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SUMMARY 

 Human c-kit+ cardiac progenitor cells (CPCs) have seen success in the treatment 

of heart failure and myocardial dysfunction.1,2 However, research has demonstrated the 

reparative capacity of CPCs appears to be linked to the age of the patient, with younger 

patients having increased heart function and reduced fibrosis following treatment.3–5 We 

hypothesized that these differences may be driven by differing subtypes of CPCs existing 

in each donor sample. Using the high-resolution capabilities of single cell RNA-sequencing 

technologies, we hope to elucidate the different subtypes that may be giving rise to the 

differences in therapeutic outcomes observed during in vivo studies. In the first study we 

analyzed the differences between adult CPCs (aCPCs) and neonatal CPCs (nCPCs). In vivo 

studies indicated injected aCPC had reduced cell retention and cell proliferation due to 

increased phagocytosis in comparison to nCPCs. We found three distinct subtypes of CPCs 

following analysis of the data. The two nCPC-enriched clusters correlated strongly with 

wound healing and cell proliferation, while the third aCPC-enriched cluster indicated some 

immune response activity. Analysis of selected gene expression in the third cluster 

indicated reduced expression of CD47, an important anti-phagocytic protein, along with 

reduced expression of several important growth factor and ECM proteins.6 In the second 

study we analyzed the differences between pediatric patient populations. Previously 

published in vivo and in vitro results indicate reduced fibrosis and immune response and 

increased chemotaxis when using nCPCs in comparison to child CPCs (cCPCs). Subcluster 

analysis finds cCPC-enriched clusters upregulated in several fibrosis- and immune 

response-related genes. Clustering of genes indicates genes correlated in chemotaxis to be 
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upregulated in nCPC clusters. We identified the surface proteins versican and ITGA2 to be 

upregulated in fibrosis-related cluster 6 cells. Flow cytometric analysis using antibodies 

specific to these proteins identified a cell population with high levels of both proteins, 

consistent with the gene expression profile identified by the cluster 6 cells. We hope that 

this research will allow for researchers in the future to better optimize for and predict 

clinical outcomes prior to injection in autologous CPC-based therapies. 
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CHAPTER 1. INTRODUCTION 

1.1 Heart Failure and Adverse Remodeling 

1.1.1 Heart Failure in Children 

Heart failure (HF), characterized by the heart’s inability to maintain systemic blood 

circulation, is commonly caused in adults by a myocardial infarction (MI) resulting from 

coronary artery disease.7,8 In pediatric populations however, the major driver of heart 

failure is congenital heart disease (CHD), a condition that encompasses a variety of birth 

defects of the heart.9,10 Of all patients suffering from CHD, those with diseases resulting in 

single ventricular physiology are disproportionately more likely to result in patient 

mortality due to the high complexity of the disease intervention.11 Hypoplastic left heart 

syndrome (HLHS) is the most prevalent of the single ventricular CHDs, present in roughly 

1 for every 4,000 births.11,12 Children with HLHS often undergo palliative surgery in 3 

stages. The stage I operation redirects the right ventricle (RV) outflow through the aorta 

while pulmonary blood flow is provided using a shunt. At this stage, the RV is converted 

into the main ventricle for systemic circulation, subjecting the ventricle to volume and 

pressure overload. The second stage operation is conducted at roughly 6 months of age 

where the patient undergoes surgery to disconnect the systemic or ventricular pulmonary 

blood flow and replaces it with a direct connection to the superior vena cava to reduce the 

volume load on the RV. In the stage III operation at roughly 3 years of age, blood from the 

inferior vena cava is redirected to the pulmonary artery to further reduce the volume load 

on the RV.11,13 
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Surgery is often required for treating HLHS in order to redirect blood flow; however, 

the overloaded myocardium often undergoes further remodeling during and post-surgery 

due to increased stress on the RV. This can lead to heart dysfunction and potentially heart 

failure if the RV is no longer able to provide systemic circulation.11,13,14 

The exact mechanism by which heart failure arises following surgical palliation in 

HLHS patients is not fully understood. Research indicates a majority of the deformation 

occurs due to the stage I Norwood procedure exposing the RV to the greatest volume and 

pressure overload following the surgery. An echocardiographic study demonstrated the 

contractility of HLHS patient hearts decreasing following both stage I and stage II 

procedures by studying how the longitudinal and circumferential strain rates changed over 

time. The strain rates were shown to be roughly constant across the first 3.5 years in control 

patients, eliminating the potential confounder of patient age and implicating the surgical 

procedures as the main source of the contractile variation.14 In models of pulmonary 

hypertension, the RV undergoes several maladaptive changes resulting in increased 

fibrosis and cardiomyocyte hypertrophy.11,15 Additionally, angiogenic capabilities of 

HLHS hearts are significantly reduced in both ventricles, resulting in reduced perfusion 

and oxygen delivery to cardiomyocytes which ultimately leads to myocardial 

dysfunction.11,16 
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Figure 1. Adverse remodeling associated with HLHS post-operation.  

Patients that undergo palliative surgery to treat HLHS often suffer from heart dysfunction 

post-operation to several maladaptive processes including cardiac fibrosis and 

cardiomyocyte hypertrophy in the RV. Figure generated using BioRender. 

1.1.2 Reverse Remodeling 

Reverse remodeling is a process which aims to interfere with the normal remodeling 

process during myocardial dysfunction to attenuate maladaptive outcomes and improve the 

heart function of myopathic hearts. The goal of reverse remodeling is to reduce the progress 

of several processes correlated with negative outcomes including myocardial hypertrophy, 

ventricular distortion and dilation, and cardiac fibrosis.17,18 

There are several measures used in clinical applications to track the progress of 

cardiac remodeling. RV/LV ejection fraction (RVEF/LVEF), a measure of the ventricle’s 

ability to pump blood out of the heart; RV/LV fractional shortening (RVFS/LVFS), the 

reduction in length of the end-diastolic diameter after the ventricular systole; and tricuspid 

annular plane systolic excursion (TAPSE), a measure of the longitudinal displacement of 
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the tricuspid ring, are used as measures of heart contractility.19–21 The end diastolic volume, 

a measure of the volume of blood in the ventricle before contraction, is used to assess 

changes in ventricular dilation.22 Cardiac fibrosis is often assessed using posterior wall 

thickness, the thickness measured from the interior of the ventricle to the outside of the 

heart, or by Masson trichrome staining of the myocardial area.23 In adult populations, it is 

common to assess the functional improvements to the LV, while in pediatric populations 

suffering from single ventricular CHDs, these measures are often made on the RV. 

