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SUMMARY 

High-fidelity computer simulations provide accurate information on complex 

physical systems. These often involve proprietary codes, if-then operators, or numerical 

integrators to describe phenomena that cannot be explicitly captured by physics-based 

algebraic equations1. Consequently, the derivatives of the model are either absent or too 

complicated to compute; thus, the system cannot be directly optimized using derivative-

based optimization solvers. Such problems are known as “black-box” systems since the 

constraints and the objective of the problem cannot be obtained as closed-form equations1-

7. One promising approach to optimize black-box systems is surrogate-based optimization. 

Surrogate-based optimization uses simulation data to construct low-fidelity approximation 

models. These models are optimized to find an optimal solution.  

We study several strategies for surrogate-based optimization for nonlinear and 

mixed-integer nonlinear black-box problems. First, we explore several types of surrogate 

models, ranging from simple subset selection for regression models to highly complex 

machine learning models. Second, we propose a novel surrogate-based optimization 

algorithm for black-box mixed-integer nonlinear programming problems. The algorithm 

systematically employs data-preprocessing techniques, surrogate model fitting, and 

optimization-based adaptive sampling to efficiently locate the optimal solution. Finally, a 

case study on modular carbon capture is presented. Simultaneous process optimization and 

adsorbent selection are performed to determine the optimal module design. An economic 

analysis is presented to determine the feasibility of a proposed modular facility.  
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CHAPTER 1. INTRODUCTION 

Many optimization problems today depend on highly complicated computer 

simulations, which provide accurate and useful data that represent complex physical 

phenomena5,8-12. These simulations typically consist of a large system of equations, such 

as partial differential and ordinary differential equations, to accurately approximate 

physical systems. Due to the large size and complexity of the simulation or the presence of 

discontinuities caused by periodic boundary conditions, simulation-based optimization, 

also known as black/gray-box or derivative-free optimization, has recently gained 

significant attention5,10,13-31 and can also be used for proprietary or legacy simulation codes.  

Black-box (bb) optimization relies on data generated from complex simulations 

instead of first-principle models consisting of explicit analytical equations (Figure 1). 

Black-box problems have many applications in chemical engineering, such as parameter 

estimation for simulation-based systems3,4,32, flowsheet synthesis33, supply chain 

optimization34,35, oilfield operations36-39, and protein structure prediction40-42. Existing 

black-box optimization algorithms proposed in the literature can be divided broadly into 

three categories: sampling-based, surrogate-based, and stochastic or evolutionary 

methods5,9,11. Of the three aforementioned categories, the surrogate-based optimization 

literature has attracted significant attention lately, and this is undoubtedly linked to the 

recent developments in Machine Learning (ML)43. Many researchers from diverse fields 

have observed that surrogate-based optimization is a very promising method1,44-46, and this 

is mainly due to the ability of the surrogate model to expedite the search for global optima 

while reducing the sampling requirements.  
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In this work, we address the following optimization problem (1): 

 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑦𝑦

𝑓𝑓(𝒙𝒙,𝒚𝒚) 

𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑐𝑐(𝒙𝒙,𝒚𝒚) ≤ 0, 𝑐𝑐 = 1, … ,𝐶𝐶 

𝑥𝑥𝑖𝑖𝑙𝑙 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖𝑢𝑢, 𝑥𝑥𝑖𝑖 ∈ ℝ,𝑦𝑦𝑗𝑗 ∈ {0,1}, 𝑚𝑚 = 1, . . , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽 

(1) 

where 𝑥𝑥𝑖𝑖 represents a continuous variable, 𝑥𝑥𝑖𝑖𝑙𝑙 and 𝑥𝑥𝑖𝑖𝑢𝑢 are lower and upper bounds of 𝑥𝑥𝑖𝑖 , 

respectively; 𝑦𝑦𝑗𝑗 represents a binary variable; 𝑓𝑓(𝒙𝒙,𝒚𝒚) represents the objective function, and 

𝑔𝑔𝑐𝑐(𝒙𝒙,𝒚𝒚) represents a constraint with an unknown functional form, or a constraint that is 

embedded within the simulation and cannot be represented by a known algebraic equation. 

If only continuous variables exist (i.e.,  𝐽𝐽 = 0), (1) is a constrained nonlinear programming 

(NLP) problem; otherwise, (1) is a constrained mixed-integer nonlinear programming 

(MINLP) problem. We focus on solve (1) using surrogate-based optimization. Also known 

as a metamodel, a surrogate model uses simulation data to approximate the input-output 

relationship. Using surrogate modeling, we seek to obtain 𝑓𝑓(𝒙𝒙,𝒚𝒚) and 𝑔𝑔�𝑐𝑐(𝒙𝒙,𝒚𝒚), which are 

low-fidelity approximations of 𝑓𝑓(𝒙𝒙,𝒚𝒚) and 𝑔𝑔𝑐𝑐(𝒙𝒙,𝒚𝒚).  

Figure 1. Illustration of a black-box problem; only the input and output data are 
available without the knowledge of the system 
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Solving (1) using surrogate-based optimization is challenging due to various 

reasons. First, an optimal solution should be found with a limited number of function 

evaluations and computation time7. This is crucial especially when the simulation is time-

consuming and/or the computation resource is limited. A strategic sampling and 

optimization approach is therefore required. Second, the physical system that needs to be 

approximated by a surrogate model tends to be highly complex, nonlinear, and nonconvex. 

Therefore, an efficient surrogate modeling strategy is needed to accurately approximate the 

physical system. Finally, the presence of discrete variables makes the search space 

discontinuous. Existing surrogate models assume the input space is ordinal, and the use of 

surrogate models for discrete search space has not been studied extensively. 

In this work, we propose several algorithmic strategies to solve black-box NLP and 

MINLP problems and apply these strategies to design a modular carbon capture process. 

In chapter 2, we present some background information on black-box optimization with a 

specific focus on surrogate modeling and optimization. In chapter 3, we investigate the use 

of subset selection for regression techniques to create interpretable surrogate models for 

black-box NLP problems. An algorithmic framework to solve a black-box MINLP problem 

is presented in chapter 4. Chapter 5 presents a case study on modular carbon capture. An 

efficient strategy is proposed for simultaneous process optimization and adsorbent 

selection using a surrogate-based MINLP algorithm. Finally, we present a feasibility study 

on a modular facility by performing economic analysis. We end with conclusions and 

future perspective.  
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CHAPTER 2. BACKGROUND  

2.1 Black-Box Optimization 

Black-box optimization is also known as derivative-free optimization (DFO) or 

simulation-based optimization. It is used when the original derivative information is 

unavailable or difficult to obtain11. Unlike deterministic optimization, black-box 

optimization does not involve direct computation of derivatives for 𝑓𝑓(𝒙𝒙,𝒚𝒚) or 𝑔𝑔𝑐𝑐(𝒙𝒙,𝒚𝒚). 

Instead, different strategies are used to locate an optimal solution without the use of original 

derivative information. Existing black-box optimization algorithms can be divided into two 

broad categories: direct-search methods and model-based methods. First, literature reviews 

on these methods are briefly introduced for both NLPs and MINLPs. The rest of the chapter 

is dedicated to explaining surrogate-based optimization in detail.  

2.1.1  Direct-Search Methods 

The direct-search algorithm generates a set of neighborhood points and evaluates 

the values of the objective function at those points. The algorithm then either expands or 

narrows the search radius to explore other areas of the search space or to refine the solution. 

Some commonly used NLP direct-search algorithms are Nelder-Mead simplex algorithm47, 

generalized pattern search48, Mesh adaptive direct search49, DIRECT algorithm50, branch-

and-bound, and multilevel coordinate search51.  

Direct-search MINLP algorithms are an extension to previously discussed NLP 

direct-search methods. Audet et al.52 made modifications to the neighborhood point 

selection criterion to handle discrete variables, and the convergence to local optimality was 
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proved for both continuous and discrete variables. This work was further extended by 

Abramson et al.53 to solve constrained mixed-variable optimization problems. Furthermore, 

Liuzzi et al.54 modified a direct-search algorithm to solve MINLPs with both nonlinear and 

box constraints. The proposed algorithm alternates between local minimization of 

continuous variables and local search of discrete variables, and adaptive direct search is 

used to force convergence. The most widely used direct-search MINLP software is 

NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search). However, 

NOMAD is only suitable for problems with cheap function evaluation as pattern-search 

algorithms tend to require a large number of samples to converge. Also, no extensive 

numerical studies currently exist for solving constrained mixed-integer problems with 

NOMAD55. 

2.1.2 Model-Based Methods 

A model-based algorithm involves constructing an approximation model that 

represents the input-output relationship of the data. These approximation models are 

usually known as surrogate, meta-, or reduced-order models. Surrogate-based optimization 

has been used extensively for black-box NLPs, and it is generally divided into two 

categories: local and global models11. Local model-based search algorithms include trust-

region method56 and implicit filtering57, where the surrogate model is developed for only a 

subset of the search space. For global model-based search algorithms, the surrogate model 

is constructed for the entire search region to guarantee convergence to global minimum58.  

Despite its success in solving NLP problems, surrogate-based optimization has only 

recently been applied to MINLP problems. Existing works on MINLPs usually rely on 
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solving an auxiliary mixed-integer problem59,60, are not fully black-box (i.e. only a part of 

the problem formulation is black-box)61, or can only handle binary values or low-

dimensional problems. Some efforts have recently been made to overcome these 

limitations. SO-MI introduced in 55 uses a cubic RBF model and stochastic sampling 

strategies to solve expensive black-box problems. At each iteration, four groups of integer-

feasible points are generated, and the best point is added to update the surrogate model. 

Similarly, MI-SO62 alternates between local and global optimization search steps to locate 

high accuracy solutions. Although both algorithms have been tested on high-dimensional 

problems with non-binary discrete variables and do not require mixed-integer sub-solvers, 

it is heavily dependent on function evaluation and sampling. Also, the performance has 

only been evaluated with respect to the number of function evaluations; no remark on 

computation time is given in the paper. 

2.2 Overview of Surrogate-based Optimization 

Existing surrogate-based optimization algorithms generally have four steps: 1) initial 

sampling, 2) construction of a surrogate, 3) optimization, and 4) solution refinement 

(Figure 2). First, the construction of a surrogate model begins with choosing an efficient 

sampling strategy to maximize the information gained while minimizing the number of 

samples. Samples should be uniformly, but not regularly, distributed in the search space; 

i.e., if we project the sample points onto each variable axis, no projections of the sample 

points will overlap. Latin Hypercube sampling (LHS) is a widely used strategy to construct 

a space-filling, controlled random samples7. 
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Figure 2. General framework of adaptive surrogate-based optimization. Surrogate 
models approximate the data from expensive black-box simulations and are 
iteratively optimized and updated to find an optimal solution 

The next step to surrogate-based optimization is constructing a surrogate model, 

which is a low-fidelity approximation of the actual first-principle model. Currently, various 

surrogate models exist, and some commonly used surrogate models are shown in Table 1. 

The selection and parameter fitting of a surrogate model are coupled with a 𝑘𝑘-fold cross-

validation procedure to prevent overfitting. This procedure ensures that the surrogate 

model parameters are trained only on a subset of samples (training set), while the other 

subset of remaining samples is left out for validation (validation set).  A prediction error 

on the validation set is calculated using the optimal model. The procedure is repeated 𝑘𝑘 

times to allow the selection of the best model with the minimum cross-validation error.  

Once a surrogate model is trained using input-output data, analytical 

representations of the constraints and the objective of a black-box problem become 

available, which are computationally cheaper to evaluate and compute derivatives for5. 

Several approaches have been proposed for handling constraints, such as fitting a separate 

model for each constraint1 or a grouped penalty function63,64. In this work, surrogate models 

are constructed for all black-box constraints and the objective function. A surrogate 

function can then be optimized by any deterministic optimization solver of choice.  
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Table 1. Different types of surrogate functions and their function form 

Model Interpolating? Functional Form Parameters 

Linear No 𝑦𝑦(𝑥𝑥) = 𝑏𝑏0 + �𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 𝑏𝑏0, 𝑏𝑏𝑖𝑖 
for 𝑚𝑚 = 1, … ,𝐶𝐶 

General 
Quadratic No 

𝑦𝑦(𝑥𝑥) = 𝑏𝑏0 + �𝑏𝑏𝑙𝑙𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ � � 𝑏𝑏𝑚𝑚𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑝𝑝

𝑗𝑗=1,𝑗𝑗≥𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

𝑏𝑏0, 𝑏𝑏𝑙𝑙𝑖𝑖 
for 𝑚𝑚 = 1, … ,𝐶𝐶 

Gaussian 
Process Yes 

𝑦𝑦(𝑥𝑥) = 𝜇𝜇 + �𝑐𝑐𝑛𝑛𝑒𝑒𝑥𝑥𝑒𝑒 [−�𝜃𝜃𝑖𝑖�𝑥𝑥𝑖𝑖

𝐶𝐶

𝑖𝑖=1

𝑁𝑁

𝑛𝑛=1

− 𝑥𝑥𝑖𝑖
(𝑛𝑛)�

2
]  

𝜇𝜇,𝜃𝜃𝑖𝑖  
for 𝑚𝑚 = 1, … ,𝐶𝐶 
𝑐𝑐𝑛𝑛 = 𝑓𝑓(𝜃𝜃𝑖𝑖 , 𝜇𝜇,𝒙𝒙,𝑦𝑦) 

Radial 
basis 
functions 

Yes 

𝑦𝑦(𝑥𝑥) = �𝛼𝛼𝑖𝑖𝜋𝜋𝑖𝑖(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1

+ �𝑏𝑏𝑛𝑛𝜑𝜑(𝑥𝑥 − 𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

𝛼𝛼𝑖𝑖 for 𝑚𝑚 = 1, … ,𝑚𝑚 
𝑏𝑏𝑛𝑛 for 𝑚𝑚 =
1, … ,𝑁𝑁 

 

However, regardless of the type of surrogate model used, it is highly unlikely that 

a perfect model is obtained in just one stage. Hence, surrogate modeling is usually coupled 

with adaptive sampling to determine the location of the next sampling points to update the 

model. Two adaptive sampling strategies exist: 1) fitting the best approximation, or 2) 

facilitating the search of optimum. The first approach involves using adaptive sampling to 

identify the best approximation of a certain unknown correlation. Once the best 

approximation is found, it is directly optimized in one-stage using derivative-based 

optimization solvers2. The second approach, however, does not seek to generate the best 

approximation. Instead, adaptive sampling is used to determine the location of new samples 

in promising regions to improve the solution. Specifically, it seeks to maintain a balance 
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between diversity in sampling (i.e. exploration) and optimization (i.e. exploitation). As a 

result, the surrogate model is used only as an intermediate step to guide the search toward 

better directions. Once the locations of new sample points have been determined, the 

simulation is re-inquired at these new points. The surrogate model is then updated using 

the new design space. This entire process repeats until a convergence criterion is reached.  

This work employs the latter adaptive sampling approach for surrogate-based 

optimization. Instead of searching for the best approximation, a surrogate model is simply 

used as an intermediate guide to converge to the optimum solution. This approach has been 

shown to be effective in 1,65,66, especially for problems with computationally expensive 

simulations. Reduced sampling is achieved because rather than focusing on covering the 

entire feature space to identify the universally best approximation, this paradigm focuses 

on areas where the global optimum is likely to be located.  

2.3 Surrogate Models  

Previously, we have presented a general overview of a surrogate-based optimization 

algorithm. In this section, we present an in-depth discussion of two specific surrogate 

models: Artificial Neural Network (ANN) and Gaussian Process (GP). These models are 

used throughout this work.  

2.3.1 Artificial Neural Network Modeling 

An Artificial Neural Network (ANN) is a nonlinear statistical model that has been 

used for both classification and regression 43,67. Following a standard ANN architecture, 

the input variable nodes represent the input layer, and the response variable nodes represent 
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the output layer. The input and output layers are connected by hidden layers. The 

mathematical expression of an ANN with a single input node (𝑥𝑥) and a single hidden layer 

can be expressed as follows:   

 𝑓𝑓𝑁𝑁𝑁𝑁(𝒙𝒙) = 𝜎𝜎 ��𝑊𝑊𝑙𝑙
(1)

𝑙𝑙
𝜎𝜎 �� 𝑊𝑊ℎ

(0)𝑥𝑥 + 𝑏𝑏0
ℎ

� + 𝑏𝑏(1)� (2) 

where ℎ and 𝑙𝑙 represent the number of nodes in hidden and output layers, respectively. The 

function 𝜎𝜎 is an activation function, which transfers the input of a node to an output, and 

𝑊𝑊(𝑛𝑛) and 𝑏𝑏(𝑛𝑛) are the weights and biases for input-hidden (𝑊𝑊(0) and 𝑏𝑏(0)) and hidden-

output (𝑊𝑊(1) and 𝑏𝑏(1)) layers. The functional form of ANNs depends on the activation 

function, the number of hidden layers, and the number of nodes in each layer. One 

commonly used activation function is the hyperbolic tangent function (𝜎𝜎(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑚𝑚ℎ (𝑥𝑥)), 

while others have been proposed, including sigmoid and ReLU functions 67. For the final 

layer, an identity activation function (𝜎𝜎(𝑥𝑥) = 𝑥𝑥) is used for regression problems 21. One 

challenge in constructing a neural network model is hyperparameter optimization. 

Hyperparameters are variables that determine the structure and training of the network 

(e.g., number of hidden nodes, number of hidden layers), and these must be set before 

optimizing the weights and bias values of the neural network. Several strategies can be 

used to find the optimal hyperparameters, such as grid search, stochastic optimization using 

a genetic algorithm, and heuristics 67. Depending on the desired accuracy of the ANN, we 

can choose different hyperparameter optimization strategies. After the optimal 

hyperparameters are determined, we can then optimize the weights and bias values of the 

neural network.  
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2.3.2 Gaussian Process Modeling 

Gaussian process (GP), also known as Kriging, is an interpolating function that 

assumes that two points that are close to each other are likely to be correlated. This 

relationship is expressed using a correlation function, which depends on the distance 

between two points 𝑥𝑥𝑗𝑗 and 𝑥𝑥𝑘𝑘: 

 
𝑐𝑐𝑐𝑐𝑐𝑐 �𝜖𝜖�𝑥𝑥𝑗𝑗�, 𝜖𝜖(𝑥𝑥𝑘𝑘)� = exp [−�𝜃𝜃𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘�

2
]

𝑑𝑑

𝑖𝑖=1

 (3) 

The correlation function in (3) captures the following: when two points are close to each 

other (i.e., distance is small), the correlation approaches to one (high correlation), while 

when the distance between two points is large, the correlation approaches zero. Using this 

correlation function, we can obtain the final functional form of GP models:  

 
𝑓𝑓𝐺𝐺𝐺𝐺(𝒙𝒙) = 𝜇𝜇 + �𝑐𝑐𝑛𝑛exp [−�𝜃𝜃𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

(𝑛𝑛)�
2

] 
𝑘𝑘

𝑖𝑖=1

𝑁𝑁

𝑛𝑛=1

 (4) 

where 𝑁𝑁 represents the number of data points used to train the model, 𝑘𝑘 represents the 

dimension of the problem, 𝜃𝜃𝑖𝑖  and 𝑐𝑐𝑛𝑛  represent correlation parameters, and 𝜇𝜇  is the 

estimated mean. The parameters can be found by using maximum likelihood estimation 

(MLE) 65. The final functional form is directly correlated with the number of data points 

used to train the model. Hence, the complexity of the functional form increases as more 

data points are used to construct the model65.  
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CHAPTER 3. CONSTRUCTION OF LOW-COMPLEXITY 

SURROGATE MODELS USING MACHINE LEARNING SUBSET 

SELECTION FOR REGRESSION 

3.1 Introduction  

Existing surrogate models can be divided into two broad categories: non-

interpolating and interpolating69. Non-interpolating models, such as linear, quadratic, 

polynomial, or generalized regression70, minimize the sum of squared errors between some 

predetermined functional form and the sampled data points. While these may lead to simple 

and interpretable functional forms, they may not be flexible enough to sufficiently capture 

highly nonlinear correlations 71. Alternatively, interpolating methods, such as Gaussian 

Process71 and radial basis functions (RBF)5,7,32, exhibit increased flexibility by 

incorporating different basis functions (or kernels), which are built to exactly predict the 

training points69. Due to model flexibility and accuracy, they have been successfully 

applied in many areas, such as steady-state flowsheet simulation72, modeling of 

pharmaceutical processes33,73, and aerodynamic design problems74, to name a few. 

However, these models tend to have an increased number of parameters and nonlinear, 

nonconvex terms that are difficult to optimize globally1. 

One promising approach to overcome the aforementioned limitations of existing 

surrogate-based optimization is Subset Selection for Regression (SSR)2. Also known as a 

sparse representation or sparse coding, SSR involves selecting the most informative subset 

from a large set of variables or features, which are then linearly combined to generate a 
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final model. This approach can lower the computational cost by reducing the number of 

variables or predictors and increase the prediction accuracy by eliminating uninformative 

features75. SSR has been widely applied in numerous fields, such as signal processing76, 

gene selection for cancer classification77, text classification78, and face recognition79, but 

only recently has it been considered for surrogate modeling for optimization2,80,81  

In this chapter, we explore various SSR techniques for surrogate modeling for 

optimization. A large set of basis functions or “features” is first created, and a subset of 

those features is selected to generate a sparse model. This allows us to obtain a low-

complexity surrogate model that is computationally cheaper and easier to optimize. Several 

existing SSR algorithms are compared and tested on both unconstrained and constrained 

benchmark problems. The novel aspects of this work are: 1) the comprehensive comparison 

of the performance of various SSR techniques for surrogate modeling with traditionally 

used interpolating techniques, and 2) the integration of linear SSR techniques for building 

nonlinear surrogate functions within a surrogate-based optimization framework. 

3.2 Motivating Example 

In this section, we present a motivating example to introduce the two main concepts 

of this work. We first illustrate SSR for surrogate modeling. Subsequently, the 

optimization-based adaptive sampling technique will be introduced. By combining these 

two strategies, we aim to locate the global optimum with minimum sampling requirements 

and computation cost.  

3.2.1 Surrogate Model Construction using SSR  
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Data-driven optimization is challenging due to the lack of algebraic expressions of 

the objective and/or constraints. In this work, we seek to maximize model accuracy and 

minimize model complexity by using SSR. To use subset selection, we first need to 

generate a set of features. Conventionally, SSR is used when a large set of original variables 

exists.  A subset of important variables is then selected by removing redundant variables. 

In this work, we expand the original variable set through nonlinear transformations to 

obtain a diverse feature set and model complex nonlinear behaviors. For a two-dimensional 

problem with input variables 𝑥𝑥1 and 𝑥𝑥2, we can generate a feature set, such as 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12, 

𝑥𝑥22, 𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥1), and 𝑒𝑒𝑥𝑥𝑒𝑒(𝑥𝑥2). We can then use SSR to choose only a subset of these features 

and construct a surrogate model (Figure 3)2.  

 

Figure 3. Illustration of SSR in surrogate modeling 

We will illustrate this idea by using a simple test function: 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥4 − 3𝑥𝑥2 + 𝑥𝑥. 

The actual functional form of this test problem is assumed to be unknown, and 10 initial 

data points are collected by Latin Hypercube Design (LHD). Three different methods – 

linear, GP, and SSR – are used, and the initial basis set for SSR consists of 
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𝑥𝑥5, 𝑥𝑥4, 𝑥𝑥3, 𝑥𝑥2, 𝑥𝑥, and 𝑒𝑒𝑥𝑥𝑒𝑒 (𝑥𝑥). The resulting surrogate models and their functional forms 

are shown in Figure 4.  

 

Figure 4. (a) Graphical representation of test problem 𝒇𝒇(𝒙𝒙) = 𝟐𝟐𝒙𝒙𝟒𝟒 − 𝟑𝟑𝒙𝒙𝟐𝟐 + 𝒙𝒙, and (b) 
the resulting functional forms of surrogate models fitted by linear, GP, and SSR 

As expected, linear regression leads to an inaccurate model, because it cannot 

capture the nonlinearity of the actual function. While GP constructs a highly accurate 

model, its functional form is complicated (i.e., the number of terms is equal to the number 

of samples used). A balance between model accuracy and interpretability is achieved by 

SSR, which selects only a subset of basis functions. As a result, SSR can generate a 

surrogate model with a functional form almost identical to that of the actual test function. 

3.2.2 Optimization-Based Adaptive Sampling 

One of the most important challenges of surrogate-based optimization is locating 

the global optimum, while simultaneously minimizing sampling requirements. When data 

collection is computationally expensive or time-consuming, data points should be collected 

such that the total number of samples collected at each iteration is minimized, while 

maximizing the information gained from these sampled points82. Since the ultimate goal of 
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surrogate modeling for data-driven optimization is to locate the global optimum, points 

sampled near the optimum provide more valuable information than points collected far 

from the actual optimum. Furthermore, generating a surrogate model that fits all points 

perfectly, while ideal, would be an inefficient strategy, especially when the number of 

available samples is limited.  

Motivated by this idea, we use optimization-based adaptive sampling in this work 

(Figure 5). First, an initial sample set is generated using a space-filling experimental design 

(Latin Hypercube Design), and the first surrogate model is constructed. This initial 

surrogate model is optimized to global optimality using BARON83, and the incumbent 

solutions (i.e., both local and global solutions) are then used as the next sampling point(s). 

