) ≥ (1−min{s, d}βf)ju ;

Pr(B∗1) ≥ 1− sβf .

We use the same notation Nij from the proof of Theorem 4 and have

Pr (A∗2 ∩ B∗2) = Pr
(
∩i∈(Sd∪Sa′) (A∗2(i) ∩ CSi)

)
= E

[
Pr
{
∩i∈(Sd∪Sa′) (A∗2(i) ∩ CSi)

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]
= E

 ∏
i∈(Sd∪Sa′)

Pr
{
A∗2(i) ∩ CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}
≥

∏
i∈(Sd∪Sa′)

E
[
Pr
{
A∗2(i) ∩ CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]
≥

∏
i∈(Sd∪Sa′)

[
1− E

[
Pr
{

(A∗2(i))c
∣∣∣SX2

i[b]
(n0)

}]
− E

[
Pr
{

ICSi

∣∣∣SX2
i[b]

(n0)
}]]

=
∏

i∈(Sd∪Sa′)

[1− Pr {(A∗2(i))c} − Pr {ICSi}]

62

≥
∏

i∈(Sd∪Sa′)

(1−min{s, d− 1}βf − βc) = (1−min{s, d− 1}βf − βc)jd+ja′

= (1−min{s, d− 1}βf − βc)k−ja−ju−1,

where we use Ac to denote the complement event of A. The first inequality is from Lemma

2.4 of [17], the second inequality holds due to the Bonferroni inequality, and the last in-

equality is from Lemmas 5 and 6.

Thus, we know that

Pr{CS} ≥ (1−min{s, d}βf)ju + (1−min{s, d− 1}βf − βc)k−ja−ju−1 + (1− sβf)− 2

≥ (1−min{s, d}βf)ju + (1−min{s, d− 1}βf − βc)k−ju−1 − sβf − 1,

where the second inequality holds since the lower bound of (1−min{s, d−1}βf−βc)k−ja−ju−1

is achieved when ja = 0 as 0 ≤ 1 −min{s, d − 1}βf − βc < 1. As 0 ≤ ju ≤ k − 1 (because

θ∗ ≤ d), we know that

Pr{CS} ≥ min
0≤j≤k−1

[
(1−min{s, d}βf)j + (1−min{s, d− 1}βf − βc)k−j−1 − sβf − 1

]
= 1− α.

When systems are simulated under CRN, by Lemmas 5 and 6, and the Bonferroni inequality,

we have

Pr(A∗1) ≥ 1− ju min{s, d}βf ;

Pr(B∗1) ≥ 1− sβf ;

Pr(A∗2 ∩ B∗2) = Pr
(
∩i∈(Sd∪Sa′) (A∗2(i) ∩ CSi)

)
≥ 1−

∑
i∈(Sd∪Sa′)

[Pr (A∗2(i))c + Pr(ICSi)]

≥ 1−
∑

i∈(Sd∪Sa′)

[min{s, d− 1}βf + βc]

= 1− (jd + ja′) [min{s, d− 1}βf + βc]

= 1− (k − ja − ju − 1) [min{s, d− 1}βf + βc] ,

where the first inequality holds due to the Bonferroni inequality and the second inequality

holds by Lemmas 5 and 6.

63

Thus, we know that

Pr{CS} ≥ 1− ju min{s, d}βf + 1− (k − ja − ju − 1) [min{s, d− 1}βf + βc] + 1− sβf − 2

≥ 1− ju min{s, d}βf − (k − ju − 1) [min{s, d− 1}βf + βc]− sβf ,

= 1− [ju min{s, d}+ (k − ju − 1) min{s, d− 1}+ s]βf − (k − ju − 1)βc,

where the second inequality holds since the lower bound of 1−(k−ja−ju−1) [min{s, d− 1}βf + βc]

is achieved when ja = 0. As 0 ≤ ju ≤ k − 1, we know that

Pr{CS} ≥ min
0≤j≤k−1

[1− [jmin{s, d}+ (k − j − 1) min{s, d− 1}+ s]βf − (k − j − 1)βc] = 1− α.

Case 2: θ∗ = d+ 1.

If θ∗ = d + 1, there are no desirable systems for any threshold vector. Similar to the

discussion in the proof of Theorem 4, CS is ensured by correctly concluding feasibility

decisions for all systems i ∈ Su. Then Pr{CS} ≥ Pr(A∗1) and Lemma 5 and the Bonferroni

inequality yield

Pr{CS} ≥


(1−min{s, d}βf)ju , if systems are simulated independently,

1− ju min{s, d}βf , if systems are simulated under CRN.

≥


(1−min{s, d}βf)k, if systems are simulated independently,

1− kmin{s, d}βf , if systems are simulated under CRN,

where the last inequality is due to the fact that 1 ≤ ju ≤ k and 0 ≤ min{s, d}βf ≤ 1. When

systems are simulated independently, we have

Pr{CS} ≥ (1−min{s, d}βf)k ≥ (1−min{s, d}βf)k + βf

[
(1−min{s, d}βf)k−1 ×min{s, d} − s

]
= (1−min{s, d}βf)k−1 (1−min{s, d}βf + min{s, d}βf)− sβf

= (1−min{s, d}βf)k−1 − sβf ≥ (1−min{s, d}βf − βc)k−1 − sβf

= (1−min{s, d}βf)0 + (1−min{s, d}βf − βc)k−0−1 − sβf − 1

≥ min
0≤j≤k−1

(1−min{s, d}βf)j + (1−min{s, d}βf − βc)k−j−1 − sβf − 1

= 1− α,

64

where the second inequality holds as βf
[
(1−min{s, d}βf)k−1 ·min{s, d} − s

]
≤ 0 since

(1 − min{s, d}βf)k−1 ≤ 1 and min{s, d} ≤ s, and the third equality holds because (1 −

min{s, d}βf)0 = 1.

When systems are simulated under CRN, we have

Pr{CS} ≥ 1− kmin{s, d}βf ≥ 1− (k − 1) min{s, d}βf − sβf ≥ 1− [(k − 1) min{s, d}+ s]βf

= 1− [(k − 1) min{s, d}+ (k − (k − 1)− 1) min{s, d− 1}+ s]βf − (k − (k − 1)− 1)βc

≥ min
0≤j≤k−1

[1− [jmin{s, d}+ (k − j − 1) min{s, d− 1}+ s]βf − (k − j − 1)βc]

= 1− α.

3.4.3 Implementation Parameters for Simultaneous Running Procedure

In this section, we discuss how to choose implementation parameters βf and βc in simultaneous-

running procedure ZAK+.

We start by considering the case when s < d, and the systems are simulated indepen-

dently. In this case, we need to find βf and βc such that

min
0≤j≤k−1

[
(1− sβf)j + (1− sβf − βc)k−j−1

]
− sβf = 2− α.

One approach is to first decide the choice of e = sβf/βc. Recall that this is the ratio of (i)

the error for a feasibility check of one system for all constraints and all thresholds to (ii)

the error of a comparison between two systems. The ratio should be decided based on the

decision maker’s idea on whether she wants to allocate more error to feasibility check or

comparison.

Let β = sβf = eβc. Then we have

Pr{CS} ≥ (1− β)j + (1− (1 + 1/e)β)k−j−1 − β − 1.

Let f(j) be a function of j such that f(j) = (1− β)j + (1− (1 + 1/e)β)k−j−1 − β − 1. We

need to find the lower bound of f(j) given that 0 ≤ j ≤ k − 1. The first derivative of f(j)

is

∂

∂j
f(j) = (1− β)j log(1− β)− (1− (1 + 1/e)β)k−j−1 log(1− (1 + 1/e)β).

65

By setting ∂
∂j f(j) = 0, we have

j∗ =
logC + (k − 1) log(1− (1 + 1/e)β)

log(1− (1 + 1/e)β) + log(1− β)
, where C =

log(1− (1 + 1/e)β)

log(1− β)
. (8)

By checking the second derivative of f(j), we have

∂2

∂j2
f(j) = [log(1− β)]2(1− β)j + [log(1− (1 + 1/e)β)]2(1− (1 + 1/e)β)k−j−1 ≥ 0,

which shows that j∗ in (8) indeed gives us the lower bound of f(j).

To compute the value of β, we solve the following equation for β:

(1− β)j
∗

+ (1− (1 + 1/e)β)k−j
∗−1 + (1− β)− 2 = 1− α,

where j∗ is defined in (8). The resulting β is the value of eβc and sβf .

We then consider the case when systems are simulated under CRN. We need to find αf

and αc such that

min
0≤j≤k−1

[1− ksβf − (k − j − 1)βc] = 1− ksβf − (k − 1)βc = 1− α.

By setting β = sβf = eβc, we have α =
[
k + k−1

e

]
β and, therefore, the value of eβc and

sβf can be found as sβf = eβc = α/
[
k + k−1

e

]
.

[5] choose e = 1 to balance the errors assigned to feasibility check and comparison. We

use e = 1 and e = s for the experimental results (discussed in Section 3.6) to demonstrate

the performance of our proposed procedure.

When s ≥ d, setting implemetation parameters βf and βc follows a similar approach as

above. We therefore omit the discussion for the sake of space.

3.5 Different Preference Orders of Input Threshold Vectors

As discussed in Section 2.1, our procedures ZAKR,ZAK, and ZAK+ require lists of thresh-

old vectors {q(1), q(2), . . . , q(d)} and index vectors {I(1), I(2), . . . , I(d)}. Rather than having

to input all the threshold and index vectors, it would be easier for the decision maker to give

threshold values on each constraint and how she would like to prioritize each constraint. In

this section, we discuss three preference orders for formulating the input threshold vectors,

namely ranked constraints, equally important constraints, and total violation with ranked

66

constraints. The experimental results for multiple constraints shown in Section 3.6 are

based on these three preference orders.

Ranked constraints: The constraints are ranked with respect to their importance and

the decision maker wants to relax the least important constraint first while keeping

the rest of the constraints fixed at the current threshold values, and then move to the

second least important constraint, etc. Figure 9(a) shows Aθ for θ = 1, . . . , 9 when

s = 2 and d1 = d2 = 3, the secondary performance measures are non-negative, and

constraint 1 is more important than constraint 2. The inventory example discussed

in Sections 2.1 and 2.2 also has ranked constraints with constraint 1 being more

important than constraint 2. Algorithm 6 constructs the threshold vectors for ranked

constraints.

Algorithm 6 Constructing threshold vectors for ranked constraints

Input qm` for all ` = 1, . . . , s and m = 1, . . . , d`. Let Q be an empty list of threshold
vectors and let threshold be a vector of length s.
for m1 = 1, . . . , d1 do

for m2 = 1, . . . , d2 do
. . .
for ms = 1, . . . , ds do

for ` = 1, . . . , s do
Set threshold[`] = qm`` .

end for
Add threshold to Q.

end for
end for

end for
return Q

Equally important constraints: All constraints are equally important and the decision

maker wants to relax all constraints by one threshold at the same time. If the con-

straints do not all have the same number of thresholds, when the threshold vectors

are formulated, then constraints that have gone through all their thresholds keep the

“loosest” threshold (i.e., qd`` for constraint `) while the other constraints relax. Figure

9(b) shows this case when there are two constraints and three thresholds on each

constraint. Algorithm 7 formulates the threshold vectors for this option.

67

Algorithm 7 Constructing threshold vectors for equally important constraints

Input qm` for all ` = 1, . . . , s and m = 1, . . . , d`. Let Q be an empty list of threshold
vectors and let threshold be a vector of length s. Set L = max`=1,...,s d`.
for m = 1, . . . , L do

for ` = 1, . . . , s do
if m ≤ d` then

Set threshold[`] = qm` .
else

Set threshold[`] = qd`` .
end if

end for
Add threshold to Q.

end for
return Q

Total violation with ranked constraints: The decision maker wants to minimize the

number of total violations on ranked constraints. For constraint ` with threshold qm` ,

its violation is defined as m − 1. Then the total violation is defined as the sum of

the violations for all constraints. The decision maker always prefers threshold vectors

that have fewer total violations, and among threshold vectors that have the same total

violation, her preference order is based the priority of the constraints. In Figure 9(c),

constraint 1 more important than constraint 2. Region A1 is defined with respect

to (q1
1, q

1
2) and has total violation 0. Regions A2 and A3 are defined with respect to

(q1
1, q

2
2) and (q2

1, q
1
2), respectively, and have total violation 1, with A2 preferred to A3

due to the ranking of constraints 1 and 2. In this preference order, we start with a

threshold vector with total violation equal to 0 and then relax the total violation by

relaxing the less importants constraint first. The largest total violation is
∑s

`=1(d`−1).

Algorithm 8 formulates threshold vectors according to this option.

3.6 Experimental Results

In this section, we present experimental results to demonstrate the performances of our

proposed procedures ZAKR,ZAK, and ZAK+. We compare the performance of each

proposed procedure with an alternative procedure that iteratively applies sequential or

68

Algorithm 8 Constructing threshold vectors for total violation with ranked constraints

Input qm` for all ` = 1, . . . , s and m = 1, . . . , d`. Let Q be an empty list of threshold
vectors and let threshold be a vector of length s.
for v = 0, . . . ,

∑s
`=1(d` − 1) do

for v1 = 0, . . . , v do
for v2 = 0, . . . , v − v1 do

for v3 = 0, . . . , v − (v1 + v2) do
. . .
for vs = 0, . . . , v −

∑s−1
`′=1 v`′ do

for ` = 1, . . . , s do
Set threshold[`] = qv`+1

` .
end for

end for
end for
Add threshold to Q.

end for
end for

end for
return Q

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

(a) Ranked constraints

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

A1

A2

A3

A4

(b) Equally important con-
straints

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

(c) Total violation with
ranked constraints

Figure 9: Three preference orders

simultaneous procedures to threshold vector q(1), . . . , q(d). If a single constraint is consid-

ered, we use AK or AK+ due to [1] for each threshold value. If multiple constraints are

considered, we use HAK or HAK+ due to [5] for each threshold vector. We name the

procedures that iteratively implement AK and AK+ as RestartAK and RestartAK+, respec-

tively. Similarly, we name the procedures that iteratively implement HAK and HAK+ as

RestartHAK and RestartHAK+, respectively. Notice that RestartAK (RestartAK+) is a spe-

cial case of RestartHAK (RestartHAK+) when there is a single constraint. We provide the

69

algorithm statements and discussions of the statistical validity of procedures RestartHAK

and RestartHAK+ in Appendices B.1 and B.2, respectively.

All the experimental results are based on 10,000 macro replications with α = 0.05 and

n0 = 20 and we report average numbers of observations (OBS) and observed probability

of correct selection (PCS). We set δ = ε` = 1/
√
n0, where ` = 1, . . . , s. We discuss the

experimental configurations in Section 3.6.1 and show the experimental results for a single

constraint in Section 3.6.2. Section 3.6.3 discusses how the number of unacceptable systems

with respect to q(θ∗) effects the value of PCS of ZAK+. Experimental results for two

(four) constraints are provided in Section 3.6.4 (3.6.5). Section 3.6.6 discusses a case when

all systems are infeasible. Experimental results for the inventory example discussed in

Sections 3.1 and 3.2 are provided in Section 3.6.7.

3.6.1 Experimental Configurations

In this section, we discuss the mean and variance configurations for primary and secondary

performance measures. We consider two mean configurations of systems, namely difficult

means (DM) and monotone increasing means (MIM). Let b be the number of systems that

are desirable with respect to threshold vector q(θ∗). As the existence of acceptable systems

will not lower the PCS (because declaring acceptable systems feasible or infeasible with

respect to a specific threshold value are both considered as correct feasibility decisions) and

as [1] show by experiments that the presence of acceptable systems does not significantly

affect the overall performance of procedures AK and AK+, we do not include acceptable

systems in our two configurations.

The DM configuration sets the mean of all secondary performance measures to the

boundary of the desirable region of q(θ∗) for b systems (i.e., the mean of the secondary

performances measure ` for b systems is q
(θ∗)
` − ε`) and to the boundary of the unacceptable

region of q(θ∗) for the other (k − b) systems (i.e., the mean of the secondary performances

measure ` for (k − b) systems is q
(θ∗)
` + ε`) , which makes the feasibility check difficult.

Moreover, the DM configuration has one system whose mean performance of the primary

performance is δ, the other systems that are feasible with respect to q(θ∗) have primary

70

performances equal to 0, and all infeasible systems with respect to q(θ∗) have 2δ as their

primary performance measures. This means that all the infeasible systems are superior

compared with the best system while all other feasible systems are only δ inferior compared

with the best system, which makes the comparison also difficult. More specifically, in the

DM configuration,

xi = E [Xin] =



0, i = 1, 2, . . . , b− 1,

δ, i = b,

2δ, i = b+ 1, . . . , k,

yi` = E[Yi`n] =


q

(θ∗)
` − ε`, i = 1, 2, . . . , b,

q
(θ∗)
` + ε`, i = b+ 1, . . . , k.

In the DM configuration, we consider the case when the decision maker prefers threshold

q1
` = 0 for constraint ` and would relax the constraint threshold by 2ε` every time when

she wants to consider a “looser” threshold value on that constraint. In other words, we

choose thresholds {0, 2ε`} and {0, 2ε`, 4ε`, 6ε`} on constraint ` when there are two or four

thresholds are in consideration, respectively.

The MIM configuration sets the mean of all secondary performance measures to the

boundary of the desirable region of q(θ∗) for b systems and the other (k−b) systems are evenly

distributed over A(θ∗+1), . . . , A(d+1) with respect to their secondary performance measures.

The mean of the primary performance is monotonically increasing from 0 with an increment

of δ. More specifically, in the MIM configuration, xi = E [Xin] = (i− 1)δ, i = 1, . . . , k, and

yi` = E[Yi`n] =



q
(θ∗)
` − 2ε`, i = 1, 2, . . . , b,

q
(θ∗+1)
` − 2ε`, i = b+ 1, . . . , db+ k−b

d+1−θ∗ e,

q
(θ∗+2)
` − 2ε`, i = db+ k−b

d+1−θ∗ e+ 1, . . . , db+ 2 k−b
d+1−θ∗ e,

. . .

q
(d)
` − 2ε`, i = db+ (d− θ∗ − 1) k−b

d+1−θ∗ e+ 1, . . . , db+ (d− θ∗) k−b
d+1−θ∗ e,

q
(d)
` + 2ε`, i = db+ (d− θ∗) k−b

d+1−θ∗ e+ 1, . . . , k.

71

In the MIM configuration, we consider the case when the decision maker prefers q1
` = 0 and

would like to relax by 4ε` when she wants to consider “looser” threshold values. That is,

the distance between two successive thresholds on constraint ` equals 4ε`.

We consider three variance configurations to test different levels of relative difficulty of

the feasibility check and the comparison. We use σ2
xi to denote the variance of the primary

performance from system i, σ2
yi`

to denote the variance of the secondary performance ` from

system i, and consider both low variance (L) and high variance (H). When the difficulty

between feasibility checks and comparison are similar, we set σ2
xi = 1 and σ2

yi`
= 1 (L/L);

when the comparison is relatively more difficult compared with the feasibility checks, we

set σ2
xi = 1 and σ2

yi`
= 5 (L/H); and when the feasibility checks are relatively more difficult

compared with comparison, we set σ2
xi = 5 and σ2

yi`
= 1 (H/L).

Due to the discussion in [1], the correlation between the primary and secondary per-

formance measures does not have a significant impact on the experimental results. [5] and

the experimental results in Chapter 2 also show that the correlation between secondary

performance measures do not show siginificant impact on the result. Therefore, we assume

the observations from each system are standard normal random vectors. With 10,000 macro

replications, the first four digits of the OBS showed in the tables are meaningful, and the

PCS are meaningful up to the 0.001th digit.

3.6.2 Single Constraint

In this section, we consider a single constraint with two and four thresholds. We consider

b ∈ {25, 50, 75} under all three variance configurations and choose k = 100. As discussed

in Section 4.3.2, we introduced two approaches of setting the implementation parameters,

namely setting αf = αc = 1 − (1 − α)1/2 and setting sα′f = α′c. We let ZAKR1 to denote

the procedure ZAKR that follows αf = αc = 1 − (1 − α)1/2 and let ZAKR2 to denote the

procedure that follows sα′f = α′c.

We first consider the case of two thresholds under the DM configuration (so that q1
1 = 0

and q2
1 = 2ε1). Table 13 shows the result for ZAKR1 and ZAKR2 , and Table 14 provides

comparisons between ZAKR,ZAK, and RestartAK and between ZAK+ and RestartAK+,

72

respectively, for θ∗ ∈ {1, 2}. We see that the performance of ZAKR1 and ZAKR2 are

very similar and their performance is worse compared with that of ZAK in terms of the

required number of observations. This is expected as ZAKR restarts in Phase II and also

set implementation parameters in a conservative way.