1.2 Therapeutic Approaches to Induce Reverse Remodeling 

Several methods for therapeutically inducing the reverse remodeling process have 

been studied in clinical applications with many drugs developed to target different 

remodeling processes. For example, angiotensin-converting enzyme inhibitors and 

angiotensin receptor blockers block activation of the renin-angiotensin-aldosterone system 

that has been implicated in adverse remodeling during HF and administration of the drugs 

are strongly correlated with patient survival especially shortly after experiencing MI.17,18 

Similarly, β-Blockers, used to reduce blood pressure by blocking the activity of 

epinephrine, also demonstrate an ability to limit adverse remodeling with patients having 

higher LVEFs and lower LV end-systolic volumes when compared to controls.17,18 

While drugs have shown limited efficacy in limiting adverse remodeling, interest 

in cell-based therapies for treating heart disease have grown in recent years after a 

significant body of research has demonstrated the ability of stem cells to regulate the 

remodeling process. Several different types of cells have been pursued to this end, 

including mesenchymal stem cells, skeletal myoblasts, and cardiac progenitor cells.11,24,25 
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In this paper we will be focusing on the ability of cardiac progenitor cells to repair the 

myocardium. 

1.2.1 Cardiac Progenitor Cells 

Cardiac progenitor cells or cardiac-derived progenitor cells (CPCs) are a 

heterogenous class of progenitor cells that reside in the cardiac tissue.26 Several different 

subtypes of CPCs have been identified for their potential therapeutic benefits and are 

currently the topic of rigorous study.27 Of these, c-kit+ CPCs are of particular interest 

representing one of the two CPC subtypes that have been tested at the level of clinical 

trials.28–30 While it was originally believed that c-kit+ CPCs could represent a multipotent 

CPC subtype that could differentiate into cardiomyocytes and induce cardiac regeneration, 

subsequent research has demonstrated the therapeutic benefits of all CPCs, including c-

kit+ CPCs, is largely due to paracrine signaling to induce cardiac repair.31 This mechanism 

of repair is especially beneficial in cardiac applications since the transplantation of these 

cells is less likely to result in arrhythmogenesis by obstructing the heart syncytium unlike 

mature cell-based therapies.31 

1.2.1.1 Clinical Applications of CPCs 

A multitude of in vivo studies have verified the efficacy of c-kit+ CPCs for inducing 

a reverse remodeling process using anti-fibrosis and pro-angiogenic signaling. The 

collective research and literature strongly support the utility of c-kit+ CPCs for improving 

functional outcomes post-treatment as demonstrated by increased ejection fraction along 

with reduced fibrotic tissue and myocardial hypertrophy.1 Recent clinical trials using 

autologous CPC-based therapies seem to support the use of CPCs for cardiac repair. In 
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particular, the recent CONCERT-HF clinical trial (NCT02501811) conducted with adults 

suffering from heart ischemia showed autologous c-kit+ CPC transplantation strongly 

correlated with reductions in major adverse cardiac events post-treatment.2 

One major problem regarding the translational potential of many autologous cell-

based therapies is high donor variability.32 In particular, CPCs are known to possess age-

dependent reparative capabilities, with older patients having worsened therapeutic 

outcomes.3,4 The main focus of this research is to determine if this variability can be 

captured and analyzed using single cell RNA-sequencing technology and additionally if 

subpopulations correlated with negative outcomes can be removed from the donor samples 

to improve therapeutic outcomes. The results of two projects will be presented in chapters 

2 and 3 focusing on the characteristic differences of CPCs present in adults and children, 

respectively. For both studies, neonatal CPCs (nCPCs) were used as the basis of 

comparison. 
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CHAPTER 2. COMPARATIVE ANALYSIS OF NEONATE AND 

ADULT CPC POPLUATIONS USING SINGLE CELL 

TECHNOLOGY 

2.1 Background and Motivation 

 Published literature and experimental work conducted by researchers in the 

Kaushal group at Northwestern University indicate a significant difference in the 

therapeutic outcomes of treatments using neonatal c-kit+ CPCs (nCPCs) and adult c-kit+ 

CPCs (aCPCs). In vivo experimental results by Sharma et al. demonstrate the ability for 

nCPCs to improve several indicators of heart function including left ventricle ejection 

fraction, fractional shortening, end diastolic volume, and posterior wall thickness. 

Proteomic analysis of the two CPC populations found higher expression of the proliferation 

protein MKI67 in nCPC patient populations. nCPCs were also able to retain expression 

levels of genes important for maintaining the self-renewal properties over five passaging 

cycles, while aCPCs showed substantially lower expressions of the genes by the last 

passage. aCPCs also showed reduced protein expression of c-kit after passaging, a reduced 

proliferation rate, and reduced telomere length. nCPCs were found to be more resistant to 

apoptosis in the presence of reactive oxygen species compared to aCPCs and several 

important paracrine factors relating to proliferation, angiogenesis, and cardioprotection 

were found to be expressed at higher levels in nCPC conditioned media. nCPC-treated 

myocardial sections also contained significantly fewer macrophages than aCPC-treated 

sections.3 
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2.1.1 CPCs Improve Heart Function in a Rat MI Model 

Work done by our collaborators in the Kaushal Lab compared several different cell 

therapies, namely cardiosphere-derived cells (CDCs), adult bone marrow-derived 

mesenchymal stem cells (BM-MSCs), umbilical cord blood cells (UCBCs), aCPCs, and 

nCPCs, which have been used in previous studies for inducing reverse remodeling and 

functional recovery after cardiac dysfunction. The results indicates that both aCPCs and 

nCPCs (referred to as aMSCs and nMSCs in Figure 2 and Figure 3) are the most efficacious 

of the cohort for improving several measures of heart function including increases in the 

LV ejection fraction and LV fractional shortening (Figure 2a-b) while also reducing cardiac 

fibrosis following repair (Figure 2c-d). 

