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SUMMARY

Tremendous progress has been made over the last two decades towards modernizing the Na-

tional Airspace System (NAS) by way of technological advancements, and the introduction of

procedures and policies that have maintained the safety of the United States airspace. However, as

with any other system, there is a need to continuously address evolving challenges pertaining to

the sustainment and resiliency of the NAS. One of these challenges involves efficiently analyzing

and assessing daily airport operations for the identification of trends and patterns to inform better

decision making so as to improve the efficiency and safety of airport operations. Efforts have been

undertaken by stakeholders in the aviation industry to categorize airports as a means to facilitate

the analysis of their operations. However, a comprehensive, repeatable, and robust approach for

this very purpose is lacking. In addition, these efforts have not provided a means for stakeholders

to assess the impacts and effectiveness of traffic management decisions and procedures on daily

airport operations. Furthermore, an efficient and secure framework for extracting, processing, and

storing the data needed for the analysis and assessment of daily airport operations is needed, as the

current process employed by FAA analysts is manual, time-consuming, and prone to human error.

Consequently, this dissertation addresses these gaps through a set of methodologies that 1)

leverage unsupervised Machine Learning algorithms to categorize daily airport operations, 2)

leverage a supervised Machine Learning algorithm to determine the category that subsequent daily

airport operations belong to, 3) facilitate the comparison of similar and different daily airport oper-

ations for the identification of trends and patterns, 4) enable stakeholders to analyze and assess the

impacts and effectiveness of traffic management decisions and procedures on daily airport opera-

tions, and 5) develop a framework to facilitate the efficient and secure extraction, processing and

storage of data needed for the analysis and assessment of daily airport operations.

The developed framework automates the flow of data from extraction through storage, and

enables users to track the flow of data in real time. It also facilitates data provenance by logging

xxvi



the history of all processes and is equipped with the capability to log errors and their causes, and

to notify analysts via email whenever they occur. In addition, it has the capacity to automatically

extract, process, and store the data needed for the analysis and assessment of the daily operations of

all airports in the NAS. Indeed, this framework will be one of the first of its kind to be deployed into

the FAA’s Enterprise Information Management platform and will serve as a template for leveraging

cloud-based services and technologies to improve operations in the NAS. Finally, this framework

will enable FAA analysts to analyze and assess daily airport operations in an efficient manner to

facilitate the identification of trends and patterns for better decision making, which will lead to

improved airport operational performance.
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CHAPTER 1

INTRODUCTION

The International Air Transportation Association (IATA) estimates that in an average year, the

aviation industry supports over 50 million jobs and transports 3 billion people and 50 million

tons of cargo worldwide [1]. Indeed, the aviation industry is seen as an important driver of the

economical and social development of countries [2, 3]. This has been particularly evident in the

United States, as increased economic activity in the aviation industry has contributed greatly to the

nation’s economy, particularly after the economic recession of 2008 [4]. Between 2012 and 2014,

the aviation industry accounted for approximately 5% of the Gross Domestic Product (GDP) of the

U.S. economy, over $1 billion in U.S. economic activity and over 9 million jobs [5]. The aviation

industry was also found to be the 7th leading contributor to overall productivity in the United States

in 2014 [6], despite its ranking as the 41st largest industry out of 63 industries [7].

Economic activity in the aviation industry also outpaced economic growth in the United States

between 2012 and 2014 [6]. This can be attributed to increased investments in aviation-related

research and development. Indeed, increased investments in aviation-related research and devel-

opment after 2011, as seen in Figure 1.1, overlapped with the aforementioned increased economic

activity in the aviation industry. Some of these investments have led to the development and im-

plementation of new procedures and policies, and technological advancements which have mod-

ernized the National Airspace System.

1



Figure 1.1: Investments in aviation-related research and development (2000-2014) [6]

1.1 National Airspace System

The National Airspace System (NAS) was created to ensure that the U.S. airspace remains safe and

efficient for general, commercial, and military aviation [8–11]. It is comprised of air navigation

facilities, airports, equipment, regulations, technologies, etc. that support the largest, busiest, and

most complex airspace in the world [12]. Indeed, it handles an average of 44,000 daily flights,

and is comprised of over 19,000 public and private airports [13]. The NAS, which is supported by

over 77,000 pieces of equipment and systems that operate all year round, handles approximately 1

billion passengers annually [13].

The NAS is managed by the Air Traffic Control System Command Center (ATCSCC) [14, 15].

The ATCSCC’s primary responsibility is to monitor and manage air traffic flow in the NAS to

ensure that traffic flow remains safe, orderly, and expeditious, while minimizing delays. This is

achieved by monitoring and analyzing system components, demand, capacity, and weather patterns

to assess their impacts on operations in the NAS. The ATCSCC also continually monitors opera-
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tions in the NAS in order to identify and address constraints in a timely manner [16]. Operations in

the NAS are managed by approximately 14,695 Air Traffic Controllers stationed at the ATCSCC,

518 Airport Traffic Control Towers, 154 Terminal Radar Approach Control (TRACON) facilities,

and 22 Air Route Traffic Control Centers (ARTCC) [13]. The NAS supports aircraft throughout

the different phases of flight from taxiing at their departure airports through takeoff, to operations

around airports as well as en-route to their destinations, and during final approaches and landings

at their destinations. Figure 1.2 provides an overview of which facilities handle aircraft during the

different phases of flight.

Figure 1.2: Air Traffic Flow Chart [17]

Airport Towers control aircraft within 5 miles of airports and on the ground, and clear aircraft

to depart and land [18]. Terminal Radar Approach Control (TRACON) facilities on the other hand,

control aircraft in terminal spaces [18, 19], which are typically 5 - 50 nautical miles around airports

[17].

The 22 Air Route Traffic Control Centers (ARTCC) manage en-route flights operating under

Instrument Flight Rules (IFR) [20], and support flights operating under Visual Flight Rules (VFR),

[21] with VFR traffic advisories [18, 22]. 20 ARTCCs are located in the contiguous United States

[19], as seen in Figure 1.3, while the other two are located in Anchorage and Honolulu. Table A.1

in Appendix A provides a list of ARTCC and their locations in the United States.
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Figure 1.3: Air Route Traffic Control Centers (ARTCC) except Anchorage and Honolulu [23]

As previously mentioned, the NAS is the largest, busiest, and most complex airspace in the

world. However, as with any other system, it is continually constrained by evolving challenges that

need to be addressed. One of these challenges involves improving the efficiency of its operations

so as to reduce the number, duration, and impact of flight delays. Table 1.1 shows the proportion

of on-time flights compared to the different types of delays that occurred from June, 2003 to April,

2020. In particular, it shows that 78% of flights arrived on time while late arriving aircraft and

NAS-related delays were the highest causes of flight delays.
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Table 1.1: Flight Delay Statistics (June, 2003 - April, 2020) [24]

Metric Contributing value (%)
On Time 78

Late Arriving Aircraft 7
National Airspace System 7

Air Carrier 5
Cancelled 2

Inclement Weather 1
Diverted <1

Security Delays <1

Flight delays have significant impacts on airlines, passengers, and the United States economy,

as seen in Figure 1.4, which provides a breakdown of the direct costs of air transportation delays

in terms of passengers, airlines, lost demand, and impact on the Gross Demand Product (GDP)

of the United States in 2007 dollars. The $16.7 billion passenger component is comprised of

the passenger time lost due to schedule buffers, delayed flights, flight cancellations, and missed

connections, which lead to loss in productivity and opportunities for business travelers as well

as an opportunity cost of time for leisure passengers [25]. The $8.3 billion airline component

is comprised of increased operating costs for crew, fuel, maintenance, etc. The $3.9 billion cost

associated with lost demand represents an estimate of the time or productivity loss incurred by

passengers who avoid air travel as a result of delays. The effects of flight delays on airlines and

passengers also have indirect impacts on the economy. Delays may lead to increased fuel costs,

which may lead to increased airfares. Increased airfares as well as delays in general may lead

to changes in consumer spending on travel and tourism-related goods and services [26], which

eventually impacts the economy.
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Figure 1.4: Direct cost of air transportation delays (2007 dollars) [27]

As illustrated, flight delays are costly to passengers, airlines, and the U.S. economy. As such,

there is a need to improve the efficiency of operations in the NAS, particularly at airports as flight

delays that originate at airports often propagate across the NAS. Unfortunately, the efficient man-

agement and operation of airports in the NAS has been hindered by factors such as airport capacity

constraints and the implementation of various traffic management decisions and procedures.

1.1.1 Airport Capacity Constraints

Scheduled demand was often close to, or exceeded airport capacity during inclement weather at a

majority of major U.S. airports prior to the economic downturn caused by the Novel Coronavirus

(COVID-19) pandemic [28–31] in 2020. Scheduled demand was also often close to, and during

certain hours of the day exceeded airport capacity even in good weather at airports such as La-

Guardia, Newark Liberty, and John F. Kennedy International Airports [32], causing them to be

capacity-constrained. Indeed, these three airports in addition to the Philadelphia and Hartsfield-
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Jackson Atlanta International Airports were projected by the FAA to be capacity constrained by

2020 in a report published in 2015 [33]. The FAA also projected that these airports, in addition

to the four airports represented by yellow circles in Figure 1.5, will be significantly capacity con-

strained by 2030 unless significant efforts are made to improve airport infrastructure and increase

airport capacity. It is worth noting that a majority of these airports are the hubs to major U.S. air-

lines, some of which were formed as a result of the consolidation of airlines through mergers over

the last couple of decades. As such, the operations of major U.S. airlines have been concentrated

at fewer hub airports [33], leading to increased capacity constraints.

Figure 1.5: Assessment of Airport Capacity (2015) [33]

The aviation industry witnessed a steady increase in the volume and frequency of global air

traffic prior to the economic downturn caused by the Novel Coronavirus (COVID-19) pandemic.

This increase was largely influenced by technological advancements and increased demand as

a result of global Gross Domestic Product (GDP) [34–37] and Revenue Passenger Kilometers

(RPKs) growth [38]. This trend was evident in the United States, and demand for air transportation
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was projected to further increase over the next decade, as seen in Figure 1.6, which shows actual

and forecasted annual airport operations from studies conducted in 2005 and 2012 at 30 major U.S.

airports.

Figure 1.6: Actual and Forecasted Annual Operations at 30 U.S. Airports [33]

This trend as well as the projected increase in demand for air transportation can be attributed

to a variety of reasons. Air transportation is regarded as safer compared to other modes of trans-

portation [3] as air-related accidents had the lowest frequency among the four major modes of

transportation in the United States from 1998 to 2017 [39]. Air transportation is also less time

consuming compared to other modes of transportation [40], particularly for intercontinental and

transcontinental travel, and the opportunity cost of time is much lower with air travel, which is

particularly important for business travelers [41]. It is thus expected that major U.S. airports will

continue to be capacity-constrained unless significant efforts are made to improve airport infras-

tructure and increase airport capacity to match the projected demand for air transportation.
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1.1.2 Traffic Management Decisions and Procedures

The NAS is often constrained by inclement weather, volume constraints, equipment failures, closed

runways, etc. Whenever this happens, traffic management personnel plan and implement Traffic

Management Initiatives (TMI) to ensure that there is a balance between demand and capacity in

constrained areas of the NAS [42–45]. Traffic Management Initiatives are also implemented to

ensure that en-route and terminal areas of the NAS remain safe and operate optimally in spite of

constraints. En-route Traffic Management Initiatives such as Reroutes [46], Airspace Flow Pro-

grams [47–50], and Miles-in Trails [51–53] are implemented to manage air traffic at constrained

areas of the NAS during the en-route phase of flight [17]. Terminal Traffic Management Initiatives

such as Ground Delay Programs [54–57] and Ground Stops [45, 58], on the other hand, are imple-

mented at airports to ensure that their Airport Acceptance Rates (AAR) exceed or match aircraft

demand.

Ideally, Terminal Traffic Management Initiatives should be planned well ahead of time to en-

able traffic management personnel and flight operators to better manage airport and flight opera-

tions, in spite of constraints at airports. However, this is often not the case due to rapidly evolving

conditions at airports. Rapidly changing conditions at airports also often lead to changes in the

scope and duration of Traffic Management Initiatives prior to and/or during their implementa-

tion, which further increases the number, duration, and impact of flight delays. Furthermore, the

dynamic nature of airport and flight operations occasionally results in the initiation of a Traffic

Management Initiative during the implementation of another Traffic Management Initiative [59].

This coincidence often occurs due to rapid changes in conditions, which leaves traffic management

personnel with limited time to efficiently plan and implement the Traffic Management Initiatives

separately [58]. As such, efforts need to be made to ensure that Traffic Management Initiatives are

planned and implemented in an efficient manner so as to reduce the number, duration, and impact

of flight delays caused by their implementation.
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1.1.3 Current Efforts Towards Improving the Efficiency of Airport Operations

As illustrated, the efficient management and operation of U.S. airports is hindered by airport ca-

pacity constraints and the implementation of various traffic management decisions and procedures.

As such, various efforts have been pursued by stakeholders in the aviation industry to address this

evolving challenge by way of improving airport infrastructure, increasing airport capacity, etc.

These efforts, primarily through the FAA’s Next Generation Air Transportation System (NextGen)

initiatives, have aimed to modernize operations in the NAS through the planning and implemen-

tation of new technologies and airspace procedures [60–65]. Indeed, the development and imple-

mentation of programs such as the Automatic Dependent Surveillance – Broadcast (ADS-B) [66–

73], Data Communications (Data Comm) [74–76], En Route Automation Modernization (ERAM)

[77–81], Terminal Automation Modernization and Replacement (TAMR) [81–87], System Wide

Information Management (SWIM) [81, 88–91], and other efforts [92–102], have led to the avoid-

ance of over 15,000 hours of delays and nearly 25,000 hours of communication time saved due to

improved data sharing processes [65]. In addition, average delay duration in 2018 matched that

of 2017 despite an increase in the number of constraints due to inclement weather and air traffic

congestion [65]. Even though these efforts have improved operations at airports and consequently,

the NAS, much more needs to be done to address this evolving challenge as inefficient airport oper-

ations will most likely impede the growth of the aviation sector in the United States. One approach

towards addressing this challenge involves efficiently analyzing and assessing airport operational

performance to facilitate the identification of trends and patterns for better decision making.

1.1.4 Analysis and Assessment of Airport Operational Performance

Traffic management personnel regularly analyze projected airport demand, forecasted weather con-

ditions, and the statuses of airport systems, equipment and infrastructure in order to plan daily

airport operations. Ideally, the impact and effectiveness of the implementation of traffic manage-
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ment decisions and procedures on daily airport operations should be analyzed and assessed in an

efficient manner, so as to identify trends and patterns to better inform decision making, as summa-

rized in Figure 1.7. As such, efforts such as the development of efficiency metrics for assessing

TRACON and airport operational performance, and the Operational Service Performance Criteria

have been pursued by stakeholders.

Figure 1.7: Overview of need to analyze and assess daily airport operations

Efficiency Metrics for TRACON and Airport Operations

Metrics such as Terminal Arrival Efficiency Rate, Departure Efficiency Rate, Arrival Efficiency

Rate, and System Airport Efficiency Rate [103, 104] have been developed and implemented to

measure the efficiency of TRACON and airport operations.

The Terminal Arrival Efficiency Rate (TAER) “measures the arrival efficiency of flights from

100 miles out to Wheels On for a given time period. It is calculated by dividing the actual number

of arrivals by the lesser of the facility set arrival rate or the number of demand units and is reported

as a percentage not to exceed 100”. This metric was designed to measure “TRACON performance
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and the impact of Traffic Management Initiatives within 100 miles of airports” [105]. The De-

parture Efficiency Rate (DER) measures system efficiency from the time of take-off up to top of

climb [103], whereas the Arrival Efficiency Rate (AER) measures “the extent to which an airport

handled the number of aircraft it indicated it could accommodate, and how well the demand was

met” [104]. The System Airport Efficiency Rate (SAER) is the weighted average of Departure

Efficiency Rate and Arrival Efficiency Rate, and “measures the extent to which an airport handled

the number of aircraft it indicated it could accommodate and how well demand was met” [104].

These metrics provide a measure of how TRACON facilities and airports handle demand. How-

ever, they do not provide insights into how traffic management decisions and procedures impact

daily airport operations, and do not facilitate the identification of trends and patterns for better

decision making.

Operational Service Performance Criteria

The Operational Service Performance Criteria (OSPC) was developed by FAA analysts to cate-

gorize daily airport operations as a means to facilitate their assessment. This effort categorizes

daily operations of eight U.S. airports using the following metrics that capture the impact of traffic

management decisions on daily airport operations:

• TMI To Airport Delays: These are delays to airports caused by the implementation of

Traffic Management Initiatives (TMI) [106]

• Departure Delays: Departure delays in excess of 15 minutes attributed to conditions at the

departure airport [106]

• GDP Revisions: Ground Delay Programs are Traffic Management Initiatives implemented

when aircraft demand is projected to exceed airport capacity over a long period of time [107–

109]. This parameter refers to the number of times that Ground Delay Programs are updated
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• GDP Lead-in Time (Minutes): The time between the proposal of a Ground Delay Program

and its implementation

• Ground Stops: These are Traffic Management Initiatives implemented when aircraft de-

mand is projected to exceed airport capacity over a short period of time [110]. This parame-

ter refers to the number of unique Ground Stops implemented at airports

• Number of Aircraft Affected by Airborne Holdings: An Airborne Holding occurs when

an en-route aircraft is issued a clearance in excess of 15 minutes for a predetermined maneu-

ver to keep the aircraft within a specified airspace while awaiting further clearance from Air

Traffic Controllers [111]

• Total Duration of Airborne Holdings (Minutes): The summation of durations of all Air-

borne Holdings over 15 minutes

• Diversions: The number of flights that were diverted from their originally intended arrival

airport

• Completion Rate: The percentage of scheduled and/or planned air carrier arrivals that were

not cancelled [111]

Each of these metrics is classified as green (good), yellow (average), or red (bad) using pre-

defined ranges of values determined by Subject Matter Experts, as seen in Figure 1.8. Table 1.2

shows the criteria for good performance for each of the metrics. Each daily operation is then classi-

fied as a “Good day”, “Average day”, or “Bad day” by identifying the predominant class of metrics

(green, yellow, red) for the airport, as seen in Figure 1.8, where EWR, for example, was classified

as a “Good day” because green (good) was the predominant class of metrics. This effort is cur-

rently conducted each weekday morning using the previous day’s data, whereas daily operations

for each Friday and Saturday are categorized on Monday mornings. This effort currently cate-

gorizes daily operations of the Boston Logan (BOS), Newark Liberty (EWR), LaGuardia (LGA),
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John F. Kennedy (JFK), Philadelphia (PHL), Dulles (IAD), Baltimore/Washington International

Thurgood Marshall (BWI), and Reagan National (DCA) airports, as seen in Figure 1.8.

Figure 1.8: Operational Service Performance Criteria for a particular day

Table 1.2: Criteria for assessing OSPC metrics

Metric Criteria for good performance
TMI To Airport Delays Minimize
Departure Delays Minimize
GDP Revisions Minimize
GDP Lead-In Time Maximize
Ground Stops Minimize
Airborne Holdings (Minutes) Minimize
Airborne Holdings (Aircraft) Minimize
Diversions Minimize
Completion Rate Maximize

As with any other system, OSPC has a number of limitations that need to be addressed. First,

this process is time consuming as analysts manually extract and process data into day-specific doc-

uments, as seen in Figure 1.8, from reports provided by the FAA’s Aviation Systems Performance

Metrics (ASPM) [112] platform, which provides FAA operations and performance data such as

traffic counts, forecasts of aviation activity, delay statistics, etc. over different time periods (daily,

monthly, etc). Indeed, FAA analysts spend more time extracting and processing the data for each

airport from multiple ASPM reports compared to the amount of time spent analyzing the data.

Metrics such as Ground Delay Program lead-in time and number of revisions, number of Ground

Stops, and Completion Rate are calculated and compiled with the other metrics into a document
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on a daily basis. As such, the current process is also prone to errors as the calculation and com-

pilation of data is done manually. The current manual process of data extraction, compilation,

and storage on a local machine also limits the ability of FAA analysts to expand the scope of their

work to include additional airports, and highlights a challenge pertaining to the efficient extraction,

processing, fusion, and analysis of aviation data that researchers and analysts continually face.

The current process classifies daily operations of the eight airports into three categories as

means to assess operational performance. However, additional categories may provide more in-

sights into airport operations. As such, there is a need to determine if classifying daily airport

operations into three categories is the best suited approach for assessing airport operational per-

formance, and if and/or how this varies across airports. The current process also assumes a broad

set of predetermined ranges for metrics across the eight airports. These predetermined ranges are

based on the opinions of Subject Matter Experts and may not be necessarily accurate for all eight

airports.

The current approach of using the predominant class (green, yellow, red) of metrics to cat-

egorize daily airport operations assumes that each parameter is weighted equally. However, the

impact of each parameter may vary on an airport-by-airport basis. As such, robust and repeatable

methodologies are needed to better categorize and determine the category that daily airport opera-

tions belong to, instead of using predefined ranges of metrics and the predominant class of metrics,

respectively. Furthermore, OSPC currently does not account for any impacts that the time of year

may have on the categorization of daily airport operations.

OSPC currently classifies daily airport operations into three categories without quantifying the

degree to which a daily operation belongs to its category. As such, an approach for efficiently

comparing, analyzing, and assessing daily airport operations across different days, months, and/or

years for the identification of trends and patterns is lacking. Addressing this gap will enable stake-

holders to analyze and compare daily operations in similar and different airport categories, which

will enable them to identify traffic management decisions that lead to “very good” or “barely good”
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operational performance, for example. Doing so will also lead to the identification of trends and

patterns for the improved planning and implementation of various traffic management decisions

and airport procedures.

Finally, even though OSPC provides an assessment of airport operational performance, it does

not provide insights into how traffic management decisions and procedures impact daily airport

operations. Addressing this gap will enable stakeholders to make better decisions to ensure safe

and efficient airport operations.

1.2 Motivation

Given the aforementioned limitations and gaps of current efforts pursued by stakeholders to ana-

lyze and assess airport operational performance, this present work presents a set of methodologies

encapsulated in a framework that facilitate the analysis and assessment of daily airport operations.

Given this, the overarching objective of this research is formulated as follows:

Develop a framework to facilitate the analysis and assessment of daily airport operations to

improve airport operational performance

The remainder of this dissertation consists of the following chapters:

• Chapter 2 presents a review of relevant background material collected from literature review

on the topics of analyzing airports and/or their operations

• Chapter 3 presents the formulation of the problem in terms of the research objective, ques-

tions, hypotheses, and experiments

• Chapter 4 presents the development and testing of a methodology for categorizing daily

airport operations
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• Chapter 5 presents the development and testing of methodologies for determining the cate-

gory that daily airport operations belong to, and analyzing and assessing daily airport oper-

ations

• Chapter 6 presents the development and testing of a framework to facilitates the efficient

extraction, processing, and storage of data for the analysis and assessment of daily airport

operations

• Chapter 7 presents a summary of the work done in addition to contributions and recommen-

dations for future work
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents a review of relevant background material collected from a survey of literature

regarding the assessment and/or analysis of airports and/or their operations.

2.1 Survey of Literature

Bieblich et al. [113] developed a methodology for generating generic flight schedules so as to

optimize airport and flight operations. This methodology involved categorizing airports using the

minimum-variance-linkage/Ward-linkage clustering algorithm and using the clusters or categories

as inputs for determining generic flight schedules. The airports were placed into seven categories

that correlate to the nature of their operations (cargo hub, small regional airports, etc.) using

metrics such as number of passengers and runways, revenue generated, distance to city center, etc.

Even though the analysis of results showed that airports with similar characteristics (number of

passengers, etc.) had quite comparable flight operations, the authors indicated that the accuracy

of modeling weekly flight distributions could be further improved. In addition, even though this

work highlighted the use of a clustering algorithm to successfully categorize airport operations, it

did not provide insights into airport operations that were hitherto unknown.

Azzam [114] leveraged the Centroid Linkage clustering algorithm to categorize airports as a

means to determine the roles that airports play in global air transportation. This effort was devel-

oped and implemented using data from the Official Airline Guide (OAG) [115] flight schedules

database from 1979 to 2007. The airports were placed into twelve categories using the follow-

ing metrics from network theory [116]: “sum of all seats on scheduled direct flights to and from

the airport”, “sum of all inbound and outbound flights”, “sum of directly connected inbound and
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outbound origin-destination pairs”, “degree to which an airport is connected to rest of the net-

work”, “number of shortest paths between any pair of airports in the network that connects via the

airport”, and “average great circle distance of all directly connected inbound and outbound origin-

destination pairs”. The airport categories were then analyzed to identify their different functions

in the global air transport network. They were also used to create evolution graphs inspired by a

first order Markov chain [117] to identify evolutionary patterns. Even though this effort provided a

means for analyzing airports from a network perspective and established a new airport taxonomy, it

did not provide a means for analyzing how traffic management decisions impact airport operations.

Ottl et al. [118] developed a methodology to categorize airports for air traffic simulation sce-

narios using data obtained from the Official Airline Guide (OAG) [115]. This effort involved using

the Single Linkage clustering algorithm and 10 air traffic schedule parameters to initially identify

and remove outliers from a set of 22 airports. The remaining group of airports were then used to

calculate boundaries of each category and to determine parameter values for air traffic scenarios.

Even though the scenarios were independent of specific airports, they captured the characteristics

of similar airports within the same category. This effort involved grouping airports into categories.

However, airport operations are impacted by a variety of factors (weather, volume etc.) and group-

ing several airports into categories may not be the most appropriate approach as their underlying

characteristics may be lost.

Zambochova [119] grouped 838 airports into clusters based on the number of handled passen-

gers as a means to better understand the popularity and intensity of the use of global air travel. This

was achieved by leveraging the K-means clustering algorithm and monthly data from January 2000

to April 2014 to group the airports into four categories. The data used from this work was obtained

from the French Institute of Civil Aviation, French Ministry for ecology, sustainable development

and energy, and previous efforts by Darda P [120]. This effort outlined a repeatable approach for

assessing the impact of events on air transportation. However, it involved grouping airports into

categories, which may not be the best approach as their underlying characteristics may be lost.
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Gorripaty et al. [121] developed a methodology for identifying similar days of air traffic man-

agement using quarter-hour arrival demand and capacity data obtained from Aviation System Per-

formance Metrics (ASPM). This involved leveraging Principal Component Analysis to reduce the

dimensionality of capacity data and leveraging clustering analysis to determine if inherent clusters

exist in capacity and demand data of four U.S. airports. The outcome of this effort was the de-

velopment of similarity measures based on capacity and demand data for Newark, San Francisco,

Chicago O’Hare and John F. Kennedy International Airports. Even though this effort provided a

methodology for identifying similar days of air traffic management, it did not facilitate the analysis

and assessment of airport operational performance due to the metrics that were leveraged for this

work.

