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“As far as I’m concerned, if something is so complicated that you can’t explain it in 10

seconds, then it’s probably not worth knowing anyway.”

– Bill Watterson, Calvin and Hobbes
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SUMMARY

Bayesian networks (BNs) are an important subclass of probabilistic graphical models

that employ directed acyclic graphs to compactly represent exponential-sized joint proba-

bility distributions over a set of random variables. Since BNs enable probabilistic reasoning

about interactions between the variables of interest, they have been successfully applied in

a wide range of applications in the fields of medical diagnosis, gene networks, cyberse-

curity, epidemiology, etc. Furthermore, the recent focus on the need for explainability in

human-impact decisions made by machine learning (ML) models has led to a push for re-

placing the prevalent black-box models with inherently interpretable models like BNs for

making high-stakes decisions in hitherto unexplored areas.

Learning the exact structure of BNs from observational data is an NP-hard problem and

therefore a wide range of heuristic algorithms have been developed for this purpose. How-

ever, even the heuristic algorithms are compute-intensive. The existing software packages

for BN structure learning with implementations of multiple algorithms are either com-

pletely sequential or support limited parallelism and can take days to learn BNs with even

a few thousand variables. Previous parallelization efforts have focused on one or two al-

gorithms for specific applications and have not resulted in broadly applicable parallel soft-

ware. This has prevented BNs from becoming a viable alternative to other ML models.

In this dissertation, we develop efficient parallel versions of a variety of BN learn-

ing algorithms from two categories: six different constraint-based methods and a score-

based method for constructing a specialization of BNs known as module networks. We

also propose optimizations for the implementations of these parallel algorithms to achieve

maximum performance in practice. Our proposed algorithms are scalable to thousands of

cores and outperform the previous state-of-the-art by a large margin. We have made the

implementations available as open-source software packages that can be used by ML and

application-domain researchers for expeditious learning of large-scale BNs.

xiv



CHAPTER 1

INTRODUCTION AND MOTIVATION

Machine learning (ML) models are a constant presence in our life. From the time we get

up until the time we fall asleep, we are actively interacting with search engines, email

clients, social media platforms, news aggregators, e-commerce websites, digital streaming

services, etc. Even while sleeping, we are passively interacting with fitness trackers that

assess the quality of our sleep. All of these applications – and many more that we use on a

daily basis – rely on ML models to implement different aspects of their functionality.

Since the advent of deep learning (DL) during the early part of the last decade, DL

models have gradually replaced the other ML models in these applications [1]. DL models

are a subset of ML models that first learn multiple layers of representation from a given

data set and then use the learned representations to accomplish related tasks. This learn-

ing methodology seems to enable DL models to perform well in a wide variety of fields.

Although, it also prevents their internal working from being interpretable, even by domain

experts. This has led to their moniker of black-box models [2].

The lack of interpretability of DL models may not be of immediate concern in the

applications discussed above. However, it is of undeniable importance in areas with po-

tential for a significant impact on human lives. Indeed, the use of black-box models in

high human-impact areas has already been shown to be problematic in multiple scenarios,

e.g., criminal justice [3], medical diagnosis [4], pollution monitoring [5], etc. While there

already exist laws that require a “right to explanation” in certain human-impact decisions –

the Equal Credit Opportunity Act in the US [6] and the General Data Protection Regulation

in Europe [7] being the most prominent examples – there is a general push towards using

interpretable models for making high-stakes decisions [2, 8].

Bayesian networks (BNs) are one such type of interpretable ML model [9]. They are a
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subclass of probabilistic graphical models that employ directed acyclic graphs (DAGs) to

compactly represent exponential-sized joint probability distributions over a set of random

variables [10]. Since BNs enable probabilistic reasoning about direct and indirect interac-

tions between the variables of interest, they have already been successfully employed for

making high-stakes decisions in the fields of medical diagnosis [11], legal reasoning [12],

forensic science [13], and epidemiology [14]. Further, BNs have been used to remove bi-

ases from black-box models [15, 16]. They have also been used in a wide variety of other

fields such as for construction of gene networks [17, 18], fMRI analysis [19], cybersecu-

rity [20], etc. and have the potential for application in hitherto unexplored areas.

1.1 Challenges Facing the Adoption of Bayesian Networks

The use of BNs in real-world applications is not without its challenges. To compete with

DL models, it should be possible to learn BNs from large data sets. However, given a

data set sampled from a joint probability distribution, exact learning of the corresponding

BN structure is NP-hard [21]. Correspondingly, as discussed in subsection 2.4.1, both

sequential as well as parallel algorithms proposed for the purpose can only learn optimal

structure for very small BNs. Therefore, as detailed in subsection 2.1.2, a wide range of

heuristic algorithms have been developed for learning BN structure. However, the heuristic

algorithms are also compute-intensive and need efficient parallel solutions to learn large-

scale networks.

Although the learning of DL models is also compute-intensive, high-performance li-

braries like PyTorch [22] and TensorFlow [23] can efficiently utilize substantial computa-

tion resources to enable fast learning of these models from large data sets. On the other

hand, while there exist open-source libraries for learning BNs with support for multiple

structure-learning algorithms, e.g., bnlearn [24], Tetrad [25], and pcalg [26], their imple-

mentations are either completely sequential (e.g., pcalg) or support only limited intra-node

level parallelism (e.g., Tetrad). Therefore, they can take days to learn BNs with even a few

2



thousand variables. Recently, bnlearn added support for parallelizing structure-learning

algorithms using multiple nodes [27]. However, as we show in subsection 3.4.2, the par-

allelized algorithms in bnlearn do not scale beyond a single node. Previous parallelization

approaches which demonstrated scalability to multiple nodes for learning large-scale net-

works focused on one or two algorithms for specific applications and have not resulted in

broadly applicable parallel software. We posit that the lack of a high-performance library

for learning BNs from large data sets is one of the key reasons that has prevented them

from becoming a viable alternative to other ML models.

1.2 Dissertation Goals and Overview

The goal of this dissertation is to develop efficient parallel versions of a variety of BN

learning algorithms and implement them as part of open-source libraries that can be used

by ML and application-domain researchers for expeditious construction of large-scale BNs.

Towards this end, we parallelize multiple learning algorithms from two different categories,

constraint-based and score-based, that are described in more detail in subsection 2.1.2.

The rest of this dissertation is organized as follows. In chapter 2, we provide the re-

quired background for the work presented in the subsequent chapters and review the re-

lated works. In chapter 3, we present a general framework for parallelizing constraint-

based algorithms. Then, we use it to propose efficient parallel algorithms for five different

constraint-based algorithms. In chapter 4, we extend the framework to parallelize another

important constraint-based algorithm. In chapter 5, we develop a parallel method for con-

structing a specialization of BNs using score-based methods, known as module networks

(MoNets). Finally, in chapter 6, we conclude the work presented in this dissertation.

A majority of the original work presented in this dissertation is part of the following

peer-reviewed publications:

• A. Srivastava, S. Chockalingam, and S. Aluru, “A Parallel Framework for Constraint-

based Bayesian Network Learning via Markov Blanket Discovery,” in 2020 SC20:

3



International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), IEEE Computer Society, 2020, pp. 74–88

• A. Srivastava, S. Chockalingam, M. Aluru, and S. Aluru, “Parallel Construction of

Module Networks,” in 2021 SC21: International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), ACM, 2021

In accordance with the aforementioned goals, we have made the optimized implementa-

tions of the parallel learning algorithms developed in this dissertation available as part of

the following two open-source software packages:

• A. Srivastava, ramBLe - A Parallel Framework for Bayesian Learning, https://github.

com/asrivast28/ramBLe, 2020

• A. Srivastava, ParsiMoNe - Parallel Construction of Module Networks, https : / /

github.com/asrivast28/ParsiMoNe, 2021
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CHAPTER 2

BACKGROUND AND RELATED WORK

We develop parallel algorithms for learning BNs and MoNets in this dissertation. There-

fore, we first provide necessary context on some of the key topics that are relevant to the

discussion in the rest of this dissertation. We begin this chapter by presenting required

background on sequentially learning BNs in section 2.1. Next, we discuss the need for

specializing BNs as MoNets as well sequential methods for constructing them in sec-

tion 2.2. Then, we provide a brief introduction to germane parallel computing concepts

in section 2.3. Finally, we discuss the relevant prior works in the field in section 2.4.

2.1 Bayesian Networks

2.1.1 Notations and Definitions

We use upper-case alphabets (e.g.,X,Xi, Y ) to represent random variables and calligraphic

upper-case alphabets (e.g., X ,PA, CH) to represent sets of random variables. The values

that a random variable can take are represented using lower-case letters (e.g., a, b, c). We

represent conditional independence (CI) between two random variables X, Y given a third

variable Z as I(X, Y |Z) and conditional dependence as ¬I(X, Y |Z). The strength of

association between X and Y given Z is represented using Assoc(X, Y |Z). We also use

the I(·, ·|·), ¬I(·, ·|·), and Assoc(·, ·|·) notations for sets of variables.

Let X be a set of n random variables {X1, . . . , Xn}. Let G = (X ,E) be a DAG with

random variables in X as vertices and E as the set of edges between the vertices in G. Xj

is said to be a parent of Xi in G if the edge Xj → Xi exists in E, and Xi is referred to as

a child of Xj . The set of all the parents of Xi is denoted by PA(Xi), and the set of all the

children of Xi is denoted as CH(Xi). The set of both the parents as well as the children of

5



Xi is represented by PC(Xi). Xk is said to be a descendant of Xi if a directed path exists

from Xi to Xk (Xi → . . . → Xk), and a nondescendant if no such path exists. The set of

all the nondescendants of Xi is represented by ND(Xi).

Let Θ represent a joint probability distribution of the variables in X . (G,Θ) is said to

satisfy the Markov condition if every X ∈ X is conditionally independent of the set of

all its nondescendents given the set of all its parents, i.e., I(X,ND(X)|PA(X)) ∀X ∈

X . (G,Θ) is a BN if it satisfies the Markov condition. Markov condition enables the

decomposition of the joint probability distribution Θ in terms of probability distribution of

the variables conditioned on their parents as follows:

Θ(X1, . . . , Xn) =
n∏
i=1

P (Xi|PA(Xi))

Figure 2.1 shows an example BN for the six variables {A,B,C,D,E, F}. The directed

arrows in the BN represent parent-child relationships as defined above, e.g., R(C) is {A}

and C is present in both R(E) and R(F ) in the BN shown in the figure. The PC set of

a variable in a BN consists of variables that are dependent on it given any conditioning

set not containing the two variables, i.e., X ∈ PC(Y ) if and only if ¬I(X, Y |S) ∀S ⊆

X \ {X, Y }. For example, in the BN shown in the figure, PC(C) is {A,E, F}. Using

the Markov condition, the joint probability distribution Θ of the variables decomposes as

P (A)P (B|{A,E})P (C|A)P (D)P (E|{C,D})P (F |C).

X

Y

S Z

T

W

Figure 2.1: An example BN for a set of six random variables {A,B,C,D,E, F}.

G entails I(X, Y |Z) if the CI holds for all the probability distributions Θ that satisfy

the Markov condition with G. Every such CI is identified by d-separation, which is defined
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as follows. Two distinct nodes X and Y in G are said to be d-separated by a set of nodes

S ⊆ X \ {X, Y } if every chain, i.e., path between X and Y ignoring edge directions, has

a node Z such that one of the following holds:

• Z ∈ S and the edges incident to Z meet head-to-tail (. . .→ Z → . . . or . . .← Z ←

. . .). For example, C in the chain A→ C → F in the BN shown in Figure 2.1.

• Z ∈ S and the edges incident to Z meet tail-to-tail (. . . ← Z → . . .). For example,

C in the chain E ← C → F in the example BN.

• Neither Z nor any of its descendants are in S and the edges incident to Z meet head-

to-head (. . . → Z ← . . .). For example, the chain A → B ← E in the example BN

is d-separated by S = ∅ in the example BN because S does not contain B or any of

its descendants.

(G,Θ) is said to satisfy the faithfulness condition if G entails all and only the CI in

Θ. All the DAGs that entail the same CI form a Markov equivalence class and can be

represented using a completed partially directed acyclic graph (CPDAG), i.e., a DAG in

which some edges are undirected. We make the faithfulness assumption in the subsequent

discussion in this dissertation.

A Markov blanket (MB) of X ∈ X is a set of variables B(X) which completely d-

separateX from all the other variables inX , i.e., I(X, Y |B(X))) ∀Y ∈ X \(B(X)∪{X}).

A Markov boundary of X , denoted by MB(X), is any minimal MB of X . If (G,Θ)

satisfy the faithfulness condition, then the set consisting of parents, children, and parents

of children of X make up its unique Markov boundary, i.e.,

MB(X) = PC(X) ∪

 ⋃
X∈CH(X)

PA(X)


The terms Markov blanket and Markov boundary are used interchangeably in the literature

to denote the set MB(X) as defined above. In the example BN shown in Figure 2.1,
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MB(C) is PC(C) ∪ {D} = {A,D,E, F}. Note that under the faithfulness assumption,

MB implies a symmetric relation similar to PC, i.e., X ∈MB(Y ) ⇐⇒ Y ∈MB(X).

2.1.2 Sequential Learning of Bayesian Networks

Given a data set of m observations sampled from a joint probability distribution for a set

of random variables, represented by D, getting the BN for the variables requires learn-

ing both its structure as well as the parameters of the conditional probability distributions

(CPDs) of all the variables for the corresponding structure, i.e., both components of the

pair (G,Θ) need to be learned. However, once the structure has been learned estimating

the corresponding CPD parameters is comparatively straightforward. Therefore, most of

the research in the area has focused on learning the structure of BNs.

Exactly learning the BN structure has been shown to be an NP-hard problem and there-

fore a wide range of heuristic methods have been developed for this purpose. These meth-

ods are broadly classified into score-based and constraint-based methods. We briefly dis-

cuss the two classes of methods below.

Score-based Methods

Score-based methods aim to find the most likely BN structure given the observed data

set. For the purpose, these methods use a scoring function which assigns a score to every

possible structure that corresponds to the log of its posterior probability given the data set,

i.e., Score(G : D) = logP (G|D). Then, the best-scoring BN structure can be picked using

the following equation

G = arg max
H

Score(H : D) = arg max
H

logP (H|D)

Using Bayes’ law, P (H|D) can be written as
P (D|H)P (H)

P (D)
, where P (D) is the prior prob-

ability of the data set and P (H) is the prior probability of the structure. Since P (D)
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does not depend on the structure, the optimal BN structure can be found by maximizing

logP (D|H) + logP (H). The prior probability of the structure and can either be provided

as input or determined using one of the various approaches proposed for the purpose. We

refer the reader to [32] for a survey of these approaches. For simplicity of discussion, we

assume uniform P (H) for every H and ignore the corresponding term in the score. Under

this assumption, the score of a structure is given by the log of posterior probability of data

set given the structure, i.e., Score(G : D) = logP (D|G).

The number of possible DAGs for a given set of random variables is super-exponential

in the number of variables. Therefore, an exhaustive search over the space of all the DAGs

is not tractable for more than a few variables. Some of the scoring functions are additive,

i.e., the global score can be computed from variable-specific scores as

Score(G : D) =
∑
X∈X

score(X,R(X) : D)

where score(X,R(X),D) evaluates the choice of the parent set R(X) for the variable X .

Even using additive scoring functions, finding the globally optimal DAG still requires expo-

nential run-time. Therefore, score-based methods employ heuristic algorithms which use

greedy hill-climbing [33], greedy search over score-equivalent network structures [34], etc.

and sampling algorithms which use Gibbs sampling [35], Markov chain Monte Carlo [36],

etc. for learning BN structure in practice.

Constraint-based Methods

Constraint-based methods learn the structure of a BN in two steps. First, using repeated

applications of CI tests, the undirected edges of the BN are learned. The CI tests are

conducted using statistical tests on the observation data, which we discuss in further de-

tail in subsection 2.1.3. The learned structure with only undirected edges is referred to

as the BN skeleton. Then, the edges of the skeleton are directed using the rules of d-
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separation [37] to obtain a CPDAG representing the Markov equivalence class of DAGs

that entail the same CIs. Since real-world BNs are sparse, orienting the edges takes minus-

cule time as compared to the first step. Therefore, we focus on the different approaches for

learning the skeleton in this dissertation.

The constraint-based approaches for learning BN skeleton can be classified as either

global-search or local-to-global. Global-search methods start with a fully connected skele-

ton, i.e., one with edges between all pairs of variables. Then, they progressively eliminate

edges between variables which are found to be independent given a subset of the other

variables. The most notable examples of algorithms in this category are the algorithm by

Peter and Clark (PC) [38] and the order-independent variant of the algorithm by Peter and

Clark (PC-stable) [39]. Local-to-global methods, on the other hand, first learn the local

neighborhood of each variable and then combine these local neighborhoods to obtain the

global structure. The approaches in this category can be further classified based on the

methodology used for learning the local neighborhoods. Blanket learning approaches first

reduce the neighborhood search space for every variable by learning their MBs. Subse-

quently, the subset of the variables in the MBs which are also part of the respective im-

mediate neighborhoods, i.e., parents and children, are learned. Grow-Shrink (GS) [40] was

the first to follow this approach. Multiple other algorithms using this approach have been

proposed since then, e.g., Incremental Association MB (IAMB) [41], Interleaved IAMB

(Inter-IAMB) [41], etc. Conversely, direct learning approaches learn the immediate neigh-

bors of every variable without any intermediate steps. These include Max-Min Parents and

Children (MMPC) [41, 42], the HITON Parents and Children (HITON-PC) algorithm [43],

Semi-Interleaved HITON Parents and Children (SI-HITON) [44], Get Parents and Chil-

dren (GetPC) [45], etc. We discuss sequential global-search constraint-based methods and

local-to-global constraint-based methods in more detail in section 4.1 and subsection 3.1.3,

respectively.
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2.1.3 Testing Conditional Independence and Measuring Association

Given a set of observations for the variables, tests for determining CI can be conducted

using different statistical tests for discrete and continuous variables. For discrete nom-

inal (categorical) variables, conducting tests of CI involves calculating a statistic which

is asymptotically distributed as Chi-squared (χ2), with appropriate degrees of freedom.

The variables are declared independent if the strength of association between them is not

deemed significant as discussed below.

Chi-squared Distribution based Tests

The sum of squares of f samples from a standard normal distribution (i.e., a distribution

with a mean of 0 and a variance of 1) are distributed as a χ2 distribution with f degrees

of freedom. The cumulative probability that the sum will be equal to or greater than a

particular value can be calculated from the distribution. Therefore, tests based on the χ2

distributions are used to test the significance of relationship between nominal variables,

e.g., Pearson’s chi-squared test, G-test, Fisher’s exact test, etc. G-test has been preferred

for the task of BN learning in the literature [46, 47, 42] therefore we will focus on it in this

section.

G-test requires computing the G2 statistic which is defined as follows:

G2 = 2
∑
i

Oi ln

Oi

Ei


where Oi ≥ 0 is the observed frequency of a configuration, Ei > 0 is the expected fre-

quency of the configuration assuming the null hypothesis, and the sum is computed over

all the different configurations of the variables. Under the null hypothesis, that the vari-

ables are independent, the G2 statistic is asymptotically distributed as χ2 with appropriate

degrees of freedom.
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G-test for Constraint-Based Learning

Let Sai be a random variable whose value is the number of observations in the data set

where Xi = a, Sabij be a random variable whose value is the number of observations in

the data set where Xi = a and Xj = b, and Sabcijk be a random variable whose value is the

number of observations in the data set where Xi = a, Xj = b, and Xk = c. Under the null

hypothesis, i.e., I(Xi, Xj|Xk), the expected number of observations can be calculated as

E(Sabcijk |Sacik = sacik , S
bc
jk = sbcjk) =

saciks
bc
jk

sck

and the G2 statistic can be computed as

G2 = 2
∑
c∈Xk

∑
a∈Xi

∑
b∈Xj

sabcijk ln

sabcijksck
saciks

bc
jk

 (2.1)

The corresponding degree of freedom f is computed as (ri − 1) × (rj − 1) × rk, where

ri is the arity or the size of the domain of Xi, etc. In the more general case, when testing

I(Xi, Xj|S) where S ⊂ X , f is computed as (ri−1)×(rj−1)×
∏

Xk∈S rk. The computa-

tion of G2 statistic requires counting the number of rows that match every configuration of

the variables in the conditioning set. Specifically, for a conditioning set S, O(r|S|) counts

are needed, where r = maxXi∈X ri.

The p-value of the G-test is computed as the probability that the G2 statistic was drawn

from the χ2 distribution with f degrees of freedom. If the p-value is lower than a signifi-

cance threshold, denoted by α (typically 0.01 or 0.05 [47]), the null hypothesis is rejected

and ¬I(Xi, Xj|Xk) is determined to be true. Lower p-value indicates stronger dependence

and therefore the additive inverse of p-value is used for quantifying the strength of associ-

ation between the variables, i.e., Assoc(Xi, Xj|S).
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Computing the G2 Statistic

In order to compute the G2 statistic, the number of observations corresponding to each

combination of Xi = a, Xj = b, and Xk = c in Equation 2.1 need to be counted. In BN

structure learning implementations, two types of approaches have been used to compute

these counts. The first and more common approach is to compute the counts when they are

required. A trivial solution for the purpose counts the frequency corresponding to every

configuration as and when it is required. This requires O(m|S|r|S|) time as the whole data

set will have to be traversed for every configuration. A faster solution creates a contingency

table for the required counts and then traverses the data set once to fill the table. This

reduces the time required for the computation to O(m|S| + r|S|) for an increased space

requirement of O(r|S|). Other approaches in this category which use advanced strategies

based on bit maps and radix sort have also been developed [48, 49].

The other category of approaches pre-process the data set and create an index data

structure, e.g., a hash table or an ADtree [50], which can be used to retrieve the counts in

almost constant time during learning. For instance, once the ADtree has been constructed,

computing the counts requires O(r|S|) time which is independent of the data set size. How-

ever, these approaches require significant pre-processing time which can not be amortized

by the corresponding gains during the learning of sparse networks [48]. Thus, we focus on

the approaches in the former category in this dissertation.

2.2 Module Networks

BNs use a DAG to represent the joint probability distribution of a set of random variables

and thereby provide a compact model for reasoning about interactions in multi-dimensional

entities. The capability of the BN framework to reason about uncertainty has led to their

successful use in many different fields [51, 14, 52]. However, the deployment of BNs in

intricate domains with a large number of variables has uncovered two major limitations –
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(a) it is difficult to interpret complex interactions between groups of variables that may lead

to an emergent behavior of the entity from the BN models of such entities [53, 54], and (b)

confidence in learned BN models is low when the data set does not have sufficient number

of observations [55]. Specialization of BNs that rely on variations of parameter-sharing

have been proposed to overcome these limitations [56].

Introduced by Segal et al., MoNets [57, 58] are among the most commonly used parameter-

sharing specializations of BNs. A learned MoNet can identify groups of variables (or mod-

ules) that operate in a concerted fashion possibly driven by other groups of variables. The

primary advantage of MoNets over other parameter-sharing BN specializations – such as

object-oriented BNs [59], probabilistic relational models [54], hierarchical BNs [60], etc.

– is that, unlike these variations, MoNets can be learned in an unsupervised manner, i.e.,

without requiring any prior knowledge of relationships between variables. Due to their

unsupervised nature, MoNets have been utilized in a wide range of applications in com-

putational biology, e.g., gene regulatory studies [61], cancer genomics [62, 63, 64, 65],

construction of cellular networks [66, 67, 68], and integration of multi-omics data [69, 70,

71]. MoNets and other parameter-sharing specializations of BN have also found appli-

cations in diverse fields, e.g., medical diagnosis [72], stock market analysis [58], traffic

modeling [73], active learning using serious games [74], feature selection and feature ex-

traction [75], computational psychology [76, 77], and data mining [78].