 

Figure 2. Cardiac functional outcomes following stem cell transplantation in the MI 

model. 

(a) Left ventricular ejection fraction (LVEF) and (b) fractional shortening (LVFS) derived 

from echocardiography are shown for post-operative Day 1 and Day 28 with different cell 

therapies (N=6-9). (c) Measurement of fibrosis by Masson trichrome staining and (d) 

quantitative assessment showed a significant decrease in development of fibrosis in 

injected nMSC hearts compared with the placebo control and other stem cell types (N=5-

8). Data under review. 

2.1.2 nCPCs Elude Phagocytosis by Macrophages 

A proposed mechanism by which nCPCs may induce increased functional recovery 

compared to aCPCs is by inhibiting phagocytosis, thereby increasing cell retention, and 

allowing the cells to continue to release paracrine signals and proliferate. Our collaborators 
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studied this effect by tagging nCPCs and aCPCs with GFP and measuring the cell 

abundance after 24h in an in vitro co-culture experiment with M1 PKH26 macrophages. 

aCPCs were found to significantly increase phagocytosis, resulting in reduced cell 

retention while nCPCs inhibited phagocytosis allowing for increased cell proliferation 

(Figure 3a-b). In vivo experimental results in an immunocompetent rat MI model showed 

an additional benefit of nCPCs by reducing size of the macrophage population at the site 

of injection after 48 hours (Figure 3c-d). 

Bulk RNA-sequencing analysis indicates mRNA expression CD47, and important 

anti-phagocytotic protein, was 1.7-fold higher in nCPC populations compared to aCPC 

populations, consistent with results from the proteomic analysis (Figure 3e-g). Up-

regulation of CD47 in nCPCs was verified using immunoblotting (Figure 3h-i). 

 

Figure 3. Cardiac nMSCs evade phagocytosis. 
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(a) Representative images showing Mφ- mediated phagocytosis of nMSCsGFP+ or 

aMSCsGFP+ after 24 h co-culture (Scale bars 75 μm). (b) Quantification of nMSCsGFP+ or 

aMSCsGFP+ (green) phagocytosis by Mφs (PKH26, red) after 24 hours. c, Representative 

images showing Mφ- mediated phagocytosis in rat MI model (Scale bars 75 μm), 

proliferating nMSCsGFP+, and CD68+ macrophages and phagocytosis compared to 

aMSCsGFP+ injection. (d) Quantification of nMSCsGFP+ retention and CD68+ phagocytic 

cells compared with aMSCGFP+ injected in MI rats (N=4) at 2 days. (e) Graphical 

representations of the mRNA sequencing data. The mRNAs are ranked in a volcano plot 

according to their statistical (P value) significance (-log P; y-axis) and the ratio of their 

relative abundance ratio (log2-fold change; x-axis) in nMSCs (blue) and aMSCs (red). 

Histogram representation of genes with significantly increased mRNA (f) and their targets 

(g). (h) Immunoblots showed expression of CD47 in nMSCs and aMSCs (N=3). GAPDH 

served as a loading control. (i) Quantification of CD47 in nMSCs and aMSCs (using 

ImageJ). Data under review. 

 In order to further resolve differences between nCPC and aCPC populations, we 

utilized the high-resolution capabilities of single cell RNA-sequencing to identify whether 

distinct subclusters exist between neonatal and adult CPC populations. In addition, we 

determined if the subclusters can help explain the differences in therapeutic outcomes as 

identified in the in vivo studies relating to cell proliferation, paracrine signaling, and 

macrophage recruitment. 

2.2 Methods 

2.2.1 Experimental Methods 

All cell samples were prepared and sequenced by researchers in the Kaushal group 

at Northwestern University. Tissue biopsies were collected from the right atrial appendage 

of three neonate and three adult patients during surgery. The cells were sorted for c-kit+ 

CPCs using magnetic cell sorting and the cells were cultured in flasks. The cells were 

submitted for sequencing using 10x Chromium technology with Single Cell 3' v2 

chemistry. 



 11 

2.2.2 Computational Methods 

A summary of the analysis pipeline is presented in Figure 5.The fastq files were 

processed and aligned to the GRCh38 human reference genome using CellRanger (10x 

Genomics, v2.1.0).33 Raw counts were processed using the Scanpy single cell analysis 

library in Python.34 Doublets were subsequently filtered using the Scrublet method as 

implemented in Python and the dataset was filtered for cells with greater than 1500 total 

transcripts, more than 780 distinctly expressed genes, and a less than 20% mitochondrial 

gene fraction (Figure 4).35 Only genes that were expressed in at least 20 cells were used in 

subsequent analyses.  

 

Figure 4. Quality control metrics for filtering low quality cells.  

The dataset was filtered using the for cells with more than 1500 total transcripts, more than 

780 distinctly expressed genes, and less than 20% mitochondrial gene fraction. 

Each batch was normalized using the cell pooling methodology as implanted in the 

SCRAN R package and utilized a coarse Leiden clustering to identify initial cell pools.36,37 

Jurkat cells were removed for subsequent analyses by identifying cells with normalized 

CD3E and CD3D expression values greater than 1. The batch balanced k-nearest neighbors 
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algorithm was used in conjunction with a ridge regression to align individual batches and 

remove sources of unwanted variance from the dataset.38 This batch corrected data was 

clustered using the Leiden algorithm at a resolution of 0.5. The differential gene expression 

was computed on the clusters with non-batch corrected data using the rank_genes_groups 

function in Scanpy with the default t-test method. The top 100 upregulated genes in each 

cluster that were expressed in at least 10% of the rest of the dataset were fed into the 

Metascape pathway analysis tool. The final dataset contained 61,979 cells, 60.5% of which 

were aCPCs and 39.5% of which were nCPCs. A summary of the analysis pipeline is shown 

in Figure 5. 

 

Figure 5. Single cell analysis pipeline.  