Grabbe et al. [122] used a clustering algorithm to identify hours for which the probability

of imposing a Ground Delay Program were similar at Chicago O’Hare International Airport and

Newark Liberty International Airport. Ground Delay Programs (GDP) are utilized by controllers

to manage air traffic whenever the number of anticipated aircraft is projected to exceed an airport’s

acceptance rate over a long period of time [54]. This effort was developed and implemented

using weather, Ground Delay Program, and airport arrival demand and capacity data obtained

from the Localized Aviation MOS (Model Output Statistics) Program (LAMP), National Traffic

Management Log (NTML), and Aviation System Performance Metrics (ASPM), respectively. An

analysis of the clusters was also conducted to identify the underlying weather conditions in each

of these clusters. While this effort demonstrated how the fusion of historical weather and air traffic

data, and the application of a clustering algorithm can be leveraged to provide guidance on the

types of traffic management restrictions to implement in response to weather and traffic conditions

impacting an airport, it did not provide insights into how traffic management decisions impact

airport operations.

Grabbe et al. [123] leveraged a modified version of the K-means clustering algorithm to iden-

tify similar daily airport operations in the National Airspace System based on the locations and
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causes of Ground Delay Programs. This effort was implemented using weather, hourly scheduled

arrival rates, and Ground Delay Program data obtained from Meteorological Aerodrome Reports

(METAR), the FAA’s Aviation System Performance Metrics (ASPM), and the National Traffic

Management Log (NTML). Grabbe et al. [124] also developed a similar methodology that lever-

aged Ground Delay Program, weather, airport arrival delay, and total NAS delay data from the

National Traffic Management Log (NTML), Rapid Refresh, Aviation System Performance Metrics

(ASPM), and the FAA’s Operations Network (OPSNET), respectively. Both efforts used Ground

Delay Program-related variables to identify unique daily categories across the NAS which were

then analyzed to verify the causes of the Ground Delay Programs. It was observed from these

efforts that similar daily operations in the NAS can be identified, and that clustering algorithms

can be leveraged to identify underlying causes of Ground Delay Programs. However, these efforts

did not provide insights into how traffic management decisions impact airport operations.

Hoffman et al. [125] leveraged clustering algorithms to transform an initial set of 65 NAS-

related variables to 8 key variables that constituted NAS feature vectors, one for each day from

Jan. 1, 2000 through Sept. 10, 2001. The 65 variables were obtained from the FAA’s Operations

Network Database (OPSNET), FAA’s Aviation System Performance Metrics (ASPM), Bureau of

Transportation Statistics (BTS), and Air Traffic Control System Command Center (ATCSCC) qual-

ity assurance data sources. The variables captured delay statistics, traffic counts, Traffic Manage-

ment Initiatives, and weather conditions. Clustering analysis was then performed with the feature

vectors to rank daily NAS operations by “levels of normality”. Insights gained from this work

served as recommendations on how similar daily operations can be used to validate NAS simu-

lations. This effort was implemented on a NAS-wide level. However, its implementation on an

airport-specific level may provide insights into airport operational performance that were hitherto

unknown.

Finally, Gano et al. [126] leveraged the K-means clustering algorithm to group 517 days of

NAS delay data into 10 categories using daily total delay time in minutes as the distance metric.
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The NAS delay data was obtained from the FAA’s Operations Network (OPSNET). This effort was

developed and implemented to identify days with similar air traffic flow patterns and operational

characteristics so as to evaluate and validate air traffic management concepts and simulations,

respectively. Similar to other efforts, implementing this methodology on an airport-specific level

may provide insights into airport operations that were hitherto unknown.

2.2 Observations from Literature

This section outlines key observations made from the body of research identified from the literature

that motivate this work. First, it was observed that several efforts have been made to categorize

airports and/or their operations in order to characterize and/or analyze them. Even though these

efforts did not facilitate the analysis and assessment of daily airport operations for the identification

of trends and patterns, they provided insights into airports and their operations that were hitherto

unknown.

Several of these efforts leveraged clustering algorithms to categorize data for airport operations

research. Clustering algorithms perform differently depending on the type and amount of data, as

well as the algorithms’ methodology and predefined number of clusters. However, it was observed

that a rigorous benchmarking of different clustering algorithms to identify the best suited one for

various tasks was lacking.

Previous efforts also involved grouping airports and/or their operations into categories. How-

ever, airport operations are characterized and impacted differently by a variety of factors (geo-

graphic, runway configurations, etc.). As such, grouping several airports into categories may not

be the most appropriate approach, as their underlying characteristics may be lost.

It was also observed from the survey of literature that an approach for analyzing and assess-

ing the impact and effectiveness of traffic management decisions on airport operations is lacking,

primarily due to the metrics used in various efforts. Addressing this gap will enable stakeholders

to make beteer decisions to ensure safe and secure airport operations. In addition, an approach for
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quantifying the degree to which airports and/or their operations belong to various categories was

lacking. Addressing this gap will enable stakeholders to analyze and compare operations across

in similar and different airport categories. Doing so will lead to the identification of trends and

patterns for the improved planning and implementation of various traffic management decisions

and airport procedures.

As previously discussed, traffic management personnel regularly analyze projected airport de-

mand, forecasted weather conditions, and the statuses of airport systems, equipment and infras-

tructure in order to plan daily airport operations. Ideally, the impact and effectiveness of the im-

plementation of traffic management decisions and procedures on daily airport operations should

be analyzed and assessed in an efficient manner, so as to identify trends and patterns to better in-

form decision making, and develop or improve the implementation of airport procedures, Traffic

Management Initiatives, etc. However, it was observed that a comprehensive and robust approach

is lacking, and that there are several gaps in literature that need to be addressed. As discussed in

this chapter and in the review of the Operational Service Performance Criteria in Section 1.1.4,

the categorization of airports and their operations has been successfully leveraged to analyze and

gain insights into airports and/or their operations that were hitherto unknown. As such, there is a

need to identify, extract, process, and store metrics that capture the impact of traffic management

decisions on daily airport operations, and to leverage these metrics for the categorization of daily

airport operations, which will facilitate their analysis and assessment for the identification of trends

and patterns, as summarized in Figure 2.1.
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Figure 2.1: Proposed approach for the analysis and assessment of daily airport operations

The aforementioned observations led to the formulation of research questions, and their asso-

ciated hypotheses and experiments, which are discussed in Chapter 3.
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CHAPTER 3

PROBLEM FORMULATION

Chapter 1 discussed the need to efficiently analyze and assess daily airport operations to facilitate

the identification of trends and patterns, which will inform better decision making to improve

airport operational performance. However, the survey of literature in Chapter 2 revealed that a

comprehensive and robust approach is lacking, and that there are several gaps in literature that

need to be addressed. These observations led to the formulation of the overall objective of this

dissertation presented in Section 3.1. In pursuit of this objective, several research questions were

identified, and are presented in Section 3.2.

3.1 Research Objective

In order to address the need for a comprehensive, robust, and repeatable approach for analyzing

and assessing daily airport operations, the objective of this dissertation is to:

Develop a framework to facilitate the analysis and assessment of daily airport operations to

improve airport operational performance

With this research objective in mind, the overarching hypothesis of this work is stated as fol-

lows:

A framework that automates the extraction and processing of airport data, and facilitates the

analysis and assessment of daily airport operations in a comprehensive, robust, and repeatable

manner will enable stakeholders to identify trends and patterns for better decision making and as

a consequence lead to improved airport operational performance
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This overarching hypothesis is associated with methodologies that herein categorize daily air-

port operations, determine the category that subsequent daily airport operations belong to, provide

a means for analyzing and assessing daily airport operations, and develop a framework to automate

the extraction, processing, analysis, and storage of airport data. An overview of the overall method-

ology comprised of four main components is given in Figure 3.1. First, a repeatable methodology

was developed to categorize daily airport operations, instead of using predefined ranges of metrics.

A methodology for determining the category that daily airport operations belong to was then de-

veloped as an alternative to identifying the predominant class of metrics, as is currently done with

OSPC. Outcomes of these two methodologies were then used to facilitate the analysis and assess-

ment of daily airport operations in order to better understand how traffic management decisions

and procedures impact airport operations, and to identify trends and patterns. Finally, a framework

was developed to encapsulate the outcomes of the aforementioned methodologies and to automate

the extraction, processing, and storage of data needed to efficiently analyze and assess daily airport

operations.

Figure 3.1: Overview of overall methodology
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3.2 Research Questions, Hypotheses Development, and Experiments

Pursuant to the overarching objective of this work, a series of research questions were developed.

The first question relates to the development of a methodology for categorizing daily airport oper-

ations. Then, a subsequent set of questions were posed which relate to determining the categories

that subsequent daily airport operations belong to, and analyzing and assessing daily airport op-

erations. The final research question probed the development of a framework to automate the

extraction, processing, and storage of data needed for the efficient analysis and assessment of daily

airport operations.

3.2.1 Research Question, Hypothesis, and Experiment 1

Research Question 1

It was observed from the review of the literature in Chapter 2 that various efforts analyzed airports

and/or their operations by categorizing airport data using various approaches. However, these ap-

proaches have limitations that need to be addressed. The Operational Service Performance Criteria,

for example, uses a broad set of predefined ranges of metrics to categorize daily operations of eight

U.S. airports as a means to assess their operational performance. However, these predetermined

ranges are based on the opinions of Subject Matter Experts and may not be necessarily accurate

for all eight airports or may only work for these eight airports.

Other efforts that leveraged clustering algorithms to categorize airports and/or their opera-

tions also lacked benchmarking exercises to determine the best suited algorithms for various tasks.

Benchmarking exercises are important as clustering algorithms perform differently depending on

the type and amount of data as well as their methodologies and the predefined number of clusters.

There is also a need to determine the optimal number of clusters needed to categorize airports

and/or their operations, and how this varies by airport.

Finally, the developed methodology also needs to be systematic and repeatable so that it can be
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easily replicated for any airport. Given this, the first research question is formulated as follows:

Research Question 1

How can daily airport operations be categorized in a systematic, robust and repeatable manner?

Hypothesis 1

Within the literature, it was observed that clustering, which is a category of unsupervised Machine

Learning, has been leveraged to categorize airports and/or their operations. Unsupervised Machine

Learning algorithms develop models that benefit from the insights gained from summarizing data

in new and interesting ways. These models are commonly referred to as descriptive models where

no single feature is more important than the others. In unsupervised Machine Learning, the data is

unlabeled and the algorithms learn to understand the structure of the data. Unsupervised Machine

Learning algorithms can be used for tasks such as pattern discovery [127, 128] and clustering [127,

129–131]. Clustering algorithms categorize data into clusters, without any prior training or under-

standing of the data [127, 132, 133]. They are widely used to explore data in order to identify

hidden patterns and can categorize data into a predefined number of clusters even if no meaningful

clusters exist. This is done using different measures of similarity defined by metrics such as prob-

abilistic distance [127, 134–136], which differ based on the methodologies of the algorithms. The

methodologies of clustering algorithms as well as the predefined number of clusters, and the type

and amount of data influences the consistency of clustering results and the quality of clusters. As

such, there is often a need to determine the best suited combination of algorithm(s) and number of

clusters for various tasks [137]. Given this, the following hypothesis is formed:

Hypothesis 1

If clustering algorithms are benchmarked while varying the number of clusters, then daily airport

operations will be categorized in a systematic, robust and repeatable manner
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Experiment 1

It was observed in the survey of literature that previous efforts do not facilitate the analysis and

assessment of the impact of traffic management decisions on airport operations due to the metrics

(number of arrivals, departures, etc.) used in these efforts. As such, Research Question 1 and

Hypothesis 1 are answered and validated, respectively, by initially identifying a set of metrics that

capture the impacts of traffic management decisions and procedures on daily airport operations.

Consequently, the following metrics currently used in the Operational Service Performance Cri-

teria are used for this work: delays to airports due to the implementation of Traffic Management

Initiatives, departure delays, number of aircraft affected by Airborne Holdings, total duration of

Airborne Holdings, number of diversions, Completion Rate, number of Ground Stops, and Ground

Delay Program lead-in time and number of revisions.

Figure 3.2 provides an overview of the methodology for Experiment 1 which is implemented

in R [138] with data from May 1, 2016 - December 31, 2019 for the following airports: Boston

Logan (BOS), Baltimore/Washington International Thurgood Marshall (BWI), Reagan National

(DCA), Newark Liberty (EWR), Dulles (IAD), John F. Kennedy (JFK), LaGuardia (LGA), and

Philadelphia (PHL) airports.

Figure 3.2: Methodology for Experiment 1
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Experiment 1, as described in detail in Chapter 4, is carried out by extracting data from the

FAA’s Aviation Systems Performance Metrics (ASPM) platform. Completion Rate is computed

using airport arrival and departure counts, whereas the number of Ground Stops, and Ground

Delay Program lead-in times and number of revisions are computed using Ground Stop and Ground

Delay Program data, respectively. Steps are then taken to normalize, reduce the dimensionality,

and assess the clustering tendency of each airport’s dataset. The datasets are then clustered by

benchmarking the performance of ten clustering algorithms while varying the number of clusters

from three to eight for each airport. This range of clusters was determined to be appropriate by

FAA Subject Matter Experts. The performance of the algorithms is evaluated with seven metrics

to assess the consistency of clustering results and the quality of clusters. The combination of

best suited clustering algorithm and number of clusters for each airport are then determined by

identifying the most common combination of algorithm(s) and number of clusters. Finally, the

results from clustering are compared to results from the Operational Service Performance Criteria

and reviewed by FAA Subject Matter Experts to determine which approach better categorizes daily

airport operations.

3.2.2 Research Questions, Hypotheses, and Experiments 2

Research Questions 2

Within the literature, it was observed that a robust and repeatable methodology for determining

the category that subsequent daily airport operations belong to is lacking. It was also observed

that an approach for comparing daily operations at airports is lacking. Addressing this gap will

enable stakeholders to analyze and compare daily operations in similar and different airport cate-

gories, which will allow them to identify traffic management decisions that lead to “very good” or

“barely good” operational performance, for example. Doing so will also lead to the identification

of trends and patterns for the improved planning and implementation of various traffic management

decisions and airport procedures.

30



The review of the literature also showed that an approach for analyzing and assessing the

impacts and effectiveness of traffic management decisions on airport operations is lacking. Ad-

dressing this gap will enable stakeholders to identify trends and patterns, which will inform better

decision making thereby ensuring safe and efficient airport operations. Consequently, the second

research question is threefold:

Research Question 2.1

How can the category that a daily airport operation belongs to be better determined?

Research Question 2.2

How can daily airport operations in similar and different categories be compared for the

identification of trends and patterns?

Research Question 2.3

How can the impacts and effectiveness of traffic management decisions on daily airport

operations be analyzed and assessed?

Hypotheses 2

Models used in supervised learning are known as predictive models where the algorithms attempt

to discover and model the relationships between the value being predicted (target) and other values

(predictors). Predictive models can be used to predict not only events in the future, but can also be

used to predict previous and real-time events [139]. Unlike with unsupervised Machine Learning

algorithms, the data is labeled in supervised learning so that the algorithms can learn to predict the

target from the predictors. Supervised Machine Learning algorithms can be used for two tasks:

regression and classification [127].

Regression is used to predict a numeric target from a set of predictors. The targets are contin-

uous because there are no discontinuities or gaps in the values that they can take [127]. Examples
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of regression tasks include predicting the duration of flight delays, cancellations, etc. Classifica-

tion is often used to predict which class an instance belongs to. This involves mapping predictors

to a target by learning how predictors are related to the target [127]. Examples of classification

tasks include predicting the occurrence of certain Traffic Management Initiatives, flight delays, etc

[140–145]. The performance of regression and classification models are often evaluated using a

set of metrics so as to assess how well the models will predict new observations. Therefore, the

hypothesis for Research Question 2.1 is:

Hypothesis 2.1

If the performance of classification models developed with a supervised Machine Learning

algorithm is observed to be excellent, then the category that a daily airport operation belongs to

will be determined with a robust approach

Certain supervised Machine Learning algorithms compute the posterior probability or degree

of support of predictions, which measures how likely each observation belongs to the different

categories of a dataset [127]. As such, it is hypothesized that this feature will provide a means

for quantifying the degree to which a daily operation belongs to a category. In particular, this will

enable analysts to compare daily operations in similar and different airport categories as a means

to identify trends and patterns. Consequently, the hypothesis for Research Question 2.2 is:

Hypothesis 2.2

If the posterior probability or degree of support of predictions is computed, then the comparison

of daily operations in similar and different airport categories will be facilitated
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Machine Learning models are often referred to as “black boxes” because their underlying pro-

cesses are not explicitly clear to users. This challenge is often remedied by leveraging Decision

Trees which allow for a global interpretation of Machine Learning models developed with tree-

based algorithms. They also provide a means to identify underlying relationships between pre-

dictors and targets of prediction models [146]. Certain supervised Machine Learning algorithms

also provide a ranking of predictor importance which can be used to gain insights into the under-

lying causes of events. It is thus hypothesized that Decision Trees and the ranking of predictor

importance of each airport will provide a means for determining how various traffic management

decisions impact airport operations and how this varies by airport. Consequently, the hypothesis

for Research Question 2.3 is:

Hypothesis 2.3

If the ranking of predictor importance and Decision Trees of classification models are analyzed,

then the impact and effectiveness of traffic management decisions on airport operations will be

analyzed and assessed for the identification of trends and patterns

Experiment 2

Research Questions and Hypotheses 2 are answered and validated, respectively, by developing

prediction models using the methodology shown in Figure 3.3 which is implemented with Python

[147, 148]. The target of each model is the category of daily airport operation determined in

Experiment 1, and the predictors are the nine airport metrics used in Experiment 1. As discussed

in Section 1.1.4, the Operational Service Performance Criteria does not account for the impacts

that the time of year may have on the categorization, analysis, and assessment of daily airport

operations. As such, the month of year is also included as a predictor of the prediction models.
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Figure 3.3: Methodology for Experiment 2

First, a suitable supervised Machine Learning algorithm is identified and the datasets from Ex-

periment 1 are randomly split into two sets: training-validation and testing. The training-validation

set is used to train and tune the algorithm’s hyperparameters to ensure optimal model performance.

The performance of the models are then assessed with the testing set and evaluation metrics in or-

der to answer and validate Research Question and Hypothesis 2.1, respectively.

The posterior probability or degree of support of predictions made by the prediction models is

generated as outputs of the models to facilitate the comparison of daily operations in similar and

different airport categories. These outcomes are analyzed in order to answer and validate Research

Question and Hypothesis 2.2, respectively.

Finally, Research Question and Hypothesis 2.3 are answered and validated, respectively, by

analyzing the ranking of predictor importance and Decision Trees of the prediction models. The

analysis of the ranking of predictor importance of the prediction models facilitates the identification

of how each metric influences the categorization of daily airport operations, and how this varies

across airport. The Decision Trees of the prediction models on the other hand, are leveraged

to provide insights into how various traffic management decisions and airport procedures impact
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daily airport operations.

3.2.3 Research Question, Hypothesis, and Experiment 3

Research Question 3

As previously discussed in Section 1.1.4, FAA analysts manually extract airport needed for the

Operational Service Performance Criteria from multiple ASPM reports each weekday morning.

Indeed, FAA analysts spend more time extracting and processing data needed compared to the

amount of time spent assessing airport operational performance. The current manual process of

data extraction, processing, and storage on a local machine also limits the ability of FAA analysts

to expand the scope of their work to include additional airports. In addition, an efficient means for

comparing, analyzing, and assessing airport operations across different days, months, and/or years

for the identification of trends and patterns is lacking. Consequently, the final research question is

formulated as follows:

Research Question 3

How can the efficient analysis and assessment of daily airport operations be automated from data

extraction, through processing, analysis, and storage?

Hypothesis 3

The manual and time-consuming nature of the process currently used by FAA analysts in OSPC

highlights a challenge pertaining to the efficient extraction, processing, fusion, and analysis of avi-

ation data that stakeholders continually face. This challenge is further exacerbated by the large

volumes of data, commonly referred to as Big Data [149–152], are continually generated and uti-

lized from different data sources within the NAS. This data is used by stakeholders to improve

flight safety and fuel efficiency [153], ensure airline profitability [154–156], plan maintenance
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schedules [157], and proactively detect maintenance issues [158]. Aviation Big Data is also lever-

aged to “make accurate forecasts, streamline processes, identify operational patterns, and inform

the development of new concepts and methods aimed at ensuring that operations in the NAS re-

main as safe and efficient as possible” [43]. However, challenges associated with the volume,

veracity, velocity, and variety of the data prevents stakeholders from efficiently utilizing the data.

In particular, stakeholders in the aviation industry are often unable to access integrated data in

a timely manner, and often lack tools needed to efficiently analyze aviation Big Data. As such,

various efforts have been pursued by stakeholders to address this challenge. One of these involves

the development of the Enterprise Information Management (EIM) platform by the FAA. EIM

is a cloud-based environment that is expected to provide reusable data, information management

services, and Big Data processing capabilities for broad cross-agency use, once completed. This

environment, represented in Figure 3.4 will facilitate continuous innovation by providing stake-

holders with advanced tools and capabilities as a way to keep up with the fast-changing data and

analytics landscape in the aviation domain.

Figure 3.4: Overview of the FAA’s Enterprise Information Management (EIM) platform
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EIM will be equipped to rapidly ingest internal FAA datasets and external datasets in real-

time, and store them in cloud-native formats for efficiency. It will also have the capability to

transform datasets into formats suitable for consumption and data analytics purposes. These will be

achieved by leveraging cloud computing services and scalable architectures such as Amazon Web

Services [159–161], Elastic Search [162–164], Apache NiFi [165–169], PostgreSQL [170–172],

and Hadoop and the Hadoop Distributed File System (HDFS) [173–175]. Indeed, leveraging these

technologies and software will lead to increased cost efficiency, provision speed and enhanced

information sharing, and will support innovation, research and sustainability in the aviation domain

[176, 177]. As such, it is hypothesized that leveraging cloud-based technologies and software to

develop a framework that encapsulates the methodologies and outcomes of Experiments 1 and

2, and automates the extraction, processing and storage of airport data will facilitate the efficient

analysis and assessment of daily airport operations. Given this, the final hypothesis is:

Hypothesis 3

If a framework is developed to automate the extraction, processing, analysis and storage of

airport data, then daily airport operations will be analyzed and assessed in an efficient manner

Experiment 3

Figure 3.5 provides a broad overview of the methodology for Experiment 3 which is used to answer

and validate Research Question 3 and Hypothesis 3, respectively. In particular, it shows that the

first step focuses on identifying technologies and software that are compatible with the FAA’s

EIM platform as the framework will be deployed into the EIM platform for the real-time analysis

and assessment of daily airport operations. Subsequent steps focus on the deployment of various

software and scripts needed for the framework, the initiation of the framework, extraction of data

needed, processing of data, temporary storage of data, execution of Machine Learning scripts,

permanent storage of data, and analysis of data.
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Figure 3.5: Methodology for Experiment 3

The framework is developed and tested in the FAA’s Computing and Analytics Shared Services

Integrated Environment (CASSIE), which is a collaborative and flexible environment for conduct-

ing research by bringing FAA organizations, partners and sponsors together in a shared services

environment consisting of data, computing power, and analytical tools. The developed framework

will eventually be deployed into the FAA’s EIM platform, as CASSIE will be phased out of op-

eration once EIM is operational. The technologies and software that are leveraged to develop the

framework are deployed into CASSIE with Ansible scripts which automate the deployment of sys-

tem configurations, software, codes, files, etc. into computing environments [178–180]. This re-

places the manual and time consuming effort required to transfer, install and/or configure software

or files in new environments. The technologies and software are then configured to automatically

trigger the initiation of the framework each weekday morning, and ingest, process and store the

data needed for this work. The outcomes of Experiments 1 and 2 are also incorporated into the

framework to facilitate the analysis and assessment of daily airport operations. The completed

framework is then tested over a four-month period to evaluate and validate its performance so as

to answer and validate Research Question and Hypothesis 3, respectively.
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CHAPTER 4

CATEGORIZATION OF DAILY AIRPORT OPERATIONS

In this chapter, the development, application, and testing of a methodology for categorizing daily

airport operations is discussed so as to successfully answer Research Question 1:

Research Question 1

How can daily airport operations be categorized in a systematic, robust, and repeatable manner?

4.1 Methodology Overview

Figure 4.1 provides an overview of the methodology for Experiment 1 which was implemented

with a set of metrics that capture the impacts of traffic management decisions and procedures on

daily airport operations. Data from May 1, 2016 - December 31, 2019 was extracted from ASPM

for the following airports: Boston Logan (BOS), Baltimore/Washington International Thurgood

Marshall (BWI), Reagan National (DCA), Newark Liberty (EWR), Dulles (IAD), John F. Kennedy

(JFK), LaGuardia (LGA), and Philadelphia (PHL) airports. The remainder of this section discusses

each of these steps in detail.

4.1.1 Step #1: Extract Data from ASPM

The developed methodology for Experiment 1 was implemented using metrics identified by Sub-

ject Matter Experts that capture the impacts of traffic management decisions and airport procedures

on daily airport operations. As such, the following metrics currently used in the Operational Ser-

vice Performance Criteria (OSPC) were used for this work: delays to airports due to the implemen-

tation of Traffic Management Initiatives, departure delays, number of aircraft affected by Airborne

Holdings, total duration of Airborne Holdings, number of diversions, Completion Rate, number of
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Figure 4.1: Overview of methodology for Experiment 1

Ground Stops, and Ground Delay Program lead-in time and number of revisions. These metrics

were also used to facilitate the comparison of the outcomes of this work and OSPC in order to

identify the better approach for categorizing daily airport operations to facilitate their analysis and

assessment. Metrics such as delays to airports due to the implementation of Traffic Management

Initiatives, departure delays, number of aircraft affected by Airborne Holdings, total duration of

Airborne Holdings, and number of diversions were directly extracted from ASPM [112], whereas

Completion Rate was calculated by extracting the number of actual arrivals and flight cancellations

from ASPM. The number of Ground Stops, and Ground Delay Program revisions and lead-in times

were calculated by extracting Ground Stop and Ground Delay Program data from ASPM.