2.2.1 Notations and Definitions

MoNets partition the variables into modules, where a module is a set of variables that share

the same set of parents and the same CPD. We use K to denote the maximum number of

modules in the MoNet, and represent each module by a module variable (M1, M2, etc.)

and the set of all the modules as M = {M1, . . . ,MK}. A module assignment function,

denoted by A, assigns each variable in X to one of the modules inM, e.g., A(Xi) = Mj

implies that the variable Xi is an element of the module Mj . Each module has a set of
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Figure 2.2: An example BN for a set of eight random variables {A,B,C,D,E, F,G,H}
and the corresponding MoNet.

parent variables, represented by PA(Mj), where PA(Mj) ⊂ X . Given these definitions, a

MoNet is a DAG that has:

• a vertex for every module variable inM, and

• a directed edge Mj → Mk if and only if there exists a variable X ∈ X such that

A(X) = Mj and X ∈ PA(Mk).

Figure 2.2a shows an example BN with a potential assignment of variables to modules

shown by dashed rectangles in which A(A) = M1, A(C) = M2, etc. The MoNet structure

corresponding to this assignment of variables to modules is shown in Figure 2.2b. Note

that, the parents of a module should be a parent for all the variables in the module, e.g.,

B ∈ PA(M2) ⇐⇒ B ∈ PA(C) and B ∈ PA(D) in the figure. However, the variables

in a module may have different sets of descendants, e.g., CH(C) 6= CH(D).

2.2.2 Sequential Construction of Module Networks

Learning a MoNet from data requires learning of a module assignment function that maps

each variable to a module, in addition to learning the parent-child relationships between

variables in the form of a DAG. Therefore, the MoNet learning problem is at least as hard
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as the problem of exactly learning BN structure, which is NP-hard [21]. Consequently,

approaches to construct MoNets resort to heuristic methods. However, even using these

heuristic methods, learning MoNets from data sets with thousands of variables and obser-

vations can take months sequentially.

Various score-based heuristic methods have been proposed for constructing MoNets

from observed data [79, 58, 80, 81, 71]. The score of a MoNet is a Bayesian metric that

evaluates the fitness of both the partition of variables into modules and the structure of the

underlying network, given observed data. Similar to the score-based approaches used for

BN structure learning described in subsection 2.1.2, heuristics are used in MoNet learning

to traverse the space of all possible MoNets to obtain a network with locally optimal score

in the expectation that it approximates the globally optimal network reasonably well. In

contrast to BN learning methods, though, the MoNet learning methods also need to learn

the CPDs for the modules as part of their structure learning routine. The most popular

software packages for MoNet learning are GENOMICA [58] and Lemon-Tree [71]. In both

these software, the learned CPDs are represented using regression trees [82].

GENOMICA implements the iterative two-step algorithm proposed by Segal et al. [57,

58] to construct MoNets. During the first step, each variable is considered one at a time and

is assigned to the module whose regression tree best predicts its observations as determined

by the score, and the parameters of all the module regression trees are re-learned. During

the second step, while keeping the module assignments fixed, the parent sets are learned for

each module and a regression tree is learned for the parent sets. The two steps are repeated

until the score of the network does not improve.

Lemon-Tree, on the other hand, implements the approach outlined by Bonnet et al. [71]

that separates the learning of module assignments and parents and CPDs into three distinct

steps which are executed consecutively. In the first step, multiple variable clusters are

obtained using multiple runs of a Gibbs sampler method that constructs two-way clusters

by partitioning data along both the dimensions, i.e., variables and observations [83]. From
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these multiple clusters, a consensus variable clustering solution is obtained in the second

step using a spectral clustering method proposed in [84]. The consensus variable clusters

so obtained are considered as modules of the variables in the third step. Then, regression

tree structure is learned for every module followed by the learning of the parent sets for all

the modules [71]. We describe the Lemon-Tree algorithm in more detail in section 5.1.

2.3 Parallel Computing

There exist a plethora of important problems which are compute-intensive. The scale of

such problems that can be tackled using sequential approaches is ultimately limited by the

capabilities of a single computation core. Parallel computing utilizes multiple cores op-

erating in concert to reduce the time to solution for such problems and enables solutions

for larger problem sizes. However, most sequential algorithms can not be directly used for

computation using multiple cores. Therefore, novel parallel algorithms need to be designed

for the purpose. Multiple models of parallel computation have been developed for design-

ing parallel algorithms, e.g., shared memory, networked distributed memory, task-based,

etc.

We use the networked distributed memory model for designing the algorithms presented

in this dissertation and explain it in subsection 2.3.1. Then, we define the goals of parallel

algorithm design using multiple performance measures in subsection 2.3.2. Finally, we

briefly discuss the implementation of parallel algorithms in subsection 2.3.3.

2.3.1 Networked Distributed Memory Model

Each computation core (or processor) in this model has its own local memory, which can

be accessed by the core in the same time as in sequential computations. The processors are

assumed to be connected to each other through a network, referred to as the interconnection

network, and can communicate with each other by sending and receiving messages over the

network. A processor in the model can only communicate with one other processor at a
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time. We further assume that the interconnection network can route messages between all

the possible pairs of processors concurrently. Consequently, different pairs of processors

are assumed to be able to communicate at the same time.

The cost of computation of parallel algorithms designed for this model is estimated sim-

ilar to the methodology traditionally used for sequential algorithms, i.e., using asymptotic

analysis for the purpose and assuming that both unit computation and single local memory

access take O(1) time. The communication cost of the algorithms is computed by assum-

ing that transferring a message of m bytes over the network takes τ + µm time, where τ

represents the latency (in time) and µ represents the inverse bandwidth (in time per byte)

of the network. Since τ and µ are typically orders of magnitude higher than the unit com-

putation time, the communication time of the parallel algorithms is estimated separately

from the computation times. For example, a widely used parallel algorithm for computing

prefix sums of n elements on p processors can be estimated to take O(n
p

+ log p) time for

computation and O((τ + µ) log p) time for communication [85].

2.3.2 Measuring the Performance of Parallel Algorithms

We use Tseq(n) to denote the run-time of the best sequential algorithm for a problem of

size n. The run-time of the parallel algorithm for the same problem size on p processors

is denoted using T (n, p). The strong scaling performance of a parallel algorithm gauges

its scalability for a fixed problem size as the parallelism is increased, i.e., fixed n as p is

increased. Therefore, strong scaling speedup and strong scaling efficiency (%) of a parallel

algorithm are defined, respectively, as

Sstrong(n, p) =
Tseq(n)

T (n, p)
and Estrong(n, p) =

Tseq(n)

p · T (n, p)
× 100% (2.2)

In cases where sequential execution is infeasible, we also refer to relative speedup and

relative efficiency (%) of the parallel algorithm on p2 processors relative to p1 processors
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(p2 ≥ p1), defined as

Srel(n, p2) =
T (n, p1)

T (n, p2)
and Erel(n, p2) =

p1 · T (n, p1)

p2 · T (n, p2)
× 100% (2.3)

The weak scaling of a parallel algorithm, on the other hand, is a measure of how it scales

when the parallelism is increased while keeping the problem size per processor fixed, i.e.,

the algorithm is evaluated by choosing np on p processors such that
Tseq(np)

Tseq(n1)
≈ p, where n1

is the problem size used for the sequential experiments. Accordingly, weak scaling speedup

and weak scaling efficiency (%) are defined as

Sweak(n, p) =
Tseq(n1)

p · T (np, p)
and Eweak(n, p) =

Tseq(n1)

T (np, p)
× 100% (2.4)

Since the parallel algorithms must do at least as much computational work as the corre-

sponding best sequential algorithms, i.e., Tseq(n) ≤ p · T (n, p), the following inequalities

hold for all parallel algorithms and both types of scaling defined above (except in the case

of super-linear speedup)

S(n, p) ≤ p and E(n, p) ≤ 100%

Sometimes, the run-time of a parallel algorithm is compared with the run-time of the same

algorithm on p = 1 processor, instead of the best sequential algorithm. The measures of

performance so obtained are referred to as self speedup and self efficiency and are larger

than their regular counterparts. For example, strong scaling self speedup defined as below

will be greater than strong scaling speedup since T (n, 1) ≥ Tseq(n).

Sself(n, p) =
T (n, 1)

T (n, p)
(2.5)
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The goal of parallel algorithm design in this dissertation is to get the performance mea-

sures defined above as close to their respective limits as possible. For the presented parallel

algorithms, we estimate these measures analytically using the asymptotic complexity of

the algorithms as well as measure them experimentally. Our primary focus is on strong

scaling of the presented algorithms. Therefore, we use the terms speedup and efficiency to

reference the corresponding strong scaling versions. Further, when the problem size and

the type of scaling is clear from the context, we use cleaner notations, e.g., Tseq, Tp, Sp, Ep,

etc.

2.3.3 Implementing Parallel Algorithms

The parallel algorithms designed for the networked distributed memory model can be im-

plemented using the API described by the Message Passing Interface (MPI) standard. The

standard defines basic functionality for sending and receiving messages between pairs of

processors. Additionally, the standard contains API definitions for common collective oper-

ations involving all or subsets of processors, e.g., broadcast, reduce, all-to-all, prefix-scan,

etc. We have implemented the algorithms presented in this dissertation using a C++ inter-

face for MPI [86] and assume knowledge of common MPI operations when explaining the

algorithms. We refer the reader to [87] for a primer on the standard.

The design of parallel algorithms assumes perfect balance of load during the execution

of the algorithm, i.e., all the processors are assumed to be allocated similar amounts of

work and each unit of work is assumed to require the same amount of time. However,

these assumptions may be violated in practice because of the following two reasons: i) the

work allocated to the processors may change disparately as the algorithm progresses, and

ii) each unit of work may end up requiring vastly different times for computations. This

may significantly deteriorate the practical scalability of a theoretically efficient algorithm

because a few processors may end up doing considerably more work than the average work

required by all the processors, thus increasing the total time taken by the parallel algorithm.
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Therefore, we quantify the severity of load imbalance by computing the deviation of the

maximum load on any processor from the average load on all the processors as

Load Imbalance =
max0≤j<p Load on j th processor∑0≤j<p Load on j th processor

p


− 1 (2.6)

In this dissertation, we use the above equation to balance the work assigned to every pro-

cessor a priori and also for post hoc analysis of the performance of our parallel algorithms.

2.4 Related Work

2.4.1 Parallel Learning of Bayesian Networks

Previous works on developing parallel methods for BN learning have primarily focused on

either score-based or global-search constraint-based methods.

Score-based Methods

Exact score-based algorithms with exponential run-time complexity have been proposed to

find the optimal structure for small BNs, i.e., BNs with less than 20 variables [88, 89]. Even

parallelization of these exact solutions can only construct networks with a maximum of 37

variables [90, 91, 92]. Compared to exact methods, parallelization of heuristic score-based

methods has yielded results with much better scalability. Nikolova et al. [93] developed a

parallel method that can construct a network with 500 variables in 107 seconds using 1024

cores. Misra et al. [49] developed a similar approach that can construct a 15, 216 variable

BN in less than 172 seconds using 1.57 million cores of the Tianhe-2 supercomputer.
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Global-search Constraint-based Methods

Multiple previous works have proposed parallelization of global-search constraint-based

algorithms. Madsen et al. [94] proposed two different algorithms for parallelizing PC. The

first algorithm is designed for shared-memory model utilizing balanced incomplete block

designs [95] to assign statistic computations for CI tests to different threads. However,

as noted by the authors, this approach only works for conducting marginal CI tests and an

additional heuristic is employed to reduce the amount of work in every subsequent iteration

that conducts more CI tests than the sequential algorithm. Further, the conditioning set size

is limited to 3 in this algorithm. Using this approach, they report a maximum speedup of

almost 7 using 12 threads for constructing a network with 2, 371 variables. Their second

algorithm follows a similar approach for parallelizing CI tests with a distributed-memory

model and achieves a maximum speedup of about 8 using 10 cores for the same data set.

Since Colombo et al. addressed the issue of order-dependence in PC by proposing PC-

stable [39], it has become the algorithm of choice amongst the global-search constraint-

based methods. Correspondingly, the parallelization efforts in recent years have also been

focused on PC-stable. Le et al. proposed the first parallel algorithm for the purpose, called

parallel-PC [96]. Parallel-PC conducts all the CI tests for a given conditioning set size in

parallel and then synchronizes the results at the end of every iteration. Their implementa-

tion achieves a maximum speedup of 12 using 14 cores for learning a network with 2, 810

variables. Scutari et al. [27] implemented a parallel version of PC-stable in bnlearn using

a similar method as parallel-PC. Schmidt et al. [97] attempted to improve the scalability

of parallel-PC by implementing a dynamic load-balancing scheme using master-worker

paradigm. They implemented a shared-memory approach and report a maximum speedup

of 39X using 80 threads.

Schmidt et al. [98] proposed the first GPU-based approach for accelerating PC-stable.

They later improved this method using an out-of-core algorithm [99]. However, both these

works have limited real-world applicability because they restrict the maximum condition-
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ing set size to 1. Zarebavani et al. [100] proposed a more general methodology using GPUs

that works for any conditioning set size and are able to learn networks with up to 4, 000

variables from synthetic data sets. More recently, Hagedorn and Huegle [101] reported

being able to learn networks from synthetic data sets with 8, 000 variables using GPUs.

Local-to-global Constraint-based Methods

One of the earliest attempts at parallelizing local-to-global constraint-based algorithms

was by Aliferis et al. [44] that developed a sequential framework for multiple local-to-

global constraint-based algorithms and proposed an extension to the framework for paral-

lel and distributed learning [102]. Their method first distributes the variables to available

processors and then learns neighborhood for the target variable from only the variables lo-

cal to the processor. The processor-specific neighborhoods are then combined to get the

final neighborhood for the target variable. This strategy suffers from the following two

drawbacks: i) the final neighborhood depends on the number of processors and the distri-

bution of variables, and ii) the total work may increase when running in parallel thereby

resulting in a slowdown similar to the one observed in the reported results.

Nikolova and Aluru [103] focused on parallelizing two direct learning algorithms –

MMPC and GetPC – and reported near perfect scaling for learning neighborhoods of 1, 000

variables on up to 512 cores. However, as the authors observed, their approach does not

scale when the number of variables or the number of observations are increased. This is

because their approach assigns all the computations for determining the local neighborhood

of a variable to the same processor. Due to the differences in the computation requirements

across variable neighborhoods, such a static assignment of variables to processors leads to

load imbalance.

Among the software for BN structure learning that we surveyed, bnlearn is the only one

that supports learning BNs on multiple cores using the constraint-based algorithms that we

focus on. It uses the parallel library of the core R distribution for parallelizing the structure
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learning using a master-worker paradigm on the specified cores [27]. Since bnlearn is

the only other available parallel implementation of the algorithms under consideration, we

evaluate its performance as a baseline for our methods in chapter 3 and chapter 4.

2.4.2 Construction of Module Networks

As discussed in subsection 2.2.2, GENOMICA implements the iterative two-step algorithm

proposed by Segal et al. [57, 58] to construct MoNets while Lemon-Tree implements the

approach outlined by Bonnet et al. [71]. Previous studies that evaluated the two approaches

found Lemon-Tree to be more effective at constructing robust MoNets from both synthetic

as well as real-world data sets [79, 80, 104]. Further, Lemon-Tree software has been suc-

cessfully used in multiple recent works with potential for far-reaching impact. These in-

clude studies intending to increase life expectancy by understanding complex diseases such

as glioblastoma [71], cholangiocarcinoma [105], breast cancer [65], penile cancer [106],

and rheumatoid arthritis [104]. The software has also been used in works aiming to en-

hance quality of life by improving food production processes through studies on stress-

related immune response [107] and feed efficiency [108] of cattle, analysis of early stage

development of European sea bass [109], and identification of genes critical for tomato

ripening [110] and apple edibility [111].

However, Lemon-Tree is computationally expensive, which has limited its use for genome-

wide gene regulatory network studies to smaller micro-organisms. For organisms with tens

of thousands of genes, MoNet construction is possible only for a subset of genes that are

involved in specific pathways of interest [112, 110]. Even for the single-celled Saccha-

romyces cerevisiae, with 5, 716 genes, we estimate that sequentially constructing a whole-

genome network using Lemon-Tree will take 49 days.

To mitigate the run-time issues in constructing MoNets, the approach proposed by Se-

gal et al. has been parallelized by multiple groups. Liu et al. [113] parallelized the MoNet

learning method using a distributed-memory approach. They report a speedup of up to
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29.26X using a maximum of 32 cores. Jiang et al. [114] developed a shared-memory paral-

lel solution and report a maximum speedup of 3.5X using 4 threads. In addition to limited

scaling, both these parallelization strategies are specific to the approach by Segal et al., i.e.,

GENOMICA, and are not applicable for parallelizing Lemon-Tree.
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CHAPTER 3

PARALLELIZING LOCAL-TO-GLOBAL CONSTRAINT-BASED ALGORITHMS

In this chapter, we focus on parallelizing local-to-global constraint-based algorithms that

rely on the discovery of variable neighborhoods as an intermediate step. Towards this end,

we present a parallel framework to scale constraint-based BN structure learning algorithms

to tens of thousands of variables. We demonstrate the applicability of our framework by

parallelizing five different algorithms: GS, IAMB, Inter-IAMB, MMPC, and SI-HITON.

Our implementations are able to construct BNs from real data sets with tens of thousands

of variables and thousands of observations in less than 38 seconds on 2048 cores, with

a speedup of up to 1, 745X and 85.2% efficiency. Furthermore, we demonstrate using

simulated data sets that our proposed parallel framework can scale to learning BN structure

of even higher dimensionality.

This chapter is organized as follows. First, we develop our proposed parallel frame-

work in section 3.1 and use it to propose efficient parallel versions of the algorithms in sec-

tion 3.2. Then, we discuss multiple optimizations in the implementations of these algo-

rithms in section 3.3. Finally, we present the results of our experiments in section 3.4 and

summarize the work in section 3.5. This chapter extends the following published paper on

parallelizing blanket learning algorithms:

• A. Srivastava, S. Chockalingam, and S. Aluru, “A Parallel Framework for Constraint-

based Bayesian Network Learning via Markov Blanket Discovery,” in 2020 SC20:

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), IEEE Computer Society, 2020, pp. 74–88
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3.1 Proposed Parallel Framework

We propose a parallel framework which enables users to develop and implement an effi-

cient parallel version of any local-to-global constraint-based strategy for constructing BNs.

First, we state the key assumptions in subsection 3.1.1. Then, we introduce the primary data

structures used by our framework in subsection 3.1.2. Subsequently, in subsection 3.1.3,

we present the sequential version of the local-to-global algorithms and identify their key

components. Finally, we develop our parallel framework by proposing parallel algorithms

for the identified algorithmic components in subsection 3.1.4.

3.1.1 Assumptions

Similar to the other constraint-based algorithms, we assume an ordering of the input vari-

ables in X , i.e., X1 < X2 < . . . < Xn. We also assume, similar to the previous parallel

algorithms, that the input data set D with m observations for n variables is available locally

on all the processors. For the run-time complexity computations, we assume that the time

required for conducting CI tests and computing Assoc(·) values with conditioning sets of

size k is bounded by O(Gk). We use l to represent the maximum number of elements in

the candidate neighborhood of any variable, i.e., l = maxX∈X |LN (X)| at any stage of

algorithm execution. Since, in the worst case, all the other variables may be added to the

candidate neighborhood of a variable, l is bounded byO(n). We also assume the networked

distributed memory model, described in subsection 2.3.1, to develop the proposed parallel

algorithms.

3.1.2 Key Data Structures

The primary data structure that we use in our framework is a list of tuples, referred to as

c-scores . Elements of c-scores are of the form 〈X, Y, θXY 〉, where X and Y are vari-

ables and θXY is a numeric value. At any point during the execution of the algorithms, if
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〈X, Y, θXY 〉 is an element in c-scores , then the variable Y is a potential candidate for ad-

dition to the local neighborhood of the target variable X , i.e., LN (X). The third element,

θXY , is the score for adding Y to LN (X) and is used to select the best candidate for every

target variable. Apart from the c-scores list, we also maintain a list, denoted as variables ,

that contains all the variables for which the neighborhood sets are to be computed.

In order to construct the BN skeleton, local-to-global algorithms need to identify the

local neighborhoods for all the variables. Accordingly, we initialize the variables list with

all the variables in X . Since neighborhood discovery generally starts with empty sets,

LN (T ) is initialized to φ ∀T ∈ variables . We initialize the c-scores list with a tuple each

for all the possible candidates for all the variables inX and set all the scores to zero, i.e., the

list is initialized with elements from the set {〈X, Y, 0〉|X ∈ X , Y ∈ X \({X}∪LN (X))}.

At the beginning of the algorithm, there is a tuple in c-scores corresponding to each of the

n2 − n ordered variable pairs. Furthermore, the tuples in the c-scores list are initialized in

the ascending order of the first variable and then of the second variable. Therefore, all the

tuples with the candidate variables corresponding to the same target variable are arranged

in a contiguous manner in the list.

When executing the algorithms on p processors, the c-scores list is initialized in a sim-

ilar fashion but is block distributed among all the processors. The corresponding list on the

processor j is denoted by c-scoresj and its size is bounded by dn2−n
p
e. The list variablesj

is initialized with all the variables for which the processor j computes the neighborhoods,

i.e., it includes all the elements from the set {X|〈X, Y, θXY 〉 ∈ c-scoresj}. Since the

c-scores list is ordered such that tuples with the same first variable are contiguous, the size

of variablesj is bounded by O(n
p
). In the distributed setting, LN (T ) is initialized on every

processor for all T ∈ variablesj . Note that, for two different processors i and j and some

variable T , both variables i and variablesj may contain T . In such cases, both processors i

and j compute LN (T ).
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3.1.3 Sequential Algorithmic Components

We first identify the key components used by local-to-global algorithms for sequential

learning of BNs. The execution of the algorithms of interest, in general, can be separated

into the following four phases – Grow, Shrink, Symmetry Correction, and Construct PC

from MB. These phases are utilized for learning the local neighborhood for a variable T

(LN (T )) as follows:

• In a Grow phase, the candidate neighborhood set for T is grown by adding one vari-

able to the set from among the available candidates.

• During a Shrink phase, one or more false positive variables are removed from the

candidate neighborhood set.

• Symmetry Correction is performed, after identifying candidate neighborhood sets

for all the variables in one or more iterations of Grow and Shrink phases, to obtain

symmetrically consistent LN sets.

• Construct PC from MB is used only by blanket learning algorithms for learning the

skeleton of the BN using the MBs for all the variables. A variable X inMB(T ) is

included in PC(T ) if no subset ofMB(T ) \ {X} (orMB(X) \ {T}) can render X

and T conditionally independent.

We now describe in detail the execution of blanket learning algorithms and the direct

learning algorithms in terms of the c-scores and variables lists, defined and initialized as

per subsection 3.1.2.

Blanket Learning

In a Grow phase iteration, scores are first updated for all the tuples in the current c-scores

list. For all the blanket learning algorithms, we use the associativity of a candidate Y with
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Algorithm 1: Sequential Grow and Shrink phases for GS
1 function GROW-SHRINK-GS():

Input: D, initialMB(·) sets, T
Output: UpdatedMB(T ) set

2 N ← X \ (MB(T ) ∪ {T})
3 repeat
4 Z ← first Y ∈ N s.t. ¬I(T, Y |MB(T ),D)
5 if such a Z exists then
6 MB(T )←MB(T ) ∪ {Z}
7 N ← N \ {Z}
8 untilMB(T ) does not change
9 for Z ∈MB(T ) do

10 if I(T, Z|MB(T ) \ {Z},D) then
11 MB(T )←MB(T ) \ {Z}

the target T given the current MB of the T as the score of the candidate, i.e.,

θTY = Assoc(T, Y |MB(T )) (3.1)

Then, using the updated scores, a candidate is selected for every variable. More specifically,

the Grow phase in IAMB and Inter-IAMB picks the candidate with the maximum score, i.e.,

the tuple 〈T, Z, θTZ〉 is picked for T if

〈T, Z, θTZ〉 = arg max
〈T,Y,θTY 〉∈c-scores

θTY (3.2)

GS, on the other hand, picks for a variable T the first candidate that shows dependency with

T . As mentioned in subsubsection 2.1.3, we use the additive inverse of p-value of the G2

test I(T,X|MB(T )) as Assoc(T, Y |MB(T )). Therefore, candidate selection for GS can

be accomplished by identifying the first tuple with a score greater than the additive inverse

of the significance threshold (−α), i.e., a tuple 〈T, Z, θTZ〉 is selected for T if

〈T, Z, θTZ〉 is first entry in c-scores s.t. θTY ≥ −α (3.3)

30



In both the cases, if such a tuple is found, then Z is added toMB(T ) and 〈T, Z, θTZ〉 is

removed from the c-scores list.