The initial surrogate model is then updated, and this process repeats until a convergence 

criterion is satisfied. This efficient sampling strategy has been shown to efficiently focus 

on areas that are more likely to contain the global minimum with high probability. It is 

important to emphasize that while we are interested in generating a good surrogate model 

that can accurately predict the optimum, we are not interested in constructing a “perfect” 

surrogate model that fits all the points exactly. Therefore, as shown in Figure 5, the final 

surrogate model is allowed to be imperfect in regions of low interest (i.e. near the boundary 

or areas far from the minimum) but still accurately locates a global minimum.  
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3.3 Subset Selection for Regression  

In a typical generalized linear regression setting, we are given a set of training data 

and we want to generate the following model: 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝐺𝐺𝑋𝑋𝐺𝐺 = 𝛽𝛽0 + �𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝

𝐺𝐺

𝑝𝑝=1

,𝑒𝑒 = 1, … ,𝑃𝑃 (5) 

where 𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝐺𝐺)  is a P-dimensional vector of features or predictors, 𝜷𝜷 =

(𝛽𝛽0, … ,𝛽𝛽𝐺𝐺) is the vector of regression coefficients, 𝑦𝑦 is a response variable. Following an 

ordinary least squares (OLS) approach, one would minimize the residual sum of squares of 

Figure 5. Optimization-based adaptive sampling used in this work  
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(1) using all of the 𝑃𝑃 features.  This is often not desirable, because it is prone to overfitting 

and does not eliminate redundant features. Therefore, the model interpretability and 

accuracy can be improved if we locate the best and the sparsest model, which includes only 

the predictors that explain the true variance of the problem 84. 

In this chapter, 𝑋𝑋𝑝𝑝  are the basis functions or the “features” unless mentioned 

otherwise. These are both linear and non-linear algebraic terms generated by 

transformations of original variables. Each problem consists of P number of features and 

n number of samples, and we want to choose only a small subset of the features, specifically 

q features (𝑞𝑞 ≤ 𝑃𝑃), to create an accurate and sparse model.  

One way to achieve this is SSR. SSR, also known as feature selection, can be 

achieved by either 1) convex optimization or 2) greedy approach. Traditionally, SSR is 

used to create sparse models, overcome the risk of overfitting, and improve model 

interpretability85. In this work, our main motivation is to investigate whether existing SSR 

techniques can be embedded within n adaptive sampling surrogate-based optimization 

framework. We want to create simple and tractable surrogate functions that retain accuracy, 

yet remain easily optimizable by existing solvers. In addition, we want to compare the 

performance of SSR-based surrogate functions with that of commonly used complex 

interpolating functions with respect to computational cost and accuracy in locating the 

global optimal solution.  

3.3.1  Subset Selection using Convex Optimization  

A subset selection problem, when formulated as a convex optimization problem, 

leads to a one-step feature selection. This approach usually involves solving an 
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optimization problem in the presence of a constraint that leads to a sparse model. In 

particular, imposing an L1-norm constraint has become a popular approach for automatic 

feature selection85. Since the resulting optimization problem is convex, it can be efficiently 

solved by several optimization solvers. In this section, 𝑁𝑁 represents the total number of 

data points (𝑚𝑚 = 1, . . ,𝑁𝑁); 𝑿𝑿� is a [𝑁𝑁 × 𝑃𝑃] matrix of features created from the original input 

variables 𝑥𝑥𝑖𝑖 sampled at 𝑁𝑁 points; 𝒚𝒚� is the vector of the response collected at the samples. 

3.3.1.1 Lasso and Elastic Net  

One of the most commonly used types of a sparse generalized linear model is Lasso. 

Lasso (Least Absolute Shrinkage and Selection Operator), originally introduced in 86, is 

based on the idea of using an L1-penalty of the regression coefficient. A sparse linear model 

is generated by solving the following optimization problem, where 𝜆𝜆 is a regularization 

parameter: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 
𝛽𝛽∈ℝ𝑃𝑃

{�𝒚𝒚� − 𝑿𝑿�𝜷𝜷�
2
2

+ 𝜆𝜆‖𝜷𝜷‖1} (6) 

Due to the presence of the L1-penalty term, Lasso can perform automatic variable 

selection by shrinking some coefficients completely to zero. Therefore, it is advantageous 

over Ridge regression, which minimizes the L2 penalty on the regression coefficient, 

because Ridge regression only shrinks the coefficients toward zero but does not enforce 

them to be equal to zero87. While Lasso has been successfully applied in many cases, it has 

some drawbacks. First, when the number of variables is greater than the number of samples 

(i.e. 𝑃𝑃 > 𝑁𝑁 case), Lasso can only select at most N variables. Furthermore, if the variables 
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are highly correlated, then Lasso tends to only select one variable from a set of strongly 

correlated variables and ignores the grouping effect.  

Elastic Net overcomes these limitations by combining L2 and L1 norm penalty 

terms. The presence of an L2 norm makes Elastic Net penalty strictly convex for all 𝛼𝛼 > 0, 

and this strict convexity guarantees a grouping effect and overcomes the limitation on the 

number of variables selected in the 𝑃𝑃 > 𝑁𝑁  case. Hence, a group of highly correlated 

predictors has approximately the same coefficients, whereas Lasso only selects one of the 

predictors due to its non-strictly convex penalty term87. The generalized form of the Elastic 

Net optimization problem is as follows88: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 
𝛽𝛽∈ℝ𝑃𝑃

{
1
𝑁𝑁
�𝒚𝒚� − 𝑿𝑿�𝜷𝜷�

2
2

+ 𝜆𝜆 �𝛼𝛼‖𝜷𝜷‖1 +
1
2

(1 − 𝛼𝛼)‖𝜷𝜷‖22� } (7) 

The last two terms are the Elastic Net penalty, which is a combination of both Lasso and 

Ridge penalties. The Elastic Net penalty is controlled by 𝛼𝛼 : if 𝛼𝛼 = 1 , the Elastic Net 

penalty is equivalent to Lasso regression; if 𝛼𝛼 = 0, it becomes a simple Ridge regression. 

The tuning parameter 𝜆𝜆 controls the overall strength of the penalty and the degree of 

regularization.  

3.3.1.2 Sparse Principal Component Regression 

Principal component regression (PCR) is a two-stage procedure that performs 

principal component analysis (PCA) followed by ordinary least squares (OLS) regression. 

In particular, the regression is performed by using principal components as new 

explanatory variables instead of original variables, and the accuracy of the model can be 

controlled by varying the number of principal components included in the model89. 
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However, since the principal components are linear combinations of all original variables, 

feature selection is not directly feasible via PCA. Consequently, a sparse model cannot be 

created solely by PCR.  

To overcome this limitation, Zou et al.89 proposed a new method called sparse 

principal component analysis (SPCA), which imposes the Elastic Net penalty on the 

regression coefficients. This method generates principal components with sparse loadings, 

which can be combined with OLS to create a sparse regression model. The sparsity of 

principal components is controlled by the Elastic Net penalty 𝜆𝜆. This method will be noted 

as “sPCR1” in this work. However, one disadvantage of sPCR1 is that it is an unsupervised 

learning technique. The principal components are selected without utilizing information on 

the response variable, which could potentially degrade the performance of the regression 

model.  

 Kawano et al. proposed a supervised, one-stage approach for principal component 

regression in 90, which performs sparse PCA and regression simultaneously. It obtains 

sparse principal components that are related to the response variable. The model sparsity 

is obtained by imposing a penalty onto the regression coefficients using two regularization 

parameters (𝜆𝜆𝛽𝛽 and 𝜆𝜆𝛾𝛾). This method will be referred as “sPCR2”.  

3.3.1.3 Sparse Partial Least Squares Regression  

Partial least squares (PLS) regression has been widely used as an alternative to OLS 

and PCR because of its robustness. Specifically, it has been found that model parameters 

do not drastically change as new samples are taken from the total population91. Unlike 

PCA, PLS is a supervised dimensionality reduction technique. However, similar to PCA, 



 22 

PLS does not lead to automatic feature selection as the final direction vectors are linear 

combinations of all of the original predictors. To address this problem, Chun et al.92 have 

proposed a sparse Partial Least Squares regression (sPLS). This method imposes an L1-

constraint on the dimension reduction stage of PLS and constructs a regression model by 

using only a subset of sPLS components as new explanatory variables 92. Note that even 

though both sPLS and sPCR2 are supervised dimensionality reduction techniques, they 

have different loss functions: sPLS seeks to maximize the covariance between input X and 

output Y while imposing an elastic net penalty onto a surrogate of the direction vector; 

sPCR2 has both the regression loss and the PCA loss functions with sparse regularization 

on the regression coefficients90,92. 

3.3.2  Subset Selection using a Greedy Approach 

Greedy algorithms involve iteratively adding or removing features, which can be 

achieved by either forward selection or backward elimination. In forward selection, a 

model is generated by progressively incorporating variables and generating a larger subset; 

in backward elimination, the model starts with all predictors and iteratively eliminates the 

least promising ones. Once the models are trained, the most or least predictive features can 

be chosen by criteria that depend on measures such as the root mean squared error (RMSE), 

the cross-validation error, or the value of model coefficients (weights)93. In this work, 

Support Vector Regression (SVR) is chosen as a regression strategy. Only backward 

elimination is considered in this work, because forward selection has been reported to find 

weaker subsets93. This behavior can be explained since the importance of variables is not 

assessed in the presence of other variables that are not included. 
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3.3.2.1 Support Vector Machine – Recursive Feature Elimination (SVM-RFE) 

Support vector machines (SVM) seek to find a regularized function 𝑓𝑓(𝑿𝑿) that 

separates the data with at most 𝜀𝜀 deviation from the actually observed data 𝑦𝑦𝑛𝑛 , while 

making sure 𝑓𝑓(𝑿𝑿) is as flat as possible. If a data set is “linearly separable” (i.e., a linear 

function can separate a set of data without error), 𝑓𝑓(𝑿𝑿) takes the form:  

 𝑓𝑓(𝑿𝑿) = 𝒘𝒘 ∙ 𝑿𝑿 + 𝑏𝑏, 𝒘𝒘 ∈ ℝ𝐺𝐺 , 𝑏𝑏 ∈ ℝ (8) 

where 𝒘𝒘 is a P-dimensional weight vector and 𝑏𝑏 is a bias value. In this work, we train a 

linear  SVR model; however the final functional form is nonlinear because we use the 

augmented set of nonlinear features (𝑿𝑿).  

The values of 𝒘𝒘  and 𝑏𝑏  can be found by solving the following optimization 

problem94:  

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒   

1
2
‖𝒘𝒘‖2 + 𝐶𝐶�(𝜉𝜉𝑛𝑛 + 𝜉𝜉𝑛𝑛∗)

𝑁𝑁

𝑛𝑛=1

 

𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐 �
𝑦𝑦𝑛𝑛 − 〈𝒘𝒘,𝑿𝑿�𝑛𝑛〉 − 𝑏𝑏 ≤  𝜀𝜀 + 𝜉𝜉𝑛𝑛       𝑚𝑚 = 1, . . ,𝑁𝑁 
〈𝒘𝒘,𝑿𝑿�𝑛𝑛〉 + 𝑏𝑏 − 𝑦𝑦𝑛𝑛  ≤  𝜀𝜀 + 𝜉𝜉𝑛𝑛∗      𝑚𝑚 = 1, … ,𝑁𝑁
𝜉𝜉𝑛𝑛, 𝜉𝜉𝑛𝑛∗  ≥  0                                   𝑚𝑚 = 1, … ,𝑁𝑁

 

(9) 

This formulation generates a model that is a linear combination of all original 

features; thus, none of the original input features can be discarded. To generate a sparse 

model using SVM, Guyon et al.77 developed a pruning technique that eliminates some of 

the original features and generates a subset of features that yields the best performance. 
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Recursive feature elimination (RFE) is iteratively used to rank the features and remove less 

important features by performing three simple steps: 1) train an SVM model and obtain the 

weight vector 𝒘𝒘, 2) compute the ranking criterion (𝑤𝑤𝑖𝑖
2) for all features, and 3) remove the 

feature with the smallest ranking criterion. The squared weights 𝑤𝑤𝑖𝑖
2 are used as a ranking 

criterion, because the magnitude of 𝑤𝑤𝑖𝑖
2 denotes the importance of a feature to the overall 

model.  

When the number of original features is large, it is computationally inefficient to 

remove a single feature per iteration. Instead, several features can be removed at each 

iteration, but this has to be cleverly done to not sacrifice performance accuracy. In this 

case, the method provides a feature subset ranking instead of a feature ranking, such 

that 𝐹𝐹1 ⊂ 𝐹𝐹2 ⊂ ⋯ ⊂ 𝐹𝐹 . Hence, the features in a subset 𝐹𝐹𝑚𝑚  should be taken together to 

generate a model. In this work, we employ an adaptive multiple-feature removal strategy. 

Initially, when the number of remaining features is large, more features are removed to 

speed up the elimination process. When only a few features remain, fewer features are 

removed to more carefully explore synergistic effects between remaining features. This is 

achieved by using a heuristic rule that we have found efficient, which removes 

1 (𝑚𝑚𝑡𝑡𝑒𝑒𝑐𝑐 + 4)⁄  features at a time, where 𝑚𝑚𝑡𝑡𝑒𝑒𝑐𝑐 represents the iteration number. Therefore, 

when 𝑚𝑚𝑡𝑡𝑒𝑒𝑐𝑐 = 1, one-fifth of the existing features are removed, whereas when 𝑚𝑚𝑡𝑡𝑒𝑒𝑐𝑐 = 10, 

fewer features (1/11 of remaining features) are removed.  

The performance of SVM depends on the selection of two hyper-parameters: 𝐶𝐶 and 

𝜀𝜀. The cost parameter 𝐶𝐶  is a regularization term that represents the cost of constraints 

violation, which controls how much samples inside the margin contribute to the overall 
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error. Furthermore, 𝜀𝜀 defines a margin of tolerance, in which no error penalty is given to a 

point lying inside this margin. These two parameters in conjunction control the width and 

the flatness of the margin, and they are usually tuned by performing a grid search or cross-

validation94. However, these commonly used approaches can be computationally 

expensive. Therefore, we instead use the following equation to obtain 𝐶𝐶 directly from the 

training data95: 

 𝐶𝐶 = 𝑚𝑚𝑡𝑡𝑥𝑥��𝑦𝑦� + 3𝜎𝜎𝑦𝑦�, �𝑦𝑦� − 3𝜎𝜎𝑦𝑦�� (10) 

where 𝑦𝑦� and 𝜎𝜎𝑦𝑦 are the mean and standard deviation of the y values in the training set. 

After the model is trained, the features are ranked and removed according to the value of 

𝑤𝑤𝑖𝑖
2 until the change in RMSE of two consecutive iterations is greater than 10%.  

3.4 Overall Algorithm 

We assess the performance of five SSR techniques by integrating them into a 

framework that has been developed to optimize black-box simulation-based problems, 

ARGONAUT1. ARGONAUT involves subcomponents to perform sampling, surrogate 

function construction, global optimization of the surrogate-based formulations, and 

optimization-based adaptive sampling to accurately locate the global minimum1,13.  

3.4.1 Basis Function Generation 

One advantage of SSR in surrogate modeling is that simple yet diverse and flexible 

basis functions can be used instead of highly complicated Gaussian or radial basis functions 

(Table 2). The original variable set is transformed by simple nonlinear transformations, 
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such as polynomial and multinomial transformations. Other types of basis functions can be 

easily integrated, if needed. More complicated terms, such as trigonometric functions, are 

not directly handled by most optimization solvers; thus, they were not included in this 

work. The basis types that are included in the initial superset of features are shown in Table 

2, where 𝜏𝜏 = {1,2,3,4} ,  𝛼𝛼 = {1,2,3},  𝛽𝛽 = {1,2,3} , 𝛾𝛾 = 1 , 𝜂𝜂 = 1 , and indices 𝑚𝑚, 𝑚𝑚′, 𝑚𝑚′′ 

represent different variables of the original input space.  

Another noteworthy advantage of SSR is that a-priori knowledge of the system can 

be used to improve model performance. If the actual functional form is fully or partially 

known based on first-principles or heuristics, the user can selectively include or exclude 

certain basis functions. For example, if we want to generate a surrogate model for a second-

order reaction (rate = k[A]2), we can include 𝑥𝑥2 in the basis set to guide the selection of 

the basis function toward the term included in the actual rate equation. For a greedy 

approach (i.e., SVM-RFE), it is even possible to guarantee the inclusion of this term in the 

final model by assigning an arbitrarily large weight to 𝑥𝑥2 at every iteration.  

Table 2. List of possible basis functions 

Type Equation 
Polynomial 𝑥𝑥𝑖𝑖𝜏𝜏 

Multinomial 𝑥𝑥𝑖𝑖𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖′
𝛽𝛽 and 𝑥𝑥𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖′ ∙ 𝑥𝑥𝑖𝑖′′′ 

 

Exponential 𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑥𝑥𝑖𝑖
𝛾𝛾
�
𝜂𝜂
 

 

Logarithmic 𝑙𝑙𝑚𝑚 �
𝑥𝑥𝑖𝑖
𝛾𝛾
�
𝜂𝜂
 

  

3.4.2 Surrogate Model Construction 
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 A surrogate model is generated by the selected SSR method or by fitting an 

interpolating function. All SSR methods require tuning of hyper-parameters for optimal 

performance, and the specifics of how each method is tuned can be found in Table 3. The 

initial sample set is divided into 𝑘𝑘  training and 𝑘𝑘 validation sets, and 𝑘𝑘  models are 

generated using all SSR methods. The best model is determined by calculating the root-

mean-square error (RMSE) of 𝑘𝑘 models on the validation set. The model with the smallest 

RMSE is chosen to proceed to the next stage. Similarly, the constraints are modeled with 

the selected method.  

3.4.3 Optimization-Based Adaptive Sampling   

Latin Hypercube Design is used for initial sampling. Based on traditionally used 

heuristics1,13, when the dimension of the problem is less than or equal to 20, 10𝑀𝑀 + 1 

samples are used; when the dimension is greater than 20, a fixed number of 251 samples 

are collected. The simulation is inquired at these points, and the computation cost of 

sampling is reduced by parallelizing the procedure computationally. After initial sampling, 

optimization-based adaptive sampling is used to update the surrogate models. The initial 

surrogate model is globally and locally optimized by using solvers BARON83 and 

CONOPT103, respectively. This allows us to find the global solution and a diverse set of 

local solutions. The simulation is then re-inquired at all of these incumbent solutions. The 

algorithm terminates if one of the following convergence criteria is met: 1) the incumbent 

solution does not improve over a consecutive set of iterations, 2) the maximum number of 

function calls has been reached, and 3) a feasible incumbent solution is found with a very 

low cross-validation RMSE 1.  
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Table 3. Algorithm parameters 

Method R package Parameters Method of tuning 

Elastic 
net 

glmnet 
(glmnet) 96* 

𝛼𝛼 = controls Elastic Net 
penalty 

𝜆𝜆 = controls the overall 
strength of the penalty 

Grid search using 10-
fold cross validation 

sPCR1 elasticnet 
(spca) 97 

𝐾𝐾𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠1 = number of 
components 

𝑠𝑠𝑒𝑒𝑡𝑡𝑐𝑐𝑠𝑠𝑒𝑒 = controls the 
number of sparse loadings 
𝑒𝑒𝑡𝑡𝑐𝑐𝑡𝑡 = vector of 1-norm 

penalty parameter 

𝐾𝐾𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠1 = number of basis 
functions 

𝑠𝑠𝑒𝑒𝑡𝑡𝑐𝑐𝑠𝑠𝑒𝑒 = “penalty” 
𝑒𝑒𝑡𝑡𝑐𝑐𝑡𝑡 = 0.01 

sPCR2 
spcr 

(cv.spcr, 
spcr) 98 

𝜆𝜆𝛽𝛽 = nonnegative 
regularization parameters for 

regression coefficients 
𝜆𝜆𝛾𝛾 = nonnegative 

regularization parameter for 
regression intercepts 

Grid search using cross 
validation 

sPLR spls (cv.spls, 
spls) 99 

𝜂𝜂 = thresholding parameter 
𝐾𝐾 = number of hidden 

components 

𝜂𝜂 = 10-fold cross-
validation 

K = range(1, 
𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒, 0.9𝑚𝑚}) 100 

SVMRF
E 

kernlab 
(svmLinear) 

101* 

𝐶𝐶 = controls margin softness 
𝜀𝜀 = margin of error tolerance 

𝐶𝐶 = 𝑚𝑚𝑡𝑡𝑥𝑥��𝑦𝑦� + 3𝜎𝜎𝑦𝑦�, �𝑦𝑦�
− 3𝜎𝜎𝑦𝑦��  

𝜀𝜀 = 0.1 
*The selected SSR method is coupled with R package caret 102 via train to perform 
cross-validation/grid search 
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Figure 6. Algorithmic flowchart of the proposed algorithm. At each iteration, an SSR 
model is constructed and optimized. If no satisfactory solution has been found, new 
data points are added to the existing data set and the steps are repeated.  

3.5 Computational Studies 

We test the five aforementioned SSR techniques on two sets of benchmark 

problems. The performance of SSR is compared to that of a Gaussian Process (GP) 

Start 

Generate an initial data set 
using LHS and inquire 

simulation as these points 

Add a new sample 
at 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 and update 

the training set 

Create a basis function set 
and divide the set into 

training and testing set for 
k-fold cross validation 

Build k SSR model by 
using the training set 

Calculate RMSE of k 
models on the testing set 

and choose the model with 
the smallest RMSE 

Optimize the chosen 
surrogate model and find 
the minimum 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛) 

Convergence? 

End 

Yes 

No 
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model65, a widely used interpolating surrogate model introduced in Chapter 2. The best 

performance out of three runs is chosen to evaluate the performance of all algorithms. All 

methods are tuned according to Table 3 to find the best hyper-parameters; 𝑘𝑘 = 5 is used 

for cross-validation. Both sets contain problems that are linear, nonlinear, convex, and/or 

nonconvex, and all problems have known bounds and known global minima. The functions 

contain a diverse set of algebraic terms, which may or may not be in the generated basis 

function set shown in Table 1. Furthermore, both the objective and constraints of the 

problems are assumed to be unknown, following the definition of a black-box problem.  

3.5.1 Test Set A: Unconstrained Problems  

The first test set consists of a subset of 191 test problems from Sahinidis library11. 

All problems are unconstrained with known bounds. The algorithm is parallelized using 2 

processors1. The dimension and the number of problems in each set are shown in Table 4.  

Table 4. Specifics of test set A 

Dimension of problems Number of problems Number of basis functions 
2 73 19 

3-4 48 43-78 
5-9 47 125-453 

10-16 14 575-1720 
20-30 9 2950-8155 

 

Model performance is evaluated by comparing the fraction of problems solved with 

the number of function calls and the total computation time. The number of function calls 

is important to evaluate model performance because black-box simulations can be 

computationally expensive, limiting the number of samples that are collected. The overall 

computation time is the total CPU time required to perform sampling, parameter 
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estimation, and surrogate optimization. As our goal is to find a global minimum and not 

necessarily to find a surrogate model that fits all points perfectly, we evaluate the model 

performance based on the accuracy of the obtained optimum. Specifically, the error is 

normalized by the median of all samples so that the range of the search space is taken into 

account when evaluating the merit of a solution.  

The performance profiles of all SSR techniques and GP are shown in Figure 7. The 

problem is considered to be solved if the normalized error is within 1% (𝜀𝜀 = 0.01) of the 

global solution. As shown in Figure 7, GP solves the most number of problems and shows 

superior performance to SSR. However, it usually requires the most number of samples to 

solve the same fraction of problems. This implies that GP might not be a favorable choice 

when the number of samples is the most important limiting factor. sPLR, while it does not 

solve as many problems as GP, solves more problems than GP if only up to 500 points are 

sampled. Furthermore, all other SSR techniques, such as Elastic net, sPCR1, sPCR2, and 

SVMRFE show relatively similar performance, with Elastic net slightly better than the 

other three.  
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 Next, we test the performance of all algorithms in solving the problem with a higher 

error tolerance (Figure 8). The purpose of this test is motivated by the nature of data-driven 

applications, for which a 1% error tolerance might be too strict. For example, the simulation 

or data may contain uncertainty due to numerical or measurement errors; therefore, locating 

an optimal solution in the neighborhood of the optimum with the fewest samples possible 

may be sufficient. When the convergence criterion is relaxed to 10%, the fraction of 

problems solved increases drastically for all SSR methods. As expected, the performance 

profile for GP did not change significantly. This suggests that while all SSR methods are 

good at determining the approximate location of the optima, GP is better at locating a very 

precise solution. This can be rationalized by the fact that GP is an interpolating method, 

and hence the model is very flexible to represent highly nonlinear input-output 

relationships.  

Figure 7. Performance profile of test set A (𝜺𝜺 = 0.01) for (a) number of samples and 
(b) computation time 
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3.5.2 Test Set B: Constrained Problems 

The second test set is from GlobalLib1, in which the problems have inequality 

constraints with known bounds and global minima (Table 5). As these problems have 

multiple constraints, different surrogate models are fitted for the objective and each of the 

constraints. This procedure is performed in parallel. For all problems, none of the objective 

nor the constraints are assumed to be known to test the algorithm in the most challenging 

black-box case. The model performance is compared by using the same convergence 

criterion that is used for the test set A. Both 𝜀𝜀 = 0.01 and 𝜀𝜀 = 0.1 are used to generate 

performance profiles.  