We see that ZAK outperforms RestartAK under all cases and ZAK+ outperforms

RestartAK+ in most cases. If there exist at least one feasible system with respect to q(1) (i.e.,

θ∗ = 1), then it is likely that AK and AK+ are executed only once. As RestartAK allocates

the nominal error for the two thresholds, the resulting continuation regions used for feasibil-

ity check and for comparison are larger than those of ZAK, and therefore its performance

is worse than that of ZAK. For single execution, RestartAK+ has a smaller continuation

region than that of ZAK+ as RestartAK+ does not need to allocate nominal error in the

feasibility check to avoid the inferior systems being declared feasible to a preferred thresh-

old vector (since RestartAK+ only considers one threshold vector). As RestartAK+ also

allocates the nominal error for the two thresholds, the difference between the continuation

regions used for the feasibility checks and the comparison are similar compared with that

of ZAK+, and therefore, ZAK+ and RestartAK+ have similar overall performance when

θ∗ = 1. Notice that ZAKR1 and ZAKR2 has similar continuation region used for feasibil-

ity check compared with that of ZAK but larger continuation region used for comparison

compared with that of ZAK. For single execution, ZAKR1 and ZAKR2 has smaller contin-

uation region compared with that of RestartAK+ for the feasibility check but much larger

continuation region for the comparison. This is due to the fact that RestartAK+ allocates

nominal error for two thresholds (so that the continuation region for the feasibility check is

larger) and does not restart while also set parameter less conservative for the comparison

(so that the continuation region for the comparison is smaller). Therefore, it is expected

that the performance of ZAKR1 and ZAKR2 is worse compared with that of RestartAK.

When there are no feasible systems with respect to q(1) (i.e., θ∗ ≥ 2), AK and AK+

need to be implemented multiple times and become conservative. Notice that the average

number of observations for ZAKR,ZAK, and ZAK+ does not increase significantly as θ∗

increases, while the average number of observations for RestartAK and RestartAK+ increase

73

dramatically. It is also expected because the feasibility check of ZAK,ZAKR, and ZAK+

are designed for one critical threshold vector regardless of the number of threshold values.

One may also notice that the required number of observations increase as b increases for

all procedures. As the difficulty of performing feasibility check is similar under different

values of b (each system requires current feasibility decision with respect of one threshold

vector), larger b implies requiring more correct selections between comparisons and therefore

requires larger number of observations.

Table 13: Average number of observations and observed PCS (reported in parentheses) of
ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with two thresholds under the
DM configuration

ZAKR1 ZAKR2
θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 22806 28896 34536 22812 28910 34482
(0.977) (0.980) (0.982) (0.978) (0.980) (0.980)

2 23445 30120 36336 23429 30145 36346
(0.974) (0.968) (0.964) (0.971) (0.968) (0.967)

L/H

1 84927 90907 96549 84909 90862 96532
(0.976) (0.978) (0.981) (0.977) (0.975) (0.981)

2 88250 97620 106655 88162 97660 106699
(0.971) (0.967) (0.964) (0.974) (0.967) (0.964)

H/L

1 51261 81416 109293 51196 81237 109484
(0.979) (0.978) (0.983) (0.977) (0.978) (0.982)

2 51622 81814 110128 51691 81828 109954
(0.973) (0.967) (0.964) (0.975) (0.968) (0.963)

Table 14: Average number of observations and observed PCS (reported in parentheses) of
ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1 constraint with
two thresholds under the DM configuration

ZAK RestartAK ZAK+ RestartAK+

θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 17667 20270 23203 20107 23258 26629 19101 21499 23511 19084 21538 23599
(0.970) (0.972) (0.980) (0.984) (0.990) (0.990) (0.977) (0.977) (0.979) (0.977) (0.981) (0.981)

2 17879 20697 23813 30286 35850 41745 19211 21889 24210 27968 32562 36617
(0.967) (0.965) (0.966) (0.984) (0.982) (0.982) (0.972) (0.970) (0.968) (0.973) (0.969) (0.963)

L/H

1 78078 78059 78178 88475 88612 88728 72485 63744 54254 72485 63897 54464
(0.981) (0.987) (0.994) (0.990) (0.993) (0.997) (0.982) (0.981) (0.985) (0.980) (0.980) (0.985)

2 81276 84859 88405 138753 151277 163560 79368 79721 80028 116566 118678 120211
(0.975) (0.978) (0.975) (0.989) (0.989) (0.987) (0.973) (0.971) (0.965) (0.975) (0.968) (0.969)

H/L

1 37475 63883 91651 43652 74449 106928 47199 73615 97505 47187 73624 97958
(0.968) (0.971) (0.975) (0.982) (0.986) (0.987) (0.979) (0.979) (0.980) (0.977) (0.977) (0.982)

2 37370 63339 90343 53787 86921 121584 46939 72943 96577 55892 84079 109815
(0.962) (0.962) (0.961) (0.978) (0.980) (0.982) (0.970) (0.967) (0.964) (0.972) (0.968) (0.964)

74

We then consider the case of four thresholds under the DM configuration (q1
1 = 0, q2

1 =

2ε1, q
3
1 = 4ε1, and q4

1 = 6ε1). We show the results ZAKR1 and ZAKR2 and the results

for comparison between ZAK,RestartAK and ZAK+,RestartAK+ in Tables 15 and 16,

respectively, for θ∗ ∈ {1, 2, 3, 4}. We see that the performance between ZAKR1 and ZAKR2

are still similar under all cases.

As the number of thresholds is larger than before, the implementation parameters for

RestartAK and RestartAK+ take more conservative values while ZAK and ZAK+ use the

same implementation parameters as the case of two thresholds. Thus ZAK and ZAK+

perform better than RestartAK and ZAK+ even for θ∗ = 1 and their efficiency becomes

more profound as θ∗ gets larger. We also notice that ZAK performs slightly better compared

with ZAK+ under L/L and H/L in most cases but performs slightly worse under L/H in

terms of the required number of observations.

We also test the performance of ZAKR,ZAK, and ZAK+ under the MIM configura-

tion for both two and four thresholds. We show the experimental results for ZAKR1 and

ZAKR2 for two thresholds in Table 17 and the comparison between ZAK,RestartAK and

ZAK+,RestartAK+ in Table 18. The results under the MIM configuration show a similar

pattern to the results under the DM configuration. In general, ZAK and ZAK+ perform

similarly to RestartAK and RestartAK+ when θ∗ = 1 but perform better when θ∗ = 2.

As ZAKR1 and ZAKR2 still have similar performance, we omit the results for future

experiments for simplicity. Since the results for different b have similar pattern, we only

show the results for b = 50 when d = 4 in Figure 10. We see that ZAK performs slightly

worse than RestartAK under LL and LH when θ∗ = 1 but better under all other cases.

ZAK+ performs better than RestartAK+ under all cases.

To further illustrate that ZAK and ZAK+ perform even better under a larger θ∗, we

test ten thresholds (and also b = 50) and show experimental results in Figure 11. We see

that average numbers of observations of ZAK and ZAK+ remain similarly as θ∗ increases

under both DM and MIM, while those of RestartAK and RestartAK+ increase dramatically.

Again, this shows that our proposed procedures scale well with respect to the number of

threshold vectors in consideration, and it is expected that the saving of ZAK and ZAK+

75

(a) OBS with LL (b) PCS under LL

(c) OBS under LH (d) PCS under LH

(e) OBS under HL (f) PCS under HL

Figure 10: Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint with four thresholds and b = 50
under the MIM configuration and different variance configuration

76

Table 15: Average number of observations and observed PCS (reported in parentheses) of
ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with four thresholds under the
DM configuration

ZAKR1 ZAKR2
θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 22810 28896 34536 22794 28890 34482
(0.973) (0.980) (0.982) (0.978) (0.979) (0.980)

2 23439 30144 36434 23466 30100 36248
(0.971) (0.965) (0.967) (0.975) (0.967) (0.963)

3 23497 30111 36402 23463 30129 36327
(0.974) (0.968) (0.968) (0.975) (0.972) (0.964)

4 23448 30099 36335 23396 30137 36376
(0.975) (0.966) (0.963) (0.970) (0.969) (0.965)

L/H

1 84959 90988 96549 84911 90871 96534
(0.978) (0.978) (0.981) (0.975) (0.978) (0.982)

2 88392 97708 106771 88413 97582 106733
(0.972) (0.970) (0.966) (0.971) (0.964) (0.965)

3 88322 97671 106704 88341 97657 106779
(0.973) (0.969) (0.964) (0.969) (0.965) (0.967)

4 88195 97602 106650 88170 97621 106699
(0.971) (0.965) (0.961) (0.974) (0.968) (0.964)

H/L

1 51271 81257 109319 51229 81247 109325
(0.978) (0.980) (0.981) (0.977) (0.977) (0.982)

2 51551 81831 109641 51568 82231 109684
(0.972) (0.969) (0.962) (0.972) (0.967) (0.965)

3 51437 82135 110345 51619 82140 109729
(0.970) (0.970) (0.966) (0.974) (0.967) (0.962)

4 51690 81977 110093 51664 82021 109887
(0.972) (0.969) (0.966) (0.972) (0.967) (0.964)

become more when θ∗ gets larger.

3.6.3 PCS of ZAK+ when Different Number of Unacceptable Systems are in
Presence

In this section, we discuss how the value of PCS of procedure ZAK+ changes as the value

of j, the number of unacceptable systems with respect to threshold vector q(θ∗), changes.

As discussed in Section 3.4.3, the value of the lower bound of Pr{CS} of the ZAK+

procedure depends on the value of j and one can see that the lower bound of Pr{CS} is

achieved when j = 0 when there is single or two constraints and sβf = βc. Tables 19 and

20 report the observed PCS of ZAK+ when the number of constraints is one and two (we

choose the ranked constraint configuration when there are two constraints), respectively.

77

Table 16: Average number of observations and observed PCD (reported in parentheses) of
ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1 constraint with
four thresholds under the DM configuration

ZAK RestartAK ZAK+ RestartAK+

θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 17672 20270 23198 22810 26449 30482 19109 21497 23511 21772 24694 27208
(0.971) (0.972) (0.980) (0.992) (0.993) (0.996) (0.977) (0.979) (0.979) (0.990) (0.990) (0.990)

2 17917 20702 23789 34307 40748 47564 19257 21894 24218 31866 37354 42245
(0.963) (0.964) (0.970) (0.991) (0.990) (0.992) (0.972) (0.970) (0.966) (0.987) (0.985) (0.983)

3 17922 20720 23772 40559 47819 55396 19263 21909 24223 37466 43528 49122
(0.965) (0.967) (0.966) (0.990) (0.989) (0.992) (0.973) (0.969) (0.965) (0.987) (0.982) (0.982)

4 17882 20710 23794 44969 52589 60495 19198 21889 24234 41372 47791 53768
(0.965) (0.966) (0.966) (0.993) (0.992) (0.989) (0.972) (0.970) (0.967) (0.984) (0.985) (0.983)

L/H

1 78091 78059 78178 99842 99974 100101 72474 63807 54325 82655 73066 62719
(0.980) (0.987) (0.994) (0.995) (0.977) (0.998) (0.977) (0.981) (0.984) (0.989) (0.990) (0.990)

2 81467 84886 88383 156723 170774 185127 79485 79786 80016 132812 135543 137747
(0.976) (0.976) (0.976) (0.993) (0.993) (0.993) (0.972) (0.970) (0.968) (0.988) (0.983) (0.983)

3 81475 84895 88409 187901 205988 224225 79458 79753 80070 160206 166670 172151
(0.978) (0.975) (0.977) (0.993) (0.993) (0.994) (0.973) (0.970) (0.970) (0.984) (0.984) (0.983)

4 81325 84851 88416 209685 229585 249572 79279 79733 80046 179703 187617 194643
(0.959) (0.962) (0.959) (0.989) (0.990) (0.989) (0.972) (0.972) (0.969) (0.986) (0.986) (0.984)

H/L

1 37505 63878 91651 50442 86231 123963 47247 73549 97505 54270 85117 113641
(0.966) (0.971) (0.975) (0.992) (0.991) (0.994) (0.981) (0.980) (0.980) (0.988) (0.989) (0.990)

2 37338 63341 90530 61892 100541 140325 47107 72730 96473 64284 97475 128203
(0.962) (0.962) (0.964) (0.989) (0.990) (0.989) (0.974) (0.969) (0.965) (0.986) (0.984) (0.981)

3 37366 63404 90394 68165 107118 147997 47120 72658 96473 69919 103666 134915
(0.960) (0.962) (0.958) (0.990) (0.989) (0.989) (0.975) (0.966) (0.965) (0.986) (0.985) (0.980)

4 37348 63258 90474 72662 112284 153429 46939 72943 96577 73776 108173 139815
(0.959) (0.962) (0.959) (0.989) (0.990) (0.989) (0.970) (0.967) (0.964) (0.985) (0.985) (0.982)

Table 17: Average number of observations and observed PCS (reported in parentheses) of
ZAKR1 and ZAKR2 for k = 100 system and s = 1 constraint with two thresholds under the
MIM configuration

ZAKR1 ZAKR2
θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 9222 10244 11429 9205 10243 11412
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

2 11417 12250 13079 11410 12243 13068
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

L/H

1 39044 42151 46014 39017 42108 45990
(1.000) (1.000) (1.000) (0.999) (1.000) (1.000)

2 50001 52147 54276 49928 52092 54247
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

H/L

1 15658 17294 18557 15689 17277 18642
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

2 17843 19272 20264 17846 19282 20247
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Both experimental results are under the DM configuration.

Although the actual observed PCS does not always achieve its minimum when j = 0,

one may find that the value of observered PCS tends to become higher when j increases.

78

Table 18: Average number of observations and observed PCS (reported in parentheses) of
ZAK,ZAK+,RestartAK, and RestartAK+ for k = 100 system and s = 1 constraint with
two thresholds under the MIM configuration

ZAK RestartAK ZAK+ RestartAK+

θ∗ b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75 b = 25 b = 50 b = 75

L/L

1 7936 8571 9320 8701 9607 10540 7402 6556 5732 7144 6466 5705
(0.999) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

2 10087 10532 10932 16903 18662 20384 10070 10074 10079 14389 14434 14367
(0.999) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

L/H

1 37434 40092 43509 40989 44933 49167 32700 28030 23702 31376 27579 23500
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

2 48445 50114 51801 81637 89794 98059 47349 47408 47426 67261 67158 66533
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

H/L

1 11690 13145 14389 13094 14846 16334 13418 13180 12616 13208 13081 12623
(0.999) (1.000) (1.000) (0.999) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

2 13712 14924 15810 21269 23922 26169 15455 15533 15550 20389 21068 21283
(0.999) (0.999) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Table 19: Observed PCS of ZAK+ for k = 100 system and s = 1 constraint with ten
thresholds under the DM configuration and different number of unacceptable systems with
respect to q(θ∗)

j
θ∗

1 2 3 5 7 10

0 0.983 0.966 0.966 0.966 0.966 0.965
10 0.983 0.964 0.964 0.964 0.964 0.962
20 0.981 0.966 0.960 0.960 0.960 0.962
30 0.981 0.968 0.968 0.968 0.968 0.965
50 0.979 0.970 0.970 0.970 0.970 0.970
70 0.978 0.971 0.971 0.971 0.971 0.973
90 0.977 0.976 0.976 0.976 0.976 0.979

Table 20: Observed PCS (reported in parentheses) of ZAK+ for k = 100 system and s = 2
constraint under the DM configuration and different number of unacceptable systems with
respect to q(θ∗)

j
θ∗

1 2 3 4 5 9

0 0.983 0.970 0.972 0.974 0.964 0.963
10 0.985 0.976 0.973 0.975 0.962 0.965
20 0.985 0.974 0.975 0.973 0.965 0.969
30 0.984 0.976 0.978 0.976 0.966 0.973
50 0.984 0.981 0.979 0.975 0.969 0.981
70 0.986 0.982 0.984 0.975 0.971 0.988
90 0.989 0.988 0.987 0.979 0.976 0.995

For later sections, we test the cases when j = 0 (i.e., all the systems are desirable with

respect to threshold vector q(θ∗)). This is also equivalent to b = 100.

79

(a) OBS under DM (b) PCS under DM

(c) OBS under MIM (d) PCS under MIM

Figure 11: Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint with ten thresholds and b = 50
under the DM and the MIM configuration

3.6.4 Two Constraints

In this section, we consider two constraints with the three different formulation of the input

threhold vectors discussed in Section 3.5. We set k = 100, and d` = 3 for ` = 1, 2. We

also set q` = {0, 2ε`, 4ε`} under the DM configuration and q` = {0, 4ε`, 8ε`} under the MIM

configuration for ` = 1, 2, and perform experiments under the L/L variance configuration.

We first show the experimental results for the ranked constraint formulation under the

DM and the MIM configurations in Figure 12. As there are 9 threshold vectors in total

(i.e., d = 9), the implementation parameters for both RestartHAK and RestartHAK+ take

conservative values. We see that ZAK and ZAK+ perform better than their competing

80

counterpart procedures under all cases and the efficiency of our proposed procedures be-

comes more obvious as θ∗ increases. Notice that similar to the single constraint case, ZAK

and ZAK+ scale well in terms of OBS as θ∗ increases, however, the average numbers of

observations of RestartHAK and RestartHAK+ increase dramatically as θ∗ increases.

(a) OBS under DM (b) PCS under DM

(c) OBS under MIM (d) PCS under MIM

Figure 12: Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 2 constraint under the DM configuration
and Option 1

We then show the experimental results for the formulation of equally important con-

straints under the DM configuration and the MIM configuration in Figure 13. Since the

possible number of threshold vectors d = 3 is relatively small, setting the implementation

parameter for RestartHAK and RestartHAK+ is less conservative compared with that in the

formulation of ranked constraints. We see that both ZAK and ZAK+ perform better,

81

but the difference between the proposed procedures and their alternative procedures is less

compared with that in the ranked constraints formulation.

(a) OBS under DM (b) PCS under DM

(c) OBS under MIM (d) PCS under MIM

Figure 13: Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 2 constraint under the DM configuration
and Option 2

Total violation with ranked constraints formulation has the same number of threshold

vectors as that in ranked constraints formulation and all procedures show very similar

OBS and PCS compared to that of ranked constraints formulation. Thus we omit the

experimental results for this formulation for the sake of brevity.

82

3.6.5 Four Constraints

In this section, we consider four constraints case in order to demonstrate the performance

of our proposed procedures in handling multiple constraints.

We choose the formulation of ranked constraints. The number of thresholds is set to

four on the first and the fourth constraints (d1 = d4 = 4), two on the second constraint

(d2 = 2), and three on the third constraint (d3 = 3). The configuration of thresholds on

each constraint is as follows.

• Constraint 1: q1 ∈ {0, 2ε1, 4ε1, 6ε1} for the DM configuration, and q1 ∈ {0, 4ε1, 8ε1, 12ε1}

for the MIM configuration.

• Constraint 2: q2 ∈ {0, 2ε2} for the DM configuration, and q2 ∈ {0, 4ε2} for the MIM

configuration.

• Constraint 3: q3 ∈ {0, 2ε3, 4ε3} for the DM configuration, and q3 ∈ {0, 4ε3, 8ε3} for

the MIM configuration.

• Constraint 4: q4 ∈ {0, 2ε4, 4ε4, 6ε4} for the DM configuration, and q4 ∈ {0, 4ε4, 8ε4, 12ε4}

for the MIM configuration.

Ranked constraints formulation considers 96 (= 4×2×3×4) threshold vectors in total. Due

to the large number of the threshold vectors, RestartHAK and RestartHAK+ take extreme

conservative values for the implemetation parameters and we indeed observe extremely long

run-time in order to conclude the selection for both procedures. On the other hand, ZAK

and ZAK+ scale well to the number of threshold vectors. Due to the extremely long run

time of RestartHAK and RestartHAK+, we only provide the experimental results for ZAK

and ZAK+. We consider θ∗ ∈ {1, 10, 50, 70, 96} and show the results in Figure 14.

We see that both ZAK and ZAK+ have observed PCS greater than 0.95 and the average

numbers of observations remain similar to different values of θ∗. It is also expected that

the number of observations would remain similarly if more thresholds are considered.

83

(a) OBS under the DM (b) PCS under the DM

(c) OBS under MIM (d) PCS under MIM

Figure 14: Average number of observations and observed PCS of ZAK and ZAK+ for
k = 100 systems and s = 4 constraint

3.6.6 All Systems Infeasible

In this section, we discuss a case when all systems are infeasible with respect to all threshold

vectors q(θ) for θ = 1, . . . , d. In this case, RestartHAK and RestartHAK+ need to be imple-

mented to all threshold vectors and declare no feasible systems eventually. Since both ZAK

and ZAK+ scale well with respect to the number of threshold vectors, we expect to ob-

serve the maximum possible efficiency of our proposed procedures compared to alternative

procedures.