Algorithm 2: Sequential Grow and Shrink phases for IAMB
1 function GROW-SHRINK-IAMB():

Input: D, initialMB(·) sets, T
Output: UpdatedMB(T ) set

2 N ← X \ (MB(T ) ∪ {T})
3 repeat
4 Z ← arg maxY ∈N Assoc(T, Y |MB(T ),D)
5 if ¬I(T, Y |MB(T ),D) then
6 MB(T )←MB(T ) ∪ {Z}
7 N ← N \ {Z}
8 untilMB(T ) does not change
9 for Z ∈MB(T ) do

10 if I(T, Z|MB(T ) \ {Z},D) then
11 MB(T )←MB(T ) \ {Z}

During the Shrink phase, all theMB sets are examined and a variable X is removed

fromMB(T ) if I(T,X|MB(T ) \ {X}) holds. Blanket learning algorithms differ on how

Grow and Shrink phases are iterated. Both GS and IAMB execute multiple iterations of

Grow phase followed by a single Shrink phase, whereas Inter-IAMB alternates between

Grow and Shrink phases until all the MB sets stop changing. The sequential Grow and

Shrink phases for GS, IAMB, and Inter-IAMB are shown in algorithm 1, algorithm 2, and al-

gorithm 3.

After the one or more iterations of Grow and Shrink phases, MB construction proceeds

to Symmetry Correction, in which T ∈ MB(Y ) ⇐⇒ Y ∈ MB(T ) is verified and when

this assertion fails for a pair (T, Y ), the offending variables are removed from the respective

MB sets. Finally, the edges of the BN skeleton are learned in form of PC sets by verifying

CI for every subset ofMB.

Time Complexity: Each Grow phase iteration updates scores for O(n2) target-candidate

variable pairs in O(n2Gl) time. Each Shrink phase checks the candidate MB for all the
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Algorithm 3: Sequential Grow and Shrink phases for Inter-IAMB
1 function GROW-SHRINK-INTERIAMB():

Input: D, initialMB(·) sets, T
Output: UpdatedMB(T ) set

2 N ← X \ (MB(T ) ∪ {T})
3 repeat
4 Z ← arg maxY ∈N Assoc(T, Y |MB(T ),D)
5 if ¬I(T, Y |MB(T ),D) then
6 MB(T )←MB(T ) ∪ {Z}
7 N ← N \ {Z}
8 for Z ∈MB(T ) do
9 if I(T, Z|MB(T ) \ {Z},D) then

10 MB(T )←MB(T ) \ {Z}
11 N ← N ∪ {Z}

12 untilMB(T ) does not change

variables, which requires n × O(lGl) time. Therefore, the time taken by Grow phase

dominates the run-time complexity of every iteration for all three algorithms. Since the

algorithms execute Grow phase O(l) times, the run-time for getting the blankets for all

the variables is O(n2lGl). Symmetry Correction can be performed in O(nl) time. Then,

getting the skeleton using Construct PC from MB requires O(nl2lGl) time. Therefore, the

sequential run-time complexity of the three blanket learning algorithms is

O(nl(n+ 2l)Gl) (3.4)

Direct Learning

Direct learning algorithms score a candidate Y for the target variable T using the minimum

associativity of Y with T given any subset of the current direct neighbors of T . Therefore,

for both MMPC and SI-HITON, θTY is computed as

θTY = min
S⊆PC(T )

Assoc(T, Y |S) (3.5)
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Algorithm 4: Sequential Grow and Shrink phases for MMPC
1 function GROW-SHRINK-MMPC():

Input: D, initial PC(·) sets, T
Output: Updated PC(T ) set

2 N ← X \ (PC(T ) ∪ {T})
3 repeat
4 Sep(T )← ∅, ∀T ∈ X
5 for Y ∈ N do
6 Sep(Y )← arg minS⊆PC(T ) Assoc(T, Y |S,D)

7 Z ← arg maxY ∈N Assoc(T, Y |Sep(Y ),D)
8 if ¬I(T, Z|Sep(Z),D) then
9 PC(T )← PC(T ) ∪ {Z}

10 N ← N \ {Z}
11 until PC(T ) does not change
12 for Z ∈ PC(T ) do
13 if I(T, Z|S,D) for some S ⊆ PC(T ) \ {Z} then
14 PC(T )← PC(T ) \ {Z}

Then, direct learning algorithms proceed similar to blanket learning algorithms. In each

Grow iteration, the c-scores list is updated first and then a candidate is selected for addition

to PC set of every variable. MMPC picks the candidate with the maximum score for every

variable using Equation 3.2 while SI-HITON picks the first variable which is dependent on

T given the currentPC(T ) using Equation 3.3. Unlike the other local-to-global algorithms,

though, SI-HITON always considers candidates in the order of their marginal associativity

with the target. In order to accomplish this, the c-scores list is sorted after the scores are

updated in the first Grow phase iteration.

In each Shrink phase, false positives are cleared from all the PC sets by removing every

variableX inPC(T ) that is found to be independent of T given any subset ofPC(T )\{X}.

Both MMPC and SI-HITON execute multiple Grow phase iterations followed by a Shrink

phase execution at the end. Then, the skeleton is obtained in the form of the consistent PC

sets after Symmetry Correction is performed. The sequential Grow and Shrink phases for

MMPC and SI-HITON are shown in algorithm 4 and algorithm 5.
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Algorithm 5: Sequential Grow and Shrink phases for SI-HITON
1 function GROW-SHRINK-SIHITON():

Input: D, initial PC(·) sets, T
Output: Updated PC(T ) set

2 N ← X \ (PC(T ) ∪ {T})
3 while N 6= ∅ do
4 Z ← arg maxY ∈N Assoc(T, Y |∅,D)
5 if ¬I(T, Z|PC(T ),D) then
6 PC(T )← PC(T ) ∪ {Z}
7 N ← N \ {Z}
8 for Z ∈ PC(T ) do
9 if I(T, Z|S,D) for some S ⊆ PC(T ) \ {Z} then

10 PC(T )← PC(T ) \ {Z}

Time Complexity: The score updates in each iteration of Grow phase computes Assoc

for all the O(n2) pairs using subsets of the candidate PC sets of size O(l) in O(n22lGl)

time. Then, Shrink phase conducts CI tests for all the elements in each of the n candidate

PC sets and takes O(nl2lGl) time. Symmetry Correction can be accomplished in O(nl)

time. Therefore, for MMPC, sequentially getting the skeleton requires O(l)×O(n22lGl)+

O(nl2lGl) +O(nl) time which is dominated by the total time required by the Grow phase:

O(n2l2lGl) (3.6)

As discussed above, SI-HITON additionally requires a sort in the first Grow phase iteration

which takes O(n2 log n2) time. Therefore, the time complexity of SI-HITON is

O(n2(l2lGl + log n)) (3.7)

3.1.4 Parallel Framework Components

We now discuss the key components of our proposed framework – parallel algorithms for

all the four phases described in subsection 3.1.3. We designed these parallel components

using common parallel primitives such as all-reduce, scan, shift permutations, and parallel
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sort.

Grow Phase

Our parallel algorithm for Grow phase is based on the following two key insights: (i) The

neighborhood sets for all the variables are required for constructing the skeleton. Further,

for addition to the neighborhood set of a variable, all the other variable are considered a

candidate. Therefore, we consider all the variable pairs in parallel, using the distributed

c-scores list. (ii) The time taken in conducting a CI test (or computing Assoc(·)) is propor-

tional to the size of the conditioning set. Therefore, we designed this component such that

the CI tests (and Assoc(·) computations) with the same conditioning set sizes are conducted

in parallel.

The pseudo-code for our parallel Grow phase is shown in algorithm 6. The implementa-

tion of Grow phase for the algorithms of interest differ in two major aspects. First, while the

blanket learning algorithms use Equation 3.1 for computing the scores and I(T, Y |MB(T )\

{Y }) for checking if Y is independent of T given the current MB(T ) set, the direct

learning algorithms use Equation 3.5 and check I(T, Y |S)∀S ⊆ PC(T ) \ {Y } for the

purpose, respectively. In order to accommodate these differences, our proposed Grow

phase algorithmic component accepts two functions as arguments: COMPUTE-SCORE and

CHECK-CI. These functions are implemented separately for blanket learning and direct

learning algorithms, as described earlier. Second, as discussed in subsection 3.1.3, local-

to-global algorithms use different heuristics to select the next variable to be added to the

current candidate set. Therefore, our proposed Grow algorithmic component requires two

more functions as arguments: APPLY-HEURISTIC and REDUCE-HEURISTIC. The func-

tion APPLY-HEURISTIC accepts a slice of the c-scores list corresponding to a variable T

such that it contains 〈T,X, θTX〉 for all the candidates X , and returns the candidate most

suitable for addition to LN (T ). For example, the APPLY-HEURISTIC selects a candidate

as per Equation 3.2 for IAMB, Inter-IAMB, and MMPC and as per Equation 3.3 for GS and
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Algorithm 6: Parallel Grow Phase
1 function GROW-PHASE():

Input: D, c-scores , variables , current LN (·) sets, scoreOrder
2 COMPUTE-SCORE, CHECK-CI,
3 APPLY-HEURISTIC, REDUCE-HEURISTIC

Output: Updated LN (·) sets
4 parallel j = processor’s rank do
5 for 〈T, Y, θTY 〉 ∈ c-scoresj do
6 θTY ← COMPUTE-SCORE(T, Y,LN (T ),D)
7 Update 〈T, Y, θTY 〉 in c-scoresj
8 if scoreOrder then
9 Parallel sort c-scores , first by T then by θTY

10 g-select j(T )← nil,∀T ∈ variablesj
11 for T ∈ variablesj do
12 ts ← 〈T,X, θTX〉 ∈ c-scoresj,∀X ∈ X
13 g-select j(T )← APPLY-HEURISTIC(ts)

14 REDUCE-HEURISTIC(c-scores , g-select)
15 for T ∈ variablesj do
16 Z ← g-select j(T )

17 if ¬CHECK-CI(T, Z,LN (T ),D) then
18 LN (T )← LN (T ) ∪ {Z}
19 Remove 〈T, Z, θTZ〉 from c-scoresj

SI-HITON. The REDUCE-HEURISTIC function accumulates the variable selection results

from all the processors to identify for each variable T , the best candidate to be added to its

LN (T ).

In algorithm 6, the local c-scores list is updated with the computed Assoc values first

(line 5–line 7), which takes O(n
2

p
Gl) time for blanket learning algorithms and O(n

2

p
2lGl)

time for direct learning algorithms. To modify the ordering of the candidate variables for

all the target variables, as required by SI-HITON, c-scores list is sorted if scoreOrder is

true (line 8–line 9). Parallel sorting can be accomplished by any comparison based sort such

as parallel bitonic sort, which takes O(n
2

p
log n2

p
+ n2

p
log2 p) and O(τ log2 p + µn

2

p
log2 p)

time for computation and communication, respectively. The selection heuristic is then

applied for each variable (line 11–line 13) followed by the accumulation of results across
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processors (line 14). The run-time of these operations depends on the heuristic used by the

specific algorithm. For the selection heuristics described in Equation 3.2 and Equation 3.3,

two segmented parallel scan operations are sufficient for accumulating the results from all

the processors because the underlying operators are associative. Note that these parallel

scan operations exploit the contiguous presence of all the tuples 〈T, Y, θTY 〉 corresponding

to a target variable T in c-scores . Therefore, selection of candidate variables takes O(n
2

p
+

log p) time for computation and O((τ + µ) log p) time for communication. Finally, we add

the selected variables to the LN sets and update c-scores (line 15–line 19). Since LN

sets updated are local to the processor, the number of LN sets updated on a processor is

bounded by O(n
p
).

Time Complexity: Each iteration of the Grow phase algorithmic component, in general,

requires O(n
2

p
Gl) + O(n

2

p
+ log p) = O(n

2

p
Gl + log p) computation time for the blan-

ket learning algorithms and O(n
2

p
2lGl) + O(n

2

p
+ log p) = O(n

2

p
2lGl + log p) for the

direct learning algorithms. The only communication in this component is the collective

communication for reducing the heuristic computations across the processors, which takes

O((τ+µ) log p) time. However, if sortOrder is true for SI-HITON, then the component re-

quiresO(n
2

p
2lGl)+O(n

2

p
log n2

p
+ n2

p
log2 p)+O(n

2

p
+log p) = O(n

2

p
(2lGl+log n2

p
+log2 p))

computation time and O(τ log2 p+ µn
2

p
log2 p) communication time.

Algorithm 7: Parallel Shrink Phase
1 function SHRINK-PHASE():

Input: D, variables , current LN (·) sets, CHECK-CI
Output: Updated LN (·) sets

2 parallel j = processor’s rank do
3 for T ∈ variablesj do
4 for Z ∈ LN (T ) do
5 if CHECK-CI(T, Z,LN (T ) \ {Z},D) then
6 LN (T )← LN (T ) \ {Z}
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Shrink Phase

Our proposed parallel component for Shrink phase is shown in algorithm 7. Here, the only

task is to remove those variables in LN which are independent given the rest of the LN

in case of blanket learning algorithms, or are independent given any subset of the LN in

case of direct learning algorithms. This difference is again accommodated by accepting

the function CHECK-CI as input. Then, the false positives are removed in a loop over all

the LN sets for the target variables on the processor (line 3–line 6).

Time Complexity: The run-time for the parallel Shrink phase is proportional to the size

of the LN sets for all the variables on the processor, which is bounded by O(n
p
)× O(l) =

O(nl
p

). Each call to CHECK-CI requires O(Gl) time for the blanket learning algorithms

and O(2lGl) time for the direct learning algorithms leading to a corresponding total com-

putation time of O(nl
p
Gl) and O(nl

p
2lGl), respectively. This component requires no com-

munications.

Symmetry Correction

The proposed parallel component for checking the symmetry of the LN sets, shown in

algorithm 8, is based on the method developed by [103]. It proceeds by creating sc-pairs ,

a list of ordered tuples for every member of LN sets (line 3–line 10) followed by parallel

sorting to identify the asymmetric LN members (line 11–line 12). The LN sets are then

updated to reflect the symmetry correction (line 13–line 16). The time to construct sc-pairs ,

remove unique tuples, and update LN sets is bounded by O(nl
p

). As discussed in subsub-

section 3.1.4, this requiresO(nl
p

log nl
p

+ nl
p

log2 p) computation andO(τ log2 p+µnl
p

log2 p)

communication time. Collective communication is also required during the removal of the

unique tuples to identify tuple pairs that cross processor boundary. This is accomplished

by a pair of shift permutations that take O(τ + µ) time.
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Algorithm 8: Parallel Symmetry Correction
1 function SYMMETRY-CORRECTION():

Input: variables , asymmetric LN (·) sets
Output: Symmetry corrected LN (·) sets

2 parallel j = processor’s rank do
3 sc-pairsj ← empty list of variable pairs
4 for X ∈ variablesj do
5 if j = 0 or X 6∈ variablesj−1 then
6 for Y ∈ LN (X) do
7 if X < Y then
8 Insert 〈X, Y 〉 into sc-pairsj
9 else

10 Insert 〈Y,X〉 into sc-pairsj

11 Parallel sort sc-pairs , first by X then by Y
12 Remove all unique 〈X, Y 〉 from sc-pairs
13 Reset all LN (·) sets to ∅
14 for 〈X, Y 〉 ∈ sc-pairsj do
15 LN (X)← LN (X) ∪ {Y }
16 LN (Y )← LN (Y ) ∪ {X}

Time Complexity: The run-time of this component is dominated by the run-time of par-

allel sort which takesO(nl
p

log nl
p

+ nl
p

log2 p) computation time andO(τ log2 p+µnl
p

log2 p)

communication time.

Construct PC from MB

Our parallel algorithm to construct the skeleton of the BN from theMB sets in the blanket

learning algorithms, is shown in algorithm 9. This component tries to identify a condition-

ing set for each element Y inMB(X), that can render X conditionally independent from

Y (line 3–line 11). If no such conditioning set can be identified for the pair (X, Y ), then

Y is added to PC(X) (line 11). Note that this component requires theMB sets of both X

and Y and therefore the completeMB sets should be made available on all the processors

before CONSTRUCT-PC() is called.
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Algorithm 9: Parallel Construct PC from MB
1 function CONSTRUCT-PC():

Input: D, variables , completeMB(·) sets
Output: Distributed PC(·) sets

2 parallel j = processor’s rank do
3 for X ∈ variablesj do
4 PC(X)← ∅
5 for Y ∈MB(X) do
6 if |MB(X)| < |MB(Y )| then
7 B ←MB(X) \ {Y }
8 else
9 B ←MB(Y ) \ {X}

10 if ¬I(X, Y |S,D)∀S ⊆ B then
11 PC(X)← PC(X) ∪ {Y }

12 return PC

Time Complexity: This component conducts CI tests for all the subsets of O(l) ele-

ments in theMB set of all the O(n) variables. Therefore, its computation complexity is

O(nl
p

2lGl). It requires no collective communications.

3.2 Our Parallel Algorithms

Using the parallel framework developed in section 3.1, many local-to-global algorithms

can be implemented. Here, we present efficient parallel versions of three blanket learning

algorithms – GS, IAMB, and Inter-IAMB, and two direct learning algorithms – MMPC and

SI-HITON.

3.2.1 Blanket Learning

The three blanket learning algorithms – GS, IAMB, and Inter-IAMB – can be implemented

using the parallel skeleton construction algorithm presented in algorithm 10. As discussed

in subsection 3.1.3, the only distinction between the three algorithms is how the next vari-

able is selected in the Grow phase and this difference can be abstracted using the APPLY-
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HEURISTIC and REDUCE-HEURISTIC functions. The computation of candidate scores

and checking for conditional independence for all the blanket learning algorithms can be

accomplished using the functions COMPUTE-SCORE and CHECK-CI implemented as dis-

cussed in subsubsection 3.1.4.

Algorithm 10: Parallel Construct Skeleton – Blanket Learning Algorithms
1 function CONSTRUCT-SKELETON-BLANKET():

Input: algorithm, D, COMPUTE-SCORE, CHECK-CI,
2 APPLY-HEURISTIC, REDUCE-HEURISTIC

Output: PC(T ) sets for all T ∈ X
3 parallel j = processor’s rank do
4 Initialize c-scoresj , variablesj ,MB(·) as described in subsection 3.1.2
5 repeat
6 GROW-PHASE(D, c-scoresj , variablesj ,MB, false,

COMPUTE-SCORE, CHECK-CI, APPLY-HEURISTIC,
REDUCE-HEURISTIC)

7 if algorithm is Inter-IAMB then
8 SHRINK-PHASE(D, variablesj ,MB)

9 until noMB changes on any of the processors
10 if algorithm is GS or IAMB then
11 SHRINK-PHASE(D, variablesj ,MB)

12 SYMMETRY-CORRECTION(variablesj ,MB)
13 SynchronizeMB(·) across all the processors
14 PC ← CONSTRUCT-PC(D, variablesj ,MB)

Given the four algorithm-specific functions, the proposed parallel versions of these al-

gorithms proceed as follows. The requisite distributed lists and variables are initialized

first (line 4), following which these algorithms execute the GROW-PHASE in a loop until

convergence (line 5–line 9). While SHRINK-PHASE is called for Inter-IAMB after every

call to GROW-PHASE (line 8), it is called only once at the end for the other two algorithms

(line 11). Then, after SYMMETRY-CORRECTION (line 12), there is a synchronization step

for collecting the MB(·) for all the variables on all the processors (line 13). Finally,

CONSTRUCT-PC is called to get the skeleton for the BN, in the form of PC sets for all

the variables (line 14).
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Time Complexity: The computational run-time complexity of algorithm 10 is computed

by summing up the run-times of the four components, assuming that GROW-PHASE as well

as SHRINK-PHASE are called O(l) times, to get the following equation

O

nl
p

(n+ 2l)Gl +
nl

p
log2 p+ l log p


If p = O(n), then the above equation can be further simplified by noticing that log2 n =

O(n) as

O

nl
p

(n+ 2l)Gl

 (3.8)

Apart from the communication costs incurred by the four components, algorithm 10 also

requires collective communications for (i) identifying if any of theMB sets changed during

a Grow iteration, and (ii) synchronization of theMB sets. Using a bit set representation

of theMB sets, both of these operations can be performed using all-reduce, which takes

O((τ + µ log n) log p) time. Hence, the communication run-time of this algorithm is

O

τ log p (log p+ l) + µl log p

n log p+ p log n

p




Again, if p = O(n), the above equation can be further simplified by observing that p log n =

O(n log p) as

O

τ log p (log p+ l) + µ
nl

p
log2 p

 (3.9)

Parallel Efficiency: Any parallelization strategy needs to have high strong scaling effi-

ciency (computed using Equation 2.2) in order to be scalable, i.e., the difference between

p × T (n, p) and Tseq(n) should be asymptotically negligible. For blanket learning algo-

rithms, the asymptotic parallel efficiency can be computed by substituting Equation 3.4 for
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Tseq(n) and the sum of Equation 3.8 and Equation 3.9 for T (n, p) as

E(n, p) =
nl(n+ 2l)Gl

p×


nl
p

(n+ 2l)Gl

+

τ log p (log p+ l) + µ
nl

p
log2 p



× 100%

=
nl(n+ 2l)Gl

nl(n+ 2l)Gl + τp log p (log p+ l) + µnl log2 p
× 100%

Since log p + l = O(log p × l), the denominator in the above equation can be bounded

by nl(n + 2l)Gl + l log2 p(τp + µn) which can further be bounded by nl(n + 2l)Gl +

nl log2 p(τ + µ) for p = O(n). Therefore, our proposed parallel versions of the blanket

learning algorithms are efficient if (τ+µ) log2 p = O((n+2l)Gl). Accordingly, we get the

following two bounds on the number of processors that can be used by the blanket learning

algorithms while being efficient

p = O(n) and p = O
(
2k
)

, where k =

√√√√(n+ 2l)Gl

(τ + µ)
(3.10)

3.2.2 Direct Learning

Our parallel algorithm for constructing skeletons using the two direct learning algorithms

– MMPC and SI-HITON – is shown in algorithm 11. The functions COMPUTE-SCORE

and CHECK-CI used for computing the scores and checking CI by direct learning al-

gorithms, implemented as per subsubsection 3.1.4, are provided as inputs. Further, the

different schemes for picking the variable in Grow phase by the two algorithms are also

provided as input using APPLY-HEURISTIC and REDUCE-HEURISTIC. Given the inputs,

algorithm 11 proceeds in a similar manner as algorithm 10 for the blanket learning algo-

rithms, except for two differences described below.

The first difference between algorithm 10 and algorithm 11 is that, as discussed in
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Algorithm 11: Parallel Construct Skeleton – Direct Learning Algorithms
1 function CONSTRUCT-SKELETON-DIRECT():

Input: algorithm, D, COMPUTE-SCORE, CHECK-CI,
2 APPLY-HEURISTIC, REDUCE-HEURISTIC

Output: PC(T ) sets for all T ∈ X
3 parallel j = processor’s rank do
4 Initialize c-scoresj , variablesj , PC(·) as described in subsection 3.1.2
5 sortOrder ← false
6 if algorithm is SI-HITON then
7 sortOrder ← true

8 repeat
9 GROW-PHASE(D, c-scoresj , variablesj , PC, sortOrder ,

COMPUTE-SCORE, CHECK-CI, APPLY-HEURISTIC,
REDUCE-HEURISTIC)

10 sortOrder ← false
11 until no PC changes on any of the processors
12 SHRINK-PHASE(D, variablesj , PC)
13 SYMMETRY-CORRECTION(variablesj , PC)

subsubsection 12, SI-HITON considers variables in the descending order of their marginal

associativity with the target variable. Correspondingly, we designed our GROW-PHASE

proposed in algorithm 6 to sort the c-scores list after score updates, if required. We utilize

this by setting sortOrder to true for SI-HITON before the first call to GROW-PHASE (line 9)

and then set it to false after the call. This ensures that the c-scores list is sorted only

once after it has been updated with the marginal associativity to get the requisite ordering

of the candidate variables. The second difference is that direct learning algorithms get

the correct PC sets after the call to SYMMETRY-CORRECTION and, therefore, do not call

CONSTRUCT-PC.