Similar to test set A result, Figure 9 shows that GP solves the most number of 

problems (~75%), followed by sPLR, which solved about 55% of the problems. When the 

error tolerance is increased to 10%, Figure 10 shows that the fraction of problems solved 

Figure 8. Performance profile of test set A (𝜺𝜺 = 0.1) 
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increases drastically. Therefore, we can conclude that SSR is good at determining the 

approximate location of the global solution with less samples. Furthermore, we noticed that 

SPLR and GP exhibit similar performance when the problem dimensionality is low. In fact, 

for up to 5-dimensional problems, SPLR solves 91% of the problems, and GP solves 95% 

of the problems. This implies that SSR performs well when the dimensionality is low, but 

its performance degrades as the problem dimension increases. For high-dimensional 

problems, SSR-based surrogate models are not flexible enough to very precisely determine 

the global solution.  

Table 5. Specifics of test set B 

Dimension of 
problems 

Number of 
constraints 

Number of 
problems 

Number of basis 
functions 

2-3 1-10 31 19-43 
4-6 1-12 24 78-185 
7-10 4-14 16 259-575 
11-30 9-22 17 715-8155 

 

Figure 9. Performance profile of test set B (ε = 0.01) for (a) number of samples and 
(b) computation time 
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3.5.3 Computational Time  

One advantage of using SSR over GP is that SSR leads to low-complexity models 

that are easier to globally optimize. Figure 11 shows the breakdown of CPU time for all 

problems that are solved within 1% error. The sampling stage represents the total 

computational time to run the simulation and collect the samples for both initial and 

adaptive sampling. The parameter estimation stage includes the total computation time to 

perform parameter estimation, cross-validation, and surrogate model construction for all 

objective and constraints with parallelization. This is usually the most computationally 

intensive step in the algorithm, especially when the problem involves multiple constraints. 

Lastly, the optimization stage involves global optimization of the surrogate model.  

As expected, GP requires the highest computation time to globally optimize due to 

the high complexity of the surrogate model (Figure 11c). The computation time required 

Figure 10. Performance profile of test set B (ε = 0.1) 
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to optimize a GP model is on average 500 times greater than those of SSRs. However, GP 

is the most computationally efficient model with respect to the cost required for parameter 

estimation Figure 11b). Therefore, while GP leads to a more complicated model, this can 

be compensated by improved accuracy and a less computationally intensive parameter 

estimation stage of the model.   

 Lastly, while the computation times required for sampling stage (Figure 11a) and 

optimization (Figure 11c) exhibit no significant difference between all SSR methods, the 

computational cost for parameter estimation stage differs significantly (Figure 11b). In 

general, Elastic Net is the most computationally efficient model, because the model only 

requires a simple optimization problem to be solved to create a sparse model. SVMRFE, 

while computationally intensive when only one feature is removed at a time, overcomes 

this limitation by removing multiple features at a time as previously discussed. All other 

methods, including sPCR1, sPCR2, and sPLR, exhibit slower parameter estimation 

performance, especially for high-dimensional problems. 
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3.5.4 Model Complexity  

In this section, we further explore our results with respect to the model complexity 

of the resulting surrogate models. A method that generates a simpler model with fewer 

terms is more desirable because a simpler model is generally easier to optimize. In this 

work, the model complexity is defined by computing the sparsity of the final model:  

 
Model sparsity = 

# of selected basis functions
# of all possible basis functions

 (11) 

A model with sparsity close to 0 contains very few features, and a model with sparsity 1 

contains all original features. The model sparsity of the final surrogate model of the 

objective is shown for both test set A and B (Figure 12). ENET and SVMRFE usually lead 

to the sparsest final model, which only retains 20-30% of the original features. sPLR, 

sPCR1, and sPCR2, on the other hand, keep about 70% of the original features.  

 

Figure 12. Model sparsity of the objective for all solved problems for ε = 0.01 
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Model sparsity becomes more important as the dimension of the problem increases. 

For example, a 20-dimensional problem leads to 2950 initial basis terms. Therefore, if only 

10% of the features are eliminated via SSR (model sparsity = 0.9), the resulting model is a 

linear combination of 2655 terms. Therefore, if we consider both the accuracy of the 

solution and model complexity, we can conclude that either ENET or sPLR shows the best 

performance. Since ENET leads to generally sparse solutions and sPLR generally leads to 

a higher accuracy solution, sPLR is preferable to ENET when the dimension of the problem 

is low, but ENET can offer a better and faster solution for higher-dimensional problems.  

3.6 Conclusions 

In this chapter, we present a comprehensive comparison of five different subset 

selection for regression techniques for surrogate modeling. We investigate the hypothesis 

of whether subset selection for generalized regression compared to complicated kernel-

based interpolating surrogate functions is better for data-driven optimization. Different 

subset selection methods are tested over a large set of box-constrained and constrained 

benchmark problems with up to 30 dimensions, and their performance is compared to that 

of a popular interpolating surrogate modeling technique, GP. While a GP-based approach 

solves the most number of problems, our results indicate that the computational time 

required to optimize a complex interpolating model is many orders of magnitude greater 

than those of SSRs. Nevertheless, GP requires the least computational time for parameter 

estimation, which overall may justify the higher computational cost for the model 

optimization. In addition, our results indicate that when using regression surrogate 

functions, more problems are solved when sampling is very limited.  All subset selection 

methods show promising performance, especially for low-dimensional problems; however, 
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their performance degrades as the dimension of the problems increases in addition to their 

high computational cost for selection of features and identification of the model parameters.  

Despite some of the good properties of SSR techniques, this chapter shows that the 

use of more flexible surrogate models (e.g., nonlinear kernel and nonparametric) results in 

overall better performance. For the subsequent work, we therefore focus on ANN and GP.    
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CHAPTER 4. SURROGATE-BASED OPTIMIZATION OF 

MIXED-INTEGER NONLINEAR PROBLEMS 

4.1 Introduction 

Surrogate-based optimization has been extensively studied for nonlinear 

optimization problems (NLPs) with continuous input or decision variables1,2,105. However, 

many chemical engineering problems contain both continuous and discrete (integer or 

binary) decision variables. For example, the design of a distillation column involves 

continuous variables for operating conditions and discrete variables for the number of 

stages. Similarly, a superstructure synthesis optimization problem contains binary 

variables to represent design configurations, while nonlinear relationships represent 

phenomena within the processes 15,18,106-108. In 109, a case study on the design of solar plants 

is discussed, in which the discrete decisions are embedded in the simulation. This leads to 

a simulation-based optimization problem that cannot be relaxed or decoupled with respect 

to discrete and continuous variables.  

There are a few black-box mixed integer nonlinear programming (bb-MINLP) 

optimization algorithms proposed in the direct-search literature53,54,110,111 and in the 

surrogate-based literature55,59,60,62, which are described in detail in the next section. 

Nevertheless, the optimization of bb-MINLPs is still a difficult problem due to several open 

challenges that are intrinsic to MINLP62. The first challenge is obtaining a representative, 

tractable, and balanced sample set when both discrete and continuous variables are present. 

When all of the decision variables are continuous, space-filling sample designs (e.g., Latin 
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hypercube112, orthogonal arrays113, and Sobol sequences114) are used to generate balanced 

sample sets, and the simulation is inquired at these points. These sampling methods cannot 

be directly applied for bb-MINLP problems because the simulation may not provide output 

values at non-integral values of the discrete variables55. Another challenge is the surrogate 

model fitting in the case of mixed-variable inputs. Existing surrogate modeling algorithms 

for bb-MINLP 55,59,60,62 assume all variables are continuous in order to obtain a smooth and 

continuous surrogate model. At the same time, surrogate models assume that all input 

variables are ordinal, which means that a higher value corresponds to higher intensity, such 

as temperature or pressure levels. Binary variables do not satisfy this assumption as “0” 

and “1” usually represent different choices, as opposed to intensity. While this limitation 

can be overcome by using multiple surrogates and patching them at discontinuities (e.g., 

piecewise functions), this could complicate the surrogate-based optimization formulation 

significantly115.  

A mixed-variable response surface introduced in 115 will be used here to 

demonstrate the aforementioned challenges (Figure 13). This response surface has one 

continuous variable (𝑥𝑥)  and one discrete variable (𝑦𝑦)  with three possible levels 𝑦𝑦 =

[−2,0,2]. When plotting the response surface for different levels of 𝑦𝑦, one can observe that 

the behavior of the output is very different (Figure 13a). There are multiple ways to 

approximate and subsequently optimize this problem, such as: 1) treat each level of 𝑦𝑦 as 

an independent problem by fitting and optimizing separate surrogate models, or 2) assume 

continuity in all variables and fit a single continuous response surface with sparse sampling 

in the 𝑦𝑦 direction. The first approach is possible in low dimensions but would become 

intractable as the number of discrete variables and levels increases. On the other hand, if 
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continuity in all variables is assumed, this could lead to inaccurate surrogate models since 

there will be no samples in between non-integral values of the discrete variables. For the 

same example, if this black-box input-output relationship is assumed to be a 2D continuous 

function (Figure 13b), the complexity of the surface becomes apparent. More specifically, 

at the middle level of 𝑦𝑦, the function has a very sudden and steep change in response; thus, 

assuming continuity when fitting this response surface may lead to inaccurate surrogate 

models. Most importantly, if the level values of 𝑦𝑦 do not represent an intensity, then the 

assumption of continuity in 𝑦𝑦 is problematic. In this work, we study various techniques to 

obtain a representative set of samples and fit appropriate surrogate models for mixed-

variable optimization problems. The presence of nonlinear constraints, both inequality and 

equality, and non-convexity of the problems all pose further challenges for the solution of 

bb-MINLP problems9.  

 

 

Figure 13. Goldstein price function adapted from 115. For each value of discrete 
variable y, the function exhibits a drastically different behavior. In (a) different y level 
values are plotted separately, in (b) the 2D surface is plotted. 
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In this chapter, we aim to develop an algorithm to solve the following black-/gray-

box MINLP (12): 

 min𝑓𝑓(𝒙𝒙,𝒚𝒚) 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝐼𝐼𝐼𝐼(𝒙𝒙,𝒚𝒚) ≤ 𝟎𝟎  

      𝑔𝑔𝐼𝐼𝐼𝐼(𝒙𝒙,𝒚𝒚) ≤ 𝟎𝟎  

     ℎ𝐸𝐸𝐼𝐼(𝒙𝒙,𝒚𝒚) = 𝟎𝟎  

   ℎ𝐸𝐸𝐼𝐼(𝒙𝒙,𝒚𝒚) = 𝟎𝟎 

𝒙𝒙𝑙𝑙 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑢𝑢, 𝒚𝒚 ∈ {0,1}𝑘𝑘2 

𝒙𝒙 ∈ ℝ𝑘𝑘1 , 𝑘𝑘 = 𝑘𝑘1 + 𝑘𝑘2 

(12) 

where 𝒙𝒙  represents continuous variables, 𝒚𝒚  represents binary variables, 𝒙𝒙𝑙𝑙  and 𝒙𝒙𝑢𝑢 

represent the lower and upper bounds of the continuous variables, 𝑘𝑘1 and 𝑘𝑘2 represent the 

dimensions of continuous and binary variables respectively, 𝑓𝑓(∙)  represents black-box 

objective, 𝑔𝑔𝐼𝐼𝐼𝐼(∙) and 𝑔𝑔𝐼𝐼𝐼𝐼(∙) represent inequality constraints that are unknown (black-box) 

and known, respectively. Similarly, and ℎ𝐸𝐸𝐼𝐼(∙) and ℎ𝐸𝐸𝐼𝐼(∙) represent equality constraints 

that may be unknown and known, respectively. Sets 𝐼𝐼𝐼𝐼 and 𝐸𝐸𝐼𝐼 represent the set of black-

box inequality and equality constraints, respectively. Similarly, sets 𝐼𝐼𝐾𝐾 and 𝐸𝐸𝐾𝐾 denote the 

sets of known inequality and equality constraints, respectively. If all constraints and 

objective are unknown (i.e.,𝐼𝐼𝐾𝐾 = ∅,𝐸𝐸𝐾𝐾 = ∅), the problem will be referred as a black-box 

MINLP (bb-MINLP). If some constraints are known, the problem will be referred as a 
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gray-box MINLP (gb-MINLP). 𝑔𝑔𝐼𝐼𝐼𝐼(𝒙𝒙,𝒚𝒚) and ℎ𝐸𝐸𝐼𝐼(𝒙𝒙,𝒚𝒚) represent the known inequality 

and equality constraints, and these can be handled directly without constructing surrogate 

models.  

Through this work, we aim to answer several key questions related to bb-MINLP 

and propose a new algorithm that can solve bb/gb-MINLP problems of moderate sizes (i.e., 

up to 15 variables and 23 constraints). First, to solve bb/gb- MINLP problems, we propose 

the use of mixed-integer surrogate models that can handle discrete variables directly, rather 

than relaxing the integrality constraints. The framework utilizes, compares, and combines 

two types of surrogate models, namely Artificial Neural Network (ANN) and Gaussian 

Process (GP) models. A data-preprocessing technique, one-hot encoding, is used to address 

the modeling of mixed-variable problems, and the optimization problem is reformulated to 

reflect this transformation. In addition, we study the performance of three different 

sampling strategies for mixed-integer problems and propose the most appropriate method 

that balances solution accuracy and sampling requirements. Finally, we develop an 

algorithm that can solve both black- and gray-box formulations of (P1) using a hybrid 

combination of ANN and GP models for the MINLP and NLP stages, respectively. The 

performance of the algorithm is analyzed with respect to solution accuracy, sampling 

requirements, and computational efficiency and compared to those of two competing 

existing algorithms for bb-MINLP. 

This chapter is organized as follows. Section 2 introduces the necessary background 

on surrogate-based optimization and reviews some existing work on bb-MINLP. In Section 

3, sampling, data-preprocessing, and surrogate modeling strategies for bb-MINLP are 

presented in detail. The overall proposed algorithm is described in Section 4 to illustrate 
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how these strategies are integrated into the overall framework. Section 5 presents a 

comprehensive comparison of the proposed methodology on a set of benchmark problems. 

Finally, Section 6 introduces the surrogate formulation for a case study on superstructure 

optimization. We demonstrate how the MINLP problem can be decoupled into a gray-box 

problem and report the performance of our algorithm. A discussion of the findings is 

provided before the conclusions and future perspectives. The detailed formulations of the 

process synthesis case study are provided in the Appendix.   

4.2 Overview of Surrogate-Based Optimization  

4.2.1 Existing Literature on Derivative-Free MINLP Optimization 

Existing work on derivative-free MINLP optimization algorithms can be divided 

into three broad categories: sampling-based/direct-search, model-based, and stochastic or 

evolutionary methods 11. Direct-search bb-MINLP algorithms have been proposed as 

extensions to existing NLP direct-search methods52-54,109,116. One of the most popular 

existing software for constrained bb-MINLP is NOMAD (Nonsmooth Optimization by 

Mesh Adaptive Direct Search) adapted from 49. 

 Due to their purely sampling-based nature, evolutionary-type methods (i.e., Genetic 

Algorithms117, Particle Swarm Optimization118, and Simulated-Annealing119) could also be 

applied to solve (P1). The most widely used algorithm for bb-MINLP problems under this 

category is developed in a MATLAB “global optimization” toolbox, which employs a 

genetic algorithm64,110. In addition, MEIGO120 is an open source software tool that uses 

enhanced scatter search for global optimization of NLP and MINLP formulations. 
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There have also been a few developments for solving bb-MINLP problems in the 

surrogate-based optimization literature. Existing surrogate-based MINLP algorithms start 

with relaxing the discrete variables to create smooth surrogate functions. For example, SO-

MI introduced in 55 and MI-SO62 use a cubic radial basis function (RBF) model to solve 

expensive black-box problems. An RBF-based algorithm for mixed-integer nonlinear 

constrained optimization has been proposed in 59 and 60. Both methods have been shown to 

perform well for problems up to 8 binary and 4 continuous variables and less than 10 

constraints. All of these aforementioned surrogate-based MINLP optimization algorithms 

do not handle discrete variables directly. Instead, the integrality constraint is relaxed to 

construct a smooth surrogate model, even if the simulation cannot be inquired at non-

integral locations of the discrete variables. Recently, the use of gradient-boosted tree has 

been proposed for mixed-integer convex nonlinear optimization 121. While this method 

handles discrete variables directly, the resulting gradient-boosted tree model is 

discontinuous. Additional relevant work from the process systems engineering community 

involve optimization of MINLP formulations with embedded surrogate functions 15,106,107. 

However, in these contributions, the discrete variables are decoupled from the surrogate 

models. All surrogate models are only a function of continuous variables, and the trained 

surrogate models are embedded in the overall MINLP formulation.  

In the approximation literature, several efforts have been made to study mixed-

variable surrogate models that can directly handle discrete variables 115,122,123. These 

surrogate model techniques have been studied only with respect to approximation 

accuracy, and the optimization of these models has not been studied. This is very important 

because although certain functions might be accurate approximations, the formulation that 
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needs to be embedded within the surrogate-based optimization problem may lead to 

intractable problems. For example, in 122, a Gaussian process with a special correlation 

function is proposed. This correlation function models interactions between discrete-

discrete and discrete-continuous variables. We have found that optimizing this model 

requires many additional constraints to allow the selection of appropriate correlation 

coefficients, in addition to the number of constraints that increases proportionally with the 

number of samples that are used to construct the model. Thus, this leads to a very large 

surrogate bb-MINLP that is very challenging to optimize even with state-of-the-art 

deterministic optimization solvers. Another way to construct mixed-integer surrogate 

models is using regression trees as proposed in 123. Since regression tree methods involve 

dividing the search space into several partitions, this allows for a natural development of 

different regression functions for different realizations of discrete variables. For each 

partition, or a “node” of a tree, a Gaussian process model can be constructed. While this 

method is straightforward and easy to adapt, the resulting optimization problem is a 

piecewise function, which may require a generalized disjunctive programming formulation 

for its optimization. As these models were developed solely for the purpose of prediction, 

the optimization of these mixed-integer surrogate models may be infeasible or difficult. In 

this work, we have limited our study to methods that balance accuracy and tractability of 

formulation for optimization.  

4.2.2 Methods for Surrogate-based bb-MINLP 

4.2.2.1 Design of mixed-variable computer experiments  
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The accuracy of a surrogate model depends both on the number and the location of 

points. Hence, finding a good initial sampling design is an important step that highly affects 

the accuracy of the final solution 5,7,124. When only continuous variables are present, LHS 

is typically used to generate an initial sampling design1,2,20. However, for MINLPs, the 

standard way of obtaining a space-filling sampling design is an open question that we aim 

to study in this work.  

To illustrate some existing sampling methodologies, let us define 𝑚𝑚𝑙𝑙ℎ𝑠𝑠  to be the 

number of points selected for each LHS and 𝑚𝑚  to be the total number of discrete 

combinations. If all variables are continuous, the total number of LHS points is typically 

fixed to a number based on heuristics (e.g., 𝑚𝑚𝑙𝑙ℎ𝑠𝑠 = 10𝑘𝑘1 + 1). If 𝐿𝐿𝑗𝑗 represents the number 

of discrete levels for each discrete variable 𝑦𝑦𝑗𝑗 (e.g., a binary variable 𝑦𝑦𝑗𝑗  has two levels: 

𝐿𝐿𝑗𝑗 = 2), then 𝑚𝑚 =  ∏ 𝐿𝐿𝑗𝑗
𝑘𝑘2
𝑗𝑗=1 . In 55,62, the LHS points corresponding to discrete variables are 

rounded to closest integers. In 59 and 60, an auxiliary problem is solved to eliminate 

infeasible samples. These approaches, however, do not guarantee that the same number of 

samples is collected for each discrete realization. Thus, this may lead to data imbalance: 

certain discrete combinations may contain more data points than the others, which may 

lead to inconsistency in the accuracy of the surrogate model for certain levels. 

Swiler et al. 115 propose and compare different sampling techniques, such as 

standard Latin hypercube and k-Latin hypercube sampling for building accurate 

approximation models. When using the standard Latin hypercube approach, one LHS of 

size 𝑚𝑚𝑚𝑚𝑙𝑙ℎ𝑠𝑠 is generated in the continuous space, and the points are then randomly split into 

𝑚𝑚 groups of equal size sets, so that each group is assigned to a unique discrete level. In the 
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k-Latin hypercube approach, a separate LHS of size 𝑚𝑚𝑙𝑙ℎ𝑠𝑠  is generated for each discrete 

level. Both methods generate 𝑚𝑚𝑚𝑚𝑙𝑙ℎ𝑠𝑠 points. Although these methods have been compared 

for their approximation accuracy of low-dimensional functions, they have not been 

systematically compared with respect to their performance for surrogate-based 

optimization. In this work, we compare the performance of three different sampling 

strategies from the approximation and surrogate-based optimization literatures: k-Latin 

hypercube (Sampling Strategy 1), standard Latin hypercube (Sampling Strategy 2), and 

Latin hypercube sampling with simply rounding any discrete variables to their nearest 

integer value (Sampling strategy 3). 

4.2.3 Mixed-integer Surrogate Model Construction via One-hot Encoding 

In this chapter, we use both ANN and GP for surrogate models. The simplest way 

to build surrogate models for mixed-variable functions is to assume that all 𝑘𝑘2 discrete 

variables are continuous and proceed with training an ANN or a GP model with 𝑘𝑘 inputs. 

This approach has been used in the model-based surrogate optimization literature thus far 

55,59,60,62. This approach is attractive due to its simplicity, but it assumes that all inputs are 

continuous and ordinal. Instead, we propose an alternative way of constructing a mixed-

variable surrogate model without relaxing the integrality constraint through the use of one-

hot encoding 125. One-hot encoding involves converting binary or integer variables to 

dummy variables. Through one-hot encoding, we can make sure that regardless of the 

values of the discrete variables, the effect of this input on the output prediction does not 

diminish 126. For example, Figure 14 shows a simple ANN with one hidden layer with 3 

nodes and 1 output node. The original problem has one continuous (𝑥𝑥) variable and one 

binary (𝑦𝑦) variable. If we are using a standard ANN, the functional form will be:  
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 ℎ𝑙𝑙(𝒙𝒙) = 𝜎𝜎�𝑤𝑤𝑥𝑥,𝑙𝑙𝑥𝑥 + 𝑤𝑤𝑦𝑦,𝑙𝑙𝑦𝑦 + 𝑏𝑏𝑙𝑙� , 𝑙𝑙 = 1,2,3 (13) 

 𝑓𝑓𝑁𝑁𝑁𝑁(𝒙𝒙) = 𝜎𝜎�𝑤𝑤1,𝑓𝑓ℎ1 + 𝑤𝑤2,𝑓𝑓ℎ2 + 𝑤𝑤3,𝑓𝑓ℎ3 + 𝑏𝑏𝑜𝑜𝑢𝑢𝑜𝑜� (14) 

where ℎ𝑙𝑙 represents the three nodes in the hidden layer, 𝑤𝑤𝑠𝑠,𝑑𝑑 represents the weight of the 

ANN (𝑠𝑠 = source and 𝑑𝑑 = destination), and 𝑏𝑏𝑙𝑙 and 𝑏𝑏𝑜𝑜𝑢𝑢𝑜𝑜 are bias values of the hidden and 

the output layers, respectively. If 𝑦𝑦 = 0, then all signals from the binary variable node 𝑦𝑦 

will become zero and all of the terms 𝑤𝑤𝑦𝑦,𝑙𝑙𝑦𝑦 in Eq. 4 will be equal to zero. On the other 

hand, if 𝑦𝑦 = 1, then all signals from node 𝑦𝑦 will now become one. This is problematic as 

{0,1} does not represent an intensity, and 𝑦𝑦 = 0 might represent a certain effect on the 

output that must be captured (e.g., the presence of a process unit or not).  

 

Figure 14. One-hot encoding for a neural network with one continuous 𝒙𝒙 and one 
binary 𝒚𝒚 variable 

 One-hot encoding can be used to overcome this problem and improve model 

accuracy in the case of mixed-variable problems. One-hot encoding converts the original 

binary variable into two dummy variables, each representing a distinct value of the original 

binary variable. Consequently, the structural complexity of the model (i.e., number of input 

(a) (b) 
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nodes in the neural network) increases due to additional dummy variables. If we have one 

binary variable (𝑦𝑦 = {0,1}), two dummy variables are created as follows: 

 𝑑𝑑0 = �1 𝑚𝑚𝑓𝑓 𝑦𝑦 = 0
0 𝑚𝑚𝑓𝑓 𝑦𝑦 = 1 ,𝑑𝑑1 = �0 𝑚𝑚𝑓𝑓 𝑦𝑦 = 0

1 𝑚𝑚𝑓𝑓 𝑦𝑦 = 1 (15) 

The resulting functional form of the ANN is: 

 ℎ𝑙𝑙(𝒙𝒙) = 𝜎𝜎�𝑤𝑤𝑥𝑥,𝑙𝑙𝑥𝑥 + 𝑤𝑤𝑑𝑑0,𝑙𝑙𝑑𝑑0 + 𝑤𝑤𝑑𝑑1,𝑙𝑙𝑑𝑑1 + 𝑏𝑏𝑙𝑙�, 𝑙𝑙 = 1,2,3 (16) 

 𝑓𝑓𝑁𝑁𝑁𝑁(𝒙𝒙) = 𝜎𝜎�𝑤𝑤1,𝑓𝑓ℎ1 + 𝑤𝑤2,𝑓𝑓ℎ2 + 𝑤𝑤3,𝑓𝑓ℎ3 + 𝑏𝑏𝑜𝑜𝑢𝑢𝑜𝑜� (17) 

Thus, depending on the value of 𝑦𝑦, only one of 𝑑𝑑0  or 𝑑𝑑1  is active. While the dummy 

variables are still discrete, one-hot encoding allows that the effect of variable 𝑦𝑦 on of ℎ𝑙𝑙(𝑥𝑥) 

is represented evenly regardless of the value of 𝑦𝑦 by allowing either 𝑑𝑑0 or 𝑑𝑑1 to be always 

equal to one.  As a result, the overall signal from the binary node remains undiminished 

regardless of the value of the binary variable. For the case of integer variables, the surrogate 

model could be constructed without one-hot encoding if integer variables represent ordinal 

relationships. The integer values can then be scaled between 0 and 1 before constructing a 

surrogate model 55. If integer variables do not represent ordinal relationships, one-hot 

encoding can be used to represent the different integer variable levels, or the integer 

variables can be transformed to binary variables. Subsequently, Eq 6 can be used directly 

127. 