We first consider single constraint case with 2, 4, and 10 thresholds (i.e., d ∈ {2, 4, 10}).

84

We follow the same setting of the secondary performance measure as that in the DM con-

figuration (i.e., each pair of consecutive thresholds are 2ε1 away) and all the systems have

the mean of the secondary performance measure 2ε1 larger than the largest threshold value

on the constraint. We also set the mean of the primary performance measure of all systems

to 0. The experimental results are shown in Figure 15.

We see that the number of observations of RestartHAK and RestartHAK+ are much larger

than that of ZAK and ZAK+ and the difference increases as the number of thresholds

increases. This is expected as RestartHAK and RestartHAK+ need to implement more times

and therefore the implementation parameters take more conservative values as d increases.

One may also notice that the required number of ZAK and ZAK+ remains stable when d

increases.

(a) OBS (b) PCS

Figure 15: Average number of observations and observed PCS of ZAK,RestartHAK,ZAK+
and RestartHAK+ for k = 100 systems and s = 1 constraint under the DM configuration
with d ∈ {2, 4, 10}

We then consider the case when there are two constraints with three thresholds on each

constraint (d` = 3, where ` = 1, 2). Although there can be many different ways of setting

the mean performance of the infeasible systems, we consider the following three cases in

particular.

• Case 1: Infeasible systems are evenly distributed to the regions when at least one

constraint is infeasible to threshold q3
` , where ` = 1, 2.

85

• Case 2: Infeasible systems all fall in the region that are infeasible to both constraint

with thresholds q3
` , where ` = 1, 2.

• Case 3: Infeasible systems are evenly distributed to the region that one constraint is

infeasible to threshold q3
` , where ` = 1, 2, while the other constraint is feasible to the

most preferred threshold value on that constraints.

We use Figure 16 to show these three cases where we use shaded region to denote the region

that infeasible systems evenly fall into. We choose the ranked constraints formulation

yi2

yi1

q3
2

q2
2

q1
2

q3
1q2

1q1
1

∪dκ=1Aκ

(a) Case 1

yi2

yi1

q3
2

q2
2

q1
2

q3
1q2

1q1
1

∪dκ=1Aκ

(b) Case 2

yi2

yi1

q3
2

q2
2

q1
2

q3
1q2

1q1
1

∪dκ=1Aκ

(c) Case 3

Figure 16: Three distribution of infeasible systems

and show the experimental results in Table 21. As there are d = 9 threshold vectors

in consideration, RestartHAK and RestartHAK+ need to implement nine times (once with

respect to each threshold vector) to conclude that there do not exist any feasible systems,

and therefore they take much more conservative values for the implemetation parameters

compared with that of ZAK and ZAK+. Thus, it is expected that the performance of

ZAK and ZAK+ is better. One may also notice that Case 3 requires more observations

while Case 2 requires least observations for all four procedures. This is because declaring a

system infeasible with respect to q3
1 on the first constraint or q3

2 on the second constraint is

suffient to declare a system infeasible with respect to all threshold vectors in Case 2, while

an infeasible system in Case 3 has only one constraint that the system is infeasible with

respect to all the threshold values on it. Moreover, an infeasible system in Case 3 is feasible

to the most preferred threshold value on one of the constraints, which makes the feasibility

86

check more difficult. As Case 1 is a combination of Case 2 and 3, it is expected that it

requires more observations than that of Case 2 but less observations than that of Case 3.

Table 21: Average number of observations and observed PCS (reported in parentheses)
of ZAK, RestartHAK, ZAK+ and RestartHAK+ for k = 100 system and s = 2 constraint
when no feasible systems exists to all thresholds under the DM configuration and the ranked
constraints formulation

ZAK RestartHAK ZAK+ RestartHAK+

Case 1 17266 116475 17204 104267
(0.990) (0.998) (0.993) (0.996)

Case 2 13962 83888 13915 75059
(1.000) (1.000) (1.000) (1.000)

Case 3 17807 130889 17743 117243
(0.990) (0.996) (0.987) (0.993)

3.6.7 Inventory Policy Example

In this section, we study the performance of ZAK and ZAK+, as well as their competing

procedures RestartHAK and RestartHAK+, based on an (s, S) inventory policy example from

[11].

A decision maker controls inventory using (s, S) policy, and the costs are given as (i)

ordering cost at 3 per item; (ii) fixed ordering cost at 32 per order; (iii) holding cost at 1

per item per review period; and (iv) penalty cost at 5 per item of unsatisfied demand. She

considers the primary performance measure as maximizing the fill rate per review period

and two secondary performance measures as (1) the failure probability (` = 1), which is

the probability that a shortage occurs between two successive review periods; and (2) the

expected cost per review period (` = 2), which is the average total cost for each review

period.

Systems in consideration are given as

Γ =
{

(s, S)|s = 20 + 2m′, S = 40 + 10n′, where m′ = 0, 1, 2, . . . , 10, and n′ = 0, 1, 2, . . . , 6
}
,

which contains 77 systems in total. Demand during each review period is assumed in-

denpendelty and follows Poisson distribution with mean 25. The primary and secondary

performance measures are computed based on 100 review periods. The correlation be-

tween two constraints is estimated analytically using a Markov chain model. The estimated

87

correlation ranges from -0.23 to 0.52.

We test procedures ZAK,RestartHAK,ZAK+ and RestartHAK+ with three thresholds

on the first constraint (q1 ∈ {0.01, 0.05, 0.1}) and eight thresholds on the second constraint

(q2 ∈ {100, 105, 110, 115, 120, 125,

130, 135}). We formulate the input threshold vectors based on ranked constraints, where we

prioritize the first constraint over the second constraint (relax the second constraint first).

An analytical analysis based on a Markov chain model shows the best system is (28, 60)

whose analytical values of failure probability is 0.0211 and expected cost per review period

is 113.9701. The value of θ∗ is 11, which correspond to the threshold vector (q1, q2) =

(0.05, 115). The experimental result is shown in Table 22.

Table 22: Average number of observations and observed PCS (reported in parentheses) of
ZAK, RestartHAK, ZAK+ and RestartHAK+ for the inventory policy example

ZAK RestartHAK ZAK+ RestartHAK+

Without CRN
5117 27045 3478 22758

(1.000) (1.000) (1.000) (1.000)

With CRN
5186 27064 3528 22781

(1.000) (1.000) (1.000) (1.000)

We see that ZAK and ZAK+ spend less than one fifth of the observations compared

tothat of RestartHAK and RestartHAK+, respectively. Both proposed procedures perform

much better than their alternative procedures while also remaining statistically valid at the

same time. One may also notice that the required number of observations when systems are

simulated with CRN is slightly more than that when systems are simulated indepedently.

This is because the implemetation parameters takes a conservative value when CRN is

applied to incorporate the depedency between systems.

3.7 Conclusion

We consider the selection-of-the-best problem when subjective stochastic constraints are

present. When a decision maker has flexibility with thresholds, she may be willing to con-

sider multiple threshold values for each constraint. We discuss how to combine thresholds

88

on constraints into threshold vectors based on how a decision maker prioritizes each con-

straint. We propose two procedures that select the best system with respect to a primary

performance measure while also satisfying secondary performance measures with respect to

the most preferred threshold possible, namely one that runs feasibility check and comparison

sequentially and another that runs them simultaneously. We discuss the statistical validity

of the proposed procedures and show that the required number of observations remains

steady when the number of threshold vectors grows. Our experimental results also show

that the proposed procedures perform well in reducing the average number of needed obser-

vations as compared with procedures that repeatedly solve the problem for each threshold

vector.

89

CHAPTER IV

FINDING A PORTFOLIO OF BEST SYSTEMS FOR SUBJECTIVE

CONSTRAINTS

4.1 Introduction

We consider the problem of finding a portfolio of the best systems with respect to a primary

performance measure among a finite number of simulated systems as stochastic constraints

on secondary performance measures are relaxed. Thus the constraints are subjective in

that their thresholds can be relaxed. When multiple thresholds are considered, there can

be a system that is infeasible to more preferred thresholds but has a significantly better

primary performance compared with those systems that are feasible to the more preferred

thresholds. Consequently, the information of how the identity and performance of the best

system depends on the thresholds can be helpful in decision making.

For example, suppose that a decision maker uses an (s, S) inventory policy (namely

ordering products to increase the inventory level up to S when the inventory level at a re-

view period is below s, and placing no order otherwise) to manage the inventory level. The

decision maker hopes to identify the values of S and s (among finitely many possible values)

such that the expected fill rate within each review period is maximized. In addition, the

chosen values of S and s should satisfy two constraints: (i) the probability that a shortage

occurs between two successive review periods is small (less than or equal to q1 percent);

(ii) the expected cost per review period is small (less than or equal to q2 thousand dol-

lars). The decision maker may consider multiple values for both constraint thresholds (e.g.,

q1 ∈ {1, 5, 10} and q2 ∈ {100, 105, 110}). Rather than selecting the values of S and s that

achieve the highest fill rate and are also feasible with respect to both constraints with fixed

thresholds, the decision maker is interested in how the values of S and s depend on the differ-

ent combinations of thresholds on both constraints (e.g., (q1, q2) = (1, 100), (1, 105), (1, 110),

etc.).

90

The information of the portfolio of best solutions (values of S and s) with respect to each

combination of thresholds can be beneficial in decision making as: (1) the decision maker

may identify a robust solution with respect to different levels of feasibility on constraints;

and (2) she can consider the trade-off between the primary performance measure and the

level of feasibility on constraints. For example, if a specific set of (s, S) keeps appearing as

the best feasible choice for different values of the thresholds, then this choice is robust to

the level of feasibility. Or if quite different solutions are best when thresholds are relaxed,

one can estimate the difference between their primary performance values. If the difference

is large, it means that a large sacrifice is needed to achieve a tighter level of feasibility, and

the decision maker can make her choice with this information in mind.

In this chapter, we propose fully sequential procedures that identify a portfolio of best

systems with respect to each set of relaxed thresholds in consideration so that the decision

maker can consider the robustness of the solutions and the trade-off between performance

measures. We prove the statistical validity of our proposed procedures and also document

their efficiency in terms of reducing the required number of simulation observations until the

decision is made, as compared with straight-forward repeating procedures such as applying

the procedures of [1] or [5] (depending on whether the problem has one or more constraints)

repeatedly to each possible set of threshold values.

The rest of this chapter is organized as follows: Section 4.2 provides the background

for our problem. Sections 4.3 and 4.4 discuss our proposed sequential and simultaneously

running procedures, respectively. Section 4.5 shows experimental results to demonstrate the

performance of our proposed procedures. Concluding remarks are provided in Section 4.6.

A discussion of two alternative procedures that we compare with our proposed procedures

is included in Appendices C.1 and C.2.

4.2 Background

In this section, we provide the problem formulation in Section 4.2.1, and discuss how we

define our correct selection event in Section 4.2.2. The necessary assumptions that guarantee

the statistical validity of our proposed procedures are provided in Section 4.2.3.

91

4.2.1 Problem Formulation

We consider k ≥ 2 systems whose primary performance measure and s secondary perfor-

mance measures can be estimated using stochastic simulation, and let Γ denote the index set

of all possible systems (i.e., Γ = {1, . . . , k}). We use Xin and Yi`n to denote the observation

associated with the primary performance measure and the `th secondary performance mea-

sure, where ` = 1, . . . , s, of system i from replication n, respectively. The expected values

of the primary and secondary performance measure for system i, where i = 1, . . . , k, and

constraint `, where ` = 1, . . . , s, are defined as xi = E[Xin] and yi` = E[Yi`n], respectively.

Constrained R&S is to select

arg maxi∈Γ xi

s.t. yi` ≤ q` for all ` = 1, . . . , s,

where q` denotes the constraint threshold for constraint `. For a given threshold vector

q = (q1, . . . , qs), procedures due to [1] and [5] can be used to select the best feasible system.

In this paper, we assume that the decision maker considers multiple constraint thresholds

on some or all constraints and aim to find a portfolio of best systems with respect to each

combination of thresholds. We let d` denote the number of the distinct threshold values

on constraint ` that the decision maker is interested in and let qm` denote the mth distinct

threshold value on constraint `, where ` = 1, . . . , s and m = 1, . . . , d`. We also assume

q1
` < . . . < qd`` where ` = 1, . . . , s.

We let {q(1), . . . , q(d)} be an ordered list of threshold vectors that are formulated based

on the threshold values of each constraint, where d denotes the total number of threshold

vectors that the decision maker is interested in testing, and q(θ) is the θth threshold vector

in consideration, where θ = 1, . . . , d. We use q(d+1) to denote a threshold vector that

contains “+∞” as the threshold value for each constraint so that the constrained R&S

problem becomes an unconstrained problem. We assume that q(1) is preferred to q(2), q(2)

is preferred to q(3), and so on. We let q
(θ)
` be the threshold value on constraint ` in q(θ),

where θ = 1, . . . , d+ 1 and ` = 1, . . . , s. We then introduce the threshold index vector I(θ)

to include the indices of the threshold values that form q(θ) where θ = 1, . . . , d. Similar to

the definition of q
(θ)
` , I

(θ)
` represents the threshold index on constraint `. A decision maker

92

can input the ordered list of threshold vectors, or the decision maker can input an ordered

list of threshold values for each constraint and a mechanism for constructing an ordered list

of threshold vectors from the inputed threshold values (see Chapter 3).

Consider the example of an inventory control policy discussed in Section 2.1. We have

s = 2, d1 = 2 (two threshold values for the first constraint), d2 = 3 (three threshold values

for the second constraint), q1
1 = 1, q2

1 = 5, and q1
2 = 100000, q2

2 = 105000, and q3
2 = 110000.

Moreover, we consider the following d = 6 ordered threshold vectors:

q(1) =

 1

100000

 , q(2) =

 1

105000

 , q(3) =

 1

110000

 , q(4) =

 5

100000

 ,
q(5) =

 5

105000

 , q(6) =

 5

110000

 , and q(7) =

+∞

+∞

 .
Note that q

(1)
1 = q

(2)
1 = q

(3)
1 = 1 and q

(4)
1 = q

(5)
1 = q

(6)
1 = 5 while q

(1)
2 = q

(4)
2 = 100000,

q
(2)
2 = q

(5)
2 = 105000, and q

(3)
2 = q

(6)
2 = 110000. The threshold index vectors are

I(1) =

1

1

 , I(2) =

1

2

 , I(3) =

1

3

 , I(4) =

2

1

 , I(5) =

2

2

 , and I(6) =

2

3

 .
Hence I

(1)
1 = I

(2)
1 = I

(3)
1 = 1 and I

(4)
1 = I

(5)
1 = I

(6)
1 = 2, while I

(1)
2 = I

(4)
2 = 1, I

(2)
2 = I

(5)
2 =

2, and I
(3)
2 = I

(6)
2 = 3.

Let P(θ) for θ = 1, 2, . . . , d+ 1 represent the following problem:

arg maxi∈Γ xi

s.t. yi` ≤ q
(θ)
` for all ` = 1, . . . , s.

Then our problem is to solve a series of problems P(θ), θ = 1, 2, . . . , d+ 1, and return a set

of solutions to them. Note that θ = d + 1 is the case when the decision maker is willing

to completely relax all the constraints and identify the best system of the unconstrained

optimization problem.

4.2.2 Correct Selection

To solve a constrained R&S problem, we consider two phases, namely finding the feasible

systems with respect to the secondary performance measure of q(θ) (Phase I) and selecting

93

a system with the best primary performance measure based on comparisons among feasible

systems (Phase II) where θ = 1, . . . , d+ 1.

To perform the feasibility check with respect to constraint `, [1] introduce a tolerance

level ε`. This is a positive real value predefined by the decision maker and is often interpreted

as the amount that she is willing to be off from a given threshold value. Consider a threshold

value qm` for m = 1, . . . , d`. Any systems with yi` ≤ qm` − ε` are considered as desirable

systems with respect to constraint ` and threshold qm` . Systems with yi` ≥ qm` + ε` are

considered as unacceptable systems for constraint ` and threshold qm` . Systems that satisfy

qm` −ε` < yi` < qm` +ε`, which means their mean performances fall within the tolerance level

of qm` , are considered as acceptable systems. We use D`(q
m
`), A`(q

m
`) and U`(q

m
`) to denote

the sets of desirable systems, acceptable systems, and unacceptable systems, respectively.

More specifically,

D`(q
m
`) = {i ∈ Γ|yi` ≤ qm` − ε`};

U`(q
m
`) = {i ∈ Γ|yi` ≥ qm` − ε`}; and

A`(q
m
`) = {i ∈ Γ|qm` − ε` < yi` < qm` + ε`}.

When feasibility check is performed to completion (until a decision is made), we let CDi`(q
m
`)

denote the correct decision event of system i with respect to constraint ` and threshold qm`

from the feasibility check. This is defined as declaring system i feasible if i ∈ D`(q
m
`) and

infeasible if i ∈ U`(qm`). Any feasibility decision is considered correct if i ∈ A`(qm`). For

any threshold vector q(θ), we say that system i is desirable with respect to q(θ) when it is

desirable with respect to all the constraints, i.e., i ∈ D`(q
(θ)
`) for all ` = 1, . . . , s. System i is

unacceptable with respect to q(θ) if it is unacceptable with respect to at least one constraint,

i.e., there exists ` such that i ∈ U`(q
(θ)
`). When system i is acceptable with respect to some

(or all) the constraints and desirable with respect to the other constraints, system i is called

acceptable with respect to q(θ).

To perform comparisons pairwisely between systems so that a system with the best

primary performance measure can be identified, a decision maker needs to first specify an

indifference-zone parameter δ. This is the smallest absolute difference that the decision

94

maker considers significant, and any systems whose primary performance measure is at

least δ smaller (larger) than system i is considered as inferior (superior) to system i.

For each threshold vector q(θ), where θ = 1, . . . , d + 1, we let S
(θ)
de and S

(θ)
a denote the

set of desirable and acceptable systems with respect to q(θ), respectively. That is,

S
(θ)
de = ∩s`=1D`(q

(θ)
`) and S(θ)

a =
(
∩s`=1

(
D`(q

(θ)
`) ∪A`(q

(θ)
`

))
\ S(θ)

de .

Then we use [bθ] to denote the index of the best system among the systems in S
(θ)
de so that

x[bθ] ≥ xi for i, [bθ] ∈ S
(θ)
de . If S

(θ)
de = ∅, then define [bθ] as “nothing” and |{[bθ]}| = 0 (where

we use |S| to denote the cardinality of a set S). Let Ib =
{
θ | |S(θ)

de ∪ S
(θ)
a | ≥ 2

}
be the

set of threshold vector indices that may require comparison among systems (as there can

be more than one system declared feasible with respect to threshold vector q(θ)). We use

CS(θ) to denote the correct selection event with respect to q(θ), and define CS(θ) as either

selecting a desirable or acceptable system with respect to q(θ) whose primary performance

is not inferior to the best system [bθ] when [bθ] exists, or an acceptable system with respect

to θ (if one exists) when [bθ] does not exist (i.e., nothing). More specifically,

CS(θ) =
{

select i such that i ∈ S(θ)
de ∪ S

(θ)
a and xi > x[bθ] − δ if |{[bθ]}| 6= 0

or any i ∈ S(θ)
a if |{[bθ]}| = 0

}
.

We define the correct selection (CS) of our problem as selecting a portfolio of best systems

[bθ] such that CS(θ) is satisfied for all θ = 1, . . . , d+ 1. That is CS = ∩d+1
θ=1CS(θ).

4.2.3 Notation and Assumptions

Throughout the paper, we use 1(·) to denote the indicator function and consider additional

notation as follows:

n0 ≡ initial sample size for each system (n0 ≥ 2);

ri ≡ number of observations so far for system i (ri ≥ n0);

X̄i(ri) ≡ average value of Xi1, . . . , Xiri for system i;

Ȳi`(ri) ≡ average value of Yi`1, . . . , Yi`ri for system i and constraint `;

S2
Xij (n0) ≡ sample variance of Xi1 −Xj1, . . . , Xin0 −Xjn0 between system i and j;

95

S2
Yi`

(n0) ≡ sample variance of Yi`1, . . . , Yi`n0 for system i and constraint `;

R(ri; v, w, z) ≡ max

{
0,

(n0 − 1)wz

v
− v

2c
ri

}
for v, w, z ∈ R+ and c ∈ {1, 2, . . .};

g(η) ≡
c∑
j=1

(−1)j+1

(
1− 1

2
1(j = c)

)
×

(
1 +

2η(2c− j)j
c

)−(n0−1)/2

;

α ≡ overall nominal error for a procedure under consideration.

Note that a parameter c is required for both R(ri; v, w, z) and g(η). This is a user-defined

parameter that impacts the shape of the continuation region defined by (−R(ri; v, w, z), R(ri; v, w, z))

(it becomes a longer and narrower triangle as c increases). The choice c = 1 is recommended

in g(η) function as it guarantees a unique and easy solution when computing the implemen-

tation parameter η from g(η). [10] also suggest that c = 1 is a good choice when the decision

maker does not have information about the systems’ mean configuration. The experimental

results for our proposed procedure are based on c = 1.