4.1.2 Step #2: Compute Completion Rate

Completion Rate was calculated by extracting the number of actual arrivals and flight cancellations,

and using Equation 4.1:

Completion Rate =
Arrivals

Arrivals + Cancellations
(4.1)
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4.1.3 Step #3: Compute the Number of Ground Stops

The number of Grounds Stops at each airport was computed using the following process:

1. The first step involved sorting the Ground Stop advisories by time, and removing duplicate

advisories. Duplicate advisories exist because ASPM occasionally stores the same Ground

Stop advisory multiple times

2. The duration and scope of an ongoing Ground Stop may be modified whenever conditions

change. This leads to overlapping Ground Stop advisories, which is inaccurate. In order

to address this inconsistency, the end time of an initial Ground Stop advisory was set as the

start time of a new Ground Stop advisory as seen in Figure 4.2. In particular it shows that the

start time of advisory number 0117 is prior to the end time of advisory number 0071. Thus,

the end time of advisory number 0071 was set as the start time of advisory number 0117

Figure 4.2: Updating the end dates and times of updated active Ground Stop advisories

3. The number of Ground Stops for each day was then computed by identifying original Ground

Stop advisories and ignoring subsequent updated advisories. This was achieved by identify-

ing the number of times that start times of advisories did not match the end times of previous

advisories. Finally, zero was indicated whenever a Ground Stop was not implemented on a

specific day
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4.1.4 Step #4: Compute Ground Delay Program Revisions and Lead-In Times

Ground Delay Program revisions and lead-in times were calculated by implementing the following

steps:

1. The first step involved sorting the Ground Delay Program advisories by time, and removing

duplicate advisories. Duplicate advisories exist because ASPM occasionally stores the same

Ground Delay Program advisory multiple times

2. The duration and scope of an ongoing Ground Delay Program may be modified whenever

conditions change. This leads to overlapping Ground Delay Program advisories which is

inaccurate. In order to address this inconsistency, the end time of an initial Ground Delay

Program advisory was set as the start time of the new Ground Delay Program advisory, sim-

ilar to the process implemented with Ground Stop data, as seen in Figure 4.2. A Ground

Delay Program revision was recorded whenever this step was implemented. A value of -

1 was indicated whenever a Ground Delay Program was not implemented at an airport on

a specific day, whereas zero was indicated whenever a Ground Delay Program was imple-

mented with no revisions. This was done to distinguish between when a Ground Delay

Program was implemented with no revisions, and when a Ground Delay Program was not

implemented at an airport on a specific day

3. Ground Delay Program lead-in time was computed as the time between the proposal of

original Ground Delay Programs and their implementation, in minutes. A value of 500

minutes was indicated whenever a Ground Delay Program was not implemented at an airport

on a specific day. 500 minutes was used because a Ground Delay Program will never be

proposed that much in advance. This was done to distinguish between when a Ground Delay

Program was implemented with zero lead-in time, and when a Ground Delay Program was

not implemented at an airport on a specific day
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4.1.5 Step #5: Normalize Datasets

To ensure that metrics with larger ranges of values do not skew the clustering process, there is a

need to normalize the parameters. Z-score standardization was thus leveraged to scale each metric

to ensure that they had a mean of zero and a standard deviation of one [181, 182]. This was

achieved with the mean and standard deviation of each metric, and was calculated using Equation

4.2.

Z =
V alue−Mean

Standard Deviation
(4.2)

4.1.6 Step #6: Reduce the Dimensionality of Datasets

It is usually difficult to explore and visualize the relationships between features in highly dimen-

sional datasets. Thus, techniques such as Principal Component Analysis (PCA) have been widely

used to reduce the dimensionality of datasets. This is achieved by orthogonally transforming a set

of variables into principal components. Principal components are linear combinations of original

variables of a dataset that capture the variance of the dataset. The transformation is done to en-

sure that the first principal component captures the maximum variance of the dataset, while each

subsequent principal component captures the remaining variance of the dataset [183–186]. Or-

thogonal components that capture the maximum variance of the dataset are then identified using a

scree plot, as seen in Figure 4.3. The scree plot, for this example, shows that two principal com-

ponents captured over 90% of the variance of the dataset. This means that the dimensionality of

the dataset was reduced from over 40 variables to two principal components without significantly

reducing the variance of the dataset. Principal Component Analysis was implemented in this work

by leveraging R’s prcomp library [187, 188].
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Figure 4.3: Sample scree plot [189]

4.1.7 Step #7: Assess the Clustering Tendency of Datasets

The majority of clustering algorithms split up datasets into predefined number of clusters, even

if no meaningful clusters exist. It is thus important to assess the clustering tendency of a dataset

to determine if meaningful clusters can be created [190–193]. Hopkins statistic [194] and Visual

Assessment of cluster Tendency (VAT) [190–193, 195] are two methods that are usually used to

determine if a dataset has a non-random structure and will produce useful clusters [195].

Hopkins Statistic

Hopkins Statistic assesses the clustering tendency of datasets by measuring the probability that a

given data set is generated by a uniform data distribution [196]. The Hopkins Statistic for each

airport was obtained using Algorithm 1 [197].
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Algorithm 1: Hopkins Statistic
1: for each airport do
2: Uniformly sample n points (p1,.....pn) from data set, T
3: Find the nearest neighbor, pj of each point, pi ∈ T
4: Compute the distance from each real point (pi) to each nearest neighbor (pj) and denote it

as xi = dist(pi,pj)
5: Generate a simulated data set (randomT ) drawn from a random uniform distribution with

n points (q1,.....qn) and the same variation as the original real data set T
6: Find the nearest neighbor, qj of each point, qi ∈ randomT

7: Compute the distance from each artificial point (qi) to the nearest neighbor (qj) and denote
it as yi = dist(qi,qj)

8: Calculate the Hopkins statistic (H) as the mean nearest neighbor distance in the random
data set divided by the sum of the mean nearest neighbor distances in the real and across
the simulated data set, as seen in Equation 4.3

H =

∑n
i=1 yi∑n

i=1 yi +
∑n

i=1 xi

(4.3)

9: return Hopkins Statistic
10: end for

If the data set T is uniformly distributed, then
∑n

i=1 yi and
∑n

i=1 xi will be close to each other,

and the Hopkins Statistic (H) will be approximately 0.5. However, if clusters are present in T,

then the distances for points from the simulated data set (
∑n

i=1 yi) will be substantially larger than

for the ones from the uniformly distributed data set T (
∑n

i=1 xi), and Hopkins Statistic (H) will

be greater than 0.5. A value for H higher than 0.75 indicates a clustering tendency at the 90%

confidence level.

Consequently, the null hypothesis for the Hopkins Statistic is defined as the dataset being uni-

formly distributed. The alternative hypothesis on the other hand is defined as the dataset not being

uniformly distributed. Thus, a Hopkins Statistic close to one means that the null hypothesis is

rejected and the dataset has a very high clustering tendency [198].
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Visual Assessment of cluster Tendency (VAT)

The Visual Assessment of cluster Tendency (VAT) is an image that indicates the presence of mean-

ingful and well separated clusters, represented by dark boxes along the main diagonal of the image,

as seen in Figure 4.4. The VAT is implemented by computing the Dissimilarity Matrix (DM) be-

tween objects in the dataset using the Euclidean distance measure [199, 200]. An Ordered Dissim-

ilarity Matrix (ODM) is then created by reordering the original Dissimilarity Matrix so that similar

objects are close to one other. The Ordered Dissimilarity Matrix is then displayed as the VAT plot

for the dataset [190–193]. The values indicated in Figure 4.4 are a measure of dissimilarity in a

cluster or dataset. As such, lower dissimilarity values and darker boxes correspond to the pres-

ence of very similar objects in clusters. On the other hand, higher dissimilarity values and lighter

shaded boxes correspond to dissimilar objects in clusters. Indeed, the size and number of the dark

boxes along the diagonal provide a means for visually assessing the potential size and number of

meaningful clusters in a dataset. This step was implemented by leveraging R’s factoextra library

[201, 202]

Figure 4.4: Sample Visual Assessment of cluster Tendency (VAT)
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4.1.8 Step #8: Benchmark and Evaluate the Performance of Clustering Algorithms

A. Clustering Algorithms

Clustering algorithms have different methodologies and assumptions. It is thus important to bench-

mark different clustering algorithms in order to identify the best suited clustering algorithm for a

dataset. Some clustering algorithms also require users to arbitrarily select the number of clusters

to be used. In order to ensure that the optimal number of clusters is selected, there is a need to vary

the number of clusters used while benchmarking the different algorithms to identify a combination

of best suited algorithm(s) and number of clusters to be used for each airport. Consequently, the

following clustering algorithms were benchmarked while varying the number of clusters for each

airport using R’s clValid library [203] due to their applications across multiple research domains

[204–212]:

1. Divisive Hierarchical Clustering Algorithms

The divisive hierarchical clustering algorithms group similar objects in multidimensional spaces

into categories by repeatedly dividing the largest cluster into at least two clusters [213]. The

divisive hierarchical clustering algorithms utilized for this research were:

• Divisive Analysis (DIANA): This algorithm initially places all objects into the same cluster.

At each point in time, the algorithm then splits the largest available cluster into two smaller

clusters until each cluster contains at least one object [204, 205, 214, 215]. The individual

clusters are then merged based on their similarity to each other

• Self Organizing Tree Algorithm (SOTA) Clustering Algorithm: This algorithm is an un-

supervised network with a binary tree topology that combines advantages of hierarchical

clustering and Self-Organizing Maps (SOM). It is implemented by splitting the most diverse

node into two nodes, called cells. This process is repeated until a desired hierarchical level
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is reached or a predefined criteria based on the approximate distribution of probability is

obtained by randomisation of the original data set [207, 208, 216]

2. Agglomerative Hierarchical Clustering Algorithms

The agglomerative hierarchical clustering algorithms group similar objects in multidimensional

spaces into categories by assigning each object into a cluster, and then merging similar clusters

by their proximity to each other [213, 217–220]. These algorithms differ based on their method

for measuring distances between objects. The agglomerative hierarchical clustering algorithms

utilized for this research were:

• Complete Linkage: The distance between two clusters is defined as the longest distance

between two objects in each cluster [221]

• Average Linkage: The distance between two clusters is defined as the average distance be-

tween each object in one cluster to every object in the other cluster [221]

• Single Linkage: The distance between two clusters is defined as the shortest distance be-

tween two objects in each cluster [221]

• Ward: The distance between two clusters is defined as how much the sum of squares will

increase when the clusters are merged [222]

3. Kmeans Clustering Algorithm

The Kmeans algorithm assigns objects to a predetermined number of clusters, where the differ-

ences between objects in each cluster are minimized, and the differences between objects in differ-

ent clusters are maximized [127]. The algorithm is implemented by randomly selecting centroids

which serve as the beginning points of each cluster. Iterative calculations are then carried out to

optimize the positions of the centroids. The iterations are suspended when there is no change in

centroid values or when a defined number of iterations is reached [223–226]
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4. Partitioning Around Medoids (PAM) Clustering Algorithm

The Partitioning Around Medoids (PAM) or k-medoids clustering algorithm is similar to the

Kmeans clustering algorithm. However, the PAM algorithm clusters objects into a predetermined

number of clusters around medoids or centers [211, 212, 214]. The medoids are computed such

that the total dissimilarity of all objects to their nearest medoid is minimal

5. Clustering for Large Applications (CLARA) Clustering Algorithm

This algorithm works similarly to the Partitioning Around Medoids (PAM) algorithm, where ob-

jects are clustered around centers or medoids. The PAM algorithm stores entire dissimilarity matri-

ces in central memory, which greatly increases computation time. This is particularly costly with

large datasets. The CLARA algorithm does not store entire dissimilarity matrices in central mem-

ory. Instead, it only clusters a sample of the large dataset using the PAM algorithm’s methodology,

and then assigns the remaining objects in the dataset to the clusters obtained from the sample [214,

227, 228]

6. Model-based Clustering Algorithm

This algorithm is a statistical model made up of a combination of Gaussian distributions that are

used to fit the data, where each combination of Gaussian distributions represents a cluster [229–

232]

B. Evaluation Metrics for Clustering Algorithms

This subsection outlines a set of metrics that were leveraged to evaluate the consistency of clus-

tering results [233, 234] and assess the quality of clusters [203, 234, 235]. The following metrics

were weighted equally for the purpose of this research and implemented with R’s clValid library

due to their application across multiple research domains [203]:
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1. Connectivity

Connectivity measures “the extent to which items are placed in the same cluster as their nearest

neighbors in the data space” [203, 234, 236]. Connectivity is defined as [234]:

Connectivity(C) =
N∑
i=1

R∑
j=1

xi,nij
(4.4)

Where N is the number of observations in a dataset, and xi,nij
equals 0 if i and j belong to

the same cluster, and equals 1/j if i and j do not belong to the same cluster. nij is the jth nearest

neighbor of observation i. C has k disjoint clusters, (C1, . . . , Ck), and R refers to the number of

nearest neighbors that contribute to the connectivity measure.

2. Dunn Index

This measures the ratio between the smallest distance between items in different clusters and the

largest distance between items in the same cluster [234, 236, 237]. The Dunn Index is defined as

[234]:

Dunn Index =
min(O)

max(I)
(4.5)

Where O is the distance between observations in different clusters and I is the distance between

observations in the same cluster.

3. Silhouette

This measures the average distance between different clusters [234, 236, 238]. The Silhouette

width of observation i is defined as [234]:

Silhouette Width =
b(i) − a(i)

max(a(i), b(i))
(4.6)
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Where a(i) is the average distance between i and all other observations in cluster A and b(i) is

the average distance of i to the observations in the nearest neighbor cluster.

4. Average Proportion of Non-overlap (APN)

“This measures the ratio of items placed in different clusters by clustering using the entire dataset

and clustering using the dataset with one excluded column” [203].

Let Ci,o represent the cluster containing observation i using the original clustering (based on

all available data), and Ci,l represent the cluster containing observation i where the clustering is

based on the dataset with column l removed. Then, APN is defined as [203]:

APN(L) =
1

MN

N∑
i=1

M∑
l=1

(1− n(Ci,l ∩ Ci,0)

n(Ci,0)
) (4.7)

Where N is the total number of observations (rows) in a dataset and M is the total number of

columns.

5. Average Distance (AD)

“This measures the average distance between items placed in the same cluster when the entire

dataset is clustered, and when the dataset is clustered without one column” [203, 234]. AD is

defined as:

AD(L) =
1

MN

N∑
i=1

M∑
l=1

1

n(Ci,l)n(Ci,0)
[

∑
i∈Ci,0,j∈Ci,l

dist(i, j)] (4.8)

Where N is the total number of observations (rows) in a dataset and M is the total number of

columns.
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6. Average Distance between Means (ADM)

“This measures the average distance between cluster centers for items in the same cluster when the

entire dataset is clustered, and when the dataset is clustered without one column” [203]. ADM is

defined as:

ADM(L) =
1

MN

N∑
i=1

M∑
l=1

dist(x̄Ci,l , x̄Ci,0) (4.9)

Where x̄Ci,0 is the mean of the observations in the cluster which contain observation i, when

clustering is based on the full data, and x̄Ci,l is similarly defined.

7. Figures of Merit (FOM)

“This measures the average intra-cluster variance of the deleted column, where the clustering is

based on the remaining (undeleted) columns” [203, 234]. FOM is calculated using the following

formula with deleted column l:

FOM(l, L) =

√√√√ 1

N

K∑
k=1

∑
i∈Ck(l)

dist(xi,l, x̄Ck(l)) (4.10)

where xi,l is the value of the ith observation in the lth column, x̄Ck(l) is the average of cluster

Ck(l).
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Table 4.1 shows the criteria for good clustering of each evaluation metric.

Table 4.1: Criteria for clustering evaluation metrics

Evaluation metric Range of values Criteria for good clustering
Connectivity (0,∞) Minimize

Silhouette (-1,1) Near 1
Dunn Index (0,∞) Maximize

APN (0,1) Close to 0
AD (0,∞) Minimize

ADM (0,∞) Minimize
FOM (0,∞) Minimize

4.1.9 Step #9: Identify Best Combination of Algorithm(s) and Number of Clusters

Algorithm 2 provides an overview of how the clustering algorithms were benchmarked to identify

the best combination of algorithm(s) and number of clusters for each airport.

Algorithm 2: Algorithm for identifying best combination of clustering algorithm(s) and
number of clusters

0: Let j be the number of clusters
1: for each airport do
2: for each algorithm do
3: vary j from 3 to 8
4: for each j do
5: evaluate algorithm performance using each metric
6: end for
7: end for
8: return number of clusters identified as the best suited by each metric
9: end for

10: return combination of algorithm(s) and number of clusters identified as the best suited by
each metric

11: return combination of algorithm(s) and number of clusters identified as the best suited by a
majority of metrics
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4.2 Implementation and Testing of Methodology for the Categorization of Daily Airport

Operations

This section discusses the implementation and testing of Experiment 1 with normalized data from

each of the 8 U.S. airports used for this work.

4.2.1 Boston Logan International Airport (BOS)

Application of Principal Component Analysis (BOS)

Figure 4.5 shows the scree plot for Boston Logan International Airport (BOS). In particular, it

shows that 4 principal components captured about 90% of the variance of the dataset. As such, the

dimensionality of the dataset was reduced from 9 to 4, and used for this work.

Figure 4.5: Scree plot for Boston Logan International Airport (BOS)
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Assessment of the Clustering Tendency of the Dataset (BOS)

The Hopkins Statistic value of 0.957 obtained for this dataset indicates that the clustering tendency

of the dataset is very high. The presence of three distinct boxes separated by white vertical and

horizontal lines, and comprised of smaller boxes along the diagonal of the VAT plot in Figure 4.6

indicates that multiple clusters can be generated from the dataset. The size and dark shade of the

largest blue box, as well as its very low dissimilarity value indicates that a majority of objects in

the dataset are very similar. Finally, the high dissimilarity values and light blue shades of smaller

boxes along the diagonal of the VAT plot, as seen in Figure 4.6, indicates the presence of outliers

and/or very dissimilar objects in the dataset.

Figure 4.6: Visual Assessment of clustering Tendency (VAT) plot for Boston Logan International
Airport (BOS)
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Benchmarking and Evaluation of Clustering Algorithms (BOS)

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 show how each of the clustering algorithms per-

formed while varying the number of clusters. In particular, the non-linear performance certain

algorithms across clusters emphasizes the need to identify the optimal combination of clustering

algorithm and number of clusters. They also show that the Hierarchical clustering algorithms on

average, performed better than the other algorithms.

Figure 4.7: Average Proportion of Non-overlap (APN) for Boston Logan International Airport
(BOS)
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Figure 4.8: Average Distance (AD) for Boston Logan International Airport (BOS)

Figure 4.9: Average Distance between Means (ADM) for Boston Logan International Airport
(BOS)
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Figure 4.10: Figures of Merit (FOM) for Boston Logan International Airport (BOS)

Figure 4.11: Connectivity for Boston Logan International Airport (BOS)
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Figure 4.12: Dunn Index for Boston Logan International Airport (BOS)

Figure 4.13: Silhouette for Boston Logan International Airport (BOS)
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Table 4.2 provides a summary of the best suited combination of algorithm and number of clus-

ters per evaluation metric for BOS. In particular, it shows that the Single Linkage Hierarchical

clustering algorithm and 3 clusters was identified as the best suited combination for BOS by a

majority of metrics.

Table 4.2: Optimal combination of algorithm and number of clusters per evaluation metric for BOS

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0008 Single Linkage 4
AD 1.2117 PAM 8

ADM 0.0158 Single Linkage 4
FOM 0.7205 Ward 8

Connectivity 7.1619 Single Linkage 3
Dunn Index 0.2646 Single Linkage 3
Silhouette 0.7779 Single Linkage 3

Table 4.3 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. The identification of 3 as the

optimal number of clusters and the breakdown of daily airport operations in Table 4.3 is validated

by observations made from the assessment of clustering tendency of the dataset with the VAT plot.

Indeed, Figure 4.6 shows one large dark blue box which corresponds to cluster 1, a small blue box

at the top right end of the diagonal corresponding to cluster 2, and a smaller box at the bottom left

end of the diagonal which corresponds to cluster 3.

Table 4.3: Breakdown of daily operations of BOS by cluster

Cluster Number of Daily Operations
1 1018
2 315
3 7
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Analysis of Clusters (BOS)

Figure 4.14 shows the distribution of the airport metrics with box plots across the three clusters. In

particular, it shows that the first cluster is characterized by low to high number of departure delays,

airborne holdings (minutes and aircraft), and diversions. It is also characterized by low to moderate

TMI to airport delays, and high completion rates. Furthermore, a majority of daily operations in

the first cluster are not characterized by Ground Stops and Ground Delay Programs, as seen in

Figure 4.14 where the majority of daily airport operations have Ground Stops, and Ground Delay

Program lead-in time and revision values of 0, 500, and -1, respectively. Ground Stops and Ground

Delay Programs significantly impact airport operations. As such, a lack of their implementation

bodes well for airport operations. Table 4.4 shows that the first cluster has high mean and median

completion rates, and low mean and median airborne holdings (aircraft and minutes), diversions,

GDP revisions, Ground Stops, and TMI to airport delays. Table 4.4 also shows that the mode

of airborne holdings (aircraft and minutes), diversions, departure delays, GDP revisions, Ground

Stops, and TMI to airport delays of this cluster is zero, while that of completion rate is 100%. As

such, overall, the characteristics of daily airport operations in the first cluster correspond to good

operational performance.

Figure 4.14 shows that the second cluster is characterized by a wider range of TMI to airport

delays, airborne holdings (aircraft and minutes), diversions, departure delays, Ground Stops, and

GDP revisions compared to the first cluster. It is also characterized by moderate to high completion

rates. Unlike the daily operations in the first cluster, a majority of operations in the second cluster

are characterized by a wide range of GDP lead-in times. Table 4.4 shows that this cluster has the

highest mean airborne holdings (minutes and aircraft), diversions, departure delays, and TMI to

airport delays out of the three clusters which indicates poor operational performance. However,

this cluster’s mean and median values for completion rates and GDP lead-in times are high which

indicates good operational performance. Overall, these characteristics correspond to varying oper-
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ational performance where one or more metrics cause sub-optimal to poor operational performance

on a specific day. This observation is validated by the high dissimilarity value of objects in the blue

box at the top right end of the diagonal in Figure 4.6, which was previously identified to correspond

to the second cluster. The high dissimilarity value indicates that daily operations in this cluster are

not necessarily similar to each other, as evidenced by the wide ranges of metrics.

Table 4.4: Mean, Median, and Mode of Airport Metrics across clusters for Boston Logan Interna-
tional Airport (BOS)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne Holdings (aircraft) 0.6 5.5 1.1 0 1 0 0 0 0
Airborne Holdings (minutes) 11.6 123.4 25.7 0 15 0 0 0 0

Completion rate (%) 99.1 96.1 27.6 99.4 98.3 20 100 100 M1

Diversions 0.8 2.4 2.1 1 1 1 0 M1 M1

Departure delays 8 9 0 0 0 0 0 0 0
GDP lead− in time (minutes) 13.5 64.2 96 -2.5 60 96 -3 0 96

GDP revisions 0.2 0.6 0 0 0 0 0 0 0
Ground Stops 0.1 0.6 0 0 0 0 0 0 0

TMI to airport delays 0.7 126.5 0.6 0 120 0 0 0 0

The third cluster comprised of seven daily airport operations is characterized by low departure

delays, TMI to airport delays, Ground Stops, airborne holdings (aircraft and minutes), and diver-

sions. Similar to cluster 1, a majority of daily operations in this cluster are not characterized by

Ground Delay Programs. As such, all but one of daily operations in the cluster have GDP lead-in

time and revision values of 500 and -1, respectively. Even though these observations highlight

good operational performance, the low average and median completion rates, as seen in Table 4.4,

as well as their poor distribution presented in 4.14 indicates that a majority of scheduled air carrier

arrivals did not arrive as planned on days assigned to this cluster. As such, the daily operations in

this cluster can be observed to have poor operational performance.

1Multiple values exist

62



Figure 4.14: Box plots showing the distribution of airport metrics across clusters for Boston Logan
International Airport (BOS)

Comparison of results from clustering and using predefined ranges of metrics (BOS)

Experiment 1 validates the categorization of daily BOS operations into 3 categories, as is currently

done with OSPC. Indeed, the analysis of the clusters revealed that each cluster can be characterized

as having good, varying, or poor operational performance, which is similar to OSPC’s approach.

As such, a one-to-one comparison of the categorization of daily operations of BOS with clustering
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and OSPC was conducted and reviewed by FAA Subject Matter Experts so as to determine the

better approach for categorizing daily operations of BOS. Table 4.5 shows that 1017, 296, and

7 days categorized as “Good days” by OSPC were placed in the clusters characterized by good,

varying, and poor operational performance, respectively. It also shows that 1 day categorized as an

“Average day” by OSPC was placed in the cluster characterized by good operational performance,

while 9 days categorized as “Average days” and 10 days characterized as “Bad days” by OSPC

were determined to have varying operational performance by the clustering algorithm.

Table 4.5: Composition of categories from clustering and Operational Service Performance Crite-
ria (BOS)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 1017 296 7

Average day 1 9 0
Bad day 0 10 0

Table C.1 in Appendix C provides a comparison of a subset of daily BOS operations that were

categorized differently by both approaches. In particular, it shows that days 1, 2, 7, 8, 9, 10, 11, 12,

13, and 14 were categorized as “Good days” by OSPC because a majority of the metrics reflected

good operational performance. However, these daily operations were characterized by extremely

poor completion rates, which indicates that a majority of planned and/or scheduled flights did

not arrive as scheduled due to severe constraints at BOS. Ignoring the poor completion rate and

designating these daily operations as “Good days” may prevent stakeholders from conducting an

in-depth assessment of those operations in order to identify the underlying causes of the poor

completion rates.

Days 5 and 6 were characterized by very poor Ground Delay Program lead-in times, which

indicates that the Traffic management Initiatives were implemented prior to their announcement.

This hinders the efficient operation of airports as various stakeholders such as airlines and passen-

gers in particular, are affected by this phenomenon. The clustering algorithm assigned both days to
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the second cluster indicating varying operational performance unlike OSPC, which classified them

as “Good days”.