After sequencing, cells were aligned using CellRanger and processed using Scanpy. 

Normalization was computed using pooled cell normalization in the SCRAN package and 

batch correction computed using the batch balanced k-nearest neighbors algorithm. Cluster 

was computed using the Leiden community finding algorithm at a resolution of 0.5. 

Differentially expressed genes were computed using a t-test and Metascape was used for 

pathway analysis. 

2.3 Results 

2.3.1 Clustering Analysis 
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nCPCs and aCPCs were clustered into four groups using the Leiden community 

finding algorithm (Figure 6a-b). Analysis of the cluster compositions indicates nCPCs were 

especially overrepresented in cluster 2, while aMSCs were overrepresented in cluster 3 

(Figure 6c-d). Gene expression analysis indicates the first two clusters have high 

expression of CD47, consistent with previous results, along with higher expression of 

several key cardioprotective paracrine factors including PDGFA, HGF, IGF1, FGF2, 

VEGFA, and CXCL12 (Figure 6c). Cluster 3 had an especially low expression of CD47 and 

SDF1/CXCL12 when compared to the other three clusters. Cluster 1 cells have upregulated 

fibronectin gene expression, which has previously been implicated as an essential protein 

in cardiac repair in CPC-based therapies and cluster 2 had high expression of the 

proliferation-related gene MKI67 (Figure 6c). Notably, cluster 4 makes up a significantly 

small proportion of cells (3%) in comparison to the other cell clusters (Cluster 1: 39%, 

Cluster 2: 29%, Cluster 3: 29%). 

 

Figure 6. Compositional analysis of CPC single cell data. 

(a) UMAP plot colored by age group. (b) Clusters determined using Leiden community 

detection algorithm. (c) Gene expression of selected genes. (d) Cluster compositions by 
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age group. Error bars indicate standard deviation of cluster proportions across patient 

samples. 

2.3.2 Differential Gene Expression and Pathway Analysis 

Up-regulated genes in the nCPC enriched cluster 2 were associated with cell cycle 

and proliferation while those in aCPC enriched cluster 3 were correlated with leukocyte 

migration and cell death (Figure 7b-c). Similar analyses of clusters 1 and 4 indicate the 

former is upregulated in genes associated with integrin interactions, supramolecular fiber 

organization, and wounding response while the latter is upregulated in genes involved in 

ribosomal activity and the VEGFA-VEGFR2 signaling pathway (Figure 7c). In addition, 

cluster 1 cells have upregulated fibronectin gene expression, which has previously been 

implicated as an essential protein in cardiac repair in CPC-based therapies (Figure 7a). 

These results indicate that the differing functional responses of aCPCs and nCPCs may be 

attributed to a few subpopulations of cells. Specifically, increased phagocytosis associated 

with aCPCs may be attributed to the relatively high abundance of the cluster 3 cells in the 

population, while the increased proliferative and adhesive properties of the nCPCs may be 

attributed to the higher abundance of cluster 1 and 2 cells. 
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Figure 7. Cluster-specific pathway analysis. 

Pathway analysis barplots generated using Metascape. The top 100 differentially expressed 

genes from each cluster with expressions in greater than 10% of cells in the non-cluster 

population were used for the analysis. 

2.4 Discussion 

Experimental results have demonstrated a difference in therapeutic outcomes 

attributed to nCPCs and aCPCs, posing a considerable challenge for autologous CPC-based 

therapies in adult patients. We believe much of this difference can be explained by 

analyzing the relative compositions of CPC subtypes present in a donor sample. In 

particular, adult patients appear to have high abundance of the pro-phagocytotic cluster 3 

cells, while neonatal patients have higher abundances of reparative and proliferative cells 

characterized as cluster 1 and 2 cells, respectively. In addition, analysis of cardioprotective 

paracrine signals and proliferative factors indicate that neonatal samples are more capable 

of evading phagocytosis, promoting neovascularization and repair, and self-renewing. We 

believe these compositional differences can help to explain the differences in therapeutic 

outcomes observed in the in vivo experimental results. 

Deeper analysis of the cluster gene expression indicates the first cluster is highly 

involved in cardiac repair, with differential expression of collagen genes such as COL1A2, 

COL4A1, and COL8A1 (Figure 8a). Genes such as FN1 and ITGAV have been previously 

implicated as being especially important for inducing cardiac repair and NEAT1 and 

MALAT1 have been shown to be relevant during cell proliferation and angiogenesis. 

Cluster 2 related genes correlate strongly with cell proliferation and cell cycle (Figure 8b). 

MKI67, a previously reported gene marker for CPC proliferation, is differentially expressed 

in this cell cluster.3 In addition, H2AFZ, with its resultant protein H2A.Z.1, and PCLAF 
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have been implicated as important regulators of cell cycle in hepatocellular carcinoma.39,40 

Cluster 3 is moderately correlated with leukocyte migration due to high expression of genes 

like CTNNB1 and CXCR4 and displays high expression of CTGF, a marker of fibrosis 

(Figure 8c).41  

 

Figure 8. Cluster-specific differential gene expression.  

Differential gene expression computed using the Wilcoxon rank sum method for each 

cluster against the rest of the cells. Genes are ordered by highest z-score.  
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CHAPTER 3. COMPARATIVE ANALYSIS OF NEONATE AND 

CHILD CPC POPULATIONS USING SINGLE CELL 

TECHNOLOGY 

3.1 Background and Motivation 

Cardiac cell-based therapies have seen success in clinical applications for the 

treatment of congenital heart disease.11,42 In particular, human c-kit+ cardiac progenitor 

cells (CPCs) have been identified as a particularly potent cell type for inducing repair in 

the damaged myocardium.11 Recent studies have demonstrated CPCs induce their pro-

reparative effects through paracrine signaling mechanisms as opposed to the conventional 

engraftment, differentiation, integration mechanism attributed to many stem cell 

therapies.11,31 Experimental studies indicate the paracrine release of CPCs contributes to 

anti-fibrotic outcomes and increased neovascularization of the myocardium which drives 

a reverse remodeling process during wound healing.4,11 While the exact mechanisms for 

how CPCs induce this effect continues to be a contentious area of study, a recent clinical 

trial (CONCERT-HF) conducted with adults suffering from heart ischemia found CPCs 

improved patient survival post-MI by reducing the reducing the number of major adverse 

cardiac events.2 

Existing CPC-based therapies separate CPCs from a tissue sample from the 

patient’s heart.2 However, as is the case with many autologous cell-based therapies, patient-

to-patient variability plays a significant role in the outcome of the patients post-therapy 