We then discuss the necessary assumptions to guarantee the statistical validity of our

proposed procedures.

Assumption 4. For each system i, where i = 1, . . . , k, we have

Xin

Yi1n
...

Yisn


iid∼ Ns+1





xi

yi1
...

yis


,Σi


, n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, Ns+1 denotes (s+ 1)-dimensional

multivariate normal, and Σi is the (s+ 1)× (s+ 1) covariance matrix of the vector

(Xin, Yi1n, . . . , Yisn).

Normally distributed data is a common assumption used in many R&S procedures due

to the fact that it can be justified by the Central Limit Theorem when observations are

either within-replication averages or batch means [12]. Moreover, primary and secondary

performance measures are usually correlated. When common random numbers (CRN) are

introduced in simulating observations from each system, observations between systems are

96

correlated. Our formulation allows correlations between both performance measures and

systems.

Assumption 5. For any θ = 1, . . . , d+1 and system i ∈ S(θ)
de ∪S

(θ)
a and i 6= [bθ], we assume

xi ≤ x[bθ] − δ.

Assumption 5 implies that there exists only one best system [bθ] with respect to q(θ),

and any systems that are desirable or acceptable to q
(θ)
` for all constraints ` = 1, . . . , s are

inferior to system [bθ], where θ = 1, . . . , d + 1. This assumption is a standard assumption

for proving the statistical validity of IZ approaches in the R&S literature.

4.3 Sequentially-Running Procedures

In this section, we first propose a procedure (FAPR) for finding a portfolio {[bθ] : θ =

1, . . . , d + 1} in Section 4.3.1. FAPR incorporates restart for different threshold vectors

and runs Phases I and II sequentially. We prove the statistical validity of FAPR in Section

4.3.2. A more efficient sequentially-running procedure FAP is provided in Section 4.3.3.

4.3.1 Procedure FAPR

In this section, we discuss the sequentially-running procedure FAPR and also provide a

detailed algorithm. We first introduce some sets that we use in the proposed procedure:

• M is a set of systems whose feasibility are not yet determined with respect to all

threshold vector q(1), . . . , q(d+1), i.e., there exist at least one threshold vector q(θ)

and one constraint ` such that the systems are not decided feasible or infeasible with

respect to q
(θ)
` .

• Fθ is a set of systems that are feasible with respect to threshold vector q(θ), where

θ = 1, . . . , d+ 1. Initially, Fθ is an empty set for θ = 1, 2, . . . , d and Fd+1 contains all

systems in consideration (i.e., Fd+1 = Γ).

The sequentially-running procedure FAPR performs Phase I first by declaring feasibility

decisions for each system with respect to all thresholds on all constraints. Our approach

builds on the work discussed in Chapter 2, where an efficient fully-sequential procedure

97

for checking the feasibility of all systems with respect to all constraints and all thresholds

simultaneously is proposed and analyzed. Specifically, our proposed procedure incorporates

procedure RF discussed in Chapter 2 by returning Zmi` = 1(Zmi` = 0) if system i is declared

feasible (infeasible) with respect to constraint ` and threshold qm` . If a system’s feasibility

check decisions are completed with respect to all threshold values, it is added to Fθ only

when it is feasible to q(θ) for θ = 1, . . . , d. Note that there is no elimination of inferior

systems in Phase I. Theorem 1 in Chapter 2 shows that once a system i is declared feasible

with respect to a threshold qm` such that qm` ≥ yi` + ε`, this system will be declared feasible

with respect to all thresholds qm+1
` , . . . , qd`` on constraint `. Similarly, if a system i is

declared infeasible with respect to a threshold qm` such that qm` ≤ yi`− ε`, then this system

will be declared infeasible with respect to all the thresholds q1
` , . . . , q

m−1
` . Our proposed

procedures utilize the same idea.

During Phase II, we compare systems pairwisely and find a best system among the

systems in each set Fθ where θ = 1, . . . , d + 1. Note that we do not collect observations

from systems in Fθ if |Fθ| = 1 as this system would already be selected as the best system

with respect to q(θ) (i.e., we only perform pairwise comparison among systems in ∪d+1
θ=1Fθ

such that |Fθ| > 1). Elimination occurs only between systems in the same set Fθ and

continues until each Fθ contains at most one system. Then we report those surviving

systems as a portfolio of best systems. In order to prove the statistical validity of our

proposed sequentially-running procedure, we avoid the correlation between the primary and

the secondary performance measures by not recycling observations collected from Phase

I and starting “from scratch” when performing Phase II. A detailed description of the

algorithm FAPR is provided in Algorithm 9.

4.3.2 Statistical Validity of Procedure FAPR

In this section, we prove the statistical validity of FAPR presented in Algorithm 9. Before

presenting the main results, we first introduce the following sets.

B(θ) = set of best systems with respect to q(θ) = {[bθ]} ;

S(θ)
u = set of unacceptable systems with respect to q(θ) for θ = 1, . . . , d+ 1.

98

Algorithm 9 FAPR
[Setup:] Select the overall nominal confidence level 1−α and choose αf , αc > 0 such that (1−αf)(1−αc) = 1−α.

Choose tolerance levels ε1, . . . , εs, indifference-zone parameter δ, threshold vectors {q(1), . . . , q(d)}, and associated

index vectors {I(1), I(2), . . . , I(d)}. Set M = Γ and Zmi` = 2 for all i ∈ M, ` = 1, . . . , s, and m = 1, . . . , d`. Set
Fθ = ∅ for θ = 1, . . . , d and Fd+1 = Γ. Set ηf such that g(ηf) = α′f , where α′f is set as the solution to

(1−min{s, d}α′f)k−min{d+1,k}(1− 2sα′f)min{d+1,k} = 1− αf , if systems are simulated independently;

and set as

α′f = αf/ [k ×min{s, d}+ (2s−min{s, d})×min{d+ 1, k}] , if systems are simulated under CRN.

[Initialization for Phase I:]
for each system i ∈M do

• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0
for ` = 1, 2, . . . , s.

• Compute Ȳi`(n0) and S2
Yi`

(n0).

• Set ri = n0,ONi = {1, 2, . . . , s}, and ONi` = {1, 2, . . . , d`} for ` = 1, 2, . . . , s.

• Set vUB
i` =∞ and vLB

i` = −∞ for ` = 1, . . . , s.

end for
[Feasibility Check:]
for each system i ∈M do

for ` ∈ ONi do
vUB
i` = min(vUB

i` , Ȳi`(ri) +R(ri; ε`, ηf , S
2
Yi`

(n0))/ri).

vLB
i` = max(vLB

i` , Ȳi`(ri)−R(ri; ε`, ηf , S
2
Yi`

(n0))/ri).

for m ∈ ONi` do,
If vUB

i` ≤ q
m
` , set Zmi` = 1 and ONi` = ONi` \ {m}.

If vLB
i` ≥ q

m
` , set Zmi` = 0 and ONi` = ONi` \ {m}.

end for
If ONi` = ∅, set ONi = ONi \ {`}.

end for

If ONi = ∅, then remove system i from M and, for θ = 1, . . . , d, add system i to Fθ if
∏s
`=1 Z

I
(θ)
`
i` = 1.

end for
[Stopping Condition for Phase I:] If |M | = 0, then go to [Initialization for Phase II]. Otherwise, for each
i ∈ M , set ri = ri + 1, take one additional observation Yi`ri , update Ȳi`(ri) for ` ∈ ON and go to [Feasibility
Check].
[Initialization for Phase II:] Let ηc be a solution to g(ηc) = α′c, where

α′c =

{
1− (1− αc/(d+ 1))1/(k−1) , if systems are simulated independently;

αc/[(d+ 1)(k − 1)], if systems are simulated under CRN.

Let T = {θ = 1, . . . , d+ 1 : |Fθ| ≥ 2|} and M = ∪θ∈TFθ be the set of systems that still need comparison. For each
system i ∈M , perform an entirely new simulation and obtain Xi1, . . . , Xin0 independent of any Yi`n generated in
Phase I. Compute X̄i(n0) and S2

Xij
(n0) for i, j ∈M and i 6= j. Set r = n0 and go to [Comparison].

[Comparison:]
for i, j ∈M s.t. i 6= j and i, j ∈ Fθ for any θ ∈ T , if

rX̄i(r) > rX̄j(r) +R(r; δ, ηc, S
2
Xij

(n0)), (9)

do
Eliminate j from Fd+1, and
for θ ∈ T \ {d+ 1} do

If i ∈ Fθ and j ∈ Fθ, then eliminate j from Fθ. If |Fθ| = 1, eliminate θ from T .
end for
If |T | ≥ 1 and j 6∈ Fθ for all θ ∈ T , then eliminate j from M . Also, eliminate i from M if i 6∈ Fθ for all θ ∈ T .

end for
[Stopping Condition for Phase II:]
If |T | = 0, stop and return the set of systems in Fθ, θ = 1, . . . , d + 1 as the portfolio of best systems. Otherwise,
for all i ∈ M , take one additional observation Xi,r+1 and compute X̄i(r + 1). Then set r = r + 1 and go to
[Comparison].

99

Recall that [bθ] can be ‘nothing’ and thus B(θ) can be an empty set. Also, we define S
(θ)
de

and S
(θ)
a in Section 4.2.2 as

S
(θ)
de = set of desirable systems with respect to q(θ) for θ = 1, . . . , d+ 1;

S(θ)
a = set of acceptable systems with respect to q(θ) for θ = 1, . . . , d+ 1;

Ib = set of threshold vector indices such that |S(θ)
de ∪ S

(θ)
a | ≥ 2.

Notice that S
(d+1)
de = Γ while S

(d+1)
u = S

(d+1)
a = ∅, and |S(θ)

de | + |S
(θ)
a | + |S(θ)

u | = k for

any θ = 1, . . . , d + 1. We then let B denote the set of all the best systems with respect

to q(1), . . . , q(d+1), i.e., B = ∪d+1
θ=1B

(θ). We let Su denote the set of systems that are

unacceptable with respect to at least one q(θ) among Γ \ B, i.e., Su = ∪dθ=1S
(θ)
u \ B, let

Sde denote the set of desirable systems with respect to all q(1), . . . , q(d) among Γ \ B, i.e.,

Sde = ∩dθ=1S
(θ)
de \ B, and let Sa denote the set of systems in Γ \ B that are acceptable

with respect to at least one q(θ) but desirable with respect to the other threshold vectors,

i.e., Sa = ∪dθ=1S
(θ)
a \ (B ∪ Su). We further let jb denote the number of best systems, i.e.,

jb = |B|, and let ju = |Su|, jd = |Sde|, and ja = |Sa|. Note that jb + ju + jd + ja = k and

1 ≤ jb ≤ min{k, d+ 1}.

To further illustrate the above notation, we consider an example when two constraints

are in presence, where the first constraint has two thresholds and the second constraint

has three thresholds. Suppose that the threshold vectors are ordered based on ranked

constraints. That is, there are d = 7 possible threshold vectors:

q(1) =

q1
1

q1
2

 , q(2) =

q1
1

q2
2

 , q(3) =

q1
1

q3
2

 , q(4) =

q2
1

q1
2

 , q(5) =

q2
1

q2
2

 , q(6) =

q2
1

q3
2

 , q(7) =

+∞

+∞

 .
Figure 17 shows (non-negative) secondary performance means where the shaded areas rep-

resent acceptable regions with respect to one or more threshold vectors.

We see that system a is desirable with respect to all threshold vectors, i.e., a ∈ S(θ)
de for

all θ = 1, . . . , 7. System b is acceptable with respect to q(2), q(3), and q(5), desirable with

respect to q(6) and q(7), and unacceptable with respect to q(1) and q(4). Therefore, we know

that b ∈ S(θ)
a where θ = 2, 3, 5, b ∈ S(θ)

de where θ = 6, 7, and b ∈ S(θ)
u where θ = 1, 4. Similarly,

system c is acceptable with respect to q(1), q(2), q(3), and q(4), meaning that c ∈ S(θ)
a where

100

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1

c

b

a

Figure 17: Two secondary performance measures and seven threshold vectors

θ = 1, 2, 3, 4, and desirable with respect to all the other threshold vectors, meaning that

c ∈ S(θ)
de where θ = 5, 6, 7. We also know that a ∈ Sde (if a 6= [b1]) as it is desirable with

respect to all threshold vectors, b ∈ Su (if b 6= [b6]) as it is unacceptable with respect to at

least one threshold vectors, and c ∈ Sa (if c 6= [b5]) as it is acceptable with respect to some

threshold vectors and desirable with respect to the other threshold vectors. As system a

is desirable with respect to all threshold vectors, system b is acceptable to q(2), q(3), q(5)

and desirable with respect to q(6), q(7), and system c is acceptable to q(1), q(2), q(3).q(4) and

desirable to q(5), q(6), q(7), we know that all threshold vectors have at least two desirable or

acceptable systems. Therefore, we have Ib = {1, 2, 3, 4, 5, 6, 7}.

To prove the statistical validity of FAPR, we start with the following lemma.

Lemma 7. For system i and constraint ` with specific threshold value qm` , the [Feasibility

Check] steps in FAPR ensure Pr(CDi`(q
m
`)) ≥ 1− α′f .

Proof. When system i and constraint ` with specific threshold qm` are considered separately,

the [Feasibility Check] steps in FAPR are essentially the same as for the statistically-

valid feasibility check procedure F in [1] for a single system and a single constraint with

one threshold value with confidence level 1 − α′f . The result now follows from the special

case of Theorem 1 in [1] with k = 1.

We then let Θu(i) and Θd(i) denote the set of indices of the threshold vectors that

system i is unacceptable and desirable with respect to, respectively. More specifically, we

101

let

Θu(i) =
{
θ = 1, . . . d

∣∣∣ there exists a constraint ` such that i ∈ U`(q
(θ)
`)
}

;

Θd(i) =
{
θ = 1, . . . d

∣∣∣i ∈ ∩s`=1D`(q
(θ)
`)
}
.

We introduce two events.

A∗(i) = system i is declared infeasible to all q(θ) such that θ ∈ Θu(i);

B1(i) = system i is declared feasible to all q(θ) such that θ ∈ Θd(i) and

declared infeasible to all q(θ) such that θ ∈ Θu(i).

Lemma 8. For any system i ∈ Su, the [Feasibility Check] steps in FAPR ensure

Pr (A∗(i)) ≥ 1−min{s, d}α′f .

Proof. For a particular system i, we know that for each θ ∈ Θu(i), there exists at least one

constraint `θ such that yi`θ ≥ q
(θ)
`θ

+ ε`θ . Then we have

Pr (A∗(i)) ≥ Pr
(
∩dθ=1CDi`θ(q

(θ)
`θ

)
)
≥ 1−

d∑
θ=1

Pr
(

ICDi`θ(q
(θ)
`θ

)
)
≥ 1− dα′f , (10)

where we use ICDi`(q
m
`) to denote the incorrect decision event of system i with respect

to constraint ` and threshold qm` . The first inequality holds because declaring system i

infeasible to constraint `θ is sufficient to declare system i infeasible to threshold vector q(θ)

and it is not possible to declare a system feasible with respect to a threshold vector without

completing the feasibility check with all thresholds in that vector. The second inequality

holds due to the Bonferroni inequality, and the last inequality holds due to Lemma 7.

Observe that since there are only s constraints, the set L = {`θ|θ ∈ Θu(i)} can have at

most s distinct values. For ` ∈ L, let Ii` denote the largest threshold index on constraint `

that system i is unacceptable to, i.e.,

Ii` = max
1≤m≤d`

{m : yi` ≥ qm` + ε`} .

Thus, we know that q1
` < q2

` < · · · < qIi`` ≤ yi` − ε` on constraint `. Due to the

discussion in Chapter 2, we know that CDi`(q
Ii`
`) ⊆ · · · ⊆ CDi`(q

2
`) ⊆ CDi`(q

1
`). Then

102

CDi`(q
Ii`
`) ⊆ CDi`(q

(θ)
`) for θ ∈ Θu(i) with ` = `θ. Thus, we also have

Pr (A∗1(i)) ≥ Pr
(
∩dθ=1CDi`θ(q

(θ)
`θ

)
)
≥ Pr

(
∩`∈LCDi`(q

Ii`
`)
)

≥ 1−
∑
`∈L

Pr
(

ICDi`(q
Ii`
`)
)
≥ 1− |L|α′f ≥ 1− sα′f , (11)

where the third inequality is due to the Bonferroni inequality and the forth inequalty is

due to Lemma 7. By comparing equations (10) and (11), we conclude that Pr (A∗1(i)) ≥

1−min{s, d}α′f .

Lemma 9. For any system i ∈ B, the [Feasibility Check] steps in FAPR ensure

Pr (B1(i)) ≥ 1− 2sα′f .

Proof. For a particular system i ∈ B, to ensure B1(i), we need to ensure correct decisions

with respect to all threshold vectors θ ∈ Θd(i)∪Θu(i). Correct decisions with respect to all

constraints and all the threshold values (i.e., ∩s`=1∩
d`
m=1CDi`(q

m
`)) will ensure that this event

occurs. As the [Feasibility Check] steps in FAPR are the same as the satistical-valid

feasibility check procedure RF provided in Algorithm 1, we know that

Pr
(
∩d`m=1CDi`(q

m
`)
)
≥ Pr (CDi`(yi` − ε`),CDi`(yi` + ε`))

≥ Pr (CDi`(yi` − ε`)) + Pr (CDi`(yi` + ε`))− 1

≥ 1− α′f + 1− α′f − 1 = 1− 2α′f ,

where Pr (CDi`(yi` − ε`),CDi`(yi` + ε`)) denotes the joint probability of the events CDi`(yi`−

ε`) and CDi`(yi` + ε`) and the first inequality holds due to Theorem 1 in Chapter 2. The

last inequality holds due to Lemma 7. Therefore,

Pr (B1(i)) ≥ Pr
(
∩s`=1 ∩

d`
m=1 CDi`(q

m
`)
)
≥ 1−

s∑
`=1

Pr
((
∩d`m=1CDi`(q

m
`)
)c)
≥ 1− s(2α′f),

where we use Ac to denote the complement event of evnet A.

We let CS
(θ)
i denote the correct selection between system i ∈ (S

(θ)
a ∪ S(θ)

de) \ {[bθ]} and

the best system [bθ] and introduce the following lemma.

103

Lemma 10. Given an existing best desirable system [bθ] and i such that xi ≤ x[bθ] − δ, the

[Comparison] steps for system i and [bθ] in FAPR run to completion ensure

Pr
(

CS
(θ)
i

)
≥ 1− α′c.

Proof. Given an existing best system [bθ] (i.e., [bθ] 6= ‘nothing’), when only system i and

[bθ] are considered, the [Comparison] steps in RestartS are the same as the statistically-

valid selection-of-the-best procedure provided in [10] when two systems are considered with

confidence level 1− α′c. Therefore, the result follows from the special case of Theorem 1 of

[10] with k = 2.

Theorem 6. Under Assumptions 4 and 5, FAPR guarantees

Pr{CS} ≥ 1− α.

Proof. For correct selection, we need correct feasibility decision for any systems in Su and

B in Phase I and each [bθ] for θ ∈ Ib needs to be selected as the best in Phase II. More

specifically, we consider the following events.

A∗ = each system i ∈ Su is declared infeasible with respect to any q(θ) such that θ ∈ Θu(i)

= ∩i∈SuA∗(i);

B∗1 = each system i ∈ B is declared feasible with respect to q(θ) such that θ ∈ Θd(i) and

infeasible with respect to q(θ) such that θ ∈ Θu(i)

= ∩i∈BB1(i);

B+
2 = for each θ such that θ ∈ T , [bθ] is declared as the best system among the systems in Fθ

⊆ ∩θ∈T ∩i∈Fθ,i 6=[bθ] CS
(θ)
i ;

B∗2 = for each θ ∈ Ib, [bθ] is declared as the best system among the systems in (S(θ)
a ∪ S

(θ)
de)

⊆ ∩θ∈Ib ∩i∈(S
(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i .

Recall T = {θ : |Fθ| ≥ 2}. Then

Pr{CS} ≥ Pr(A∗ ∩ B∗1 ∩ B+
2)

≥ Pr(A∗ ∩ B∗1 ∩ B∗2)

= Pr (A∗ ∩ B∗1) Pr (B∗2) ,

104

where the second inequality holds because when event A∗ ∩ B∗1 occurs, we have T ⊂ Ib

and Fθ ⊂ (S
(θ)
a ∪ S(θ)

de) for any θ, and the final inequality holds due to the independence of

Phases I and II.

