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To explain all nature is too difficult a task for any one man or even for any one age. ’Tis

much better to do a little with certainty and leave the rest for others that come after you.

Isaac Newton
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SUMMARY

This thesis presents results from high-resolution numerical simulations focusing on un-

derstanding the fundamental behavior of isotropic turbulence and mixing at high Reynolds

numbers. Direct numerical simulations are performed using Fourier pseudo-spectral meth-

ods on leadership-class supercomputers to reach world-leading problem sizes, exceeding

the prior state-of-the-art. A key emphasis is on the development of a novel computational

algorithm that can simulate flows at very high Reynolds numbers and resolutions using

modern heterogeneous platforms consisting of both traditional Central Processing Unit

(CPU) and Graphical Processing Units (GPU). The resulting simulations provide insights

into the behavior of localized high-amplitude extreme events in velocity and passive scalar

fields, including the related subject of multifractal properties of turbulent flows. The sim-

ulations reported in this thesis add to a major turbulence simulation database that can be

used to address many unresolved questions in turbulence theory.

Turbulent flows are well known for the intermittent occurrence of intense strain rates

and local rotation acting on individual fluid elements. The intensities of these “extreme

events” increase with Reynolds number. For accurate results, the small scales must be well-

resolved. This places stringent resolution requirements on numerical simulations at ever-

larger problem sizes. In this work, an advanced GPU algorithm employing the principle of

batched asynchronism has been developed to target dense node heterogeneous architecture

machines like Summit at Oak Ridge National Laboratory (ORNL), which at a theoretical

peak of 200 petaflops/second is currently the second fastest supercomputer in the world.

Key elements enabling high performance in this code include aggressive optimizations of

data copies between CPU and GPU, network communication, and overlapping data copies

and computations on the GPU. Limitations on problem size due to the smaller memory are

avoided by processing data residing on the CPU in batches on the GPU while overlapping

data copies and computations. Favorable performance as measured by wallclock time and
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GPU speedup is obtained up to a world-leading resolution of 184323 (over 6 trillion grid

points) on 3072 Summit nodes (two thirds of full system). The algorithm was further

extended to track Lagrangian fluid particles. Significant effort has also been expended

towards a more portable implementation using advanced provisions of the latest OpenMP

programming interface, to be deployed on an exascale computer named Frontier to arrive

at ORNL by early 2022, with 327683 resolution as the target. Challenges encountered in

ensuring interoperability between OpenMP and GPU libraries are discussed.

Although the new algorithm developed allows high resolution simulations, high com-

putational demands in part due to time-stepping requirements have resulted in such simu-

lations often being short, which raises questions about the adequacy of statistical sampling

and independence. The second topic in this thesis is the development of a new approach

to address these simulations. In this new paradigm, referred to as “Multiple Resolution

Independent Simulations” (MRIS), ensemble averaging is performed over multiple short

simulation segments at high resolution, each evolving from lower-resolution snapshots pos-

sessing a strong degree of statistical independence by virtue of being well separated in time.

Using this approach, various aspects of small-scale intermittency are studied through statis-

tics of dissipation rate and enstrophy, where high resolution in both space and time helps

capture extreme fluctuations in the velocity gradients accurately. Specifically, moments of

3D local averages of energy dissipation and enstrophy are computed and their behavior in

the inertial range are analyzed to identify power-law scalings predicted by Kolmogorov’s

refined similarity theory. Conditional moments formed between these two quantities show

that, while extreme energy dissipation is typically accompanied by extreme enstrophy, the

reverse is not always true.

The best-resolved simulation datasets at several Reynolds numbers are used to study

intermittency in the energy dissipation rate within a multifractal framework. While mul-

tifractality has been investigated experimentally at least three decades ago, results at high

resolution and Reynolds numbers and using energy dissipation computed exactly using all
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nine velocity gradients are not commonly found in the literature. Probability density func-

tions of energy dissipation with tails modeled as stretched exponential are used to compute

the multifractal spectrum. The results obtained are found to exhibit only a weak depen-

dence on Reynolds number within the range considered in the present work. Results on

the multifractal spectrum also indicates the existence of negative fractal dimensions cor-

responding to regions of very high dissipation rate. Studies of incipient singularities of

different strengths are carried out to understand the energy dissipation contribution and

volume occupied by such singularities in the flow at different Reynolds numbers. A related

issue is the relative contributions of dissipation rate of different intensities to moments at

various orders. The results show that moderate to high intensity regions (O(100) times

the mean) contribute a significant fraction to the higher order moments while lower order

moments are dominated by energy dissipation a few times (O(10)) the mean.

The MRIS approach is also employed to study intermittency in turbulent mixing, through

statistics of the dissipation rate of passively transported scalar quantities. Simulations with

scalars of moderate molecular diffusivity are performed in the presence of a uniform mean

gradient at moderate Reynolds numbers and high resolution. Statistics of scalar gradients

show that the rate of return to local isotropy with increasing Reynolds number is slow. Lo-

cal averages of scalar dissipation rate were also analyzed and power-law behaviors were

observed. The results also show that stricter resolution requirements are necessary for the

scalar field compared to the velocity field.

The final topic of the thesis focuses on the study of stratified flows observed in many

atmospheric and oceanic settings, where density variations due to the presence of active

scalars affect the behavior of the flow as well. Both stable and unstable stratification are

considered. To understand the energy cascade and anisotropy development, the Reynolds-

stress budget is computed in a time-resolved manner. Results show that the flow energetics

are determined by energy dissipation and buoyancy flux, which can either be opposing each

other or acting simultaneously to suppress the large fluctuations.
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CHAPTER 1

INTRODUCTION

Turbulent flows, characterized with fluctuations in flow properties occurring over a wide

range of scales (Pope, 2000), especially at high Reynolds number, are very common in sci-

ence and engineering (pollutant dispersion, combustion, ocean dynamics, astrophysics, to

name a few). Given that turbulence occurs in such diverse contexts, considerable effort has

been expended in pursuit of universal properties of turbulence, starting with Kolmogorov’s

path-breaking work in 1941 (Kolmogorov, 1941). Turbulence is well known for the in-

termittent occurrence of intense strain rates and local rotation acting on individual fluid

elements, and for its ability to provide efficient mixing, which is, for instance, essential in

aircraft engines. In applications, high strain rate can lead to combustion instabilities, while

high rotation rate (or vorticity) can lead to preferential concentration of inertial particles in

multi-phase flows. Fluctuations representing the small scales can be extreme, with samples

of order 1000 times or higher compared to averaged values. An accurate understanding of

small-scale intermittency (Kolmogorov, 1962; Sreenivasan & Antonia, 1997; Frisch, 1995)

is thus of both fundamental and practical interest.

A powerful strategy for fundamental understanding is to compute all the scales accord-

ing to exact equations, where hypotheses of scale similarity suggest simplified boundary

conditions are appropriate when the small scales are of the greatest interest. In this thesis,

direct numerical simulation (DNS) using a Fourier pseudo-spectral approach (Patterson &

Orszag, 1971; Canuto et al., 1988) on a simple cubic domain with periodic boundary con-

ditions is used as the primary research tool. Because of the wide range of scales that need to

be resolved, DNS is computationally intensive. Indeed, turbulence simulations using DNS

have been a well-recognized grand challenge in high performance computing for many

years (Yokokawa et al., 2002). With the evolution of computing power by over 1 million
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times in the past 25 years, simulations involving of order 1 trillion grid points or more

have become a reality (Lee et al., 2013; Yeung et al., 2015; Ishihara et al., 2016). Most

of these works have exploited massive parallelism, where performance ultimately tends to

be limited by the cost of communication among tens or hundreds of thousands of paral-

lel processors. However, as computing approaches the Exascale era, with heterogeneous

architectures based on Graphical Processing Units (GPUs) being increasingly dominant, a

major re-think is necessary.

In pseudo-spectral methods (Canuto et al., 1988), nonlinear terms are evaluated in phys-

ical space and then transformed to Fourier space, avoiding extremely costly convolution

integrals. These simulations are inherently communication intensive because of the need

to collect complete lines of data in the machine memory before transforms can be taken.

Until 2019, the largest simulations have been achieved via massive CPU-based parallelism.