Even though a majority of daily operations were classified similarly by both approaches, it

can be seen that using predefined ranges of values to classify the daily operations of BOS is not

the best suited approach for the task at hand as analysts would continually have to update these

ranges based on prior knowledge and experience, instead of using a systematic approach such as

clustering. As such, it can be concluded that clustering is a better approach for categorizing

daily operations of Boston Logan International Airport (BOS).

4.2.2 Baltimore/Washington International Thurgood Marshall Airport (BWI)

Application of Principal Component Analysis

Figure 4.15 shows the scree plot for Baltimore/Washington International Thurgood Marshall Air-

port (BWI). In particular, it shows that 3 principal components captured about 90% of the variance

of the dataset. As such, the dimensionality of the dataset was reduced from 9 to 3.

Figure 4.15: Scree plot for Baltimore/Washington International Thurgood Marshall Airport (BWI)
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Assessment of the Clustering Tendency of the Dataset (BWI)

The clustering tendency of the dataset was observed to be very high based on its Hopkins Statistic

score of 0.973 and the presence of a very large dark blue box as well as smaller blue boxes along

the diagonal of the VAT plot in Figure 4.16. The size of the large dark blue box and its low

dissimilarity value indicates that the majority of objects in the dataset are very similar. The smaller

boxes along the diagonal indicate the presence of a few outliers and/or dissimilar objects, which

further highlights the clustering tendency of the dataset.

Figure 4.16: Visual Assessment of clustering Tendency (VAT) plot for Baltimore/Washington In-
ternational Thurgood Marshall Airport (BWI)

Benchmarking and Evaluation of Clustering Algorithms (BWI)

Figures B.1, B.2, B.3, B.4, B.5, B.6, and B.7 in Appendix B show how each clustering algorithm

performed with varying numbers of clusters. Similar to BOS, the non-linear performance of certain
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algorithms across clusters emphasizes the need to identify the optimal combination of clustering

algorithm and number of clusters. They also show that the Hierarchical clustering algorithms

on average, performed better than the other algorithms. Table 4.6 provides a summary of the

best suited combination of algorithm and number of clusters per evaluation metric for BWI. In

particular, it shows that the most common combination was identified to be the Single Linkage

Hierarchical clustering algorithm with 3 clusters.

Table 4.6: Optimal combination of algorithm and number of clusters per evaluation metric for BWI

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0001 Single Linkage 4
AD 1.288 PAM 8

ADM 0.0626 Single Linkage 6
FOM 0.6686 Kmeans 8

Connectivity 4.0829 Single Linkage 3
Dunn Index 0.3189 Single Linkage 3
Silhouette 0.857 Complete Linkage 4

Table 4.7 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Similarly to BOS, the break-

down of daily operations of BWI in Table 4.7 validates observations made from the assessment of

clustering tendency of the dataset with the Visual Assessment of clustering Tendency plot. Indeed,

Figure 4.16 shows one large dark blue box which corresponds to cluster 1, and smaller boxes along

the diagonal which correspond to clusters 2 and 3.

Table 4.7: Breakdown of daily operations of BWI by cluster

Cluster Number of Daily Operations
1 1263
2 45
3 32
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Analysis of Clusters (BWI)

Figure 4.17 shows the distribution of the airport metrics with box plots across the three clusters. In

particular, it shows that the first cluster is characterized by a wide range of departure delays, and

low to moderate TMI to airport delays, airborne holdings (minutes and aircraft), and diversions.

The first cluster is also characterized by high completion rates. Furthermore, none of the daily

operations in the first cluster are characterized by the implementation of Ground Delay Programs,

as seen in Figure 4.17, where all of the daily airport operations had GDP lead-in times and number

of revision values of 500 and -1, respectively. In addition, a majority of daily operations in the first

cluster are also not characterized by the implementation of Ground Stops. Table 4.8 shows that

this cluster has the lowest mean and median airborne holdings (aircraft and minutes), diversions,

departure delays, Ground Stops, and TMI to airport delays. Similar to BOS, these characteristics

correspond to good operational performance.

Table 4.8: Mean, Median, and Mode of Airport Metrics across clusters for Baltimore/Washington
International Thurgood Marshall Airport (BWI)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne Holdings (aircraft) 0.3 14.6 6.3 0 16 1 0 0 0
Airborne Holdings (minutes) 5.8 407.2 181.5 0 415 18 0 0 0

Completion rate (%) 98.6 92.9 83.3 99.4 95.3 86.8 100 M1 M1

Diversions 0.5 9.1 4.9 0 7 2 0 0 1
Departure delays 3.5 16.3 11.6 1 16 11 0 0 0

GDP lead− in time (minutes) - - 75 - - 72.5 - - 0
GDP revisions - - 0.5 - - 0 - - 0
Ground Stops 0.1 0.9 0.7 0 1 0.5 0 1 0

TMI to airport delays 0.4 10.6 25.9 0 7 8.5 0 0 0

1Multiple values exist
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The second cluster is characterized by low to moderate TMI to airport delays, departure delays

and Ground Stops, as seen in Figure 4.17. It is also characterized by a wide range of airborne

holdings (minutes and aircraft) and high completion rates. As with the first cluster, daily airport

operations in the second cluster are not characterized by the implementation of Ground Delay Pro-

grams which bodes well for airport operations. Even though this cluster is characterized by the

highest mean and median airborne holdings (minutes and aircraft), diversions, departure delays,

and Ground Stops, the mode of airborne holdings (aircraft and minutes), diversions, departure de-

lays, and TMI to airport delays is zero. This indicates that the cluster is characterized by varying

operational performance where one or more metrics cause sub-optimal to poor operational perfor-

mance on a specific day.

The third cluster is characterized by low to moderate departure delays, and a wide range of

TMI to airport delays, completion rates, airborne holdings (minutes and aircraft), and diversions.

In addition, unlike the other clusters, which are not characterized by Ground Delay Programs,

Ground Delay Programs were implemented on a majority of days placed in this cluster. These

observations correspond to poor operational performance.
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Figure 4.17: Box plots showing the distribution of airport metrics across clusters for Balti-
more/Washington International Thurgood Marshall Airport (BWI)

Comparison of results from clustering and using predefined ranges of metrics (BWI)

As with BOS, Experiment 1 validates the categorization of daily BWI operations into 3 categories,

as is currently done with OSPC. Similarly, each cluster is observed to either have good, varying,

or poor operational performance. As such, a one-to-one comparison of the categorization of daily

BWI operations with clustering and OSPC was conducted and reviewed by FAA Subject Matter

Experts so as to determine which approach better categorizes the daily operations of BWI.

Table 4.9 shows that 1263, 44, and 31 days categorized as “Good days” by OSPC were placed in
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the clusters characterized by good, varying, and poor operational performance, respectively. It also

shows that 1 day categorized as an “Average day” by OSPC was placed in the cluster characterized

by varying operational performance, while another day categorized as a “Bad day” by OSPC was

identified to have poor operational performance.

Table 4.9: Composition of categories from clustering and Operational Service Performance Crite-
ria (BWI)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 1263 44 31

Average day 0 1 0
Bad day 0 0 1

Table C.2 in Appendix C provides a comparison of a subset of daily operations of BWI that

were categorized differently by the clustering algorithm and OSPC. In particular, it shows that

days 6 through 10 were categorized as “Good days” by OSPC because a majority of the metrics

reflected good operational performance. However, similar to BOS, these daily operations had poor

completion rates which are ignored by OSPC. Days 1 through 3 were also categorized as “Good

days” by OSPC even though they were characterized by very high airborne holdings (minutes

and aircraft) and diversions. Days 11 through 16 were also classified as “Good days” by OSPC,

even though they were characterized by poor Ground Delay Program lead-in times and/or airborne

holdings (minutes and aircraft). Each of these daily airport operations, as well as several others,

were assigned to the second or third clusters by the clustering algorithm due to their sub-optimal

and poor operational characteristics, respectively. OSPC also classified all but two daily opera-

tions as “Good days”. As observed, this is clearly not the case as several daily operations were

characterized by sub-optimal to poor operational performances. Consequently, similar to BOS,

it can be observed that clustering is a better approach for categorizing daily operations of

Baltimore/Washington International Thurgood Marshall Airport (BWI).
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4.2.3 Reagan National Airport (DCA)

Application of Principal Component Analysis (DCA)

Figure 4.18 shows the scree plot for Reagan National Airport (DCA). In particular, it shows that 3

principal components captured about 90% of the variance of the dataset. As such, the dimension-

ality of the dataset was reduced from 9 to 3.

Figure 4.18: Scree plot for Reagan National Airport (DCA)
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Assessment of the Clustering Tendency of the Dataset (DCA)

The Hopkins Statistic value of 0.957 obtained for this dataset and the presence of a large dark

blue box comprised of several smaller boxes along the diagonal in Figure 4.19 indicates that the

clustering tendency of the dataset is high. The smaller boxes located in the top right corner of

the diagonal indicate the presence of outliers and/or dissimilar objects which further highlights the

clustering tendency of the dataset.

Figure 4.19: Visual Assessment of clustering Tendency (VAT) plot for Reagan National Airport
(DCA)
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Benchmarking and Evaluation of Clustering Algorithms (DCA)

Figures B.8, B.9, B.10, B.11, B.12, B.13, and B.14 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. In particular, they show that the Hier-

archical clustering algorithms on average, performed better than the other algorithms. Table 4.10

provides a summary of the best suited combination of algorithm and number of clusters per eval-

uation metric for DCA. In particular, it shows that the Single Linkage Hierarchical clustering

algorithm and 3 clusters is the best suited combination for DCA.

Table 4.10: Optimal combination of algorithm and number of clusters per evaluation metric for
DCA

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0008 Single Linkage 3
AD 1.5316 PAM 8

ADM 0.0159 Single Linkage 3
FOM 0.6064 SOTA 8

Connectivity 6.2079 Single Linkage 3
Dunn Index 0.2906 Single Linkage 3
Silhouette 0.7855 Average Linkage 3

Table 4.11 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Similarly to BWI, the break-

down of daily operations of DCA in Table 4.11 validates observations made from the assessment of

clustering tendency of the dataset with the Visual Assessment of clustering Tendency plot. Indeed,

Figure 4.19 shows a large dark blue box which corresponds to cluster 1, and smaller boxes along

the diagonals which correspond to clusters 2 and 3.
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Table 4.11: Breakdown of daily operations of DCA by cluster

Cluster Number of Daily Operations
1 1175
2 70
3 95

Analysis of Clusters (DCA)

Figure 4.20 shows the distribution of the airport metrics with box plots across the three clusters. In

particular, it shows that the first cluster is characterized by high completion rates, a wide range of

departure delays, and low TMI to airport delays, airborne holdings (minutes and aircraft), Ground

Stops and diversions. Similar to BWI, none of the daily operations in the first cluster are char-

acterized by the implementation of Ground Delay Programs, as seen in Figure 4.20 where all of

the daily airport operations have GDP lead-in time and revision values of 500 and -1, respectively.

Overall, this cluster is characterized by good operational performance as evidenced by the high

mean, median, and modal value of completion rate, as well as the low mean, median, and modal

values of the airborne holdings (aircraft and minutes), diversions, Ground Stops and TMI to airport

delays of this cluster, as shown in Table 4.12.

The second cluster is characterized by low to moderate departure delays, low TMI to airport

delays, and low to high airborne holdings (aircraft and minutes) and diversions, as seen in Figure

4.20. As with the first cluster, daily airport operations in the second cluster are not characterized by

the implementation of Ground Delay Programs which bodes well for airport operations. However,

this cluster is characterized by low to high number of Ground Stops which negatively impact

airport operations. This cluster is also characterized by higher mean and median airborne holdings

(minutes and aircraft), and departure delays which corresponds to sub-optimal to poor operational

performance, compared to the other clusters. However, the absence of Ground Delay Programs,

and high completion rates indicates good operational performance. As such, overall, this cluster is
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characterized by varying operational performance.

Table 4.12: Mean, Median, and Mode of Airport Metrics across clusters for Reagan National
Airport (DCA)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 1.6 20.3 16.5 0 21 10 0 0 0
Airborne holdings (minutes) 30.9 508.4 438.1 0 555 222 0 0 0

Completion rate (%) 98.4 92.7 89.3 99 93.7 93.8 100 M1 97.9
Diversions 0.5 7.2 7.9 0 6 3 0 0 0

Departure delays 10.2 21.3 20.4 7 20 19 0 M1 0
GDP lead− in time (minutes) - - 20.5 0 0 -1 - - 0

GDP revisions - - 0.3 0 0 0 - - 0
Ground Stops 0.1 1.2 1.2 0 1 1 0 1 1

TMI to airport delays 0.7 11.8 81.7 0 10.5 78 0 0 0

The third cluster is characterized by a wide range of departure delays, TMI to airport delays,

completion rates, airborne holdings (minutes and number of aircraft), and diversions. This cluster

also has the highest mean TMI to airport delays and diversions, and the lowest mean completion

rate compared to the other clusters. Table 4.12 and Figure 4.20 show that all of the daily operations

characterized by the implementation of Ground Delay Programs were assigned to this cluster. In

addition, the modal Ground Delay Program lead-in time of this cluster was zero which indicates

that there was no time between the announcement and implementation of Ground Delay Program

on a majority of days which does not bode well for operational performance. Overall, these char-

acteristics correspond to poor operational performance.

1Multiple values exist
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Figure 4.20: Box plots showing the distribution of airport metrics across clusters for Reagan Na-
tional Airport (DCA)

Comparison of results from clustering and using predefined ranges of metrics (DCA)

As with BOS and BWI, Experiment 1 validates the categorization of the daily operations of DCA

into 3 categories, as is currently done with the OSPC. Similarly, each cluster is characterized by

either good, varying, or poor operational performance. As such, a one-to-one comparison of the

categorization of daily operations of DCA with clustering and predefined ranges of metrics was
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conducted and reviewed by FAA Subject Matter Experts so as to determine which approach better

categorizes daily DCA operations.

Table 4.13 shows that 1175, 59, and 77 days categorized as “Good days” by OSPC were as-

signed to the clusters characterized by good, varying, and poor operational performance, respec-

tively. It also shows that 1 day categorized as an “Average day” by OSPC was placed in the cluster

characterized by varying operational performance, while 4 days categorized as “Average days” by

OSPC were placed in the third cluster. Table 4.13 also shows that 14 days categorized as “Bad

days” by OSPC were assigned to the third cluster which is characterized by poor operational per-

formance.

Table 4.13: Composition of categories from clustering and Operational Service Performance Cri-
teria (DCA)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 1175 59 77

Average day 0 1 4
Bad day 0 0 14

Table C.3 in Appendix C provides a comparison of a subset of daily operations of DCA that

were categorized differently by the clustering algorithm and OSPC. In particular, it shows that

days 1 and 2 which were characterized by high TMI to airport delays and departure delays were

classified as having poor operational performances unlike OSPC which classified them as “Good

days”. It also shows that even though days 3, 4, and 5 had sub-optimal operational performance

due to a high number of diversions and airborne holdings (minutes and aircraft), they were classi-

fied as “Good days” by OSPC. Table C.3 also shows that days 6 and 7 which were characterized by

poor Ground Delay Program lead-in times and high duration of airborne holdings were classified

differently by both approaches. Similar to BOS and BWI, OSPC also classified daily operations

with very low completion rates as “Good days”. These observations clearly highlight the limita-

tions of OSPC and how clustering is better suited for categorizing daily operations of Reagan
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National Airport (DCA).

4.2.4 Newark Liberty International Airport (EWR)

Application of Principal Component Analysis (EWR)

Figure 4.21 shows the scree plot for Newark Liberty International Airport (EWR). In particular, it

shows that 3 principal components captured about 90% of the variance of the dataset. As such, the

dimensionality of the dataset was reduced from 9 to 3.

Figure 4.21: Scree plot for Newark Liberty International Airport (EWR)
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Assessment of the Clustering Tendency of the Dataset (EWR)

The Hopkins Statistic value of 0.956 for this dataset and the presence of three blue boxes separated

by light blue vertical and horizontal lines, and comprised of several smaller boxes along the diag-

onal in Figure 4.22 indicates that the clustering tendency of the dataset is high. The presence of a

small blue box at the top of the diagonal shows that there are objects in the dataset that are different

from the others. The dark shade of blue of the three distinct boxes also indicates that objects in

each cluster (box) are fairly similar to each other.

Figure 4.22: Visual Assessment of clustering Tendency (VAT) plot for Newark Liberty Interna-
tional Airport (EWR)
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Benchmarking and Evaluation of Clustering Algorithms (EWR)

Figures B.15, B.16, B.17, B.18, B.19, B.20, and B.21 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. Table 4.14 provides a summary of the

best suited combination of algorithm and number of clusters per evaluation metric for EWR. In

particular, it shows that Single Linkage Hierarchical clustering algorithm and 3 clusters is the

best suited combination for the EWR dataset.

Table 4.14: Optimal combination of algorithm and number of clusters per evaluation metric for
EWR

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0007 Single Linkage 3
AD 1.9049 PAM 8

ADM 0.0265 Single Linkage 3
FOM 0.6821 Kmeans 8

Connectivity 8.1028 Single Linkage 3
Dunn Index 0.3137 Single Linkage 7
Silhouette 0.7241 Average Linkage 3

Table 4.15 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Table 4.15 validates observa-

tions made from the assessment of clustering tendency of the dataset with the Visual Assessment of

clustering Tendency plot. Indeed, Figure 4.22 shows two large blue boxes and a smaller blue box

along the diagonal which correspond to the first two clusters, and the third cluster, respectively.

Table 4.15: Breakdown of daily operations of EWR by cluster

Cluster Number of Daily Operations
1 570
2 657
3 113
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Analysis of Clusters (EWR)

Figure 4.23 shows the distribution of the airport metrics with box plots across the three clusters.

In particular, it shows that the first cluster is characterized by high completion rates, low to high

departure delays, TMI to airport delays, airborne holdings (minutes and aircraft), Ground Stops

and diversions. None of the daily operations in the first cluster are characterized by Ground Delay

Programs, and a majority of daily operations in the first cluster are not characterized by Ground

Stops. Table 4.16 shows that this cluster has the lowest mean and median airborne holdings (air-

craft and minutes), diversions, departure delays, Ground Stops, and TMI to airport delays. Overall,

these characteristics correspond to good operational performance.

Figure 4.23 shows that the distribution of departure delays, airborne holdings (aircraft and

minutes), and diversions in the first and second cluster are similar. However, the second cluster is

characterized by a wider range of TMI to airport delays, Ground Stops, and completion rates. The

second cluster is also characterized by the implementation of Ground Delay Programs. Overall,

these characteristics correspond to varying operational performance.

Table 4.16: Mean, Median, and Mode of Airport Metrics across clusters for Newark Liberty Inter-
national Airport (EWR)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 2.4 4.5 38.1 0 1 36 0 0 M1

Airborne holdings (minutes) 47.9 92.4 1024.5 0 19 859 0 0 M1

Completion rate (%) 98.8 97.0 87.7 99.2 98.8 92.1 100 100 M1

Diversions 0.78 1.15 17.6 0 1 13 0 7 0
Departure delays 14 31.4 83.6 0 11 61 0 0 0

GDP lead− in time (minutes) - 113.5 94.4 - 127 114 - 0 0
GDP revisions - 0.7 1.4 - 0 1 - 0 1
Ground Stops 0.2 0.6 1.7 0 0 2 0 0 2

TMI to airport delays 5.9 172.6 157.1 5 185 168 5 186 M1

1Multiple values exist
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The third cluster is characterized by low to very high departure delays, TMI to airport delays,

completion rates, airborne holdings (aircraft and minutes), Ground Stops and diversions. Table

4.16 also shows that this cluster has significantly higher mean and median airborne holdings (air-

craft and minutes), diversions, departure delays, and Ground Stops compared to the other clusters.

Overall, these characteristics correspond to poor operational performance.

Figure 4.23: Box plots showing the distribution of airport metrics across clusters for Newark Lib-
erty International Airport (EWR)
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Comparison of results from clustering and using predefined ranges of metrics (EWR)

As with the other airports, Experiment 1 validates the categorization of daily operations of EWR

into 3 categories, as is currently done with the OSPC. Similarly, each cluster is characterized by

either good, varying, or poor operational performance. As such, a one-to-one comparison of the

categorization of daily operations of EWR with clustering and OSPC was conducted and reviewed

by Subject Matter Experts so as to determine which approach better categorizes the daily operations

of EWR.

Table 4.17 shows that 570, 607, and 38 daily operations categorized as “Good days” by OSPC

were assigned to the clusters characterized by good, varying, and poor operational performance,

respectively. It also shows that 34 and 17 days categorized as “Average days” by OSPC were

assigned to the clusters characterized by varying and poor operational performance, respectively.

Table 4.17 also shows that 16 and 58 days classified as “Bad days” by OSPC were assigned to

clusters characterized by varying and poor operational performance, respectively.

Table 4.17: Composition of categories from clustering and Operational Service Performance Cri-
teria (EWR)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 570 607 38

Average day 0 34 17
Bad day 0 16 58

Table C.4 in Appendix C provides a comparison of a subset of daily EWR operations that

were categorized differently by clustering and OSPC. In particular, it shows that days 1 through 3

were classified as “Good days” by OSPC, even though they were characterized by very negative

Ground Delay Program lead-in times and high TMI to Airport delays. Days 6 and 7 were also

classified as “Good days” by OSPC even though their very low completion rates suggests poor

operational performance. Days 4, 5, and 9 are daily operations that were categorized differently
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by both approaches. Analysis of these three daily operations revealed that one or more metrics

were close to the threshold between OSPC categories. Indeed, their classification based on the

predefined ranges could change if the ranges were slightly adjusted. As previously discussed,

these ranges are based on Subject Matter Expert inputs and slight adjustments will impact how

airport operations are classified. As such, it can be observed that clustering is a better suited

approach for categorizing daily operations of Newark Liberty International Airport (EWR).

4.2.5 Dulles International Airport (IAD)

Application of Principal Component Analysis (IAD)

Figure 4.24 shows the scree plot for Dulles International Airport (IAD). In particular, it shows that

4 principal components captured over 90% of the variance of the dataset. As such, the dimension-

ality of the dataset was reduced from 9 to 4.

Figure 4.24: Scree plot for Dulles International Airport (IAD)
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Assessment of the Clustering Tendency of the Dataset (IAD)

The Hopkins Statistic value of 0.974 for this dataset and the presence of a large dark blue box

comprised of smaller boxes along the diagonal in Figure 4.25 indicates that multiple clusters can

be generated from the dataset. The size of the large dark blue box also indicates that majority of

objects in the dataset are fairly similar to each other. However, they can be further clustered as

evidenced by smaller boxes along the diagonal.

Figure 4.25: Visual Assessment of clustering Tendency (VAT) plot for Dulles International Airport
(IAD)
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Benchmarking and Evaluation of Clustering Algorithms (IAD)

Figures B.22, B.23, B.24, B.25, B.26, B.27, and B.28 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. Table 4.18 provides a summary of the

best suited combination of algorithm and number of clusters per evaluation metric for IAD. In

particular, it shows that the Single Linkage Hierarchical clustering algorithm and 3 clusters

was identified as the best suited combination for IAD by a majority of metrics.

Table 4.18: Optimal combination of algorithm and number of clusters per evaluation metric for
IAD

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0008 Single Linkage 6,7
AD 0.8141 PAM 8

ADM 0.0209 Single Linkage 6
FOM 0.315 Ward 8

Connectivity 3.6123 Single Linkage 3
Dunn Index 0.3585 Single Linkage 3
Silhouette 0.8825 Average Linkage 3

Table 4.19 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Table 4.19 validates observa-

tions made from the assessment of clustering tendency of the dataset with the Visual Assessment

of clustering Tendency plot. Indeed, Figure 4.25 shows one large dark blue box along the diag-

onal corresponding to the first cluster, and two smaller boxes at the top right end of the diagonal

corresponding to the two smaller clusters.

Table 4.19: Breakdown of daily operations of IAD by cluster

Cluster Number of Daily Operations
1 1258
2 20
3 62
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Analysis of Clusters (IAD)

Figure 4.26 shows the distribution of the airport metrics with box plots across the three clusters.

In particular, it shows that the first cluster is characterized by high completion rates, a wide range

of departure delays, and low to moderate TMI to airport delays, airborne holdings (minutes and

aircraft), and diversions. None of the daily operations in this cluster are characterized by Ground

Delay Programs. These observations as well as the cluster’s low mean and median airborne hold-

ings (minutes and aircraft), diversions, departure delays, Ground Stops, and TMI to airport delays,

as seen in Table 4.20, corresponds to good operational performance.

Table 4.20: Mean, Median, and Mode of Airport Metrics across clusters for Dulles International
Airport (IAD)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 0.2 6.5 17.3 0 6 18 0 0 12
Airborne holdings (minutes) 4.9 135.3 441.6 0 118 348 0 0 M1

Completion rate (%) 98.8 97.1 92.9 99.2 97.6 97. 100 M1 M1

Diversions 0.7 2.3 9.9 1 2 9 0 1 M1

Departure delays 9.4 11.8 23.5 4 3.5 24 0 1 0
GDP lead− in time (minutes) - 90.3 75 - 95.5 75 - 92 75

GDP revisions - 0.1 1 - 0 1 - 0 1
Ground Stops 0.07 0.7 0.9 0 0.5 1 0 0 1

TMI to airport delays 0.7 57.9 12.5 0 60.5 8 0 M1 0

The second cluster is characterized by low to moderate departure delays, airborne holdings

(minutes and aircraft), and diversions, as seen in Figure 4.26. It is also characterized by a wide

range of TMI to airport delays and GDP lead-in times, and high completion rates. In addition, a

majority of daily operations in this cluster did not have any GDP revisions which bodes well for

operational performance. Table 4.20 shows that the mean and median airborne holdings (aircraft

and minutes), diversions, departure delays, and Ground Stops of this cluster are higher than those
1Multiple values exist
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of the first cluster but lower than those of the third cluster. However, this cluster has higher mean

and median TMI to Airport delays values compared to the other clusters. As such, overall, the

second cluster can be observed to have varying operational performance.

The third cluster is characterized by a wide range of completion rates, Ground Stops, airborne

holdings (minutes and aircraft), and diversions, as seen in Figure 4.26. Table 4.20 shows that

this cluster has the highest mean and median airborne holdings (aircraft and minutes), diversions,

departure delays, and Ground Stops values. Overall, these characteristics correspond to poor oper-

ational performance.