We also see that A∗ and B∗1 are independent events when systems are simulated inde-

pendently but are dependent events when systems are simulated under CRN. We have

Pr{CS} ≥ Pr(A∗ ∩ B∗1) Pr(B∗2)

=


Pr(A∗)× Pr(B∗1)× Pr(B∗2), if systems are simulated independently;

[Pr(A∗) + Pr(B∗1)− 1]× Pr(B∗2), if systems are simulated under CRN.

We discuss the cases depending on whether the systems are simulated independently or

under CRN.

When systems are simulated independently, due to Lemmas 8 and 9, we have

Pr (A∗) ≥ (1−min{s, d}α′f)ju = (1−min{s, d}α′f)k−jb−jd−ja ;

Pr (B∗1) ≥ (1− 2sα′f)jb .

Let Nij denote the number of observations taken for system i before a comparison decision

is made between systems i and j, and let Ni denote the maximum number of observations

that system i takes within Phase II. That is

Nij =

⌈
2cηc(n0 − 1)S2

Xij
(n0)

δ2

⌉
, and Ni = max

j 6=i
Nij .

Notice that as we use the same observations from each system to perform comparison among

systems within each set Fθ where θ = 1, . . . , d+ 1. As one system may appear in multiple

sets Fθ, the comparison between systems in Phase II is depedent. Then we have

Pr (B∗2) ≥ Pr
(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
≥
∑
θ∈Ib

Pr
(
∩
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
− (|Ib| − 1)

=
∑
θ∈Ib

E
[
Pr
{
∩
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

∣∣∣X[bθ]1, . . . , X[bθ],N[bθ]
, S2

Xi[bθ]
(n0)

}]
− (|Ib| − 1)

=
∑
θ∈Ib

E

 ∏
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

Pr
{

CS
(θ)
i

∣∣∣X[bθ]1, . . . , X[bθ],N[bθ]
, S2

Xi[bθ]
(n0)

}− (|Ib| − 1)

105

≥
∑
θ∈Ib

∏
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

E
[
Pr
{

CS
(θ)
i

∣∣∣X[bθ]1, . . . , X[bθ],N[bθ]
, S2

Xi[bθ]
(n0)

}]
− (|Ib| − 1)

≥
∑
θ∈Ib

∏
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

Pr
(

CS
(θ)
i

)
− (|Ib| − 1)

≥
∑
θ∈Ib

(1− α′c)|S
(θ)
a |+|S

(θ)
de |−1 − (|Ib| − 1),

where the second inequality holds due to the Bonferroni inequality, the third inequality

holds due to Lemma 2.4 in [17] and the last inequality holdes due to Lemma 10. As we

know that |S(θ)
a |+ |S(θ)

de | = k − |S(θ)
u | ≤ k, we have

Pr (B∗2) ≥
∑
θ∈Ib

(1− α′c)k−1 − (|Ib| − 1) = |Ib|(1− α′c)k−1 − (|Ib| − 1)

= |Ib|
[
(1− α′c)k−1 − 1

]
+ 1 ≥ (d+ 1)

[
(1− α′c)k−1 − 1

]
+ 1

= (d+ 1)(1− α′c)k−1 − d,

where the last inequality holds as 1 ≤ |Ib| ≤ d+ 1 and (1− α′c)k−1 − 1 ≤ 0.

Thus, we know that

Pr{CS} ≥ (1−min{s, d}α′f)k−jb−jd−ja × (1− 2sα′f)jb ×
[
(d+ 1)(1− α′c)k−1 − d

]
≥ (1−min{s, d}α′f)k−jb × (1− 2sα′f)jb ×

[
(d+ 1)(1− α′c)k−1 − d

]
≥ (1−min{s, d}α′f)k−min{d+1,k} × (1− 2sα′f)min{d+1,k} ×

[
(d+ 1)(1− α′c)k−1 − d

]
= (1− αf)(1− αc) = 1− α,

where the second inequality holds since the lower bound of (1 − min{s, d}α′f)k−jb−jd−ja

is achieved when jd = ja = 0, and the third inequality holds since the lower bound of

(1−min{s, d}α′f)k−jb × (1− 2sα′f)jb is achieved when jb = min{d+ 1, k}.

When systems are simulated under CRN, due to Lemmas 8, 9, 10, and the Bonferroni

inequality, we have

Pr (A∗) ≥ 1− ju(min{s, d}α′f) = 1− (k − jb − jd − ja)(min{s, d}α′f)

Pr (B∗1) ≥ 1− jb(2sα′f)

Pr (B∗2) ≥ Pr
(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
≥ 1−

∑
θ∈Ib

∑
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

Pr
(

CS
(θ)
i

)

106

≥ 1− |Ib|
(
|S(θ)
a |+ |S

(θ)
de | − 1

)
α′c ≥ 1− (d+ 1)(k − 1)α′c,

where the last inequality holds as 1 ≤ |Ib| ≤ d+ 1 and |S(θ)
a |+ |S(θ)

de | ≤ k.

Thus, we know that

Pr{CS} ≥
[
1− (k − jb − jd − ja)(min{s, d}α′f)− jb(2sα′f)

] [
1− (d+ 1)(k − 1)α′c

]
≥
[
1− (k − jb)(min{s, d}α′f)− jb(2sα′f)

] [
1− (d+ 1)(k − 1)α′c

]
=
[
1− (kmin{s, d}+ (2s−min{s, d})jb)α′f

] [
1− (d+ 1)(k − 1)α′c

]
≥
[
1− (kmin{s, d}+ (2s−min{s, d}) ·min{d+ 1, k})α′f

] [
1− (d+ 1)(k − 1)α′c

]
= (1− αf)(1− αc) = 1− α,

where the second inequality holds as the lower bound of[
1− (k − jb − jd − ja)(min{s, d}α′f)− jb(2sα′f)

]
is achieved when jd = ja = 0, and the

last inequality holds as the lower bound of
[
1− (kmin{s, d}+ (2s−min{s, d})jb)α′f

]
is

achieved when jb = min{d+ 1, k}.

The chosen values of αf and αc affect the performance of the FAPR procedure. If

Phase I is relatively more difficult compared with Phase II (e.g., the secondary performance

measures of many systems are close to some threshold vectors in consideration), choosing

a larger value of αf compared with αc can improve the efficiency. On the other hand, if

Phase II is relatively more difficult, choosing a larger αc is plausible. If the decision maker

has knowledge on the relative difficulty of Phases I and II, she may first decide the choice

of e = αf/αc, the ratio of the nominal error of Phase I to that of Phase II. The value of αc

can be found by solving

(1− e× αc)(1− αc) = 1− α,

and then αf = e ·αc. However, the decision maker usually does not have information about

the mean configurations of the primary and secondary performance measures of the systems

in advance. One possibility is to select αf = αc = 1 − (1 − α)1/2. One may also consider

similar approaches as in Chapter 3 such as setting sα′f = α′c or dα′f = α′c depending on the

relationship between s and d.

107

4.3.3 Procedure FAP

In this section, we discuss a variation of the FAPR procedure that collects observations on

the primary performance measure in Phase I and recycles them in Phase II.

As FAPR starts “from scratch” when performing the comparison, it discards all the

information related to the primary performance measure obtained in Phase I, which can

be quite inefficient in terms of the computation effort. One may consider restoring all

the observations of the primary performance measure collected from Phase I and then

extracting information related to the primary performance measure when performing Phase

II. However, as Phase I may require a lot of observations, this approach requires a significant

amount of memory for restoring the observations from Phase I.

[16] propose the sequential selection with memory procedure (SSM) that is specifi-

cally for use within an optimization-via-simulation algorithm when simulation is costly, and

partial or complete information on solutions previously visited is maintained. When data

storage is prohibitive, the procedure requires only summary statistics of the simulation out-

put, which solves the memory space issue discussed above. We then present a sequentially

running procedure, namely FAP, that adopts the SSM procedure as its Phase II. The

detailed description is shown in Algorithm 10.

There is a major difficulty in proving the statistical validity of FAP. As the number of

observations Xin collected in Phase I depends on Yi`n for system i, this dependency affects

the comparison in Phase II. This dependency issue can be resolved by performing FAPR

instead as it restarts “from scratch” for the surviving systems of Phase I. We address the

dependency between Phases I and II in FAP by choosing the nominal errors αf and αc

such that αf + αc = α. Although we have not proved the statistical validity of FAP, our

experimental results (discussed in Section 4.5) do not show any violation of its validity.

4.4 Simultaneously-Running Procedure

In this section, we first propose a simultaneously-running procedure FAP+ in Section 4.4.1,

and then prove its statistical validity in Section 4.4.2.

108

Algorithm 10 FAP
[Setup:] Same as in FAPR except for choosing αf , αc > 0 such that αf + αc = α.

[Initialization for Phase I:] Same as in FAPR except for the following additional steps for
each system:

• Obtain n0 observations Xin, n = 1, . . . , n0.

• For each system i, compute X̄i(n0).

• For all systems i 6= j, compute S2
Xij

(n0).

[Feasibility Check:] Same as in FAPR.
[Stopping Condition for Phase I:] Same as in FAPR except that we also take one additional
observation Xi,ri+1 and update X̄i(ri) whenever we take one additional observation Yi,ri+1,` for
` = 1, . . . , s, from i ∈M .
[Initialization for Phase II:] Same as in FAPR except we do not perform new simulation and
do not compute X̄i(n0) and S2

Xij
(n0). Set r = mini∈Γ ri and go to [Comparison].

[Comparison:] Same as in FAPR except we replace equation (9) by

rX̄i(ri) > rX̄j(rj) +R(r; δ, ηc, S
2
Xij (n0)).

[Stopping Condition for Phase II:]
If |T | = 0, stop and return the set of systems in Fθ, where θ = 1, . . . , d+1, as the portfolio of best
systems. Otherwise, for all i ∈ M with ri = r, take one additional observation Xi,ri+1, compute
X̄i(ri + 1), and set ri = ri + 1. Then set r = r + 1 and go to [Comparison].

4.4.1 Procedure FAP+

In this section, we discuss a procedure that runs Phases I and II simultaneously.

We use M and Fθ defined as in Section 4.3.1 and introduce the following additional sets:

• SSi is a set of systems that are superior to system i in terms of the primary perfor-

mance measure, where i ∈ Γ.

• Mθ is a set of systems that can potentially be the best feasible system with respect

to q(θ) but need more observations for either feasibility check or comparison against

other systems in Mθ or Fθ, where θ = 1, . . . , d+ 1.

Procedure FAP+ performs feasibility check and comparison among systems that are

still in consideration (i.e., i ∈M where M = ∪d+1
θ=1Mθ) within each iteration. Similar to the

sequentially-running procedures, we utilize procedure RF in Algorithm 1 for the feasibility

checks. We remove system i from set Mθ if it is declared infeasible with respect to q(θ) (as

it can no longer be considered as a potential best system with respect to q(θ)). If system

i is declared feasible with respect to q(θ), we first add system i to set Fθ, then eliminate

109

any inferior system j (i.e., with i ∈ SSj) within set Fθ or Mθ. System i can also be

eliminated from Fθ if there exists a superior system j deemed feasible with respect to q(θ)

(i.e., j ∈ Fθ ∩ SSi). When Mθ and Fθ both contain only one system, then Mθ is set to an

empty set. This is because the only system that is potentially the best system with respect

to q(θ) is also the only feasible system with respect to q(θ). Therefore we can safely identify

this system as the best feasible system with respect to q(θ) and remove it from set Mθ.

Comparison is performed to all pairs of systems (i, j) such that i, j ∈ M = ∪d+1
θ=1Mθ and

their superiority is unknown yet (i.e., i /∈ SSj and j /∈ SSi). Within the comparison phase,

system j is eliminated from Mθ and Fθ whenever it is found inferior to another system i

already deemed feasible to q(θ) for θ = 1, 2, . . . , d+1. If the superior system’s feasibility with

respect to q(θ) is unknown, then system i is added to the superior set SSj . The procedure

stops when |M | = 0. A detailed description of FAP+ is provided in Algorithm 11.

4.4.2 Statistical Validity for the Simultaneously-Running Procedure

In this section, we prove the statistical validity for the proposed simultaneously-running

procedure FAP+.

Let βf and βc denote the nominal error of feasibility check for one constraint of single

system with fixed threshold and the nominal error of comparison between two systems,

respectively. We first present following lemmas.

Lemma 11. For a particular θ and any system i ∈ Su, the [Feasibility Check] steps in

FAP+ run to completion ensure

Pr (A∗(i)) ≥ 1−min{s, d}βf .

Lemma 12. For any system i ∈ B, the [Feasibility Check] steps in FAP+ run to

completion ensure

Pr (B1(i)) ≥ 1− 2sβf .

Lemma 13. Given an existing best desirable system [bθ] and i such that xi ≤ x[bθ] − δ, the

[Comparison] steps for system i and [bθ] in FAP+ run to completion ensure

Pr
(

CS
(θ)
i

)
≥ 1− βc.

110

Algorithm 11 FAP+

[Setup:] Choose confidence level 1− α, tolerance levels ε1, . . . , εs, indifference-zone parameter δ, threshold vectors

{q(1), q(2), . . . , q(d)}, and associated index vectors {I(1), I(2), . . . , I(d)}. Set M = Γ, SSi = ∅ and Zmi` = 2 for all
i ∈M, ` = 1, . . . , s, and m = 1, . . . , d`. Set Mθ = Γ for θ = 1, . . . , d+ 1. Set Fθ = ∅ for θ = 1, . . . , d and Fd+1 = Γ.
Choose βf , βc > 0 such that βf and βc satisfy

(1− 2sβf)min{d+1,k} + (1−min(s, d)βf)k + (d+ 1)
[
(1− βc)k−1 − 1

]
− 1 = 1− α,

if systems are simulated independently; and

1−min{d+ 1, k}(2sβf)− kmin(s, d)βf − (d+ 1)(k − 1)βc = 1− α,
if systems are simulated under CRN.

Set ηf and ηc such that g(ηf) = βf and g(ηc) = βc.
[Initialization:]
for each system i ∈M do

• Obtain n0 observations from system i

• Compute X̄i(n0), Ȳi`(n0), S2
Xij

(n0), and S2
Yi`

(n0) for all i, j ∈M , where i 6= j, and ` = 1, . . . , s.

• Set r = n0,ONi = {1, . . . , s}, and ONi` = {1, . . . , d`} for all ` = 1, . . . , s.

• Set vUB
i` =∞ and vLB

i` = −∞ for i ∈M and ` = 1, . . . , s.

end for
[Feasibility Check:]
for i ∈M do

for ` ∈ ONi do
vUB
i` = min(vUB

i` , Ȳi`(r) +R(r; ε`, ηf , S
2
i`(n0))/ri).

vLB
i` = max(vLB

i` , Ȳi`(r)−R(r; ε`, ηf , S
2
i`(n0))/ri).

for m ∈ ONi` do
If vUB

i` ≤ q
m
` , set Zmi` = 1 and ONi` = ONi`\{m};

If vLB
i` ≥ q

m
` , set Zmi` = 0 and ONi` = ONi`\{m}.

end for
If ONi` = ∅, set ONi = ONi\{`}.

end for
for θ = 1, . . . , d do

If
∏s
`=1 Z

I
(θ)
`
i` = 0, then remove system i from Mθ.

If
∏s
`=1 Z

I
(θ)
`
i` = 1, then

• Add system i to Fθ.

• If there exists system j such that j ∈ Fθ ∪Mθ with i ∈ SSj , then eliminate j from Fθ and Mθ, and delete
SSj .

end for
end for
For θ = 1, . . . , d+ 1, if |Mθ| = 1 and Mθ = Fθ, then set Mθ = ∅.
[Comparison:] Set M = ∪d+1

θ=1Mθ.
for i, j ∈M s.t. i 6= j, i 6∈ SSj , j 6∈ SSi, and

rX̄i(r) > rX̄j(r) +R(r; δ, ηc, S
2
Xij

(n0)),

do
Add system i into SSj , eliminate j from Fd+1 and Md+1 (if j ∈ Fd+1 ∪Md+1), and
for θ = 1, . . . , d do

If i ∈ Fθ and j ∈Mθ, then eliminate j from Fθ and Mθ, and delete SSj .
end for

end for
For θ = 1, . . . , d+ 1, if |Mθ| = 1 and Mθ = Fθ, then set Mθ = ∅.
[Stopping Condition:]

Set M = ∪d+1
θ=1Mθ.

If |M | = 0, then stop and return the set of systems in Fθ as the portfolio of best systems. Otherwise, for all i ∈M ,
take one additional observation Xi,r+1, and compute X̄i(r+ 1) and Ȳi`(r+ 1) for all ` ∈ ONi. Then set r = r+ 1,
and go to [Feasibility Check].

111

The proofs of Lemmas 11, 12, and 13 are essentially same as those of Lemmas 8, 9, and

10 because both α′f of FAPR and βf of FAP+ are the nominal error of feasibility check

for one constraint of single system with a fixed threshold, and both α′c of FAPR and βc of

FAP+ are the nominal error of comparison between an system in S
(θ)
a ∪ S(θ)

de \ {[bθ]} and

a best system [bθ] for one particular θ. We now present the following theorem to prove the

statistical validity of FAP+.

Theorem 7. Under Assumptions 4 and 5, FAP+ guarantees

Pr{CS} ≥ 1− α.

Proof. To ensure the correct selection, we need correct feasibility decisions for systems in

B, correct feasibility decisions for systems in Su, and correct comparison between [bθ] and

i ∈ (S
(θ)
a ∪ S(θ)

de) and i 6= [bθ] for each θ ∈ Ib. We consider the same definition of B∗1 from

Section 4.3.2. We then have

Pr{CS} ≥ Pr
(
B∗1 ∩ (∩i∈SuA∗(i)) ∩

(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

))
≥ Pr (B∗1) + Pr (∩i∈SuA∗(i)) + Pr

(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
− 2.

We discuss the cases depending on whether systems are simulated independently or under

CRN. When systems are simulated independently, by Lemma 12, we know that

Pr(B∗1) ≥ (1− 2sβf)jb .

By Lemma 11, we also have

Pr (∩i∈SuA∗(i)) ≥ (1−min(s, d)βf)ju .

By similar arguments as stated in the proof of Theorem 1, we get

Pr
(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
≥
∑
θ∈Ib

(1− βc)|S
(θ)
a |+|S

(θ)
de |−1 − (|Ib| − 1),

As |S(θ)
a |+ |S(θ)

de | ≤ k, we know that

Pr
(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
≥
∑
θ∈Ib

(1− βc)k−1 − (|Ib| − 1) = |Ib| (1− βc)k−1 − (|Ib| − 1)

= |Ib|
[
(1− βc)k−1 − 1

]
+ 1 ≥ (d+ 1)

[
(1− βc)k−1 − 1

]
+ 1,

112

where the last inequality holds as 1 ≤ |Ib| ≤ d+ 1 and (1− βc)k−1 − 1 ≤ 0.

Thus, we know that

Pr(CS) ≥ (1− 2sβf)jb + (1−min(s, d)βf)ju + (d+ 1)
[
(1− βc)k−1 − 1

]
+ 1− 2

≥ (1− 2sβf)min{d+1,k} + (1−min(s, d)βf)k + (d+ 1)
[
(1− βc)k−1 − 1

]
− 1

= 1− α,

where the second inequality holds as the minimum of (1 − 2sβf)jb is achieved when jb =

min{d+ 1, k} and the minimum of (1−min(s, d)βf)ju is achieved when ju = k.

When systems are simulated under CRN, by Lemma 11, 12, and 13, we know that

Pr(B∗1) ≥ 1− jb(2sβf);

Pr (∩i∈SuA∗(i)) ≥ 1− ju(min(s, d)βf);

Pr
(
∩θ∈Ib ∩i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

CS
(θ)
i

)
≥ 1−

∑
θ∈Ib

∑
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

Pr
(

ICS
(θ)
i

)

≥ 1−
∑
θ∈Ib

∑
i∈(S

(θ)
a ∪S

(θ)
de),i 6=[bθ]

Pr
(

ICS
(θ)
i

)

≥ 1−
∑
θ∈Ib

(
|S(θ)
a |+ |S

(θ)
de | − 1

)
βc ≥ 1− (d+ 1)(k − 1)βc,

where we use ICS
(θ)
i to denote the complement event of CS

(θ)
i and the last inequality holds

as |S(θ)
a |+ |S(θ)

de | ≤ k. Thus, we know that

Pr(CS) ≥ 1− jb(2sβf)− ju min(s, d)βf − (d+ 1)(k − 1)βc

≥ 1−min{d+ 1, k}(2sβf)− kmin(s, d)βf − (d+ 1)(k − 1)βc

= 1− α,

where the second inequality holds as the upper bound of jb(2sβf) is achieved when jb =

min{d+ 1, k} and 0 ≤ ju ≤ k.