However, trends in the latest machine architecture towards the exascale (theoretical limit

at 1018 floating point operations per second) appear to favor nodes with multiple cores,

accelerators and large memory (dense nodes) where new programming approaches to op-

timize on-node and off-node data transfer become essential. For example, Summit at the

Oak Ridge Leadership Computing Facility (OLCF), has fewer but much denser nodes than

its predecessor machine (Titan). The upcoming exascale machines, Frontier at OLCF and

Aurora at Argonne Leadership Computing Facility (ALCF) will have a similar dense node

heterogeneous architecture as well. Utilizing GPUs instead of CPUs for very large problem

sizes also presents new challenges, since the amount of GPU memory is substantially less

than CPU memory.

The first topic of this thesis addresses the nontrivial task of implementing a new pseudo-

spectral turbulence code capable of reaching unprecedented problem sizes at the high

throughput needed to complete high resolution simulations on Summit. The shift to fewer

but denser nodes motivates a design strategy of hierarchical parallelism, with a fine grained

parallelism mapped to GPU threads coupled to a high level parallelism managed by fewer
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MPI processes compared to traditional massive parallelism via CPUs.

The overall strategy, especially at scale, is based on the expected needs to (1) improve

MPI performance and to (2) use GPUs efficiently for large problem sizes. To improve

MPI performance, the communication overhead can be reduced by using fewer MPI pro-

cesses, which is well facilitated by Summit’s configuration as a modest number of dense

nodes. The local problem size per MPI process can be increased by utilizing the larger CPU

memory without being restricted by the smaller GPU memory. A hybrid MPI+OpenMP ap-

proach, where MPI expresses distributed memory parallelism across nodes and OpenMP

expresses shared memory parallelism within a node, enables further reduction in the num-

ber of MPI ranks for the same problem size. In addition, the promise of overlapping

host-based communication using nonblocking MPI collectives was studied, which provided

good but not the best performance.

The considerations above tend to reduce communication overhead and hence make the

code more readily amenable to the benefits of GPU acceleration. In order to utilize the

GPUs for large problem sizes, the new algorithm uses a batching strategy, with the data

being processed on the GPU in smaller GPU-sized pieces. The costs of data movement

and computations on the GPUs are aggressively minimized. This is achieved by, firstly,

enabling asynchronism to overlap computation and data movement on different batches of

data. Secondly, using custom data movement kernels that are highly efficient at perform-

ing strided copies on the device. And finally, leveraging optimized NVIDIA libraries on

the GPU to accelerate computations (e.g. cuFFT for 1-D FFTs). This approach is rel-

evant to the broader question of how computations (such as 3D FFTs) that are inherently

communication-intensive can be re-imagined to benefit from new architectures whose prin-

cipal advantage is fast computation.

The significant role of communication in the application implies that neither sustained

flop rate nor scalability are the most relevant performance metrics. Instead, the scalabil-

ity of the new code is compared against a code performing only 3D transpose all-to-all

3



calls. The performance of the two are comparable with only a small difference to account

for data copies and computations. The new algorithm makes it possible to perform sim-

ulations of three-dimensional isotropic turbulence at a problem size of 184323 (6 trillion)

grid points, which (within some constraints discussed further in chapter 2) is the largest

problem size that is feasible on Summit for production purposes. This new grid resolution

is expected to be instrumental in further advances into fundamental understanding of tur-

bulence, especially those which are highly dependent on the presence of a wide range of

scales that are represented on a finite solution domain with higher accuracy than previously

practiced in the literature. The CPU to GPU speedup recorded is over 4.5X for a problem

size equivalent to the largest reported in the literature prior to this work. This work was

presented as a Best Student Paper Finalist (Ravikumar et al., 2019) at the Supercomputing

2019 conference.

Along with simulations of the velocity field alone, the newly developed batched asyn-

chronous code can simulate both passive and active scalars in the presence of mean gradi-

ents. Passive scalars evolving according to the advection-diffusion equation can be readily

handled in the pseudo-spectral framework, with the diffusion term being treated exactly

through an integrating factor, similar to the viscous term for velocity. However, the two-

way coupling terms between the velocity and scalar field, when tracking active scalars,

introduces challenges in numerical resolution. To address these challenges, the system

of governing equations in wavenumber space may be diagonalized such that the two-way

coupling terms can also be treated exactly through an integrating factor.

The GPU DNS algorithm outlined above provides the values of velocity fluctuations

at a set of N3 grid points in three-dimensional (3D) space. While this so-called Eulerian

framework is natural as far as partial differential equations are concerned, there is also

much interest in studying turbulence using a Lagrangian description from the viewpoint

of an observer moving with the instantaneous flow. The Lagrangian perspective (Yeung,

2002) is of vital importance in the study of turbulent dispersion of passive contaminants in
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air quality modeling, the air- or water-borne transmission of disease agents, among many

other examples. To obtain Lagrangian information requires an ability to track the motion

of infinitesimal fluid particles, which is readily achieved in DNS through the calculation

of particle velocity via interpolation at the grid points (Yeung & Pope, 1988). A particle

tracking algorithm based on cubic spline interpolation has been added to the GPU DNS

code and tested to perform with high efficiency on Summit. Cubic spline interpolation

consists of two major operations, namely (1) the generation of cubic spline coefficients and

(2) the use of these coefficients for the velocity of a large number of particles. The first of

these is of an Eulerian, grid-based nature, and hence amenable to a GPU implementation

using the principle of batched asynchronism above. The second operation carries a cost

that is proportional to the particle count Np, which is small compared to N3. The highly

scalable implementation described later in this thesis has been shown to be very effective

in minimizing communication costs, thus leading to a GPU speedup even higher than that

for the Eulerian velocity field alone.

The code development efforts on Summit, as described above, have relied heavily

on CUDA Fortran to target the NVIDIA GPUs. However, future exascale architectures

such as Frontier at OLCF and Aurora at ALCF make use of AMD and Intel GPUs re-

spectively, while CUDA, which is specific to programming NVIDIA GPUs, will not be

supported. Therefore, a portable implementation of this algorithm is essential to run on

different hardware with minimal changes. The OpenMP programming model is a widely

accepted standard, with more recent versions supporting advanced target offload features

which are not well-supported on Summit. Recent code development efforts have focused

on implementing the batched asynchronous algorithm using OpenMP to target GPUs. Ad-

vanced OpenMP 5.0 features like DETACH and OpenMP TASKs are used to ensure the de-

sired asynchronous behavior is achieved. An important goal is to allow the future portable

OpenMP-enabled GPU code to scale up to resolution as high as 327683 on the exascale

machine Frontier when it becomes available.
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In turbulence, fluctuations can arise over a wide range of scales, that increases with

Reynolds number. It is important to be able to quantify, or predict, how fluctuations at

different scale sizes behave and interact with one another. For example, while the velocity

fluctuations (dominated by the large scales) are usually close to Gaussian distributed, the

fluctuating velocity gradients, are highly non-Gaussian and prone to very large departures

from the mean. These regions of intense straining and rotation, quantified by the energy

dissipation rate (ε) and enstrophy (Ω) respectively, are short-lived in time and highly lo-

calized in space. Capturing these so-called “extreme events” accurately places stringent

resolution requirements on the numerical simulations. The classical Kolmogorov 1941

scale-similarity hypothesis (Kolmogorov, 1941) has provided a good starting point in the

search for a universal behavior. However, intermittency as reflected in the statistical prop-

erties of εr, the energy dissipation rate averaged over a scale size r (Frisch, 1995), must

be addressed. The statistics of locally averaged dissipation rate have a key role in inter-

mittency corrections in turbulence theory (Kolmogorov, 1962), in particular in the inertial

range, which itself requires high Reynolds number. Simulations are conducted using the

successfully developed numerical algorithm, capable of high Reynolds number and resolu-

tion, necessary for accurate studies of fine-scale intermittency.