(Figure 9).43 Previous research by our group has found that the age of the patient can play 

a major role in determining the reparative capabilities of a patient’s CPCs. In particular, 
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we found that neonatal CPCs (nCPCs) possessed greater anti-fibrotic signaling, reduced 

immune response, and increased chemotaxis capabilities in comparison to child CPCs 

(cCPCs).4 Because of the age dependence of the CPC function, we hypothesized that each 

patient CPC sample contained many subpopulations of CPCs, and these CPCs were 

transitioning to reduced reparative states as the patient aged. Based on this, we would 

expect to see a more heterogeneous cell population among older patient samples, which we 

hope may help to explain the difference in therapeutic outcomes among these patient 

samples. Ultimately, by identifying these potentially problematic CPC populations, it may 

be possible to improve therapeutic outcomes. 

 

Figure 9. cCPCs result in poor therapeutic outcomes in in vivo rat models. 

(a) Cell retention after intracoronary injection of labeled CPCs in a pulmonary artery 

banding rat model showed no significant difference between age groups after 3 weeks. (b) 

Measure of tricuspid annular plane systolic excursion (TAPSE) over 4 weeks indicates 

significant improvements when using neonatal or infant CPCs. (c) RV ejection fraction 

(RVEF) improved significantly 2 weeks after injection of neonatal CPCs. Similar results 

were obtained when using infant and child CPCs. (d) Wall thickness measured 6 weeks 

after banding indicate significantly decreased wall thickness when using neonatal CPCs. 

Adapted from Agarwal et al.4 
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3.2 Methods 

3.2.1 Experimental Methods 

Cells collected from the right atrial appendage of five neonatal (< 1 month) and five 

child (3.43 years ± 2.6 years) patients suffering from congenital heart disease were 

separated for c-kit+ CPCs using magnetic cell sorting. In order to identify the functional 

differences between neonate and child CPCs, the sorted cells were expanded in culture and 

submitted for single cell RNA sequencing (10X Genomics) with downstream analysis 

conducted using Seurat. Patient characteristics for samples used in the study are listed in 

Table 1. One neonatal patient sample (Patient 985) was removed due to low transcript 

counts. 

Table 1. Metadata and Patient Characteristics. 

Sample Patient Age Group Passage Heart Disease Sex 

1 903 Neonate 11 Hypoplastic left heart syndrome F 

2 925 Neonate 5 
Total anomalous pulmonary venous 

return 
F 

3 930 Neonate 5 
Total anomalous pulmonary venous 

return 
M 

4 926 Child 6 Ventricular septal defect M 

5 1048 Child 12 Atrial septal defect F 

6 896 Child 9 Ventricular septal defect F 

7 938 Child 6 Subaortic Membrane Resection M 

8 1092 Child 15 Atrial septal defect F 

9 985 Neonate 7 Interrupted aortic arch M 

10 2016 Neonate 12 Atrial septal defect F 

Tabulated metadata and patient characteristics for CPC samples used in this study. 

 Flow cytometry was utilized for characterization of CPC subpopulations based on 

expression of the versican and integrin alpha 2 surface proteins. Primary anti-versican 

(Creative Biolabs, CAT # CBMAB-C9301-LY) and anti-integrin alpha 2 (R&D Systems, 
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CAT # FAB1233P) antibodies conjugated to Alexa Fluor 647 and PE respectively were 

selected for analysis. Pooled child cells were cultured using a T75 flask in growth serum. 

Cells were split using 5 mL of TrypLE and detachment was halted by pipetting an equal 

volume of growth serum. The cells were subsequently suspended in a 2% FBS in PBS flow 

buffer solution after 5 min of centrifugation at 2000 RPM. Cells were centrifuged and 

suspended once more in 1 mL of flow buffer. Five separate samples were plated of equal 

volumes: one unstained, one for each antibody, one for the Zombie Yellow live/dead stain, 

and one containing both antibodies and the live/dead stain. The antibodies were added to 

the respective samples using the volumes listed in Table 2. The cells were then incubated 

for 45 min and centrifuged and resuspended in 200 µL of flow buffer twice. The CytoFLEX 

flow cytometer was then used for running the experiments. The compensations were 

computed automatically by the CytoFLEX instrument software. 

Table 2. Antibody dilutions for flow cytometry. 

Antibody Volume 

Anti-versican 5 µL 

Anti-integrin alpha 2 1.5 µL 

Zombie Yellow 1.5 µL 

Antibody dilutions were selected based on manufacturer’s instructions. 

3.2.2 Computational Methods 

Raw reads from single cell sequencing were processed using CellRanger (10x 

Genomics, v6.0.0).33 The filtered raw counts data was processed using the Seurat package 

in R (Satija, v4.0.5).44 Cells with less than 1000 or greater than 7000 distinctly expressed 

genes and mitochondrial gene fraction totalling greater than 5% of total transcript counts 

were filtered from the dataset. 
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Data from patient samples were integrated by first normalizing counts using the 

SCTransform method whereby mitochondrial gene fraction and passage number were 

regressed from the datasets.45 The datasets were then integrated together using the 

comprehensive integration methodology implemented in Seurat. Cells were then clustered 

using the Louvain community finding algorithm and differential expression was computed 

on non-batch corrected data using the Wilcoxon rank sum method as implemented in 

Seurat. Trajectory analysis was conducted using Monocle 3 (Tapnell, v3.1) with the 

“ncenter” parameter in the learn_graph function set to 500. Pseudotimes were computed 

by setting the root node as the cluster of interest and allowing monocle to compute 

pseudotime values for the remaining cells.37,46–49 A summary of the analysis pipeline is 

shown in Figure 10. 
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Figure 10. Single cell analysis pipeline. 