Time Complexity: During the execution of both MMPC and SI-HITON, GROW-PHASE

is calledO(l) times and SHRINK-PHASE is called just once at the end. However, SI-HITON

also requires a sort step in the first call to GROW-PHASE. Therefore, again assuming that

p = O(n) and noticing that log2 n = O(n), the computational run-time complexity of
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MMPC is

O

n2

p
l2lGl

 (3.11)

and that of SI-HITON is

O

n2

p

l2lGl + log
n2

p
+ log2 p


 (3.12)

In addition to the communication required by the parallel components used, algorithm 11

also requires collective communications for identifying if any of the PC sets changed

during a Grow iteration. As discussed for algorithm 10, this can be accomplished in

O((τ + µ log n) log p) time. Therefore, the communication run-time of MMPC is same

as that of blanket learning algorithms (Equation 3.9). However, due to the extra sort, the

communication run-time of SI-HITON increases to

O

τ log p (log p+ l) + µ
n2

p
log2 p

 (3.13)

Parallel Efficiency: The strong scaling efficiency of MMPC can be computed by substi-

tuting Equation 3.6 for Tseq(n) and the sum of Equation 3.11 and Equation 3.4 for T (n, p):

E(n, p) =
n2l2lGl

p×


n2

p
l2lGl

+

τ log p (log p+ l) + µ
nl

p
log2 p



× 100%

=
n2l2lGl

n2l2lGl + τp log p (log p+ l) + µnl log2 p
× 100%

We notice again, as we did for the parallel efficiency of the blanket learning algorithms

in subsection 3.2.1, that MMPC is efficient if (τ + µ) log2 p = O(n2lGl). Therefore, the
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number of processors that can be used by MMPC while being efficient is

p = O(n) and p = O
(
2k
)

, where k =

√√√√ n2lGl

(τ + µ)
(3.14)

Similarly, the strong scaling efficiency of SI-HITON can be computed using Equation 3.7

as the numerator and the sum of Equation 3.12 and Equation 3.13 as the denominator

E(n, p) =
n2(l2lGl + log n)

p×


n2

p

l2lGl + log
n2

p
+ log2 p


+

τ log p (log p+ l) + µ
n2

p
log2 p



× 100%

=
n2(l2lGl + log n)

n2

l2lGl + log
n2

p

+ τp log p (log p+ l) + µn2 log2 p

× 100%

As before, SI-HITON is efficient if (τ + µ) log2 p = O(l2lGl + log n2

p
). Since log n2

p
=

Ω(log n) for p = O(n), we can get a tighter bound on p by solving (τ + µ) log2 p =

O(l2lGl + log n). Therefore, the number of processors for which SI-HITON is efficient is

bounded by

p = O(n) and p = O
(
2k
)

, where k =

√√√√ l2lGl + log n

(τ + µ)
(3.15)

3.3 Implementation

We implemented our framework using C++ and MPI conforming to the C++14 and MPI

3.1 standards, respectively. Our implementations of the algorithms are available part of an

open-source software [30].
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3.3.1 Sequential Implementation

bnlearn [24] is a popular R package that supports a wide range of score-based and constraint-

based algorithms for learning BNs, including the five algorithms that we focus on. The

package has been used in multiple recent studies for the construction and analysis of

BNs [115, 116, 117, 118]. Even though the top-level logic for most of the algorithms

supported by bnlearn is implemented using R, the computationally intensive tasks such as

the computations for conducting the CI tests are implemented in C. Hence, in spite of in-

terfacing with an interpreted language, bnlearn is able to achieve performance comparable

to that of a compiled language.

Our implementations differ from that of bnlearn because of the ambiguity in the spec-

ification of the GS algorithm and the choice of internal data structures. For efficiency

purposes, we used different data structures than the ones used by bnlearn for some of the

underlying tasks. For example, bnlearn uses arrays for storing the indices of the variables

in a set. But, we use bit sets which enables us to use SIMD instructions for some set

operations and also reduce the message sizes during communication. This modification,

however, may alter the order in which the variables are considered by the algorithms in

some cases. Since CI testing using real data sets is imperfect and any errors in the CI tests

may change the behavior of the constraint-based algorithms, the BNs learned by such al-

gorithms are known to be sensitive to the ordering of the variables [46, 119, 39]. In order

to ensure that our choices for efficiency do not affect the accuracy of the learned network,

we validate our implementations against bnlearn in subsubsection 3.4.2. Our experiments

show that these choices help us achieve considerable speedup over bnlearn without signif-

icantly impacting the learned network structure.

3.3.2 Statistic Computation Strategies

Prior studies have estimated that more than 90% of the time in constraint-based learning is

spent in aggregating counts from observation data for the CI tests [48]. Correspondingly,
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we observed that computing the G2 statistic took between 94% and 99% of the total run-

time for learning the network sequentially in our experiments in section 3.4. Therefore,

both efficiently conducting the CI tests as well as reducing the number of CI tests are

essential for good run-time performance of learning algorithms in practice.

Counting Strategies

In order to conduct the CI test I(X, Y |S), using the G2 statistic (Equation 2.1), the counts

of the number of observations sabcsac, sbc, and sc corresponding to each combination of

X = a, Y = b, and S = c are required. In BN structure learning implementations, two

types of approaches have been used to compute these counts. The most common approach

is to compute the counts when they are required. A trivial solution for the purpose counts

the frequency corresponding to every configuration by traversing the complete data set as

and when it is required and takes O(m|S|r|S|) time, where r is the maximum arity of any

variable in the data set. The time required for the purpose can be reduced to O(m|S|+r|S|)

by scanning the complete data set to fill up contingency tables of size O(r|S|). Advanced

strategies that are based on bit maps and radix sort have also been developed for the pur-

pose [48, 49]. An alternate approach is to pre-process the data set and create an index data

structure, e.g., a hash table or an ADtree [50], which can be used to retrieve the counts in

O(r|S|) time during learning. As discussed by Karanet al. [48], the latter category of ap-

proaches require significant pre-processing time which can not be amortized by the corre-

sponding gains during the learning of sparse networks. Thus, we focused on the approaches

in the former category and implemented the contingency table based approach as well as

the two other strategies from the SABNAtk library [48]. We observed that the contingency

table based approach outperformed the other two approaches for the data sets that we ex-

perimented with. Consequently, we report the run-times using the contingency table based

approach, also used by bnlearn, in section 3.4. Nevertheless, our framework can be easily

extended to use other counting strategies.
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Algorithm-specific Optimizations

We reduced the number of Assoc(·) computations in our implementations of the direct

learning algorithms and GS by utilizing some algorithm-specific observations as described

below. We discuss the effect of these optimizations on the sequential run-time of the algo-

rithms in subsubsection 3.4.2.

Reusing Scores in Direct Learning Algorithms: We optimized the score computations

in direct learning algorithms by noticing that they use all subsets ofPC sets for the purpose,

as shown in Equation 3.5. Since both MMPC and SI-HITON only call SHRINK-PHASE

after all the GROW-PHASE calls, the elements of PC set for any target variable always in-

crease by one variable between two subsequent calls to GROW-PHASE. Therefore, these

algorithms can reuse the score from the previous iteration to compute the new score as fol-

lows. Consider the PC set of a target variable T with X chosen to be added to PC(T ) in

one call to GROW-PHASE. Then, in the next call to GROW-PHASE, to update the score θTY

for a candidate Y for addition to PC(T ), we only need to consider the subsets which con-

tain the last entrant of PC(T ), i.e., θTY need only be updated if θTY > min Assoc(T, Y |S)

where S ⊆ PC(T ) such that S contains X . Therefore, this optimization reduces the num-

ber of calls to Assoc by reducing the number of subsets for which it is called in every update

step.

Early Termination of Score Updates in GS: In the implementation of GROW-PHASE

for GS, the update of the c-scores list for a target variable X can be terminated as soon as

the first score θXY which is greater than or equal to −α is computed. This is because the

corresponding candidate Y will be the one picked by the algorithm for addition toMB(X)

in that iteration, as per Equation 3.3. Notice that, this optimization is useful even in a paral-

lel implementation, when the c-scores list corresponding to a target X may be distributed

across multiple processors. However, since the score updates happen concurrently on all
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the processors, a processor j will stop the updates for X only after finding the first viable

candidate for X in its local list c-scoresj . Therefore, if a suitable candidate for X exists on

a processor i < j, then extra work is done on the processor j as compared to the sequential

execution. We discuss the effect of this optimization on the scaling performance of GS

in subsection 3.4.4. Even though SI-HITON uses the same candidate selection heuristic

as GS, we do not implement this optimization for SI-HITON because it conflicts with the

optimization for direct learning algorithms discussed above.

3.3.3 Load Balancing

Construction of a BN in parallel starts with a block distribution of the list of candidate

tuples, c-scores , to all the processors. In every call to GROW-PHASE, one tuple is selected

for every variable and removed from the c-scores list. Furthermore, if LN for a variable

stops changing, then all the candidate tuples corresponding to that variable are removed

from the list as well. After a few iterations, these removals can lead to a disparity between

the size of the c-scores list across the processors. Since the time taken by a processor

in an iteration of the GROW-PHASE is proportional to the size of the c-scores list on that

processor, the run-time of an iteration is determined by the the processor with the maximum

number of tuples. This load imbalance between processors can, therefore, increase the total

time required for learning the LN sets.

We mitigate the load imbalance problem by a stable block redistribution of the remain-

ing candidate tuples at the end of an iteration. Specifically, we use an MPI Alltoallv

call to redistribute the remaining elements of the c-scores list so that it is block distributed

while maintaining the original order of the tuples. However, since redistribution is expen-

sive and adds to the total run-time, we redistribute only if the imbalance is severe. For

determining the severity, we compute the imbalance using Equation 2.6 by using the size

of the list on a processor as the load on the processor.

In our implementation, redistribution is done if the computed imbalance is greater than
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a user-specified threshold. We observed that setting this threshold to 0.2 resulted in op-

timal performance for every combination of data sets and number of processors in our

experiments in section 3.4. Therefore, we use it as the default value for the threshold in

our framework. We study the load imbalance and its effect on the total run-time further in

subsection 3.4.3.

3.4 Experiments and Results

We performed our experiments on the Phoenix cluster at Georgia Tech [120]. Each node

on the cluster has a 2.7 GHz 24-core Intel Xeon Gold 6226 processor and a minimum

of 192 GB of main memory. The nodes run RHEL7.6 operating system and are con-

nected via HDR100 (100 Gbps) InfiniBand. For the scalability experiments, we used a

maximum of 86 nodes on this cluster. We compiled the source code, implemented with

C++14 and MPI, using gccv9.2.0 with -O3 -march=native optimization flags

and MVAPICH2v2.3.3 implementation of MPI. We report the run-times measured by

assigning 24 MPI processes per node and averaging the run-times over 5 different runs.

In our experiments, we observed that the first calls to the MPI all-to-all collectives

took significantly longer time than the subsequent calls. Therefore, we warm up both

MPI Alltoall and MPI Alltoallv by calling them with one byte on each proces-

sor. The time taken by the warm-up is negligible when using 64 processes or fewer. It then

increases from 0.2 seconds on 128 processes to 5.7 seconds for 2048 processes and is not

included in the reported run-times.

3.4.1 Data sets

To demonstrate performance and scalability of our parallel algorithms, we chose the con-

struction of gene networks. In this application, the genes are modeled as random variables

which correspond to the nodes of a BN and the edges of the BN correspond to the biological

interactions between the genes. We used three real gene expression data sets of different
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sizes, summarized in Table 3.1.

Table 3.1: Benchmark data sets used for experimenting with local-to-global constraint-
based algorithms.

Name Organism
Genes Observations

(n) (m)

D1 S. cerevisiae 5, 716 2, 577
D2 A. thaliana 18, 373 5, 102
D3 A. thaliana 18, 380 16, 838

D1 is a data set generated from the organism Saccharomyces cerevisiae, a species of

yeast involved in baking and brewing. Tchourine et al. [121] created this data set of 2, 577

observations each for 5, 716 genes by combining data from multiple RNA-seq expression

studies. The data sets D2 and D3 contain expression profiles for Arabidopsis thaliana, a

model organism in plant biology with more than 23, 000 genes. These data sets are con-

structed by collecting over 18, 000 microarray images from public databases (ArrayExpress

and GEO), and pre-processing them using standard microarray data analysis workflows

for quality control and normalization. In order to study process-specific phenomena, it

is necessary for plant biologists to consult multiple gene networks generated from many

process-specific data sets. D2 is a subset of D3, manually curated by a domain specialist

and includes only those microarray experiments that were designed to study the develop-

ment process in A. thaliana. D2 and D3 contain 5, 102 and 16, 838 observations for 18, 373

and 18, 380 genes, respectively. We used the method recommended by Friedman et al. [17]

for discretizing the data sets.

In order to study the scalability of our implementations on data sets with larger number

of variables, we generated three simulated data sets with n = 30, 000 and m = 10, 000

using the pcalg [26] software as follows. First, we construct three random DAGs with

30, 000 variables of increasing edge density by specifying edge addition probability of

5× 10−5, 1× 10−4, and 5× 10−4. Then, we use the dependency structure specified by the

three DAGs to sample 10, 000 observations for all the variables. Finally, we discretize the
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data sets as described above. We refer to the three simulated data sets so obtained as S1,

S2, and S3, respectively. All the data sets are stored in plain text format on a GPFS storage

which is accessible from all the nodes on the cluster. We used a significance threshold (α)

of 0.05 for learning BNs in all our experiments.

3.4.2 Comparison with bnlearn

We used bnlearn v4.6.1 with R v4.0.3 for the experiments reported in this section.

Sequential Comparison

We compare the run-time of bnlearn with that of our optimized sequential implementa-

tion for learning the network using the five algorithms from the benchmark data sets in

Table 3.2. The run-times for both bnlearn and our method are proportional to the size of

Table 3.2: Comparison of the time taken by bnlearn and our sequential implementations
in constructing the BNs using the five local-to-global constraint-based algorithms for the
benchmark data sets, measured in seconds, and the corresponding speedup. The symbol ×
indicates that the run did not finish in seven days.

Data set Algorithm
Run-time (s) Speedup

bnlearn Ours

D1

GS 13, 525.9 310.9 43.5
IAMB 1, 347.7 803.8 1.7
Inter-IAMB 1, 356.6 808.8 1.7
MMPC 7, 446.9 331.0 22.5
SI-HITON 5, 854.4 348.4 16.8

D2

GS 546, 196.1 9, 076.3 60.2
IAMB 52, 370.7 18, 999.7 2.8
Inter-IAMB 52, 725.6 18, 976.8 2.8
MMPC 406, 884.2 6, 789.0 59.9
SI-HITON 317, 838.0 6, 923.2 45.9

D3

GS × 25, 209.5 N/A
IAMB 116, 144.7 60, 280.4 1.9
Inter-IAMB 122, 586.9 63, 306.0 1.9
MMPC × 32, 131.6 N/A
SI-HITON 527, 522.2 35, 341.9 14.9
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the data sets, with D1 taking the shortest time and D3 taking the longest. We also observed

that the implementation of bnlearn for GS is almost an order of magnitude slower than

that of the other two blanket learning algorithms. This is because bnlearn implements the

variable selection for the algorithm using expensive loops in R. Consequently, our imple-

mentation of the algorithm is 43.5 – 60.2X faster than bnlearn for learning network for the

benchmark data sets. Further, bnlearn is not able to finish learning the network when using

GS for D3 even after running for the cutoff time period of seven days. For both IAMB

and Inter-IAMB, our sequential implementation outperforms bnlearn with a speedup of 1.7

– 2.8X for the benchmark data sets. Note that our implementation of the GS algorithm

is 2 – 3X faster than the other two algorithms because of the optimization discussed in

subsubsection 3.3.2. The score-computation optimization for direct learning algorithms,

also discussed in subsubsection 3.3.2, ensures that our implementations of MMPC and SI-

HITON achieve a speedup of 14.9 – 59.9X over that of bnlearn, while bnlearn is not able

to learn the network for D3 using MMPC in a week.

We validated the networks learned by our implementations against those learned by

bnlearn for the data set D1 using the five algorithms. During the validation process, we

discovered a bug in the Construct PC from MB phase of the bnlearn implementation. It

was caused by an erroneous assumption in the implementation that if there is only one

element in theMB set of a variable then it must be in the PC set of that variable. This bug

was acknowledged as such by the package’s maintainer (personal communication, March

4, 2020). We fixed this bug in bnlearn and used the networks learned using this modified

version for the purpose of the validation. For all the algorithms, the networks learned using

our implementations recall more than 99.84% of the edges present in the networks learned

using the corresponding implementations from bnlearn with more than 99.92% precision,

i.e., our implementations learn more than 99.84% of the edges in the networks learned by

bnlearn with less than 0.08% additional edges. We verified that these differences arise

because of the optimization discussed in subsection 3.3.1.
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Parallel Scalability of bnlearn

We use the five algorithms implemented in bnlearn for learning the BNs from the bench-

mark data sets using an increasing number of cores and measure their self-speedup, i.e.,

speedup compared to the sequential run-time of the bnlearn implementation. When us-

ing 2 cores, both IAMB and Inter-IAMB show a speedup of 1.9X and 1.4X for D1 and

D2, respectively. bnlearn shows further improvement when using 16 cores with an ob-

served speedup of 6.9X and 2.3X. However, the speedup starts flattening when using cores

on multiple nodes. For example, when using 64 cores across three nodes, the observed

speedup for both IAMB and Inter-IAMB is 8.4X and 2.4X for D1 and D2, respectively – a

marginal improvement over the speedup using 16 cores. Therefore, speedup of the paral-

lel implementations of the two faster algorithms in bnlearn show a pattern of diminishing

returns. The corresponding self-speedup observed for the three slower algorithms is com-

paratively better – 34X, 28.5X, and 35X for GS, MMPC, and SI-HITON, respectively, for

learning the network from D2 using 64 cores. However, the run-times of these bnlearn

algorithms when using 64 cores is still slower than our sequential implementations. There-

fore, we do not explore the parallel performance of bnlearn further here. The scalability of

our implementations, presented in subsection 3.4.4, outperforms bnlearn by a significant

margin.

3.4.3 Effect of Load Balancing

In order to understand the extent of load imbalance during the parallel execution of the five

algorithms, we learned BNs from the benchmark data sets using the algorithms, without

the application of load balancing strategies discussed in subsection 3.3.3, and recorded the

imbalance (as per Equation 2.6) at the end of each iteration. We observe that the imbalance

during execution on less than 16 cores is less than 5.0 for all the algorithms. However, the

imbalance increases for all the algorithms when executed on larger number of cores with

more and more processes left without any work as the algorithms progress. Inter-IAMB,

55



1 2 4 8 16 32 64 128 512 2048
−5

0

10

20

30

40

50

Number of cores (p)

R
un

-t
im

e
re

du
ct

io
n

(%
)

D2

GS
IAMB

Inter-IAMB
MMPC

SI-HITON

1 2 4 8 16 32 64 128 512 2048

Number of cores (p)

D3

GS
IAMB

Inter-IAMB
MMPC

SI-HITON

Figure 3.1: Plot of percentage reduction in the run-time, as a result of load balancing, of
the five local-to-global constraint-based algorithms used for learning BN for D2 and D3
on different number of cores.

MMPC, and SI-HITON show worse measured imbalance as compared to the other two

algorithms for all three data sets. For example, when running on 2048 cores, the worst final

imbalance of 681.7 is shown by Inter-IAMB for D2 and by SI-HITON for D3.

The percentage reduction in the run-time for learning the network with the application

of the redistribution strategy from the two bigger data sets using the five algorithms for dif-

ferent number of cores is shown in Figure 3.1. When running on fewer cores, we observe

almost no improvement in run-time with load balancing because the observed imbalance

is small. Even when the imbalance is high, the time taken in measuring the imbalance

and redistributing may be more than the corresponding gains. In such cases, we observe

that the run-time increases marginally when load balancing is enabled, with the highest

observed increase of just 2.5% when using SI-HITON on 2 cores. However, when running

on larger number of cores, all the algorithms show reduction in the run-times with load bal-

ancing enabled. GS, in particular, shows a 43.4 – 48.0% improvement in the run-time for

the three benchmark data sets when using 2048 cores even though the measured imbalance

for the algorithm stays below 22.2 in the worst case. This is because the optimization for

GS, discussed in subsubsection 3.3.2, enables faster candidate selection for many variables.
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Therefore, the algorithm benefits more from a better spread of the work load through an

evenly distributed c-scores list. The run-time of the other four algorithms for the bench-

mark data sets also show significant improvement in the range of 12.2 – 34.9% on 2048

cores.

3.4.4 Parallel Scalability of Our Framework

Our procedure to read an input data set in parallel is as follows. First, the rows of the data

set are block distributed to all the MPI processes. Then, the processes concurrently read the

discretized data from their assigned rows. Finally, the read data is collected on all the pro-

cesses to get the complete data set using MPI Allgatherv. Once the BN is constructed,

the corresponding network is written in graphviz [122] format. In our experiments, we ob-

served that time taken in reading the data sets reduces from 5.1 seconds sequentially to 0.3

seconds on 2048 cores for D1, from 32.7 to 1.1 seconds for D2, from 106.7 to 3.4 seconds

for D3, and from 104.1 to 5.0 seconds for the simulated data sets. Writing out the learned

network takes less than 0.5 seconds in all the cases. For scalability discussions, we report

only the time taken for constructing the BN by the parallel algorithm implementation and

not for the I/O.

Strong Scaling for Benchmark Data sets

We conducted strong scaling experiments for all the algorithms using the benchmark data

sets by repeatedly doubling the number of cores from 1 to 2048. Table 3.3 shows the

average run-times for all the combinations of the algorithms, cores, and data sets. To better

understand the performance of our implementations, we compute strong scaling speedup

and efficiency using Equation 2.2. The strong scaling speedup of the five algorithms for

the benchmark data sets as the number of cores used is increased are plotted in the first row

of Figure 3.2 and the corresponding plots of efficiency are shown in the second row. Note

that a perfect parallel implementation would achieve linear speedup and 100% efficiency.
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Table 3.3: Time taken in learning the BNs for the benchmark data sets using the five local-to-global constraint-based algorithms on
different number of cores, measured in seconds.