The quality of results from any DNS depends on the numerical methods used, the de-

gree to which both large scales and small scales are faithfully represented, in both time and

space, as well as the adequacy of statistical sampling. For flows with a stationary state,

the conventional approach to ensure good sampling is by running a long simulation for say

O(10) eddy-turnover times (TE , defined to be the ratio of a longitudinal integral length

scale to the r.m.s. fluctuation of a velocity component), performing post-processing on

data saved at regular time intervals, and finally averaging over multiple realizations. How-

ever, since numerical stability (in Runge-Kutta methods and other schemes using explicit

discretization in time) requires that the time step ∆t scales with the grid spacing (∆x),

computational cost for a given physical time period increases at least as fast as N4. This
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means every halving of ∆x leads to a 16X increase in cost — which exceeds consider-

ably the performance increase available in most newly installed top-ranked machines over

their predecessors. It is, in fact, not surprising that most simulations considered leading

edge in scale in their time (e.g., Kaneda et al. (2003); Yeung et al. (2015)) have been rel-

atively short. It should be noted that increasing problem size is in fact being enabled by

increases in memory available on leading-edge machines, but actual computational power

is increasing more slowly, such that the largest possible simulations performed within finite

resource constraints are at risk of being limited to short physical time periods. This leads

to the ironic situation that, as computing power grows and algorithms successfully scale

to larger problem sizes, the ability to conduct the next-largest long simulations actually

become increasingly compromised.

The second topic in this thesis introduces a new paradigm to address the challenge

posed above, for studies of small-scale processes that evolve on short time scales. Two

observations are first made, which are supported by previous work (Yeung et al., 2018). The

first is that statistical stationarity in time, with a mild assumption of ergodicity, allows us to

take samples from multiple short simulation segments, provided they are well separated in

time, with a high degree of statistical independence. The second is that when a modestly-

resolved velocity field is refined to a higher resolution, the small scales adjust quickly,

potentially within a couple of Kolmogorov time scales (τη). These observations suggest

that an alternative to a long, high-resolution (ideal but unfeasible) simulation may be to

start with multiple (say M ) independent lower-resolution snapshots, allow them to quickly

adjust to higher resolution, and then start collecting statistics at the highest resolution after

only a short period of time (say βτη, with β not much larger than 1). The length of time

spent computing on an N3 grid would then be proportional to βMτη (in total), as opposed

to multiple TE’s. Substantial savings are both most likely and most necessary at high

Reynolds numbers, where TE � τη, and it is important (Yakhot & Sreenivasan, 2005;

Schumacher et al., 2005) to resolve down to scales smaller than the Kolmogorov scale
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(η = (ν3/〈ε〉)1/4) based on the mean energy dissipation rate (〈ε〉). This new paradigm is

referred to as Multiple Resolution Independent Simulations (MRIS for short).

Some hints to the viability of this new approach could be found in recent work (Yeung

et al., 2018) where events of extreme dissipation and enstrophy were seen to adjust rapidly

to changes in resolution, and important conclusions could be drawn from short simulations

of length less than 10 τη. In Yeung et al. (2018), short simulations of forced isotropic

turbulence at two Taylor-scale Reynolds numbers (Rλ, up to 650) were performed at three

resolution levels, up to 81923 grid points but all starting from the same initial snapshot. This

was, in effect, similar to just one MRIS realization of 10 τη long. The objective is to increase

the Reynolds number by running larger simulations (Ishihara et al., 2009), while also per-

forming ensemble averaging over the initial conditions by starting from modestly-resolved

snapshots originally distributed over several TE’s in time. In addition, both one-point and

two-point statistics — in particular, the properties of local averages of the dissipation rate,

which play a critical role in understanding intermittency (Kolmogorov, 1962; Frisch, 1995;

Sreenivasan & Antonia, 1997) are studied. Availability of data on such averages over 3D

volumes (instead of 1D versions) is relatively recent (Iyer et al., 2015). In this thesis, new

simulation results at up to 184323 resolution (over 6 trillion grid points) are presented,

which should help us better understand some of the long-unresolved aspects of intermit-

tency in turbulence (Frisch, 1995; Sreenivasan & Antonia, 1997). The MRIS approach and

results from it were published as an invited paper in a leading journal in 2020 (Yeung &

Ravikumar, 2020).

The classical cascade picture of turbulence (Frisch, 1995; Richardson, 1922) describes

the mechanism with which energy transfer takes place in turbulence. The large scale fluid

motions break down, due to instabilities, to smaller scales receiving a fraction of the energy

in the large scales. These smaller scales break down further to even smaller scales, and the

process continues until the scales of motion are small enough (of the order of Kolmogorov

scale) for viscosity to dissipate the energy in the form of heat. The intermediate scales,
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also referred to as inertial scales, act mainly to transfer energy from the large scales to the

small scales. This self-similar “multiplicative” process of the transfer of energy in turbulent

flows lends well to the theory of fractals (Mandelbrot, 1983) and its applicability to studies

of turbulence (Meneveau & Sreenivasan, 1991).

Fractals, in the most basic sense, are objects that display self-similarity properties over a

wider range of scales. For example, branches of trees, where the large branches originating

from the trunk have smaller branches that continue to grow and have branches of their

own. Each branch of the tree resembles a small scale version of the whole shape and are

referred to as “fractal objects”. These objects are associated with a characteristic dimension

called the “fractal dimension”, which unlike Euclidean dimensions need not be an integer.

However, for complex dynamical systems, such as turbulence, a single dimension cannot

fully describe the dynamics of the processes involved; instead a continuous spectrum of

dimensions, called the multifractal spectrum, is needed. In turbulence, the most commonly

studied “fractal object” is the turbulent energy dissipation rate (Sreenivasan & Meneveau,

1986; Bershadskii & Tsinober, 1992). A detailed account of the analysis of turbulence

from a multifractal viewpoint can be found in Sreenivasan (1991a).

In this thesis, the turbulent energy dissipation rate will be studied under the multifractal

framework using high Reynolds number and resolution data sets generated by applying the

“MRIS” approach described previously (Yeung & Ravikumar, 2020). Similar to the study

of intermittency, multifractal analysis makes use of 3D local averages of energy dissipation

which is difficult to compute, as discussed previously, and not widely reported. This work

aims to address this gap by computing and presenting the multifractal spectrum for flows

at Reynolds numbers 390, 650, 1000 and 1300 generated using numerical simulations at a

resolution of kmaxη close to 4.5. The scaling of the moments of these 3D local averages

over a volume of linear size r are studied. Extrapolation of PDF tails are performed to

ensure the higher order moments at different scale sizes converge statistically. The scaling

exponents, for different orders of moments, are computed and used to estimate the multi-
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fractal spectrum, f(α), which corresponds to the fractal dimension and α characterizes the

strength of the singularity. Smaller values of α characterize regions of intense dissipation,

while larger values of α characterize low dissipation regions.

The study of multifractal spectrum is appealing primarily because of its relative inde-

pendence to Reynolds numbers while the PDFs of energy dissipation rate which can also

be used to study intermittency is dependent on Reynolds number and does not show signs

of an asymptotic behavior at high Reynolds numbers. It is important to note that in this

study the local averages of energy dissipation rate is computed using all the nine velocity

gradients and by performing 3D averages as compared to the use of 1D surrogates and

1D averages along with Taylor’s frozen-flow hypothesis (Taylor, 1938) in past laboratory

studies (Meneveau & Sreenivasan, 1991; Sreenivasan & Meneveau, 1986). The spectrum

obtained from this work is compared with those from Meneveau & Sreenivasan (1991) to

find that the use of 1D averages and approximations like 1D surrogacy result in a spec-

trum similar to those from 3D averages and the full definition of energy dissipation rate.

This shows the robust nature of the mutifractal spectrum. Higher Reynolds number flows

are ideal candidates for multifractal analysis due to the wide range of scales and highly

intermittent nature of the small scales.

A key attribute of turbulent flows is their ability to provide efficient mixing. When

the substance or property being mixed is of very low concentration, it does not affect the

motion of the fluid. Such substances or properties are called passive scalars, examples of

which include dye in water, small temperature fluctuations in air and concentration of reac-

tants in a chemical reaction (Warhaft, 2000; Sreenivasan, 1991b). Along with the Reynolds

number, an important non-dimensional parameter in passive scalar mixing is the Schmidt

number, which is the ratio of kinematic viscosity (ν) of the fluid to the molecular diffu-

sivity (D) of the scalar. The Schmidt number can vary widely, from O(0.01) for mixing

in liquid metals, to O(1) typical of gas-phase mixing, and beyond to O(1000) for dyes

mixing in liquids (Gotoh & Yeung, 2013). Passive scalar fields with Schmidt numbers
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of O(1) in high Reynolds number turbulence are often observed to be highly intermittent

in both the inertial-convective (via anomalous values of structure function exponents) and

viscous-diffusive ranges (via intense fluctuations of the scalar dissipation rate, χ). The

intermittency of scalar dissipation rate is of particular interest, which is important in com-

bustion modeling (Bilger, 2004).