4.5 Experimental Results

In this section, we present experimental results to demonstrate the performance of proce-

dures FAPR,FAP, and FAP+. We compare the performance of the proposed procedures

113

with two alternative procedures that iteratively apply AK and AK+ due to [1] if a single

constraint is considered, orHAK andHAK+ due to [5] if multiple constraints are considered

for q(θ), θ = 1, 2, . . . , d. For q(d+1), KN due to [10] is applied because P (d+1) is an uncon-

strained R&S problem. Procedures AK and HAK are sequentially-running procedures for

constrained R&S with a fixed threshold vector, while AK+ and HAK+ are simultaneously-

running procedures for constrained R&S with a fixed threshold vector. We refer to the

procedure that iteratively implements AK or AK+ as RestartAK or RestartAK+ and to

the procedure that iteratively implements HAK or HAK+ as RestartHAK or RestartHAK+.

Notice that RestartAK (RestartAK+) is a special case of RestartHAK (RestartHAK+) when

the number of constraints is one. We provide the algorithm statement and discussion of the

statistical validity of procedures RestartHAK and RestartHAK+ in Appendices C.1 and C.2,

respectively.

All the experimental results are based on 10,000 macro replications with α = 0.05 and

n0 = 20. We set δ = ε` = 1/
√
n0, where ` = 1, . . . , s. Section 4.5.1 defines non-overlapping

regions that are needed to describe our experimental configuration. The experimental con-

figurations we consider are given in Section 4.5.2. Sections 4.5.3 and 4.5.4 provide our

results regarding the validity and the efficiency of the proposed procedures, respectively.

4.5.1 Non-overlapping Regions

In this section, we introduce definitions of non-overlapping regions that we need to explain

the mean setting for our experiments.

We let Rθ be defined as follows:

Rθ =



{
(z1, z2, . . . , zs) : z` ≤ q

(θ)
` , ` = 1, 2, . . . , s

}
, if θ = 1;{

(z1, z2, . . . , zs) : z` ≤ q
(θ)
` , ` = 1, 2, . . . , s

}
\ ∪θ−1

κ=1Rκ, if θ = 2, . . . , d;

Rs \ ∪dκ=1Rκ, if θ = d+ 1.

Notice thatRθ denotes the part of a feasible region with respect to threshold vector q(θ) that

does not overlap with those of threshold vectors q(1), . . . , q(θ−1). For example, Figure 18

shows non-overlapping regions when a single constraint is in presence. The axis corresponds

114

to the secondary performance mean and for θ = 2, . . . , d, Rθ is the set of real values that

are less than or equal to qθ1 and greater than qθ−1
1 (i.e, (qθ−1

1 , qθ1]), while R1 is the set of

values that are less than or equal to q1
1 and Rd+1 is the set of values that are greater than

qd1 . Any system whose secondary performance measure mean falls in Rθ, where θ ≥ 2, is

feasible with respect to qθ1 but infeasible to all qθ
′

1 where θ′ < θ. A system whose secondary

performance mean falls in R1 is feasible with respect to all the thresholds.

yi1
q1

1 q2
1 q3

1

. . .
qd−1

1 qd1

R1 R2 R3 · · · Rd Rd+1

Figure 18: Non-overlapping regions for a single constraint with d thresholds

When the number of constraints is greater than one, one needs to first formulate the

input threshold vectors based on how the decision maker wants to prioritize each constraint.

In the experimental section with multiple constraints, we consider two of the formulations

discussed in Section 3.5 of Chapter 3, namely ranked constraints and equally important

constraints.

The ranked constraint formulation ranks the constraints based on their importance and

relaxes the least important constraint first while keeping the other constraints fixed at the

current threshold values, and then moves to the second least important constraint, etc. For

example, Figure 19a shows the non-overlapping regions when there are two constraints where

the first constraint is more important than the second constraint, and both constraints have

three threshold values.

The equally important constraints formulation assumes that all the constraints are

equally important. The decision maker wants to relax all constraints by one threshold

at the same time. If the constraints do not all have the same number of thresholds, then

constraints that have gone through all their thresholds keep the “loosest” threshold (i.e.,

qd`` for constraint `) while the other constraints are relaxed. Figure 19b shows the non-

overlapping region when there are two constraints and each constraint has three threshold

values.

115

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

(a) Ranked constraints

yi2

yi1

q1
2

q2
2

q3
2

q1
1 q2

1 q3
1

R1

R2

R3

R4

(b) Equally important constraints

Figure 19: Feasible region for two constraints

4.5.2 Experimental Configurations

For the primary performance measure, we consider an increasing means configuration where

we set xi = E [Xin] = (i − 1)δ for i = 1, . . . , k. For the secondary performance measures,

the first threshold value for each constraint is set to 0 and the remaining threshold values

for constraint ` increase by 2ε` (i.e., q1
` = 0 and qm` = qm−1

` + 2ε` for any m = 2, 3, . . . , d`).

We consider the three configurations discussed below.

• P(θ): All the systems fall in the non-overlapping region Rθ. In this configuration,

we test two extreme cases when all systems fall in R1 (i.e., all systems are feasible

with respect to all the threshold vectors) and when all systems fall in Rd+1 (i.e., all

systems are infeasible to q(θ), θ = 1, 2, . . . , d). As the proof of Theorem 1 shows the

lower bound of Pr{CS} is achieved at jd = 0, which means not all systems are in R1,

we also test a case when all systems fall in R2.

• Q(θ): Rθ′ has no system for θ′ = 1, 2, . . . , θ − 1, Rθ contains max{0, k − (d+ 1) + θ}

systems, and Rθ′ has one system for θ′ = θ + 1, . . . , d + 1. In addition, the system

in Rθ′ is the best feasible system with respect to q(θ′) for each θ′ = θ + 1, . . . , d + 1.

For example, in Q(1), R1 has k − d systems and each Rθ′ for θ′ = 2, . . . , d + 1 has

one system. In Q(2), R1 has no system, R2 has k − d+ 1 systems, and each Rθ′ for

θ′ = 3, . . . , d+1 has one system. Note that Q(2) corresponds to the case when jd = 0.

116

• E : Systems are evenly distributed among non-overlapping regionsR1, . . . ,Rd+1. More

specifically, Rθ contains d k
d+1e systems, where θ = 1, . . . , d+ 1.

For system i that falls in the non-overlapping region Rθ, the secondary performance mean

is set to yi` = q
(θ)
` − ε` where ` = 1, . . . , s. Finally, the variances for both primary and

secondary performance measures are set to one.

4.5.3 Statistical Validity of the Proposed Procedures

In this section, we test the performance of procedures FAPR,FAP, and FAP+ and check

their statistical validity. We first consider the single constraint case. We consider four

threshold values (i.e., d1 = 4) and choose q1 ∈ {0, 2ε`, 4ε`, 6ε`}. Table ?? shows the es-

timated probability of correct selection (PCS) and the required number of observations

for procedures FAPR,FAP, and FAP+ based on the configurations discussed in Section

4.5.2.

Table 23: Average number of observations and observed PCS (reported in parentheses)
of FAPR,FAP, and FAP+ for k = 10 systems and s = 1 constraint under different
configurations

.

P(1) P(2) P(5) Q(1) Q(2) E
FAPR 2261.03 2519.32 2265.26 3797.92 3797.92 4475.31

(0.997) (0.992) (0.994) (0.989) (0.990) (0.988)
FAP 1558.47 1744.50 1559.39 2687.70 2470.18 3143.88

(0.999) (0.993) (0.992) (0.990) (0.988) (0.988)
FAP+ 1329.59 1648.92 1582.51 2260.28 2193.59 2649.59

(0.998) (0.995) (0.994) (0.992) (0.990) (0.989)

Table 23 shows that all three procedures guarantee statistical validity under the con-

figurations we tested. The three procedures spend fewer observations than the other con-

figurations Configurations P(θ) for θ = 1, 2, 5 because configurations P(1),P(2), and P(5)

need fewer pairwise comparions than the other configurations and thus are easier. The

estimated PCS of the three procedures are similar for P(1),P(2), and P(5). Configurations

Q(1),Q(2), and E also show similar estimated PCS among three procedures but are smaller

compared to configurations P(θ), while they are above the nominal level 1− α = 0.95.

We then consider the two constraints case. We choose the two formulations of the input

117

threshold vectors as provided in Figure 9 (i.e., d1 = d2 = 3) and set q` ∈ {0, 2ε`, 4ε`} where

` = 1, 2. We also consider the same experimental configurations as discussed in Section

4.5.2. One may notice that as we consider nine threshold vectors in total under the ranked

constraints formulation, configuration E is same as Q(1). Therefore, we only consider

five configurations under the ranked constraints formulation. Tables 24 and 25 provide

the results for the ranked constraints formulation and the equally important constraints

formulation, respectively.

Table 24: Average number of observations and observed PCS (reported in parentheses) of
FAPR,FAP, and FAP+ for k = 10 systems and s = 2 constraints based on the ranked
constraints formulation

.

Ranked constraints P(1) P(2) P(5) Q(1) Q(2)

FAPR 3116.24 3277.09 3113.16 6581.47 6432.05
(0.999) (0.998) (1.000) (0.988) (0.990)

FAP 2182.63 2310.26 2187.99 4498.24 4336.65
(0.999) (0.998) (1.000) (0.991) (0.993)

FAP+ 1832.26 2120.08 1671.03 3351.58 3342.27
(0.999) (0.998) (1.000) (0.992) (0.993)

Table 25: Average number of observations and observed PCS (reported in parentheses) of
FAPR,FAP, and FAP+ for k = 10 systems and s = 2 constraints based on the equally
important constraints formulation

.

P(1) P(2) P(5) Q(1) Q(2) E
FAPR 2669.90 2927.21 2675.94 3755.71 3571.29 4405.75

(0.998) (0.998) (0.999) (0.994) (0.994) (0.994)
FAP 2182.63 2416.48 2187.99 2909.64 2811.58 3267.44

(0.999) (0.999) (1.000) (0.998) (0.998) (0.998)
FAP+ 1567.34 1654.82 1430.25 2146.16 2006.07 2420.13

(0.998) (0.998) (0.999) (0.994) (0.997) (0.994)

From Tables 24 and 25, we see that all three procedures provide statistical guarantees

under the experimental configurations we tested. The results of the two constraints case

show a similar pattern compared with those of the single constraint case. Configurations

P(θ) for θ = 1, 2, 5 are easier than the other configurations, spending fewer observations,

and Q(1) and Q(2) show lower PCS than P(θ). The three procedures have similar value of

the estimated PCS under each configuration.

118

Note that although we do not provide a proof for the statistical validity of procedure

FAP, our experimental results do not yield any violations to its validity. As we also see

that FAP is more efficient than FAPR, we omit experimental results for FAPR in the

following section for the sake of space.

4.5.4 Efficiency of the Proposed Procedures

In this section, we discuss the efficiency of the proposed procedures by showing the ex-

perimental results of the alternative procedures RestartAK and RestartAK+ when a single

constraint is considered and RestartHAK and RestartHAK+ when two constraints are con-

sidered. As Q(1),Q(2), and E appear to be more difficult than P(1),P(2), and P(5) based

on estimated PCS, we test these configurations only.

Table 26 shows the experimental result for RestartAK and RestartAK+ when a single

constraint is considered. We see that the proposed procedures FAP and FAP+ show

a significant reduction in terms of the required number observations as the competing

procedure RestartAK and RestartAK+ take about two times as many observations. This is

expected as RestartAK and RestartAK+ need to be applied repeatedly from scratch with

respect to four threshold values. We expect the savings in the number of observations with

our procedure procedures to increase further as the number of thresholds increases. Note

that FAP+ also requires fewer observations compared with FAP under all configurations

considered.

Table 26: Average number of observations and observed PCS (reported in parentheses) of
FAP,FAP+,RestartAK, and RestartAK+ for k = 10 systems and s = 1 constraint

.

Q(1) Q(2) E
FAP 2687.70 2470.18 3143.88

(0.990) (0.988) (0.988)

RestartAK 6051.93 6115.48 5628.75
(0.993) (0.993) (0.988)

FAP+ 2260.28 2193.59 2649.59
(0.992) (0.990) (0.989)

RestartAK+ 6896.11 6477.99 6622.89
(0.986) (0.981) (0.983)

119

We then show the experimental results for RestartHAK and RestartHAK+ when two con-

straints are considered. We see that FAP and FAP+ still show large savings in terms of

the required number of observations. RestartHAK and RestartHAK+ spend about three to

four times more observations than FAP and FAP+ under the ranked constraints formu-

lation and about two times as many observations under the equally important constraints

formulation. As the ranked constraints formulation has more threshold vectors compared

with that of the equally important constraints formulation, it is expected that the sav-

ings is larger under the ranked constraints formulation. Similar as in the single constraint

case, FAP+ is more efficient than FAP under both the ranked constraints and equally

important constraints formulations.

Table 27: Average number of observations and observed PCS (reported in parentheses) of
RestartHAK and RestartHAK+ for k = 10 systems and s = 2 constraints

Ranked constraints Equally important constraints
Q(1) Q(2) Q(1) Q(2) E

FAP 4498.24 4336.65 2909.64 2811.58 3267.44
(0.991) (0.993) (0.998) (0.998) (0.998)

RestartHAK 15015.95 15180.44 5132.71 5990.34 4668.57
(0.993) (0.993) (0.996) (0.991) (0.993)

FAP+ 3351.58 3342.27 2146.16 2006.07 2420.13
(0.992) (0.993) (0.994) (0.997) (0.994)

RestartHAK+ 15242.12 15012.79 5171.17 5327.06 5714.66
(0.989) (0.989) (0.997) (0.994) (0.990)

4.6 Conclusion

We consider constrained R&S with subjective constraints and identify a portfolio of best

systems with respect to each threshold vector. We propose two procedures: sequentially-

and simultaneously-running procedures. We discuss the statistical validity of the proposed

procedures and provide experimental results that show that the proposed procedures domi-

nate alternative procedures that repeatedly solve the problem for each thresholds vector in

terms of the required number of observations.

120

CHAPTER V

FUTURE RESEARCH DIRECTIONS

In this chapter, we discuss some possible directions for future research.

Subjective constraints can appear in many applications when the decision maker has

flexibility with constraint thresholds. One possible direction is to use the procedures pro-

posed and analyzed in Chapters 2, 3, and 4 in applications that identify feasible systems or

select the best system when subjective stochastic constraints are considered. For example,

for a resource allocation problem within health care, the decision maker may consider three

performance measures regarding a working schedule of health care staff: (1) the overutiliza-

tion rate of staff; (2) the average waiting time of patients; and (3) the expected cost, and

she may also be willing to consider multiple threshold values for each performance measure.

If the decision maker treats all three performance measures equally, she may simply want

to determine the feasibility of each working schedule with respect to various combinations

of threshold values across all the performance measures, where a schedule that is declared

infeasible to a threshold value can be considered inferior to those that are declared feasi-

ble to the threshold value of a specific performance measure. In this case, the procedures

discussed in Chapter 2 can be used. On the other hand, if the decision maker values the

performance measure (1) more than (2) and (3), she may want to formulate a constrained

optimization problem and identify the schedule with the lowest overutilization rate that

also satisfies constraints (2) and (3) with the “tightest” threshold values possible. The

procedures discussed in Chapter 3 can be a good fit to solve this problem. Furthermore,

if the decision maker not only wants to identify the best schedule that is feasible to the

most preferred threshold values possible but also wants to consider the trade-off between

the primary and secondary performance measures, she may utilize the procedures proposed

in Chapter 4 to find a portfolio of best schedules and assess how the identity of the best

schedule changes depending on the set of threshold values.

121

Another direction for future research would be to incorporate subjective constraints into

two other major approaches for solving constrained R&S problems, namely the OCBA and

the Bayesian approaches. The current research discussed in Chapters 2, 3, and 4 is based

on the IZ approach. As the IZ approach guarantees the probability of a correct decision,

it is useful when the decision maker wishes to have a guarantee of correctness. However, if

the number of observations or simulation time is limited, procedures based on the OCBA

or the Bayesian approach are useful. These procedures attempt to identify an optimal

budget allocation that maximizes the probability of correct selection or correct decision.

One interesting future research direction is to determine how the OCBA and the Bayesian

approaches can solve constrained R&S problems in the presence of subjective stochastic

constraints.

122

APPENDIX A

In this section, we address a special case of adding thresholds when implementing the

procedure RF in Appendix A.1 and discuss the existence and uniqueness of the algorithm

parameter η in Appendix A.2. Appendix A.3 proves Lemma 1 for c = ∞. Appendices

A.4, A.5, A.6, and A.7 provide the algorithm statements and statistical validity proofs for

the four alternative procedures, namely RecycleB, Restartprod, Restartsum, and Restartmax,

that we compared with RF .

A.1 Adding Threshold Values for Constraint ` When d` = 1

Let ` represent a specific constraint with only one threshold value (i.e., d` = 1). We

consider a case where a new threshold value is added for the constraint `. If β1, . . . , βs

are determined following (ii) in Algorithm 1, namely β`′ = β/D for `′ = 1, 2, . . . , s, where

D =
∑s

`′=1 min{d`′ , 2}, then adding a new threshold value for ` requires changing the

value of D which, in turn, changes all of β1, . . . , βs. Therefore it is necessary to execute

Algorithm 1 with d` = d` + 1 and ON = {1, . . . , s} for every system i ∈ Θ. On the other

hand, if β1, . . . , βs are determined by (i) in Algorithm 1, then adding a new threshold value

to constraint ` affects β` only and thus the feasibility check needs to be re-done for constraint

` only with d` = d` + 1 and ON = {`}.

We recommend setting β1, . . . , βs according to (i) in Algorithm 1 if the decision maker

knows that there is a possibility of adding more thresholds to any constraints ` with d` = 1.

Then the decision maker needs to implement Algorithm 12 if she adds a second threshold

value. It is recommended that one save observations Yi`ri corresponding to any constraint

` with d` = 1 just in case that the decision maker wants to add a second threshold value for

constraint ` later and thus has to implement Algorithm 12. For those constraints with two

or more threshold values, there is no need to store observations if β1, . . . , βs are specified as

in (i) in Algorithm 1. Another possibility is to directly set β` as if d` > 1 for all ` = 1, . . . , s

if one wants to add thresholds later. In this case, one does not need to save data.

123

Algorithm 12 When q
d`+1

` is added for constraint ` such that d` = 1 and β1, . . . , βs are
chosen as in (i)

Set η` such that g(η`) = β`, where β` = β/(2s) and β satisfies (4).
for each system i ∈ Θ do

Set ON = {`} and ON` = {1, . . . , d` + 1}. Set vUB
i` =∞ and vLB

i` = −∞. Set ri = n0.
Go to [Feasibility Check] of Procedure RF .

end for

A.2 The Existence of η`

In this section, we show the existence of a unique solution of η` to g(η`) = β`. As our

experimental results are based on the cases when c = 1 and c = ∞, we only discuss these

two cases in this section.

When c = 1, we have

g(η`) =
1

2
(1 + 2η`)

−(n0−1)/2 .

Then we have

∂g(η`)

∂η`
= −(n0 − 1)

2
(1 + 2η`)

−(n0+1)/2 < 0,

for all η` > 0. We also know that limη`→∞ g(η`) = 0 and g(0) = 1
2 . Therefore, g(η`) = β`

has a unique solution η` = 1
2

[
(2β`)

−2/(n0−1) − 1
]

for all β` ∈ (0, 1
2].

When c = ∞, we use f(x) to denote the probability density function of a chi-squared

distribution with n0 − 1 degrees of freedom. Then, by taking derivative with respect to η`,

we have

∂

∂η`
g(η`) =

∂

∂η`

∫ ∞
0

f(x)

1 + exp(2η`x)
dx

=

∫ ∞
0

∂

∂η`

f(x)

1 + exp(2η`x)
dx

= −
∫ ∞

0

2x exp(2η`x)f(x)

[1 + exp(2η`x)]2
dx

≤ −E

[
2χ2

n0−1 exp(2η`χ
2
n0−1)[

1 + exp(2η`χ
2
n0−1)

]2
]

< 0.

The second equality holds due to the fact that∣∣∣∣ ∂∂η` f(x)

1 + exp(2η`x)

∣∣∣∣ =

∣∣∣∣2x exp(2η`x)f(x)

[1 + exp(2η`x)]2

∣∣∣∣ = 2xf(x)
exp(2η`x)

[1 + exp(2η`x)]2
≤ 2xf(x), for x, η` ≥ 0,

124

and
∫∞

0 2xf(x)dx = 2E[χ2
n0−1] = 2(n0 − 1) <∞ (Billingsley, 1986). This means that g(η`)

is decreasing when c =∞. However, g(0) = 1 and

lim
η`→∞

g(η`) = lim
η`→∞

∫ ∞
0

f(x)

1 + exp(2η`x)
dx =

∫ ∞
0

lim
η`→∞

f(x)

1 + exp(2η`x)
dx = 0,

where the second equality holds due to bounded convergence theorem. Therefore, g(θ`) = β`

has a unique solution for all β` ∈ (0, 1]. Thus, a simple search method such as the bi-section

search will find the unique η` value when c =∞.