Data set Algorithm
Run-time on different number of cores (s)

1 2 4 8 16 32 64 128 256 512 1024 2048

D1

GS 310.9 164.9 85.0 44.8 24.0 13.0 7.0 4.0 2.4 1.7 1.2 1.0
IAMB 803.8 409.8 207.4 105.0 53.7 27.1 14.0 7.1 3.7 2.1 1.2 0.8
Inter-IAMB 808.8 413.0 209.8 106.1 54.4 27.5 14.2 7.8 3.9 2.3 1.6 1.2
MMPC 331.0 167.9 85.1 43.1 22.0 11.3 5.9 3.0 1.7 1.0 0.7 0.6
SI-HITON 348.4 176.9 89.4 45.3 23.4 12.1 6.2 3.3 1.8 1.2 0.8 0.7

D2

GS 9, 076.3 4, 604.1 2, 369.3 1, 217.7 651.5 356.1 178.0 96.5 54.3 29.6 16.7 10.2
IAMB 18, 999.7 9, 780.4 4, 859.2 2, 469.2 1, 248.2 638.4 312.1 157.3 80.0 42.3 21.0 10.9
Inter-IAMB 18, 976.8 9, 781.5 4, 891.5 2, 485.6 1, 254.0 639.4 314.8 159.3 80.9 41.8 22.1 11.9
MMPC 6, 789.0 3, 399.3 1, 724.9 874.5 447.6 230.4 117.4 58.6 29.4 15.4 8.6 5.1
SI-HITON 6, 923.2 3, 510.9 1, 750.4 895.8 459.1 236.2 117.5 60.3 30.6 16.6 9.0 5.5

D3

GS 25, 209.5 12, 948.8 6, 638.4 3, 474.5 1, 858.8 1, 014.3 499.5 293.0 160.9 91.3 52.0 31.1
IAMB 60, 280.4 30, 885.0 15, 696.5 7, 966.4 4, 053.7 2, 013.6 1, 007.8 512.0 258.1 128.9 68.8 36.1
Inter-IAMB 63, 306.0 32, 080.0 16, 171.7 8, 291.2 4, 224.2 2, 119.6 1, 050.6 538.0 281.0 142.5 69.1 37.6
MMPC 32, 131.6 16, 221.7 8, 268.2 4, 195.3 2, 183.2 1, 087.8 538.0 274.7 142.7 73.6 36.2 20.3
SI-HITON 35, 341.9 17, 881.4 8, 900.0 4, 539.9 2, 354.0 1, 180.4 602.8 301.8 153.6 79.5 39.9 25.5
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Figure 3.2: Plots of strong scaling speedup and efficiency of the five local-to-global constraint-based algorithms in constructing the BNs
for the benchmark data sets as a function of the number of cores.
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As can be observed from the plots in the figure, our implementations of all the algo-

rithms show near-linear scaling on up to 2048 cores for the two larger data sets (D2 and

D3), while the scaling tapers off on 256 cores or more for the smaller data set (D1). The

poor scaling for D1 on larger number of cores can be explained by the lower total work re-

quired for learning BN from this data set, as demonstrated by the corresponding run-time of

less than 3.9 seconds for all the algorithms on 256 cores and above. This loss of efficiency

for D1 also follows from the theoretical bounds on the number of processors that can be

used by our parallel algorithms while being efficient as established in Equation 3.10, Equa-

tion 3.14, and Equation 3.15. Using Gl = O(ml + rl) for contingency tables (discussed in

subsubsection 3.3.2) in the efficiency bounds, it can be seen that n < 2k in all the equations

for the three data sets and p = O(n). While p = 2048 is close to an order of magnitude

smaller than n for D2 and D3, it is greater than n/3 for D1 and much closer to the asymp-

totic bound. Therefore, the poorer scaling of D1 in our experiments, as compared to that

of the other two data sets, corresponds well to our theoretical efficiency analysis of the

parallel algorithms.

IAMB, Inter-IAMB, MMPC, and SI-HITON achieve a strong scaling efficiency of more

than 75% when run on up to 1024 cores and more than 60% when run on up to 2048

cores for D2 and D3. The efficiency of GS, however, is noticeably lower than the other

four algorithms with a maximum efficiency of 43.5% on 2048 cores. This is because the

optimization discussed in subsubsection 3.3.2 reduces the total work required by GS. On

larger number of cores, this reduction in total work leads to lower computation load per

processor, as compared to the other two blanket learning algorithms, and therefore the run-

time of GS is dominated by communication time. For instance, the fraction of the total run-

time spent by all five algorithms in communication while learning BNs from D2 and D3 is

shown in Figure 3.3. These plots demonstrate a markedly higher communication overhead

for GS, as compared to the other four algorithms, when running on larger number of cores.

However, despite the lower efficiency, the optimization helps GS achieve a speedup of up
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Figure 3.3: Plots of fraction of total run-time spent in communication on different number
of cores by the five local-to-global constraint-based algorithms used for learning the BN
for D2 and D3.

to 1.2X over IAMB and Inter-IAMB on 2048 cores. Our implementations of the five local-

to-global algorithms are able to learn BNs from the benchmark data sets in less than 38

seconds on 2048 cores, with a maximum speedup of 1, 745X and a corresponding 85.2%

strong scaling efficiency.

Strong Scaling for Simulated Data sets

Our implementations of all the five algorithms scale linearly for learning BNs from the

simulated data sets with even larger number of variables. In particular, scalability of GS

improves significantly compared to the benchmark data sets. Our optimized sequential

implementation of GS learns the network for S1, S2, and S3 in 12.4, 17.0, and 26.5 hours,

respectively. Using our parallel implementation on 2048 cores, the corresponding run-times

are 36.1, 57.2, and 72.9 seconds. Strong scaling efficiency of GS for the simulated data sets

is plotted in Figure 3.4. The considerable increase in the efficiency when compared to what

is observed for the benchmark data sets (Figure 3.2) is in line with our discussion on the

efficiency of the algorithm in the previous section. Since there is more total work required

for learning networks from the simulated data sets, the computation load per processor
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Figure 3.4: Plot of strong scaling efficiency of GS algorithm in constructing the BNs for
the simulated data sets.

of the algorithm is high even when running on 2048 cores. Correspondingly, the fraction

of run-time spent by the algorithm in communication for these data sets on 2048 cores is

between 49.2% and 55.5%, that is almost half of that observed for the benchmark data sets.

Table 3.4 shows the sequential run-time of our optimized implementations of the five

algorithms for the three simulated data sets. The table also shows the run-times for the

simulated data sets on 2048 cores and the corresponding speedup. The parallel perfor-

mance of our implementations improve as the edge addition probability increases, with all

the algorithms achieving more than 56% strong scaling efficiency on 2048 cores for S3.

Our parallel implementations of the local-to-global algorithms are able to reduce the time

required for learning BNs from 33 hours for a sequential run to less than 78 seconds using

2048 cores. The maximum strong scaling efficiency achieved for the simulated data sets is

85.9% corresponding to a maximum speedup of 1, 760X.

Weak Scaling

We performed weak scaling experiments to investigate the scalability of our framework

when the work per processor is fixed. Since the sequential run-time complexity of all five
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Table 3.4: Time taken by our implementations of the five local-to-global constraint-based
algorithms in constructing the BNs for the simulated data sets, sequentially and in parallel
using 2048 cores, and the corresponding speedup.

Data set Algorithm
Our run-time (s) Speedup

Sequential p = 2048

S1

GS 44, 496.3 36.0 1, 235.1
IAMB 64, 146.3 56.1 1, 143.8
Inter-IAMB 62, 898.8 71.9 875.1
MMPC 12, 150.7 26.0 466.8
SI-HITON 12, 130.8 24.2 501.4

S2

GS 61, 162.4 49.9 1, 225.2
IAMB 75, 798.3 57.5 1, 317.6
Inter-IAMB 77, 491.7 47.9 1, 617.8
MMPC 12, 171.0 12.1 1, 003.9
SI-HITON 12, 185.8 12.4 982.9

S3

GS 95, 520.8 76.4 1, 250.7
IAMB 111, 014.2 63.1 1, 760.2
Inter-IAMB 118, 868.8 77.1 1, 541.9
MMPC 55, 627.8 48.1 1, 157.0
SI-HITON 88, 395.4 74.3 1, 189.2

algorithms is proportional to n2 (Equation 3.4, Equation 3.6, and Equation 3.7), we conduct

the experiments by varying the number of cores used and learning BNs on p cores from data

sets with np variables such that n2
p/p remains constant for different values of p. The weak

scaling efficiency is then computed using Equation 2.4.

The plots of weak scaling efficiency of the five algorithms are shown in Figure 3.5. We

used the data set D2 and employed a maximum of 1024 cores for these plots in order to

prevent the data set size from getting too small on small number of cores. As discussed

earlier, we learned BN from the complete data set on 1024 cores and then learned BNs

for a subset of np variables from the data set when using p (< 1024) cores such that n2
p/p

remains the same. The degradation in scaling efficiency for the different algorithms is

in line with the communication intensity of the respective algorithms (Figure 3.3), which

suggests that communication overhead is the limiting factor for weak scaling.
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Figure 3.5: Plot of weak scaling efficiency of the five local-to-global constraint-based
algorithms, measured for D2.

3.5 Summary of Contributions

In this chapter, we presented a parallel framework to scale constraint-based BN structure

learning algorithms to tens of thousands of variables with a focus on local-to-global al-

gorithms. We identified common components of these algorithms and developed parallel

algorithms for each of these components. Subsequently, we demonstrated the applicabil-

ity of our framework by using it to develop parallel versions of five different algorithms:

GS, IAMB, Inter-IAMB, MMPC, and SI-HITON. We also introduced different algorithmic

techniques that improved run-time performance of these algorithms in practice, both se-

quentially and in parallel.

We demonstrated the scalability of these algorithms using real data sets to learn genome-

scale gene networks for the organisms S. cerevisiae and A. thaliana – networks with tens of

thousands of variables from thousands of observations. The experiments showed that our

optimized implementations of the local-to-global algorithms achieve significant sequential

speedup over the popular bnlearn package in learning these networks. Further, our pro-

posed parallel versions of these algorithms are able to learn the networks in less than 38
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seconds on 2048 cores, compared to almost 18 hours required by our sequential implemen-

tation and more than 7 days required by bnlearn. Using simulated data sets, we showed

that our algorithms are scalable to learning networks with even larger number of variables

and can reduce the time required for the purpose from more than 25 hours sequentially to

less than 78 seconds on 2048 cores.
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CHAPTER 4

PARALLELIZING GLOBAL-SEARCH CONSTRAINT-BASED ALGORITHMS

We developed a parallel framework for parallelizing multiple local-to-global constraint-

based algorithms in the previous chapter. In this chapter, we extend the framework to

parallelize global-search constraint-based algorithms. Specifically, we focus on the most

widely used algorithm in the category – PC-stable. We develop the new framework com-

ponents required for parallelizing the algorithm and propose two different parallel versions

of the algorithm using the extended framework. Our implementation of the algorithms

utilizes a novel load balancing strategy to improve their performance in practice. Similar

to the previous chapter, we investigate the scalability of our algorithms for PC-stable in

constructing gene regulatory networks from real data sets with thousands of variables and

thousands of observations. Our algorithms are able to reduce the time required for learning

the networks from the biggest data set to 5.9 minutes using 4096 cores, as compared to a

sequential run-time of 88.3 hours using our optimized implementation and more than seven

days using the previous state-of-the-art approaches.

This chapter is structured as follows. In section 4.1, we describe the sequential global-

search algorithms that is required for understanding our proposed parallel algorithms for

PC-stable described in section 4.2. Then, we discuss novel strategies for improving the

performance of the corresponding parallel implementations in section 4.3. We present the

results of our experiments in section 4.4 and summarize our contributions in section 4.5.

4.1 Sequential Algorithms

We first describe the sequential execution of global-search algorithms. Unlike the local-to-

global algorithms that start with an empty skeleton, the global-search algorithms begin with

a fully-connected skeleton. Accordingly, the neighborhood set of every variable contains
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all the other variables before the start of the algorithms, i.e., PC(T ) is initialized with

X \ {T}∀T ∈ X . Then, the algorithms repeatedly execute Eliminate phase, that is similar

to Shrink phase described in subsection 3.1.3. The only difference between the two is that

Eliminate phase also requires a number s as input and only uses conditioning sets of size

s when conducting the CI tests, i.e., in an Eliminate phase, Z is removed from PC(T ) if

I(T, Z|S) for some S ⊆ PC(T ) \ {Z} such that |S| = s. Both PC and PC-stable consider

conditioning sets of increasing sizes for the Eliminate phase, i.e., the tests are repeated

for s = 0, . . . ,min(l − 1, n − 2) where l is the maximum final neighborhood size of any

variable. At the end of these iterations, the edges of BN skeleton are learned in the form of

PC sets which are then directed to get the CPDAG for the BN structure.

Algorithm 12: Sequential Eliminate phase for PC
1 function CHECK-REMOVE-EDGE():

Input: D, N , s
Output: remove indicating if the edge should be removed

2 remove← false
3 for S ⊆ N such that |S| = s do
4 if I(X, Y |S,D) then
5 remove← true
6 break

7 return remove

8 function ELIMINATE-PC():
Input: D, X , current PC(·) sets, s
Output: Updated PC(·) sets

9 for T ∈ X do
10 for Z ∈ PC(T ) such that T < Z do
11 if CHECK-REMOVE-EDGE(D, PC(T ) \ {Z}, s) or

[s > 0 and CHECK-REMOVE-EDGE(D, PC(Z) \ {T}, s)] then
12 PC(T )← PC(T ) \ {Z}
13 PC(Z)← PC(Z) \ {T}

The sequential Eliminate phase for PC is shown in algorithm 12. Similar to the other

constraint-based algorithms, PC defines an arbitrary ordering on the variables and consid-

ers them in that order (line 10). Since the PC sets are updated after every removal (line 12
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– line 13), any removals from the PC sets of the variables ordered at the beginning can

change the conditioning sets for the variables ordered towards the end. Therefore, any

changes in the arbitrary ordering of the variables can have a significant effect on the final

learned network [39]. In order to remove this dependency of the learned network on the or-

dering of variables in X , PC-stable modifies the Eliminate phase as shown in algorithm 13.

The only modification required by PC-stable is that a snapshot of the PC sets is stored at

the beginning of the phase (line 2). Then, these PC sets are used to conduct all the CI tests

during the execution of the phase (line 5).

Algorithm 13: Modified Sequential Eliminate phase for PC-stable
1 function ELIMINATE-PCSTABLE():

Input: D, X , current PC(·) sets, s
Output: Updated PC(·) sets

2 prev-PC ← PC
3 for T ∈ X do
4 for Z ∈ PC(T ) such that T < Z do
5 if CHECK-REMOVE-EDGE(D, prev-PC(T ) \ {Z}, s) or

[s > 0 and CHECK-REMOVE-EDGE(D, prev-PC(Z) \ {T}, s)] then
6 PC(T )← PC(T ) \ {Z}
7 PC(Z)← PC(Z) \ {T}

Time Complexity: Each execution of Eliminate phase can call CHECK-REMOVE-EDGE

a maximum of two times for O
(
n
2

)
different pairs of variables. Each such call for condi-

tioning sets of size s may conduct a maximum of O
(
n
s

)
CI tests. Assuming that conducting

CI tests with a conditioning set of size s requires O(Gs) time, the call to Eliminate phase

will require O
(
n2
(
n
s

)
Gs

)
. Since real-world networks are usually spares, we also assume

that the neighborhood size of every variable is bounded by half the total number of vari-

ables, i.e., l = O(n/2). Then,
(
n
s

)
= O

(
n
l

)
∀s = {0, 1, . . . , l − 1}. Further, the time

required for conducting CI tests can only grow with increasing conditioning set sizes, i.e.,

Gs = O(Gl)∀s ∈ {0, 1, . . . , l − 1}. As the neighborhood sizes are bounded by l, PC

and PC-stable will call ELIMINATE-PC and ELIMINATE-PCSTABLE phase l times, re-
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spectively. Therefore, the sequential run-times of both the algorithms can be bounded by

O

(
ln2

(
n

l

)
Gl

)
(4.1)

4.2 Our Parallel Algorithms

We develop our parallel algorithms for PC-stable in this section. Towards this end, in sub-

section 4.2.1, we extend the parallel framework proposed in section 3.1 to enable efficient

parallelization of global-search constraint-based algorithms. Then, we use the extended

framework to propose two parallel algorithms for PC-stable. The first algorithm, discussed

in subsection 4.2.2, works similar to parallel-PC. The second algorithm, proposed in sub-

section 4.2.3, is an alternate parallelization strategy that is expected to be scalable to a

larger number of processors in practice.

4.2.1 Parallel Framework Extensions

Data Structure Modifications

We use the same three key data structures that are described in subsection 3.1.2. How-

ever, their usage and sequential initialization is modified for learning using global-search

algorithms as described below:

• Since global-search algorithms try to remove an edge between variables X and Y

using the neighbors of both X and Y , the initialization of c-scores list is modified

to have one element each for all the
(
n
2

)
unordered variable pairs, i.e., the list is ini-

tialized with 〈X, Y, 0〉∀X, Y ∈ X such that X < Y in the ordering of the variables.

At any point during the execution of algorithms, if 〈X, Y, θXY 〉 is a member of the

c-scores list, then X and Y are in the neighborhood sets of each other and θXY

represents the score for the existence of the corresponding edge in the BN skeleton.

• variables is again initialized with all the variables in X .
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• The initialization of PC sets is modified for global-search algorithms since they start

with a fully connected network. Therefore, PC(T ) = X \ {T}∀T ∈ variables .

The initialization of the three data structures in parallel is done as described in subsec-

tion 3.1.2, with one key difference. Since computing θXY requires bothPC(X) andPC(Y ),

variablesj is initialized with {X|〈X, Y, θXY 〉 ∈ c-scoresj or 〈Y,X, θXY 〉 ∈ c-scoresj}

and then PC(T ) is initialized for all T ∈ variablesj . Note that, this difference increases

the number of PC sets stored on every processor from O

n
p

 for local-to-global algo-

rithms toO(n) for global-search algorithms. However, since we use a bit set representation

for storing sets (as discussed in section 3.2), this does not have a significant effect on the

total space requirements of the algorithms.

Parallel Eliminate Phase

We propose the addition of a new component for Eliminate phase to our parallel framework.

The proposed component parallelizes the Eliminate phase for PC-stable (algorithm 13) as

shown in algorithm 14 and works as follows. In every call, it first updates the score θTY

for every element of the c-scoresj list. The score for a pair of variables is computed as

the minimum associativity between the two variables given the subsets of size s of the

current neighborhood of the first variable (line 4), since the score defined as such can be

used to ascertain CI (line 8). If backward is set to true, then the neighborhood of the second

variable is also checked for computing the score (line 6). Finally, the elements with scores

below the given threshold are removed from the c-scores list and the corresponding PC

sets are updated (line 9 – line 11).

Time Complexity: Each call to this phase requires the scores for O

n2

p

 elements

of c-scores list on every processor, which takes O(
(
n
s

)
Gs) time in computation for each
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Algorithm 14: Parallel Eliminate Phase
1 function ELIMINATE-PHASE():

Input: D, c-scores , current PC(·) sets, s, backward
Output: Updated PC(·) sets

2 parallel j = processor’s rank do
3 for 〈T, Y, θTY 〉 ∈ c-scoresj do
4 θTY ← minS⊆PC(T )\{Y } s.t. |S|=s Assoc(T, Y |S,D)
5 if backward and θTY ≥ −α then
6 θTY ← minS⊆PC(Y )\{T} s.t. |S|=s Assoc(T, Y |S,D)

7 for < T, Y, θTY >∈ c-scoresj do
8 if θTY < −α then
9 Remove 〈T, Y, θTY 〉 from c-scoresj

10 PC(T )← PC(T ) \ {Y }
11 PC(Y )← PC(Y ) \ {T}

element. Therefore, this phase requires O

n2

p

(
n
s

)
Gs

 computation time and no commu-

nications.

4.2.2 Parallel Algorithm for PC-stable

Our parallel algorithm for BN skeleton learning using PC-stable is shown in algorithm 15.

Similar to parallel-PC, it distributes the edges through the distributed c-scores list. Then,

using the parallel ELIMINATE-PHASE presented in algorithm 14, each processor conducts

all the CI tests for its share of edges independently and updates its localPC sets correspond-

ing to the eliminated edges. These updates are then synchronized across all the processors

at the end of every iteration. Like the sequential algorithm, the execution of the parallel

algorithm concludes when the neighborhood of all the variables becomes smaller than the

conditioning set size. The PC sets at the end of the algorithm execution correspond to the

skeleton for the BN.

Time Complexity: The computation run-time of this algorithm is dominated by the run-

time of ELIMINATE-PHASE, which is called O(l) times. This results in a total computation

71



Algorithm 15: Parallel Construct Skeleton - PC-stable
1 function CONSTRUCT-SKELETON-PCSTABLE():

Input: X , D
Output: PC(T ) sets for all T ∈ X

2 parallel j = processor’s rank do
3 Initialize c-scoresj , variablesj , PC(·) as described in subsection 3.1.2 and

modified in subsection 4.2.1
4 s← 0
5 repeat
6 backward← (s > 0)
7 ELIMINATE-PHASE(D, c-scoresj , PC, s, backward)
8 Synchronize PC(·) across all the processors
9 s← s+ 1

10 until |PC(T )| > s for some T ∈ X

run-time of this algorithm of

O

ln2

p

(
n

l

)
Gl

 (4.2)

The algorithm incurs the following two communication overheads in every iteration: 1) for

synchronizing the PC sets, and 2) for determining if the next iteration with larger condi-

tioning set size needs to be executed on any of the processors. Again, both these operations

can be implemented using all-reduce which requiresO((τ+µ log n) log p) time. Therefore,

the communication run-time of the algorithm is

O(l(τ + µ log n) log p) (4.3)

Parallel Efficiency: The parallel efficiency of the algorithm can be computed using Equa-

tion 2.2 by substituting Equation 4.1 for Tseq(n) and the sum of Equation 4.2 and Equa-
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tion 4.3 for T (n, p) as

E(n, p) =
ln2
(
n
l

)
Gl

p×

ln2

p

(
n
l

)
Gl + l(τ + µ log n) log p


× 100%

=
n2
(
n
l

)
Gl

n2
(
n
l

)
Gl + (τ + µ log n)p log p

× 100%

From the above equations, it can be seen that the denominator will asymptotically be the

same as the numerator if n2
(
n
l

)
Gl > (τ + µ log n)p log p which implies that p log p <

n2
(
n
l

)
Gl

τ + µ log n
. Noting that p log p < p2, this inequality can be simplified to get stricter bounds

on the number of processors that can be used by algorithm 15 while being efficient as

p = O

n
√√√√ (

n
l

)
Gl

τ + µ log n

 (4.4)

4.2.3 Alternate Parallel Algorithm for PC-stable

The parallelization of PC-stable presented in algorithm 15 assigns all the CI tests for an

unordered variable pair to the same processor, i.e., the tests for a variable pair 〈X, Y 〉 using

the neighborhood of X as well as using the neighborhood of Y are always conducted by

the same processor. Therefore, similar to the sequential algorithm, if X and Y are found to

be independent using the neighbors of X , then the CI tests using the neighbors of Y are not

conducted. This method of distributing CI tests ensures that the parallel algorithm conducts

the same number of CI tests as the sequential algorithm. However, this distribution method

is not optimal when the number of unordered variable pairs is comparable to the number of

available processors. This is because, as the algorithm progresses and eliminates variable

pairs found to be independent, some processors may be left without any work.
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Algorithm 16: Alternate Parallel Skeleton Algorithm - PC-stable
1 function CONSTRUCT-SKELETON-PCSTABLE-ALTERNATE():

Input: X , D
Output: PC(T ) sets for all T ∈ X

2 parallel j = processor’s rank do
3 Initialize c-scoresj , variablesj , PC(·) as described in subsection 3.1.2 and

modified in subsection 4.2.1
4 s← 0
5 repeat
6 ELIMINATE-PHASE(D, c-scoresj , PC, false)
7 Synchronize PC(·) across all the processors
8 s← s+ 1
9 if s = 1 then

// Duplicate the unordered pairs
10 for 〈X, Y, θXY 〉 ∈ c-scoresj do
11 Add 〈Y,X, θXY 〉 to c-scoresj
12 Redistribute c-scores

13 if s > 1 then
// Updates for removals on other processors

14 for 〈X, Y, θXY 〉 ∈ c-scoresj do
15 if Y 6∈ PC(X) then
16 Remove 〈X, Y, θXY 〉 from c-scoresj

17 until |PC(T )| > s for some T ∈ X

We propose an alternate parallelization strategy for PC-stable, shown in algorithm 16,

that creates ordered variable pairs from the initial unordered pairs at the end of the first

iteration (line 9 – line 12). This duplication allows CI testing of all the pairs using only the

neighborhood of the first variable by modifying the call to ELIMINATE-PHASE (line 6 in

algorithm 16 as compared to line 7 in algorithm 15). Since the two tuples corresponding

to a pair might end up on different processors with this change, c-scores list on every

processor is updated for removals on the other processors (line 13 – line 16).

Time Complexity and Parallel Efficiency: The computation run-time of algorithm 16 is

also dominated by that of ELIMINATE-PHASE and it requires the same communication as

algorithm 15. Therefore, the computation and communication run-times of the algorithm
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are also given by Equation 4.2 and Equation 4.3, respectively. Correspondingly, it is also

efficient when using the number of processors bounded by Equation 4.4.

4.3 Implementation

We implemented the two proposed parallel algorithms for PC-stable, using C++14 and

MPI, as part of the same open-source software package that contains the implementations

of our parallel local-to-global constraint-based algorithms [30]. We also utilized the same

counting strategies as described in subsubsection 3.3.2 for these implementations.