High-resolution direct numerical simulations are crucial, and reliable conclusions on

the Sc-effects require that resolution be adequate for all scalars involved. Such calcula-

tions are computationally very expensive. However, the new MRIS approach (Yeung &

Ravikumar, 2020) helps reduce the computational requirements while generating statisti-

cally reliable data at high resolution. It is also useful to perform ensemble averaging over

the statistics of scalars with the same Sc but subjected to uniform mean gradients in dif-

ferent directions. Fluctuations of χ for a scalar with Sc = 1 are typically seen as more

intermittent than those of the energy dissipation rate (ε). One long-standing question is

whether the scalar field satisfies local isotropy, as the Reynolds number increases (Sreeni-

vasan, 1991b; Warhaft, 2000). An important diagnostic is in the skewness of the scalar

gradient (in the direction of the mean gradient), which does not seem to decrease with in-

creasing Reynolds number, but may be affected by resolution for the scalar field (Donzis &

Yeung, 2010). A second, more open-ended question is in the nature of fluctuations of the

scalar dissipation rate, χ, which is a quadratic measure of the scalar gradients. The same

questions posed for the energy dissipation rate, including the form of the probability density

function (PDF), the likelihood and intensity of extreme events and the properties of local

averages, are also relevant for χ (as a function of both Reynolds and Schmidt numbers).

Numerical results including moments of local averages of χ and conditional moments of χ

given ε at resolution up to 61443 will be presented.

The final topic of this thesis will focus on anisotropic flows in the presence of density

stratification due to two active scalars (Schmitt, 1994) of different Schmidt number. Key

non-dimensional parameters include the Reynolds number, Schmidt number, and Froude
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number(s) (Fr, which is the ratio of buoyancy to turbulence time scales). The scalars

affect the flow, through buoyancy effects that can be stabilizing or de-stabilizing (Riley &

deBruynKops, 2003). The most interesting scenarios are those in which the two scalars

have opposing effects, with the difference between their molecular diffusivities playing a

pivotal role (Gargett et al., 2003). Strong unstable stratification can also lead to new spatial

and temporal resolution constraints that can be difficult to satisfy.

To improve numerical fidelity in the two-way coupling terms between the velocity and

scalar field, a new approach that diagonalizes the system of conservation equations trans-

formed to wavenumber space has been developed. These developments will facilitate work

towards a detailed understanding of the effects of an active scalar on the flow energetics

and anisotropy (at various scale sizes), depending on the diffusivity of the scalar. Key as-

pects include how the classical property of an energy cascade would be modified, and the

nature of the Reynolds-stress budget in active-scalar turbulence. There is a special interest

in the subject of double-diffusive convection, where one scalar is stabilizing while another

is de-stabilizing, including both oscillatory and so-called fingering regimes where peculiar

structural patterns emerge (Stellmach et al., 2011). The goal of this topic is to perform

short exploratory simulations to better understand the nature of such flows and lay a path

forward for more detailed analysis.

1.1 Objectives

In summary, the major objectives of this thesis are as follows:

1. To develop an algorithm capable of extremely large scale simulations using

GPUs on pre-exascale and exascale architectures.

The goal is to develop a new algorithm for pseudo-spectral direct numerical sim-

ulations of turbulence capable of achieving extreme problem sizes, exceeding the

prior state-of-the-art worldwide, on a heterogeneous GPU platform such as Sum-

mit at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National
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Laboratory. Major considerations involve optimizing network communication and

GPU-CPU data movements, as well as achieving large problem sizes despite memory

limitations on the GPU. Since Summit is one of the world’s fastest supercomputer, it

is reasonable to design a new code that is dependent on specific characteristics of this

machine, which is built of IBM CPUs and NVIDIA GPUs. From a long-term per-

spective, it is also important to be able to port the code to more general heterogeneous

platforms beyond Summit.

2. To understand intermittency and the multifractal nature of energy dissipation

rate using high resolution DNS.

A major motivation for ever-larger simulations is to advance understanding of in-

termittency and extreme events in turbulence, where both high Reynolds number

and good small-scale resolution are clearly important. However, because resources

available are finite, the largest simulations are often short. In the case of statistically

stationary turbulent flows, this raises concerns on limitations in sampling, which is an

issue made more acute by success achieved under Objective 1. A protocol consisting

of multiple short simulation segments with successive grid refinement is proposed to

address this. Targets of investigation include extreme fluctuations of the energy dis-

sipation rate and enstrophy, statistics of their local averages over three-dimensional

sub-domains of various sizes and the multifractal spectrum of energy dissipation rate.

Using the new algorithm and approach, simulations to study intermittency of scalar

dissipation rate will be performed. Statistics of local averages of scalar dissipation

rate are computed and analyzed.

3. To study turbulence in stratified flows due to more than one active scalar.

In addition to studies of passive scalars which do not affect the flow, simulations

of active scalars such as temperature and salinity in the ocean, or concentration dif-

ferences in liquid mixtures will be performed. The objective here is to understand
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the complexities that arise when two scalars of different molecular diffusivities are

present and contributing to opposing effects of stable versus unstable stratification.

Targets of investigation include anisotropic development and differential diffusion

acting at different scales depending on the Schmidt numbers involved.
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CHAPTER 2

GPU ACCELERATION OF EXTREME SCALE PSEUDO-SPECTRAL

SIMULATIONS OF TURBULENCE USING ASYNCHRONISM

Turbulent fluid flows governed by the Navier-Stokes equations with disorderly fluctuations

over a wide range of scales in time and space (Pope, 2000) represent a major challenge in

both science and computing (Mininni et al., 2011; Lee et al., 2013; Yeung et al., 2015; Ishi-

hara et al., 2016; Watanabe et al., 2016). In work focused on fundamental understanding,

it is often useful to employ periodic boundary conditions on a cubic domain, with solution

variables expressed in a discrete Fourier series as in pseudo-spectral simulations (Rogallo,

1981; Canuto et al., 1988).

The conduct of large scale simulations of turbulence at high Reynolds number and

high resolution has been a major undertaking in the computational turbulence community

(Ishihara et al., 2016; Yokokawa et al., 2002). In most cases, scalability and/or time to

solution have been limited by communication costs, which become more dominant at larger

problem sizes. As the community looks towards exascale (projected to arrive in 2022), a

key question is how codes that are communication intensive can benefit from heterogeneous

platforms whose principal advantage is fast computation on hardware accelerators such as

GPUs. In this chapter, the nontrivial task of implementing a new pseudo-spectral turbulence

code (Ravikumar et al., 2019) capable of reaching unprecedented problem sizes at the high

throughput needed to complete production simulations on Summit is addressed.

The algorithm is further extended to support tracking of Lagrangian fluid particles,

where computing the spline coefficients for cubic spline interpolation is a key aspect. With

the workflow involved being similar to 3D FFTs, the batched asynchronous approach can

be adapted to form the spline coefficients as well. Furthermore, communication costs are

minimized by adopting a “local particle decomposition” (Buaria & Yeung, 2017) along
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with “ghost layers”, that hold the spline coefficients from a couple of planes in the neigh-

boring tasks, formed using one-sided MPI communication to ensure the interpolation can

be done entirely locally.

It is essential that this successful programming strategy be implemented in a portable

manner. This is especially important since the CUDA programming model that we use on

Summit will not be universally supported on all the future exascale machines. The batched

asynchronous algorithm will be ported to use OpenMP, especially version 5.0 and beyond,

to target GPUs. Efficient strided copies and interoperability between GPU libraries and

OpenMP tasks are some of the important challenges that are addressed.

The following sections begin with some background on equations, numerical methods

and current programming approaches, while noting key differences between Summit and

several existing petascale platforms. The new algorithm is described in some detail in sec-

tion 2.2 followed by MPI and data copy optimizations in section 2.3 before reporting and

analyzing the performance results in section 2.4. The code development efforts and per-

formance numbers for the particle tracking algorithm are presented in section 2.5. Finally,

section 2.6 presents a brief discussion of some key ideas and challenges encountered in the

OpenMP porting efforts.