Figure 4.26: Box plots showing the distribution of airport metrics across clusters for Dulles Inter-
national Airport (IAD)
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Comparison of results from clustering and using predefined ranges of metrics (IAD)

As with the other airports, Experiment 1 validates the categorization of daily operations of IAD

into 3 categories, as is currently done with OSPC. Similarly, each cluster is characterized by either

good, varying, or poor operational performance. As such, a one-to-one comparison of the catego-

rization of daily operations of IAD with clustering and predefined ranges of metrics was conducted

and reviewed by FAA Subject Matter Experts so as to determine the approach that better catego-

rizes the daily operations of IAD.

Table 4.21 shows that 1258, 19, and 60 days categorized as “Good days” by OSPC were as-

signed to the clusters characterized by good, varying, and poor operational performance, respec-

tively. It also shows that 1 and 2 days categorized as “Average days” by OSPC were assigned to

the clusters characterized by varying and poor operational performance, respectively.

Table 4.21: Composition of categories from clustering and Operational Service Performance Cri-
teria (IAD)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 1258 19 60

Average day 0 1 2
Bad day 0 0 0

Table C.5 in Appendix C provides a comparison of a subset of daily operations of IAD that were

categorized differently by both approaches. As observed with the other airports, OSPC classified

days with poor completion rates as “Good days”, as seen with days 1 through 4 in Table C.5. Days

5 through 9 were also classified as “Good days” even though the high duration of airborne holdings

and number of diversions do not suggest good operational performance. Based on this analysis,

clustering is a better suited approach for categorizing daily operations of Dulles International

Airport (IAD)
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4.2.6 John F. Kennedy International Airport (JFK)

Application of Principal Component Analysis (JFK)

Figure 4.27 shows the scree plot for John F. Kennedy International Airport (JFK). In particular,

it shows that 3 principal components captured 90% of the variance of the dataset. As such, the

dimensionality of the dataset was reduced from 9 to 3.

Figure 4.27: Scree plot for John F. Kennedy International Airport (JFK)

Assessment of the Clustering Tendency of the Dataset (JFK)

A Hopkins Statistic value of 0.978 and the presence of multiple blue boxes along the diagonal in

Figure 4.28 indicates that the clustering tendency of the dataset is very high. The varying shades

of the blue boxes in Figure 4.28 and their accompanying dissimilarity values also indicates that the

dataset is characterized by dissimilar objects that can be clustered.
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Figure 4.28: Visual Assessment of clustering Tendency (VAT) plot for John F. Kennedy Interna-
tional Airport (JFK)

Benchmarking and Evaluation of Clustering Algorithms (JFK)

Figures B.29, B.30, B.31, B.32, B.33, B.34, and B.35 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. Table 4.22 provides a summary of

the best suited combination of algorithm and number of clusters per evaluation metric for JFK. In

particular, it shows that the Single Linkage Hierarchical clustering algorithm and 3 clusters

was identified as the best suited combination for JFK by a majority of metrics.
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Table 4.22: Optimal combination of algorithm and number of clusters per evaluation metric for
JFK

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0012 Single Linkage 3
AD 0.6414 Clara 8

ADM 0.0236 Single Linkage 4
FOM 0.6764 Kmeans 8

Connectivity 8.1313 Single Linkage 3
Dunn Index 0.4024 Single Linkage 7
Silhouette 0.87877 Average Linkage 3

Table 4.23 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Table 4.23 validates observa-

tions made from assessment of the clustering tendency of the dataset with the Visual Assessment

of clustering Tendency (VAT) plot. Indeed, Figure 4.28 shows a large dark blue box along the

diagonal corresponding to the first cluster, and smaller boxes along the diagonal which correspond

to the smaller clusters.

Table 4.23: Breakdown of daily operations of JFK by cluster

Cluster Number of Daily Operations
1 967
2 287
3 86

Analysis of Clusters (JFK)

Figure 4.29 shows the distribution of the airport metrics with box plots across the three clusters.

In particular, it shows that the first cluster is characterized by high completion rates, and low to

high departure delays and airborne holdings (minutes and aircraft). It is also characterized by low

to moderate TMI to Airport delays and diversions. Majority of the daily operations in the first
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cluster are also not characterized by the implementation of Ground Delay Programs and Ground

Stops which bodes well for airport operations as they typically lead to flight delays. These obser-

vations, in addition to lower mean and median values of airborne holdings (aircraft and minutes),

diversions, departure delays, GDP revisions, Ground Stops and TMI to airport delays, and the high

mean and median completion rate and GDP lead-in times of this cluster compared to the other

clusters, as seen in Table 4.24 indicates good operational performance.

Table 4.24: Mean, Median, and Mode of Airport Metrics across clusters for John F. Kennedy
International Airport (JFK)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 2.5 7.8 60.1 0 4 55 0 0 61
Airborne holdings (minutes) 47.4 153 1468 0 71 1362 0 0 M1

Completion rate (%) 99.1 97.5 88.3 100 99 93 100 100 85
Diversions 0.6 1.3 13.9 0 1 9 0 0 2

Departure delays 24.4 90.5 116 4 61 110 0 0 0
GDP lead− in time (minutes) 316 94.7 99.8 316 91 109 M1 0 0

GDP revisions 0 0.6 1.1 0 0 1 0 0 1
Ground Stops 0.1 0.6 1.5 0 0 1 0 0 1

TMI to airport delays 2.9 89.3 106.2 2 79 113 1 2 134

The second cluster is characterized by low to high departure delays, TMI to airport delays, air-

borne holdings, and GDP lead-in times and revisions, as seen in Figure 4.29. It is also characterized

by high completion rates and low diversions. Furthermore, Ground Stops were not implemented

on a majority of days in this cluster. Even though these observations are similar to those from the

first cluster, Table 4.24 shows that the mean and median values of airborne holdings (minutes and

aircraft), diversions, departure delays, Ground Stops, and TMI to airport delays of this cluster are

higher than those of the first cluster but lower than those of the third cluster. The mean and median

values of completion rate are also observed to be lower than those of the first cluster but higher

than those of the third cluster. As such, it is observed that the second cluster exhibits varying
1Multiple values exist
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operational performance.

The third cluster is characterized by a wide range of departure delays, TMI to airport delays,

completion rates, GDP lead-in time and revisions, Ground Stops, airborne holdings (aircraft and

minutes), and diversions, as seen in Figure 4.29. This observation as well as the very high mean

and median values of airborne holdings, diversions, departure delays, and TMI to airport delays

indicate that this cluster exhibits poor operational performance.

Figure 4.29: Box plots showing the distribution of airport metrics across clusters for John F.
Kennedy International Airport (JFK)
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Comparison of results from clustering and using predefined ranges of metrics (JFK))

Experiment 1 validates the categorization of the daily operations of JFK into 3 categories, as is cur-

rently done with OSPC. Similar to the other airports, each cluster is characterized by either good,

varying, or poor operational performance. As such, a one-to-one comparison of the categorization

of the daily operations of JFK with clustering and OSPC was conducted so as to determine the best

approach for categorizing the daily operations of JFK.

Table 4.25 shows that 965, 267, and 28 days categorized as “Good days” by OSPC were placed

in the clusters characterized by good, varying, and poor operational performance, respectively. It

also shows that 15 and 8 days categorized as “Average days” by OSPC were assigned to the clusters

characterized by varying and poor operational performance, respectively. Table 4.25 also shows

that 2, 5, and 50 days classified as “Bad days” by OSPC were placed in clusters characterized by

good, varying and poor operational performance, respectively.

Table 4.25: Composition of categories from clustering and Operational Service Performance Cri-
teria (JFK)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 965 267 28

Average day 0 15 8
Bad day 2 5 50

Table C.6 in Appendix C provides a comparison of a subset of daily operations of JFK that were

categorized differently by clustering and OSPC. As observed with other airports, OSPC classified

days with low completion rates as “Good days”, as seen with days 1 through 3 in Table C.6. Days

4 through 7 were also classified as “Good days” even though high airborne holdings (minutes and

aircraft) do not correspond to good operational performance. Days 8 through 11 were also clas-

sified differently by both approaches due to variations in their underlying methodologies. Based

on this analysis, it is concluded the clustering is a better suited approach for categorizing daily
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operations of John F. Kennedy International Airport (JFK).

4.2.7 LaGuardia Airport (LGA)

Application of Principal Component Analysis (LGA)

Figure 4.30 shows the scree plot for LaGuardia Airport (LGA). In particular, it shows that 3 prin-

cipal components captured 90% of the variance of the dataset. As such, the dimensionality of the

dataset was reduced from 9 to 3 and used for this work.

Figure 4.30: Scree plot for LaGuardia Airport (LGA)

Assessment of the Clustering Tendency of the Dataset (LGA)

The Hopkins Statistic value of 0.932 obtained for this dataset and the presence of two distinct blue

boxes comprised of smaller boxes along the diagonal in Figure 4.31 indicates that the clustering

tendency of the dataset is high. The varying shades of the blue boxes and their accompanying
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dissimilarity values also indicates that multiple clusters can be formed from the dataset.

Figure 4.31: Visual Assessment of clustering Tendency (VAT) plot for LaGuardia Airport (LGA)

Benchmarking and Evaluation of Clustering Algorithms (LGA)

Figures B.36, B.37, B.38, B.39, B.40, B.41, and B.42 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. Table 4.26 provides a summary of the

best suited combination of algorithm and number of clusters per evaluation metric for LGA. In

particular, it shows that the Single Linkage Hierarchical clustering algorithm and 3 clusters

was identified as the best suited combination for LGA by a majority of metrics.

98



Table 4.26: Optimal combination of algorithm and number of clusters per evaluation metric for
LGA

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0006 Single Linkage 3
AD 1.8385 PAM 8

ADM 0.0256 Single Linkage 5
FOM 0.6956 Kmeans 8

Connectivity 6.7607 Single Linkage 3
Dunn Index 0.3181 Single Linkage 4
Silhouette 0.6959 Single Linkage 3

Table 4.27 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Table 4.27 validates observa-

tions made from the Visual Assessment of clustering Tendency plot. Indeed, Figure 4.31 shows

a dark blue box along the diagonal corresponding to the first cluster, and smaller boxes in the top

and bottom right corners of the diagonal which correspond to the smaller clusters.

Table 4.27: Breakdown of daily operations of LGA by cluster

Cluster Number of Daily Operations
1 828
2 453
3 59

Analysis of Clusters (LGA)

Figure 4.32 shows the distribution of the airport metrics with box plots across the three clusters. In

particular, it shows that the first cluster is characterized by high completion rates, low to moderate

TMI to airport delays, and low to high departure delays and airborne holdings (aircraft and min-

utes). It can also be seen that Ground Delay Programs and Ground Stops were not implemented on

a majority of days in this cluster. Table 4.28 shows that the mean and median values of a majority
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of metrics were significantly better for the first cluster compared to the other clusters. As such, it

can be observed that overall, this cluster is characterized by good operational performance.

The second cluster is characterized by low to high departure delays, TMI to airport delays,

GDP lead-in times and revisions, Ground Stops, airborne holdings, and diversions, as seen in

Figure 4.32. Table 4.28 shows that the mean and median values of a majority of metrics are better

for this cluster compared to the third cluster but worse than the first cluster. As such, it can be

concluded that the second cluster generally exhibits varying operational performance.

Table 4.28: Mean, Median, and Mode of Airport Metrics across clusters for LaGuardia Airport
(LGA)

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 2.8 16 46 0 9 50 0 0 0
Airborne holdings (minutes) 60 354 1301 0 179 1464 0 0 0

Completion rate (%) 99 96 71 99 98 76 100 100 M1

Diversions 0.8 2.7 21 0 1 17 0 0 0
Departure delays 24 101 52 0 81 49 0 0 0

GDP lead− in time (minutes) 176 51 92 165 32 103 M1 0 M1

GDP revisions 0 0.6 1.1 0 1 2 0 0 2
Ground Stops 0.2 1.3 2 0 1 2 0 1 1

TMI to airport delays 7.3 189 185 6 187 186 0 0 0

The third cluster is characterized by a wide range of departure delays, TMI to airport delays,

completion rate, GDP lead-in times and revisions, airborne holdings, Ground Stops and diversions.

Table 4.28 also shows that the third cluster has the worst median and mean values of the metrics

out of all three clusters. As such, this cluster is observed to exhibit poor operational performance.

1Multiple values exist
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Figure 4.32: Box plots showing the distribution of airport metrics across clusters for LaGuardia
Airport (LGA))

Comparison of results from clustering and using predefined ranges of metrics (LGA)

As observed with the other airports, Experiment 1 validates the categorization of the daily opera-

tions of LGA into 3 categories, as is currently done with OSPC. Similarly, each cluster is character-

ized by either good, varying, or poor operational performance. As such, a one-to-one comparison

of the categorization of daily operations of LGA with clustering and predefined ranges of metrics
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was conducted so as to determine a suitable approach for categorizing the daily operations of LGA.

Table 4.29 shows that 828, 310, and 15 days categorized as “Good days” by OSPC were placed

in the clusters characterized by good, varying, and poor operational performance, respectively. It

also shows that 26 and 7 days categorized as “Average days” by OSPC were placed in clusters

characterized by varying and poor operational performance, respectively. Table 4.29 also shows

that 117 and 37 days classified as “Bad days” by OSPC were placed in clusters characterized by

varying and poor operational performance, respectively.

Table 4.29: Composition of categories from clustering and Operational Service Performance Cri-
teria (LGA)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 828 310 15

Average day 0 26 7
Bad day 0 117 37

Table C.7 in Appendix C provides a comparison of a subset of daily operations of LGA that

were categorized differently by clustering and OSPC. Indeed, it shows trends similar to those

observed with the other airports, where OSPC classified days with low Completion Rates as “Good

days”, etc. Similar to the other airports, it is concluded that clustering is a better approach

for categorizing the daily operations of LaGuardia Airport (LGA), instead of using a broad

range of predefined values of metrics.
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4.2.8 Philadelphia International Airport (PHL)

Application of Principal Component Analysis (PHL)

Figure 4.33 shows the scree plot for Philadelphia International Airport (PHL). In particular, it

shows that 3 principal components captured 90% of the variance of the dataset. As such, the

dimensionality of the dataset was reduced from 9 to 3.

Figure 4.33: Scree plot for Philadelphia International Airport (PHL)
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Assessment of the Clustering Tendency of the Dataset (PHL)

The presence of multiple blue boxes along the diagonal in Figure 4.34 and the Hopkins Statistic

value of 0.957 for this dataset indicates that the clustering tendency of the dataset is high.

Figure 4.34: Visual Assessment of clustering Tendency (VAT) plot for Philadelphia International
Airport (PHL)

Benchmarking and Evaluation of Clustering Algorithms (PHL)

Figures B.43, B.44, B.45, B.46, B.47, B.48, and B.49 in Appendix B show how each clustering

algorithm performed while varying the number of clusters. Table 4.30 provides a summary of the

best suited combination of algorithm and number of clusters per evaluation metric for PHL. In

particular, it shows that the Single Linkage Hierarchical clustering algorithm and 3 clusters

was identified as the best suited combination for PHL by a majority of metrics.
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Table 4.30: Optimal combination of algorithm and number of clusters per evaluation metric for
PHL

Evaluation Metric Value Clustering Algorithm Clusters
APN 0.0001 Single Linkage 3
AD 1.5289 PAM 8

ADM 0.0018 Single Linkage 3
FOM 0.7381 Ward 8

Connectivity 8.1448 Single Linkage 3
Dunn Index 0.5246 Single Linkage 3
Silhouette 0.8097 Single Linkage 3

Table 4.31 provides a breakdown of the number of daily airport operations in each cluster, as

designated by the Single Linkage Hierarchical clustering algorithm. Table 4.31 validates observa-

tions made from the assessment of clustering tendency of the dataset with the Visual Assessment

of clustering Tendency plot. Indeed, Figure 4.34 shows a large dark blue box as well as smaller

light blue boxes with high dissimilarity values along the diagonal of Figure 4.34.

Table 4.31: Breakdown of daily operations of LGA by cluster

Cluster Number of Daily Operations
1 1078
2 193
3 69

Analysis of Clusters (PHL)

Figure 4.35 shows the distribution of the airport metrics with box plots across the three clusters.

In particular, it shows that the first cluster is characterized by moderate to high completion rates,

and low to high departure delays, TMI to airport delays, airborne holdings (aircraft and minutes)

and diversions. Figure 4.35 also shows that Ground Delay Programs and Ground Stops were not

implemented on a majority of days in this cluster. Based on these observations as well as the mean
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and median values of the metrics for this cluster compared to the other clusters, it can be concluded

that overall, the first cluster is characterized by good operational performance.

Figure 4.35 shows that other than TMI to airport delays, and GDP lead-in time and revisions,

the distribution of metrics in the second cluster is similar to that of the first cluster. However,

Table 4.32 shows that the mean and median values of a majority of metrics are worse than those of

the first cluster but better than those of the third cluster. As such, it is concluded that overall, the

second cluster is characterized by varying operational performance.

Table 4.32: Mean, Median, and Mode of Airport Metrics across clusters for Philadelphia Interna-
tional Airport (PHL)

.

Airport Metric/Cluster
Mean Median Mode

1 2 3 1 2 3 1 2 3
Airborne holdings (aircraft) 0.7 1.8 18.7 0 0 18 0 0 M1

Airborne holdings (minutes) 11.7 33.4 462 0 0 442 0 0 0
Completion rate (%) 98.2 94.3 86.2 98.7 95.5 92 100 M1 1

Diversions 0.7 1.1 8.9 0 1 6 0 0 M1

Departure delays 20.8 48 72 5 25 60 0 0 0
GDP lead− in time (minutes) 47 77.1 97 47 71 102 M1 0 M1

GDP revisions 0 0.5 0.7 0 0 0 0 0 0
Ground Stops 0.2 1.1 1.7 0 1 1 0 1 1

TMI to airport delays 3.7 119.4 86.7 2 89 116 0 0 0

The third cluster is characterized by a wide range of departure delays, TMI to airport delays,

completion rates, GDP lead-in time and revisions, airborne holdings (aircraft and minutes), Ground

Stops, and diversions. These observations coupled with the cluster’s poor mean and median values

of the metrics shown in Table 4.32 indicate that it is characterized by poor operational performance.

1Multiple values exist
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Figure 4.35: Box plots showing the distribution of airport metrics across clusters for Philadelphia
International Airport (PHL)

Comparison of results from clustering and using predefined ranges of metrics (PHL)

Experiment 1 validates the categorization of the daily operations of PHL into 3 categories, as is

currently done with OSPC. Similar to the other airports, each cluster is either characterized by

good, varying, or poor operational performance.

Table 4.33 shows that 1078, 185, and 44 days categorized as “Good days” by OSPC were
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placed in the clusters characterized by good, varying, and poor operational performance, respec-

tively. It also shows that 8 and 9 days categorized as “Average days” by OSPC were placed in

clusters characterized by varying and poor operational performance, respectively. Table 4.33 also

shows that 16 days classified as “Bad days” by OSPC were placed in the cluster characterized by

poor operational performance.

Table 4.33: Composition of categories from clustering and Operational Service Performance Cri-
teria (PHL)

OSPC/Clustering Cluster 1 Cluster 2 Cluster 3
Good day 1078 185 44

Average day 0 8 9
Bad day 0 0 16

Table C.8 in Appendix C provides a comparison of a subset of daily operations of PHL that

were categorized differently by clustering and OSPC. Indeed, it shows trends similar to those

observed with the other airports, where OSPC classified days with low Completion Rates as “Good

days”, etc. Similar to the other airports, it is concluded that clustering is a better suited approach

for categorizing the daily operations of Philadelphia International Airport (PHL) instead of

predefined ranges of metrics.

4.3 Summary of Findings from Experiment 1

The first research question posed in Chapter 3 examines the capability of the methodology dis-

cussed herein to categorize daily airport operations instead of using predefined ranges of metrics.

While the existing literature outlined various efforts pursued to categorize airports to analyze their

operations, it was observed that a systematic, robust, and repeatable approach was lacking. As

such, Experiment 1 was developed, implemented, and tested with data from 8 U.S. airports. This

involved extracting and computing the necessary metrics, normalizing, reducing the dimensionality

and assessing the clustering tendency of the datasets. The performance of different clustering algo-
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rithms was then benchmarked and evaluated using a set of metrics to identify the best combination

of algorithm(s) and number of clusters for each airport. The clustering results and the categories

developed by OSPC were then compared to determine which approach better categorizes the daily

operations of each airport.

The dimensionalities of all but two of the datasets were reduced from 9 to 3 using Principal

Component Analysis. The dimensionality of the Boston Logan and Dulles International Airport

datasets were reduced from 9 to 4. Hopkins Statistic and Visual Assessment of clustering Tendency

(VAT) plots were then leveraged to assess the clustering tendency of the datasets. For all 8 airports,

the clustering tendency of the datasets was observed to be very high, as seen in Table 4.34 and

Figures 4.6, 4.16, 4.19, 4.22, 4.25, 4.28, 4.31, and 4.34. These observations indicate that there are

distinct differences between daily operations of each airport. As such, clustering can be leveraged

to categorize daily airport operations.

Table 4.34: Summary of Hopkins Statistic values for the airports

Airport Hopkins Statistic
BOS 0.957
BWI 0.973
DCA 0.957
EWR 0.956
IAD 0.974
JFK 0.978
LGA 0.932
PHL 0.957

The best combination of clustering algorithm and number of clusters was also determined to

be the Single Linkage Hierarchical algorithm and 3 clusters for each airport by a majority of

metrics. The three clusters of each airport were analyzed and observed to either exhibit good,

varying, or poor operational performance, as seen in Table 4.35.
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Table 4.35: Characteristics of Clusters

Cluster Characteristic
1 Good Operational Performance
2 Varying Operational Performance
3 Poor Operational Performance

The number of clusters and their characteristics is consistent with the approach currently em-

ployed by OSPC which classifies daily airport operations into “Good days”, “Average days”, and

“Bad days”. As such, the outcomes of clustering and OSPC were compared and reviewed by

FAA Subject Matter Experts to determine which approach better categorizes the daily operations

of each airport. The comparison revealed that OSPC classified a majority of daily airport oper-

ations as “Good days”, even though several of them exhibited sub-optimal to poor operational

performance due to very low completion rates and Ground Delay Program lead-in times, and high

airborne holdings (minutes and aircraft). As such, FAA analysts may have to manually validate

these classifications each day and/or regularly update the predefined ranges of metrics. The clus-

tering algorithm on the other hand, correctly classified a majority of these as either having varying

or poor operational performance. Variations in the means, medians, and modes of the airport clus-

ters also indicates that the same predefined set of ranges of metrics should not be applied across

the eight airports, as is currently done in OSPC. This observation in addition to the distributions

of metrics across clusters, as observed in Figures 4.14, 4.17, 4.20, 4.23, 4.26, 4.29, 4.32, and 4.35

shows that the metrics cannot be weighted equally, as is currently assumed with OSPC.

Based upon this comparison and the review of the developed clusters by FAA Subject Matter

Experts, it is concluded that the conditions of Hypothesis 1 are satisfied, namely that benchmarking

clustering algorithms while varying the number of clusters will facilitate the categorization of daily

airport operations in a systematic, robust, and repeatable manner.

Therefore, the hypothesis for Research Question 1 is verified.
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CHAPTER 5

DETERMINING THE CATEGORY THAT DAILY AIRPORT OPERATIONS BELONG

TO

In this chapter, the development and application of a methodology for determining the category that

subsequent daily airport operations belong to is discussed in order to successfully answer Research

Question 2.1:

Research Question 2.1

How can the category that a daily airport operation belongs to be better determined?

This chapter also presents methodologies for comparing daily operations in similar and differ-

ent airport categories, and analyzing and assessing how traffic management decisions impact daily

airport operations. These efforts relate to the subjects of the following research questions:

Research Question 2.2

How can daily airport operations in similar and different categories be compared for the

identification of trends and patterns?

Research Question 2.3

How can the impact of traffic management decisions on airport operations be analyzed and

assessed?
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5.1 Methodology Overview

Figure 5.1 provides an overview of the methodology for Experiment 2 which was implemented

with Python [147, 148]. The methodology highlighted in Figure 5.1 was implemented for each

airport using data and results from Chapter 4. The target of each model is the category of daily

airport operation determined in Experiment 1, and the predictors are the nine metrics, as well as

the month of year. The remainder of this section discusses each step of the methodology in detail.

Figure 5.1: Overview of methodology for Experiment 2

5.1.1 Step #1: Identify Suitable Machine Learning Algorithm

As previously discussed, an objective of this work is to leverage the ranking of predictor impor-

tance, Decision Trees, and the posterior probability of predictions of a supervised Machine Learn-

ing algorithm in order to answer Research Questions 2.2 and 2.3. As such, there was a need to

identify a suitable classification tree-based algorithm to undertake these tasks.

The Random Forests algorithm was identified to be a suitable algorithm for this work. Breiman

[239] defines Random Forests as “a combination of tree predictors such that each tree depends on

the values of a random vector sampled independently and with the same distribution for all trees
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in the forest”. Random Forests are an ensemble-based method that leverage random feature selec-

tion to add additional diversity to Decision Tree models. Random Forests are also widely known

for combining versatility and power into a single Machine Learning approach. As the ensemble

only uses a small, random portion of the full dataset, Random Forests can handle extremely large

datasets where dimensionality might cause other models to fail [127, 239–241]. The algorithm

outputs Decision Trees which are often leveraged to interpret how models are developed, and to

identify underlying relationships between predictors and targets of prediction models [146]. Ran-

dom Forests also provide a ranking of predictor importance which can be leveraged to gain insights

into underlying causes of events. The algorithm also outputs the posterior probability or degree of

support of predictions as a means to measure the confidence of the model’s prediction(s).

5.1.2 Step #2: Split Datasets

The data from each airport was divided into two datasets: training-validation and test. As shown

in Figure 5.1, three-fourths of the data was assigned to the training-validation dataset which was

used to train and tune the models, and one-fourth of the data was assigned to the test dataset to

generate predictions for evaluations. The data for each airport was randomly divided to ensure that

the training-validation and test datasets do not have systematic differences.