4.3.1 Directing the Learned Skeleton

Similar to our implementations of the local-to-global algorithms, we implemented both

our PC-stable algorithms to learn exactly the same BN as that learned by the correspond-

ing implementation in bnlearn. In contrast to the local-to-global algorithms, though, the

bnlearn implementation of PC-stable requires an additional overhead for remembering the

conditioning sets used for removing all the edges as it uses this information to direct the

edges of the learned BN skeleton using the rules of d-separation [37].

We store the conditioning sets used for removing a variable pair on the processor that

eliminated the pair during the execution of the algorithm. Then, at the end of the skeleton

learning procedure, the conditioning sets that can not be used for directing the edges are

discarded. Finally, all the remaining conditioning sets are collected on all the processors

for directing the edges without any communication. Even including the overhead required

for storing and communicating the conditioning sets, directing the edges using our imple-

mentation still requires a maximum of 2.2% of the total run-time required for learning BNs

in our experiments discussed in section 4.4, sequentially and in parallel.
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4.3.2 Load Balancing

The performance of our implementations of the proposed parallel algorithms for PC-stable

can be significantly impacted because of load imbalance. This is because of a combination

of the following two reasons:

1. In every iteration, the call to ELIMINATE-PHASE removes some elements from the

c-scores list. However, the number of elements removed on every processor can

vary widely. Since the computation run-time of ELIMINATE-PHASE on a processor

depends on the size of c-scores list on the processor, this may lead to imbalance

between the processors.

2. The issue described above is similar to the problem of load imbalance during the

execution of local-to-global algorithms discussed in subsection 3.3.3 with a key dif-

ference. During the execution of local-to-global algorithms, the neighborhood of

every variable increases by a maximum of one variable in an iteration. On the other

hand, in an iteration of global-search algorithms, the call to ELIMINATE-PHASE may

remove multiple variables from the neighborhood of a variable. This further exacer-

bates the problem of load imbalance because the maximum number of CI tests with

conditioning sets of size s that can be conducted using the neighborhood of a variable

T is
(|PC(T )|

s

)
. Therefore, the disparity between the number of CI tests conducted for

different variables increases as the algorithm removes dissimilar number of variables

from the neighborhoods and also with increasing s.

To address the issues discussed above, we implemented two different approaches for bal-

ancing the load at the end of every iteration as described below. We compare the perfor-

mance of the two approaches in subsubsection 4.4.2.
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Simple Approach

The first approach that we implemented for load balancing works similar to the strategy

used for the purpose in the implementation of local-to-global algorithms, described in sub-

section 3.3.3. At the end of every iteration, we block redistribute the c-scores list to fix the

imbalance in the size of the list on every processor. Unlike the approach for local-to-global

algorithms, though, we redistribute the list at the end of every iteration for PC-stable al-

gorithms. Since this approach assumes all the tuples require equal amount of work – an

assumption that does not hold in practice because of reasons discussed above – we expect

this approach to provide limited gains over the implementation without any load balancing.

Weighted Approach

We also implemented an alternate approach for load balancing that aims to minimize the

difference between estimated computation run-times across the processors in every iter-

ation. Towards this end, we assign a weight to every element of the c-scores list that

is proportional to an upper bound on the computation run-time required by ELIMINATE-

PHASE for the element. We estimate this weight as the maximum number of CI tests that

can be conducted for the element. For conditioning sets of size s, the maximum number of

CI tests that can be conducted for a tuple 〈X, Y, θXY 〉 by algorithm 16 is
(|PC(X)|

s

)
, while

algorithm 15 may conduct
(|PC(Y )|

s

)
additional tests. Notice that, the block distribution of

the elements of c-scores to processors before the first iteration corresponds to the estimate

of the run-times during the first iteration because exactly one CI test is conducted for every

tuple when s = 0.

Once the weights for all the elements of c-scores have been computed at the end of an

iteration, the elements of the list are redistributed to minimize the maximum total weight

of the list on any processor. However, finding an optimal assignment of the elements that

minimizes the maximum weight is known to be an NP-hard problem for two or more pro-

cessors [123]. Correspondingly, multiple heuristics have been developed for the purpose
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with guarantees on the quality of the solution [124, 125, 126]. We implement a relatively

straightforward heuristic that prioritizes minimizing the communication cost of the redistri-

bution by moving the elements to the processors with neighboring ranks to fix the weighted

load imbalance.

4.4 Experiments and Results

We conducted the experiments reported in this section on the Phoenix cluster at Georgia

Tech, previously described in section 3.4. We also compiled our implementations and run

the experiments as discussed in the section. We use a maximum of 171 nodes on the cluster

for these experiments.

4.4.1 Data sets

Global-search constraint-based algorithms have been used in multiple previous studies for

the construction of gene regulatory networks [127, 128, 129]. Further, we used learning of

gene regulatory networks for our experiments in the previous chapter. Therefore, we show

the efficacy of our proposed algorithms for PC-stable in the same application area.

Previous parallelization efforts for PC-stable have evaluated their implementations us-

ing a set of six gene expression data sets [96, 98, 97, 100]. These data sets were first

compiled by Le et al. to evaluate parallel-PC [96]. For our experiments, we use the two

largest data sets of these that were originally created for the DREAM5 challenge [130].

The first data set from the challenge consists of gene expression data for S. aureus that is

a human pathogen and can cause diseases such as pneumonia, endocarditis, osteomyelitis,

etc. This data set contains 160 observations each for 2, 810 genes. The second data set of

805 observations for 1, 643 genes is referred to as the DREAM5 in silico data set since it

was created from a simulated network. Finally, we also use the S. cerevisiae gene expres-

sion data set from Tchourine et al. [121], previously described in subsection 3.4.1. This

data set is bigger than any of the real-world data sets used in the previous parallelization
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efforts for PC-stable.

Table 4.1: Benchmark data sets used for experimenting with global-search constraint-
based algorithms.

Name Organism
Genes Observations

(n) (m)

D4 S. aureus 2, 810 160
D5 N/A (in silico) 1, 643 805
D1 S. cerevisiae 5, 716 2, 577

Table 4.1 lists the data sets used for our experiments in this section. Since we used D1

– D3 to identify the data sets for presenting the results in section 3.4, we use D4 and D5 to

refer to the new S. aureus and in silico data sets, respectively. We discretize and store these

data sets as described in subsection 3.4.1 and use α = 0.05 for learning BNs from these

data sets for the results presented in this section.

4.4.2 Parallel Performance

We investigate the performance of our implementations of the two proposed parallel al-

gorithms for PC-stable – the first one described in subsection 4.2.2, is referred to as “our

primary” algorithm or simply “primary” algorithm, and the second one described in sub-

section 4.2.3, is referred to as “our alternate” algorithm or just “alternate” algorithm. We

first discuss the effect of the two load balancing schemes on the run-time of our implemen-

tations. Then, we discuss the previous state-of-the-art approaches and finally present the

results of strong scaling experiments conducted for our implementations.

We use the benchmark data sets listed in Table 4.1 for these experiments and learn

networks for them in parallel, by repeatedly doubling the number of cores used for the

purpose from 1 to 4096. We begin the execution in parallel by reading the data sets and

writing the learned networks at the end as described in subsection 3.4.4. In all the cases,

reading the data sets requires less than 5.1 seconds and writing the networks takes less

than 0.2 seconds. Therefore, similar to the experiments for the local-to-global constraint-
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based algorithms, we report only the time required for learning the networks for the results

presented in this section.

Effect of Load Balancing

We proposed two different approaches for fixing the load imbalance at the end of every

iteration of our parallel implementations in subsection 4.3.2 – simple and weighted. We

evaluate these two approaches using our primary algorithm. For this purpose, we learn

networks for the two bigger data sets (D5 and D1) using the algorithm in the following

configurations: without any load balancing, with simple load balancing, and with weighted

load balancing. Then, we compute the reduction in the time required by our parallel im-

plementation of the algorithm using the two load balancing approaches, as compared to the

run-time without any load balancing, and plot it in Figure 4.1.
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Figure 4.1: Plot of percentage reduction in the run-time of PC-stable, as a result of different
load balancing schemes, for learning BN from data sets D5 and D1 on different number of
cores.

The run-times show only marginal improvements using either approach when running

on smaller number of cores, with load balancing even deteriorating the performance in

some cases. For example, the run-time for D1 shows a maximum increase of 7.4% on

32 cores when using the simple approach and a maximum increase of 0.5% on 16 cores

80



when using the weighted approach. This increase in run-time can be attributed to the fact

that the time required for fixing the load imbalance may be more than the corresponding

gains when the load imbalance is not severe. However, the run-times improve using both

the approaches when learning on a larger number of cores. Further, both the approaches

show increasingly higher improvement as the number of cores used is increased. In all the

cases, the weighted balancing approach outperforms the simple approach with a maximum

run-time improvement of 72.1% and 88.3% on 4096 cores for D5 and D1, respectively.

Therefore, we use the weighted approach for load balancing in our final implementation of

both the proposed algorithms used for the scaling experiments.

Comparison with Previous State-of-the-Art

Le et al. implemented their parallel-PC algorithm as part of an R package [131]. As

discussed in subsubsection 2.4.1, the parallel version of PC-stable implemented in bnlearn

also follows an approach similar to parallel-PC. Recently, Hagedorn and Huegle compared

the two R implementations and found the bnlearn implementation of PC-stable to be up

to 400X faster than the corresponding implementation by Le et al. [101]. Therefore, we

evaluated bnlearn as a potential baseline for our implementations.

The bnlearn implementation of PC-stable requires 54.8 hours to sequentially learn the

network for D5, that is 21.7X slower than our implementation for learning exactly the same

network, and does not finish learning the network for D4 and D1 in seven days while our

sequential implementation is able to learn the networks in 3.2 minutes and 88.3 hours,

respectively. Since the bnlearn implementation is significantly slower than our optimized

implementations, we do not assess its parallel scalability. Instead, we use the optimized

implementation of our primary algorithm, without any load balancing, as the baseline for

our experiments and refer to it as the “optimized parallel-PC” in the discussion of the

results next.
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Table 4.2: Time taken by the optimized parallel-PC and our two parallel algorithms for
PC-stable in learning the BNs for the benchmark data sets on different number of cores,
measured in seconds.

Number
of Cores

(p)

D4 D5 D1
Optimized

Parallel-PC
Ours

Primary
Ours

Alternate
Optimized

Parallel-PC
Ours

Primary
Ours

Alternate
Optimized

Parallel-PC
Ours

Primary
Ours

Alternate

1 189.1 189.1 189.1 9, 097.1 9, 097.1 9, 097.1 317, 879.2 317, 879.2 317, 879.2
2 95.6 99.3 147.2 5, 433.8 4, 925.6 5, 829.6 166, 005.2 162, 959.8 185, 923.8
4 49.6 51.6 76.5 2, 783.8 2, 588.1 3, 004.0 86, 425.1 82, 992.5 94, 412.1
8 25.2 27.9 39.9 1, 471.1 1, 358.5 1, 550.2 45, 204.2 45, 438.5 51, 683.6
16 15.0 17.0 22.4 881.6 717.8 817.5 24, 144.2 23, 724.0 27, 170.7
32 8.6 8.7 11.6 516.6 379.0 445.2 18, 063.2 13, 871.7 15, 261.5
64 6.3 5.5 7.6 312.6 204.9 236.3 12, 159.0 8, 197.0 8, 310.4
128 3.6 3.6 4.6 171.1 117.5 146.1 10, 698.7 4, 407.1 4, 897.8
256 2.7 2.3 3.0 141.3 83.8 92.0 6, 323.7 2, 786.7 2, 804.1
512 2.3 1.6 2.1 113.6 49.5 54.3 5, 478.5 1, 709.5 1, 683.0
1024 1.4 1.4 1.4 102.5 32.3 30.3 4, 169.1 971.8 1, 033.3
2048 1.8 1.1 1.3 68.3 22.2 19.9 3, 726.5 577.3 637.2
4096 2.9 3.6 4.0 46.2 12.9 18.2 3, 027.6 354.7 370.6

Strong Scaling Performance

Table 4.2 shows the time required by the baseline and our two algorithms for learning

networks from the benchmark data sets when using different number of cores. The corre-

sponding strong scaling speedup and efficiency, computed using Equation 2.2, is shown in

the first and the second row of Figure 4.2, respectively.

Our primary algorithm outperforms optimized parallel-PC by a significant margin for

learning BNs from the two bigger data sets, i.e., D5 and D1, using any number of cores.

Further, our alternate algorithm also outperforms optimized parallel-PC for the two bigger

data sets, when running on 32 cores or more. However, our primary algorithm is slower

than optimized parallel-PC for D4 when using 32 cores or fewer. This is because the

total work required for learning the network from the data set is very low, as evidenced by

the corresponding sequential run-time of about three minutes and run-time of less than 10

seconds of all the implementations for the data set when using 64 cores or more. Therefore,

the gains from a balanced load can not compensate for the overhead required to achieve it.
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Figure 4.2: Plots of strong scaling speedup and efficiency of the optimized parallel-PC and our two parallel algorithms for PC-stable in
constructing the BNs for the benchmark data sets as a function of the number of cores.
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When using fewer cores, our alternate algorithm is significantly slower than our primary

algorithm for learning networks from all the three data sets, with even optimized parallel-

PC outperforming the alternate algorithm in some cases. Le et al. asserted that conducting

the CI tests for an unordered variable pair 〈X, Y 〉 using PC(X) and PC(Y ) on different

processors, as is done in our alternate algorithm, is inefficient [96]. This is because if X

and Y are found to be independent using subsets of PC(X), then the tests conducted using

subsets of PC(Y ) would be extra work as compared to the sequential implementation.

However, the performance of our two algorithms are very similar when running on larger

number of cores. Further, our alternate algorithm is faster than our primary algorithm for

D5 on 1024 and 2048 cores. This is in contrast to the observation by Le et al. The results of

our experiments show that while conducting CI tests using both the sets of neighborhood

sets for an unordered variable pair may be an indisputably good strategy when using fewer

cores, splitting up the tests on larger number of cores to provide enough work to every

processor may result in a better performance.

Even though our implementations of the two proposed algorithms achieve significantly

higher speedup than the baseline for the two bigger data sets, the maximum strong scal-

ing efficiency achieved by the algorithms on 4096 cores is only about 21%. This lower

efficiency seems to contradict the theoretical bounds on the number of processors that can

be used by the algorithms while being efficient, as specified in Equation 4.4. Even with

the weighted load balancing scheme, we observe imbalance between the run-times of the

different processors. This discrepancy between the theoretical analysis and the practical

performance is due to the fact that the actual number of CI tests that will be conducted for a

variable pair can not be determined a priori. Therefore, both the theoretical analysis as well

as the weight computations for load balancing assume that the maximum number of CI

tests will be conducted for all the variable pairs in the c-scores list. Since this assumption

does not hold in practice, we observe a drop in efficiency of all the implementations for all

three data sets in Figure 4.2 as the load is distributed across more processors. Nonetheless,
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the weighted balancing of load prevents the steep efficiency loss in our implementations as

compared to the one observed for optimized parallel-PC.

Our two algorithms are able to reduce the time required for learning the networks from

3.2 minutes sequentially to 4 seconds using 4096 for D4, from 2.5 hours to less than 18.2

seconds for D5, and from 88.3 hours to less than 6.2 minutes for D1. For learning from the

biggest data set that we used, our primary and alternate algorithms achieve the maximum

speedup of 896.2X and 857.7X on 4096 cores while the corresponding speedup obtained

by the baseline implementation is 105X.

4.5 Summary of Contributions

We extended our framework for constraint-based algorithms to parallelize global-search

algorithms in this chapter. We used the extended framework to propose two parallel algo-

rithms for the widely used PC-stable algorithm. Our proposed parallel algorithms utilize

the same basic idea as the previous approaches but, unlike the prior works, we theoretically

analyzed the algorithms and showed that they are efficient on a large number of processors.

Further, we optimized our implementations of the algorithms and employed a novel load

balancing technique that improved the performance of our algorithms in practice.

The results of our experiments showed that our implementations of the parallel algo-

rithms for PC-stable are scalable to thousands of cores. The algorithms are able to learn

gene networks from a real-world gene expression data set for S. cerevisiae with 2, 577

observations for 5, 716 genes in 5.9 minutes on 4096 cores, as compared to sequentially

requiring 88.3 hours using our optimized implementation and more than seven days using

the previous state-of-the-art CPU-based implementation. To the best of our knowledge, the

S. cerevisiae data set used in these experiments is bigger than any of the gene-expression

data sets used in the previous works that parallelized global-search algorithms.
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CHAPTER 5

PARALLELIZING MODULE NETWORK CONSTRUCTION

We developed efficient parallelizations of multiple constraint-based algorithms in the pre-

vious two chapters. As discussed in subsection 2.4.1, previous works have proposed par-

allel algorithms for BN structure learning using score-based methods that are able to learn

networks with tens of thousands of variables [49]. Instead, we choose to focus on par-

allelizing the construction of MoNets – an important specialization of BNs that are also

learned using score-based methods.

In this chapter, we present the first scalable distributed memory parallel solution for

constructing MoNets. We described the two software packages that are primarily used for

learning MoNets, GENOMICA and Lemon-Tree, in subsection 2.2.2. Since Lemon-Tree is

more widely used of the two, as discussed in subsection 2.4.2, we parallelize the method-

ology used by Lemon-Tree in this work. Similar to the previous chapters, we demonstrate

the scalability of our parallel method for the construction of genome-scale gene regulatory

networks. Using 4096 cores, our parallel implementation constructs regulatory networks

for 5, 716 and 18, 373 genes of two model organisms in 15.2 minutes and 2.8 hours, com-

pared to an estimated 49 and 1561 days using Lemon-Tree for generating exactly the same

networks, respectively. Our method is application-agnostic and broadly applicable to the

learning of high-dimensional MoNets for any of its wide array of applications.

This chapter is organized as follows. First, we describe the sequential algorithm of

Lemon-Tree in section 5.1 which is required for understanding its proposed parallelization

in section 5.2. Then, we discuss the optimized sequential implementation and the imple-

mentation of the parallel algorithm in section 5.3. Finally, in section 5.4, we discuss in

detail the experiments we conducted to evaluate the performance of the parallel implemen-

tation and summarize our contributions in section 5.5. The content covered in this chapter

86



improves the results presented in the work that has been accepted to appear in the following

peer-reviewed paper:

• A. Srivastava, S. Chockalingam, M. Aluru, and S. Aluru, “Parallel Construction of

Module Networks,” in 2021 SC21: International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), ACM, 2021

5.1 Sequential Lemon-Tree Algorithm

Lemon-Tree implements the MoNet learning method proposed by Bonnet et al. [71]. This

MoNet learning method consists of three main tasks that are executed in the order they are

described below.

5.1.1 GaneSH Co-Clustering

The first task constructs an ensemble of variable clusters using a Gibbs sampler algorithm

called GaneSH, proposed by Joshi et al. [83]. The algorithm performs two-way clustering

of variables and observations to get a variable-observation co-clustering. GaneSH scores

a co-clustering using a decomposable Bayesian scoring function (described in [83]) that

can be computed by aggregating the values from independently computed scores for all

the variable and observation clusters. The algorithm explores the space of co-clustering

solutions as follows:

1. Random Initialization: The n variables are randomly assigned to a user-provided

number of variable clusters, or n/2 clusters if no input is provided. In each variable cluster,

the m observations are randomly assigned to
√
m observation clusters.

2. Update Steps: The randomly initialized co-clustering is updated multiple times, as

per user input. In each update step of the algorithm, the clustering of variables and obser-

vations is updated as follows:
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◦ Variable Clustering: For n iterations, the cluster assignment of a randomly selected vari-

able is evaluated while keeping the assignment of all the other variables and observations

fixed. The chosen variable is then randomly assigned to one of the existing clusters or

moved to its own separate cluster. The probability of each choice for this random reas-

signment is proportional to the corresponding change in the score. After n reassignment

iterations, each variable cluster is considered one at a time and is merged with one of the

other clusters or left as is, chosen at random with the probability of each possible action

weighted by the corresponding score.

◦ Observation Clustering: The variable cluster assignments are fixed and for each variable

cluster, updates to observation clustering proceed similar to the variable clustering itera-

tion. First, the cluster assignment of m randomly selected observations is changed, one

at a time, similar to the random reassignment of variables described above. Then, the

merging of observation clusters proceeds similar to the merging of variable clusters.

The co-clustering algorithm simulates a Markov chain, i.e., the probability to visit a partic-

ular co-clustering corresponds exactly to its posterior probability given the data. In order

to get the variable clusters corresponding to high posterior probability, the algorithm is run

multiple times with different random initializations and variable clusters are sampled at the

end of each run.

Let K be the maximum number of variable clusters and L be the maximum number

of observation clusters in any variable cluster. Then, variable and observation clustering

phases in each sampling step require O(nKLm + K2Lmn) and O(K(mLn + L2)) time,

respectively, for an asymptotic complexity of O(K2Lnm) per update step. Therefore, in

order to sample variable clusterings from G runs of GaneSH with U update steps, the total

time required is O(GUK2Lnm).
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5.1.2 Consensus Clustering

In the second task, a single consensus variable clustering solution is constructed from the

ensemble of variable clusters sampled in the first task. This is done by creating a symmetric

co-occurrence frequency matrix A of size n × n. The entry A(i, j) of the matrix is set to

the number of times the variables Xi and Xj occur in the same cluster in the ensemble, as

a fraction of the total number of sampled clusters. Note that A(i, j) is set to zero if the

co-occurrence weight is below a user-provided threshold. The matrix A is then provided

as an input to the spectral clustering algorithm proposed by Michoel and Nachtergaele [84]

to obtain the consensus variable clusters. The time complexity of the complete consensus

clustering step is O(Gn2), where G is the number of variable cluster samples from the first

task.

5.1.3 Learning the Modules

The consensus variable clusters identified by the second task are defined as the modules

(M) of the MoNet and are provided as an input to the third task. In this task, the parent

variables and the corresponding CPDs are learned for each module by first learning regres-

sion tree structures followed by the assignment of the parent variables and split values, or

parent splits, to the nodes of the regression trees. The parent variables are chosen from a

list of candidate parent variables for all the modules that can be provided as an input to this

step. If no candidate list is provided, then every variable is considered a candidate parent.

For each module Mi ∈M, the third task proceeds through the following three main steps:

1. Learning Regression Tree Structures: For the module Mi, an ensemble of regression

trees (denoted by T (Mi)) are learned as follows. First, the leaf nodes of the trees are

built by learning multiple different clusterings of observations. This is accomplished by

executing the GaneSH algorithm (described in subsection 5.1.1) while constraining the

variable clusters to a single cluster containing the variables assigned to the module Mi, and
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sampling an ensemble of likely observation clustering solutions for Mi. Then, a binary

regression tree structure is constructed by initializing the leaf nodes with the observation

clusters and merging them using Bayesian hierarchical agglomerative clustering [79, 132],

until all the nodes are merged into one root node with all the observations.

If R sets of observation clusters are sampled in this step, then GaneSH algorithm takes

O(R(mLn + L2)) time, where L is the maximum number of observation clusters. Then,

the hierarchical clustering for getting each regression tree structure requires O(Lnm+L2)

time. Therefore, this step requires a total of O(R(Lnm + L2)) time that is bounded by

O(RLnm), since L = O(m).

2. Node Parent Split Assignments: In this step, for all the regression tree structures

learned for Mi, i.e., all the trees in T (Mi), the assignment of parent splits to every internal

node is accomplished as follows:

(i) Scoring Candidate Splits: Given the set of candidate parents P , all the 〈Xi,Dij〉 pairs

are considered as candidate parent splits for the given internal node, where Xi is a

candidate parent and Dij is a value ofXi in D corresponding to the observations at the

node. The maximum posterior probability of assigning every such candidate parent

split to the node is computed by sampling from a discrete distribution, as described

in [80], and the candidate splits with zero posterior probability are discarded. Since

all the n variables may be candidate parents in this stage, the number of splits at every

node is bounded by O(nm). If S is the maximum number of discrete sampling steps

for any split, then computing the posterior probability for a split requiresO(Sm) time

for a total time of O(Snm2) for this stage.