2.1 Equations and Numerical Methods

The application code in this work is written to compute fluctuating velocity fields u(x, t)

in time and three-dimensional space, according to the Navier-Stokes equations expressing

the principles of mass and momentum conservation, in the form

∂u/∂t+ (u · ∇)u = −∇(p/ρ) + ν∇2u + f , (2.1)

where u is a solenoidal vector, p is the pressure, ρ and ν are the fluid density and viscosity

(taken as constants), and f is a forcing term. This is a partial differential equation of the
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advective-diffusive type, which occurs in many studies of transport phenomena in science

and engineering.

Equation 2.1 is solved in a simplified solution domain which is periodic in all three

directions. The velocity field is expressed in a finite-terms Fourier series, as u(x, t) =∑
k û(k, t) exp(ιk· x) where ι =

√
−1, overhats denote (complex-valued) Fourier coeffi-

cients and k is a wavenumber vector whose coordinate components on an N3 grid take the

values 1−N/2, 2−N/2, ....0...1....N/2. In Fourier (i.e., wavenumber) space Equation 2.1

becomes, for a given k, an ordinary differential equation which can be written as

∂û/∂t = −∇̂ · (uu)⊥k − νk
2û + f̂ . (2.2)

To enforce mass conservation under the assumption of constant density, the nonlinear term

is projected into a plane perpendicular to the vector k. Aliasing errors arising from the

treatment of nonlinear terms are generally controlled by a combination of phase-shifting

and truncation in wavenumber space (Rogallo, 1981).

In production simulations, Equation 2.2 is typically integrated over many thousands

of time steps, using explicit second- or fourth-order Runge Kutta (RK2, RK4) schemes

for the nonlinear terms, while viscous terms are treated exactly via an integrating factor.

In general, RK4 offers improved accuracy and numerical stability. However, experience

also shows (e.g. Rogallo (1981) and numerous publications in the turbulence community

adopting the algorithm described therein) RK2 results are often adequate when the time

step is made sufficiently small. Timings corresponding to RK2 alone are presented in this

chapter. The cost of RK4 per time step is approximately doubled, with a small increase in

the memory necessary to hold partially updated values of the solution variables at different

substages within a single time step.

In this code, since time advance is performed in Fourier space (per Equation 2.2) each

RK substep starts and ends in Fourier space, as well. The essential mathematical operations
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involved include transforming three velocity components to physical space, forming the

nonlinear products there, and transforming those products back to Fourier space. The actual

transforms are taken one direction at a time. The need for data movement arises from the

need to collect complete lines of data (successively, along each coordinate axis) in the core

memory to be operated on.

While the number of variables being transformed varies during each time step, the

structure and performance of the turbulence simulation code share many similarities with

3D FFTs, which are relevant to many science disciplines and have been the subject of

much software development (e.g. Pekurovsky (2012); Gholami et al. (2016); Dalcin et al.

(2018)). Therefore, some of the novel programming techniques developed in the present

work are potentially relevant to the wider computational science community, as well.

2.2 Algorithm description

This section presents a detailed description of the code development, starting with the

choice of domain decomposition, and leading to the asynchronous algorithm for comput-

ing on GPUs while using the CPU memory capacity. The communication costs of all-to-all

communication, inherent in 3D FFT algorithms, dominates overall runtime, especially as

the FFT kernels themselves become very fast on the FLOP heavy GPUs. Because of this

known communication bottleneck, which will always limit speedup no matter how many

FLOPs the GPUs become capable of, algorithm design is driven by choices that allow as

much communication overlap with computations and data copies, as well as a small number

of large messages. It is important to note that the highest priority is not high scalability per

se, but instead making feasible simulations of a size exceeding the current state-of-the-art.

This includes a goal of 20 seconds or less per RK2 timestep in order to enable long-running

simulations in a reasonable number of wallclock hours. However, the problem size is more

important for science than the wall time. Path-breaking simulations on the Earth Simulator

(Yokokawa et al., 2002), that reached 40963 resolution, are used as a reference point even
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today not for the time-per-step it took to simulate the problem but for the fact that it was a

significant step forward in the state-of-the-art problem size at that time.

2.2.1 Domain decomposition

The first decision in devising a parallel algorithm for very large problem sizes is how best

to distribute memory requirements among, say, P MPI processes. As seen in Figure 2.1 a

N3 solution domain can be decomposed into slabs or pencils, in one and two directions,

respectively. For a slab, or 1D decomposition, each MPI process works on an integer num-

ber of planes (e.g., x−z) and can take FFTs in two directions forming that plane. A global

collective communication call (of the “all-to-all” type) is used to re-divide the data along

the third direction (e.g. y). While the concept of a 1D decomposition is straightforward,

clearly, it is limited to P ≤ N .

P0
P1
P2
P3

y
x

z
mz

N

P0 P1

P2 P3

mz

my

Figure 2.1: 1D and 2D domain decomposition’s, illustrated for case of MPI process count
P = 4. On the left, each slab is of size N × N ×mz, where mz = N/P . On the right,
each pencil is of size N ×my ×mz, where my = N/Pr and mz = N/Pc.

A 2D domain decomposition divides the data in two directions, allowing a finer-grained

decomposition (i.e. larger P ). A 2D Cartesian process grid is used, with P = Pr × Pc

where Pr and Pc are the sizes of the “row” and “column” communicators, respectively.

Two collective communication calls are performed using the (smaller) row and column

communicators instead of once globally over P processes. The best performance is usually

obtained if Pr equals the number of MPI ranks per node, since some of the communication

will then occur solely on the node.
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State-of-the-art turbulence simulations performed on massively parallel platforms (Lee

et al., 2013; Yeung et al., 2015; Ishihara et al., 2016) have generally used a 2D domain de-

composition, as do the FFT portions of several of Exascale Computing Project applications

(lammps, hacc) (Plimpton, 2017). However, the latest trends in HPC landscape appear to

point towards machines with fewer nodes which are more powerful in both memory and

speed, with Summit being a primary example. Accordingly, the 1D (slabs) decomposition

is adopted for this work, with a hybrid approach used to further parallelize within a slab.

2.2.2 Target System and Software Stack

The target architecture around which the code was designed is the IBM Power System

AC922 (Vetter et al., 2018) which is used in the Summit and Sierra supercomputers. A

node on Summit consists of a dual socket POWER9 processor, with each socket connected

via NVLink to 3 NVIDIA V-100 GPUs (2 links/GPU) and 22 cores. Each core is capable

of supporting up to 4 hardware threads. Summit nodes have 512 GB of random access

memory for use by the application, and each GPU has 16 GB of High Bandwidth Memory

(HBM). Each V-100 GPU has 80 Streaming Multiprocessors (SMs), which are the proces-

sors on the GPU and are capable of fast computations. The overall picture is then of a very

dense (or fat) node with a large amount of memory and compute resources per node. This

allows for simulating massively large problem sizes on a single node.

The interaction of the CPU memory bandwidth, NVLINK bandwidth, and network card

bandwidth will be important in understanding some of the limitations of data movement

overlap. The Power 9 CPU memory bandwidth per socket is 135 GB/s peak unidirectional,

while the CPU-GPU NVLINK connection is capable of 150 GB/s (peak, per socket) and

the network card on Summit is capable of 12.5 GB/s (per socket, bi-directional) (Vetter

et al., 2018; IBM POWER9 NPU, 2018). This means that NVLINK data transfers alone

are capable of fully saturating the Power 9 memory bandwidth, and any simultaneous use

of the network card must compete with NVLINK bandwidth demands.
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The code is written in Fortran and the GPUs are programmed using the CUDA For-

tran programming model (Ruetsch & Fatica, 2014), implemented in the IBM XL com-

piler, and calls to NVIDIA’s cuFFT library. CUDA Fortran is favored for its ease of use

and similarity to Fortran-like syntax, while supporting advanced data movement patterns

and asynchronous features on the GPUs. CUDA streams and CUDA events are used to

control the asynchronous tasks of batching data on/off the GPU, computing FFTs, and

determining when the data is available in host memory to be sent through asynchronous

MPI IALLTOALL calls.

2.2.3 A basic (synchronous) GPU algorithm

H2D copy of complete slab

FFT : (kx, ky, kz) → (kx, y, kz)

Pack

D2H : send buffer

MPI Alltoall

H2D : receive buffer

Unpack

FFT : (kx, y, kz) → (x, y, z)

Similar for (x, y, z)→ (kx, ky, kz)

Figure 2.2: Schematic showing the different operations involved in computing 3D FFTs
using GPUs in a synchronous manner. Similar operations in the reverse order are required
to transform back to Fourier space.