A.3 Proof of Lemma 1 for c =∞

We prove Lemma 1 when c =∞ in this section. We first present the following lemma that

is useful for our proof.

Lemma A1. (Karlin and Taylor, 1975, Theorem 7.5.2) Let {B(t,∆, σ2, x) : t ≥ 0} be a

Brownian motion process with drift ∆ 6= 0, variance σ2, and the starting point x when t = 0.

The probability that the process reaches the level a > x before hitting −a < x is given by

Pr{B(T,∆, σ2, x) = a} =
exp(−2∆x/σ2)− exp(2∆a/σ2)

exp(−2∆a/σ2)− exp(2∆a/σ2)
,

where T = min{t : B(t,∆, σ2, x) 6∈ (−a, a)}, i.e. the first time when the drifted Brownian

motion hits −a or a.

We now prove Lemma 1 when c =∞.

Proof. Consider system i and constraint ` with mean yi` and threshold value qm` where m =

1, . . . , d`. Let ε` be the fixed tolerance level and (−R,R) be the straight-line continuation

region, where R = (n0 − 1)η`S
2
i`(n0)/ε`.

Assume system i is unacceptable with respect to constraint ` for threshold qm` , i.e.,

yi` ≥ qm` + ε`. Define Td and Tc as follows:

Td = min
{
t ∈ Z+, t ≥ n0 : B

(
t, yi` − qm` , σ2

i`, 0
)
6∈ (−R,R)

}
,

Tc = min
{
t ∈ R+, t ≥ n0 : B

(
t, yi` − qm` , σ2

i`, 0
)
6∈ (−R,R)

}
,

where Z+ and R+ denote the set of positive integers and the set of positive real numbers,

respectively. That is we define Td/Tc as the first integer/continuous passage time of the

125

drifted Brownian motion B
(
t, yi` − qm` , σ2

i`, 0
)
, respectively. Then we have

Pr (CDi`(q
m
`)) = Pr

(
Td∑
n=1

(Yi`n − qm`) ≥ R

)
= E

[
Pr

(
Td∑
n=1

(
Yi`n − qm`

σi`

)
≥ R

σi`

∣∣∣∣∣S2
i`(n0)

)]

≥ E

[
Pr

(
B
(
Tc,

yi` − qm`
σi`

, 1, 0

)
≥ R

σi`

∣∣∣∣∣S2
i`(n0)

)]

≥ E

[
Pr

(
B
(
Tc,

ε`
σi`

, 1, 0

)
≥ R

σi`

∣∣∣∣∣S2
i`(n0)

)]
.

The first inequality holds because of the fact that the sample mean Ȳi`(n0) and sample

variance S2
i`(n0) of normal random variables are independent, and because observing at

discrete time reduces the chance of error (Jennison, Johnstone and Turnbull, 1980). The

second inequality holds due to the assumption that yi` − qm` ≥ ε`.

We then have the following derivation,

E

[
Pr

(
B
(
Tc,

ε`
σi`

, 1, 0

)
≥

(n0 − 1)η`S
2
i`(n0)

ε`σi`

∣∣∣∣S2
i`(n0)

)]

= E

 1− exp
(

2η`
(n0−1)S2

i`(n0)

σ2
i`

)
exp

(
−2η`

(n0−1)S2
i`(n0)

σ2
i`

)
− exp

(
2η`

(n0−1)S2
i`(n0)

σ2
i`

)
 ,

due to Lemma A1. By the fact that
(n0−1)S2

i`(n0)

σ2
i`

follows a χ2 distribution with n0 − 1

degrees of freedom, we have

E

 1− exp
(

2η`
(n0−1)S2

i`(n0)

σ2
i`

)
exp

(
−2η`

(n0−1)S2
i`(n0)

σ2
i`

)
− exp

(
2η`

(n0−1)S2
i`(n0)

σ2
i`

)


= E

[
1− exp(2η`χ

2
n0−1)

exp(−2η`χ
2
n0−1)− exp(2η`χ

2
n0−1)

]

= E

[(
1− exp(2η`χ

2
n0−1)

)
exp(2η`χ

2
n0−1)(

exp(−2η`χ
2
n0−1)− exp(2η`χ

2
n0−1)

)
exp(2η`χ

2
n0−1)

]

= E

[(
1− exp(2η`χ

2
n0−1)

)
exp(2η`χ

2
n0−1)

1−
[
exp(2η`χ

2
n0−1)

]2
]

= E

[
exp(2η`χ

2
n0−1)

1 + exp(2η`χ
2
n0−1)

]
= 1− E

[
1

1 + exp(2η`χ
2
n0−1)

]

= 1−
∫ ∞

0

1

1 + exp(2η`x)
× 1

2(n0−1)/2Γ((n0 − 1)/2)
x(n0−1)/2−1e−x/2dx = 1− β`,

126

where the last equality holds because of the definition of g(·) in (3) and the fact that η` is

the solution to g(η`) = β`.

The above results also hold for yi` ≤ qm` − ε`. Finally, Pr (CDi`(q
m
`)) = 1 ≥ 1− β` when

qm` − ε` < yi` < qm` + ε`. Hence, when c =∞, Lemma 1 follows.

A.4 Algorithm Statement and Proof of Statistical Validity for the RecycleB

Procedure

We discuss the statistical validity of the RecycleB procedure in this section. The full de-

scription of RecycleB is provided in Algorithm 13. The RecycleB procedure is essentially

same as the RF procedure except that β` is defined differently and we do not need to keep

track of vLB
i` , v

UB
i` , and LASTi` (because RecycleB is not designed for adding threshold values

later).

Algorithm 13 Procedure RecycleB

[Setup:] Choose confidence level 1−α, tolerance level ε`, and thresholds
{
q1
` , q

2
` , . . . , q

d`
`

}
for constraint ` = 1, 2, . . . , s. Also, choose the value of c and set Θ = {1, 2, . . . , k}. For
` = 1, . . . , s, set η` such that g(η`) = β`, where β satisfies (4), and either

(i) β` = β/(s · d`) for ` = 1, . . . , s, or

(ii) β` = β/D and D =
∑s

`=1 d` for ` = 1, . . . , s.

for each system i ∈ Θ do
[Initialization:]

• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0 for ` = 1, 2, . . . , s.

• Compute S2
i`(n0) for ` = 1, 2, . . . , s.

• Set ri = n0,ON = {1, 2, . . . , s}, and ON` = {1, 2, . . . , d`} for ` = 1, 2, . . . , s.

[Feasibility Check:]
for ` ∈ ON do

for m ∈ ON` do
If
∑ri

n=1(Yi`n − qm`) ≥ R(ri; ε`, η`, S
2
i`(n0)), set Zmi` = 0 and ON` = ON\{m}.

If
∑ri

n=1(Yi`n − qm`) ≤ −R(ri; ε`, η`, S
2
i`(n0)), set Zmi` = 1 and ON` = ON\{m}.

end for
If ON` = ∅, set ON = ON \ {`}.

end for
[Stopping Condition:]

• If ON = ∅, return Zmi` for ` = 1, 2, . . . , s and m = 1, 2, . . . , d`.

• Otherwise, set ri = ri + 1, take one additional observation Yi`ri for ` ∈ ON, and go
to [Feasibility Check].

end for

127

We now show the statistical validity of the RecycleB procedure in the following theorem.

Theorem A1. Procedure RecycleB guarantees PCD ≥ 1− α.

Proof. We prove the theorem based on whether systems are simulated independently or

with correlation.

If the systems are simulated independently (i.e., no CRN), then the Bonferroni inequality

yields

PCD = Pr

(
∩ki=1 ∩s`=1 ∩

d`
m=1 CDi`(q

m
`)

)
≥

k∏
i=1

[
1−

s∑
`=1

d∑̀
m=1

Pr(ICDi`(q
m
`))

]
.

With β` from the first choice (i) of Algorithm 13, Lemma 1 and equation (4) yield

PCD ≥
k∏
i=1

(
1−

s∑
`=1

d∑̀
m=1

β`

)

=

k∏
i=1

(
1−

s∑
`=1

d∑̀
m=1

β

sd`

)

=

k∏
i=1

(
1−

s∑
`=1

β

s

)
=

k∏
i=1

(1− β)

=
k∏
i=1

(
1−

(
1− (1− α)1/k

))
= 1− α.

With β` from the second choice (ii) of Algorithm 13, Lemma 1 and equation (4) yield

PCD ≥
k∏
i=1

(
1−

s∑
`=1

d∑̀
m=1

β

D

)

=
k∏
i=1

(
1−

s∑
`=1

β

D
d`

)
=

k∏
i=1

(1− β

D

s∑
`=1

d`)

=

k∏
i=1

(1− β) =

k∏
i=1

(
1−

(
1− (1− α)1/k

))
= 1− α.

If the systems are simulated with correlation, then the Bonferroni inequality yields

PCD = Pr

(
∩ki=1 ∩s`=1 ∩

d`
m=1 CDi`(q

m
`)

)
≥ 1−

k∑
i=1

s∑
`=1

d∑̀
m=1

Pr(ICDi`(q
m
`)).

128

If β` is set based on the first choice (i), then Lemma 1 and equation (4) yield

PCD ≥ 1−
k∑
i=1

s∑
`=1

d∑̀
m=1

β`

= 1−
k∑
i=1

s∑
`=1

d∑̀
m=1

β

sd`

= 1−
k∑
i=1

s∑
`=1

β

s

= 1−
k∑
i=1

β

= 1− kβ = 1− k(α/k) = 1− α.

If β` is set based on the second choice (ii), then Lemma 1 and equation (4) yield

PCD ≥ 1−
k∑
i=1

s∑
`=1

d∑̀
m=1

β`

= 1−
k∑
i=1

s∑
`=1

d∑̀
m=1

β

D

= 1−
k∑
i=1

β

D

(
s∑
`=1

d`

)

= 1−
k∑
i=1

β

= 1− kβ = 1− k(α/k) = 1− α.

A.5 Algorithm Statement and Proof of Statistical Validity for the Restartprod

Procedure

In this section, we provide the full description of the Restartprod procedure and discuss its

statistical validity. The full description of Restartprod is presented in Algorithm 14.

Notice that Restartprod performs feasibility check for each combination of thresholds

and each combination has one threshold on each constraint. Thus, unlike RF ,RecycleB,

and Restartsum, Restartprod has only one way of setting the implementation parameter β`

for all ` = 1, . . . , s.

We now show the statistical validity of the Restartprod by proving the following theorem.

Theorem A2. Procedure Restartprod guarantees PCD ≥ 1− α.

129

Algorithm 14 Procedure Restartprod

[Setup:] Choose confidence level 1 − α, tolerance level ε`, and set D =
∏s
`=1 d`. Set

threshold vectors q1, q2, . . . , qD as all the possible combinations of thresholds on all con-
straints, where qd denotes the dth combination of the thresholds and d = 1, . . . , D. Also,
choose the value of c and set Θ = {1, 2, . . . , k}. For ` = 1, . . . , s, set η` such that
g(η`) = β`, where

β` =

{
[1− (1− α)1/(kD)]/s when systems are independent,

[1− (1− α)1/D]/(ks) when systems are dependent.

.
for d = 1, . . . , D do

for each system i ∈ Θ do
[Initialization:]

• Obtain n0 observations Y d
i`1, Y

d
i`2, . . . , Y

d
i`n0

for ` = 1, . . . , s.

• Compute the sample variance of Y d
i`1, Y

d
i`2, . . . , Y

d
i`n0

as S2
i`d(n0) for ` =

1, . . . , s.

• Set ri = n0 and ON = {1, . . . , s}.
[Feasibility Check:]
for ` ∈ ON do

If
∑ri

n=1(Y d
i`n − q

m`
`) ≥ R(ri; ε`, η`, S

2
i`d(n0)), set Zdi` = 0 and ON = ON\{`};

Else if
∑ri

n=1(Y d
i`n − qm``) ≤ −R(ri; ε`, η`, S

2
i`d(n0)), set Zdi` = 1 and ON =

ON\{`}.
end for
[Stopping Condition:]
If ON = ∅, return Zdi` for ` = 1, . . . , s. Otherwise, set ri = ri + 1, take one

additional observation Yi`ri for ` ∈ ON and go to [Feasibility Check].
end for

end for

Proof. We let qd = (q
md1
1 , . . . , q

mds
s), where d = 1, . . . , D, denote the dth combination of

the thresholds, where md
` is the index of the threshold on constraint ` in this combination

of thresholds for ` = 1, . . . , s. Then for one particular threshold vector qd, we have the

probability of correct decision for system i as

Pr
(
∩s`=1CDi`(q

md`
`)
)
≥ 1−

s∑
`=1

β`, (12)

where the inequality holds due to the Bonferroni inequality and Lemma 1. Restartprod per-

forms feasibility check for each combination of thresholds independently. We then consider

the cases when systems are simulated independently or with correlation.

130

If the systems are simulated independently, then equation (12) yields

PCD = Pr
(
∩Dd=1 ∩ki=1 ∩s`=1CDi`(q

md`
`)
)
≥

D∏
d=1

k∏
i=1

(
1−

s∑
`=1

β`

)

=

D∏
d=1

k∏
i=1

(
1−

s∑
`=1

[
1− (1− α)1/(kD)

]
/s

)
=

D∏
d=1

k∏
i=1

(1− α)1/(kD)

= 1− α.

If the systems are simulated with CRN, then the Bonferroni inequality and Lemma 1

yields

PCD = Pr
(
∩Dd=1 ∩ki=1 ∩s`=1CDi`(q

md`
`)
)

=

D∏
d=1

Pr
(
∩ki=1 ∩s`=1 CDi`(q

md`
`)
)

≥
D∏
d=1

[
1−

k∑
i=1

s∑
`=1

Pr(ICDi`(q
md`
`))

]
=

D∏
d=1

[
1−

k∑
i=1

s∑
`=1

β`

]

=

D∏
d=1

(
1−

k∑
i=1

s∑
`=1

[
1− (1− α)1/D

]
/(ks)

)
= 1− α.

A.6 Algorithm Statement and Proof of Statistical Validity for the Restartsum

Procedure

In this section, we provide the full description of the Restartsum procedure and discuss

its statistical validity. Restartsum is motivated by the following considerations (relative to

Restartprod). Restartsum makes feasibility decisions iteratively for each threshold value of

each constraint, while Restartprod may make multiple decisions for each such threshold value

(because Restartprod determines feasibility for each combination of threshold values of all

constraints). Therefore, Restartsum usually performs fewer restarts than Restartprod, and

thus usually needs fewer observations compared with Restartprod. The full description of

Restartsum is provided in Algorithm 15.

We show the statistical validity of the Restartsum procedure based on the following

theorem.

Theorem A3. Procedure Restartsum guarantees PCD ≥ 1− α.

Proof. For the Restartsum procedure, as we restart a feasibility check for each system,

each constraint, and each threshold value, the CDi`(q
m
`) events are independent for all

131

Algorithm 15 Procedure Restartsum

[Setup:] Choose confidence level 1−α, tolerance level ε`, and thresholds
{
q1
` , q

2
` , . . . , q

d`
`

}
for constraint ` = 1, 2, . . . , s. Also, choose the value of c and set Θ = {1, 2, . . . , k}. Set
D =

∑s
`=1 d` and for ` = 1, . . . , s, set η` such that g(η`) = β`, where either

(i)

β` =

{
1− k·sd√̀1− α, when systems are independent,

(1− sd
√̀

1− α)/k, when systems are dependent,

or

(ii)

β` =

{
1− k·D√1− α, when systems are independent,

(1− D
√

1− α)/k, when systems are dependent.

for each system i ∈ Θ do
for ` = 1, . . . , s do

for each threshold m = 1, . . . , d` do
[Initialization:]

• Obtain n0 observations Y m
i`1, Y

m
i`2, . . . , Y

m
i`n0

.

• Compute the sample variance of Y m
i`1, Y

m
i`2, . . . , Y

m
i`n0

as S2
i`m(n0).

• Set ri = n0.

[Feasibility Check:]

If
∑ri

n=1(Y m
i`n − q

m`
`) ≥ R(ri; ε`, η`, S

2
i`m(n0)), return Zmi` = 0;

Else if
∑ri

n=1(Y m
i`n − q

m`
`) ≤ −R(ri; ε`, η`, S

2
i`m(n0)), return Zmi` = 1;

Else, set ri = ri+1, take one additional observation Y m
i`ri

and go to [Feasibility
Check].

end for
end for

end for

132

` = 1, . . . , s and m = 1, . . . , d`. We prove the theorem based on whether systems are

simulated independently or with correlation.

If the systems are simulated independently, then

PCD = Pr
(
∩ki=1 ∩s`=1 ∩

d`
m=1CDi`(q

m
`)
)

=
k∏
i=1

s∏
`=1

d∏̀
m=1

Pr (CDi`(q
m
`)) .

With β` from the first choice (i) of Algorithm 15, Lemma 1 yields

PCD ≥
k∏
i=1

s∏
`=1

d∏̀
m=1

(1− β`)

=
k∏
i=1

s∏
`=1

(1− β`)d` =
k∏
i=1

s∏
`=1

(
1− (1− ksd

√̀
1− α)

)d`
=

k∏
i=1

s∏
`=1

ks
√

1− α = 1− α.

With β` from the second choice (ii) of Algorithm 15, Lemma 1 yields

PCD ≥
k∏
i=1

s∏
`=1

d∏̀
m=1

(1− β`)

=
k∏
i=1

D∏
d=1

(
1− (1− kD

√
1− α)

)
=
(
kD
√

1− α
)kD

= 1− α.

If the systems are simulated with CRN, then the Bonferroni inequality yields

PCD = Pr

(
∩ki=1 ∩s`=1 ∩

d`
m=1 CDi`(q

m
`)

)
≥

s∏
`=1

d∏̀
m=1

(
1−

k∑
i=1

Pr(ICDi`(q
m
`))

)
.

With β` from the first choice (i) of Algorithm 15, Lemma 1 yields

PCD ≥
s∏
`=1

d∏̀
m=1

(
1−

k∑
i=1

β`

)

=

s∏
`=1

d∏̀
m=1

(
1− (1− sd

√̀
1− α)

)
=

s∏
`=1

s
√

1− α = 1− α.

With β` from the second choice (ii) of Algorithm 15, Lemma 1 yields

PCD ≥
s∏
`=1

d∏̀
m=1

(
1−

k∑
i=1

β`

)

=

D∏
d=1

(
1− (1− D

√
1− α)

)

=
(
D
√

1− α
)D

= 1− α.

133

A.7 Algorithm Statement and Proof of Statistical Validity for the Restartmax

Procedure

In this section, we provide the full description of the Restartmax procedure and discuss its

statistical validity. Restartmax performs feasibility checks for each threshold vector which

is formed by choosing one threshold from each constraint in a pre-defined order. Once

the feasibility of all thresholds on some constraints is determined, the threshold vector is

formed based on the thresholds from the remaining constraints by omitting the constraints

whose thresholds have all received feasibility decisions. The procedure terminates when all

the thresholds on all the constraints have received their feasibility decisions. Therefore,

Restartmax requires max`=1,...,s d` restarts and performs better compared with Restartprod

and Restartsum. Similar to Restartprod, each restart of Restartmax involves one threshold

on each remaining constraint. Therefore, Restartmax only has one way of setting the imple-

mentation parameter βm. The full description of Restartmax is provided in Algorithm 16.

We show the statistical validity of the Restartmax procedure in the following theorem.

Theorem A4. Procedure Restartmax guarantees PCD ≥ 1− α.

Proof. For the Restartmax procedure, as we restart a feasibility check for D threshold vec-

tors, the CDi`(q
m
`) events are independent for all m = 1, . . . , d` when i, ` are fixed. We prove

the theorem based on whether systems are simulated independently or with correlation.

If the systems are simulated independently, then the Bonferroni inequality yields

PCD = Pr
(
∩Dm=1 ∩ki=1 ∩s`=1,d`≥mCDi`(q

m
`)
)

=

D∏
m=1

k∏
i=1

(
1−

s∑
`=1

I(d` ≥ m) · Pr(ICDi`(q
m
`))

)

≥
D∏

m=1

k∏
i=1

(
1−

s∑
`=1

I(d` ≥ m)βm

)
=

D∏
m=1

k∏
i=1

(
1−

s∑
`=1

I(d` ≥ m) · 1− k·D√1− α∑s
`′=1 I(d`′ ≥ m)

)

=
D∏

m=1

k∏
i=1

k·D√1− α = 1− α.