(ii) Assigning Parent Splits: In this stage, a user supplied number of splits are chosen

from all the candidate splits retained in the previous stage, using weighted random

sampling with the corresponding posterior probabilities as weights. Additionally, the

same number of splits are selected using uniform random sampling. Both these sets
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of selected splits are assigned to the internal node. This stage performs a linear scan

through the list of candidate splits, for weighted sampling, in O(nm) time.

The total number of non-leaf nodes in every binary regression tree is bounded by O(L) as

the total number of leaf nodes is bounded by O(L). Therefore, the assignment of splits to

all the nodes of the R regression trees of Mi requires a total of O(RLSnm2) time.

3. Learning Module Parents: For a module Mi, the parents of the module include all

the variables corresponding to all the splits assigned to all the nodes of all the regression

trees learned for Mi. The score for a parent variable Xi is computed as the average of the

posterior probabilities for the splits containing Xi, weighted by the number of observations

at the node that the splits are assigned to. Further, the scores of the parents from splits

chosen uniformly at random for every node are also computed. The computed scores for

both the sets of parents, chosen using weighted sampling as well as uniform random sam-

pling, are used for further downstream analysis, e.g., to assess the significance of the parent

variables [80, 71]. If J splits are chosen in the previous step, the parent weights for every

module can be learned in O(JRL) time.

The time complexity of the third task for one module is O(RLnm + RLSnm2 + JRL),

where J is bounded by the total number of possible splits O(nm) and R = O(U). There-

fore, the run-time of this task for K modules is O(UKLSnm2). The total time complexity

of the three tasks of Lemon-Tree is

O(GUK2Lnm+Gn2 + UKLSnm2) (5.1)

where G is the number of GaneSH runs, U is the number of update steps in each GaneSH

run, K = O(n) is the maximum number of variable clusters, L = O(m) is the maximum

number of observation clusters, and S is the maximum number of sampling steps for com-

puting the split probabilities. Since G, U , K, and L are much smaller than n and m for
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large data sets, the time taken by the last task dominates the total run-time of Lemon-Tree

as observed in the experiments reported in section 5.4.

Note that, a network learned using the Lemon-Tree approach may not satisfy the formal

definition of MoNets because of the following two reasons. First, multiple regression trees

for every module are learned when R > 1. This can be easily addressed by changing

the corresponding input parameter to sample only one observation cluster in the third task.

Second, the algorithm does not enforce the acyclicity constraint. Therefore, the MoNets

learned by the algorithm may need to be post-processed using an existing method to get the

DAG for the learned network.

5.2 Our Parallel Algorithm

We design our parallel algorithm for learning MoNets to ensure consistency of results with

the sequential Lemon-Tree implementation for all data sets. Since the sequential version

of Lemon-Tree has been proven to be successful in many applications, this ensures ready

adoption of our parallel software, while providing the needed scalability.

5.2.1 Assumptions

We develop the proposed parallel algorithms for execution using p processors assuming the

networked distributed memory model described in subsection 2.3.1. We also assume that

the complete data set D is available on all the processors.

Random sampling is required in the different tasks of the Lemon-Tree algorithm. In

our description of the parallel algorithm, we assume the availability of two oracle functions

that facilitate uniform and weighted random sampling in parallel. SELECT-UNIF-RAND

accepts as input a distributed list B, and returns an element b ∈ B chosen at random with

a probability 1/|B|. SELECT-WTD-RAND accepts two inputs – a distributed list B and

a corresponding list of real numbers, W , with the weights of all the elements in B. It

chooses an element b ∈ |B| with the probability W (b)/
∑

x∈BW (x), where W (x) is the
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weight corresponding to the element x. When sampling using p processors, SELECT-UNIF-

RAND requires O(1) computation time and O((τ + µ) log p) time for communicating the

chosen element to all the processors, while SELECT-WTD-RAND requiresO(|B|/p+log p)

computation andO((τ+µ) log p) communication time, in order to compute the probability

of picking each element from W . Notice that the calls to these sampling functions are

collective communication calls, i.e., all the processors participate in the sampling calls. We

discuss the implementation of distributed random sampling in subsection 5.3.2.

5.2.2 Parallelizing Lemon-Tree

The sequential Lemon-Tree algorithm executes three different tasks for the construction

of MoNets. In this section, we parallelize Lemon-Tree by developing parallel algorithms

for the different tasks. We present pseudo-codes for the proposed algorithms from the

perspective of an arbitrary processor with rank k (0 ≤ k < p). The data structures local to

the processor are identified by the subscript k. We use standard parallel primitives such as

bcast, all-reduce, all-gather, and scan, in the design of these algorithms.

GaneSH Co-Clustering

The sequential GaneSH task samples an ensemble of variable clusters by performing variable-

observation co-clustering as described in subsection 5.1.1. We denote a cluster of variables

by V and the cluster of the observations for the variable cluster Vi ∈ V by O(Vi). We also

denote the j-th observation in the data set D as Dj .

We parallelize this task by developing parallel algorithms for the four key functions

used by GaneSH. The first two functions are used in the variable clustering phase, and

therefore modify only the variable clusters V while keeping O the same. The pseudo-code

for our parallel algorithm for these functions is described in algorithm 17. For n iterations,

REASSIGN-VAR-CLUSTER selects a variable Xr and computes the change in score for

moving Xr from its current assignment to every other variable cluster. It randomly selects
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Algorithm 17: Parallel Update of Variable Clusters
1 function REASSIGN-VAR-CLUSTER():

Input: Variables X
Input/Output: Set of variable clusters V

2 parallel k = rank of processor do
3 for i← 1 to |X | do
4 r ← SELECT-UNIF-RAND({1, . . . , |X |})
5 Vr ← Cluster assignment of Xr in V
6 Vk ← kth block of V ∪ {empty cluster} partitioned into p blocks
7 for Vj ∈ Vk do
8 vu-scoresk(Vj)← Score for moving Xr to Vj if Vj 6= Vr, else for

keeping Xr in Vr
9 Vs ← SELECT-WTD-RAND(V , vu-scoresk)

10 if Vr 6= Vs then
11 Move Xr to Vs and update V

12 function MERGE-VAR-CLUSTER():
Input/Output: Set of variable clusters V

13 parallel k = rank of processor do
14 for Vi ∈ V do
15 Vk ← kth block of V partitioned into p blocks
16 for Vj ∈ Vk do
17 vm-scoresk(Vk)← Score for merging Vi with Vj if Vi 6= Vj , else for

retaining Vi
18 Vs ← SELECT-WTD-RAND(V , vm-scoresk)
19 if Vi 6= Vs then
20 Merge Vi and Vs and update V

a cluster Vs with probability in proportion to the reassignment scores and reassigns Xr to

Vs (line 3 – line 11) . MERGE-VAR-CLUSTER evaluates, for each variable cluster Vi, the

score changes for merging it with every other variable cluster. Then, it merges Vi with

a randomly chosen cluster with probability proportional to the merge scores (line 14 –

line 20). The computation of scores is done in parallel in both the functions. Therefore,

using p processors, the variable clustering phase requires a total of O(K2Lnm/p+n log p)

computation time and O(n(τ + µ) log p) communication time.

The other two functions are used in the observation clustering phase to update the obser-
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Algorithm 18: Parallel Update of Observation Clusters
1 function REASSIGN-OBS-CLUSTER():

Input: Number of observations m, Data set D
Input/Output: Set of observation clusters O(Vi)

2 parallel k = rank of processor do
3 for i← 1 to m do
4 r ← SELECT-UNIF-RAND({1, . . . ,m})
5 Or ← Cluster assignment of Dr in O(Vi)
6 Ok ← kth block of O(Vi) ∪ {empty cluster} partitioned into p blocks
7 for Oj ∈ Ok do
8 ou-scoresk(Oj)← Score for moving Dr to Oj if Oj 6= Or, else for

keeping Dr in Or

9 Os ← SELECT-WTD-RAND(O(Vi), ou-scoresk)
10 if Or 6= Os then
11 Move Dr to Os and update O(Vi)

12 function MERGE-OBS-CLUSTER():
Input/Output: Set of observation clusters O(Vi)

13 parallel k = rank of processor do
14 for Oi ∈ O(Vi) do
15 Ok ← kth block of O(Vi) partitioned into p blocks
16 for Oj ∈ Ok do
17 om-scoresk(Oj)← Score for merging Oi with Oj if Oi 6= Oj , else

for retaining Oi

18 Os ← SELECT-WTD-RAND(O(Vi), om-scoresk)
19 if Oi 6= Os then
20 Merge Oi and Os and update O(Vi)

vation clustersO while keeping V the same. Our proposed parallel algorithms for these two

functions are shown in algorithm 18. Similar to the functions for updating variable clusters,

the pseudo-code for reassigning data instances from one observation cluster to another is

shown in REASSIGN-OBS-CLUSTER function and that for merging observation clusters is

shown in MERGE-OBS-CLUSTER function. These functions proceed similar to the two

functions for variable clustering described earlier and they require a total computation run-

time of O(KLnm/p + Km log p) and communication run-time of O(Km(τ + µ) log p)

when running on p processors.

95



Algorithm 19: Parallel GaneSH Co-Clustering
1 function GANESH():

Input: X , m, D, Initial number of variable clusters K0, Number of update
steps U

Output: V , O(Vi) ∀Vi ∈ V
2 parallel k = rank of processor do
3 V ← Randomly assign each variable Xi ∈ X to K0 variable clusters
4 for Vi ∈ V do
5 O(Vi)← Randomly assign observations Dj ∀j ∈ {1, . . . ,m} to

√
m

observation clusters

6 for u← 1 to U do // Update Steps

7 REASSIGN-VAR-CLUSTER(X , V )
8 MERGE-VAR-CLUSTER(V )
9 for Vi ∈ V do

10 REASSIGN-OBS-CLUSTER(m, D, O(Vi))
11 MERGE-OBS-CLUSTER(O(Vi))

Our parallel algorithm for the GaneSH task is shown in algorithm 19. The algorithm

starts by randomly initializing a set of variable clusters V and, for each variable cluster

Vi ∈ V , a set of observation clusters O(Vi) (line 3 – line 5). Then, the algorithm proceeds

to the main loop of the update steps (line 6 – line 11). In each update step, the parallel

functions defined in algorithm 17 update the variable clusters (line 7 – line 8) and those

defined in algorithm 18 update the observation clusters (line 9 – line 11). The number of

updates is controlled by the input parameter U . Adding the parallel run-time complexity

of the constituent functions and simplifying, one run of GANESH takes O(UK2Lnm/p+

U(n+Km) log p) computation run-time and O(U(n+Km)(τ +µ) log p) communication

run-time. Notice that, G runs of GaneSH can be executed in parallel on p/G processors

each, without any communication, to obtain G samples of V .

Consensus Clustering

The consensus clustering task takes the G samples of V generated by algorithm 19 as input

and outputs the consensus variable clusters. In our experiments, described in section 5.4,
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Algorithm 20: Parallel Learning of Tree Structures
1 function LEARN-TREE-STRUCT():

Input: m, D, Module Mi, Number of update steps U , Number of burn-in steps
B

Output: Ensemble of trees for Mi – T (Mi)
2 parallel k = rank of processor do
3 O(Mi)← Randomly assign observations Dj ∀j ∈ {1, . . . ,m} to

√
m

observation clusters
4 S(Mi)← ∅ // Sampled Observation Clusters

5 for u← 1 to U do // GaneSH Loop

6 REASSIGN-OBS-CLUSTER(m, D, O(Mi))
7 MERGE-OBS-CLUSTER(O(Mi))
8 if u > B then
9 Add the current O(Mi) to S(Mi)

10 for Q ∈ S(Mi) do // Build Tree Ensemble

11 Qk ← kth block of Q partitioned into p blocks
12 subtreesk ← Trees with a node for all Qi ∈ Qk
13 repeat
14 tm-scoresk ← Scores for merging consecutive trees in subtreesk
15 max -tms ← all-reduce max0≤k<p tm-scoresk
16 Merge the trees corresponding to max -tms

17 until
∑

0≤k<p |subtreesk| = 1

18 bcast the remaining tree in subtreesk to all the processors and add it to
T (Mi)

executing the consensus clustering task requires less than 0.04% of the total sequential run-

time in all the cases. Even for a data set with 5, 716 variables and 1, 000 observations – the

largest data set that we used for learning the networks sequentially – consensus clustering

takes less than one second, while the other two tasks take more than two days. There-

fore, we do not focus on developing a parallel algorithm for the consensus clustering task.

Instead, we execute the sequential version of this task, using CONSENSUS-CLUSTERING

implemented as described in subsection 5.1.2, on all p processors in our parallel solution.
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Learning the Modules

Given the set of consensus variable clusters that are used as modules (M), the final task

of Lemon-Tree constructs an ensemble of regression tree structures for each module and

then assigns parent splits to the nodes of the regression trees. The pseudo-code for the con-

struction of an ensemble of regression tree structures for a module Mi ∈ M is shown

in algorithm 20. The first part of the algorithm uses GaneSH to sample an ensemble

of observation clusters for the variable cluster corresponding to Mi, and stores them in

S(Mi) (line 3 – line 9). Unlike the GaneSH run described in the section subsubsec-

tion 5.2.2, the variable clusters are not updated. Therefore, only the parallel GaneSH func-

tions for observation clustering, presented in algorithm 18, are used here. Correspondingly,

getting S(Mi) in parallel takes O(U(KLnm/p + Km log p)) time for computation and

O(U(Km(τ + µ) log p))) for communication. The second part of the algorithm constructs

the ensemble of regression tree structures by hierarchical clustering for each observation

clustering Q ∈ S(Mi) (line 10 – line 18). For R observation clusters in S(Mi), this part

takes O(RLnm/p+RL log p) time in computation and O(RL(τ + µ) log p) time in com-

munication. Since R = O(U), the time complexity of getting regression tree structures in

parallel is dominated by that of the first part.

The next phase of this task is the assignment of parent splits to the non-leaf nodes

of the ensemble of trees. This is the most time consuming of all the phases in Lemon-

Tree, contributing to more than 90% of the sequential run-times in our experiments. It

requires the computation of posterior probabilities for every combination of the following

five components: module Mi, tree T in the ensemble T (Mi), non-leaf nodeN in the tree T ,

variable Xi in the list of candidate parents P , and observation Dj at node N . Our parallel

solution for this phase is depicted in algorithm 21.

A simple parallelization scheme for this phase may assign all the probability compu-

tations for a module, a tree, or a node to one processor in order to reduce communication

between the processors. However, such a scheme is sub-optimal because the total number
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Algorithm 21: Parallel Assignment of Splits to Tree Nodes
1 function LEARN-TREE-SPLITS():

Input: D, ModulesM, Ensemble of trees T , Candidate parents P , Number of
splits to choose J

Output: Weighted splits wr -splits ,
2 Random splits ur -splits
3 parallel k = rank of processor do
4 cand -splits ← List of tuples 〈Mi, T,N,Xi,Dj〉 for all Mi ∈M,

T ∈ T (Mi), N ∈ internal-nodes(T ), Xi ∈ P , Dj ∈ observations(N)
5 cand -splitsk ← kth chunk of cand -splits distributed into p chunks as per

subsubsection 11
6 for 〈Mi, T,N,Xi,Dj〉 ∈ cand -splitsk do
7 cand -probsk[〈Mi, T,N,Xi,Dj〉]← Posterior probability of assigning

the split 〈Xi,Dij〉 to node N of regression tree T for module Mi

8 for Mi ∈M, T ∈ T (Mi), N ∈ internal-nodes(T ) do
9 tnode-splitsk ← Elements of cand -splitsk in which the first three

elements are 〈Mi, T,N〉
10 tnode-probsk ← Computed probabilities for the elements of

tnode-splitsk from cand -probsk
11 for s← 1 to J do
12 wr -splits [〈Mi, T,N, s〉]← SELECT-WTD-RAND(tnode-splitsk,

tnode-probsk)
13 ur -splits [〈Mi, T,N, s〉]← SELECT-UNIF-RAND(tnode-splitsk)

of splits assigned to different processors will vary significantly, thus leading to severe load

imbalance. Therefore, to enable a more fine-grained distribution of the computations across

processors, we first identify the total work required in this phase using a key data structure

– the list of all the candidate splits (line 4). All the tuples corresponding to the candi-

date splits for a particular node, i.e., tuples with the same first three elements 〈Mi, T,N〉,

are arranged contiguously in the list. This list is partitioned and assigned to the different

processors as discussed below (line 5).

Distributing Candidate Splits: The list of candidate splits can trivially be partitioned

into p blocks of equal size in order to distribute the computation load. We also propose

an alternate strategy for the purpose. As discussed in subsection 5.1.3, the computation
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Algorithm 22: Parallel Learning of Modules
1 function LEARN-MODULE-CPDS():

Input: m, D,M, P , U , B, J
2 parallel k = rank of processor do
3 for Mi ∈M do
4 T (Mi)← LEARN-TREE-STRUCT(m, D, Mi, U , B)

5 LEARN-TREE-SPLITS(D,M, T , P , J )
6 LEARN-PARENTS(M, wr -splits , ur -splits )

time required by a candidate split is O(Sm). Therefore, the time required is proportional

to both the number of sampling steps (S) and the number of observations (m). Since S

can not be determined a priori, we weight each candidate split by m and then distribute

the splits to minimize the maximum weight on each processor. Notice that, this is similar

to the weighted approach for load balancing in global-search constraint-based algorithms.

Therefore, we use a heuristic similar to the on described in subsection 4.3.2 to distribute

the list with weights while ensuring that the splits for a node in the list are contiguous. We

compare the performance of the two distribution approaches – unweighted and weighted –

in subsubsection 5.4.3.

Once the splits are partitioned, the posterior probabilities for all the local candidate

splits are computed and stored on each processor (line 6 – line 7). Finally, for each node,

J candidate splits are selected randomly using the posterior probabilities as weights and

another J splits are selected uniformly at random (line 8 – line 13). For ease of presentation,

we demonstrate the selection of splits using previously defined oracle functions for random

sampling. In the actual implementation, the contiguous arrangement of candidate splits for

every node allows us to compute the split weights for random sampling for all the nodes

using a single segmented parallel scan over the distributed cand -probsk. Then, the splits

for all the nodes in cand -splitsk are selected independently on each processor, followed by

an all-gather call to collect all the chosen splits for all the nodes on all the processors.

The size of cand -splitsk, and therefore cand -probsk, is bounded byO(KRLnm/p) and
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Figure 5.1: Schematic diagram showing the execution flow of our parallel algorithm for
learning MoNets with two processors, using the parallel functions developed in section 5.2.

computing the posterior probability for a split requires O(Sm) time. Choosing J splits for

every node in parallel, using segmented parallel scan and all-gather, takesO(JKRLnm/p+

log p) computation time and O(τ log p + µJKRL) communication time. Therefore, this

phase takesO(KRLSnm2/p+log p) time for computation andO(τ log p+µJKRL) time

for communication.

Our parallel algorithm for the last task is shown in algorithm 22. In the interest of space,

we omit a detailed pseudo-code description for the last phase in the task that computes

scores for parents of each module from the selected node splits. The parallelization of this

phase is trivial and is implemented in LEARN-PARENTS function using a segmented paral-

lel scan followed by an all-gather call. This phase requires O(JKRL/p+ log p) computa-

tion and O(τ log p+µJKRL) communication time in parallel. Summing up the run-times
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of the phases and simplifying it in terms of the input parameters, LEARN-MODULE-CPDS

takes O(UKLSnm2/p + UL log p) time in computation and O(UKm(τ + µ) log p) time

in communication.

A schematic diagram for the execution flow of our parallel algorithm for learning Mo-

Nets, when using two processors, is shown in Figure 5.1. The schematic demonstrates

the interactions between the different tasks as well as between the different phases within

each task. Further, it shows the communications required by the parallel functions for the

different phases during the execution of the algorithm.

5.3 Implementation

We implemented both the sequential and the parallel versions of the algorithm discussed in

this section as part of an open-source software that we developed [31].

5.3.1 Sequential Implementation

Lemon-Tree software uses Java to implement the approach outlined by Bonnet et al. [71].

Even though any software written in Java requires compilation, it is referred to as an in-

terpreted language [133]. This is because the byte-code produced by the compilation is

interpreted and executed by a platform-independent virtual machine (VM), thus trading per-

formance for portability. Consequently, multiple studies have shown that the performance

of Java is inferior to that of C++ for in-memory tasks [133, 134, 135]. We implemented

the approach by Bonnet et al. using C++, adhering to the C++14 standard, and optimized

it for improved sequential run-time performance as shown in subsubsection 5.4.2.

As discussed in subsection 2.4.2, Lemon-Tree is a popular software that has been used

in multiple studies for learning MoNets. Therefore, we used Lemon-Tree as the baseline for

our implementation and ensured that our implementation produces exactly the same output

as Lemon-Tree, given the same input data set and execution parameters. We had to modify

the Lemon-Tree implementation to achieve this because of the following reasons. First,
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the execution of the learning algorithm requires generation of random numbers, which

is accomplished in the original Lemon-Tree by a Java pseudo-random number generator

(PRNG) library that is not available for C++. Therefore, we modified the Lemon-Tree code

to use the same PRNG as the one used by our implementation via Java Native Interface.

Then, we observed that some of the calls to the PRNG were superfluous and we eliminated

them in both our implementation as well as Lemon-Tree. Finally, we discovered a bug in

the implementation of the GaneSH algorithm in Lemon-Tree that we fixed and submitted

to the maintainers of Lemon-Tree. We have provided this modified version of Lemon-Tree

as an artifact and use it for the performance results presented in subsubsection 5.4.2.

5.3.2 Parallel Implementation

We implemented the parallel algorithms proposed in section 5.2 using the MPI conforming

to the MPI 3.1 standard. For generating random numbers in parallel, we use the TRNG

library that provides multiple parallelizable PRNGs [136]. We used a multiple recursive

generator [137] with 3 feedback terms and a Sophie-Germain prime modulus for the exper-

iments reported in section 5.4. Note that our implementation can use any parallel PRNG

supported by the library.

In order to implement the distributed random sampling functions described in sub-

section 5.2.1, SELECT-WTD-RAND() and SELECT-UNIF-RAND(), same random number

should be generated on all the parallel processors in a call to these functions. We accom-

plish this by initializing the PRNG with the same seed on all the processors and ensuring

that the state of the PRNG is the same on all the processors before the calls to these func-

tions. We also need to match the block distribution of work with the block distribution of

the corresponding stream of random numbers between the executing processors, in order

to generate the same output when using different numbers of processors. This is achieved

in our parallel implementation by block splitting the parallel PRNGs which takes O(1)

time [136].
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5.4 Experiments and Results

We performed our experiments on the Phoenix cluster at Georgia Tech. We provided a

brief overview of the cluster resources in section 3.4 and use a maximum of 171 nodes

of the cluster for the experiments reported in this section. We compiled the source code,

implemented with C++14 and MPI, using gccv10.1.0 with -O3 -march=native

optimization flags and MVAPICH2v2.3.3 implementation of MPI. For our experiments

reported in this section, we assign 24 MPI processes per node and bind one MPI process to

each core.

5.4.1 Data sets

In order to test the scalability of our implementation, we use gene regulatory networks as

the target application area. Since gene regulatory networks have a hierarchical structure

and data sets for studying these are typically sparse, MoNets have been successfully ap-

plied in numerous gene regulatory studies for various organisms spanning a wide range of

complexity – from viruses and bacteria [57, 138, 139] to plants and animals [112, 140].

Therefore, as in the previous chapters, we again demonstrate the scalability of our parallel

implementations for MoNets in constructing genome-scale gene regulatory networks from

the gene expression data sets introduced in subsection 3.4.1 and listed in Table 3.1. Note

that, unlike the previous chapters, we use the raw expression values for learning MoNets.

For the experiments in this section, we only report the minimum run-time required

for learning MoNets from the data sets, i.e., we execute a single GaneSH run with one

update step and construct only one regression tree structure for each module in the last

task. We use all the genes in the data sets as the candidate regulators, i.e., all the variables

are treated as candidate parents for all the modules. As noted in section 5.1, this may lead

to cyclic structures in the learned MoNet. The acyclicity constraint can be enforced as a

post-processing step in parallel using the methods developed in the previous works on BN
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structure learning [49], and is outside the scope of this work. All the runs are repeated three

times for different random seeds and the average run-times are reported.