Prior to a detailed description of the best-performing asynchronous algorithm, it is use-

ful to review the basic requirements for a GPU implementation, in terms of the work needed

to perform a complete 3D FFT. Figure 2.2 shows the basic sequence of operations, focused

on how a 3D FFT is taken of solution variables, initially in Fourier space. This sequence is
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also a close match with the work performed in the first half of each Runge-Kutta substage

in our turbulence code, before the nonlinear terms are formed in physical space and trans-

formed back to Fourier space. The sequence of operations shown in Figure 2.2 also reverts

to that of a CPU code if the host-to-device (H2D) and device-to-host (D2H) data copies are

eliminated and all operations are carried out on the CPUs.

At the beginning of the execution sequence in Figure 2.2, each MPI process holds a slab

of data that consists of x−y planes stacked up in N/P units in the z direction. This slab

of data is copied from host to device. Next, the 1D FFTs in the y direction are computed

on the GPU using cuFFT. An all-to-all communication is then required to transpose these

partially-transformed quantities into slabs of x–z planes. Since the data to be exchanged

is not contiguous in the local memory, it has to either be packed into contiguous messages

locally, or else MPI derived datatypes need to be used. The performance of packing on

the CPU was compared against packing on the GPU and then copying to the CPU with

the latter resulting in the fastest performance. Once the packed data is copied to the host,

an MPI ALLTOALL is performed from the host to transpose the data. Subsequently, the

transposed data is copied from host to device, unpacked into the correct memory locations,

and transformed in z and then x. Recent advancements in software and hardware, such as

CUDA-aware MPI and GPU-Direct (Shainer et al., 2011), allow MPI to directly transfer

data that is resident on the GPU. In theory, such a strategy should help avoid the additional

data transfers before and after the global transpose. However, since without GPU-direct

close to peak system memory bandwidth is already achieved for data transfers and the

major bottleneck remains the bandwidth of the network interface card, the actual benefits

of GPU-direct on Summit may be significant. In fact, after implementing CUDA-aware

MPI and GPU-direct, no noticeable benefit to the runtime was observed.

Since the Fourier coefficients (being of real-valued variables) satisfy the property of

conjugate symmetry, i.e., û(−k) = û∗(k), the transforms are complex-to-complex in two

directions (y and z) but complex-to-real in the third (x). This ordering of the transform di-
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rections (y,z,x; reversed when transforming from physical to wavenumber space) is chosen

so that formation of nonlinear terms in physical space can be performed more efficiently on

arrays of stride unity. In this data structure, FFTs in x are more efficient because of a unit

vector stride. For FFTs in y and z the options of performing these transforms in a strided

or unstrided data structure is available, but on Summit either option takes about the same

time when the cost of additional local data reordering is also factored in.

The algorithm illustrated here is readily extended to the pseudo-spectral turbulence

code, in which a reverse sequence of operations takes place after the nonlinear terms are

formed. However, there are two hurdles to direct application of the above algorithm. The

first is that the algorithm is synchronous, such that each set of operations is carried out

sequentially without taking advantage of the fact that operations on different portions of

data can be made to occur asynchronously (e.g. Clay et al. (2018)). The second is that, as

written, each GPU is to process a single slab of data all at once, which creates difficulties

in processing larger problem sizes where a single slab of data will not fit into the GPU

memory. To compute at larger problem sizes (as is the goal here) it is beneficial to break

a slab into smaller portions that will fit into the GPU memory. This data division inside

a slab opens up the possibility of a significant degree of task asynchronism, where, for

instance, different planes (or even parts of planes) within a slab may be copied, computed,

and communicated simultaneously. Indeed, this is the motivation in the development of an

asynchronous algorithm capable of larger problem sizes, as described in next.

2.2.4 Batched asynchronous algorithm

The objective with the new algorithm is to be able to run large problem sizes efficiently

without being limited by the GPU memory capacity. The GPU memory issue can be ad-

dressed by dividing a slab into several (np) pencils and processing each pencil separately,

as illustrated in Figure 2.3. This also provides an opportunity for overlapping operations

on different pencils within the same slab.
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N
y

x

z
mz

nyp

Figure 2.3: Decomposition of a slab of data into multiple (np) pencils, each of size N ×
nyp×mz, where nyp = N/np, to enable larger problem sizes where a single slab does not
fit into the GPU memory.

The desired asynchronism is enabled using the programming model of CUDA execu-

tion streams and events. Two separate CUDA streams are specified, one for computations

and one for data movement. Besides allowing overlap with data movement and compute, a

distinct data transfer stream ensures that bandwidth is devoted to one direction of traffic at

a time. This is beneficial on Summit, because while NVLink supports both maximal read

and maximal write bandwidth simultaneously, the host memory bandwidth supports a com-

bined read or write bandwidth and the maximum aggregate bandwidth is achieved when

performing unidirectional movement (IBM POWER9 NPU, 2018). The choice of a single

transfer stream allows the full bandwidth to be devoted to whichever transfer operation is

first put into the stream, ensuring that the correct piece of data is copied into the GPU as

quickly as possible. CUDA Events are used to enforce synchronization between operations

in different streams (Ruetsch & Fatica, 2014).

The sequence of operations in the new asynchronous algorithm is shown in Figure 2.4.

For brevity, only the operations needed to transform from Fourier space to physical space

(with those from physical to Fourier space being very similar but reversed in order) are

shown. Color coding is used to help identify operations in the transfer stream (H2D and

D2H copies), compute stream (such as FFTs in separate directions), and communication.

Colons within a box refer to operations carried out on a specific pencil whose ID, denoted

by ip, ranges from 1 to np. The three large regions bounded by dashed lines correspond to

computations carried out in the y, z and x directions, respectively. Data transfer operations
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ip = 1 : H2D

for ip = 1 → np

if ( ip > 1 )
ip− 1 : D2H (Pack)

if ( ip > 2 )
ip− 2 : A2A

ip : Compute - y
if ( ip ≤ np− 1 )

ip+ 1 : H2D

ip = np : D2H (Pack) ip ≥ np − 1 : A2A

ip = 1 : MPI WAIT
ip = 1 : H2D (Unpack)

for ip = 1 → np

if ( ip > 1 )
ip− 1 : D2H

ip : Compute - z
if ( ip ≤ np − 1 )
ip + 1 : MPI WAIT

ip+ 1 : H2D (Unpack)

ip = np : D2H

ip = 1 : H2D

for ip = 1 → np

if ( ip > 1 )
ip− 1 : D2H

ip : Compute - x
if ( ip ≤ np− 1 )

ip+ 1 : H2D

ip = np : D2H

Figure 2.4: Schematic showing the asynchronous GPU algorithm where operations on the
same row are performed asynchronously. The operations in blue are performed in the
transfer stream, while the operations in green are in the compute stream and the operations
in red are using the network. The compute operations correspond to Fourier transforms and
other computations, such as forming nonlinear products in the DNS code.

on the first and last two pencils are handled separately, as shown by the blocks outside the

large dashed regions.

Before entering the first dashed region, the first pencil is copied to the GPU. Then, if

ip = 1 the code performs computations. When ip > 1 the (ip− 1)th pencil is copied back

from the GPU and packed into a contiguous array on the CPU, provided the computations

on it have been completed. The pack operation is performed as a strided data copy to avoid

packing the data before the global transpose. In this way, both the packing and the D2H
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are performed in a single operation. Although operations on the same row are executed

asynchronously, our operations are launched from left to right, which is to prioritize data

copy out of the GPU so that the global transpose can be initiated as soon as possible. A

non-blocking MPI all-to-all is launched on the (ip − 2)th pencil only when the D2H copy

of the (ip − 2)th pencil is completed. Computations are performed as soon as the H2D

copy on the ipth pencil is completed. A H2D copy for the next pencil is also posted at this

time. If ip equals one of its last two values, the code takes special action to copy out the

last pencils back to the CPU, and to post the global transposes.