To optimize a model with one-hot encoding, we need to add an additional constraint 

to make sure only one of the dummy variables is selected (i.e., 𝑑𝑑0 + 𝑑𝑑1 = 1). Throughout 
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this chapter, the surrogate model generated using one-hot encoding will be noted as 

“mixed-integer (MI)” surrogate; the one generated without one-hot encoding (i.e., relaxing 

the integrality constraint) will be noted as “relaxed (RE)” surrogate. One-hot encoding is 

performed during the data-processing stage, where the dataset for binary variable is 

transformed into dummy variables. For example, if the original dataset is [𝑿𝑿,𝒀𝒀], where 𝑿𝑿 

represents a set of data for continuous inputs and 𝒀𝒀 represents a set of data for binary 

inputs, the transformed dataset is [𝑿𝑿,𝑫𝑫𝟎𝟎,𝑫𝑫𝟏𝟏], where 𝑫𝑫𝟎𝟎  and 𝑫𝑫𝟏𝟏  represent each dummy 

inputs created for each binary value. After this transformation, a MI surrogate model is 

constructed using either ANN or GP using the transformed, augmented dataset.  

4.3 Proposed Algorithm 

In order to solve (P1), the MI and RE surrogate models are integrated into a black-

/gray-box optimization framework described previously. The overall algorithm can be 

decomposed into two main steps: 1) MINLP search, and 2) NLP search. Surrogate models 

are constructed in both search steps for all black-box constraints, and both the MINLP and 

NLP search steps are illustrated in detail in Table 7 and Table 8. First, all black-box equality 

constraints ℎ𝐸𝐸𝐼𝐼 are transformed into two inequalities and are added to set 𝐼𝐼𝐼𝐼. The MINLP 

search is first performed to find a solution with respect to all variables (i.e., both continuous 

and discrete variables). The NLP search is then performed by fixing discrete variables at 

optimal values determined from the MINLP step and optimizing only with respect to 

continuous variables. The NLP search step allows the algorithm to further reduce constraint 

violations and refine the incumbent solution. The overall algorithmic steps for both the 

MINLP and NLP search stages consist of three main steps: 1) initial sampling, 2) surrogate 

modeling, and 3) optimization and adaptive sampling. The main differences between the 



 54 

MINLP and NLP step are: (a) whether one-hot encoding is used to construct a mixed-

integer surrogate model or not, and (b) how the incumbent solution is selected at each 

iteration. The general framework is written in Python and the optimization is performed 

via an in-house Python-GAMS interface.  

4.3.1 Initial Sample Design 

For simulation-dependent optimization problems, choosing an initial sampling 

design is important since the simulation may fail to converge if a continuous value is used 

instead of a discrete value. Three sampling strategies are compared in this work as 

described earlier. For all sampling strategies, we generate a total of 𝑚𝑚 ×

𝑚𝑚𝑡𝑡𝑥𝑥 �5, �10(𝑘𝑘1+𝑘𝑘2)+1
𝑚𝑚

�� points. The minimum number of 5 points is a heuristic on the 

minimum number of points that must be included in each level to ensure that at least this 

many points are sampled from each level. All collected samples are scaled between 0 and 

1 using 𝑥𝑥𝑖𝑖𝑙𝑙  and 𝑥𝑥𝑖𝑖𝑢𝑢  before proceeding to fit any surrogate models. The three sampling 

strategies (SS1, SS2, SS3) are illustrated in Table 6.  
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Table 6. Three sampling strategies for the initial design of experiment 

Algorithm 1: Initial Design of Experiment  
Input: problem dimension 𝑘𝑘 , continuous dimension 𝑘𝑘1,  binary dimension 𝑘𝑘2 , total 
number of levels 𝑚𝑚 = ∏ 𝐿𝐿𝑗𝑗

𝑘𝑘2
𝑗𝑗=1  

Output: Latin hypercube design 𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 
Initialization:  

𝑚𝑚𝑙𝑙ℎ𝑠𝑠 = max �5, �
10𝑘𝑘 + 1

𝑚𝑚
�� 

Sampling Strategy 1 (SS1): 
𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 ← [ ] 
for 𝑚𝑚 = 1 𝑡𝑡𝑐𝑐 𝑚𝑚 do 

  Generate a Latin hypercube design 𝑿𝑿 of size 𝑚𝑚𝑙𝑙ℎ𝑠𝑠 × 𝑘𝑘1 for 𝒙𝒙 
  Construct a dataset 𝒀𝒀 of size 𝑚𝑚𝑙𝑙ℎ𝑠𝑠 × 𝑘𝑘2, where all rows represent a single 
unique 
                          combination of binary variables 
  𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 ← [𝑿𝑿,𝒀𝒀] 
 End 
Sampling Strategy 2 (SS2):  

Generate a Latin hypercube design 𝑿𝑿 of size 𝑚𝑚𝑚𝑚𝑙𝑙ℎ𝑠𝑠 × 𝑘𝑘1 for 𝒙𝒙 
for 𝑚𝑚 = 1 𝑡𝑡𝑐𝑐 𝑚𝑚 do 
 Randomly select 𝑚𝑚𝑙𝑙ℎ𝑠𝑠 rows from 𝑿𝑿 
 Construct a dataset 𝒀𝒀 of size 𝑚𝑚𝑙𝑙ℎ𝑠𝑠 × 𝑘𝑘2, where all rows represent a single 
 unique  combination of binary variables  
 𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 ← [𝑿𝑿,𝒀𝒀] 
End 

Sampling Strategy 3 (SS3):  

Generate a Latin hypercube design 𝑺𝑺 = [𝑿𝑿,𝒀𝒀] of size 𝑚𝑚𝑚𝑚𝑙𝑙ℎ𝑠𝑠 × 𝑘𝑘 
For 𝑘𝑘2 columns, round the values to the closest integer:  𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 ←  [𝑿𝑿, ⌈𝒀𝒀⌉] 

return 𝑆𝑆 

4.3.2 Surrogate Model Construction  

During this stage, surrogate models are developed in the scaled domain using either 

an ANN or GP to represent each of the outputs (i.e., objective function and unknown 

constraints). For mixed-integer surrogates, one-hot encoding is performed to convert the 

original binary variables to dummy variables. 10-fold cross-validation is used to find the 

best model during each iteration of the overall algorithm. While 10-fold cross-validation 
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allows the algorithm to construct a model that generalizes well to a new set of data, one 

disadvantage of 𝑘𝑘-fold cross validation is the increased computational cost due to training 

𝑘𝑘 models at each iteration. In our work, we have observed that the CPU time for model 

construction is negligible relative to the optimization CPU time. Nevertheless, when model 

construction becomes computationally more expensive, surrogate fitting could happen in 

parallel using multiple processors to reduce the CPU time.   

For the ANN, both the objective and all constraints are modeled simultaneously by 

using multiple output nodes (Multiple Input – Multiple Output ANN). In our work, we use 

a hyperbolic tangent function as an activation function; for the final layer, a linear 

activation function is used. As our goal is to locate a global optimum rather than finding a 

perfect surrogate representation, we are not necessarily interested in finding a good 

approximation in regions of low interest (i.e., areas far away from global optimum). Thus, 

the balance between model accuracy and sampling requirement is achieved by keeping the 

overall model complexity low while maintaining high accuracy in regions of high interest 

(i.e., areas where the global optimum is likely to be located). Instead of using an extensive 

search methodology to find the number of hidden layers and hidden nodes, we use a simple 

heuristic to determine the number of nodes in a hidden layer. Specifically, only one hidden 

layer is used and the number of nodes is 2/3 of the number of input nodes plus the number 

of output nodes (i.e., total number of constraints and the objective) 67. This strategy allows 

us to locate a good optimum within a reasonable computation time. While methods such 

as grid search and stochastic optimization may lead to a more accurate ANN, it can be 

computationally too expensive for surrogate-modeling, especially when several iterations 

are required to converge to a solution. After the optimal hyperparameters are determined, 
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we then compute optimal weight and bias values for the network using back propagation. 

For GP models, the training procedure does not require the selection of hyperparameters, 

but just the optimization of the surrogate model parameters. Another distinction is that all 

constraints and the objective are fitted separately using a multiple-input single output 

approach.  

4.3.3 Surrogate Model Optimization and Adaptive Sampling 

After constructing surrogate models for both the constraints and objective, an 

optimization problem is formulated. For ANN, the hyperbolic tangent function needs to be 

reformulated since optimization solvers cannot handle hyperbolic tangent functions. As 

suggested in 21, the hyperbolic tangent function is reformulated as 𝑡𝑡𝑡𝑡𝑚𝑚ℎ(𝑥𝑥) = 1 − 2
𝑒𝑒2𝑥𝑥+1

 

since it was shown to outperform other reformulations. When a mixed-integer surrogate 

model is used, an additional constraint is needed to allow the selection of only one dummy 

variable for each binary variable. This can be formulated into a simple linear constraint: 

𝑑𝑑0 + 𝑑𝑑1 = 1. For a gray-box problem, where we can assume certain constraints are known, 

we need to formulate and scale the gray-box constraints accordingly (see Section 6). A 

diverse set of local and global solutions are collected using global and multistart local 

optimization using BARON 83 and DICOPT 128 solvers, respectively. This approach aims 

to find a balance between exploration and exploitation and avoids premature convergence 

to a local optimum.  

In some instances, surrogate models might have failed to accurately approximate 

the constraints within the entire search space. As a result, the resulting surrogate 

optimization formulation is infeasible, even though this does not immediately imply that 
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the original problem is infeasible. When this occurs, the algorithm then solves an 

infeasibility problem to locate the most feasible solution with the least constraint violation. 

Instead of minimizing the surrogate objective (𝑓𝑓(𝒙𝒙,𝒚𝒚)) subject to surrogate constraints 

�𝑔𝑔�(𝒙𝒙,𝒚𝒚)�, we minimize the sum of slack variables 𝑠𝑠𝑐𝑐, as shown in (18).   

 
min�𝑠𝑠𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔�𝑐𝑐(𝒙𝒙,𝒚𝒚) − 𝑠𝑠𝑐𝑐 ≤ 0,    𝑐𝑐 = 1, … ,𝐶𝐶 

0 ≤ 𝑠𝑠𝑐𝑐 ≤ 0.1, 𝑐𝑐 = 1, … ,𝐶𝐶 

(18) 

In the above formulation, set 𝑐𝑐  represents unknown inequality constraints and 𝑔𝑔�𝑐𝑐 

represents the surrogate approximations of all unknown inequality constraints.  

All local and global solutions are added to the sampling set and the best incumbent 

solution is found at each iteration by calculating a score. The solutions are ranked in 

ascending order based on the value of the objective function value (after sampling the 

simulation) 𝑓𝑓(𝒙𝒙∗,𝒚𝒚∗) and the total constraint violation 𝑣𝑣. Consequently, among a set of all 

local and global solutions, the solution with the smallest objective function value gets the 

lowest objective function score (𝑺𝑺𝒐𝒐𝒐𝒐𝒐𝒐); the solution with the smallest constraint violation 

gets the lowest constraint violation score (𝑺𝑺𝒄𝒄𝒐𝒐𝒄𝒄). Each solution is characterized by two 

scores, which is equal to their rank with respect to feasibility 𝑺𝑺𝒗𝒗𝒗𝒗𝒐𝒐 and objective function 

value 𝑺𝑺𝒐𝒐𝒐𝒐𝒐𝒐. The overall score is computed by averaging these two scores: 𝑺𝑺 = (𝑺𝑺𝒄𝒄𝒐𝒐𝒄𝒄+𝑺𝑺𝒗𝒗𝒗𝒗𝒐𝒐)
2

. 

The solution with the lowest 𝑺𝑺 score is chosen and added to the intermediate solution set. 
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By considering both 𝑺𝑺𝒐𝒐𝒐𝒐𝒐𝒐 and 𝑺𝑺𝒗𝒗𝒗𝒗𝒐𝒐, we hypothesize that we can achieve a balance between 

finding a global solution and finding a feasible solution when assessing the best solution 

found during each iteration. 

These steps are repeated until one of the following termination criteria is met: 1) 

negligible constraint violation and model error (both ≤ 1𝑒𝑒−5), 2) no improvement in the 

objective value over ten consecutive iterations, and 3) maximum number of samples is 

reached. 

 

Figure 15. Illustration of adaptive sampling for a mixed-integer problem with one 
continuous x and one binary y variable. The true global optimum occurs when y=1. 
For each case of y, the true model exhibits a different behavior. At each iteration, all 
local and global solutions are collected and the simulation is re-inquired.  

4.3.4 NLP Search 

After the MINLP search step is complete, the algorithm proceeds to the NLP search 

to refine the best solution (𝒙𝒙∗,𝒚𝒚∗) found during the MINLP search step (Table 8). This step 

also allows us to further reduce constraint violations, a crucial step when many equality 

constraints are present. The discrete values are fixed at 𝑦𝑦∗ and the solution is refined with 

only respect to the continuous variables. The overall algorithm for NLP step is similar to 

that of the MINLP search step, except that one-hot encoding is not performed and 
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CONOPT is used as a local solver 129. In the final step, the algorithm reduces the bounds 

of all continuous variables to ±1% of the best solution found so far to further refine the 

solution. Assuming that the algorithm has already found an approximate solution, we only 

consider the constraint violation 𝑣𝑣 to evaluate the solution quality during this final stage. 

The termination criterion of the NLP stage is identical to that of the MINLP stage.  

Table 7. bb-MINLP optimization algorithm 

Algorithm 2. Bb-MINLP optimization  
Initialization: Initial Sampling  

1. Create an initial LHS 𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 = [𝑿𝑿,𝒀𝒀] using the selected sampling strategy  
2. Inquire simulation at 𝑺𝑺𝟎𝟎 = [𝑿𝑿,𝒀𝒀 ] to compute 𝒁𝒁𝟎𝟎 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝑺𝑺𝟎𝟎) . Assume one 

function evaluation provides the values of all constraints and the objective.  
Data pre-processing 

1. Scale 𝑺𝑺𝟎𝟎 and 𝒁𝒁𝟎𝟎 between 0 and 1 and obtain 𝑺𝑺𝟎𝟎′  and 𝒁𝒁𝟎𝟎′.  
2. If fitting type = ‘MI’, perform one-hot encoding so that the binary variables 𝑦𝑦𝑗𝑗 

are transformed into dummy variables 𝑑𝑑𝑗𝑗,0 and 𝑑𝑑𝑗𝑗,1.  
Surrogate model construction and optimization 
Initialization: 𝑺𝑺′ ⟵ 𝑺𝑺𝟎𝟎′ ,𝒁𝒁′ ⟵ 𝒁𝒁𝟎𝟎′  

1. Use the chosen surrogate type to construct a surrogate model for all constraints 
and objective. Use 10-fold cross validation to find the best model.  

2. Formulate the surrogate optimization problem and solve using both global and 
local solvers. If infeasible, solve infeasibility problem (P2).  

3. Obtain 𝑒𝑒 local and global solutions 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′ = [𝒙𝒙𝒄𝒄𝒏𝒏𝒘𝒘,𝒚𝒚𝒄𝒄𝒏𝒏𝒘𝒘]. 
4. Compute Euclidean distance between 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′  and existing sample set 𝑺𝑺′: 

 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡𝑝𝑝 = 1
𝑘𝑘
�∑ �𝑋𝑋𝑛𝑛,𝑖𝑖 − 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛,𝑖𝑖�

2
+ ∑ �𝑌𝑌𝑛𝑛,𝑗𝑗 − 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛,𝑗𝑗�

2𝑘𝑘2
𝑗𝑗=1

𝑘𝑘1
𝑖𝑖=1  

5. If 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡𝑝𝑝 ≥  1𝑒𝑒−10, unscale 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′  to the original bound and inquire simulation at 
𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘 and compute 𝒁𝒁𝒄𝒄𝒏𝒏𝒘𝒘 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘) and 𝝊𝝊. Else, remove the solution from 
𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘. 

6. Compute the solution score for all collected intermediate solutions: 
a. 𝑺𝑺𝒄𝒄𝒐𝒐𝒄𝒄 = 𝑐𝑐𝑡𝑡𝑚𝑚𝑘𝑘(𝒗𝒗),𝑺𝑺𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑐𝑐𝑡𝑡𝑚𝑚𝑘𝑘(𝒇𝒇𝒄𝒄𝒏𝒏𝒘𝒘)  

b. 𝑺𝑺 = (𝒍𝒍𝒄𝒄𝒐𝒐𝒄𝒄+𝒍𝒍𝒐𝒐𝒐𝒐𝒐𝒐)
2

 
7. 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑡𝑡𝑐𝑐𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝑺𝑺)  
8. If one of the convergence criteria is met, end iteration 

Else, 𝑺𝑺′ ⟵ 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘 and 𝒁𝒁′ ⟵ 𝒁𝒁𝒄𝒄𝒏𝒏𝒘𝒘; repeat steps 1-2 for data preprocessing and steps 1-7 
for surrogate model construction and optimization.  
 
return 𝒙𝒙∗,𝒚𝒚∗ 
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Table 8. bb-NLP Algorithm 

Algorithm 3: bb-NLP optimization 
Input: Best solution found from MINLP search step (𝒙𝒙∗,𝒚𝒚∗), variable bounds (𝑥𝑥𝑖𝑖𝑙𝑙 , 𝑥𝑥𝑖𝑖𝑢𝑢) 
Initialization: LHS sampling 
1. Check if previously sampled points 𝑺𝑺′ can be reused. If yes, add to the sampling set.  
2. Create an initial LHS 𝑺𝑺𝟎𝟎′ = [𝒙𝒙𝒍𝒍𝒍𝒍𝒍𝒍′ ,𝒚𝒚∗ ] of size 10𝑘𝑘1 + 1  only for continuous 

variables. 
3. Un-scale initial LHS: 𝑥𝑥𝑙𝑙ℎ𝑑𝑑,𝑖𝑖 = 𝑥𝑥𝑙𝑙ℎ𝑑𝑑,𝑖𝑖

′ �𝑥𝑥𝑖𝑖𝑢𝑢 − 𝑥𝑥𝑖𝑖𝑙𝑙� + 𝑥𝑥𝑖𝑖𝑙𝑙 
4. Inquire simulation at 𝑺𝑺𝟎𝟎 = [𝒙𝒙𝒍𝒍𝒍𝒍𝒍𝒍,𝒚𝒚𝒍𝒍𝒍𝒍𝒍𝒍 ] to compute 𝒁𝒁𝟎𝟎 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝑺𝑺𝟎𝟎). Assume one 

function evaluation provides the values of all constraints and objective. 
Data-Preprocessing 

1. Scale 𝑺𝑺𝟎𝟎 and 𝒁𝒁𝟎𝟎 between 0 and 1 and obtain 𝑺𝑺𝟎𝟎′  and 𝒁𝒁𝟎𝟎′.  
Surrogate model construction and optimization 
Initialization: 𝑺𝑺′ ⟵ 𝑺𝑺𝟎𝟎′ ,𝒁𝒁′ ⟵ 𝒁𝒁𝟎𝟎′  

1. Use the chosen surrogate type to construct a surrogate model for all constraints 
and objective. Use 10-fold cross validation to find the best model.  

2. Formulate the surrogate optimization problem and solve using both global and 
local solvers. If infeasible, solve infeasibility problem (P2).  

3. Obtain 𝑒𝑒 local and global solutions 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′ = [𝒙𝒙𝒄𝒄𝒏𝒏𝒘𝒘,𝒚𝒚∗]. 
4. Compute Euclidean distance between 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′  and existing sample set 𝑺𝑺′: 

 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡𝑝𝑝 = 1
𝑘𝑘
�∑ �𝑋𝑋𝑛𝑛,𝑖𝑖 − 𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛,𝑖𝑖�

2
+ ∑ �𝑌𝑌𝑛𝑛,𝑗𝑗 − 𝑦𝑦𝑛𝑛𝑒𝑒𝑛𝑛,𝑗𝑗�

2𝑘𝑘2
𝑗𝑗=1

𝑘𝑘1
𝑖𝑖=1  

5. If 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡𝑝𝑝 ≥  1𝑒𝑒−10 , unscale 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘′  to original bound and inquire simulation at 
𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘 and compute 𝒁𝒁𝒄𝒄𝒏𝒏𝒘𝒘 = 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘) and 𝝊𝝊. Else, remove the solution from 
𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘. 

6. Compute the solution score for all collected intermediate solutions:  
𝑺𝑺𝒑𝒑 = 𝑐𝑐𝑡𝑡𝑚𝑚𝑘𝑘(𝒗𝒗)  

7. 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑡𝑡𝑐𝑐𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝑺𝑺𝒑𝒑)  
8. If one of the convergence criteria is met, end iteration 

Else, 𝑺𝑺′ ⟵ 𝑺𝑺𝒄𝒄𝒏𝒏𝒘𝒘 and 𝒁𝒁′ ⟵ 𝒁𝒁𝒄𝒄𝒏𝒏𝒘𝒘; repeat step 1 for data preprocessing and steps 1-7 for 
surrogate model construction and optimization.  
 
return 𝒙𝒙∗,𝒚𝒚∗ 
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4.4 Results 

The performance of the proposed bb-MINLP algorithm is first tested on a set of 

benchmark problems obtained from MINLPLib 130. In order to evaluate the performance 

of the algorithm on the most difficult possible scenario (i.e., unknown objective function, 

equality and inequality constraints), we treat all problems as purely black-box systems. 

Table 9 shows the characteristics of the MINLP problems that are used as benchmarks in 

this work. Columns 𝑘𝑘1 and 𝑘𝑘2 represent the number of continuous and binary variables, 

and 𝑚𝑚𝐼𝐼𝑒𝑒𝐼𝐼 and 𝑚𝑚𝑒𝑒𝐼𝐼 are the number of inequality and equality constraints, respectively. The 

dimensionality of the problems ranges from 1-12 continuous variables (𝑘𝑘1 ≤ 12) and 1-8 

binary variables (𝑘𝑘2 ≤ 8). The problems also have a varying amount of equality and 

inequality constraints, with the most challenging problem having 9 inequality constraints 

and 6 equality constraints.  

Through the results shown in this work, we aim to study the performance of the 

proposed algorithm with respect to (a) the selection of a surrogate model type (i.e., ANN 

versus GP), (b) the use of one-hot encoding versus relaxation of integrality, and (c) the 

sampling strategy. A selection of the surrogate modeling type must be made for both the 

MINLP search stage and the NLP search stage of the algorithm. To compare different 

surrogate models, we have performed an analysis between a purely ANN-based and a 

purely GP-based versions of the proposed algorithm. However, based on findings described 

in the next section, we have also proposed a hybrid approach (i.e., the use of ANN models 

for MINLP search and GP models for NLP search).  Thus, there are overall six approaches 

that are tested in this work with respect to the selection of the surrogate model as well as 
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the use of one-hot encoding (Table 10). Finally, we compare the performance of the 

proposed approach with two other existing algorithms for bb-MINLP. Specifically, a 

Mesh-Adaptive Direct Search algorithm (NOMAD 49) and a Genetic Algorithm  110 are 

compared at their default settings. 

Table 9. Names and descriptions of the MINLP test problems from MINLPLib 130. 
The equality constraints are transformed into two inequalities.   

Problem 𝒌𝒌𝟏𝟏 𝒌𝒌𝟐𝟐 𝒄𝒄𝑰𝑰𝒏𝒏𝑰𝑰 𝒄𝒄𝒏𝒏𝑰𝑰 
alan 4 4 5 2 

ex1221 2 3 3 2 
ex1222 2 1 3 0 
ex1223 7 4 9 4 
ex1223a 3 4 9 0 
ex1224 3 8 5 2 
ex1225 2 6 8 2 
ex1226 2 3 4 1 

fuel 12 3 9 6 
gbd 1 3 4 0 

gkocis 8 3 3 5 
oaer 6 3 4 3 

procsel 7 3 3 4 
st_e13 1 1 2 0 
st_e14 7 4 9 4 
st_e15 2 3 3 2 
st_e27 2 2 6 0 
st_e29 3 8 5 2 

synthes1 3 3 6 0 

Table 10. Description of 6 surrogate model settings that are tested in Results. MI 
represents a mixed-integer surrogate model with one-hot encoding used in the MINLP 
stage, and RE represents a surrogate model with all variables assumed to be 
continuous. 

Name MINLP surrogate NLP surrogate 
ANNMI ANN (w. one-hot encoding) ANN 
ANNRE ANN ANN 

hyMI ANN (w. one-hot encoding) GP 
hyRE ANN GP 
GPMI GP (w. one-hot encoding) GP 
GPRE GP GP 
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The algorithm is tested 3 times for each setting, and the best, average, and standard 

deviation of the solutions obtained are reported.  The maximum number of samples allowed 

for each problem is 4000, since sampling is expensive in most simulation-based 

optimization studies and thus must be limited. Comparing both the best and the average 

results allows us to evaluate the performance of the algorithm and its consistency in 

locating global optimum. A problem is assumed to be solved if the relative error between 

the actual and predicted optimum is less than an error tolerance (𝜖𝜖 = 0.01), where: 𝜀𝜀𝑜𝑜𝑜𝑜𝑗𝑗 =

�𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑓𝑓
∗

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� ≤ 𝜖𝜖 . A very small constraint violation is allowed (i.e.,  𝑣𝑣 ≤ 1𝑒𝑒−5), and this is 

mainly due to the difficulty in exact satisfaction of equality constraints in a black-box 

setting. 