5.1.3 Step #3: Reduce Imbalanced Nature of Training-Validation Datasets

As observed in Chapter 4, the datasets for each airport are heavily imbalanced, as a majority of

daily operations belong to one or two clusters. Imbalanced datasets often lead to poorly performing

prediction models. As such, the Synthetic Minority Over-sampling Technique (SMOTE) algorithm

[242, 243] was leveraged to balance the training-validation datasets of each airport by increasing

the minority class(es) of datasets. This is achieved by randomly selecting a k-nearest-neighbor

of each member of the minority class. Implementing the SMOTE algorithm instead of naively

oversampling the minority class ensures that over-fitting is avoided.
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5.1.4 Step #4: Train Models and Tune Hyperparameters

The next step in the methodology focuses on training the prediction models. This is achieved by

using the Random Forests Classifier from Python’s Scikit library [244] and k-fold cross validation.

K-fold cross validation is a resampling method that is used to tune Machine Learning model hyper-

parameters to ensure optimal performance, where k is a predefined number of groups or folds that

the data is split into [245–247]. The following Random Forests hyperparameters were tuned using

a grid search in order to identify the best combination(s) of hyperparameters needed for optimal

model performance:

Number of trees

The Random Forests algorithm occasionally overfits if the number of trees is too large. As such,

there is a need to identify the appropriate number of trees needed for optimal model performance

[248].

Maximum depth

Maximum depth refers to the maximum number of splits in each tree, which dictates the complex-

ity of the Random Forests and influences model performance. As such, there is a need to identify

the appropriate maximum depth needed for optimal model performance.

These hyperparameters were varied using the range of values shown in Table 5.1.

Table 5.1: Random Forests hyperparameters and their range of values

Hyperparameter Range of values
Number of trees [100,200,300,400,500,600,700,800,900,1000]
Maximum depth [1-30]
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5.1.5 Step #5: Test and Evaluate Models

The performance of the trained models were then tested and evaluated using a set of metrics. Evalu-

ating the performance of learners is vital as it indicates how a learner will perform on future/unseen

data. The type of evaluation metric used depends on whether the task involved classifications or

numeric predictions, as well as on how “balanced” the dataset the models are being trained on is.

Classification learners are typically evaluated using results obtained from a confusion matrix. A

confusion matrix, as seen in Table 5.2, is a table that categorizes predictions according to whether

they match the actual value. For classification tasks such as this one, confusion matrices are lever-

aged to measure performance using metrics such as Sensitivity, Specificity, and Balanced accuracy

[127].

Table 5.2: Confusion Matrix

Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

True Positive (TP) refers to the correct classification of the class of interest. True Negative

(TN) refers to the correct classification of the class that is not of interest. False Positive (FP) refers

to the incorrect classification of the class of interest. False Negative (FN) refers to the incorrect

classification of the class that is not of interest [127].

Sensitivity

This refers to the proportion of true positives that were correctly classified, and is specified as

[127]:

Sensitivity =
TP

TP + FN
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Specificity

This refers to the proportion of negative examples that were correctly classified, and is specified as

[127]:

Specificity =
TN

FP + TN

Balanced Accuracy

A model might have high accuracy because it correctly predicts the most frequent class, particularly

when the dataset is imbalanced. Balanced accuracy adjusts accuracy by calculating the average of

accurate predictions in each class [249, 250] and is specified as:

Balanced Accuracy =
Sensitivity + Specificity

2

Table 5.3 shows the range and criteria for good performance of each evaluation metric.

Table 5.3: Range and criteria for prediction model metrics

Evaluation metric Range of values Criteria for good performance
Specificity (0,1) Maximize
Sensitivity (0,1) Maximize

Balanced Accuracy (0,1) Maximize

5.1.6 Step #6: Analyze Results

This section discusses features of the Random Forests algorithm that facilitate the analysis of the

outcomes of prediction models. The following features of the algorithm were generated using

Python’s Scikit library [244]:
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Ranking of Predictor Importance

As previously mentioned, the Random Forests Machine Learning algorithm provides a ranking of

predictor importance that quantifies the impacts that predictors have on prediction models. This

work thus leveraged the ranking of predictor importance to determine how each metric influences

the categorization of each airport’s daily operations. This will provide insights into similarities and

differences between airports, and will facilitate the identification of trends and patterns for better

decision making. It will also enable FAA analysts to identify how various traffic management

decisions impact airport operations.

Decision Trees

The Random Forests algorithm also outputs a Decision Tree which allows for a global interpreta-

tion of prediction models and provide a means to identify underlying relationships between predic-

tors and targets of prediction models [146]. Decision Trees are composed of branches, maximum

depth and nodes. Each branch is a path taken from the first node at the top of the tree and cor-

responds to whether the model agrees with the designated class of that node, as seen in Figure

5.2. Maximum depth refers to the longest path from the first node (root) to the last node of the

tree (leaf). Each node other than the leaf node is characterized by five parameters: feature value,

gini impurity, samples, value, and class. The feature value dictates how each node is split. A data

point moves to one of two subsequent nodes based on the feature’s value at a particular node. Gini

impurity refers to the likelihood of incorrectly classifying a randomly chosen data point in a node

based on the distribution of data points in the node. Lower gini values indicate less likelihood of

incorrectly classifying a randomly chosen data point. Samples refers to the number of data points

used to determine an outcome, whereas values provides a breakdown of the number of data points

of each class. Class refers to the most likely outcome of that node. The color (orange and blue)

of each node corresponds to the assigned class at that node. A white node indicates that there is
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an equal number of observations of each class at that node. As such, a class is not assigned to that

node.

Figure 5.2: Sample Decision Tree [251]

This work thus leveraged Decision Trees to identify underlying relationships between the met-

rics and airport categories. This will provide a means for analysts to better understand the impact

and assess the effectiveness of traffic management decisions on daily airport operations.

Degree of Support of Predictions

The Random Forests algorithm also outputs a posterior probability or degree of support of predic-

tions. This work thus leveraged this feature of the algorithm to facilitate the comparison of daily

operations within and across airport categories. Doing so will provide a means for analysts to

quantify how well a daily operation fits into an airport category determined in Chapter 4 and will
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enable them to identify trends and patterns.

Steps 1 through 6 of Experiment 2 were implemented using Algorithm 3.

Algorithm 3: Algorithm for training and testing prediction models
0: Let k be the number of folds
0: Vary k from 1 to 10
1: for each airport do
2: for each k do
3: randomly split the training-validation set into k groups
4: for each group do
5: set the selected group as the testing dataset
6: set the remainder of the data as the training dataset
7: train model and tune hyperparameters with the training dataset
8: evaluate model with the testing dataset
9: record the evaluation metrics

10: end for
11: end for
12: return the best performing model and number of folds by comparing evaluation metrics
13: end for
14: return the best performing model and number of folds by comparing evaluation metrics
15: return ranking of predictor importance
16: return decision tree
17: return degree of support of predictions

5.2 Implementation and Testing of Methodology for Determining the Category That Daily

Airport Operations Belong To

This section discusses the implementation and testing of Steps 1 through 5 of Experiment 2 with

data from each of the 8 U.S. airports. As discussed in the previous section, the datasets were

randomly divided into two sets, and the SMOTE algorithm was leveraged to reduce the imbalanced

nature of the training-validation datasets of each airport to ensure optimal model performance. This

was achieved by increasing the number of data points of each minority class to match that of the

majority class. Combinations of hyperparameters needed for optimal performance of the algorithm

were identified while training the models using k-fold cross-validation. Model performance was
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then evaluated using a set of metrics.

5.2.1 Boston Logan International Airport (BOS)

Table 5.4 provides a summary of the optimal set of hyperparameters and number of folds identified

and used to develop the prediction model for BOS. In particular, it shows that the optimal number

of trees, maximum depth, and number of folds was determined to be 500, 7, and 3, respectively.

Table 5.4: Summary of optimal set of hyperparameters and number of folds for BOS

Parameter Optimal Value
Number of trees 500
Maximum depth 7
Number of folds 3

Tables 5.5 and 5.6 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the BOS test dataset, respectively. Table 5.5 shows that the algorithm accurately

predicted all but two daily airport operations. Model performance was observed to be excellent as

99.4% of daily operations were predicted correctly.

Table 5.5: Confusion matrix for BOS on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 252 0 0
Predicted Cluster 2 2 80 0
Predicted Cluster 3 0 0 1
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Table 5.6: Summary of evaluation metrics for BOS on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 1 0.992 1
Sensitivity 0.992 1 1

Balanced Accuracy 0.996 0.996 1

5.2.2 Baltimore/Washington International Thurgood Marshall International Airport (BWI)

Table 5.7 provides a summary of the optimal set of hyperparameters and number of folds identified

and used to develop the prediction model for BWI. In particular, it shows that the optimal number

of trees, maximum depth, and number of folds was determined to be 800, 8, and 3, respectively.

Table 5.7: Summary of optimal set of hyperparameters and number of folds for BWI

Parameter Optimal Value
Number of trees 800
Maximum depth 8
Number of folds 3

Tables 5.8 and 5.9 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the BWI test dataset, respectively. Table 5.8 shows that the algorithm accurately

predicted all of the daily airport operations, resulting in perfect values for all of the evaluation

metrics in Table 5.9.

Table 5.8: Confusion matrix for BWI on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 318 0 0
Predicted Cluster 2 0 10 0
Predicted Cluster 3 0 0 7
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Table 5.9: Summary of evaluation metrics for BWI on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 1 1 1
Sensitivity 1 1 1

Balanced Accuracy 1 1 1

5.2.3 Reagan National Airport (DCA)

Table 5.10 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for DCA. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds was determined to be 100, 13, and 3,

respectively.

Table 5.10: Summary of optimal set of hyperparameters and number of folds for DCA

Parameter Optimal Value
Number of trees 100
Maximum depth 13
Number of folds 3

Table 5.11 shows the confusion matrix for the Random Forests algorithm with the DCA test

dataset. In particular, it shows that the algorithm accurately predicted all of the daily airport oper-

ations, resulting in perfect values for all of the evaluation metrics in Table 5.12.

Table 5.11: Confusion matrix for DCA on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 296 0 0
Predicted Cluster 2 0 18 0
Predicted Cluster 3 0 0 21
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Table 5.12: Summary of evaluation metrics for DCA on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 1 1 1
Sensitivity 1 1 1

Balanced Accuracy 1 1 1

5.2.4 Newark Liberty International Airport (EWR)

Table 5.13 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for EWR. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds was determined to be 100, 6, and 3, respec-

tively.

Table 5.13: Summary of optimal set of hyperparameters and number of folds for EWR

Parameter Optimal Value
Number of trees 100
Maximum depth 6
Number of folds 3

Tables 5.14 and 5.15 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the EWR test dataset, respectively. Table 5.14 shows that the model accurately

predicted all of the daily operations in the first and third clusters, but inaccurately placed 6 daily

operations into the second cluster instead of the third cluster.

Table 5.14: Confusion matrix for EWR on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 141 0 0
Predicted Cluster 2 0 166 6
Predicted Cluster 3 0 0 22
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Table 5.15: Summary of evaluation metrics for EWR on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 1 0.965 1
Sensitivity 1 1 0.786

Balanced Accuracy 1 0.982 0.893

5.2.5 Dulles International Airport (IAD)

Table 5.16 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for IAD. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds was determined to be 500, 8, and 3, respec-

tively.

Table 5.16: Summary of optimal set of hyperparameters and number of folds for IAD

Parameter Optimal Value
Number of trees 500
Maximum depth 8
Number of folds 3

Tables 5.17 and 5.18 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the IAD test dataset, respectively. Table 5.17 shows that the model predicted all

of the daily operations in the second cluster, and a majority of daily operations in the first and

third clusters correctly. However, the model inaccurately predicted 4 daily operations to be in the

first cluster instead of the third cluster, and 1 daily operation in the third cluster instead of the first

cluster. Overall, model performance was excellent as 98.5% of daily operations were predicted

correctly.
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Table 5.17: Confusion matrix for IAD on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 309 0 4
Predicted Cluster 2 0 8 0
Predicted Cluster 3 1 0 13

Table 5.18: Summary of evaluation metrics for IAD on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 0.840 1 0.997
Sensitivity 0.997 1 0.765

Balanced Accuracy 0.918 1 0.881

5.2.6 John F. Kennedy International Airport (JFK)

Table 5.19 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for JFK. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds was determined to be 700, 9, and 3, respec-

tively.

Table 5.19: Summary of optimal set of hyperparameters and number of folds for JFK

Parameter Optimal Value
Number of trees 700
Maximum depth 9
Number of folds 3

Tables 5.20 and 5.21 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the JFK test dataset, respectively. Table 5.20 shows that even though the model

predicted a majority of daily operations correctly, it inaccurately predicted 5 daily operations. In

particular, 3 daily operations were predicted to be in the third cluster instead of the second cluster,

and one daily operation was predicted to be in the third cluster instead of the first one. One other
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operation was also inaccurately predicted to be in the first cluster instead of the second cluster.

Overall, model performance was excellent as 98.5% of daily operations were predicted correctly.

Table 5.20: Confusion matrix for JFK on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 245 1 0
Predicted Cluster 2 0 68 0
Predicted Cluster 3 1 3 17

Table 5.21: Summary of evaluation metrics for JFK on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 0.989 1 0.987
Sensitivity 0.996 0.944 1

Balanced Accuracy 0.992 0.972 0.994

5.2.7 LaGuardia Airport (LGA)

Table 5.22 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for LGA. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds was determined to be 600, 8, and 3, respec-

tively.

Table 5.22: Summary of optimal set of hyperparameters and number of folds for LGA

Parameter Optimal Value
Number of trees 600
Maximum depth 8
Number of folds 3
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Tables 5.23 and 5.24 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the LGA test dataset, respectively. Table 5.23 shows that even though the model

predicted a majority of daily operations correctly, it inaccurately predicted 2 daily operations to the

second cluster instead of the first and third clusters. It also inaccurately predicted one daily opera-

tion to the first cluster instead of the third cluster. As with the other airports, model performance

was excellent as 99.1% of daily operations were predicted accurately.

Table 5.23: Confusion matrix for LGA on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 210 0 1
Predicted Cluster 2 1 110 1
Predicted Cluster 3 0 0 12

Table 5.24: Summary of evaluation metrics for LGA on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 0.992 0.991 1
Sensitivity 0.995 1 0.857

Balanced Accuracy 0.994 0.9996 0.929

5.2.8 Philadelphia International Airport (PHL)

Table 5.25 provides a summary of the optimal set of hyperparameters and number of folds iden-

tified and used to develop the prediction model for PHL. In particular, it shows that the optimal

number of trees, maximum depth, and number of folds were determined to be 300, 8, and 3, re-

spectively.
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Table 5.25: Summary of optimal set of hyperparameters and number of folds for PHL

Parameter Optimal Value
Number of trees 300
Maximum depth 8
Number of folds 3

Tables 5.26 and 5.27 show the confusion matrix and evaluation metrics for the Random Forests

algorithm with the PHL test dataset, respectively. Table 5.26 shows that even though the model

predicted a majority of daily operations correctly, it inaccurately predicted 2 daily operations to

the second cluster instead of the first cluster, and 1 daily operation to the third cluster instead of

the second cluster. As with the other airports, model performance was excellent as 99.1% of daily

operations were predicted accurately.

Table 5.26: Confusion matrix for PHL on the test dataset

Actual Cluster 1 Actual Cluster 2 Actual Cluster 3
Predicted Cluster 1 276 0 0
Predicted Cluster 2 2 42 0
Predicted Cluster 3 0 1 14

Table 5.27: Summary of evaluation metrics for PHL on the test dataset

Metric Cluster 1 Cluster 2 Cluster 3
Specificity 1 0.993 1
Sensitivity 0.993 0.977 0.993

Balanced Accuracy 0.996 0.985 0.996
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5.3 Implementation and Testing of Methodology for Comparing Daily Operations in Simi-

lar and Different Airport Categories

The posterior probability or degree of support of predictions of each of the prediction models de-

veloped with the Random Forests algorithm were generated to assess the degree to which daily

operations belong to airport categories. Each prediction was accompanied by how well the model

thought a daily operation fit into each airport category based on historical data, as seen in Table

5.28. In particular, it shows five consecutive daily operations of Philadelphia International Airport

(PHL) that were categorized differently. It also shows that even though days 3 through 5 were

predicted to be in the third cluster, day 5 was observed to have very poor operational performance

compared to days 3 and 4. This can be leveraged by stakeholders to compare daily operations in

similar and different clusters so as to determine why consecutive daily airport operations were cat-

egorized differently, for example. This will allow stakeholders to identify any traffic management

decisions that may have led to variations in airport operational performance, which may lead to the

identification of trends and pattern for better decision making.

Table 5.28: Sample probability or degree of support of predictions

Day Cluster Cluster 1 probability Cluster 2 probability Cluster 3 probability
1 2 4.69 95.3 0
2 1 100 0 0
3 3 0 9.7 90.3
4 3 0 20.1 79.9
5 3 0 0 100
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5.4 Implementation and Testing of Methodology for Analyzing and Assessing How Traffic

Management decisions Impact Airport Operations

This section discusses the use of the ranking of predictor importance and Decision Trees of each

prediction model to analyze and assess how traffic management decisions impact operations at the

eight U.S. airports used for this work.

5.4.1 Ranking of Predictor Importance

Figure 5.3, and Figures D.1, D.3, D.4, D.6 and D.7 in Appendix D provide the ranking of predictor

importance of the prediction models for PHL, BOS, BWI, DCA, EWR, IAD, JFK, and LGA,

respectively. In particular, they show that Ground Delay Program Lead-In Time and Revisions,

and TMI to AIrport Delays largely influenced the categorization of daily operations at BOS, DCA,

EWR, JFK, LGA, and PHL, respectively. Indeed, these three metrics accounted for 52.3% to

82.9% of metric importance across these airports, which indicates, as expected, that the planning

and implementation of Traffic Management Initiatives has significant impacts on operations of

these airports.

Figure 5.3: Ranking of predictor importance (PHL)
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In particular, they show that Ground Delay Program Lead-In Time and Revisions, and TMI To

Airport Delays largely influenced the categorization of daily operations at BOS, DCA, EWR, JFK,

LGA, and PHL, respectively. Indeed, these three metrics accounted for 52.3% to 82.9% of metric

importance across these airports, which indicates that the planning and implementation of Traffic

Management Initiatives has significant impacts on operations of these airports.

Figure D.2 shows that Completion Rate, Airborne Holdings (Minutes and Aircraft), Ground

Delay Program Revisions and Lead-In Times, and Diversions largely influenced the categoriza-

tion of daily operations at Baltimore/Washington International Thurgood Marshall Airport (BWI).

Indeed, these metrics combined accounted for over 88% of metric importance of the prediction

model.

Figure D.5 shows that Airborne Holdings (Minutes and Aircraft) and Diversions accounted

for 29.3%, 24.2%, and 11.7% of metric importance for the IAD prediction model, respectively.

As such, it can be observed that these metrics significantly influenced the categorization of daily

operations at Dulles International Airport (IAD).

As illustrated, the ranking of predictor importance provides some insight into how each metric

influences the categorization of daily airport operations. This provides a means for assessing how

traffic management decisions impact airport operations. The identification of key predictors also

enables stakeholders to focus on improving decisions related to specific metrics so as to ensure ef-

ficient airport operations. Variations in the ranking of predictor importance of each model indicate

that traffic management decisions and procedures affect operations at each airport differently. This

observation thus invalidates OSPC’s current assumption of using a broad set of predefined ranges

of metrics across the eight airports. Finally, it is observed that the month of year consistently

ranked as one of the least important metrics across the eight airports. As such, it can be concluded

that its impact on airport operations is minimal.
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5.4.2 Decision Trees

The Random Forests algorithm learns the relationships between predictors and targets so as to

make accurate predictions. This is achieved by iterating over the data numerous times until the

number of incorrect predictions is minimized. Decision Trees were thus leveraged to gain insight

into how the optimal iteration of the data as well as the combinations of different predictors influ-

enced model performance. Figure 5.4, and Figures E.1, E.2, E.3, E.4, E.5, E.6 and E.7 in Appendix

E show how different traffic management decisions led to the prediction of daily airport categories

for BOS, BWI, DCA, EWR, IAD, JFK, LGA, and PHL, respectively.

Figure 5.4 for example, shows that a daily operation at PHL will most likely be determined

to have varying operational performance if it is characterized by a Completion Rate greater than

95.73%, GDP revisions greater than -0.5 (∼ 0), and TMI to airport delays greater than 103.5. How-

ever, a daily operation at PHL will most likely be determined to have poor operational performance

if it is characterized by a Completion Rate greater than 95.73%, GDP revisions greater than -0.5 (∼

0), TMI to airport delays less than or equal to 103.5, and Airborne Holdings (Minutes) greater than

229. Performing such analysis with the Decision Trees provides a means for stakeholders to assess

how various traffic management decisions influence the categorization of daily airport operations,

and thus impact airport operations. The Decision Trees can also be leveraged to create metric

thresholds which would enable traffic management personnel to better plan and implement Traffic

Management Initiatives and other operational decisions. Finally, Decision Trees and the posterior

probability or degree of support of predictions can be leveraged to assess the effectiveness of traffic

management decisions and procedures. In particular, once the degree to which a daily operation

belongs to an airport category is determined using the posterior probability or degree of support

of predictions, Decisions Trees can be leveraged to assess the effectiveness of traffic management

decisions, and how they lead to “very good” operational performance or “barely good” operational

performance, for example.
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Figure 5.4: Decision Tree (PHL)

5.5 Summary of Findings from Experiment 2

Research Question 2.1 posed in Chapter 3 examines the capability of the methodology discussed

herein to determine the category that daily airport operations belong to, instead of identifying the

predominant class of parameters. As such, Experiment 2 was developed, implemented, and tested
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with metrics from 8 U.S. airports and the Random Forests Machine Learning algorithm. This

experiment involved randomly splitting the data from each airport into training-validation and test

datasets. The SMOTE algorithm was then leveraged to reduce the imbalanced nature of the datasets

to ensure optimal model performance. Prediction models were then trained while tuning algorithm

hyperparameters, and the performance of the models developed with the optimal combinations of

parameters were evaluated with a set of metrics. Based upon the excellent performance of the

prediction models, it is concluded that the conditions of Hypothesis 2.1 are satisfied, namely that

developing prediction models with Machine Learning will provide a robust means for determining

the category that daily airport operations belong to.

The remainder of Experiment 2 involved leveraging the ranking of predictor importance, De-

cision Trees, and the probability or degree of support of predictions to facilitate the analysis and

comparison of daily airport operations. It is concluded that the conditions for Hypothesis 2.2

are satisfied, namely that daily operations in similar and different categories can be compared by

leveraging the posterior probability or degree of support of predictions of the prediction models.

It is also concluded that the conditions for Hypothesis 2.3 are satisfied, namely that the ranking of

predictor importance and Decision Trees of prediction models provide a means for analyzing and

assessing the impact of traffic management decisions on airport operations.

Therefore, the hypotheses for Research Questions 2.1, 2.2, and 2.3 are verified.
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CHAPTER 6

DEVELOPMENT OF A FRAMEWORK FOR THE EXTRACTION, PROCESSING, AND

STORAGE OF AIRPORT DATA

Chapter 4 outlined the implementation and testing of a methodology for categorizing daily airport

operations. Chapter 5 outlined the implementation and testing of methodologies for determining

the category that daily airport operations belong to, the comparison of daily airport operations in

similar and different categories, and the analysis and assessment of the impact of traffic manage-

ment decisions and procedures on airport operations. This chapter presents the development of a

framework as a means to address the following research question:

Research Question 3

How can the efficient analysis and assessment of daily airport operations be automated from data

extraction, through processing, analysis, and storage?

6.1 Methodology Overview

Figure 6.1 provides a broad overview of the methodology for Experiment 3, which consists of nine

steps. The first step focuses on identifying technologies and software that are compatible with the

FAA’s Enterprise Information Management platform. Subsequent steps focus on the deployment of

various software and scripts needed for the framework, the initiation of the framework, extraction

of data needed, processing of data, temporary storage of data, execution of Machine Learning

scripts, permanent storage of data, and analysis of data.
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Figure 6.1: Overview of methodology for Experiment 3

6.1.1 Step #1 : Identify Suitable Technologies and Software

As discussed in Section 2.2, OSPC is a manual and time consuming process, as analysts spend the

majority of their time extracting and processing data from ASPM. This research thus proposes the

development of a framework to facilitate the efficient extraction, processing, and storage of data

needed for the analysis and assessment of daily airport operations. The framework should offer a

reliable and secure way to ingest, process, store, and analyze data from many sources. In addition,

it should overcome constraints such as limited or expensive bandwidth, while ensuring data qual-

ity and reliability. The framework should also enable users to monitor data flow from ingestion to

storage. This is particularly important for regulatory organizations such as the FAA, as they often

need to retain and report chain of custody of data. Consequently, Apache NiFi, Amazon Simple

Storage Service (S3), Elastic Search, Postgres, MuleSoft, and Tableau were identified as a suitable

set of technologies and software for the development of the framework, as they satisfy the afore-

mentioned requirements and are compatible with the FAA’s Enterprise Information Management

(EIM) platform. The remainder of this section provides an overview of each of these technologies.
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Apache NiFi

Apache NiFi is a powerful and reliable system for the processing and distribution of Big Data [165–

169]. It is a flow-based programming technology that is characterized by networks of processes,

which exchange data across predefined connections. It is also data agnostic and reduces the risk

of memory and performance related issues by facilitating data buffering through the application of

back pressure [252, 253]. In addition, Apache NiFi automates the flow of data between systems

by using data routing, transformation, and system mediation logic, and allows users to configure

and regulate how data is distributed and consumed. It also enables users to track the flow of data

in real time, and facilitates data provenance by logging the history of all processes. NiFi has a user

interface that enables users to edit, design, visualize, and monitor the flow of data. It also provides

users with the opportunity to monitor all data received, forked, joined, cloned, modified, sent, and

ultimately dropped upon reaching its configured end-state. The user interface, as seen in Figure

6.2 can be assessed via a web browser and is composed of several segments with specific functions

[165–168].

Figure 6.2: Web based user interface for Nifi [169]
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The Components Toolbar, located in the top left section of the canvas is comprised of com-

ponents, each with specific functions, that can be dragged onto the canvas to develop a dataflow.

The Status bar, located below the Components Toolbar provides information such as the number of

active threads in the dataflow, the amount of data being handled, the state of the different processes

(transmitting or not transmitting), the timestamp at which the information was last refreshed, etc.