Top sequence illustrates the steps for separating and culturing CPCs from CHD patients. 

Bottom sequence summarizes the analysis pipeline and computational tools used in the 

analysis. Figure generated using BioRender. 

Surface proteins were identified using the cell surface protein atlas validated 

surface proteomes dataset.50 The surface proteome dataset was filtered for proteins for 

which there was a high confidence of expression on the cell surface. The dataset was also 

further filtered for cluster of differentiation proteins for better identification of cell surface 

proteins. The dataset was analysed for conserved differentially expressed genes across 

donor cells of the same cluster. The differentially expressed genes were then filtered for 

only genes present in the filtered surface proteome dataset for determination of highest 

transcriptionally expressing surface proteins. 

3.3 Results 
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3.3.1 Clustering and Compositional Analysis 

An initial clustering using Louvain identified twelve CPC subpopulations (Figure 

11a-b). Neonatal samples were largely enriched in the first two clusters while child samples 

were enriched in clusters 3, 6, 8, and 9. Among the child samples, there was a high level 

of sample-to-sample variability in comparison to the neonatal samples. Some child samples 

possessed more neonate-like clustering profiles (Patients 896 and 926) while other samples 

produced a more dissimilar clustering profile with less cells represented in the first two 

clusters (Patients 938, 1048, and 1092). Pathway analysis of the clusters indicates that 

Clusters 0, 1, and 6 are highly involved in the tissue reparative process with genes highly 

correlated with angiogenesis and fiber organization. The child CPC-enriched cluster 6 had 

differentially expressed genes highly correlated with supramolecular fiber organization. 

Clusters 2 and 5 seem to be related to cell proliferation and cell cycle processes. 
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Figure 11. Clustering and cluster compositions of nCPCs and cCPCs. 

UMAP projections colored by (a) cell cluster and (b) age group. (c) Metascape pathway 

analysis heatmap of upregulated genes. Cluster composition as grouped by (d) age group 

and (e) patient sample.  

3.3.2 Trajectory Analysis 

Trajectory analysis was conducted using Monocle 3 to understand how gene 

expression shifts as cells move between CPC subpopulations (Figure 12a). Pseudotimes 

computed using cluster 2 cells as the root node resulted in highest pseudotimes in cluster 8 

cells, indicating the gene profiles of these cells to be the most distinct from the cluster 2 

proliferating cells (Figure 12b). Alternatively, pseudotimes computed using cluster 6 as the 

root node resulted in the largest pseudotimes at cluster 2 (Figure 12b). Co-expression of 

genes were computed along trajectories and highly co-expressed genes were clustered into 

21 gene clusters, henceforth referred to as modules (Figure 12c). Some modules 

corresponded strongly with certain clusters from the Seurat analysis. For example, cluster 
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4 cells had high expression of genes in module 8, while cluster 2 and 5 cells had high 

expression of module 12 genes. 

 

Figure 12. Trajectory analysis and gene clustering. 

UMAP projections with trajectories determined by Monocle colored by (a) monocle 

clusters and (b-c) pseudotime with root nodes set to (b) cluster 2 and (c) cluster 6 from the 

Seurat analysis. (d) gene module expression heatmap by Seurat cluster. Modules were 

determined through a Leiden clustering of highly co-expressed genes along trajectories. 

Analysing module expression by age group indicates nCPCs are highly upregulated 

in modules 9, 13, 14, and 21 and cCPCs are upregulated in modules 1, 3, 8, 15, and 16 

(Figure 13a). Pathway analysis of genes within each module indicates nCPCs to be 

enriched in pathways related ribosomal activity via module 21 genes (Figure 13b-c). Both 

populations are enriched in modules related to chemotaxis (modules 8 and 9), angiogenesis, 

and ECM organization (modules 3, 9, 13, and 15). In addition, nCPC-related module 13 

was enriched in pathways related to small molecule biosynthesis. Module 9 contains CD34 

and PDGFB, genes believed be related with paracrine signaling, while module 8 only 
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contains one such gene, FGF2, while also containing high number of immune-related 

cytokines such as IL6 and IL1B. 

 

Figure 13. Module expression by age type. 

(a) Heatmap of module expression grouped by age group. Metascape pathway analysis 

heatmap of upregulated modules in (b) neonate and (c) child patients.  

3.3.3 Cluster 6 is Upregulated in Several Fibrosis-Associated Factors 

A detailed analysis of several fibrosis-related genes indicates Cluster 6 cells may be 

a potential driver of fibrotic activity. Several different types of collagen genes are highly 

expressed in this population along with high expression of genes associated with fibrosis 

TGFB2, CCN1, CCN2, and FBN1 (Figure 14a-b).51,52 In addition, the upregulated genes 

PDGFRA and FAP are known fibroblast markers, but also believed to correlate with an 

epithelial-to-mesenchymal transition.53,54 The cluster is also upregulated in angiogenic 

markers like VEGFA and downregulation of the proliferation-related gene H2AFZ. 

Pathway analysis indicates this cluster is especially correlated with supramolecular 

fiber organization and angiogenesis. Pathways associated with TGF-B signaling also 



 27 

observed in this cluster (not shown). Differentially expressed genes associated with this 

cluster co-cluster heavily within gene modules 3 and 6. 

 

Figure 14. Characteristics of cluster 6 cells. 

(a) Dotplot of selected genes relating to fibrosis and angiogenesis. (b) Top 25 differentially 

expressed genes ordered by log fold change between cluster 6 cells and non-cluster 6 cells. 

(c) Metascape pathway analysis barplot of upregulated differentially expressed genes. 

3.3.4 Cluster 4 is Upregulated in Cytokines 

Differential gene expression analysis identified several cytokines were upregulated 

in cluster 4 cells such as IL1B, IL6, and IL33 (Figure 15a). Pathway analysis indicates 

strong correlation with immune-related signaling, including genes involved in the IL-10 

and IL-17 signaling pathways (Figure 15b). In addition, enriched pathways indicate this 

cluster exhibits lower proliferative capabilities and apoptotic processes. Many of the 
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differentially expressed genes from this cluster were captured by the module 8 gene cluster, 

potentially indicating many of the cytokines expressed by these cells are specific to this 

cell cluster and are driven by similar biological processes. 