4.4.1  Selection of Surrogate Modeling Type 

First, the performance of mixed-integer and relaxed surrogate models is compared 

for both ANN and GP (ANNMI, ANNRE, GPMI, and GPRE). In order to eliminate the 

effect of the sampling strategy for these experiments, we only use the k-LHS sampling 

approach (Sampling Strategy 1). In the proposed algorithm, the MINLP search step aims 

mainly to locate the optimal discrete solution, while the NLP search step aims to refine the 

solution with only respect to the continuous variables. Consequently, the performance of 

the MINLP search step is important, since the algorithm will converge to a local solution 

during the NLP step if an incorrect binary solution is found during the MINLP step. Figure 

16 shows the percentage of correct binary solutions found by each method during the 

MINLP search step. For both ANN and GP surrogate models, the mixed-integer approach 

(i.e., the use of one-hot-encoding) allows the algorithm to more accurately locate binary 
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solutions. This is due to the increased prediction accuracy of the MI model. For all of 

benchmark problems, the discrete variables are binary variables, and these are not ordinal. 

The results indicate that one-hot encoding enables the algorithm to search more efficiently 

through the use of more accurate surrogate models that capture the effect of both the “0” 

and the “1” cases. Hence, even if the resulting optimization model is more complex (i.e., 

increased problem dimension due to additional dummy variables and additional constraints 

relating new variables), the MI approach still outperforms the relaxation approach for the 

sizes of problems we are solving in this work. If the number of binary variables further 

increases, then tractability issues may arise, a potential limitation of our proposed 

methodology.  

 

Figure 16. Performance of algorithm with respect to the capability to accurately 
locate correct discrete solution during the MINLP search step. 

After the MINLP step terminates, the proposed algorithm proceeds to the NLP step. 

The goal of NLP step is to refine the solution obtained during the MINLP stage and locate 

the optimum while further reducing existing constraint violations. Figure 17 shows the 

performance profiles of the obtained best result (out of 3 repetitions) with respect to the 

number of samples and CPU time. The results show that GPMI outperforms the three other 
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methods, followed by GPRE. However, both GPMI and GPRE require more CPU time to 

converge compared to ANNMI and ANNRE. In addition, while ANNMI is able to better 

locate the correct discrete solution during the MINLP search step than ANNRE, Figure 17 

shows that ANNMI and ANNRE solve the same number of problems. This implies that 

even when a correct discrete solution has been identified, the algorithm can still fail to 

locate a globally optimal solution during the NLP search step. This indicates that both the 

MINLP and NLP search steps are crucial in locating a global solution.  

In addition to the best obtained result, it is important to assess the consistency of 

the methods. In Figure 18, the average and standard deviation of the three repetitions are 

reported with respect to solution accuracy and computational efficiency. When both the 

best and the average results are considered, it becomes clearer that the MI approaches on 

average perform better than RE approaches. This is attributed to the fact that the MI 

approaches locate the global binary solutions more consistently. For both ANNMI and 

GPMI, the average objective errors are smaller than those of ANNRE and GPRE, while 

the difference is much clearer for the ANN case. However, it is notable that while ANNMI 

has a smaller average objective error than that of GPMI (Figure 18), GPMI overall solves 

more problems (Figure 17). As we used strict criteria to generate a performance profile in 

Figure 17 (𝜖𝜖 = 0.01 and 𝑣𝑣 = 1𝑒𝑒−5), this result indicates that GP is better at accurately 

locating the solution and reducing constraint violations due to its interpolating nature. On 

the other hand, ANN models are good at finding the approximate location of the solution 

faster, but ANN models do not manage to continue improving the obtained solution and 

may converge to a local or infeasible solution. In addition, note that approximately 30% of 

the problems are not solved by any of the proposed methodologies. We observed that most 
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of these unsolved problems have several equality constraints. Thus, the exact satisfaction 

of constraint violation criterion ( 𝑣𝑣  = 1𝑒𝑒−5 ) becomes increasingly challenging. 

Nevertheless, we can test the limit of our algorithm by including these challenging 

problems in our benchmark problem set.  

One notable difference between the performance of ANN and GP is the CPU time 

for model construction and optimization. The most time-consuming step when using GP is 

optimization, but its model construction CPU time is negligible. In contrast to GP, the 

majority of the computation time for ANN is attributed to model construction (i.e., 

optimization of parameters). Therefore, GP and ANN exhibit a very contrasting trend: GP 

models are easy to construct but difficult to optimize, while ANN models are time-

consuming to construct but require less cost to optimize. This difference is due to their 

algebraic expressions: for ANN, the model expression depends only on the number of 

hidden nodes and layers, while for GP, the model expression is dependent on the number 

of data points used to construct the model. As a result, as the algorithm collects more 

samples during each iteration, the complexity of a GP model increases, and the CPU time 

for globally optimizing the model increases significantly, especially for the MINLP search 

step. Our results have confirmed that the majority of optimization CPU for the GP cases is 

resulting from the global optimization of the MINLP model. One potential suggestion to 

circumvent this problem is through the sole use of multi-start local optimization of the 

surrogate models. We performed this test and observed that the performance of the 

algorithm deteriorated; thus, we have concluded that global optimization of the surrogate 

models is important, because it leads to the location of new and more informative sampling 

solutions (i.e., better exploitation of the search space).  
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Figure 17. Performance profile of the best run for 𝝐𝝐 = 𝟎𝟎.𝟎𝟎𝟏𝟏 and 𝒗𝒗 = 𝟏𝟏𝒏𝒏−𝟓𝟓. The model 
types are described in Table 4. 
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Figure 18. Statistics of three runs for MI and RE models. The standard deviation is 
plotted with the average to show the consistency of each method. 

4.4.2 Hybrid Surrogate Modeling Approach 

Based on the results obtained in the previous section, we have observed that ANN 

models have certain advantages over GP models due to their simpler functional form, 

which results in faster model optimization. On the other hand, all formulations with 

embedded GP models lead to more accurate approximations but are very difficult to 
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optimize. These observations led to the idea of exploiting the advantages of ANN and GP 

by creating a hybrid model, which combines ANN and GP. In particular, the algorithm uses 

ANNs for the MINLP search step, followed by GP for the NLP search step. Using ANN 

models initially allows the algorithm to expedite the MINLP search step and obtain a 

somewhat accurate solution, especially with respect to the discrete variables. Subsequently, 

since the aim of the NLP search is refinement, it is important to improve the accuracy of 

the final solution, which can be accomplished better using GP models. During the NLP 

stage, we have fixed the values of the discrete variables, so the dimensionality has been 

reduced and the algorithm suffers less from the computational expense of GP optimization. 

It is important to note that our algorithm has the capability to keep multiple potential 

discrete solutions, which will further be refined through the NLP search. However, in this 

work we have only shown its performance for the case where the best single solution is 

kept at the end of the MINLP search step. If a mixed-integer model with one-hot encoding 

is used for the MINLP step, the model is referred as “hyMI”; if not, we refer the model as 

“hyRE”. In this work, we have not looked into the reverse case, where GP is used for 

MINLP step and ANN is used for NLP step, because this approach is expected to 

deteriorate solution accuracy and/or make optimization computationally more demanding.  

We present the hybrid results (hyMI and hyRE) compared to those of ANNMI and 

GPMI, since the MI surrogate models were previously shown to perform better than the 

relaxed models. Figure 19 shows the performance profiles of the hybrid approach 

compared to ANNMI, GPMI, and existing solvers (GA and NOMAD). The same criteria 

are used to generate the performance profile: 𝜖𝜖 = 0.01 and 𝑣𝑣 = 1𝑒𝑒−5. As these methods 

heavily rely on sampling, they tend to require a large number of samples to converge. 
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However, GA and NOMAD algorithms require less CPU time than surrogate-based 

algorithms, because GA and NOMAD do not require the construction and optimization of 

surrogate models. However, when sampling becomes computationally expensive, GA and 

NOMAD are likely to be more time-consuming than surrogate-based approaches, since GA 

and NOMAD tend to require many function evaluations. It must also be mentioned that 

both NOMAD and GA contain a set of parameters that can be tuned to affect the 

performance of the algorithm, while in this work we compared all algorithms with their 

default settings. 

 When only the hybrid models are compared, hyMI outperforms hyRE. This is due 

to the capability of MI models to accurately locate binary solutions, which allows the 

algorithm to find a globally optimal as well as a feasible solution. After the correct binary 

solution is determined, the algorithm uses GP models to further refine the solution. The 

interpolating characteristic of GP is advantageous, particularly when the problem has 

several black-box equality constraints, because a good approximation of an equality 

constraint is crucial to find a feasible solution. Since the RE approach cannot find the 

correct binary solution as consistently as the MI approach, the hyRE model often converges 

to a local solution. As a result, the hyMI version of our algorithm combines all of the 

desirable characteristics and solves the most problems (about 80%), followed by GPMI 

and hyRE.  

 Figure 20 shows the average results of three runs with their associated standard 

deviations to illustrate the performance as well as the consistency of the algorithms. The 

hyMI approach overall performs the best with the smallest average objective error and 

constraint violation. It is also one of the most consistent methods suggested by its small 
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standard deviation. Compared to ANNMI, hyMI exhibits a significant improvement in 

solution accuracy. When the computation time is analyzed, hyMI can achieve a good 

balance between model construction and optimization CPU. Consequently, the 

optimization CPU for hyMI is significantly less than that of GPMI, which allows the 

algorithm to go through more iterations within a given time limit and further enhance the 

solution. The hyRE model performs better than ANNMI; however, it is outperformed by 

GPMI and hyMI since MI allows the algorithm to more accurately locate binary solutions. 

These results overall indicate that the MI approach using one-hot encoding outperforms 

the relaxation approach. Note that the hybrid approach has been proposed as a practical 

way of efficiently locating the solution within a reasonable CPU time. When no limit on 

computation resources exists, using GP for both the MINLP and NLP search steps may 

further improve the performance of the algorithm.  
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Figure 19. Performance profile of 4 surrogate types compared with existing bb-
MINLP algorithms. 
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Figure 20. Average result of three runs for MI and RE models. The standard 
deviation is plotted with the average to show the consistency of each method. Hybrid 
MI approach shows the most consistent performance and solves the most problem. 

4.4.3  Sampling Strategies for MINLP  

Three sampling strategies are compared in this section while fixing all other 

algorithmic parameters: 1) k-Latin hypercube, 2) standard Latin hypercube, and 3) Latin 

hypercube sampling with simply rounding any discrete variables to their nearest integer 

value. As we previously have determined that hyMI outperforms all other methods, we use 
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the hyMI to test three sampling strategies (SS1, SS2, and SS3). Each sampling strategy is 

repeated 3 times and the best as well as the average results are calculated to evaluate its 

performance. Figure 21 shows a performance curve of the best result with respect to both 

the number of samples and the total computation time for 𝜖𝜖 ≤ 0.01 and 𝑣𝑣 ≤ 1𝑒𝑒−5. When 

only the best result is considered out of all runs, SS1 solves about 80% of the problems and 

outperforms other sampling strategies.  

Figure 22 shows the average result of three runs with respect to solution accuracy 

(𝜀𝜀 and 𝑣𝑣), the number of samples, and the computation time. Both the average and the best 

result indicate that SS1 outperforms all other sampling methods. Unlike SS2 and SS3, SS1 

covers the entire search space evenly by generating a LHS of size 𝑚𝑚𝑙𝑙ℎ𝑠𝑠  for all discrete 

levels. For SS2 and SS3, the points are randomly distributed into each discrete level, and 

thus the entire search space might not be represented evenly. Thus, even though all 

sampling strategies use the same number of samples, the ability to cover the entire search 

space evenly proves to be quite important for surrogate-based optimization. SS1 is also the 

most consistent approach, as shown by the small standard deviation values, while SS2 and 

SS3 are prone to data imbalance resulting from randomness.  
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Figure 21. Performance curve of the best out of three runs for three sampling 
strategies for ϵ = 0.01 and v = 1e-5. 
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Figure 22. The average result of three sampling strategies (SS1=1, SS2=2, SS3=3) with 
respect to solution accuracy and computational efficiency.  

4.5 Gray-box MINLP: a Process Synthesis Case Study  

Up to this point, we have tested our algorithm for a black-box case, assuming all 

constraints and objective are unknown. In this section, we present a more challenging 

process synthesis case study and show how it can be solved as a gray-box MINLP 

formulation. When a problem has many constraints or variables, decoupling a problem into 
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a gray-box could reduce the complexity and improve the solution accuracy. This is 

representative of a typical process synthesis problem because constraints that connect 

individual units, such as material balance and logical constraints to control process 

synthesis, will typically be known a-priori. As the surrogate models are constructed in a 

scaled space, these known constraints must be scaled properly. Furthermore, when a 

mixed-integer surrogate model with one-hot encoding is used, the resulting optimization 

formulation is now in terms of dummy variables, instead of original binary variables. We 

will illustrate how the original constraints can be modified accordingly.  

4.5.1  Problem Description 

A superstructure optimization problem presented in 131 is used to demonstrate the 

proposed methodology. The objective is to determine the optimal structure and operating 

parameters for a process to minimize the sum of operating and capital costs. The binary 

variables are associated with each process unit, and continuous variables represent total 

mass flowrate. The nonlinearities in the model are due to nonlinear input-output 

relationship of process units. Although this benchmark problem contains simplified 

nonlinear relationships to represent process units, in a real case study, these nonlinear 

relationships represent the underlying phenomena captured by expensive simulations. The 

original MINLP formulation has 9 continuous and 8 binary variables with 23 constraints, 

and the original problem is shown in Appendix A. The superstructure is shown in Figure 

23. 

 For process synthesis problems, we can safely assume that certain constraints 

related to mass conservation and process configuration will be known explicitly. For 
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example, 𝑦𝑦1 + 𝑦𝑦2 = 1 enforces the selection of only one process unit; 1.25𝑥𝑥9 − 10𝑦𝑦3 ≤ 0 

is a big-M constraint, which makes sure that a flow is set to zero when a process unit is not 

selected. These gray-box constraints can be handled explicitly (marked as (G) in Appendix 

A). Appendix B shows the re-formulation of the original problem, which is explained in 

the subsequent sections.  

 

Figure 23. Superstructure of a process synthesis case study from 131 . Binary variables 
are used to represent 8 units, while continuous variables represent total mass 
flowrate. 

4.5.2 Reformulation and Scaling of Gray-box Constraints  

In order to generate an accurate surrogate model, normalization of input and output 

data is required. In this work, all input and output variables are scaled between 0 and 1 to 

construct a surrogate model. As a result, gray-box constraints need to be scaled properly 

so that optimization can now be performed in a scaled space. This is simple as all 
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continuous variables embedded within any known constraints can be scaled using the 

following transformation: 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖′�𝑥𝑥𝑖𝑖𝑢𝑢 − 𝑥𝑥𝑖𝑖𝑙𝑙� + 𝑥𝑥𝑖𝑖𝑙𝑙, where 𝑥𝑥𝑖𝑖 is a continuous variable in the 

original domain, 𝑥𝑥𝑖𝑖′ is a continuous variable in 0-1 scaled domain, and 𝑥𝑥𝑖𝑖𝑙𝑙 and 𝑥𝑥𝑖𝑖𝑢𝑢 are lower 

and upper bounds of the variable, respectively. No scaling is required for binary variables 

as they are already scaled between 0 and 1.  

For MI surrogate models with one-hot encoding, the surrogate models are in terms 

of continuous and dummy variables, instead of original binary variables. As a result, gray-

box constraints also need to be in terms of dummy variables. For a binary variable 𝑦𝑦𝑗𝑗 with 

dummy variables 𝑑𝑑𝑗𝑗,0  and 𝑑𝑑𝑗𝑗,1  where 𝑑𝑑𝑗𝑗,0 = �
1 𝑚𝑚𝑓𝑓 𝑦𝑦𝑗𝑗 = 0
0 𝑚𝑚𝑓𝑓 𝑦𝑦𝑗𝑗 = 1 and 𝑑𝑑𝑗𝑗,1 = �

0 𝑚𝑚𝑓𝑓 𝑦𝑦𝑗𝑗 = 0
1 𝑚𝑚𝑓𝑓 𝑦𝑦𝑗𝑗 = 1 , the 

following transformation is required for gray-box constraints:  

 𝑑𝑑𝑗𝑗,0�1 − 𝑦𝑦𝑗𝑗� + 𝑑𝑑𝑗𝑗,1𝑦𝑦𝑗𝑗 = 1 (19) 

The original binary variable 𝑦𝑦𝑗𝑗 can now be expressed as in terms of dummy variables:  

 
𝑦𝑦𝑗𝑗 =

1 − 𝑑𝑑𝑗𝑗,0

𝑑𝑑𝑗𝑗,1 − 𝑑𝑑𝑗𝑗,0
 (20) 

Furthermore, to allow the selection of only one dummy variable for each binary variable, 

an additional constraint is required for each 𝑦𝑦𝑗𝑗: 𝑑𝑑𝑗𝑗,0 + 𝑑𝑑𝑗𝑗,1 = 1. These are the overall set of 

steps that needs to be performed in order to re-formulate the original problem constraints, 

so that they are compatible with the surrogate-based formulation of our proposed 

algorithm.  
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4.5.3   Numerical Result  

For the initial sampling design, SS1 is used. At each discrete level 𝐿𝐿𝑗𝑗 , a Latin 

hypercube design of size 𝑚𝑚𝑙𝑙ℎ𝑑𝑑 is generated. The input and output datasets are both scaled 

between 0 and 1, and hyMI model is constructed. As the problem consists of 9 continuous 

and 8 binary variables, the resulting neural network has 25 input nodes (i.e., 9 nodes for 

continuous variables and 16 nodes for dummy variables) and 18 output nodes for the 

objective and black-box constraints. In total, 6 out of 23 constraints are assumed to be 

known, while the rest are assumed to be unknown. This categorization of unknown and 

known constraints was performed such that only the very simple constraints (activation of 

flowrates and unit selection) are considered as known. A different decomposition of known 

and unknown constraints may lead to different results, with the expectation that more 

known constraints will help the algorithm converge faster.  All gray-box constraints are 

scaled and reformulated with respect to dummy variables, and the final formulation is 

shown in Appendix B. Both global and local solvers are used to collect a diverse set of 

intermediate solutions. The model is optimized, and the algorithm terminates when one of 

the termination criteria is met.  

Table 11 shows the final solution obtained using the proposed methodology, and 

Figure 24 shows the improvement in solution during each iteration. At the end of each 

iteration, we select the best solution based on both the objective function value and 

constraint violation 𝑣𝑣 to find a solution that is not only globally optimal but also feasible. 

Note that at iteration 5, 𝜀𝜀𝑜𝑜𝑜𝑜𝑗𝑗 temporarily increases because the algorithm found a more 

feasible solution with smaller constraint violation. During the next iteration, it quickly 
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converges back to the actual solution. After 19 iterations, the algorithm finds a global 

solution with less than 1% error and 𝑣𝑣 = 5𝑒𝑒−4. After 22 iterations, the algorithm converges 

to an exact global solution with 𝜀𝜀𝑜𝑜𝑜𝑜𝑗𝑗 = 0 and 𝑣𝑣 = 0. The computational cost of this run is 

high and this is mainly attributed to both the training of the surrogate models and their 

optimization. However, the total number of samples required to solve this 17-variable 

problem is very low, considering the state-of-the-art in surrogate-based optimization. It 

should be noted that this problem is quite challenging when treated as a bb-MINLP 

problem. In fact, our proposed algorithm could not solve this problem within the given 

sampling and CPU limitations, when all constraints were treated as unknown. However, 

known constraints and the ability to incorporate them together with surrogate models, 

significantly facilitates the performance of the algorithm.  

 

Figure 24. Solution error and constraint violation vs. the number of samples and 
computation time. Each point represents a single iteration. The algorithm locates an 
optimal solution with less than 1% error and negligible constraint violation in just a 
few iterations.  
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Table 11. Optimization result of case study. By using the gray-box approach, the 
algorithm is able to find a global optimum with 𝒗𝒗 = 𝟎𝟎. 

𝒇𝒇∗ 𝒇𝒇𝒂𝒂𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂𝒍𝒍 𝒗𝒗 𝑵𝑵 CPU (hr) 

68.0072 68.0072 0 1492 7.4 

4.6 Conclusions and Future Perspectives 

In this chapter, we propose a data-dependent mixed-integer optimization algorithm 

for black-/gray- box problems. Unlike existing bb-MINLP algorithms, we do not relax the 

integrality constraint to construct a surrogate model. Instead, one-hot encoding is used to 

explicitly handle binary variables. Two surrogate types are considered in this work (ANN 

and GP) as well as a hybrid model (ANN+GP). These surrogate models are tested and 

compared with existing bb-MINLP solvers and the results indicate that mixed-integer 

surrogate models outperform relaxed surrogate models with respect to both solution quality 

and computational efficiency. We also demonstrate how known constraints can be 

explicitly incorporated within surrogate-based MINLP formulations through a process 

synthesis case study to facilitate the search of global optimum. Lastly, we compare 

different sampling strategies for bb-MINLP optimization and conclude that this has an 

important effect in the overall performance of the algorithm. The most effective sampling 

approach ensures that the sampling design is balanced in all combinations of the discrete 

variables.  Our results indicate that when certain constraints are known a-priori, these 

should be directly incorporated within the surrogate-based formulation, because they will 

significantly limit the feasible search space and will allow the algorithm to focus the 

exploration and exploitation within feasible subspaces. In addition, we have found that 

satisfaction of equality constraints is exceptionally difficult in a black-box optimization 
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setting, and this was quite effectively overcome by the incorporation of a surrogate-based 

feasibility sampling stage. 

The proposed work can be applied to numerous simulation-based problems with 

both continuous and discrete variables embedded in the simulation. One specific example 

that is currently being studied is the synthesis of adsorption cycles. Adsorption processes 

contain different operating steps and cycle configurations that can be represented by binary 

variables. Decoupling these steps and the associated continuous and binary variables that 

are embedded in the simulation is not often possible. Using the proposed bb-MINLP 

algorithm, one can determine the optimal cycle design using input-output data from 

rigorous adsorption simulation models. Another MINLP case study that is currently being 

studied is the design of mixed-material, hybrid modular separation systems, for which 

discrete variables represent the selection of materials and units that are optimal for the 

separation of different gas mixtures.   

Overall, our algorithm shows promise for the solution of MINLP problems with a 

moderate number of variables and constraints. For applications on problems with 

significantly more degrees of freedom, the current algorithmic implementation will require 

improvements to reduce its computational cost by taking advantage of parallel computing, 

heuristics, and recent exciting advances towards globally optimizing complex NN and GP 

surrogate formulations. The algorithm is available as an open-source Python library and 

can be retrieved from http://boukouvala.chbe.gatech.edu/.  

  

http://boukouvala.chbe.gatech.edu/


 85 

CHAPTER 5. SIMULTANEOUS MATERIAL AND PROCESS 

OPTIMIZATION FOR CARBON CAPTURE  

5.1 Introduction  

The emission of CO2 has been recognized as an important environmental issue and 

one of the major contributing causes of climate change132-137. In 2017, the amount of CO2 

emissions in the U.S. totaled 6457 million metric tons138. Carbon Capture and Storage 

(CCS) has been proposed to reduce CO2 emissions but several existing techniques are 

currently associated with high cost and large energy consumption135,139-141. One promising 

technology for post-combustion carbon capture is adsorption using solid sorbents due to 

its relatively high separation efficiency, low energy cost in comparison to absorption-based 

technologies, and its potential for modularization142.  

During adsorption, separation units containing solid adsorbent sequester CO2 from 

flue gas through a dynamic cyclic operation143,144. During each cycle, CO2 is captured and 

separated from the rest of the mixture; the adsorbent is then regenerated, and the cycle is 

repeated143. Significant research efforts have focused on improving packed-bed adsorbers 

by overcoming pressure-drop limitations, mitigating adsorption enthalpy, and improving 

mass transfer to make the operation more cost- and energy-efficient142,145-148. Parallel to 

these efforts, the development of new adsorbents with high working capacities and 

adsorptive selectivity has also been investigated extensively149. Some adsorbents that are 

commercially available and under development include: activated carbons, zeolites, and 

metal-organic frameworks (MOFs)135,149-152.  
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Recent studies have revealed that the process performance is intricately linked to 

the choice of an adsorbent, implying that the adsorbent selection and process optimization 

should be considered simultaneously140,153-155. This requires the formulation of a complex 

simulation-based optimization problem because cyclic adsorption processes are typically 

described by detailed mathematical models consisting of Partial Differential-Algebraic 

Equations (PDAEs). Conventional equation-based optimization has been used in 156-158, but 

it may pose limitations when model complexity is high. Hence, the use of stochastic 

sampling-based and surrogate-based techniques have been proposed. In 141,154,155,159-161, 

stochastic optimization algorithms (e.g., Genetic Algorithm (GA)) are used to determine 

the optimal process operating conditions. However, stochastic algorithms tend to require 

many simulation evaluations; thus, they may not be suitable when the simulation is 

computationally expensive. To overcome this limitation, surrogate-based optimization 

techniques have been proposed7,13. Also known as a meta-model, a surrogate model 

approximates the input-output relationship of a high-fidelity simulation with reduced 

complexity1,20. The surrogate model is subsequently used within algorithms that iteratively 

sample-fit-optimize surrogates to find optimal solutions.  