The Operate Palette on the left side of the screen consists of buttons that can be used to start and

end parts or all of the data flow, and manage the flow. The Search bar, located at the top right of

the canvas can be used to search components by their names, types, identifiers, configuration prop-

erties, and values. The Global Menu component contains options that allow users to manipulate

existing components on the canvas.

The flow of data in NiFi is facilitated by Processors, represented by the boxes in Figure 6.3.

The processors are developed in JAVA to perform specific functions such as ingesting, converting,

processing or merging data. They are developed as NiFi Archive (NAR) files that mirror Java Web

application Archive (WAR) or Java Application Archive (JAR) files. NAR files are used in NiFi

because they provide isolation from the potential issue of “NoClassDefFoundError” exceptions

that can be generated when wrong versions of dependencies are loaded in the ClassLoader from

a different processor, which often occurs with JAR and WAR files. Each developed NAR file is

deployed into NiFi with Ansible scripts which automate the deployment of system configurations,

software, codes, files, etc. into Big Data platforms [178–180]. This replaces the manual and time

consuming effort required to transfer the NAR files to NiFi.

Each arrow in Figure 6.3, referred to as Connections, connects processors and enables various

processes to interact at different rates. The connections enable users to keep track of how many

files are transferred between processors. NiFi also enables users to identify any errors in the data

flow. This is done using LogMessage processors which log the location and cause of errors in

the data flow. This is particularly useful as programmers do not have to review multiple scripts

or codes to identify the locations and causes of errors. Each processor also provides users with a
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summary of files that they ingested and processed, as well as the time taken to execute tasks. This

enables users to efficiently monitor data flow in real time.

Figure 6.3: NiFi flow showing NiFi processors

Apache NiFi was thus leveraged to automate the efficient extraction, processing, and storage

of data as it replaces the need for analysts to manually extract and process data. NiFi also allows

analysts to track the flow of data in real time and to easily identify errors and their causes. Analysts

will also be able to expand the scope of this work to include additional airports in the National

Airspace System, while avoiding any computer processing and memory related issues that they

may face with a local machine.

Amazon Simple Storage Service (S3)

Amazon’s Simple Storage Service (S3) provides a scalable and secure platform for storing and

protecting data [159, 254]. Consequently, S3 was identified and used to store the data used in this

work.
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Elastic Search

Elastic Search [162–164] provides a secure platform for storing, searching, and analyzing Big

Data. As such, it was leveraged to store the indices or locations of data stored in S3.

MuleSoft Application Programming Interfaces (API)

Application Programming Interface (APIs) are software intermediaries that allows applications to

communicate with each other [255]. As such, APIs developed with Mulesoft were leveraged to

query data stored in S3. The MuleSoft APIs initially extract the indices or locations of desired data

files from Elastic Search, and use this information to return the requested data.

PostgreSQL

PostgreSQL is a relational database that stores Big Data in a safe and secure manner [170–172].

It was leveraged as an additional store of data as analysts can use SQL-like queries to query data

needed. It was also leveraged to provide data to Tableau dashboards developed to facilitate the

analysis and assessment of daily airport operations.

Tableau

Tableau is a visualization tool that enables users to analyze, understand, interpret, and manipulate

data [256, 257]. As such, it was leveraged to provide a means for stakeholders to efficiently analyze

and assess daily airport operations.

6.1.2 Step #2 : Deployment of software and scripts

The overaching objective of this work is to develop a framework to facilitate the analysis and

assessment of daily airport operations. It was observed from Experiments 1 and 2 discussed in

Chapters 4 and 5, respectively, that unsupervised and supervised Machine Learning techniques can

140



be leveraged to analyze and assess daily airport operations. As such, there is a need to incorporate

the classification models developed in Chapter 5 into the framework.

As previously discussed, Ansible scripts automate the deployment of system configurations,

software, codes, files, etc. into Big Data platforms, and replaces the manual and time consuming

effort required to transfer and/or install software, codes, etc. Consequently, Ansible scripts were

written to deploy Python 3.7 and libraries needed for the Machine Learning models, the Machine

Learning scripts, and the data from Experiment 2 which is needed to train the models. Two Postgres

tables were also created and deployed - one to store the data needed for the prediction models

and the other to store the outcomes of the prediction models. Cron jobs were then created and

deployed to schedule the execution of the Machine Learning scripts. Each of these were deployed

with Ansible Tower [258] into the FAA’s Computing Analytics and Shared Services Integrated

Environment (CASSIE). NiFi is currently leveraged by CASSIE. As such, there was no need to

deploy it. The next four steps of this experiment were implemented using NiFi.

6.1.3 Step #3: Initiate Framework

FAA Analysts and researchers manually extract and process the previous day’s metrics each week-

day morning. The next step of Experiment 3 thus involves enabling the framework to be auto-

matically initiated or triggered each weekday morning to extract and process the data needed from

ASPM’s database. This was achieved by leveraging the seven processors shown in Figure 6.4.

Generatefiles processors create files with random data or custom content at a predefined time

[259]. The Generatefiles processor labelled “Test Connection” serves as an initial trigger of the

framework at 7:30 AM EST each weekday, as ASPM is updated with the previous day’s metrics by

7AM EST each weekday morning. The initial trigger is used to test the framework’s connection to

ASPM each weekday morning, prior to the extraction and processing of data. The Generatefiles

processor labelled “24 hours (Mon-Fri)” is used to generate a file comprised of the previous day’s

date, at 8AM EST each weekday. Two additional Generatefiles processors, labelled “Previous 48
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Figure 6.4: Generatefiles and UpdateAttribute Processors

hours” and “Previous 72 hours” are scheduled to generate files containing the dates of the previous

Friday and Saturday at 8:00AM EST every Monday, as ASPM is updated with the prior weekend’s

data each Monday morning. The Generatefiles processor labelled “Delayed Queries” is used to

trigger the initiation of the framework whenever there is a need to extract and process data from a

specific date.

The generated files containing dates serve as inputs to SQL queries needed to extract metrics

from ASPM, and replaces the need for analysts to manually enter the desired day’s date into the

SQL query of each table in ASPM’s database. The desired day’s date generated by the Generate-

files processor is of the format “YYYY-MM-DD”, where YYYY, MM, and DD correspond to the

year, month, and day, respectively. The various tables in the database require the date to be queried

in varying formats. As such, the two UpdateAttribute processors [260] labelled, “Set day, month,

years” and “Create variations of date”, as seen in Figure 6.4, are used to transform the predefined

date into parameters needed for the various queries. A summary of these parameters, as well as

their corresponding time-related variables are provided in Table 6.1.
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Table 6.1: Time-related parameters for querying of data

Parameter Formats Context
DD Day
MM Month

YYYY Year
YYYYMM YearMonth

YYYYMMDD YearMonthDay
MM/DD/YYYY Month/Day/Year

6.1.4 Step #4: Extract data

The next step involves querying the metrics needed for the categorization of daily airport opera-

tions. The metrics are stored in different tables in ASPM’s database. The files comprised of the

time-related parameters in Table 6.1 are passed into specific ExecuteSQL processors [261], one

for each table in the database. These parameters are dynamically inserted into SQL queries needed

to extract data from the tables. A majority of the metrics needed for the categorization of daily

airport operations are directly extracted from the database. However, completion rate, number of

Ground Stops, and Ground Delay Program lead-in time and number of revisions are computed

using data extracted from ASPM. Completion rate is computed using the number of arrivals and

cancellations at an airport, while the number of Ground Stops, and Ground Delay Program lead-in

time and number of revisions are computed using Ground Stop and Ground Delay Program data,

respectively. Table 6.2 provides a summary of metrics to be extracted from ASPM. It also shows

that certain metrics are extracted from the same tables.
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Table 6.2: Summary of metrics and their SQL Tables

Metric Table
Arrival count 1

Diversions 2
TMI to airport delays 3

Departure delays 3
Airborne Holding events 3

Airborne Holding minutes 3
Cancellation count 4

Ground Stops 5
Ground Delay Programs 6

This step is automated as the ExecuteSQL processors are triggered by the incoming files com-

prised of the predefined date. The ExecuteSQL processors are connected to ASPM’s database

by using a Database Connection Pooling Service [262] such as DBCPConnectionPool [263, 264].

The DBCPConnectionPool is configured with the database’s connection url, driver class name and

location(s), username, and password. The queried data is extracted in avro format [265], which

uses json [266] objects to define data types and protocols. Avro formats also serialize data in a

compact binary format, which ensures the rapid ingestion of large amounts of data for processing.

Each ExecuteSQL processor is also configured with a feedback loop, as seen in Figure 6.5 to

ensure that failed queries are re-executed. This will enable analysts to keep track of failed queries

and to identify any issues pertaining to the database such as missing or inconsistent data, wrong

query statements, etc. It is also important to note that the duration of each query differs, which may

impact the order that metrics are compiled by airport for analysis. Consequently, an UpdateAt-

tribute processors is used to tag the output of each query with a priority number corresponding to

their table number in Table 6.2, to ensure a consistent compilation of data by airport, later on in

the data flow.
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Figure 6.5: ExecuteSQL Processor

6.1.5 Step #5: Process data

The next step in the methodology focuses on processing the extracted data using the following

process:

Split files

Each query outputs a single file composed of specific metrics for the eight airports. However, there

is a need to generate individual records of each metric per airport to facilitate their categorization.

The SplitAvro processor [267], shown in Figure 6.6 is thus used to split up the binary encoded

files into individual records. As seen in Figure 6.6, LogMessage processors are connected to the

SplitAvro processors to allow analysts to identify files that are not split due to corrupted content,

inconsistent formats, etc. The processors also provides details of the cause(s) of failure.
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Figure 6.6: SplitAvro and ConvertAvroToJSON Processors

Convert files

As previously mentioned, the metrics are ingested from ASPM in avro format. Avro is appropriate

for data transfer and storage purposes as data is compressed into binary records. There is thus a

need for the ingested data to be converted into a format suitable for data analytics purposes. The

ConvertAvroToJSON processor, shown in Figure 6.6 is thus used to convert the files from avro

to json. This is achieved by using the schema of the avro files to map each avro field to a json

field. This ensures that the resulting json files have the same hierarchical structure as the Avro file.

LogMessage processors are used to identify files that are not successfully converted, as well as the

cause(s) of failure, as seen in Figure 6.6.

Fuse metrics by airport

The next step focuses on fusing the json files comprised of metrics by airport. This is achieved

by using the EvaluateJsonPath, EnforceOrder, and MergeContent processors. Six EvaluateJ-

sonPath Processors [268], one for each APSM table and labelled “Tag file with airport name”, as

seen in Figure 6.7, are used to tag each json file with the name of the airport that the data belongs

to. This is achieved by evaluating the contents of incoming json files and extracting the json key

corresponding to the name of the airport. Incoming files that do not contain the specified json key

are routed to LogMessage processors as unmatched, as seen in Figure 6.7. This enables analysts
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to identify any files that are not tagged correctly, as they will hinder the eventual compilation of

metrics by airport. LogMessage processors are also used to identify any invalid json files, which

are routed as failures.

Figure 6.7: EvaluateJsonPath Processors

Successfully tagged files are then routed to the EnforceOrder processor which is used to en-

sure that incoming files containing various metrics are merged/compiled by airport in a consistent

order. This processor facilitates the consistent merging of metrics by ensuring that metrics for each

airport are ordered according to their previously assigned priority number. This is particularly im-

portant as the compilation of metrics by airport may be impacted by errors, branching, and other

flow designs. The EnforceOrder processor keeps track of each airport’s current priority number

as it processes the files, starting from one to six, which is the number of ASPM tables used for this

work and thus, the predefined maximum priority number. As such, any files containing metrics
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that arrive late and have a priority number lower than an airport’s current number are routed as

skipped, as seen in Figure 6.8. These files are routed back into the flow and placed in order once

the maximum priority number is reached. Any files that arrive early with a priority number higher

than current, are routed to wait. These files are routed back into the flow once their priority number

is reached. Files with higher priority numbers may be routed to wait indefinitely when files with

lower priority numbers are not processed due to prior failures. A wait timeout is thus set to route

waiting files to overtook, which are then routed back to the flow, as seen in Figure 6.8. Any files

without an airport tag or priority number are routed to failure, while successfully ordered files are

routed to the MergeContent processor, as seen in Figure 6.8. The EnforceOrder processor is also

configured to reset the priority number to one after 40 minutes to ensure the consistent merging

of files the next time the framework is initiated. The MergeContent processor then merges the

metrics and packages them into individual files for each airport.

Figure 6.8: EnforceOrder and MergeContent files Processors
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Ensure consistency of data

The next step of the proposed methodology focuses on ensuring the consistency of data. Di-

versions, Cancellations, Ground Stops, and Ground Delay Programs are extracted as null values

whenever an airport is not characterized by any of these events, unlike the other metrics which

output zero in the case of no event. There is thus a need to convert the null values to zero to facili-

tate the categorization of daily airport operations. This is achieved by using a RouteOnAttribute

processor [269] to identify the number of metrics with null values for each airport in order for them

to be updated to zero. The processor is used to route each file to different processors based on how

many null values are present, as seen in Figure 6.9, where the name of the connection corresponds

to the number of metrics with null values. EvaluateJsonPath processors are then used to identify

metrics with null values which are replaced with zero using UpdateAttribute processors.

Figure 6.9: RouteOnAttribute Processor
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6.1.6 Step #6: Temporarily store data

The next step involves temporarily storing the extracted metrics into Postgres tables. The data

in these tables serve as inputs to the Machine Learning models used to categorize daily airport

operations. Json files containing the metrics are stored in the Postgres tables using PostgreSQL

processors, as seen in Figure 6.10. It also shows that a feedback loop is used to ensure that ad-

ditional attempts are made to insert the data into the table, if needed. The framework is also

configured to notify analysts via email after retry attempts have failed due to invalid queries or

integrity constraint violations. This is achieved by leveraging the PutEmail processor, as seen in

Figure 6.10, which notifies analysts of the causes and locations of errors in the data flow that hinder

the storage of airport data in the Postgres tables.

Figure 6.10: PostgreSQL and PutEmail Processors
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6.1.7 Step #7: Execute Scripts

The deployed cron jobs are used to schedule the execution of the Machine Learning scripts at

8:45AM, each workday to categorize airport operations from the previous day. Cron jobs are also

scheduled to execute the Machine Learning scripts at 9AM and 10AM each Monday to categorize

airport operations from the previous Friday and Saturday, respectively. The Machine Learning

scripts extract data from the temporary Postgres tables, compute the Completion Rate, number

of Ground Stops, and Ground Delay Program revisions and lead-in time for each airport. The

computed metrics as well as the other extracted metrics are then used as inputs of the prediction

models. The contents of the temporary Postgres tables are deleted after the successful execution

of the scripts. The category that each daily airport operation belongs to, posterior probability or

degree of support of predictions, and the computed and extracted metrics are then stored in another

Postgres table, permanently. Finally, cron jobs are also scheduled to retrain the models on the first

day of each month so as to learn from the additional data obtained from the previous month.

6.1.8 Step #8: Permanently store data

The next step involves using Apache Nifi to extract the previous day’s data from the Postgres table

for storage in S3. This is done to facilitate the use of APIs to query data. This is achieved by

configuring and scheduling an ExecuteSQL processor to query the previous day’s data from the

permanent Postgres table an hour after the framework is triggered. The queried data is then stored

in S3 using the process shown in Figure 6.11.

The extracted files are stored in S3 in json format using the PutS3Object processor [270].

The GenerateMetadataJson processor is then used to create metadata for each file comprised of

the date, S3 location, and other pertinent information which is stored in Elastic Search with the

PutElasticsearchHttp processor [271]. The metadata facilitates the querying of data with an API.
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Figure 6.11: PutS3Object, GenerateMetadataJson and PutElasticsearchHttp Processors

6.1.9 Step #9: Analyze data

The final step of this methodology involves providing a means for analysts to analyze the data.

This is achieved by leveraging an API developed with MuleSoft [255] to facilitate the querying

of data. Credentials and instructions for querying data across different time periods and airports

will be provided to analysts to enable them access to the data needed for their work. Interactive

dashboards with Tableau [256, 257] were also developed to enable analysts to efficiently analyze

daily airport operations. These dashboards are updated by 9:15AM every weekday morning with

airport operations data to facilitate their analysis.
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6.2 Implementation and Testing of Methodology for Developing a Framework for the Ex-

traction, Processing, and Storage of Aviation Data

The methodology outlined in the previous section was implemented to develop a framework to fa-

cilitate the efficient extraction, processing, storage, and analysis of daily airport operations, as seen

in Figure 6.12. In particular, it shows the different technologies and software that were leveraged

for each component of the framework.

Figure 6.12: High level overview of framework

It was observed from a four-month long monitoring of the framework that its performance

was excellent as data was extracted, processed, and stored in a reliable and secure manner, as

expected. In addition, the accuracy of the prediction models remained excellent as the models

were automatically retrained on the first day of each month using the original training data as well

as the data processed from the previous month. Figures 6.13, 6.14, 6.15, and 6.16 of Appendix ??

show dashboards that were developed to facilitate the analysis of daily airport operations.

The dashboard shown in Figure 6.13 enables analysts to review the category that airport oper-

ations belong to, the degree to which daily operations belong to each airport category, and airport

metrics for the selected day. This is done by selecting a date and one or more airports from the

dropdown menus, and hovering over the airport. As observed in Chapter 4, daily airport operations

in the first, second, and third clusters are characterized by good, varying, and poor operational per-

formance, respectively. As such, green, yellow, and red were used to indicate good, varying, and

poor operational performance of the airports, as seen in Figure 6.13.
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Figure 6.13: Dashboard for reviewing daily airport operations on a specific day

Figure 6.14 shows a dashboard that provides an aggregated overview of daily operations across

airport categories. This enables analysts to compare the breakdown of airport operations across

clusters and airports. Hovering over an airport also provides a summary of the various metrics

over the time period selected in any of the drop down menus.
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Figure 6.14: Dashboard for reviewing daily airport operations across different time periods

Figure 6.15 enables analysts to analyze the distribution of metrics across the different airport

clusters. The distributions can be analyzed across multiple days, seasons, months or years by using

their drop down menus. This facilitates the analysis of airport operations for the identification of

trends and patterns.
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Figure 6.15: Dashboard for analyzing metrics across airport categories

Figure 6.16 shows the ranking of metric airport of each airport obtained in Experiment 4. This

interactive dashboard enables analysts to compare how metrics impact daily airport operations.
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Figure 6.16: Dashboard for analyzing the ranking of metric importance across airports

6.3 Summary of Findings from Experiment 3

Research Question 3 posed in Chapter 3 examines the capability of the methodology discussed

herein to develop a framework for the efficient extraction, processing, storage, and analysis of data

needed for the analysis and assessment of daily airport operations. As such, Experiment 3 was
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developed, implemented, and tested by incorporating the outcomes of Experiments 1 and 2, and

identifying and leveraging a set of technologies and software that offer a reliable and secure way

for handling aviation data. The developed framework automates the flow of data from extraction

through storage and enables users to track the flow of data in real time. It also facilitates data

provenance by logging the history of all processes, and is equipped with the capability to log

errors and their causes, and to notify analysts via email whenever they occur. In addition, it scales

well and has the capacity to facilitate the analysis and assessment of the daily operations of all

airports in the NAS, if needed. The framework is also equipped with interactive dashboards that

are updated by 9:15AM every weekday to enable analysts to efficiently analyze and compare daily

airport operations in real time.

The eventual deployment of the framework into the FAA’s Enterprise Information Management

(EIM) platform will enable FAA analysts and researchers to perform a comprehensive analysis of

daily airport operations in real time in a cloud-based environment. Indeed, this framework will be

one of the first of its kind to be deployed in the FAA’s EIM platform, and will serve as a template

for leveraging cloud-based services and Big Data technologies to maintain the safety and improve

operations in the National Airspace System. Based upon these findings, it is concluded that the

conditions of Hypothesis 3 are satisfied, namely that developing an automated framework will

facilitate the efficient analysis and assessment of daily airport operations, from data extraction,

through processing, analysis, and storage.

Therefore, the hypothesis for Research Question 3 are verified.
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CHAPTER 7

CONCLUSION

Even though tremendous progress has been made to modernize the NAS by way of technological

advancements and the introduction of procedures and policies that have maintained the safety of

the United States airspace, much more needs to be done to ensure that operations in the NAS, and

particularly at airports, are as efficient as possible. Traffic management personnel regularly ana-

lyze projected airport demand, forecasted weather conditions, and the statuses of airport systems,

equipment, and infrastructure in order to plan daily airport operations. Ideally, the impact and

effectiveness of traffic management decisions and procedures on daily airport operations should

be analyzed and assessed in an efficient manner, so as to identify trends and patterns, which will

inform better decision making and thus, improve airport operational performance. However, it was

observed from a survey of the literature that a robust approach to analyze and assess daily airport

operations is lacking. This gap prompted the overaching objective of this research:

Develop a framework to facilitate the analysis and assessment of daily airport operations to

improve airport operational performance

To meet this objective, it was hypothesized that:

A framework that automates the extraction and processing of airport data, and facilitates the

analysis and assessment of daily airport operations in a comprehensive, robust, and repeatable

manner will enable stakeholders to identify trends and patterns for better decision making and as

a consequence lead to improved airport operational performance
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This overarching hypothesis is associated with methodologies that categorize daily airport op-

erations, determine the category that daily airport operations belong to, provide a means for ana-

lyzing and assessing daily airport operations, and develop a framework to automate the ingestion,

processing, analysis, and storage of airport data. The methodologies were developed by building

upon methods and techniques within the literature in order to formulate a set of tools which are

tailored for use within the given context. Following their development, each methodology was fur-

ther examined according to the set of research questions formulated within Chapter 3. A summary

of these research questions and their relative relationship to the major components of the overall

methodology is provided in Figure 7.1.

Figure 7.1: Summary of overall methodology with examined research questions
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7.0.1 Research Question 1

Research Question 1 was tested through Experiment 1 and is stated as:

Research Question 1

How can daily airport operations be categorized in a systematic, robust and repeatable manner?

This research question examined the capability of the methodology herein discussed to catego-

rize daily airport operations to facilitate their analysis and assessment. While the existing literature

outlined various efforts pursued to categorize and analyze airports and their operations, it was ob-

served that a systematic, robust, and repeatable approach is lacking. As such, Experiment 1 was

developed, implemented, and tested with data from 8 U.S. airports. This involved extracting and

computing the necessary metrics, normalizing the data, reducing the dimensionality and assessing

the clustering tendency of the datasets, benchmarking and evaluating the performance of clustering

algorithms, identifying the best combination of algorithm and number of clusters, and determining

the best suited approach for categorizing daily operations of each airport. The dimensionality of all

but two of the datasets was reduced from 9 to 3 using Principal Component Analysis. The dimen-

sionality of the Boston Logan and Dulles International Airport datasets was reduced from 9 to 4.

The clustering tendency of the datasets was observed to be very high, as indicated by the high Hop-

kins Statistic values and presence of multiple boxes along the diagonal of the Visual Assessment

of clustering Tendency (VAT) plots of each airport. The best combination of clustering algorithm

and number of clusters was also determined to be the Single Linkage Hierarchical algorithm and

3 clusters for each airport by a majority of metrics. The three clusters of each airport were an-

alyzed and observed to either exhibit good, varying, or poor operational performance, as seen in

Table 4.35. The number of clusters and their characteristics were consistent with the approach cur-

rently employed by the Operational Service Performance Criteria (OSPC), which classifies daily

airport operations into “Good days”, “Average days”, and “Bad days”. The outcomes of cluster-

ing and OSPC were then compared and reviewed by Subject Matter Experts to determine the best
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approach for categorizing daily operations at each airport. The comparison revealed that OSPC

classified a majority of daily airport operations as “Good days”, even though several of them ex-

hibited sub-optimal to poor operational performance due to very low completion rates and Ground

Delay Program lead-in times, and high airborne holdings (minutes and number of aircraft). As

such, FAA analysts may have to manually validate these classifications each day and/or regularly

update the predefined ranges of metrics. The clustering algorithm on the other hand, correctly

classified a majority of these as either having varying or poor operational performance. Variations

of the means, medians, and modes of the airport clusters also indicates that the same predefined

set of ranges of metrics should not be applied across the eight airports, as is currently done in

OSPC. This observation in addition to the distributions of metrics across airport clusters shows

that the metrics cannot be weighted equally, as is currently assumed with OSPC. Based upon this

comparison and the review of the developed clusters by Subject Matter Experts, it was concluded

that the conditions of Hypothesis 1 were satisfied, namely that benchmarking clustering algorithms

while varying the number of clusters will facilitate the categorization of daily airport operations

in a systematic, robust, and repeatable manner. Therefore, the hypothesis for Research Question 1

was verified.

7.0.2 Research Questions 2

The second set of research questions focused on the development of a robust and repeatable

methodology for determining the category that daily airport operations belong to. They also focus

on developing methodologies to facilitate the comparison of daily airport operations in similar and

different categories, and the analysis and assessment of the impact of traffic management decisions

on daily airport operations, both of which are currently lacking. Consequently, the second research

question is threefold:
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Research Question 2.1

How can the category that a daily airport operation belongs to be better determined?

Research Question 2.2

How can daily airport operations in similar and different categories be compared for the

identification of trends and patterns?

Research Question 2.3

How can the impact of traffic management personnel actions on airport operations be analyzed

and assessed?

Research Question 2.1 posed in Chapter 3 examined the capability of the methodology herein

discussed to determining the category that a daily airport operation will belong to, instead of iden-

tifying the predominant class of parameters. As such, Experiment 2 was developed, implemented,

and tested with metrics from 8 U.S. airports and the Random Forests Machine Learning Algorithm.

This experiment involved randomly splitting the data from each airport into training-validation and

test datasets. The SMOTE algorithm was then leveraged to reduce the imbalanced nature of the

datasets to ensure optimal model performance. Prediction models were then trained while tuning

algorithm hyperparameters, and the performance of the models developed with the optimal com-

binations of hyperparameters were then evaluated with a set of metrics. Based upon the excellent

performance of the prediction models, it is observed that the conditions of Hypothesis 2.1 are

satisfied, namely that developing prediction models with Machine Learning will provide a robust

means for determining the category that daily airport operations will belong to.