 

Figure 15. Characteristics of cluster 4 cells. 

(a) Top 25 differentially expressed genes ordered by log fold change between cluster 4 

cells and non-cluster 4 cells. (b) Metascape pathway analysis barplot of upregulated 

differentially expressed genes. 

3.3.5 Transcriptional Expression of Surface Proteins in Cluster 6 Cells 

Differentially expressed surface proteins were selected using the cell surface 

protein atlas database (Figure 16a).50 Primary anti-versican and anti-ITGA2 antibodies 

were selected for characterization of pooled child CPC subpopulations using flow 

cytometry. A subpopulation of cells with high versican and ITGA2 antibody fluorescence 

was approximated to make up roughly 11% of the cells in the sample (Figure 16b). Analysis 

of the histograms of antibody fluorescence verifies the high expression of these proteins 

on the surface of these cells (Figure 16c-d). Zombie Yellow, a live/dead viability stain, 

showed higher fluorescence in these cells indicating a higher likelihood of these cells being 

dead, however we believe the measured fluorescence is still well within the threshold of 

live cells indicating this is likely our population of interest (Figure 16e). 
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Figure 16. Cluster 6 surface protein characterization. 

(a) Transcriptional expression of conserved differentially expressed surface proteins in 

cluster 6 cells. (b-e) flow cytometry analysis identifies the population of interest. Zombie 

Yellow was used as a cell viability stain. CytExpert was used to generate plots b-e. 

3.4 Discussion 

Previous research by our group has uncovered an age-dependence between neonate 

and child populations for treating HLHS using patient-derived CPCs.4,5 Specifically, 

processes associated with anti-fibrotic outcomes and cell chemotaxis appear much stronger 

in neonatal population in comparison to child patients.4 Through this research, we hoped 

to understand how these macroscopic dynamics present at the single cell level, and whether 

we would be able to discern these populations for selection using cell surface markers. 

Following clustering, we identified several subpopulations of CPCs, some strongly 

correlated with CPC proliferation, and others related to collagen synthesis and cytokine 

signaling (Figure 11c). We identified a high level of sample-to-sample variability among 

child patients, with some having more neonate-like clustering profiles than others (Figure 
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11e). In particular, a subset of cCPCs clustered largely in the offshoot branches of the 

UMAP projection, namely clusters 3, 4, 6, 8, and 9 while nCPCs largely clustered among 

clusters 0-5 (Figure 11d). Interestingly, there were more proliferating cCPCs than nCPCs 

in the dataset, as demonstrated by the higher proportion of cCPCs in clusters 2 and 5 

(Figure 11d). However, this seems to be largely driven by a few donor samples rather than 

the overall cCPC population (Figure 11e). 

Using trajectory analysis and gene clustering, we also identified several gene 

modules related to chemotaxis and supramolecular fiber organization (Figure 12). Both age 

groups contained gene modules related to angiogenesis, supramolecular fiber organization, 

and cytokine signaling. The modules related to cytokine signaling in nCPCs and cCPCs 

(modules 8 and 9) differed in the types of cytokines being measured, with nCPC signaling 

being more strongly associated with chemotaxis while cCPC signaling also contained many 

inflammatory-related cytokines (Figure 13). This is consistent with previous results 

indicating cCPCs to be driving an increased immune response and nCPCs driving higher 

levels of chemotaxis.4 In addition, nCPCs had upregulation of genes strongly correlated 

with ribosomal activity, with nCPCs having a higher fraction of ribosomal genes in 

comparison to cCPCs. Pseudotime analysis indicates cCPC-enriched clusters 6 and 8 are 

highly distinct from the proliferative cell clusters (Figure 12b). In addition, cluster 6 cells 

had downregulation of proliferation-related gene H2AFZ, even in comparison to other non-

proliferating CPCs in the dataset (Figure 14a). This may indicate that the cluster 6 cells 

represent an especially unique cell subtype from the rest of the CPCs that potentially do 

not possess the same self-renewing or proliferative properties. 
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 Taking a closer look at specific clusters, we find that cluster 6 cells have high 

expression of genes related to fibrosis and angiogenesis (Figure 14). In addition, FAP and 

PDGFRA, known markers of fibroblast cells, are also upregulated in this cell cluster. These 

receptors have also been found to express at high levels during the epithelial-to-

mesenchymal transition (EMT) which has been previously shown to play a role in the 

development of fibrosis.53–55 β-catenin was strongly implicated in the EMT-induced 

fibrosis in renal tubulointerstitial fibrosis and is also upregulated in these cells.55 

Interestingly, this cluster also has very high levels of fibronectin expression, which has 

been implicated as a critical protein during cardiac repair. While high expression of 

fibronectin is present in all CPCs in the dataset, these results indicate that overexpression 

may potentially lead to adverse outcomes. Increased expression of VCAN has also been 

shown to correlate strongly with fibronectin expression in the literature.56,57 VCAN has been 

shown to interact with collagen type I and fibronectin in the ECM, which results in reduced 

cell adhesion. In response, the cells may overexpress fibronectin which may explain the 

results in our data as both VCAN and FN1 are upregulated in cluster 6.56  

 Another cCPC-enriched subpopulation, cluster 4 had high expression of several 

inflammation- and immune-related cytokines such as IL1B and CXCL8 (Figure 15). 

However, unlike cluster 6, cluster 4 also makes up a significant proportion of some 

neonatal samples as is the case with patient 2016 (Figure 11e). Analysis of enriched 

biological pathways finds results consistent with bulk RNA-sequencing results from 

Agarwal et al for cCPC-enriched pathways, including induction of IL-10 and IL-17 

signaling pathways.4 The genes associated with this cell subpopulation all highly co-cluster 

in gene module 8, which is highly upregulated among cCPC samples (Figure 13a). Module 
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9, a similar gene module that is upregulated among nCPC samples, contained cytokines 

more associated with chemotaxis. The difference in these two gene modules may highlight 

an important difference in cytokine signaling patterns among child and neonate CPC 

populations. 