Several works studying adsorbent selection and process optimization currently 

exist in the literature. Hasan et al.140 proposes an adsorbent screening framework using a 

combined material characterization and process optimization procedure for both PSA and 

VSA processes. A GP-based gray-box optimization approach is used, and the minimum 

cost of capture and compression is obtained for the final optimal design satisfying purity 

and recovery constraints. Khurana and Farooq present a two-stage adsorbent screening 

framework for a VSA process for carbon capture154. They apply a neural network-based 
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classification model to preliminarily screen adsorbents based on purity-recovery targets; 

an extensive optimization study is then performed to rank adsorbents and determine the 

best operating conditions. Leperi et al.141 performs a full PSA modeling and optimization 

using GA and introduce a general evaluation metric (GEM) for the screening of MOFs. 

More recently, Balashankar et al.153 coupled a GA-based process optimization with a 

detailed VSA model to develop a zeolite screening framework.  

Despite these efforts, challenges still remain for the industrial-scale deployment of 

adsorptive separations for carbon capture, namely the cost of adsorbents, pressure-drop 

limitations observed in conventional industrial-size beds, and high adsorption enthalpy142. 

Modular process intensification (PI) offers the opportunity to effectively overcome these 

technical challenges162-164. Modularization may have significant advantages over 

centralized facilities due to the smaller size of a module, resulting in reduced 

manufacturing cost and improved transportability. By reducing the size, one can enhance 

mass and heat transfer and reduce pressure drop, which may lead to 30% energy savings 

and 20% lower operating costs162. In addition, in contrast to centralized facilities that 

require most of their processes to be built on-site, modules can be mass-produced, leading 

up to 40% less capital expenditure and shorter module construction and deployment 

time162. These modules can be added or removed depending on plant capacity, allowing 

flexible deployment. In order to fully exploit these advantages, modules need to be 

optimally designed so that they can be operated at varying process conditions with the 

chosen adsorbent.  

The purpose of this work is two-fold. First, we propose a technique to design 

modular CO2 capture systems for coal-fired power plants using VPSA coupled with 
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thermally-modulated fiber composite adsorbents. Surrogate-based optimization2,12,13 is 

used to determine the optimal adsorbent and process conditions simultaneously. We 

explore both the Mixed-Integer Nonlinear Programming (MINLP) and Nonlinear 

Programming (NLP) approaches to surrogate-based optimization. Compared to the brute-

force NLP approach, the MINLP approach allows more efficient adsorbent selection and 

process optimization by using binary variables to represent a set of 75 adsorbents. In the 

second part, we present a purely machine learning-based classification and regression 

approaches to gain further insight into adsorbent-process performance through the use of 

the large amount of data obtained from the simulation-based optimization study. The main 

novelty of this contribution lies in the use of surrogate-based mixed-integer optimization 

for simultaneous adsorbent selection and process optimization. We also focus on a novel 

modular carbon capture system via Vacuum Pressure Swing Adsorption (VPSA) with heat 

modulating capability. Moreover, this work pushes the scalability boundaries of surrogate-

based optimization algorithms with mixed-integer decisions, since these have previously 

only been applied to low-dimensional integer problems. 

This chapter is organized as follows. Section 5.2 provides a background on VPSA 

modeling as well as an overview of the surrogate-based optimization algorithm. In Section 

5.3, adsorbent selection and process optimization are performed using surrogate-based 

NLP and MINLP algorithms, and a comparison between the two proposed methodologies 

is presented. Section 5.4 presents the use of dimensionality reduction, classification, and 

regression techniques to gain further insights into adsorbent-process performance. We end 

with conclusions and future outlook. 

5.2 Background: Process Modeling and Optimization 
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5.2.1 VPSA Cycle Modeling 

5.2.1.1 Process Description 

In this work, we consider a VPSA process for a single module with a length of 1m 

and a diameter of 1/6m. This fixed-bed adsorber is packed with thermally-modulated fiber 

composites that consist of a porous polymeric matrix spun as a fiber embedded with 

adsorbent particles (ADS) and phase-change material (PCM). The fraction of the polymer 

matrix that can be loaded with solids is fixed at a minimum of 25% to guarantee correct 

fiber manufacturing, while allowing suitable amounts of adsorbent and PCM.  In this way, 

an optimal trade-off between ADS and PCM is achieved in the process design.  We present 

a detailed thermal management study in 165 that addresses this type of contactors based on 

our recent experimental results142. The application of this kind of fiber composite reduces 

pressure drop in the packed-bed, thus enabling higher gas-velocity operation and better 

modulation of the heat generated by adsorption, rendering productive cycle operation with 

optimal adsorbent utilization. Adsorption equilibria are modeled with the extended dual-

site Langmuir (DSL) equation as required by the selection of adsorbents applied in the 

optimization (see Section 2.3). The heats of adsorption for N2 and CO2 required for process 

modeling are estimated for each adsorbent from the corresponding DSL equation parameter 

values. The 4-step VPSA cycle consists of the following steps: counter-current 

pressurization (ccPr), high-pressure adsorption (Ad), co-current blow-down (coBd), and 

counter-current evacuation (ccEv). Figure 25 illustrates this cycle, which allows recovering 

CO2 during the evacuation step at high purity. This is enhanced by pressurization with the 

light-product (LPP) stream, which is rich in N2.  
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Figure 25. Schematic representation of the 4-step VPSA cycle with LPP. 

Extensive studies have been performed on the adequacy of this kind of cycle 

configuration for CO2 capture applications – see e.g. 161 and references listed therein.  Other 

cycle designs that consider multi-column operation and column-interaction through 

pressure equalization steps are also available for this kind of separation but are outside of 

the scope of this work166. 

5.2.1.2 Mathematical Modeling and Numerical Solution 

The detailed full-order dynamic adsorber model for non-isothermal operation 

consists of a set of partial differential equations (PDEs) in one spatial dimension, which is 

transformed to an ordinary differential equation (ODE) system in time by application of 

the first-order upwind discretization scheme (UDS), a finite-volume discretization that is 

suitable due to its numerical robustness—method of lines (MOL) approach167. The time 

integration of this ODE system proceeds by applying the backward differentiation formulae 

of Gear168. This model is coded and solved entirely in MATLAB169, applying the ‘ode15s’ 
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numerical integration function at default tolerances. We apply suitable boundary 

conditions (BCs) and initial conditions (ICs) to represent the cyclic operation displayed in 

Figure 25. 

5.2.1.3 Process Optimization 

Several degrees of freedom are available to optimize the 4-step VPSA cycle. We 

select a subset of these decision variables, which have the strongest impact on VPSA 

process performance. Table 12 lists these variables with the applied bound values.  

Table 12. Description of VPSA System Inputs 

Input Operation Bounds Description 

𝑃𝑃𝑒𝑒𝑑𝑑𝑠𝑠 2.5 − 20 Adsorption step pressure (𝑡𝑡𝑡𝑡𝑚𝑚) 
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 0.01 − 0.5 Evacuation step pressure (𝑡𝑡𝑡𝑡𝑚𝑚) 
𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 0.001 − 0.0075 Feed gas flow rate (m3/s) 

𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 0.15 − 0.5 Weight-fraction of adsorbent in fiber �𝑘𝑘𝑘𝑘 𝑒𝑒𝑑𝑑𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑒𝑒𝑛𝑛𝑜𝑜
𝑘𝑘𝑘𝑘 𝑠𝑠𝑜𝑜𝑙𝑙𝑖𝑖𝑑𝑑 𝑓𝑓𝑖𝑖𝑜𝑜𝑒𝑒𝑠𝑠

� 

𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠 15 − 120 Adsorption step time (𝑠𝑠) 

The adsorption and evacuation pressures determine the magnitude of the pressure-

swing applied to the process. Feed gas flow rate and adsorption step time control the feed 

throughput and are therefore critical in the positioning of concentration and temperature 

fronts along the axial flow direction of the adsorber, once cyclic steady-state (CSS) 

operation has been attained. The fiber consists of three main components: polymer, 

adsorbent, and PCM. The weight fraction of adsorbent in the fiber (𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠) is determined 

from optimization; the weight fraction of polymer (𝜔𝜔𝑝𝑝𝑜𝑜𝑙𝑙𝑦𝑦𝑚𝑚𝑒𝑒𝑠𝑠) is fixed to 0.25 to maintain 

the structural integrity of the fiber. Lastly, the weight fraction of PCM (𝜔𝜔𝐺𝐺𝐶𝐶𝑃𝑃) in the 

composites establishes the extent to which the heat generated by adsorption is modulated. 
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The adsorption enthalpy varies between the adsorbents considered, leading to values of 

PCM content that are specific to each adsorbent and the optimal VPSA operation 

conditions. The blow-down step pressure is fixed at 1 atm, therefore avoiding the 

application of two different evacuation pressure levels, which in practice would increase 

the technical complexity of the applied evacuation system. We select values of the valve-

coefficients for the pressure-changing steps (ccPr, coBd & ccEv) that minimize total cycle 

time. The five decision variables described above are critical in determining the cycle 

operation and are essential for its optimization as we discuss below.  

Table 13. Description of VPSA System Outputs 

Outputs Equations 

Productivity 
𝑚𝑚𝑐𝑐𝑙𝑙 𝐶𝐶𝑂𝑂2 𝑚𝑚𝑚𝑚 𝑒𝑒𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑚𝑚

𝑘𝑘𝑔𝑔 𝑡𝑡𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑏𝑏𝑒𝑒𝑚𝑚𝑡𝑡 ∙ 𝑠𝑠
 

Purity 
𝑚𝑚𝑐𝑐𝑙𝑙 𝐶𝐶𝑂𝑂2 𝑚𝑚𝑚𝑚 𝑒𝑒𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑚𝑚
𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙 𝑚𝑚𝑐𝑐𝑙𝑙 𝑚𝑚𝑚𝑚 𝑒𝑒𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑚𝑚

 

Recovery 
𝑚𝑚𝑐𝑐𝑙𝑙 𝐶𝐶𝑂𝑂2 𝑚𝑚𝑚𝑚 𝑒𝑒𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑚𝑚

𝑚𝑚𝑐𝑐𝑙𝑙 𝐶𝐶𝑂𝑂2 𝑃𝑃𝑐𝑐 𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒, 𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑐𝑐𝑙𝑙 𝐶𝐶𝑂𝑂2 𝑚𝑚𝑚𝑚 𝐴𝐴𝑑𝑑 𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒, 𝑚𝑚𝑚𝑚
 

Specific Energy Consumption 
𝑘𝑘𝑊𝑊ℎ

𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚𝑒𝑒 𝐶𝐶𝑂𝑂2
   

In order to evaluate process performance, we use four standard metrics applied in 

these kinds of separation processes: productivity, product purity, product recovery, and 

specific energy consumption (Table 13). Additional complexity in the simulation and 

optimization of VPSA processes results from having to evaluate these metrics at CSS. The 

transient period before this condition is attained can take several hundreds or even 

thousands of cycles in some cases, with the associated computational burden. Moreover, a 

challenging feature encountered by process optimization of cyclic adsorption processes lies 

in the fact that there exists an inherent trade-off between performance objectives. This is 
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traditionally addressed by applying multi-objective optimization techniques170. The 

alternative approach we present herein formulates a constrained single-objective 

optimization task that maximizes the CO2 productivity of the VPSA cycle, while 

introducing purity, recovery, and specific energy consumption as constraints to the 

problem. This is a suitable approach, since there exist well-established specifications 

adopted worldwide by government agencies that a separation technology for CO2 capture 

should fulfill: CO2 purity of at least 95% and CO2 recovery of 90%. The energy constraint 

is needed since the specific energy consumption is directly correlated to the operating cost 

of the process.  

5.2.2 Problem Formulation and Surrogate-Based Optimization for MINLP and NLP 

 Due to the complexity of the VPSA-cycle simulation, surrogate-based optimization 

is an attractive alternative to equation-based optimization. In this work, we use a relaxed 

NN surrogate model to achieve a balance between model accuracy and complexity. While 

a mixed-integer surrogate model is more accurate than a relaxed model, the use of one-hot 

encoding increases the dimension of the problem by two as each binary variable is 

converted to two dummy variables. For this work, we expect that the cost of doubling the 

dimension would be more significant than the slight loss of model accuracy when relaxing 

the discrete inputs. Therefore, the relaxed approach was chosen.  

 In this section, we provide an in-depth explanation of surrogate modeling and 

optimization for the VPSA process. We consider 75 adsorbents investigated by Khurana & 

Farooq154 and originally addressed by Huck et al.151 for post-combustion CO2 capture. The 
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applied dual-site Langmuir adsorption isotherm model in their work154 consists of 15 

parameters specific to each adsorbent. 

One main contribution of this work is the use of bb-MINLP algorithm for efficient 

process optimization and adsorbent selection. Unlike the brute-force approach, where each 

adsorbent is optimized separately using the bb-NLP algorithm, binary variables are used to 

represent an adsorbent such that simultaneous process optimization and adsorbent selection 

can occur. Even though the bb-MINLP solver initially requires a set of LHD for each 

adsorbent, further exploration of the material (i.e., binary space) is limited to adsorbents 

that have promising behavior. Thus, the simultaneous optimization approach will overall 

exploit process-material relationships and find optimal solutions with fewer samples by 

avoiding to re-sample for non-promising adsorbents.  To test the performance of the bb-

MINLP algorithm, we solve this problem using both the bb-MINLP and brute-force bb-

NLP approaches. The following optimization formulation (P2) is used to identify the 

optimal VPSA design that maximizes productivity subject to 95% purity and 90% recovery 

constraints with an upper bound on the specific energy consumption of 2000 

𝑘𝑘𝑊𝑊ℎ 𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚𝑒𝑒 𝐶𝐶𝑂𝑂2⁄ :  

 𝑚𝑚𝑡𝑡𝑥𝑥 Productivity = 

𝑓𝑓�𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠 ,𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠,𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑,𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘  �  

𝑠𝑠. 𝑡𝑡. Purity = 𝑔𝑔1(𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠 ,𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠,𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑,𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 ) ≥ 0.95 

Recovery = 𝑔𝑔2(𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠,𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠,𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑,𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 ) ≥ 0.9 

(21) 
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Specific Energy Consumption = 𝑔𝑔3(𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 , 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠,𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠,𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑,𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 ) 

≤ 2000 

2.5 ≤ 𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ ≤ 20, 0.01 ≤ 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 ≤ 0.5, 15 ≤ 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠 ≤ 120, 

0.15 ≤ 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 ≤ 0.5, 0.001 ≤ 𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 ≤ 0.0075 

𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 ∈ {0,1}, � 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘

𝑘𝑘∈𝑒𝑒𝑑𝑑𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑒𝑒𝑛𝑛𝑜𝑜𝑠𝑠

= 1,𝑘𝑘 = 1, … ,𝐾𝐾 

Binary variables 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘   represent an adsorbent 𝑘𝑘, where 𝑘𝑘 ∈ set of 75 adsorbents 

(i.e., 𝐾𝐾 = 75 ). If 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘′ = 1 , then adsorbent k’ is selected. An additional constraint 

∑ 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘
𝑘𝑘 = 1 is needed to allow the selection of a single adsorbent. For the brute-force 

approach, k= ∅; hence, the problem reduces to NLP. The structure of the neural network 

is shown in Figure 26. It has 80 input nodes, a single hidden layer, and 4 output nodes.  

5.3 Results and Discussion: Adsorbent Selection and Process Optimization 

In this section, we present the optimization results for adsorbent selection and 

process optimization using both bb-NLP and bb-MINLP approaches. The bb-NLP 

approach performs a separate optimization for each adsorbent; the bb-MINLP approach 

conducts a single optimization for simultaneous adsorbent selection and process 

optimization. These results are compared with respect to computational efficiency and 

solution accuracy.  

The optimization framework is written in Python. The VPSA simulation is coded 

in Matlab2018b169, and a Python-Matlab interface is applied. Since the simulation is 
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computationally expensive, 5 processors are used. A neural network surrogate model is 

constructed with the Python module ‘scikit-learn’, and the optimization is performed using 

GAMS. At each iteration, all local and global optimal solutions are collected using 

DICOPT129 (or CONOPT129 for NLP) and BARON83 solvers, respectively. The maximum 

allowed computation time is 50 hours. The optimization is repeated 3 times, and the best 

result is reported. Table 14 summarizes the main difference between MINLP and NLP 

strategies. 

 

Figure 26. Illustration of a neural network with an input, one hidden, and an output 
layer 
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Figure 27. Overview of surrogate-based optimization for VPSA process optimization. 
These steps are repeated until one of the convergence criteria is met. 

Table 14. Comparison of MINLP and NLP strategies  

Approach # Problems Dimension LHD size ANN 
structure 

Optimization 
solvers 

bb-
MINLP 1 80 3825 80-58-4 Baron, Dicopt 

bb-NLP 75 5 51 5-8-4 Baron, 
Conopt 

5.3.1 bb-NLP Optimization: Brute-Force Approach   

 Process optimization is performed separately for all 75 adsorbents using a brute-

force NLP approach. For each adsorbent, an initial LHD of size 51 (10𝐼𝐼 + 1, where 𝐼𝐼 = 5) 

is created. A single layer neural network is constructed with 5 input, 8 hidden, and 4 output 

nodes to predict 4 process performance metrics (i.e., productivity, purity, recovery, and 



 98 

specific energy consumption). Table 15 shows the statistical summary of the output data 

generated from the initial LHD for all 75 adsorbents. We can observe that there exists a 

huge variability in the dataset, where most output data points are not feasible. This implies 

that the feasible region of the search space is very small and finding an optimal solution is 

difficult.  

Table 15. Statistical summary of output data generated from initial LHD 

Output Productivity 
(mol/kg∙s) Purity Recovery 

Energy 
(

𝐤𝐤𝐤𝐤𝐤𝐤
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐂𝐂𝐎𝐎𝟐𝟐

) 

Mean 0.004387 0.6151 0.0963 45961 
Stdev 0.002577 0.1003 0.1097 52972 

 

Table 16 shows the optimal process conditions and the performance of all feasible 

adsorbents ranked in the order of decreasing productivity. Figure 28 shows the scatterplots 

of optimal productivity vs. 5 process inputs of all 75 adsorbents. If an adsorbent violates 

one or more constraints, it is considered “infeasible”; if all constraints are satisfied, an 

adsorbent is “feasible”. From the optimization result of 75 adsorbents (Table 16 and Figure 

28), we can notice a few trends. First, in terms of constraint violation, the purity constraint 

was the most difficult one to satisfy (i.e., satisfied only 33% of the times), followed by 

recovery (48%) and energy (88%).  For the operating pressure, feasible adsorbents tend to 

cluster at high 𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ and low 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐. Operating the VPSA cycle at a higher 𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ enables 

higher concentration of CO2 in the feed gas during the adsorption step (Ad) and an increase 

in the pressure-swing. The cycle operation at lower evacuation pressure, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐  , also 

contributes to increase the pressure-swing, therefore improving CO2 recovery and allowing 

better adsorbent regeneration during the counter-current evacuation step (ccEv), while 
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sustaining the CO2 product purity target.  For the feed gas flow rate, feasible adsorbents 

tend to cluster at lower 𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑, values.  𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 should be such that enough contact time is 

provided for the gas uptake to occur; however, high values of feed gas flow rate induce 

losses of CO2 at the light-product end of the fixed-bed during the co-current blow-down 

step (coBd), impacting negatively CO2 recovery. In the case of the adsorption time, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠, 

both feasible and infeasible adsorbents tend to converge to the lower bound of 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠, which 

is explained by the fact that enabling shorter cycle times translates to better productivity 

results. While the overall trend is also less obvious for the content of adsorbent in the fiber 

composite, 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 , when all 75 adsorbents are considered, we found an interesting trend 

among the feasible adsorbents. As shown in Table 16, the productivity of an adsorbent is 

inversely proportional to 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠. In fact, two adsorbents that significantly outperform the 

rest of the adsorbents – Zn-MOF-74 and UTSA-16 – converge to the lower range of 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠, 

and as the optimal productivity decreases, 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 increases. Since the fiber packing fraction 

is fixed, decreasing adsorbent content in the fiber composite is equivalent to increasing its 

PCM content. This achieves better temperature modulation165. Hence, for adsorbents 

capable of high CO2 uptake, the presence of PCM in the fiber composites can further 

enhance adsorption by effectively managing the heat generated.  
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Table 16. Optimal process conditions for 26 feasible adsorbents that meet 95-90 
Purity-Recovery constraints. The adsorbents are listed in the order of decreasing 
productivity. 

 Optimal Process Conditions Performance Measurements 

 𝑷𝑷𝒍𝒍𝒗𝒗𝒉𝒉𝒍𝒍 
(atm) 

𝑷𝑷𝒏𝒏𝒗𝒗𝒂𝒂𝒄𝒄 
(atm) 

𝐐𝐐𝐟𝐟𝐭𝐭𝐭𝐭𝐟𝐟 
(1e-3 
m3/s) 

𝒂𝒂𝒂𝒂𝒍𝒍𝒍𝒍 
(s) 𝝎𝝎𝒂𝒂𝒍𝒍𝒍𝒍 

Prod  
(1e-2 

mol/kg∙s) 
Purity 

(%) 
Recovery 

(%) 

Energy  

(
𝒌𝒌𝒌𝒌𝒍𝒍

𝒂𝒂𝒐𝒐𝒄𝒄𝒄𝒄𝒏𝒏 𝑪𝑪𝑶𝑶𝟐𝟐
) 

Zn-MOF-
74 20 0.069 1.78 17.85 0.150 4.91 95.10 90.06 860 

UTSA-16 19.92 0.088 1.05 25.29 0.150 4.25 95.57 90.22 828 
MgX 20 0.036 1.03 24.88 0.150 2.66 95.11 91.18 857 

Co-MOF-
74 20 0.029 1.05 38.16 0.150 2.43 95.11 90.06 876 

ZIF-39-DIA 19.83 0.072 1.38 15.42 0.331 1.96 95.61 90.06 881 
NAB 20 0.052 1.02 15.00 0.280 1.85 95.17 90.04 904 

h8155527 20 0.074 1.22 15.00 0.348 1.74 95.05 92.51 833 
ZIF-82 20 0.033 1.00 30.01 0.291 1.59 95.06 90.09 909 

13x 13.46 0.054 1.20 29.17 0.293 1.56 95.13 90.39 708 
HMOF-992 20 0.031 1.00 26.74 0.298 1.56 95.16 90.12 950 

ZIF-69 20 0.035 1.06 27.25 0.341 1.44 95.05 90.24 921 
ZIF-116-

MER 20 0.035 1.00 42.49 0.360 1.38 95.40 90.01 929 
ZIF-78 20 0.042 1.00 34.69 0.362 1.31 95.00 90.20 875 

CaX 20 0.025 1.00 36.01 0.226 1.25 95.05 90.00 877 
NaA 20 0.078 1.00 32.90 0.478 1.25 95.52 91.08 829 
Al-X 20 0.035 1.00 31.58 0.313 1.22 95.03 91.01 854 

CuBTTri 20 0.040 1.02 68.39 0.470 1.21 95.76 90.35 909 
ZIF-36-

FRL 18.46 0.047 1.00 26.47 0.365 1.16 95.01 90.09 820 
CuBTC 20 0.010 1.00 42.32 0.231 1.15 95.06 95.08 995 

Na-X 19.88 0.035 1.06 36.51 0.408 0.96 95.40 90.11 865 
Mg-X 15.82 0.051 1.00 51.58 0.500 0.88 95.39 90.04 763 

h8124767 8.89 0.032 2.20 39.71 0.400 0.82 95.18 91.45 572 
ZIF-68 18.62 0.017 1.00 36.24 0.445 0.79 95.03 92.54 932 
ZIF-81 19.24 0.018 1.00 40.50 0.500 0.66 95.23 90.02 936 

h8291835 19.83 0.015 1.13 18.12 0.500 0.65 95.10 90.21 996 
NaX 13.68 0.029 1.00 71.78 0.500 0.57 95.02 92.72 710 
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Figure 28. Optimal productivity is plotted with 5 process inputs (𝑷𝑷𝒍𝒍𝒗𝒗𝒉𝒉𝒍𝒍, 𝑷𝑷𝒏𝒏𝒗𝒗𝒂𝒂𝒄𝒄, 𝑸𝑸𝒇𝒇𝒏𝒏𝒏𝒏𝒍𝒍, 
𝒂𝒂𝒂𝒂𝒍𝒍𝒍𝒍 , and 𝝎𝝎𝒂𝒂𝒍𝒍𝒍𝒍). Feasible adsorbents (green) satisfy the required purity-recovery-
energy constraints. 

5.3.2 bb-MINLP Optimization: Simultaneous Approach  

Previously, we used a surrogate-based NLP algorithm to conduct process 

optimization of 75 adsorbents separately. This optimal set of results provides a valuable 

insight into adsorbent performance when coupled with data analytics techniques, which we 

explore in Section 4. The brute-force approach with 𝐾𝐾 = 75 optimization problems to be 
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solved to convergence individually is computationally expensive. However, if we treat this 

as a bb-MINLP problem, binary variables, 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘  , are used to represent 75 adsorbents, and 

(P2) is solved as a single problem. To create a balanced initial sample set, an initial LHD 

design with a size of 10𝐼𝐼 + 1 is constructed for each adsorbent 𝑘𝑘. These LHD sets are then 

combined to construct a final sample set with 𝐾𝐾(10𝐼𝐼 + 1) points. With 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 , the neural 

network now has 𝐾𝐾 + 5 input nodes, 4 output nodes, and one hidden layer. The MINLP 

search step preliminarily determines the most promising adsorbent 𝑦𝑦𝑒𝑒𝑑𝑑𝑠𝑠𝑘𝑘 , while the NLP 

search is then performed for the most promising adsorbent to further refine the solution 

with respect to the design variables: 𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠 ,𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑,𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 . Table 17 shows the 

optimization result of the simultaneous bb-MINLP approach. The optimal adsorbent is Zn-

MOF-74 with an optimal productivity of 0.0481 𝑚𝑚𝑐𝑐𝑙𝑙/𝑘𝑘𝑔𝑔 ∙ 𝑠𝑠. Note that for all the bb-NLP 

and bb-MINLP solutions, the final purity and recovery values converged slightly above 

95% and 90%, respectively. This is due to small approximation errors of regression models 

that lead to solutions that do not fall exactly on the feasibility boundaries.  