If the systems are simulated with CRN, then the Bonferroni inequality yields

PCD = Pr
(
∩Dm=1 ∩ki=1 ∩s`=1,d`≥mCDi`(q

m
`)
)
≥

D∏
m=1

(
1−

k∑
i=1

s∑
`=1

I(d` ≥ m) Pr(ICDi`(q
m
`))

)

134

Algorithm 16 Procedure Restartmax

[Setup:] Choose confidence level 1−α, tolerance level ε`, and thresholds
{
q1
` , q

2
` , . . . , q

d`
`

}
for constraint ` = 1, 2, . . . , s. Also, choose the value of c and set Θ = {1, 2, . . . , k}. Set
D = max`=1,...,s d`. For m = 1, . . . , D, set ηm such that g(ηm) = βm, where

βm =

{
(1− k·D√1− α)/

∑s
`=1 I(d` ≥ m), when systems are independent,

(1− D
√

1− α)/(k
∑s

`=1 I(d` ≥ m)), when systems are dependent.
(13)

for m = 1, . . . , D do
[Initialization:]

• Obtain n0 observations Y m
i`1, Y

m
i`2, . . . , Y

m
i`n0

for ` = 1, . . . , s with d` ≥ m.

• Compute the sample variance of Y m
i`1, Y

m
i`2, . . . , Y

m
i`n0

as S2
i`m(n0) for ` = 1, . . . , s with

d` ≥ m.

• Set ri = n0 and ON = {` = 1, . . . , s|d` ≥ m}.
for each system i ∈ Θ do

[Feasibility Check:]
for ` ∈ ON do

If
∑ri

n=1(Y m
i`n − qm`) ≥ R(ri; ε`, ηm, S

2
i`m(n0)), set Zmi` = 0 and ON = ON\{`};

Else if
∑ri

n=1(Y m
i`n − qm`) ≤ −R(ri; ε`, ηm, S

2
i`m(n0)), set Zmi` = 1 and ON =

ON\{`}.
end for
[Stopping Condition:]
If ON = ∅, return Zmi` for ` = 1, . . . , s with m ≤ d`. Otherwise, set ri = ri + 1,

take one additional observation Y m
i`ri

and go to [Feasibility Check].
end for

end for

135

≥
D∏

m=1

(
1−

k∑
i=1

s∑
`=1

I(d` ≥ m)βm

)
=

D∏
m=1

(
1−

k∑
i=1

s∑
`=1

I(d` ≥ m) · 1− D
√

1− α
k
∑s

`′=1 I(d`′ ≥ m)

)

=

D∏
m=1

(
1− k1− D

√
1− α
k

)
= 1− α.

136

APPENDIX B

In this section, we provide discussions about the algorithm description of procedures RestartHAK

and RestartHAK+ (discussed in Chapter 3) and their statistical validity in Appendices B.1

and B.2, respectively.

B.1 Procedures RestartAK and RestartHAK

In this section, we discuss the algorithms of RestartAK and RestartHAK and their statistical

validity.

As RestartAK is essentially a special case of RestartHAK when the number of constraints

in consideration is one, therefore, we omit the discussion on the algorithm statement and

the statistical validity of procedure RestartAK for the sake of space.

Procedure RestartHAK perform HAK for threshold vectors q(1), q(2), . . . , q(θ∗) indepen-

dently. A detailed description of algorithm is shown in Algorithm 17.

Algorithm 17 Procedure RestartHAK

[Setup:] Select the overall nominal confidence level 1 − α. Choose tolerance lev-
els ε1, . . . , εs, indifference-zone parameter δ, threshold vectors {q(1), q(2), . . . , q(d)}. Set
α′ = 1− (1− α)1/d.
for θ = 1, . . . , d do

[Setup for HAK:] Same as in HAK except that α is replaced by α′.
[Initialization], [Feasibility Check], [Feasibility Stopping Rule], [Setup for
Comparison], [Comparison], and [Comparison Stopping Rule] are the same as
in HAK.
[Stopping Condition:] If one system is found in [Comparison Stopping Rule],
terminate the algorithm and select the system as the best. If no system is found in
[Feasibility Stopping Rule] and θ = d, declare no feasible system exists with respect
to the given threshold vectors.

end for

As HAK is heuristic and RestartHAK essentially applies HAK for threshold vectors

q(1), q(2), . . . , q(θ∗), we cannot prove the statistical validity of RestartHAK. However, if we

consider a variation of HAK, namely HAKR (“restart”), with the following two changes

in the [Setup for Comparison], we are able to prove the statistical validity of procedure

RestartHAK
R

that implements HAKR for threshold vectors q(1), q(2), . . . , q(θ∗):

137

• Instead of using the observations of the primary performance measure Xi1, . . . , Xiri col-

lected from the [Feasibility Check], we perform a completely new simulation and collect

Xi1, . . . , Xin0
for system i ∈ F , and compute X̄i(n0) and S2

Xij
(n0) for i, j ∈ F .

• Change β2 = α2/(|F |−1) to β2 =


1− (1− α2)1/(k−1), if systems are simulated independently;

α2/(k − 1), if systems are simulated under CRN.

Note that [5] use F to denote the set of systems that are declared feasible with respect

to q(θ) from Phase I.

Before we prove the statistical validity of RestartHAK
R

, we first present the following

two lemmas.

Lemma B1. For system i and constraint ` with threshold q`, the [Feasibility Check]

steps in HAKR ensure Pr(CDi`(q`)) ≥ 1− β1.

Lemma B2. Given i such that xi ≤ x[b] − δ, the [Comparison] steps for system i and [b]

in HAKR ensure

Pr (CSi) ≥ 1− β2.

The proofs of Lemmas B1 and B2 are essentially same as those of Lemmas 7 and 10

becase α′f (α′c) from ZAKR and β1 (β2) from HAKR both denote the nominal error of

feasibility check for one constraint of one single system with a fixed threshold (comparison

between an inferior system and the best system [b]).

We then prove the statistical validity of RestartHAK
R

in the following theorem.

Theorem B1. Under Assumptions 2 and 3, the procedure RestartHAK
R

guarantees

Pr{CS} ≥ 1− α.

Proof. As RestartHAK
R

implementsHAKR for thresholds q(1), q(2), . . . , q(d), for each thresh-

old vector q(θ), we let S
(θ)
d , S

(θ)
a , and S

(θ)
u denote the set of desirable, acceptable, and unac-

ceptable systems with respect to q(θ), and consider the following events.

A(θ) = all systems in S(θ)
u are declared infeasible with respect to q(θ);

B(θ)
1 = system [b] is declared feasible to q(θ);

B(θ)
2 = system [b] is selected as the best system among systems in S

(θ)
d ∪ S

(θ)
a .

138

We also let CS(θ) denote the event of selecting a desirable or acceptable system with respect

to threshold vector q(θ) whose primary performance measure is no worse than δ away from

that of system [b]. To ensure CS(θ), we need to ensure all A(θ),B(θ)
1 , and B(θ)

2 if system [b]

is desirable with respect to q(θ). If system [b] is not a desirable system with respect to q(θ),

B(θ)
1 and B(θ)

2 are not defined and we only need to ensure A(θ). That is

Pr
(

CS(θ)
)
≥


Pr
(
A(θ) ∩ B(θ)

1 ∩ B
(θ)
2

)
, if system b is desirable with respect to q(θ)

Pr
(
A(θ)

)
, if system b is not desirable with respect to q(θ)

As CS(θ) achieves its lower bound when system [b] is desirable with respect to q(θ), we only

focus on this case. One may also notice that A(θ) and B(θ)
1 are independent if systems are

simulated independently and are dependent if systems are simulated under CRN. As we

discard observations from Phase I and completely restart for Phase II in HAKR, and B(θ)
2

involves making the correct selection from all systems in S
(θ)
a ∪ S(θ)

d , B(θ)
2 is independent

from A(θ) and B(θ)
1 . Then, we have

Pr
(

CS(θ)
)
≥


Pr
(
A(θ)

)
× Pr

(
B(θ)

1

)
× Pr

(
B(θ)

2

)
, if systems are simulated indepedently[

Pr
(
A(θ)

)
+ Pr

(
B(θ)

1

)
− 1
]
× Pr

(
B(θ)

2

)
, if systems are simulated under CRN.

We let j
(θ)
u denote the number of unacceptable systems with respect to q(θ), i.e., j

(θ)
u =

|S(θ)
u |.

We then discuss the cases depending on whether systems are simulated independently

or under CRN. When systems are simulated indepedently, by Lemma B1, we have

Pr
(
A(θ)

)
≥ Pr

(
∩
i∈S(θ)

u
∩s`=1 CDi`(q

(θ)
`)
)

=
∏
i∈S(θ)

u

Pr
(
∩s`=1CDi`(q

(θ)
`)
)

=
[
Pr
(
∩s`=1CDi`(q

(θ)
`)
)]j(θ)u

≥

[
1−

s∑
`=1

Pr
(

ICDi`(q
(θ)
`)
)]j(θ)u

≥ (1− sβ1)j
(θ)
u ;

Pr
(
B(θ)

1

)
= Pr

(
∩s`=1CDi`(q

(θ)
`)
)
≥ 1−

s∑
`=1

Pr
(

ICDi`(q
(θ)
`)
)
≥ 1− sβ1,

where we use ICDi`(q
m
`) to denote the event of incorrect feasibility decision with respect to

qm` .

139

We use the same notation of Nij as defined in the proof of Theorem 1.

Pr(B(θ)
2) ≥ Pr

(
∩
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=bCSi

)
= E

[
Pr

{
∩
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=bCSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]

= E

 ∏
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=b

Pr
{

CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}
≥

∏
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=b

E
[
Pr
{

CSi

∣∣∣X[b]1, . . . , X[b],N[b]
, S2

Xi[b]
(n0)

}]

=
∏

i∈
(
S
(θ)
a ∪S

(θ)
d

)
,i 6=b

Pr {CSi} ≥
∏

i∈
(
S
(θ)
a ∪S

(θ)
d

)
,i 6=b

(1− β2) ≥ (1− β2)k−j
(θ)
u −1,

Thus, we have

Pr
(

CS(θ)
)
≥ (1− sβ1)j

(θ)
u +1 × (1− β2)k−j

(θ)
u −1

≥ (1− sβ1)k × (1− β2)k−1

= (1− α1)(1− α2) > 1− (α1 + α2) = 1− α′.

When systems are simulated under CRN, by Lemma B1, we have

Pr
(
A(θ)

)
≥ Pr

(
∩
i∈S(θ)

u
∩s`=1 CDi`(q

(θ)
`)
)
≥ 1−

∑
i∈S(θ)

u

s∑
`=1

CDi`(q
(θ)
`) ≥ 1− j(θ)

u sβ1;

Pr
(
B(θ)

1

)
≥ 1− sβ1.

Pr(B(θ)
2) ≥ Pr

(
∩
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=bCSi

)
≥ 1−

∑
i∈

(
S
(θ)
a ∪S

(θ)
d

)
,i 6=b

Pr (ICSi) ≥ 1− (k − j(θ)
u − 1)β2

Thus, we have

Pr
(

CS(θ)
)
≥
[
1− (j(θ)

u + 1)sβ1

] [
1− (k − j(θ)

u − 1)β2

]
≥ (1− ksβ1)× (1− (k − 1)β2)

= (1− α1)(1− α2) > 1− (α1 + α2) = 1− α′.

140

Thus, we see that Pr
(

CS(θ)
)
≥ 1 − α′ regardless whether systems are simulated inde-

pendently or under CRN. Therefore, we have

Pr{CS} = Pr{∩θ∗θ=1CS(θ)} ≥ Pr{∩dθ=1CS(θ)} =
d∏
θ=1

Pr
(

CS(θ)
)

≥ (1− α′)d = (1− (1− (1− α)1/d))d = 1− α.

As RestartHAK reuses the observations from Phase I and assigns the error in Phase

II more efficiently, it is expected to perform better than RestartHAK
C
. Although we can-

not prove the statistical validity of RestartHAK, we have not found any experiments that

violate the statistical guarantee. We believe that RestartHAK
R

and RestartHAK are appro-

priate choices of sequentially-running approaches for comparison with ZAKR and ZAK,

respectively.

B.2 Procedures RestartAK+ and RestartHAK+

In this section, we discuss the algorithms of RestartAK+ and RestartHAK+ and their statis-

tical validity.

Similar as discussed in Appendix 17, as RestartAK+ is a special case of RestartHAK+

when the number of constraints is one, we omit the discussion on RestartAK+.

RestartHAK+ performs procedure HAK+ due to [5] independently for the threshold

vectors q(1), q(2), . . . , q(θ∗). A detailed algorithm description is shown in Algorithm 18.

Algorithm 18 Procedure RestartHAK+

[Setup:] Select the overall nominal confidence level 1 − α. Choose tolerance levels
ε1, . . . , εs, indifference-zone parameter δ, and threshold vectors {q(1), q(2), . . . , q(d)}. Set
α′ = 1− (1− α)1/d.
for θ = 1, . . . , d do

[Setup for HAK+:] Same as in HAK+ except that α is replaced by α′.
[Initialization], [Feasibility Check], [Comparison], and [Stopping Rule] are the
same as in HAK+.
[Stopping Condition:] If one system is found in [Stopping Rule], terminate the
algorithm and select the system as the best. If no system is found in [Stopping Rule]
and θ = d, declare no feasible system exists with respect to the given threshold vectors.

end for

We then prove the statistical validity of RestartHAK+ in the following theorem.

141

Theorem B2. Under Assumptions 2 and 3, the procedure RestartHAK+ guarantees

Pr{CS} ≥ 1− α.

Proof. As RestartHAK+ implements HAK+ to q(1), . . . , q(θ∗) independently, we use the

same notation of CS(θ) as defined in Appendix B.1. By Theorems 4.4 and 4.8 of [5], we

know that Pr
(
CSθ

)
≥ 1− α′. Thus we have

Pr{CS} = Pr
{
∩θ∗θ=1CS(θ)

}
≥ Pr

{
∩dθ=1CS(θ)

}
=

d∏
θ=1

Pr
(

CS(θ)
)

≥ (1− α′)d = (1− (1− (1− α)1/d))d = 1− α.

142

APPENDIX C

In this section, we describe procedures RestartHAK and RestartHAK+ (discussed in Chapter

4) and address their statistical validity in Appendices C.1 and C.2, respectively. Note that

the procedures included in Appendix C are different from those in Appendix B.

C.1 Algorithm Statements and Discussion of Statistical Validity for
the RestartHAK Procedure

In this section, we provide the algorithm statement of the RestartHAK procedure and discuss

its statistical validity.

To implement RestartHAK, we perform the HAK procedure due to [5] independently to

threshold vectors q(1), q(2), . . . , q(d) and followed with a R&S problem solved by procedure

KN due to [10]. A detailed description of algorithm is shown in Algorithm 19.

Algorithm 19 Procedure RestartHAK

[Setup:] Select the overall nomial confidence level 1 − α. Choose tolerance level ε`,
indifference-zon parameter δ, and threshold vectors {q(1), q(2), . . . , q(d)}. Set α′ = 1 −
(1− α)1/(d+1).
for θ = 1, . . . , d do

[Setup for HAK:] Same as in HAK except that α is replaced by α′.
[Initialization],[Feasibility Check],[Feasibility Stoppoing Rule], [Setup for
Comparison], [Comparison], and [Comparison Stopping Rule] are same as in
HAK.

end for
Perform KN with nominal error α′.
[Stopping Condition:] Select the best feasible system found in [Comparison Stop-
ping Rule] as the best system with respect to the given threshold vectors and select the
best feasible system found by KN as the best system with respect to q(d+1).

One may notice that RestartHAK is a special case of the procedure discussed in Appendix

B.1 when θ∗ = d. The proof of the statistical validity of RestartHAK can be found in

Appendix B.1.

143

C.2 Algorithm Statements and Proofs of Statistical Validity for the
RestartHAK+ Procedure

In this section, we provide the algorithm statement of RestartHAK+ and discuss its statistical

validity.

Similar to RestartHAK, we perform theHAK+ procedure due to [5] independently to the

threshold vectors q(1), q(2), . . . , q(d) and followed by applying procedure KN with respect

to a R&S problem. A detailed algorithm description is shown in Algorithm 20.

Algorithm 20 Procedure RestartHAK+

[Setup:] Select the overall nomial confidence level 1 − α. Choose tolerance level ε`,
indifference-zon parameter δ, threshold vectors {q(1), q(2), . . . , q(d)}. Set α′ = 1 − (1 −
α)1/(d+1).
for θ = 1, . . . , d do

[Setup for HAK+:] Same as in HAK+ except that α is replaced by α′.
[Initialization],[Feasibility Check], [Comparison], and [Stopping Rule] are
same as in HAK+.

end for
Perform KN with nominal error α′.
[Stopping Condition:] Select the best feasible system found in [Comparison Stop-
ping Rule] as the best system with respect to the given threshold vectors and select the
best feasible system found by KN as the best system with respect to q(d+1).

Similar as discussed in Appendix C.2, RestartHAK+ is a special case of the procedure

discussed in Appendix C.1 when θ∗ = d. The proof of the statistical validity of RestartHAK+

can be found in Appendix C.1.

144

REFERENCES

[1] Andradóttir, S. and Kim, S.-H., “Fully sequential procedures for comparing con-

strained systems via simulation,” Naval Research Logistics (NRL), vol. 57, no. 5,

pp. 403–421, 2010.

[2] Batur, D. and Kim, S.-H., “Finding feasible systems in the presence of constraints

on multiple performance measures,” ACM Trans. Model. Comput. Simul., vol. 20, Oct.

2010.

[3] Feng, M. and Staum, J., “Green simulation: Reusing the output of repeated exper-

iments,” ACM Trans. Model. Comput. Simul., vol. 27, Oct. 2017.

[4] Gao, S. and Chen, W., “A partition-based random search for stochastic constrained

optimization via simulation,” IEEE Transactions on Automatic Control, vol. 62, no. 2,

pp. 740–752, 2017.

[5] Healey, C., Andradóttir, S., and Kim, S.-H., “Selection procedures for simu-

lations with multiple constraints under independent and correlated sampling,” ACM

Trans. Model. Comput. Simul., vol. 24, May 2014.

[6] Healey, C. M., Andradóttir, S., and Kim, S.-H., “Efficient comparison of con-

strained systems using dormancy,” European Journal of Operational Research, vol. 224,

no. 2, pp. 340–352, 2013.

[7] Hong, L. J., Nelson, B. L., and Xu, J., “Discrete optimization via simulation,” in

Handbook of Simulation Optimization. International Series in Operations Research &

Management Science (Fu, M., ed.), vol. 216, pp. 9–44, Springer, 2015.

[8] Hunter, S. R. and Pasupathy, R., “Optimal sampling laws for stochastically con-

strained simulation optimization on finite sets,” INFORMS Journal on Computing,

vol. 25, no. 3, pp. 527–542, 2013.

145

[9] Kim, S.-H. and Nelson, B., “Selecting the best system: Theory and methods,” in

The Handbook of OR & MS: Simulation (Henderson, S. G. and Nelson, B. L.,

eds.), p. 501–534, Elsevier, 2006.

[10] Kim, S.-H. and Nelson, B. L., “A fully sequential procedure for indifference-zone

selection in simulation,” ACM Trans. Model. Comput. Simul., vol. 11, p. 251–273, July

2001.

[11] Koenig, L. W. and Law, A. M., “A procedure for selecting a subset of size m

containing the l best of k independent normal populations, with applications to sim-

ulation,” Communications in Statistics - Simulation and Computation, vol. 14, no. 3,

pp. 719–734, 1985.

[12] Law, A. and Kelton, D., Simulation Modeling and Analysis. Academic Press, 2000.

[13] Lee, L. H., Pujowidianto, N. A., Li, L.-W., Chen, C.-H., and Yap, C. M.,

“Approximate simulation budget allocation for selecting the best design in the presence

of stochastic constraints,” IEEE Transactions on Automatic Control, vol. 57, no. 11,

pp. 2940–2945, 2012.

[14] Lee, M. L., Park, C., and Park, D. U., “Self-adjusting the tolerance level in a

fully sequential feasibility check procedure,” European Journal of Operational Research,

vol. 271, no. 2, pp. 733–745, 2018.

[15] Pasupathy, R., Hunter, S. R., Pujowidianto, N. A., Lee, L. H., and Chen, C.-

H., “Stochastically constrained ranking and selection via score,” ACM Trans. Model.

Comput. Simul., vol. 25, Aug. 2014.

[16] Pichitlamken, J., Nelson, B. L., and Hong, L. J., “A sequential procedure for

neighborhood selection-of-the-best in optimization via simulation,” European Journal

of Operational Research, vol. 173, no. 1, pp. 283–298, 2006.

146

[17] Tamhane, A. C., “Multiple comparisons in model I one-way ANOVA with unequal

variances,” Communications in Statistics - Theory and Methods, vol. 6, no. 1, pp. 15–

32, 1977.

[18] Xie, J. and Frazier, P. I., “Sequential Bayes-optimal policies for multiple compar-

isons with a known standard,” Operations Research, vol. 61, no. 5, pp. 1174–1189,

2013.

147