The remainder of Experiment 2 involved leveraging the ranking of predictor importance, De-

cision Trees, and the probability or degree of support of predictions to facilitate the analysis and

comparison of daily airport operations. It was observed in Section 5.3 that the conditions for Hy-

pothesis 2.2 are satisfied, namely that daily operations in similar and different categories can be
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compared by leveraging the posterior probability or degree of support of predictions of the pre-

diction models. It was also observed in Section 5.4 that the conditions for Hypothesis 2.3 are

satisfied, namely that the ranking of predictor importance and Decision Trees of prediction models

provide a means for analyzing and assessing the impact of traffic management decisions on airport

operations. Therefore, the hypotheses for Research Questions 2.1, 2.2, and 2.3 are verified.

7.0.3 Research Questions 3

The final Research Question tested through Experiment 3 is:

Research Question 3

How can the efficient analysis and assessment of daily airport operations be automated from data

extraction, through processing, analysis, and storage?

Research Question 3 posed in Chapter 3 examined the capability of the methodology herein

discussed to develop a framework for the efficient extraction, processing, storage, and analysis of

data needed for the analysis and assessment of daily airport operations. As such, Experiment 3 was

developed, implemented, and tested by incorporating the outcomes of Experiments 1 and 2, and

identifying and leveraging a set of technologies and software that offer a reliable and secure way for

handling Big Data. The developed framework automates the flow of data from extraction through

storage, and enables users to track the flow of data in real time, and facilitates data provenance

by logging the history of all processes. The framework is also equipped with the capability to

log errors and their causes, and to notify analysts via email whenever they occur. In addition, it

scales well and has the capacity to facilitate the analysis and assessment of the daily operations

of all airports in the NAS, if needed. The framework is also equipped with interactive dashboards

that allow analysts to efficiently analyze and compare daily airport operations in real time. The

dashboards are updated by 9:15AM every weekday, which prevents analysts from spending a lot
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of their their time manually extracting and processing the data needed. It was observed from a two-

month long monitoring of the framework that its performance was excellent as data was extracted,

processed, and stored in a reliable and secure manner, as expected. Based upon these findings, it

is observed that the conditions of Hypothesis 3 are satisfied, namely that developing a framework

will automate the analysis and assessment of daily airport operations, from data extraction, through

processing, analysis, and storage.

Based upon the verification of the hypotheses of the Research Questions, it is concluded

that the conditions of the overaching Hypothesis are satisfied, namely that developing a

framework that automates the extraction and processing of airport data, and facilitates the

analysis and assessment of daily airport operations in a comprehensive, robust, and repeat-

able manner enables stakeholders to identify trends and patterns for better decision making

and consequently leads to improved airport operational performance.

7.1 Contributions

During the course of this work, several contributions have been made which ware discussed below.

The first contribution of this work is the development and testing of a methodology for catego-

rizing daily airport operations airport as a means to facilitate their analysis and assessment. The

developed methodology leveraged clustering algorithms to categorize the daily operations of eight

U.S. airports, instead of using predefined ranges of metrics as is currently done by FAA analysts

and researchers. The outcomes of this methodology also highlighted the need to benchmark the

performance of clustering algorithms while varying the number of clusters in order to identify the

optimal combination of algorithm(s) and number of clusters.

The second contribution of this work is the development of a methodology for determining the

category that subsequent daily airport operations belong to, instead of identifying the predominant

class of metrics, as is currently done by FAA analysts. Indeed, the excellent performance of the

prediction models for each airport indicates that this methodology serves as a robust approach for
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determining the category that daily airport operations belong to. The repeatable nature of this

methodology will enable FAA analysts to expand the scope of this work to include additional

airports in the NAS.

Another contribution of this work is the development of methodologies to facilitate the com-

parison of daily airport operations, and the analysis and assessment of the impact of traffic man-

agement decisions on daily airport operations which are currently lacking. These will enable FAA

analysts and traffic management personnel to make better decisions to ensure safe and efficient

airport operations.

The final contribution of this work is the development of a framework for the efficient ex-

traction, processing, storage, and analysis of data needed for the analysis and assessment of daily

airport operations. The developed framework automates the flow of data from extraction through

storage and enables users to track the flow of data in real time. It also facilitates data provenance

by logging the history of all processes and is equipped with the capability to log errors and their

causes, and to notify analysts via email whenever they occur. In addition, it scales well and has the

capacity to facilitate the analysis and assessment of the daily operations of all airports in the NAS,

if needed. The successful deployment of the framework into the FAA’s EIM platform will enable

FAA analysts and researchers to perform a comprehensive analysis of daily airport operations in

real time in a cloud-based environment. Indeed, this framework will be one of the first of its kind

to be deployed in the FAA’s EIM platform, and will serve as a template for leveraging cloud-based

services and Big Data technologies to maintain the safety and improve operations in the National

Airspace System.

7.2 Recommendations for Future Work

This dissertation has outlined how the development of a framework will lead to the efficient extrac-

tion, processing, and storage of data needed for the analysis of daily airport operations. However,

this present work was carried out using data from 8 U.S. airports. As such, the first recommenda-
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tion for future work involves expanding the scope of the developed framework to include additional

airports of interest to FAA analysts and researchers. Indeed, the scope of this work can be expanded

to include all airports in the NAS due to the scalable nature of the framework.

Traffic management personnel use forecasted weather data (Terminal Aerodrome Forecasts),

projected airport demand, etc. to plan daily airport operations. The next recommendation for future

work thus focuses on fusing airport operations and weather data, and leveraging supervised Ma-

chine Learning algorithms to predict the category that future daily airport operations will belong to.

Doing so will enable stakeholders to analyze and assess how various possible traffic management

decisions may impact airport operations, which will then lead to better decision making.

It was observed from Chapter 5 that the planning and implementation of Traffic Management

Initiatives has significant impacts on operations at BOS, DCA, EWR, JFK, LGA, and PHL. As

such, the next recommendation for future work focuses on developing a methodology to determine

how the time between the announcement and implementation of Traffic Management Initiatives

impacts daily airport operations. This can be achieved by leveraging Data Fusion, supervised Ma-

chine Learning algorithms, and Partial Dependence Plots (PDP) to assess how Traffic Management

Initiative lead-in times impact daily airport operations. The implementation of this methodology

will allow traffic management personnel to better plan and implement Traffic Management Ini-

tiatives. It will also provide insights into how early Traffic Management Initiatives should be

announced prior to their implementation to ensure the efficient operation of airports.

As previously discussed, the framework developed for this research was implemented and

tested in the FAA’s Computing Analytics and Shared Services Integrated Environment (CASSIE).

The final recommendation for future work thus involves successfully deploying and testing the

framework in the FAA’s Enterprise Information Management platform. Doing so will allow FAA

analysts to readily analyze and assess daily airport operations. Furthermore, this platform contains

different NAS-related datasets that can be fused and leveraged by FAA analysts to further analyze

daily airport operations.

167



Appendices

168



APPENDIX A

TABLES

Table A.1: Air Route Traffic Control Centers (ARTCCs) and their locations in the United States
[272]

ARTCC Location
ZAB Albuquerque
ZAN Anchorage
ZAU Chicago
ZBW Boston
ZDC Washington
ZDV Denver
ZFW Dallas-Fort Worth
ZHN Honolulu
ZHU Houston
ZID Indianapolis
ZJX Jacksonville
ZKC Kansas City
ZLA Los Angeles
ZLC Salt lake City
ZMA Miami
ZME Memphis
ZMP Minneapolis
ZNY New York
ZOA Oakland
ZOB Cleveland
ZSE Seattle
ZTL Atlanta
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Table A.2: Machine Learning Algorithms And Their Learning Tasks

Algorithm Learning Task
Nearest neighbor Classification

Naive Bayes Classification
Decision Trees Classification

Classification Rule Learners Classification
Linear Regression Numeric Prediction
Regression Trees Numeric Prediction

Model Trees Numeric Prediction
Neural Networks Dual use

Support Vector Machines Dual use
Association Rules Pattern detection

K-means Clustering
Random forests Dual use

Bagging Ensemble Dual use
Boosting Ensemble Dual use

Divisive Analysis (DIANA) Clustering
Self Organizing Tree Algorithm (SOTA) Clustering

Complete Linkage Clustering
Average Linkage Clustering
Single Linkage Clustering

Centroid Linkage Clustering
Ward Clustering

Partitioning Around Medoids (PAM) Clustering
Clustering for Large Applications (CLARA) Clustering

Model-based Clustering
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APPENDIX B

BENCHMARKING AND EVALUATION OF CLUSTERING ALGORITHMS

B.1 Baltimore/Washington International Thurgood Marshall Airport (BWI)

Figure B.1: Average Proportion of Non-overlap (APN) for Baltimore/Washington International
Thurgood Marshall Airport (BWI)

171



Figure B.2: Average Distance (AD) for Baltimore/Washington International Thurgood Marshall
Airport (BWI)

Figure B.3: Average Distance between Means (ADM) for Baltimore/Washington International
Thurgood Marshall Airport (BWI)
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Figure B.4: Figures of Merit (FOM) for Baltimore/Washington International Thurgood Marshall
Airport (BWI)
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Figure B.5: Connectivity for Baltimore/Washington International Thurgood Marshall Airport
(BWI)

Figure B.6: Dunn Index for Baltimore/Washington International Thurgood Marshall Airport (BWI)
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Figure B.7: Silhouette for Baltimore/Washington International Thurgood Marshall Airport (BWI)
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B.2 Reagan National Airport (DCA)

Figure B.8: Average Proportion of Non-overlap (APN) for Reagan National Airport (DCA)
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Figure B.9: Average Distance (AD) for Reagan National Airport (DCA)

Figure B.10: Average Distance between Means (ADM) for Reagan National Airport (DCA)
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Figure B.11: Figures of Merit (FOM) for Reagan National Airport (DCA)

Figure B.12: Connectivity for Reagan National Airport (DCA)
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Figure B.13: Dunn Index for Reagan National Airport (DCA)

Figure B.14: Silhouette for Reagan National Airport (DCA)
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B.3 Newark Liberty International Airport (EWR)

Figure B.15: Average Proportion of Non-overlap (APN) for Newark Liberty International Airport
(EWR)
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Figure B.16: Average Distance (AD) for Newark Liberty International Airport (EWR)

Figure B.17: Average Distance between Means (ADM) for Newark Liberty International Airport
(EWR)
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Figure B.18: Figures of Merit (FOM) for Newark Liberty International Airport (EWR)

Figure B.19: Connectivity for Newark Liberty International Airport (EWR)
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Figure B.20: Dunn Index for Newark Liberty International Airport (EWR)

Figure B.21: Silhouette for Newark Liberty International Airport (EWR)
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B.4 Dulles International Airport (IAD)

Figure B.22: Average Proportion of Non-overlap (APN) for Dulles International Airport (IAD)
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Figure B.23: Average Distance (AD) for Dulles International Airport (IAD)

Figure B.24: Average Distance between Means (ADM) for Dulles International Airport (IAD)
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Figure B.25: Figures of Merit (FOM) for Dulles International Airport (IAD)

Figure B.26: Connectivity for Dulles International Airport (IAD)
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Figure B.27: Dunn Index for Dulles International Airport (IAD)

Figure B.28: Silhouette for Dulles International Airport (IAD)
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B.5 John F. Kennedy International Airport (JFK)

Figure B.29: Average Proportion of Non-overlap (APN) for John F. Kennedy International Airport
(JFK)
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Figure B.30: Average Distance (AD) for John F. Kennedy International Airport (JFK)

Figure B.31: Average Distance between Means (ADM) for John F. Kennedy International Airport
(JFK)
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Figure B.32: Figures of Merit (FOM) for John F. Kennedy International Airport (JFK)

Figure B.33: Connectivity for John F. Kennedy International Airport (JFK)
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Figure B.34: Dunn Index for John F. Kennedy International Airport (JFK)

Figure B.35: Silhouette for John F. Kennedy International Airport (JFK)
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B.6 LaGuardia Airport (LGA)

Figure B.36: Average Proportion of Non-overlap (APN) for LaGuardia Airport (LGA)
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Figure B.37: Average Distance (AD) for LaGuardia Airport (LGA)

Figure B.38: Average Distance between Means (ADM) for LaGuardia Airport (LGA)
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Figure B.39: Figures of Merit (FOM) for LaGuardia Airport (LGA)

Figure B.40: Connectivity for LaGuardia Airport (LGA)
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Figure B.41: Dunn Index for LaGuardia Airport (LGA)

Figure B.42: Silhouette for LaGuardia Airport (LGA)
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B.7 Philadelphia International Airport (PHL)

Figure B.43: Average Proportion of Non-overlap (APN) for Philadelphia International Airport
(PHL)
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Figure B.44: Average Distance (AD) for Philadelphia International Airport (PHL)

Figure B.45: Average Distance between Means (ADM) for Philadelphia International Airport
(PHL)
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Figure B.46: Figures of Merit (FOM) for Philadelphia International Airport (PHL)

Figure B.47: Connectivity for Philadelphia International Airport (PHL)
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Figure B.48: Dunn Index for Philadelphia International Airport (PHL)

Figure B.49: Silhouette for Philadelphia International Airport (PHL)
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APPENDIX C

COMPARISON OF RESULTS FROM CLUSTERING AND PREDEFINED RANGES OF

METRICS
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Table C.1: Comparison of the categorization of daily airport operations at BOS with Experiment 1
and Operational Service Performance Criteria
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Table C.2: Comparison of the categorization of daily airport operations at BWI with Experiment 1
and Operational Service Performance Criteria
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Table C.3: Comparison of the categorization of daily airport operations at DCA with Experiment
1 and Operational Service Performance Criteria
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Table C.4: Comparison of the categorization of daily airport operations at EWR with Experiment
1 and Operational Service Performance Criteria
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Table C.5: Comparison of the categorization of daily airport operations at IAD with Experiment 1
and Operational Service Performance Criteria
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Table C.6: Comparison of the categorization of daily airport operations at JFK with Experiment 1
and Operational Service Performance Criteria
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Table C.7: Comparison of the categorization of daily airport operations at LGA with Experiment
1 and Operational Service Performance Criteria
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Table C.8: Comparison of the categorization of daily airport operations at PHL with Experiment 1
and Operational Service Performance Criteria
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APPENDIX D

RANKING OF PREDICTOR IMPORTANCE

Figure D.1: Ranking of predictor importance (BOS)

Figure D.2: Ranking of predictor importance (BWI)
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Figure D.3: Ranking of predictor importance (DCA)

Figure D.4: Ranking of predictor importance (EWR)

Figure D.5: Ranking of predictor importance (IAD)

210



Figure D.6: Ranking of predictor importance (JFK)

Figure D.7: Ranking of predictor importance (LGA)
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APPENDIX E

DECISION TREES
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Figure E.1: Decision Tree (BOS)
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Figure E.2: Decision Tree (BWI)
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Figure E.3: Decision Tree (DCA)
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Figure E.4: Decision Tree (EWR)
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Figure E.5: Decision Tree (IAD)
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Figure E.6: Decision Tree (JFK)
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Figure E.7: Decision Tree (LGA)
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[240] GÃŠrard Biau. “Analysis of a random forests model”. In: Journal of Machine Learning
Research 13.Apr (2012), pp. 1063–1095.

[241] Adele Cutler, D Richard Cutler, and John R Stevens. “Random forests”. In: Ensemble
machine learning. Springer, 2012, pp. 157–175.

[242] J. Wang et al. “Classification of Imbalanced Data by Using the SMOTE Algorithm and
Locally Linear Embedding”. In: 2006 8th international Conference on Signal Processing.
Vol. 3. Nov. 2006.

[243] R. C. Bhagat and S. S. Patil. “Enhanced SMOTE algorithm for classification of imbal-
anced big-data using Random Forest”. In: 2015 IEEE International Advance Computing
Conference (IACC). June 2015, pp. 403–408.

[244] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of ma-
chine Learning research 12 (2011), pp. 2825–2830.

[245] Juan D Rodriguez, Aritz Perez, and Jose A Lozano. “Sensitivity analysis of k-fold cross
validation in prediction error estimation”. In: IEEE transactions on pattern analysis and
machine intelligence 32.3 (2009), pp. 569–575.

[246] Tadayoshi Fushiki. “Estimation of prediction error by using K-fold cross-validation”. In:
Statistics and Computing 21.2 (2011), pp. 137–146.

[247] Yoshua Bengio and Yves Grandvalet. “No unbiased estimator of the variance of k-fold
cross-validation”. In: Journal of machine learning research 5.Sep (2004), pp. 1089–1105.

[248] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer, 2013.

[249] K. H. Brodersen et al. “The Balanced Accuracy and Its Posterior Distribution”. In: 2010
20th International Conference on Pattern Recognition. Aug. 2010, pp. 3121–3124.

[250] Garcı́a V. and Mollineda R.A. and Sánchez J.S. Index of Balanced Accuracy: A Perfor-
mance Measure for Skewed Class Distributions. Springer, Berlin, Heidelberg, 2009.

240



[251] Koehrsen, Will. An Implementation and Explanation of the Random Forest in Python. [On-
line; accessed August 9, 2020]. 2018.

[252] Scott Moeller et al. “Routing without routes: The backpressure collection protocol”. In:
Proceedings of the 9th ACM/IEEE International Conference on Information Processing in
Sensor Networks. 2010, pp. 279–290.

[253] Amit Dvir and Athanasios V Vasilakos. “Backpressure-based routing protocol for DTNs”.
In: Proceedings of the ACM SIGCOMM 2010 conference. 2010, pp. 405–406.

[254] Matthias Brantner et al. “Building a database on S3”. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM. 2008, pp. 251–264.

[255] MuleSoft LLC. MuleSoft. https://www.mulesoft.com/. 2020.

[256] Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. “An analytic data engine for
visualization in tableau”. In: Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data. 2011, pp. 1185–1194.

[257] TABLEAU SOFTWARE. Tableau. https://www.tableau.com/. 2020.

[258] Ansible, Red Hat. Ansible Tower — Ansible.com. [Online; accessed August 11, 2020].
2020.

[259] Apache NiFi. GenerateFlowFile. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/
org.apache.nifi.processors.standard.GenerateFlowFile/. 2020.

[260] Apache NiFi. UpdateAttribute. http://nifi.apache.org/docs/nifi-docs/
components/org.apache.nifi/nifi- update- attribute- nar/1.
11.3/org.apache.nifi.processors.attributes.UpdateAttribute/
additionalDetails.html. 2020.

[261] Apache NiFi. ExecuteSQL. https://nifi.apache.org/docs/nifi-docs/
components/org.apache.nifi/nifi- standard- nar/1.5.0/org.
apache.nifi.processors.standard.ExecuteSQL/index.html. 2020.

[262] Varun Singh, Uday V Sawanat, and Naresh G Deshaveni. Method and system for transpar-
ent database connection pooling and query queuing. US Patent 8,484,242. July 2013.

[263] CHEN Jie. “Self-optimized Configuration of DBCP [J]”. In: Computer and Modernization
12 (2010).

241

https://www.mulesoft.com/
https://www.tableau.com/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.GenerateFlowFile/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.GenerateFlowFile/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.GenerateFlowFile/
http://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-update-attribute-nar/1.11.3/org.apache.nifi.processors.attributes.UpdateAttribute/additionalDetails.html
http://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-update-attribute-nar/1.11.3/org.apache.nifi.processors.attributes.UpdateAttribute/additionalDetails.html
http://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-update-attribute-nar/1.11.3/org.apache.nifi.processors.attributes.UpdateAttribute/additionalDetails.html
http://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-update-attribute-nar/1.11.3/org.apache.nifi.processors.attributes.UpdateAttribute/additionalDetails.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.ExecuteSQL/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.ExecuteSQL/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.5.0/org.apache.nifi.processors.standard.ExecuteSQL/index.html


[264] Apache NiFi. DBCPConnectionPool. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-dbcp-service-nar/1.5.
0/org.apache.nifi.dbcp.DBCPConnectionPool/index.html. 2020.

[265] Deepak Vohra. “Apache avro”. In: Practical Hadoop Ecosystem. Springer, 2016, pp. 303–
323.

[266] Nurzhan Nurseitov et al. “Comparison of JSON and XML data interchange formats: a case
study.” In: Caine 9 (2009), pp. 157–162.

[267] Apache NiFi. SplitAvro. https://nifi.apache.org/docs/nifi- docs/
components/org.apache.nifi/nifi-avro-nar/1.5.0/org.apache.
nifi.processors.avro.SplitAvro/. 2020.

[268] Apache NiFi. EvaluateJsonPath. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/
org.apache.nifi.processors.standard.EvaluateJsonPath/index.
html. 2020.

[269] Apache NiFi. RouteOnAttribute. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/
org.apache.nifi.processors.standard.RouteOnAttribute/index.
html. 2020.

[270] Apache NiFi. PutS3Object. https://nifi.apache.org/docs/nifi-docs/
components/org.apache.nifi/nifi-aws-nar/1.5.0/org.apache.
nifi.processors.aws.s3.PutS3Object/index.html. 2020.

[271] Apache NiFi. PutElasticsearchHttp. https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-elasticsearch-nar/1.5.
0/org.apache.nifi.processors.elasticsearch.PutElasticsearchHttp/.
2020.

[272] Federal Aviation Administration. Air Route Traffic Control Centers (ARTCC). https:
//www.faa.gov/about/office_org/headquarters_offices/ato/
service_units/air_traffic_services/artcc/. 2020.

242

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-dbcp-service-nar/1.5.0/org.apache.nifi.dbcp.DBCPConnectionPool/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-dbcp-service-nar/1.5.0/org.apache.nifi.dbcp.DBCPConnectionPool/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-dbcp-service-nar/1.5.0/org.apache.nifi.dbcp.DBCPConnectionPool/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-avro-nar/1.5.0/org.apache.nifi.processors.avro.SplitAvro/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-avro-nar/1.5.0/org.apache.nifi.processors.avro.SplitAvro/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-avro-nar/1.5.0/org.apache.nifi.processors.avro.SplitAvro/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.EvaluateJsonPath/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.EvaluateJsonPath/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.EvaluateJsonPath/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.EvaluateJsonPath/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.RouteOnAttribute/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.RouteOnAttribute/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.RouteOnAttribute/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.6.0/org.apache.nifi.processors.standard.RouteOnAttribute/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.5.0/org.apache.nifi.processors.aws.s3.PutS3Object/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.5.0/org.apache.nifi.processors.aws.s3.PutS3Object/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.5.0/org.apache.nifi.processors.aws.s3.PutS3Object/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-elasticsearch-nar/1.5.0/org.apache.nifi.processors.elasticsearch.PutElasticsearchHttp/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-elasticsearch-nar/1.5.0/org.apache.nifi.processors.elasticsearch.PutElasticsearchHttp/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-elasticsearch-nar/1.5.0/org.apache.nifi.processors.elasticsearch.PutElasticsearchHttp/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/air_traffic_services/artcc/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/air_traffic_services/artcc/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/air_traffic_services/artcc/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	National Airspace System
	Airport Capacity Constraints
	Traffic Management Decisions and Procedures
	Current Efforts Towards Improving the Efficiency of Airport Operations
	Analysis and Assessment of Airport Operational Performance

	Motivation

	Background and Literature Review
	Survey of Literature
	Observations from Literature

	Problem Formulation
	Research Objective
	Research Questions, Hypotheses Development, and Experiments
	Research Question, Hypothesis, and Experiment 1
	Research Questions, Hypotheses, and Experiments 2
	Research Question, Hypothesis, and Experiment 3


	Categorization of Daily Airport Operations
	Methodology Overview
	Step #1: Extract Data from ASPM
	Step #2: Compute Completion Rate
	Step #3: Compute the Number of Ground Stops
	Step #4: Compute Ground Delay Program Revisions and Lead-In Times
	Step #5: Normalize Datasets
	Step #6: Reduce the Dimensionality of Datasets
	Step #7: Assess the Clustering Tendency of Datasets
	Step #8: Benchmark and Evaluate the Performance of Clustering Algorithms
	Step #9: Identify Best Combination of Algorithm(s) and Number of Clusters

	Implementation and Testing of Methodology for the Categorization of Daily Airport Operations
	Boston Logan International Airport (BOS)
	Baltimore/Washington International Thurgood Marshall Airport (BWI)
	Reagan National Airport (DCA)
	Newark Liberty International Airport (EWR)
	Dulles International Airport (IAD)
	John F. Kennedy International Airport (JFK)
	LaGuardia Airport (LGA)
	Philadelphia International Airport (PHL)

	Summary of Findings from Experiment 1

	Determining the category that daily airport operations belong to
	Methodology Overview
	Step #1: Identify Suitable Machine Learning Algorithm
	Step #2: Split Datasets
	Step #3: Reduce Imbalanced Nature of Training-Validation Datasets
	Step #4: Train Models and Tune Hyperparameters
	Step #5: Test and Evaluate Models
	Step #6: Analyze Results

	Implementation and Testing of Methodology for Determining the Category That Daily Airport Operations Belong To
	Boston Logan International Airport (BOS)
	Baltimore/Washington International Thurgood Marshall International Airport (BWI)
	Reagan National Airport (DCA)
	Newark Liberty International Airport (EWR)
	Dulles International Airport (IAD)
	John F. Kennedy International Airport (JFK)
	LaGuardia Airport (LGA)
	Philadelphia International Airport (PHL)

	Implementation and Testing of Methodology for Comparing Daily Operations in Similar and Different Airport Categories
	Implementation and Testing of Methodology for Analyzing and Assessing How Traffic Management decisions Impact Airport Operations
	Ranking of Predictor Importance
	Decision Trees

	Summary of Findings from Experiment 2

	Development of a Framework for the Extraction, Processing, and Storage of Airport Data
	Methodology Overview
	Step #1 : Identify Suitable Technologies and Software
	Step #2 : Deployment of software and scripts
	Step #3: Initiate Framework
	Step #4: Extract data
	Step #5: Process data
	Step #6: Temporarily store data
	Step #7: Execute Scripts
	Step #8: Permanently store data
	Step #9: Analyze data

	Implementation and Testing of Methodology for Developing a Framework for the Extraction, Processing, and Storage of Aviation Data
	Summary of Findings from Experiment 3

	Conclusion
	Research Question 1
	Research Questions 2
	Research Questions 3

	Contributions
	Recommendations for Future Work

	Tables
	Benchmarking and Evaluation of Clustering Algorithms
	Baltimore/Washington International Thurgood Marshall Airport (BWI)
	Reagan National Airport (DCA)
	Newark Liberty International Airport (EWR)
	Dulles International Airport (IAD)
	John F. Kennedy International Airport (JFK)
	LaGuardia Airport (LGA)
	Philadelphia International Airport (PHL)

	Comparison of results from clustering and predefined ranges of metrics
	Ranking of Predictor Importance
	Decision Trees
	References