Table 17. Simultaneous Approach Optimization Result 

 Optimal Process Conditions Performance Measurements 

𝒚𝒚𝒂𝒂𝒍𝒍𝒍𝒍 
𝑷𝑷𝒍𝒍𝒗𝒗𝒉𝒉𝒍𝒍 
(atm) 

𝑷𝑷𝒏𝒏𝒗𝒗𝒂𝒂𝒄𝒄 
(atm) 

𝐐𝐐𝐟𝐟𝐭𝐭𝐭𝐭𝐟𝐟 
(1e-3 
m3/s) 

𝒂𝒂𝒂𝒂𝒍𝒍𝒍𝒍  
(s) 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠 

Prod  
(1e-2 

mol/kg∙s) 
Purity (%) Recovery 

(%) 
Energy 

(kWh/tonne 
CO2 ) 

Zn-MOF-
74 19.83 0.064 1.23 24.73 0.15 4.81 95.97 90.33 853 

 

5.3.3 Comparison between bb- NLP and bb-MINLP Approaches  

 A comprehensive comparison of bb-NLP and bb-MINLP approaches with respect 

to sampling and computational requirements is presented in this section. The bb-NLP 
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approach is computationally expensive, solving 75 individual surrogate-based optimization 

tasks. While this computational cost can be alleviated to some extent by using parallel 

computing, this computational resource may not always be available. The bb-MINLP 

approach is computationally more efficient since it only requires a single surrogate-based 

optimization to be performed and exploits the material-process search space efficiently by 

avoiding re-sampling of non-promising materials.  

Table 18. Comparison of computational cost between bb-NLP and bb-MINLP 
approaches. For bb-NLP, both the total and average computation time are reported 
to sequentially optimize all 75 adsorbents and a single adsorbent, respectively. 

 # samples Sampling 
(hr) 

Modeling 
(hr) 

Optimization 
(hr) Total 

bb-NLP 
(total) 29335 893.76 9.53 5.76 909.04 

bb-NLP 
(average) 391 11.92 0.13 0.08 12.12 

bb-MINLP 5447 13.41 1.72 11.46 26.59 

 Table 18 lists the sampling requirement and computation time of bb-NLP and bb-

MINLP approaches. For the bb-NLP approach, we first report the total computation time 

for all 75 adsorbents, assuming that the optimization is performed sequentially. The 

computation times of each stage of this optimization strategy — sampling, model fitting, 

and optimization — are shown. As expected, the bb-MINLP approach requires 97% times 

less computation time than that of the bb-NLP approach. When the computation time of 

the three stages is compared, the most computationally expensive stage consists of 

collecting samples from the VPSA simulation. In fact, most of the computation time is 

spent during the sample collection stage, and the model fitting and optimization stages are 

significantly faster.  
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In Table 18, the average computation time per adsorbent is also reported for bb-

NLP. Looking at the average allows us to compare the computational efficiency of the 

algorithm for a single optimization. On average, the bb-NLP approach requires a smaller 

number of samples and computation time for a single adsorbent. This is expected since the 

bb-NLP approach constitutes a simpler problem with 5 input variables only. The bb-

MINLP approach requires more samples and computation time because it is a more 

challenging problem with 80 input variables. In particular, the optimization stage 

contributes to about 43% of the total computation time, while that of the brute-force 

approach is less than 1%. This is also expected since the deterministic optimization of an 

MINLP problem is more difficult than that of the NLP problem. Nevertheless, when the 

total computation requirement is considered, we can conclude that the bb-MINLP approach 

is computationally more efficient overall.  

In terms of solution accuracy, both the bb-MINLP and bb-NLP approaches 

identified Zn-MOF-74 as the best adsorbent with productivity  0.0481 𝑚𝑚𝑐𝑐𝑙𝑙/𝑘𝑘𝑔𝑔 ∙ 𝑠𝑠  and 

 0.0491 𝑚𝑚𝑐𝑐𝑙𝑙/𝑘𝑘𝑔𝑔 ∙ 𝑠𝑠, respectively. While the MINLP search stage correctly identifies the 

optimal adsorbent, the NLP stage can lead to a slightly different optimal result, which is 

typical when applying surrogate-based approaches due to stochasticity caused by different 

sampling locations and model training.  

5.4 Analysis of Adsorbent-Process Interaction using Data Analytics and Machine 

Learning  

In Section 3, we collect all results obtained from the previous analysis (optimal 

process conditions) for all 75 adsorbents. Each adsorbent possesses a particular set of dual-
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site Langmuir equilibrium parameters. Our aim here is to perform some analysis on the 

merged process-material data and gain further insights into the correlations between 

process conditions and adsorbent.  We first compute a correlation matrix to observe how 

all process features and isotherm features are correlated. We then perform Principal 

Component Analysis (PCA) to handle highly correlated variables and observe the 

importance of process and adsorbent features. Finally, we construct machine learning-

based classification and regression models that allow us to predict adsorbent feasibility and 

performance.  

5.4.1 Correlation Matrix of Isotherm and Process Features  

 A correlation matrix is constructed to observe how the input variables are 

correlated. Investigating the correlation between independent variables is an important 

stage in machine learning since multi-collinearity can potentially create difficulty in 

estimating model parameters171.  

Both the adsorption isotherm equation features (i.e., 15 DSL parameters) and 

process features (i.e., optimal operating conditions determined in Section 5.3.1) of all 75 

adsorbents are included in this analysis. In Figure 30, labels 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡11, 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡12, 𝑏𝑏11, 𝑏𝑏12, 𝐼𝐼11, 

𝐼𝐼12, 𝛥𝛥𝛥𝛥1 correspond to DSL parameters and isosteric heat of adsorption for N2; labels 

𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡21, 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡22, 𝑏𝑏21, 𝑏𝑏22, 𝐼𝐼21, 𝐼𝐼22, Δ𝛥𝛥2 correspond to DSL parameters and isosteric heat 

of adsorption for CO2. Note that 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡𝑖𝑖𝑗𝑗  is a saturation capacity for site 𝑚𝑚  for species 𝑗𝑗 

(𝑚𝑚𝑐𝑐𝑙𝑙/𝑚𝑚3),  𝑏𝑏𝑖𝑖𝑗𝑗 is a Langmuir constant for species 𝑚𝑚 (𝑚𝑚3/𝑚𝑚𝑐𝑐𝑙𝑙), 𝐼𝐼𝑖𝑖𝑗𝑗 represents the change 

in the internal energy due to adsorption for species 𝑚𝑚 (𝑘𝑘𝐽𝐽/𝑚𝑚𝑐𝑐𝑙𝑙), and density denotes the 

adsorbent density (𝑘𝑘𝑔𝑔/𝑚𝑚3). 
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Figure 30 shows a correlation matrix generated from 75 adsorbents. As expected, 

isotherm parameters tend to be highly correlated (e.g., 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡11  and 𝑞𝑞𝑠𝑠𝑡𝑡𝑡𝑡12) since these 

parameters are typically estimated by nonlinear fitting of either experimentally collected 

data points or data generated in-silico154. Thus, we can observe higher correlation values 

in the upper left quadrant of the correlation matrix. On the other hand, operation features 

tend to be less correlated, because these are design variables that are optimized. Some 

moderate correlation is still observed among 𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ,𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐  and 𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑  as observed in the 

lower right quadrant of the correlation matrix.  

 

Figure 29. Correlation matrix of 15 isotherm features and 5 process features. Darker 
colors (both blue and red) represent higher correlation. The decision variables are 
also included in the matrix. 
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5.4.2 PCA Results  

 PCA is a dimensionality reduction technique used for data visualization and 

handling data multi-collinearity172. To observe any pattern or clustering among feasible 

and infeasible adsorbents, we combine 15 adsorbent features (i.e., isotherm parameters) 

and 5 optimal process features for 75 adsorbents and perform linear PCA. Note that we 

have tested several nonlinear kernels (e.g., polynomial, radial basis function, sigmoid, and 

cosine), but they did not improve the visualization of feasible/infeasible adsorbents. Due 

to space limitations, we did not include the results here. Figure 30 shows the cumulative 

explained variance vs. the number of principal components (PCs). With just 6 PCs, we can 

explain about 80% of the data variance, which means that we can potentially decrease the 

dimension of the problem from 20 to 6 and still accurately capture most of the data 

variance.  

 

Figure 30. Percentage of variance explained vs. the number of PCs 

For linear PCA, each PC is represented as a linear combination of original features:  

𝑃𝑃𝐶𝐶𝑝𝑝 = ∑ 𝑤𝑤𝑓𝑓(𝑥𝑥𝑓𝑓∈𝐹𝐹 − 𝜇𝜇𝑓𝑓) , where 𝑒𝑒  represents the selected PC and 𝐹𝐹  represents all 20 

isotherm and process features. We can analyze the importance of each feature by analyzing 
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its weight 𝑤𝑤𝑓𝑓, where a feature with larger |𝑤𝑤𝑓𝑓| is considered more important. To compare 

the importance of adsorbent and process features for the first six PCs, we computed their 

percentage contribution, expressed by: % 𝐶𝐶𝑐𝑐𝑚𝑚𝑡𝑡𝑐𝑐𝑚𝑚𝑏𝑏𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚 = 100 ∙
∑ �𝑛𝑛𝑓𝑓′�𝑓𝑓′∈𝐹𝐹′

∑ |𝑛𝑛𝑓𝑓| 𝑓𝑓∈𝐹𝐹
, where 𝐹𝐹′ 

represents a set of either adsorbent or process features. Figure 31 shows the computed 

feature contribution. 

For the first PC, adsorbent features explain about 70% of data variance; for the 

second PC, adsorbent features explain about 50% of data variance. While adsorbent 

features seem to contribute slightly more to the PCs than the process features, it is difficult 

to conclude the existence of a dominant feature. Figure 31 supports our claim that both 

adsorbent and process features contribute to the overall data variance and are both 

important for the VPSA process design.  

 

Figure 31. Feature % contribution of the first 6 PCs. 

 Finally, the first two PCs are plotted to visualize the data in a 2-dimensional space 

and observe any pattern among feasible and infeasible adsorbents. From Figure 32, we can 

observe some clustering of feasible adsorbents in the lower left quadrant of the PC space. 
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In fact, we have observed that the performance of an adsorbent improves as we approach 

the lower left quadrant in the PC space.   

5.4.3 Support Vector Machine (SVM) Classification Model for Adsorbent Feasibility   

 Using the PCs obtained in the previous section, we construct a classification model 

that predicts adsorbent feasibility, assuming that we are operating an adsorbent at optimal 

operating conditions. As shown in Figure 32, the feasible and infeasible adsorbents are 

nearly linearly separable in the 2-dimensional PC space. To exploit this trend, we construct 

a linear SVM classification model to classify adsorbent feasibility using 2 PCs. A linear 

SVM model seeks to find a linear hyperplane that can separate two classes of points and it 

has a regularization hyperparameter 𝐶𝐶, which can be tuned using a grid search94. For model 

training, 80% of the data is used with 5-fold cross-validation, and 20% of the data set is set 

aside to test how well the model generalizes to a new set of data. The resulting linear SVM 

model is also shown in Figure 32. For the training set, the SVM model accuracy is 82%, 

and this error results from the fact that the points are not perfectly linearly separable. For 

the test set, the model accuracy is 100%, which implies good generalizability. While we 

can generally improve the model accuracy by increasing the number of PCs or considering 

nonlinear classification techniques (e.g., rbf kernel), neither of these two approaches 

significantly improved our results (i.e., nonlinear techniques led to ~5% model accuracy 

increase). Hence, a linear SVM model with 2 PCs is chosen for its simplicity and the ease 

of visualization.  
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Figure 32. PCA is performed and the first two PCs are plotted, where feasible 
adsorbents that satisfy all constraints are indicated by green dots. The decision 
boundary found via support vector classification is also displayed. 

5.4.4 Adsorbent Performance Prediction Model  

 In the previous section, we constructed an SVM-based adsorbent feasibility 

classification model using 2 PCs. While this model is sufficient when one is interested in 

determining whether an adsorbent is feasible or not, it is not sufficient to provide detailed 

information on the performance of the VPSA system in terms of product productivity, 

purity, recovery, and specific energy consumption. Thus, we construct a neural network-

based adsorbent performance prediction model to predict the VPSA system performance 

given isotherm parameters and the optimal operating conditions.  
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 Previously in Section 4.1, we have determined that isotherm features (i.e., dual-site 

Langmuir isotherm parameters) tend to be highly correlated, while process features exhibit 

less correlation. Hence, we perform linear PCA on just the isotherm features to reduce the 

dimension from 15 to the selected number of PCs and handle existing correlations between 

isotherm parameters. These isotherm-based PCs are then combined with optimal process 

features to construct a prediction model. Figure 33 summarizes the result of linear PCA. 

Even with just 2 PCs, we can capture more than 60% of data variance; with 5 PCs, we can 

capture ~80% of data variance. When the first two PCs are plotted, we did not observe any 

pattern among feasible and infeasible adsorbents. This further enhances our previous claim 

that both operation and adsorbent features are important in predicting the feasibility of an 

adsorbent; thus, both features must be considered.  

Figure 33. PCA on only isotherm parameters (𝑷𝑷𝑪𝑪𝒂𝒂𝒍𝒍𝒍𝒍): (a) Percentage of variance 
explained vs. the number of PCs, and (b) 2-d representation of PC space 

 After reducing the dimensionality of isotherm features using PCA, the first two PCs 

are combined with the optimal process features, which results in 7 inputs (i.e., 𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠,1, 

𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠,2  𝑃𝑃ℎ𝑖𝑖𝑘𝑘ℎ, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐, 𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑, 𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠, and 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠). These inputs are then used to train 4 neural 

network models that can predict product productivity, purity, recovery, and energy 
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consumption. For the selection of neural network hyperparameters, a grid search is used 

with 5-fold cross-validation to select the best set of hyperparameters from: hyperbolic 

tangent (tanh) or rectified linear unit (relu); the number of hidden layers (from 1 to 4 

layers); the number of nodes per hidden layer (varied from 5 to 30 per layer). The 

productivity, purity, and recovery models are trained using the best result out of three runs 

for all 75 adsorbents. We found that the most challenging output to predict was energy, and 

we hypothesize that this is because the energy constraint is relatively easier to satisfy and 

is often non-active in the optimal solution. This creates some more variation in the optimal 

energy values.  Nevertheless, when using all optimal results (i.e., 225 optimal data points 

from all three runs of 75 adsorbents) to construct an energy consumption neural network 

model, we can generate a model with high accuracy. Table 19 shows the best 

hyperparameters determined from grid search, Figure 34 shows the parity plot of four 

neural network models, and Table 20 shows the train-set and test-set goodness-of-fit given 

by R2. The normalized RMSE is also reported to facilitate the comparison between models 

with different observed ranges. We have observed that increasing the number of PCs does 

not significantly improve the model. Therefore, applying only 2 PCs is a good compromise 

that balances model accuracy and complexity.   

Table 19. Best neural network model determined from hyperparameter grid search 

 Activation # hidden layers 
# nodes per 

hidden 
layer 

Productivity relu 3 5-9-7 
Purity tanh 3 7-9-7 

Recovery relu 4 7-7-5-5 
Energy Consumption tanh 2 5-9 
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As illustrated in Figure 34 and Table 20, we have successfully constructed accurate 

VPSA performance prediction models with average 𝑅𝑅�𝑜𝑜𝑠𝑠𝑒𝑒𝑖𝑖𝑛𝑛2 = 0.98  and 𝑅𝑅�𝑜𝑜𝑒𝑒𝑠𝑠𝑜𝑜2 = 0.86 . 

These models can be used to preliminarily evaluate the performance of an adsorbent using 

isotherm and process features.  

 

Figure 34. Parity plot of productivity, purity, recovery, and energy neural network 
models. The y-axis is the predicted value from a neural network model, and the x-axis 
is the actual simulation output. Note that the energy model is trained using all optimal 
results. 
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Table 20. Train set and Test set R2 and NRMSE for productivity, purity, recovery, 
and energy neural networks. 

 Productivity Purity Recovery Energy 
𝑅𝑅𝑜𝑜𝑠𝑠𝑒𝑒𝑖𝑖𝑛𝑛2  0.99 0.99 0.99 0.94 
𝑅𝑅𝑜𝑜𝑒𝑒𝑠𝑠𝑜𝑜2  0.88 0.90 0.94 0.70 

𝑁𝑁𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑜𝑜𝑠𝑠𝑒𝑒𝑖𝑖𝑛𝑛 1.12e-5 6.23e-4 1.15e-3 4.14 
𝑁𝑁𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑜𝑜𝑒𝑒𝑠𝑠𝑜𝑜 2.20e-4 7.52e-3 9.03e-3 28.50 

5.5 Conclusions and Future Perspectives 

In this work, we propose a surrogate-based optimization approach for the design of 

modular VPSA systems for post-combustion CO2 capture. To achieve optimal 

performance, we consider both the adsorbent selection and process operation conditions to 

design a modular VPSA system. We investigate two different approaches to formulate and 

solve the optimization problem: 1) the bb-NLP approach, where the process optimization 

is performed for each adsorbent, and 2) the bb-MINLP approach, where the adsorbent 

selection and process optimization are performed simultaneously. When all 75 adsorbents 

are compared, the bb-MINLP approach is more efficient with respect to sampling and 

computational requirements.  

In addition to the design of a module, we also demonstrate how machine learning 

classification and regression techniques can be applied to identify feasible adsorbents and 

predict the performance from a purely data-driven perspective. In the 2-dimensional PC 

space, a clustering of feasible adsorbents has been observed, and a linear SVM 

classification is developed. Finally, we construct a neural network-based performance 

prediction model to predict four outputs of the VPSA simulation (i.e., purity, recovery, 

energy consumption, and productivity). These classification and neural network models 

provide valuable preliminary insights into different adsorbents and process performance.  
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CHAPTER 6. MODULE SIZING, COSTING, AND ECONOMIC 

ANALYSIS FOR POWER PLANTS 

6.1 Introduction 

Power plants in the U.S. are one of the major contributing sources of CO2. In 2019, 

electric power plants emitted 1,619 million metric tons of CO2, which corresponds to 32% 

of total U.S. energy-related CO2 emissions173. Currently, three major sources of energy for 

electricity generation are fossil fuels (e.g., coal, natural gas, and petroleum), nuclear 

energy, and renewable energy sources. While the size of the renewable energy market is 

slowly growing, fossil fuel is still a leading source of electricity generation. In particular, 

coal power plants, which produced 23% of energy in the U.S. in 2019, emitted 973 million 

metric tons of CO2; natural gas was used to generate 38% of electricity, emitting 619 

million metric tons of CO2(Table 21).  

Table 21. CO2 emissions by the electric power sector in the U.S. (2019)173 

Source Million metric tons Share of sector total 
Coal 973 60% 

Natural gas 619 38% 
Petroleum 16 1% 

Other 11 1% 
Total 1619 100% 

Carbon capture is one promising solution to mitigate carbon emission. In the 

previous chapter, we have proposed the use of surrogate-based MINLP optimization for 

simultaneous adsorbent selection and process optimization. A set of promising adsorbents 

and the optimal process operating conditions were identified for a VPSA module. In this 

final chapter, we focus on two adsorbents that were previously determined to exhibit good 
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performance: zeolite 13x and Zn-MOF-74. These two adsorbents were selected because 

they have opposing characteristics: Zn-MOF-74 had the highest productivity among all 

feasible adsorbents but it is much more expensive than zeolite 13x; zeolite 13x, while much 

cheaper and more readily available, is less efficient than Zn-MOF-74. Using these two 

adsorbents, we expand our previous work by exploring the feasibility of deploying VPSA 

modules to power plants in the U.S. First, we improve the optimal module design by 

incorporating module dimensions (length and diameter) as additional design variables to 

optimization. Both coal and natural gas sources are explored. We then conduct an economic 

analysis to calculate the capture cost using the power plant data published by the U.S. 

Energy Information Administration (EIA)174. The dataset contains information on 

electricity generation and CO2 emission, which will be used in our economic analysis. As 

some power plants are retiring after 2020, the dataset is reconciled with a list of operating 

power plants beyond 2020. All data manipulation is performed in Python.  

6.2 Process Optimization for Power Plants 

In this chapter, we explore two major sources of CO2 emission: coal and natural gas 

power plants. In 2019, 1899 natural gas power plants generated almost 40% of electricity 

in the U.S., while 308 coal power plants generated 23% of electricity173. Since the number 

of coal power plants is declining and that of natural gas has constantly inclined for the past 

decade, the possibility of including natural gas power plants in the study is explored. Flue 

gas emitted from coal power plants and natural gas power plants have different 

concentrations of CO2: ~14% for coal power plants and ~4% for natural gas power 

plants133. Optimization is performed to determine the optimal module design with 7 design 

variables: adsorption pressure (𝑃𝑃𝑒𝑒𝑑𝑑𝑠𝑠), evacuation pressure (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐), adsorption time (𝑡𝑡𝑒𝑒𝑑𝑑𝑠𝑠), 
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adsorbent loading in the fiber (𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠), volumetric flowrate of the feed (𝑄𝑄𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑), module 

length (𝐿𝐿𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒), and module diameter (𝐷𝐷𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒). Previously in chapter 4, the module 

length and diameter were fixed at 1m and 1/6m, respectively. In this chapter, module length 

and diameter are included as design variables to further enhance the performance of a 

VPSA module.   

6.2.1 Process Optimization for Coal Power Plants 

One major factor that affects the capital cost of a modular facility is 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑, which 

is the molar flow rate of the flue gas per module. A module with increased product 

productivity has a higher 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑. Thus, it can process more flue gas with fewer modules, 

reducing the initial capital investment. On the other hand, the operating cost is significantly 

affected by the energy requirement. Decreasing the energy requirement involves 

decreasing the adsorption pressure, which leads to decreased productivity. To observe how 

these opposing characteristics affect the overall cost of a modular facility, we study 2 

different types of modules in this section.  

Previously, module designs were obtained for Zn-MOF-74 and zeolite 13x by 

maximizing product productivity as the objective. While maximizing productivity allows 

us to obtain an efficient design that can maximize the module capacity, these modules 

require high energy consumption (~800 kW/ton CO2 captured). This may translate to lower 

capital investment but higher operating expenses. To study the tradeoff between capital 

and operating costs, two additional module designs are included in this study by solving 

the following optimization problem:  
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 𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑒𝑒𝑒𝑒𝑐𝑐𝑚𝑚𝑓𝑓𝑚𝑚𝑐𝑐 𝑒𝑒𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔𝑦𝑦 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚 

𝑠𝑠. 𝑡𝑡.𝑃𝑃𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡𝑚𝑚𝑣𝑣𝑚𝑚𝑡𝑡𝑦𝑦 ≥ 0.001 

𝑃𝑃𝑠𝑠𝑐𝑐𝑚𝑚𝑡𝑡𝑦𝑦 ≥ 0.95 

𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣𝑒𝑒𝑐𝑐𝑦𝑦 ≥ 0.9 

(22) 

Four module designs are obtained using the bb-NLP algorithm and shown in Table 22.  

Table 22. Final module design for coal power plants 

 Module Type 1  
(max productivity) 

Module Type 2  
(min energy consumption) 

 Zn-MOF-74 13x Zn-MOF-74 13x 
𝑷𝑷𝒂𝒂𝒍𝒍𝒍𝒍 (atm) 20 15.19 5.34 7.43 
𝑷𝑷𝒏𝒏𝒗𝒗𝒂𝒂𝒄𝒄 (atm) 0.069 0.025 0.011 0.015 

𝝎𝝎𝒂𝒂𝒍𝒍𝒍𝒍 0.15 0.201 0.168 0.249 
𝒂𝒂𝒂𝒂𝒍𝒍𝒍𝒍 (s) 17.3 16.05 97.81 64.48 
𝑸𝑸𝒇𝒇𝒏𝒏𝒏𝒏𝒍𝒍 7.44𝑒𝑒−3 4.52𝑒𝑒−3 1.08𝑒𝑒−3 1.06𝑒𝑒−3 

𝑳𝑳𝒎𝒎𝒐𝒐𝒍𝒍𝒂𝒂𝒍𝒍𝒏𝒏(𝒎𝒎) 0.8 0.81 0.81 0.81 
𝑫𝑫𝒎𝒎𝒐𝒐𝒍𝒍𝒂𝒂𝒍𝒍𝒏𝒏(𝒎𝒎) 0.375 0.286 0.15 0.173 
𝒄𝒄𝒇𝒇𝒏𝒏𝒏𝒏𝒍𝒍 (mol/s) 1.653 0.385 0.0679 0.0654 
Productivity 0.0595 0.0174 0.0135 6.93𝑒𝑒−3 

Specific 
energy 

consumption 
862 782 550 536 

Purity 0.95 0.95 0.95 0.96 
Recovery 0.90 0.90 0.90 0.97 

  As expected, these two types of modules show opposing characteristics. Module 

type 1 has product productivity 2.5 – 4.4 times higher than that of module type 2. This 

results in a higher molar flow 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 per module; thus, less number of modules are required 

to capture CO2. However, the module has a high energy requirement since the module 

needs more energy to reach high 𝑃𝑃𝑒𝑒𝑑𝑑𝑠𝑠 . Module type 2 has a much lower energy 
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requirement; however, its productivity is low, which results in a reduced feed flowrate per 

module. The economic analysis of these modules is presented in section 6.3.   