It should be noted that copy operations in the transfer stream are performed asyn-

chronously, i.e., the CPU can move forward to other tasks, but it does not imply the copy

has completed or even started. An event is recorded to track the progress of the copy. This

ensures the D2H copy will begin only once the computations on the (ip − 1)th pencil are

completed. Similarly, the H2D copy waits for the data in the GPU buffer into which the

host data needs to be placed is copied out.

Operations in the second and third dashed regions, performed on data in x − z slabs,

are also scheduled in a manner that allows overlapping between the transfer and compute

streams. The only MPI function call from here until completion of the entire 3D FFT

sequence is an MPI WAIT in the second dashed region. This is to ensure the transpose

completes before the H2D copy is posted.

N
y

x

z
mz

GPU 1
GPU 2
GPU 3

Figure 2.5: When running with multiple GPUs per MPI rank, each pencil is further divided
up vertically to allow running with multiple GPUs per MPI task. The pencil fractions are
processed by the different GPUs available to the MPI rank.

As to be noted in section 2.3 and section 2.4, there is some advantage in using OpenMP
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threads instead of pure MPI on the CPU. On Summit, when the number of MPI ranks per

node drops below 6, multiple GPUs per MPI rank will become available. Each pencil is

further divided vertically such that a fraction of the pencil is run on each GPU, as shown

in Figure 2.5. One OpenMP thread per GPU is used to launch the same operations as

described in Figure 2.4 to the different GPUs available to each MPI rank. The device each

thread works with is set using the cudaSetDevice API call. The global MPI transpose is

posted only after the entire pencil has been processed by each of the GPUs available to the

MPI rank. The code is also capable of waiting for all the pencils in a slab to be processed

so that one large all-to-all can be posted instead of multiple smaller ones. The logic of the

algorithm in Figure 2.4 is still applicable.

2.2.5 Problem sizes and node counts

It is useful to develop estimates of the node count necessary to meet the memory require-

ments of a chosen problem size. The focus is on solving the largest problem possible on

Summit, subject to some constraints. The first constraint is to keep wall time per RK2 time

step at all problem sizes to below roughly 20 seconds because this allows a reasonable sim-

ulation turnaround time in human hours. The second constraint is that N be powers of 2

or at least an integer rich in factors of 2 because this usually leads to the best discrete FFT

library performance. Furthermore, to make full use of all 6 GPUs per node (3 per socket)

on Summit, a value of N that contains a factor of 6 is advantageous. N = 18432 is chosen

as the target because it is rich in factors of 2, divisible by 3, and (as will be shown below)

it fits in Summit’s memory.

For an N3 problem involving D storage buffers at single precision on M nodes, the

memory required per node is 4DN3/M bytes. A detailed counting of the number of ve-

locity components, nonlinear terms, and send/receive buffers which are used to transfer

data between CPUs and GPUs, yields a total of 25 buffers (D ≈ 25). These buffers are

page-locked, by allocating as pinned memory, which allows the GPUs direct access to the
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physical address of this buffer without any CPU intervention, allowing for much faster

data copies that otherwise. It was estimated from tests that the operating system occupies

approximately 64 GB on each Summit node, leaving 448 GB for user codes. Equating

4DN3/M (where D = 25 and N = 18432) to 448 GB gives M = 1302, which is the

minimum number of nodes needed. However, for load balancing on a per-node basis, the

number of nodes should be a factor of N . With N = 18432 and noting the total system on

Summit has approximately 4608 nodes, the only 2 possible values of M are thus 1536 and

3072. In the interest of a shorter time-to-solution 3072 nodes will be used which is 67% of

the full system.

For a given CPU node count, it is important to also consider how the memory might

fit into the GPUs, generally by processing pencil-sized portions of each slab at a time. For

compute purposes, 9 pencil-sized buffers are required. This number needs to be tripled,

to 27, to allow asynchronous execution in the manner described in subsection 2.2.4, while

pack and unpack operations can be performed without additional buffers. If there are np

pencils per slab, then each pencil contains N3/(M × np) words (per variable). As for the

GPU memory, it is reasonable to assume 96 GB of GPU memory on each node is user-

accessible, with no operating systems-related tasks running on the GPU. Thus, equating

4 × 27 × N3/(M × np) bytes (with N = 18432, M = 3072) to 96 GB gives, nominally,

np = 2.13. In practice, because further needs for memory arise from other smaller arrays,

for N = 18432 it was found that np needs to exceed 3.

Table 2.1: Node counts, problem sizes, minimum number of pencils per slab and the size
of each pencil (for 1 variable) that can fit into the GPU memory. Problem sizes from 30723

to 122883 are exact weak scaling cases, while 184323 is larger than what weak scaling
suggests.

# Nodes
Problem Mem. occ. No. of Size of

size per node (GB) pencils pencil (GB)
16 30723 202.5 3 2.25

128 61443 202.5 3 2.25
1024 122883 202.5 3 2.25
3072 184323 227.8 4 1.90
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Since np must be an integer, each slab in the 184323 problem is divided up into at least

4 pencils to fit in the GPU memory. The node count and the number of pencils required for

a range of problem sizes are given in Table 2.1.

2.3 Code Optimizations

During code development, special emphasis is placed on optimizing cross-node data com-

munication and also on-node data movement between the CPU (host) and GPU (device).

In the two subsections below, several approaches and the performance data obtained from

them on Summit are discussed.

2.3.1 MPI Configurations

Given Summit’s node architecture, two natural choices for the number of MPI tasks per

node are 6 (one per GPU) or 2 (one per socket). In the latter case, OpenMP threads can be

used to launch operations to the 3 GPUs per socket, while the message size per MPI rank

is increased by 3X. In addition, in both scenarios above, since the slab of data assigned to

each MPI rank is further broken down into pencils of data which are batched on and off of

the GPU for processing, each MPI rank can be made to perform communication in three

possible ways: namely the entire slab all at once, one pencil at a time, or a selected number

(say,Q) of pencils per call. The choiceQ = 1, where an MPI all-to-all is called to transpose

a pencil of data as soon as the pencil has been processed and copied back from device to

host, is conducive to overlapping MPI with data movement and computation. However, it

also leads to messages that are potentially so small that they become dominated by latency.

Fewer MPI calls with larger messages can be realized by choosingQ > 1, up to the number

of pencils present in each slab.

The network interconnect on Summit is a dual-rail EDR InfiniBand network and pro-

vides a node injection bandwidth of 23 GB/s (OLCF, 2019) and a bisection bandwidth of

46GB/s. Although these bandwidths are in principle achievable for point-to-point commu-
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nications of sufficient size, in all-to-all communication the bandwidth achieved at scale can

be considerably lower, because the individual peer to peer (P2P) messages involved can

become small. In the batched algorithm, if each slab is divided into np pencils, then the

message chunk that must be delivered to each process (P2P message size) for nv variables

at single precision is 4× nv × (N/np)× (N/P )2 bytes.

To understand the MPI performance, tests were conducted using a standalone MPI all-

to-all kernel which carries out communication operations mimicking those in the DNS

code, but neither computes nor moves data between CPU and GPU. One key difference

is that whereas the DNS code is able to use non-blocking MPI IALLTOALL to allow

for overlapping between MPI and local operations, the standalone kernel instead calls the

blocking MPI ALLTOALL, in order to enable direct measurement of MPI performance.

A collection of MPI performance data is shown in Table 2.2, where problem sizes and

node counts correspond to the information in subsection 2.2.5. The effective bandwidth is

calculated by the formula

BW = (2× P2P × P × tpn) / time (2.3)

where tpn is the number of MPI ranks per node, time refers to the wallclock time taken

to perform the all-to-all by each process, and a factor of 2 is included since all-to-all’s

are comprised of both sends and receives. This formula also considers on-node messages,

which are exchanged through shared memory and are generally faster, when computing

the effective bandwidth, but accounting for this separately becomes insignificant at larger

problem sizes.

The three cases in Table 2.2 are referred to as as A, B and C, respectively. Between

A and B, the P2P message size increases by 9X because data per process is tripled while,

there are also 3 times fewer processes to perform the data exchange. The increase in P2P

message size from B to C is a factor of np since there are np pencils per slab. Case B gives
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Table 2.2: Effective bandwidth per node of MPI all-to-all on Summit at different node
counts. The message size communicated between each MPI process (P2P) is reported (for
3 variables).