5.4.2 Sequential Performance

We compiled Lemon-Tree with OpenJDK v1.8.0 262 and executed it using the correspond-

ing server VM for the run-times reported here.

Comparison with Lemon-Tree

We compared the run-time of the modified Lemon-Tree with that of our optimized sequen-

tial implementation (both described in subsection 5.3.1) for constructing MoNets. Both

Lemon-Tree as well as our implementation did not finish learning MoNet for D1 in seven

days. Therefore, we created smaller data sets for these experiments using subsamples of

n = {1000, 2000, 3000} variables and m = {125, 250, 500, 750, 1000} observations cho-

sen from the complete data set. The performance of our implementation is compared with

that of Lemon-Tree in Table 5.1 on these data sets. Our optimized sequential implemen-

tation shows a 3.6 – 3.8X speedup over Lemon-Tree for constructing MoNets from all the

data sets. We also verified that our implementation learns the exact same MoNets as the

ones learned by Lemon-Tree in all the cases.

Sequential Run-time Estimates for Large Data sets

Both the sequential implementations are not able to construct a MoNet from D1 within

a week. Therefore, we estimated the sequential run-time of the two implementations for

learning from large data sets based on the growth rate of the sequential run-time of our

implementation observed on smaller data sets. To this end, we measured the run-time of our

implementation for constructing MoNets using 30 smaller data sets constructed from D1

by choosing combinations of the first n = {1000, 2000, 3000, 4000, 5000, 5716} variables

and the first m = {125, 250, 500, 750, 1000} observations in the data set.
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Table 5.1: Comparison of the time taken by Lemon-Tree and our sequential implementation
in constructing MoNets using the first n variables and m observations of D1, measured in
seconds, and the corresponding speedup.

n m
Run-time (s) Speedup

Lemon-Tree Ours

1, 000

125 416.0 110.3 3.8
250 1, 609.9 428.3 3.8
500 6, 307.9 1, 686.2 3.7
750 13, 441.5 3, 574.5 3.8

1, 000 25, 253.6 6, 680.7 3.8

2, 000

125 1, 407.5 392.8 3.6
250 5, 747.2 1, 562.7 3.7
500 23, 258.4 6, 202.3 3.7
750 52, 606.2 14, 038.7 3.7

1, 000 91, 202.7 24, 327.0 3.7

3, 000

125 2, 942.8 792.0 3.7
250 11, 962.1 3, 193.4 3.7
500 50, 838.0 13, 553.9 3.8
750 108, 545.5 28, 942.3 3.8

1, 000 197, 493.4 52, 709.6 3.8

Figure 5.2 shows the plots of run-time growth rate as a function of n, while keeping m

fixed. For a given n, the rate of increase is computed with respect to the smallest data set,

i.e., compared to m = 125. The plots for six different values of n show close to quadratic

growth rate of run-time for a linear increase in m, indicated by the dashed black line in the

figure. We also plot the run-time growth rate as n is increased for five different values ofm,

in Figure 5.3, with n = 1, 000 as the baseline. The quadratic growth rate is again denoted

by the dashed black line in the figure. However, we observe that the run-time growth rate

with increasing n is slower than quadratic for all the different values of m. We also plot

n1.8 growth rate in the figure, shown with dashed gray line, that seems to be a lower bound

for the growth rate. From the two plots, we estimate the sequential run-time growth rate of

our implementation to be Θ(m2) for a fixed n and bounded between O(n2) and Ω(n1.8) for

a fixed m. Comparing these empirical estimates with the sequential run-time complexity

(Equation 5.1), we observe that the growth rate with increasing m corresponds well to the
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Figure 5.2: Plots of growth rate of sequential run-time for learning MoNets as the number
of observations grow for data sets with different number of variables.

complexity. The super-linear growth in run-time with increasing n, on the other hand, can

be attributed to a corresponding increase in the number of modules (K) from 28 – 39 for

n = 1, 000 to 111 – 170 for n = 5, 716.

The average sequential run-time of our implementation for learning MoNets from the

data set with n = 5, 716 and m = 1, 000 is 175, 932.7 seconds. Using the growth rate of

Θ(m2) for a fixed n, we estimate the run-time of our implementation for learning MoNet

from D1 as 175, 932.7× (2, 577/1, 000)2 seconds or 324.5 hours which is about 13.5 days.

We were able to verify that this estimate is accurate using a single sequential run for one

random seed that took 325.1 hours. Further, our implementation provides a minimum

sequential speedup of 3.6X over Lemon-Tree. Therefore, we estimate that Lemon-Tree

would require a minimum of 48.6 days in order to construct a MoNet for D1. Similarly,

we also estimate the lower bound on the run-time of our sequential implementation for D2

as 175, 932.7× (5, 102/1, 000)2× (18, 373/5, 716)1.8 seconds which is 433.6 days or more

than 14 months. The corresponding estimated lower bound on the run-time of Lemon-Tree

is 1561 days which is more than 4 years.

The estimated minimum run-time of our sequential implementation for D3 is 175, 932.7×
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Figure 5.3: Plots of growth rate of the sequential run-time for learning MoNets as number
of variables grow for data sets with different number of observations.

(16, 838/1, 000)2 × (18, 373/5, 716)1.8 seconds or about 13 years. Even a perfect parallel

implementation will require at least four weeks for learning MoNets from this data set on

4096 cores – the maximum number of cores that we used. Therefore, we limit our experi-

ments in this chapter to D1 and D2.

5.4.3 Parallel Scalability

Our parallel implementation begins the construction of MoNets by reading the given data

set in parallel. This is accomplished by block distributing the variables in the data set to

the MPI processes – one process per core. Then, every process reads the observations for

the variables assigned to it. Finally, the observations for all the variables are communicated

to all the processes so that each process has the complete data set. During the parallel

execution, any intermediate files and the final MoNet structure in XML format are written

to the disk by the process with rank 0. In our experiments, we observed that the time for

I/O is much smaller than the time required for learning the network, e.g., reading D1 in

parallel takes 0.6 – 8.2 seconds and writing the corresponding network requires 1.3 – 1.8

seconds. We therefore disregard the time required for reading and writing files and only
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report the time required for learning the network in this section.

We evaluate the scalability of our parallel implementation by conducting strong scaling

experiments because our primary motivation is to construct MoNets for specific use cases

which are beyond the reach of sequential computing. Understanding the run-time versus

computational resources trade-off for these problems will help biologists choose the opti-

mal trade-off for their specific needs. We compute the metrics defined in Equation 2.2 and

use the run-time of our optimized sequential implementation as Tseq in all the cases, since

it has been established as the faster sequential implementation in the previous section.

Strong Scaling for Small Data sets

Since the sequential run-time of our implementation for D1 is estimated to be about two

weeks, we conducted strong scaling experiments using smaller data sets from which Mo-

Nets can be learned sequentially in a reasonable time. We created five data sets by selecting

a subset of observations m = {125, 250, 500, 750, 1000} for all the variables in the com-

plete data set (n = 5, 716). The time required for learning MoNets from these data sets

using our optimized sequential implementation is shown in Figure 5.5a with the time taken

by different tasks indicated by different colors. The total sequential run-time for the five

data sets varies from 43 minutes for m = 125 to more than two days for m = 1, 000. Fur-

ther, the majority of the sequential run-time is spent in learning the modules. The fraction

of the total run-time spent in the task increases from 94.7% for m = 125 to 99.4% for

m = 1, 000. The consensus clustering task takes less than one second in all the cases.

Effect of Weighted Distribution of Candidate Splits: Since learning the modules is

the most time consuming task for all the data sets in our experiments, we first investigate

the performance of weighted distribution of candidate splits in parallel that was described

in subsubsection 11. For this purpose, we measure the total run-time for learning MoNets

from these five data sets in parallel by varying the number of cores (p) from 2 to 1, 024 using
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Figure 5.4: Plot of percentage reduction in the time required for learning MoNets for the
five data sets using the weighted distribution scheme for candidate splits, as compared to
the unweighted distribution scheme, on different number of cores.

both the unweighted and the weighted scheme. The percentage reduction in the run-time

using the weighted scheme, as compared to the run-time using the unweighted scheme, is

shown in Figure 5.4. We see that the run-time using the weighted scheme increases on

smaller number of cores for all the data sets with a maximum increase of 9.2% for the data

set with m = 1000 on 4 cores. When running on 64 cores or more, though, the run-time

for all the data sets improves using the weighted scheme with a maximum reduction of

36.6% for both m = 750 and m = 1000 on 1024 cores. Therefore, we use the weighted

distribution scheme in our final implementation and also for all the parallel scaling results

presented in the remainder of this section.

Figure 5.5c shows the strong scaling speedup plots for the five data sets. Our parallel

implementation scales well for all the data sets when using smaller number of cores. How-

ever, for the m = 125 data set, the plot diverges from that for the other data sets for larger

number of cores. This is explained by the comparatively meager amount of work required

for this data set, as is evident from the corresponding total run-time of less than 60 seconds

when using 64 cores or more.

110



Our implementation achieves more than 48X speedup for all five data sets when using

64 cores, corresponding to scaling efficiency of 75% or more. However, the scaling tapers

off as the number of cores is increased because of the load imbalance across processes in

computing posterior probabilities for all the candidate splits. Since the number of discrete

sampling steps (S) required for each split can not be estimated a priori, the time required

for the split computations, i.e., O(Sm), varies significantly across processes – even with a

distribution of splits weighted by m. We measure the load imbalance using Equation 2.6

by substituting the time taken on a process for the load on the process. For the largest of

the five data sets, the measured load imbalance is less than 0.3 when p ≤ 64, indicating a

reasonably good balance, and then the imbalance steadily increases from 0.5 using p = 128

to 2.6 using p = 1024. Consequently, the three bigger data sets achieve similar speedups

in the range of 431.8 – 441.3X when p = 1024.

The time required for learning MoNets from the five data sets using 1024 cores is shown

in Figure 5.5b. Our parallel implementation reduces the run-time for the three larger data

sets from 11.8, 26.9, and 48.9 hours to 1.6, 3.7, and 6.8 minutes, respectively, while the

learning is completed in less then 30 seconds for the two smaller data sets. Even though

Figure 5.5b shows a higher percentage of run-time in the GaneSH task on 1024 cores,

when compared to Figure 5.5a, more than 90% of the run-time is still spent in learning the

modules from the three larger data sets.
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(c) Strong scaling speedups

Figure 5.5: Plots showing the scalability of our implementation for learning MoNets from data sets with different number of observations
subsampled from D1.
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Figure 5.6: Plots showing the run-times of our implementation for learning MoNets from complete D1 using different number of cores
and the corresponding relative speedup.
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Relative Scaling for D1

We used our parallel implementation to construct MoNets from D1. Since sequentially

constructing MoNets from this data set is expected to take almost two weeks, we used a

minimum of 4 cores for these experiments and discuss relative speedup and efficiency (as

per Equation 2.4) with respect to T4 for this data set in order to conduct the experiments in

a reasonable time-frame. We learned the networks from the data set by repeatedly doubling

the number of cores used from 4 to 4096 and plot the relative speedup in Figure 5.6c.

We show the run-times obtained from the executions using 128 cores and fewer in Fig-

ure 5.6a and those using 128 to 4096 cores in Figure 5.6b, to accommodate the differences

in the scales of the run-times. Our parallel implementation scales well when the number

of cores is increased from 4 to 128, reducing the time required for learning the network

from more than 4 days using p = 4 to less than 4 hours using p = 128 with a relative

speedup of 24.6X and more than 75% relative efficiency. The GaneSH task takes less than

0.38% of the total run-time on these cores and is therefore not a visible component of the

run-time. The consensus clustering step, even though it is run sequentially, takes less than

one second.

Our parallel implementation is able to learn a network from the complete data set in

15.2 minutes using 4096 cores, down from an estimated two weeks sequentially. Due to

the comparatively lower work required by the GaneSH task – it takes about a minute when

using 128 cores or more – and the load imbalance in the computations for candidate parent

splits as discussed in subsubsection 5.4.3, the relative speedup from p = 4 to p = 4096 is

387X corresponding to a relative efficiency of 37.8%. Nevertheless, to construct a MoNet

in a computational biology pipeline, a run-time of 15.2 minutes presents a significant saving

of computation time as compared to more than 13 days for a sequential run. Further, the

difference between a run-time of 15 minutes and the ideal possible run-time of 6 minutes (at

100% relative efficiency) for MoNet learning from data sets created by wet-lab biological

experiments is immaterial, given that conducting these wet-lab experiments can take days.
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Table 5.2: Parallel run-times for learning MoNets from D2 using large number of cores and
the corresponding relative speedup and efficiency.

Number of
Cores (p)

Run-time (s)
Relative to T256

Speedup Efficiency (%)

256 109, 489.8 1.0 100.0
512 60, 187.8 1.8 91.0
1024 34, 696.5 3.2 78.9
2048 18, 091.5 6.1 75.6
4096 10, 209.2 10.7 67.0

Relative Scaling for D2

We estimated, in subsubsection 5.4.2, that our optimized sequential implementation will

require approximately 14 months for learning a MoNet for D2, a significant impediment

in practice. Using our scalable parallel method, genome-scale regulatory networks can be

learned in a reasonable time from large data sets for multi-cellular organisms with tens of

thousands of genes.

Table 5.2 shows the time required for learning networks for D2. Since learning of

MoNets from the data set using smaller number of cores will require prohibitively long

time, we learned MoNets from the data set by varying the number of cores from 256 to 4096

cores. Our parallel implementation reduces the run-time from almost two days using 256

cores to 2.8 hours using 4096 cores. The table also shows relative speedup and efficiency

compared to the run-time using 256 cores. While the scaling efficiency relative to 256 cores

for D1 is 57.2% on 4096 cores in subsubsection 5.4.3, the corresponding relative scaling

efficiency for D2 increases to 67%.

5.5 Summary of Contributions

In this chapter, we introduce a parallel, distributed-memory based approach for construct-

ing large MoNets efficiently. We focused on parallelizing Lemon-Tree, which is more

widely used for this purpose. We presented distributed memory parallel algorithms for
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the tasks used in Lemon-Tree, both for learning the modules and the CPD regression trees.

To demonstrate that our implementation of the parallel algorithms can scale to constructing

networks for tens of thousands of variables from thousands of observations, we constructed

genome-scale gene networks for S. cerevisiae and A. thaliana with 5, 716 and 18, 373 genes,

respectively. Our parallel implementation can construct a MoNet for S. cerevisiae in 15.2

minutes and for A. thaliana in 2.8 hours using 4096 cores as compared to an estimated

13.5 and 433.6 days, respectively, with our optimized C++ sequential implementation.

The corresponding run-time estimates when using Lemon-Tree are 48.6 and 1561 days for

generating exactly the same network.
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CHAPTER 6

CONCLUSIONS

Motivated by the current need for interpretable alternatives to DL models, we investigated

BNs and found that the lack of scalable methods for learning them is a major hurdle in

ascertaining their feasibility for the purpose. Therefore, in this dissertation, we developed

parallel algorithms for a variety of BN structure learning methods – including a method

for learning a specialization of BNs known as MoNets. Specifically, we focused on par-

allelizing popular learning algorithms using which it was heretofore not feasible to learn

large-scale networks.

In chapter 3, we presented a framework for parallelizing multiple constraint-based BN

structure learning algorithms. Using the framework, we developed theoretically efficient

parallel algorithms for five different algorithms that are categorized as local-to-global: GS,

IAMB, Inter-IAMB, MMPC, and SI-HITON. We also improved the practical performance of

these parallel algorithms by optimizing the CI testing and load balancing. The algorithms

implemented using this framework are able to construct genome-scale gene regulatory net-

works for two model organisms, S. cerevisiae and A. thaliana, in less than 38 seconds on

2048 cores. This corresponds to a strong scaling speedup and efficiency of up to 1, 745X

and 85.2%. Moreover, the parallel implementations show similar scalability for learning

networks with an even larger number of variables from simulated data sets.

In chapter 4, we extended our framework for parallelizing constraint-based algorithms

to support global-search algorithms. We used this extended framework to propose two

different parallel algorithms for PC-stable – the most popular global-search algorithm.

For implementing these algorithms, we proposed a novel algorithm-specific load-balancing

technique and also reused some of the optimizations discussed in chapter 3 that helped these

implementations outperform an optimized version of the previous best approach. The im-
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plementations of our parallel algorithms are able to reduce the time taken by PC-stable to

learn gene regulatory network for S. cerevisiae to 5.9 minutes using 4096 cores, as com-

pared to a sequential run-time of 88.3 hours using our optimized implementation and more

than seven days using the previous approaches.

In chapter 5, we focused on score-based methods and proposed a distributed memory

parallelization for the construction of MoNets – a parameter-sharing specialization of BNs.

We proposed the first parallel approach for the popular Lemon-Tree method by developing

parallel algorithms for its different components. Our parallel implementation learns gene

regulatory networks for S. cerevisiae and A. thaliana in 15.2 minutes and 2.8 hours using

4096 cores, as compared to an estimated 49 and 1561 days using the previous sequential

implementation of Lemon-Tree, respectively.

The open-source implementations of our parallel algorithms are agnostic to the under-

lying application area. They can be used for any of the existing applications of the corre-

sponding sequential algorithms, such as modeling climate networks [141, 142], identifying

network failure causes [143], anti-discrimination learning [15, 16], detection of errors in

quantum computing systems [144], and many more. However, we chose to demonstrate

their scalability by constructing gene networks in all the cases because of the following

two reasons. First, both BNs and MoNets have been successfully used in recovering gene

networks from gene expression data sets in the past [18, 61]. Second, it is a rich application

area that has big data sets and the need for constructing large-scale networks. In our ex-

periments, we considered the genome-scale version of this problem, i.e., learning networks

with tens of thousands of genes using thousands of gene expression studies that allowed us

to demonstrate the performance of our algorithms. This will greatly aid biologists in their

research on gene networks because it can potentially save weeks of their time during the

iterative search for the optimal parameters to construct a network that best approximates

the biological truth.

Our parallel algorithms are able to accomplish expeditious learning of high-dimensional
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networks from large data sets using thousands of cores, a significant improvement over

the prior state-of-the-art works. We expect that this will enable the adoption of BNs and

MoNets in other fields related to the ones they have been successfully used in the past, e.g.,

single cell genomics [145] as well as applications that use parameter-sharing variations

of BNs other than MoNets, where the time required for learning the networks has been a

deterrent thus far. Ultimately, we hope that the work done as part of this dissertation will

enable further investigation into the viability of BNs as interpretable ML models that can

be used to replace black-box models for making high-stakes decisions.

6.1 Scope for Future Research

The parallel algorithms proposed in this dissertation need the complete data set to be avail-

able on every processor. While this causes duplication of data within the same node, it

avoids the use of hybrid shared and distributed memory programming. This duplication

is a non-issue because the learning algorithms are compute-bound due to their NP-hard

nature, and the data sets are relatively small compared to the available memory size – the

largest data set that we used for learning in our experiments is still only 785 MB. To scale to

bigger data sets, the ability to query distributed data sets is required – a problem that is sim-

ilar to parallel Online Analytical Processing (OLAP) [50]. Multiple previous works have

developed solutions for executing OLAP queries over distributed data [146, 147]. These

can be used as a promising starting point for future research into using distributed data sets

for learning BNs.

The performance of our implementations can be enhanced using different approaches.

Our implementations of the algorithms utilize CPUs for all the computations. One possible

direction for future investigation is the use of accelerators for the computationally-intensive

parts of the algorithms. There has been some prior work on accelerating CI testing using

GPUs. However, the proposed solutions are limited to conducting tests of small condition-

ing set sizes [98] or only work for particular types of data sets [100] and additional re-
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search is required for more general-purpose solutions. Dynamic load-balancing schemes,

like work stealing and master-worker paradigm, can also be explored for improving the

run-times of the implementations further.

Potential enhancements to our open-source software packages include implementation

of more CI tests for both discrete as well as continuous data sets, incorporation of the state-

of-the-art score-based approaches for BN learning, and development of a parallel version of

GENOMICA for learning MoNets. Finally, while our C++ implementations ensure optimal

performance in practice, the software packages can be made more accessible by interfacing

them with popular interpreted languages like Python and R. This will enable both ML

as well as application-domain researchers to quickly learn BNs using our algorithms and

evaluate their efficacy, while making minimal changes to their data analysis pipelines.

119



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[2] C. Rudin, “Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206–215, 2019.

[3] C. Rudin, C. Wang, and B. Coker, “The age of secrecy and unfairness in recidivism
prediction,” Harvard Data Science Review, vol. 2, no. 1, 2020.

[4] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann,
“Variable generalization performance of a deep learning model to detect pneumo-
nia in chest radiographs: A cross-sectional study,” PLoS medicine, vol. 15, no. 11,
e1002683, 2018.

[5] M. McGough, “How bad is sacramento’s air, exactly? google results appear at odds
with reality, some say,” Sacramento Bee, vol. 7, 2018.

[6] D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen, “Comprehensible credit
scoring models using rule extraction from support vector machines,” European
journal of operational research, vol. 183, no. 3, pp. 1466–1476, 2007.

[7] B. Goodman and S. Flaxman, “European union regulations on algorithmic decision-
making and a “right to explanation”,” AI magazine, vol. 38, no. 3, pp. 50–57, 2017.

[8] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence program,”
AI Magazine, vol. 40, no. 2, pp. 44–58, 2019.

[9] C. Yuan, H. Lim, and T.-C. Lu, “Most relevant explanation in bayesian networks,”
Journal of Artificial Intelligence Research, vol. 42, pp. 309–352, 2011.

[10] J. Pearl, “Bayesian networks: A model of self-activated memory for evidential rea-
soning,” in Proceedings of the 7th conference of the Cognitive Science Society,
University of California, Irvine, CA, USA, 1985, pp. 15–17.

[11] E. Kyrimi, S. McLachlan, K. Dube, M. R. Neves, A. Fahmi, and N. Fenton, “A
comprehensive scoping review of bayesian networks in healthcare: Past, present
and future,” arXiv preprint arXiv:2002.08627, 2020.

[12] C. S. Vlek, H. Prakken, S. Renooij, and B. Verheij, “A method for explaining
bayesian networks for legal evidence with scenarios,” Artificial Intelligence and
Law, vol. 24, no. 3, pp. 285–324, 2016.

120



[13] F. Taroni, A. Biedermann, S. Bozza, P. Garbolino, and C. Aitken, Bayesian net-
works for probabilistic inference and decision analysis in forensic science. John
Wiley & Sons, 2014.

[14] A. Beresniak, E. Bertherat, W. Perea, G. Soga, R. Souley, D. Dupont, and S. Hugonnet,
“A bayesian network approach to the study of historical epidemiological databases:
Modelling meningitis outbreaks in the niger,” Bulletin of the World Health Organi-
zation, vol. 90, 412–417a, 2012.

[15] L. Zhang, Y. Wu, and X. Wu, “Achieving non-discrimination in data release,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 1335–1344.

[16] L. Zhang and X. Wu, “Anti-discrimination learning: A causal modeling-based frame-
work,” International Journal of Data Science and Analytics, vol. 4, no. 1, pp. 1–16,
2017.

[17] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian networks to an-
alyze expression data,” Journal of computational biology, vol. 7, no. 3-4, pp. 601–
620, 2000.

[18] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano, “Combining
microarrays and biological knowledge for estimating gene networks via bayesian
networks,” Journal of bioinformatics and computational biology, vol. 2, no. 01,
pp. 77–98, 2004.

[19] J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour, “A million vari-
ables and more: The fast greedy equivalence search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic
resonance images,” International journal of data science and analytics, vol. 3,
no. 2, pp. 121–129, 2017.

[20] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian networks for proba-
bilistic identification of zero-day attack paths,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 10, pp. 2506–2521, 2018.

[21] D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning of bayesian
networks is np-hard,” Journal of Machine Learning Research, vol. 5, no. Oct,
pp. 1287–1330, 2004.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
pp. 8026–8037, 2019.

121



[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,”
in 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), 2016, pp. 265–283.

[24] M. Scutari, “Learning bayesian networks with the bnlearn r package,” Journal of
Statistical Software, vol. 35, no. i03, 2010.

[25] R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson, “The tetrad
project: Constraint based aids to causal model specification,” Multivariate Behav-
ioral Research, vol. 33, no. 1, pp. 65–117, 1998.
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