 Based on analysis of conserved genes and surface proteins, we found VCAN and 

ITGA2 to be strong transcriptional surface protein markers for cluster 6 (Figure 16a). We 

used flow cytometry to confirm if the transcription upregulation of these genes translated 

to increase surface protein expression and if this could be used to characterize cell 

subpopulations. Analysis of the flow cytometry data on pooled child cells, indicated the 

population of interest to be discernable as cells with high ITGA2 and versican surface 

protein expression (Figure 16b-d). While the viability stain indicated higher fluorescence 

in the population of interest, we believe this measure is well within the margin for live 

cells.  
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CHAPTER 4. CONCLUSION 

4.1 Comparison of Analysis Pipelines 

We used separate analysis pipelines for each analysis, with each having its own set 

of benefits. In the first study, we utilized a pooled cell methodology for normalizing cell 

counts as implemented in the SCRAN package. This method aims to normalize “pools” of 

cells defined using a coarse Leiden clustering rather than normalizing on the library size of 

individual cells.36 By doing this, the method aims to preserve the differentially expressed 

genes while also addressing the sparsity inherent to single cell datasets. The recently 

developed SCTransform normalization method used in the second project opts instead to 

fit a generalized linear model with a negative binomial error model to pools of genes with 

similar abundances. The model is then able to estimate residuals that effectively represent 

normalized expression values.45 Both the BBKNN and Seurat v3 batch correction methods 

used in our projects rank highly in benchmarking studies for integrating datasets with cells 

of the same type.58–60 BBKNN has been reported to be better suited to highly complex 

integration tasks and requires less memory and time to run even on larger datasets when 

compared to Seurat. However, Seurat has better integration with other single cell libraries 

such as Monocle 3 and the conserved differential expression analysis implemented in 

Seurat which was necessary for selecting conserved surface proteins across donor samples 

in the second project. 

4.2 Comparisons Between the Two Datasets 
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Following the analysis of neonate, child, and adult CPC populations, we found 

several areas of potential overlap. In particular, the most potent area of overlap was among 

proliferating CPCs, with both datasets showing differential expression of the known CPC 

proliferation marker MKI67 in these cells.3 However, there were also several conserved 

genes that we believe have been understudied in the context of CPC proliferation. In 

particular, H2AFZ, the genetic precursor to the histone H2A.Z-1, serves as a particularly 

strong transcriptional identifier of proliferating CPCs in both datasets.39 Unsurprisingly, 

analysis of the proliferation-associated module 12 also shows upregulation of many other 

histone-related genes, such as HIST1H1A, HIST1H2AB, HIST1H2BB, etc. These results 

indicate epigenetic processes play a significant role in the proliferative capabilities of CPCs 

and are conserved across patient age groups. 

The clusters in both datasets that were most associated with fiber organization and 

collagen synthesis and angiogenesis had high expression of the long non-coding RNAs 

NEAT1 and MALAT1. In addition, these cells are also upregulated in fibronectin 

expression, further validating the pivotal role the protein seems to play during cardiac 

repair and CPC function. The cCPC-enriched cluster 6 cells had overexpression of many 

of these genes in comparison to their neonatal counterparts indicating that higher 

expression of these genes may lead to potentially adverse outcomes. Interestingly, a subset 

of older patient CPCs in both datasets (aCPC-enriched cluster 3 and cCPC-enriched cluster 

6) had upregulation of CTNNB1, the genetic precursor to β-catenin. Unlike in the aCPC 

samples, we did not find an overwhelming difference in CD47 expression between the two 

age groups, agreeing with previous results indicating nCPCs and cCPCs have similar 
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retention times in vivo in contrast to aCPCs. Interestingly, in both datasets, CD47 had the 

highest level of expression among proliferating CPCs. 

4.3 Future Areas of Research 

In the study of cCPCs, we have shown it is possible to characterize CPC subclusters 

using surface protein expression (Figure 16). Based on these results, it may be possible 

separate out cell subclusters of interest for further characterization and validation using in 

vitro assays to assess the ability of subclusters to promote remodeling processes of interest, 

such as fibrosis, angiogenesis, chemotaxis, and inflammation. In addition, these assays can 

be used to optimize the cluster compositions for the outcomes of interest before in vivo 

experimentation. Based on this, it may be possible to engineer CPC compositions to 

improve therapeutic outcomes. 

Our group previously worked to characterize CPC samples as either “good” or 

“poor” performing cells based on predictive modelling on several outcomes such as 

TAPSE and RVEF.5 It may be possible assess samples analysed using single cell 

technology in a similar fashion by correlating the in vitro outcomes of individual 

subclusters to the cluster compositions of each sample. In addition, such a model may 

potentially be expanded to bulk RNA-sequenced data through the use of recently developed 

deconvolutional methods such as BisqueRNA and MuSiC.61,62 Such a model may allow 

for more rapid assessment of the viability of CPC samples for the treatment of HF and the 

necessity for potential compositional optimization on donor samples. 

Previous research has indicated c-kit protein expression can decrease rapidly for 

CPC samples collected from adult patient after several passaging cycles.3 Such reductions 
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in c-kit expression are also correlated with reductions in proliferative capacity and 

increases in markers of senescence.3 Simultaneous characterization of single cell protein 

and gene expression is now possible using the Cellular Indexing of Transcriptomes and 

Epitopes by Sequencing (CITE-seq) technology. This would allow for genetic profiles to 

be attached to protein expressions of interest. Some proteins implicated in CPC function 

that could be characterized using this technology are c-kit, PECAM-1, ITGAV, ITGA2, 

PDGFRα, and LAMP3.3,5,63  

The combination of the RNA sequencing data presented in this study along with 

protein expression and in vitro or in vivo characterization can be used to build a predictive 

model for clinical trial outcomes and indicate where potential areas of optimization may 

exist by tuning cluster-specific compositions. Ideally, quickly matching protein expression 

or bulk RNA-sequencing data to subcluster proportions may allow practitioners to quickly 

assess the viability of the patient sample or optimize cluster compositions before injection 

to improve clinical outcomes and reduce the undesirable variability inherent to autologous 

CPC-based therapies. 
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