6.2.2 Process Optimization for Natural Gas Power Plants 

Natural gas power plants emit flue gas with much diluted CO2 than that of coal 

power plants, which makes the capture more energy-intensive. Since our previous work 

only focused on designing a VPSA system for coal power plants, a new module design is 

determined for dry flue gas with 4% CO2 and 96% N2. The optimization is performed by 

choosing the specific energy consumption as the objective. Table 23 shows the optimal 

module design for natural gas power plants. Both module types failed to satisfy all 

constraints. In particular, the specific energy consumption is very high (>2000 kWh/ton 

CO2 captured) to be practical, since the target energy for the post-combustion from a natural 

gas power plant is ~350 kWh/ton CO2
175.  

Additionally, to see whether we can find any feasible design, we tried relaxing the 

recovery constraint. DOE guideline requires the purity of the product stream to be at least 

95% for downstream post-processing176; no requirement exists for product recovery. Thus, 

we relaxed the recovery constraint to 0.8 and 0.85. However, the energy requirement of a 

module was still too high and no feasible adsorbent was found. This implies that the use of 

investigated modules for natural gas power plants is impractical due to their high energy 

requirement. A study with a different set of adsorbents and a more suitable adsorption cycle 

(e.g., temperature vacuum swing adsorption) is therefore suggested.   
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Table 23. Final module design for natural gas power plants 

 Zn-MOF-74 13x 
𝑷𝑷𝒂𝒂𝒍𝒍𝒍𝒍 (atm) 15.60 19.99 
𝑷𝑷𝒏𝒏𝒗𝒗𝒂𝒂𝒄𝒄 (atm) 0.011 0.012 

𝝎𝝎𝒂𝒂𝒍𝒍𝒍𝒍 0.41 0.45 
𝒂𝒂𝒂𝒂𝒍𝒍𝒍𝒍 (s) 86.96 98.11 

𝑸𝑸𝒇𝒇𝒏𝒏𝒏𝒏𝒍𝒍 (𝒎𝒎𝟑𝟑/𝒍𝒍) 4.47𝑒𝑒−3 1.03𝑒𝑒−3 
𝑳𝑳𝒎𝒎𝒐𝒐𝒍𝒍𝒂𝒂𝒍𝒍𝒏𝒏  (𝒎𝒎) 0.80 0.80 
𝑫𝑫𝒎𝒎𝒐𝒐𝒍𝒍𝒂𝒂𝒍𝒍𝒏𝒏  (𝒎𝒎) 0.26 0.18 
Productivity 3.43𝑒𝑒−3 2.19𝑒𝑒−3 

Specific energy 
consumption 2575 2741 

Purity 0.85 0.90 
Recovery 0.92 0.95 

6.3 Economic Analysis of a Modular Facility 

Previously, we have successfully obtained 4 promising module designs for coal 

power plants. To perform economic analysis, we first estimate the cost of a single module. 

Both the capital and operating costs are estimated to calculate the net present value of a 

modular facility.  

6.3.1 Capital Cost Estimation 

The total capital cost of a single module is estimated based on the cost of raw 

materials and the cost of construction. The raw material cost has two main components: 1) 

the cost of fiber, and 2) the cost of carbon steel for module casing.  

6.3.1.1 Fiber Manufacturing Cost Estimation 

The final fiber consists of three main components: adsorbent, polymer, and PCM. 

The weight fraction of adsorbent in the fiber (𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠) is determined from optimization. The 

weight fraction of polymer in the fiber (𝜔𝜔𝑝𝑝𝑜𝑜𝑙𝑙𝑦𝑦𝑚𝑚𝑒𝑒𝑠𝑠) is fixed at 0.25 to maintain the structural 
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integrity of the fiber. Table 24 shows the final fiber composition used to estimate the cost 

of fiber sorbents.  

Table 24. Final fiber composition and fiber weight obtained for a single module 

 Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

 Zn-MOF-74 13x Zn-MOF-74 13x 
𝝎𝝎𝒂𝒂𝒍𝒍𝒍𝒍 0.15 0.20 0.17 0.25 

𝝎𝝎𝒑𝒑𝒐𝒐𝒍𝒍𝒚𝒚𝒎𝒎𝒏𝒏𝒑𝒑 0.25 0.25 0.25 0.25 
𝝎𝝎𝑷𝑷𝑪𝑪𝑷𝑷 0.6 0.55 0.58 0.50 

Total fiber 
weight (kg) 23.81 14.18 3.86 5.25 

Fiber manufacturing also requires additional solvents and non-solvents. The 

required fiber doping composition is obtained from 142. The amounts of adsorbent, polymer 

(CA and PVP), and PCM are adjusted accordingly based on 𝜔𝜔𝑒𝑒𝑑𝑑𝑠𝑠,𝜔𝜔𝑝𝑝𝑜𝑜𝑙𝑙𝑦𝑦𝑚𝑚𝑒𝑒𝑠𝑠 , and 𝜔𝜔𝐺𝐺𝐶𝐶𝑃𝑃. 

The amounts of solvent and non-solvent are calculated based on the total weight of fiber 

per module (Table 25).  

Table 25. Amount of material needed for fiber manufacturing 

 Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Amount (kg) Zn-MOF-74 13x Zn-MOF-74 13x 
CA polymer 3.32 1.98 0.53 0.73 
PVP polymer 2.63 1.56 0.43 0.58 

NMP 39.78 23.69 6.45 8.77 
H2O 5.23 3.11 0.85 1.15 

Adsorbent 3.57 2.85 0.65 1.31 
PCM 14.29 7.78 2.25 2.63 

Raw material costs are estimated by one of the two methods. If the industrial bulk 

price is available for any given year, the price is converted to the current year (2020) using 

cost indices177. On the other hand, if the industrial bulk price is not available, the raw 
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material cost is estimated by converting lab price to industrial bulk price by using the 

following equation178:  

 
𝑃𝑃𝑜𝑜 = 𝑃𝑃𝑙𝑙 �

𝑄𝑄𝑜𝑜
𝑄𝑄𝑙𝑙
�
−0.75

 (23) 

where 𝑃𝑃𝑜𝑜  is the bulk price of 60lb lots in $/kg, 𝑃𝑃𝑙𝑙  is the lab price in $/kg, 𝑄𝑄𝑜𝑜  is the 

representative bulk amount (60lb or 27216g), and 𝑄𝑄𝑙𝑙  is the laboratory scale quantity 

purchased in grams. Table 26 shows the raw material cost required for fiber manufacturing.  

Table 26. Raw material cost for fiber manufacturing 

Material Cost ($/kg) 
CA polymer178 7.80 
PVP polymer 0.37 

NMP178 13.92 
Zeolite 13x178 8.86 
Zn-MOF-74179 146.68 

PCM180 10 
H2O178 0.0012 

Using Table 25 and Table 26, the final fiber cost per module is obtained and shown in 

Table 27.  

Table 27. Final raw material cost of fiber manufacturing per module 

Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Zn-MOF-74 13x Zn-MOF-74 13x 
$1247 $449 $211 $166 

6.3.1.2 Module Sizing  

The amount of carbon steel needed for module construction is estimated to 

determine the final cost of a module. From optimization, we have determined the required 
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module length (𝐿𝐿𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒 ), module diameter (𝐷𝐷𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒 ), and the maximum operating 

pressure (𝑃𝑃𝑒𝑒𝑑𝑑𝑠𝑠). For a pressure vessel, the required wall thickness is determined from either 

the hoop stress or the longitudinal stress177:  

 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑝𝑝 =
𝑃𝑃𝐷𝐷

2𝑆𝑆𝐸𝐸 − 1.2𝑃𝑃
, 𝑡𝑡𝑙𝑙𝑜𝑜𝑛𝑛𝑘𝑘𝑖𝑖𝑜𝑜𝑢𝑢𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒𝑙𝑙 =

𝑃𝑃𝐷𝐷
4𝑆𝑆𝐸𝐸 + 0.8𝑃𝑃

 (24) 

where 𝑃𝑃 is the pressure, 𝐷𝐷 is the diameter, 𝑆𝑆 is the maximum allowable stress, and 𝐸𝐸 is the 

welded joint efficiency. The final thickness is the maximum of 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑝𝑝 and 𝑡𝑡𝑙𝑙𝑜𝑜𝑛𝑛𝑘𝑘𝑖𝑖𝑜𝑜𝑢𝑢𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒𝑙𝑙. 𝑆𝑆 

is assumed to be 12900; 𝐸𝐸  is assumed to be 0.85 for a double-welded butt joint. An 

additional 2mm margin is allowed for wall thickness to account for the corrosion of a vessel 

over time. Table 28 shows the required wall thickness and the final amount of carbon steel 

needed to construct a single module.  

Table 28. Required wall thickness and amount of carbon steel needed for module 
construction 

 Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Amount (kg) Zn-MOF-74 13x Zn-MOF-74 13x 
Thickness 

(mm) 7.11 4.94 2.54 2.86 

Carbon steel 
(kg) 53.56 28.67 7.70 10.02 

6.3.1.3 Total capital cost estimation  

The total capital cost is estimated using the bare module method to account for all 

direct and indirect costs for module construction and deployment177. A bare module factor 

of 3.05 is used and multiplied to the sum of the cost of raw materials. The total installation 

cost of a module is shown in Table 29.  
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Table 29. Total capital cost per module (module factor = 3.05) 

 Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Per module  Zn-MOF-74 13x Zn-MOF-74 13x 
Total cost $3960 $1452 $667 $535 

6.3.2 Operating Cost Estimation 

6.3.2.1 Electricity  

Electricity is one major component of the operating cost. The cost of electricity can 

be estimated by the specific energy consumption shown in Table 23. For each module, the 

total annual energy consumption is calculated as follows: 

 𝐸𝐸𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔𝑦𝑦 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚 (𝑘𝑘𝑊𝑊ℎ)

= 𝑆𝑆𝑒𝑒𝑒𝑒𝑐𝑐𝑚𝑚𝑓𝑓𝑚𝑚𝑐𝑐 𝑒𝑒𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔𝑦𝑦 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑡𝑡𝑚𝑚𝑐𝑐𝑚𝑚 �
𝑘𝑘𝑊𝑊ℎ

𝑡𝑡𝑐𝑐𝑚𝑚 𝐶𝐶𝑂𝑂2
�

× 𝐶𝐶𝑂𝑂2,𝑐𝑐𝑒𝑒𝑝𝑝𝑜𝑜𝑢𝑢𝑠𝑠𝑒𝑒𝑑𝑑(𝑡𝑡𝑐𝑐𝑚𝑚 𝐶𝐶𝑂𝑂2) 

(25) 

The cost of electricity is assumed as $0.04/kWh.  

6.3.2.2 Maintenance & Labor 

The maintenance cost is estimated to be 3.5% of the capital cost177. Assuming a 

modular facility requires 2 operators per shift, the annual cost of direct wages and benefits 

is calculated by177:  
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𝐷𝐷𝑊𝑊&𝐼𝐼 �

$
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�
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(26) 

Therefore, DW&B is estimated to be $728,000/𝑦𝑦𝑐𝑐. 

6.3.2.3 Miscellaneous Expense 

VPSA module contains fiber sorbents, which need to be replaced as the performance 

degrades over time. We assume that the fiber sorbents need to be replaced every 24 months. 

To calculate the cost of replacing fiber sorbents, we assume that it can be estimated by the 

cost of raw materials needed to construct the fiber. Other incurring costs are assumed to be 

lumped into maintenance & labor cost.  

6.4 Feasibility Study on a Modular Facility: Capture Cost and Energy Penalty 

We present a feasibility study on the proposed modular carbon capture facility. Plant 

Bowen, one of the largest coal power plants in the U.S., is introduced as a representative 

case study (Table 30).  

Table 30. Plant Bowen summary 

Capacity (MW) Generation (GWh) CO2 emission (ton/year) 
3499 13,583 12,421,585 

6.4.1 Net Present Value and Cost of Capture  
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An economic analysis is performed to determine the cost of CO2 capture. The total 

capital cost depends on the number of modules required, which can be calculated as 

follows:  

 
𝑁𝑁𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒 =

𝑁𝑁𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑
𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑

 (27) 

where 𝑁𝑁𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 is the molar flow rate of the flue gas emitted from the power plant and 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 

is the molar flow rate per module.  

The net present value (NPV) and equivalent annualized cost (EAC) are calculated 

assuming a plant life of 20 years and a discount rate of 10%. Table 31 shows the total 

capital and operating expenses, NPV, and EAC. The cost of capture is obtained by 

normalizing the annualized cost by the amount of CO2 captured.  

Table 31. Summary of economic analysis on power plant Bowen 

 Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Per module Zn-MOF-74 13x Zn-MOF-74 13x 
$/module $3960 $1452 $667 $535 
𝑁𝑁𝑚𝑚𝑜𝑜𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒 37,907 162,903 922,455 956,883 

Total module 
cost $150M $237M $616M $512M 

Electricity cost $385M $350M $246M $256M 
Maintenance & 

Labor $3.77M $6.37M $17.74M $14.63M 

Adsorbent 
replacement $47.29M $73.13M $195M $159M 

NPV $(3.63B) $(3.53B) $(3.55B) $(3.38B) 
EAC $(427M) $(415M) $(417M) $(397M) 

EAC/ton CO2 $(38.15) $(37.05) $(37.34) $(33.24) 

 The cost of capture per ton of CO2 seems promising (~$35/ton CO2). However, 

plant Bowen emits a large quantity of flue gas, which means many modules are required 
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to process all flue gas, especially if the plant uses module type 2 (i.e., 900,000+ modules). 

Deploying VPSA modules to all power plants in Georgia will require approximately 70 

million modules. Thus, it could be difficult to manufacture and install such a large number 

of modules. A more comprehensive study is needed to evaluate the feasibility of a modular 

facility.  

 

Figure 35. The number of modules required for coal power plants in the U.S. The 
circle size is proportional to the required number of type 2 module with zeolite 13x.  

6.4.2 Energy Penalty 

Many carbon capture technologies are currently limited by high energy penalty140. 

Therefore, an important factor that determines the feasibility of a modular facility is the 

energy requirement. In this work, the energy penalty is defined as the total amount of 

electricity needed for CCS divided by the total electricity generated by the power 

plant175,181. Table 32 shows the energy penalty for four different modules. The energy 

penalty of module type 1 is 71% and 64%, respectively; that of module type is 45% and 
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47%, respectively. While module type 2 has a lower energy penalty, these numbers are still 

too high for the modules to be implementable.   

Table 32. Energy penalty of VPSA modules for plant Bowen 

Module Type 1 
(max productivity) 

Module Type 2 
(min energy consumption) 

Zn-MOF-74 13x Zn-MOF-74 13x 
71% 64% 45% 47% 

6.5 Conclusion & Future Perspectives  

In this chapter, we present a comprehensive study on a VPSA modular facility for 

carbon capture. We expand chapter 4 by: 1) enhancing the performance of a VPSA module 

by incorporating additional design variables, 2) exploring power plants with different 

sources, 3) estimating the capital and operating cost of a modular facility, and 4) 

performing an economic analysis for a feasibility study. A case study on plant Bowen is 

presented. While the normalized cost of capture is promising (~$35/ton of CO2 captured), 

a modular facility is still hindered by the high energy penalty. Therefore, we can conclude 

that deploying these modules to actual power plants is not promising at the moment and 

more improvements are needed. This study only provides a preliminary cost estimate of a 

modular facility; thus, a more comprehensive cost analysis is suggested for future work. 

Furthermore, the cost of capture can be further reduced by exploring different options for 

selling the captured CO2 (e.g., enhanced oil recovery). 
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CHAPTER 7. CONCLUSION 

7.1 Conclusion 

Surrogate-based optimization has recently gained wide attention in the chemical 

industry, which is linked to the development in the fields of machine learning, digitization, 

and data storage systems. Unlike equation-based optimization, the surrogate-based 

approach only relies on process data generated from a high-fidelity simulation. This data 

is used to construct a low-fidelity surrogate, or machine learning, model, which is much 

easier to optimize.  

This thesis focuses on studying various strategies for surrogate-based optimization, 

ranging from data sampling to model construction and optimization. In chapter 3, we 

explored various SSR techniques to construct low-complexity surrogate models. We 

compared the performance of SSR models with that of GP and concluded that while SSR 

models perform well for low-dimensional problems, GP is superior for high-dimensional 

and high-complexity problems. In chapter 4, we proposed a novel algorithmic framework 

for surrogate-based MINLPs, which does not require relaxing the integrality constraint. 

This algorithm also allows parallel searching for multiple promising binary solutions, can 

incorporate known/explicit constraints for gray-box problems, and supports various types 

of machine learning models and optimization solvers. We also propose the best sampling 

strategy for MINLP problems. The algorithm has been released as an open-source Python 

library.  
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 In the final two chapters, we present a case study on modular carbon capture. In 

chapter 5, we perform simultaneous adsorbent selection and process optimization using the 

surrogate-based MINLP algorithm. The algorithm successfully identified the best 

adsorbent among 75 possible options and accurately determined the optimal operating 

conditions. In chapter 6, we present an extensive analysis of a modular facility. The capital 

and operating cost of a single module is calculated for several promising module designs. 

An economic analysis is performed to determine the feasibility of a modular facility. We 

conclude that the proposed modular facility has an energy requirement that is still too high 

to be practical. 

7.2 Future Work 

For future work, two main areas can be explored. One area is algorithm improvement 

for surrogate-based optimization. The algorithm has been so far tested on mid-size MINLP 

problems (up to 29 dimension) and can be expanded to higher-dimensional problems. This 

requires: 1) a more efficient algorithmic framework to find a solution within a reasonable 

time, 2) a more flexible and accurate surrogate model that can approximate complex 

physical systems, and 3) extensive testing of the algorithm on a set of high-dimensional 

benchmark problems. These enhancements will allow one to use the proposed algorithm 

for high-dimensional problems, which are often seen in real-life problems.  

The second area is modular process intensification for carbon capture. Several 

challenges currently remain to commercially deploy the modules to power plants; hence, 

three main improvements are suggested. First, the efficiency of a module should be 

improved to lower the energy penalty. Currently, the energy requirement of a VPSA 
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module is too high to be implementable. Therefore, lowering the energy requirement is a 

critical step. Second, several assumptions are made in this work to obtain a preliminary 

cost of a modular facility. A more extensive cost analysis is therefore suggested. Finally, a 

supply chain network optimization study is proposed. After we obtain a more efficient 

module design, a supply chain network optimization can allow one to determine how and 

what type of module should be deployed to minimize the cost of capture. The supply chain 

network can be further enhanced by including the transportation and storage cost and 

exploring various options for the usage of captured CO2. This study will provide valuable 

insights into modular carbon capture. 
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APPENDIX 

A. Process Synthesis Case Study: Original Problem Formulation adapted from 131 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 𝑚𝑚 = 5𝑦𝑦1 + 8𝑦𝑦2 + 6𝑦𝑦3 + 10𝑦𝑦4 + 6𝑦𝑦5 + 7𝑦𝑦6 + 4𝑦𝑦7 + 5𝑦𝑦8 − 10𝑥𝑥3 − 15𝑥𝑥5 + 15𝑥𝑥10

+ 80𝑥𝑥!7 + 25𝑥𝑥19 + 35𝑥𝑥21 − 40𝑥𝑥9 + 15𝑥𝑥14 − 35𝑥𝑥25 + exp(𝑥𝑥3) + exp �
𝑥𝑥5
1.2

�

− 6.5 ln(𝑥𝑥10 + 𝑥𝑥17 + 1) 

𝑠𝑠. 𝑡𝑡.−1.5 ln(𝑥𝑥19 + 1) − ln(𝑥𝑥21 + 1) − 𝑥𝑥14 ≤ 0 

− ln(𝑥𝑥10 + 𝑥𝑥17 + 1) ≤ 0 

−𝑥𝑥3 − 𝑥𝑥5 + 𝑥𝑥10 + 2𝑥𝑥17 + 0.8𝑥𝑥19 + 0.8𝑥𝑥24 − 0.5𝑥𝑥9 − 𝑥𝑥14 − 2𝑥𝑥25 ≤ 0 

−𝑥𝑥3 − 𝑥𝑥5 + 2𝑥𝑥17 + 0.8𝑥𝑥19 + 0.8𝑥𝑥21 − 2𝑥𝑥9 − 𝑥𝑥14 − 2𝑥𝑥25 ≤ 0 

−2𝑥𝑥17 − 0.8𝑥𝑥19 − 0.8𝑥𝑥21 + 2𝑥𝑥9 + 𝑥𝑥14 + 2𝑥𝑥25 ≤ 0 

−0.8𝑥𝑥19 − 0.8𝑥𝑥21 + 𝑥𝑥14 ≤ 0 

−𝑥𝑥17 + 𝑥𝑥9 + 𝑥𝑥25 ≤ 0 

−0.4𝑥𝑥14 − 0.4𝑥𝑥21 + 1.5𝑥𝑥14 ≤ 0 

0.16𝑥𝑥19 + 0.16𝑥𝑥21 − 1.2𝑥𝑥14 ≤ 0 

𝑥𝑥10 − 0.8𝑥𝑥17 ≤ 0 

−𝑥𝑥10 + 0.4𝑥𝑥17 ≤ 0 

exp(𝑥𝑥3) − 10𝑦𝑦1 ≤ 1 

exp �
𝑥𝑥5
1.2

� − 10𝑦𝑦2 ≤ 1 

𝑥𝑥9 − 10𝑦𝑦3 ≤ 0 (𝐺𝐺) 

0.8𝑥𝑥19 + 0.8𝑥𝑥21 − 10𝑦𝑦4 ≤ 0 
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2𝑥𝑥17 − 2𝑥𝑥9 − 2𝑥𝑥25 − 10𝑦𝑦5 ≤ 0 

𝑥𝑥19 − 10𝑦𝑦6 ≤ 0 (𝐺𝐺) 

𝑥𝑥21 − 10𝑦𝑦7 ≤ 0 (𝐺𝐺) 

𝑥𝑥10 + 𝑥𝑥17 − 10𝑦𝑦8 ≤ 0 (𝐺𝐺) 

𝑦𝑦1 + 𝑦𝑦2 = 1 (𝐺𝐺),𝑦𝑦4 + 𝑦𝑦5 ≤ 1(𝐺𝐺) 

−𝑦𝑦4 + 𝑦𝑦6 + 𝑦𝑦7 = 0 (𝐺𝐺),𝑦𝑦3 − 𝑦𝑦8 ≤ 0 (𝐺𝐺) 

𝑦𝑦 ∈ {0,1}8,𝑡𝑡 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 𝑥𝑥 = �𝑥𝑥𝑗𝑗: 𝑗𝑗 = 3,5,10,17,19,21,9,14,25� ∈ ℝ9 

𝑡𝑡𝑇𝑇 = {0,0,0,0,0,0,0,0},𝑏𝑏𝑇𝑇 = {2,2,1,2,2,2,2,1,3} 

 

B. Process Synthesis Case Study: Gray-box Formulation in the scaled space 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 𝑓𝑓�𝑥𝑥𝑖𝑖′,𝑑𝑑𝑗𝑗� 

𝑠𝑠. 𝑡𝑡.𝑔𝑔�𝑐𝑐�𝑥𝑥𝑖𝑖′,𝑑𝑑𝑗𝑗� ≤ 0 

2𝑥𝑥9′ − 10�
1 − 𝑑𝑑6,0

𝑑𝑑6,1 − 𝑑𝑑6,0
� ≤ 0 

2𝑥𝑥19′ − 10�
1 − 𝑑𝑑7,0

𝑑𝑑7,1 − 𝑑𝑑7,0
� ≤ 0 

𝑥𝑥10′ + 2𝑥𝑥17′ − 10�
1 − 𝑑𝑑8,0

𝑑𝑑8,1 − 𝑑𝑑8,0
� ≤ 0 

�
1 − 𝑑𝑑1,0

𝑑𝑑1,1 − 𝑑𝑑1,0
�+ �

1 − 𝑑𝑑2,0

𝑑𝑑2,1 − 𝑑𝑑2,0
� = 1 

�
1 − 𝑑𝑑4,0

𝑑𝑑4,1 − 𝑑𝑑4,0
�+ �

1 − 𝑑𝑑5,0

𝑑𝑑5,1 − 𝑑𝑑5,0
� ≤ 1 
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−�
1 − 𝑑𝑑4,0

𝑑𝑑4,1 − 𝑑𝑑4,0
�+ �

1 − 𝑑𝑑6,0

𝑑𝑑6,1 − 𝑑𝑑6,0
�+ �

1 − 𝑑𝑑7,0

𝑑𝑑7,1 − 𝑑𝑑7,0
� ≤ 1 

�
1 − 𝑑𝑑3,0

𝑑𝑑3,1 − 𝑑𝑑3,0
� − �

1 − 𝑑𝑑8,0

𝑑𝑑8,1 − 𝑑𝑑8,0
� ≤ 0 

𝑑𝑑𝑗𝑗,0 + 𝑑𝑑𝑗𝑗,1 = 1, 𝑗𝑗 = 1, … ,8 

𝑑𝑑𝑗𝑗 ∈ {0,1}16, 0 ≤ 𝑥𝑥𝑖𝑖′ ≤ 1  
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