Nodes

A: 6 tasks/node B: 2 tasks/node C: 2 tasks/node
1 pencil/A2A 1 pencil/A2A 1 slab/A2A
P2P BW P2P BW P2P BW

(MB) (GB/s) (MB) (GB/s) (MB) (GB/s)
16 12 36.5 108 43.1 324 43.6

128 1.5 24.0 13.5 39.0 40.5 39.0
1024 0.19 11.1 1.69 23.5 5.06 25.0
3072 0.053 13.2 0.47 12.4 1.90 17.6

a higher bandwidth achieved than case A, up to a node count of 1024. At 3072 nodes it is

surprising that case A performs slightly better than case B, because this departs from (1)

the trend of larger P2P message size leading to better bandwidth and (2) our experience

with the full DNS code where case B has a faster solution time than case A. However, as

noted above, the DNS code uses non-blocking MPI all-to-all calls, whereas the standalone

MPI code uses the blocking version. One possibility is that at sufficiently small message

sizes and without overlap, case A may be able to take advantage of hardware acceleration

in the network and eager limits, which allows small messages to be exchanged faster by

reducing synchronization among processes.

The trend in increased P2P message size leading to increased bandwidth continues

when comparing B to C, especially at scale. This is expected because, in general, a shift

from a larger number of smaller messages to a smaller number of larger messages reduces

the effect of network latency. All three cases were implemented in the turbulence code,

and as was observed in the standalone MPI tests, the configuration of case C led to the

best-performing implementation of the turbulence code as well, which is expected because

of the communication-intensive nature of these codes.
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2.3.2 Strided copy optimization

The batched asynchronous algorithm described in subsection 2.2.4 requires frequent strided

copies of relatively small units of data between host and device. This pattern can be ex-

pected for any algorithm performing operations on complete lines of data on a distributed

3D domain. Such strided copies occur when data stored on the CPU as either x−y or x−z

planes must be moved onto the GPU in smaller pieces, or when being packed in preparation

for MPI all-to-all communication.
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Figure 2.6: Top-down view of a slab of data on the CPU and a pencil of data on the GPU
where nxp = nx/np. Strided (in y) copies of contiguous data (in x) is required in order
to transform in y direction, since memory is linear (stride 1) in the x direction on both the
CPU and GPU. Strided FFTs are performed in the y direction to avoid reordering on the
GPU.

For example, for a x − y slab divided into 4 pencils as shown in Figure 2.6, copying a

pencil of data to the GPU requires copying a series of contiguous chunks of data to the GPU.

For the 184323 problem the innermost dimension to be copied will have 18432/4 = 4608

elements or 18 KB of contiguous memory. An entire pencil of such lines of data must be

copied, such that, with mz = 3 and nv = 3 the pencil shape is 4608× 18432× 3× 3. This

gives 165888 chunks of 18 KB each, which must be copied. When the chunk size is small

(and the number of chunks therefore large), the many cudaMemCpyAsync calls required

can be very slow, presumably because the API call overhead begins to become significant.

A high performing solution to this is potentially using a CUDA zero-copy kernel to have

the GPU instead of the CPU initiate the many small transfers on host page-locked memory

(Appelhans, 2018b). Therefore, for this work, two alternative approaches were tested,
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namely custom written ”zero-copy” CUDA kernels and an asynchronous version of the

CUDA library call cudaMemCpy2D, as described below.

The custom zero-copy CUDA kernel uses threads to move data between arrays allocated

in the GPU memory and arrays which reside in host memory. The zero-copy kernel makes

use of the fact that CUDA threads can access host resident memory directly from the GPU

without having to explicitly copy the data, i.e., there are zero copies residing on the device.

This is enabled by using the CUDA library call cudaHostGetDevicePointer to acquire

a valid device pointer to pinned host memory. This host memory must be page-locked

memory (pinned) which is also needed for maximum transfer speeds for host arrays that

are frequently copied in and out of the GPU.

The zero-copy kernel method, however, is limited by the fact that it uses some of the

GPU streaming multiprocessors to copy data, which can slow down the other computational

kernels. On the other hand, the CUDA library call, cudaMemCpy2DAsync, uses the GPU

copy engines and accepts arguments that allow for simple strided copies to be performed

easily. This comes with the advantage of not having to occupy GPU SMs to achieve the

movement.

Timings for strided memory copies obtained from the three different approaches consid-

ered here are compared in Figure 2.7. The copies were performed on a fixed total message

size of 216 MB but the size of the contiguous memory in the strided copy is varied. It can be

seen that both the zero-copy and cudaMemCpy2DAsync approaches perform much better

than (many) cudaMemCpyAsync when the contiguous message sizes are below 100’s of

KB. For the 184323 DNS problem the contiguous extent of the pencils is 18 KB, which is

close to the 8.8 KB tested in the figure. From this data, two conclusions can be drawn. The

first is that the many cudaMemCpyAsync approach is much slower than the zero-copy or

cudaMemCpy2DAsync approaches, while the latter two give similar timings. The sec-

ond is that when moving a fixed amount of data, the overhead involved in moving a finer

granularity of chunks can increase the data movement time.
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Figure 2.7: Time to transfer a total of 216MB of data with strided memory access using
three different approaches. Since the total pencil size is fixed, smaller contiguous messages
in this plot also correspond to more required looping over contiguous message chunks.
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Figure 2.8: Effective bandwidth of zero-copy kernel (circles or triangles) compared to using
cudaMemCpy2DAsync (dashed horizontal lines) for different numbers of thread blocks.
The size of the thread block was 1024 threads.

To understand the GPU resources required by the zero-copy kernel to provide sufficient

throughput, the behavior of the zero-copy kernel was studied using different numbers of
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CUDA blocks, as shown in Figure 2.8. The kernel register usage of 32 registers per thread

and the chosen thread block layout of 128 × 8 threads per block, allows two blocks to

occupy a single SM. The cudaMemCpy2DAsync is a CUDA API call, not a CUDA kernel,

and therefore does not use any blocks (or SMs). If the zero-copy kernel is provided with

sufficient GPU resources, the bandwidth achieved is similar to cudaMemCpy2DAsync. It

is observed that close to maximum throughput is attained even if using only a small fraction

(about 16 blocks) of the GPU resources. This allows a small fraction of the GPU resources

to be devoted to a zero copy kernel while simultaneously running other compute kernels on

SMs of the GPU.

For best overall performance, cudaMemCpy2DAsync is still preferable to zero-copy

kernels since the former allows all the GPU resources (streaming multiprocessors) to be

available to the compute kernels. However, cudaMemCpy2DAsync can only handle sim-

ple strides (e.g., when copying a batch of data as shown in Figure 2.6), while the zero-copy

kernel can handle data with complex stride patterns, (e.g., in unpacking data from contigu-

ous to non-contiguous arrays after communication), while using up only a small amount of

GPU resources. Thus, in the production code, most of the copying between host and device

is implemented using cudaMemCpy2DAsync, while data unpacking is performed using

the zero-copy kernel.

2.4 Performance Analysis

In this section, the overall performance of the newly developed DNS code at different

problem sizes and node counts as described in subsection 2.2.5 is presented and analyzed,

with all data obtained on Summit. Table 2.3 shows elapsed wall time per time step and

speedup relative to performance data collected using the synchronous pencil decomposition

CPU code that was used by Yeung et al. (2015) and is based on the principles described

in subsection 2.2.1. Timings per step were obtained by taking the maximum over all MPI

ranks, and taking the best over multiple time steps. Variability between MPI ranks and
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Table 2.3: Performance of the slab decomposed DNS code run under different configura-
tions and speedups are calculated with respect to the performance of the pencil decomposed
synchronous CPU code.

Nodes Problem
Size

Sync
CPU

Async GPU

6 tasks/node
2 tasks/node

1 pencil/A2A 1 slab/A2A
Time Time Speedup Time Speedup Time Speedup

16 30723 34.38 8.09 4.2 6.70 5.1 7.50 4.6
128 61443 40.18 12.17 3.3 8.66 4.6 8.07 5.0

1024 122883 47.57 13.63 3.5 12.62 3.8 10.14 4.7
3072 184323 41.96 25.44 1.6 22.30 1.9 14.24 2.9

between time steps was found to be minimal. It should be noted that for both CPU and

GPU codes, regardless of the domain decomposition chosen, load balancing requires that

the number of cores used per node to be an integer factor of the linear problem size (N ).

This implies, even though there are 42 cores per Summit node, only 32 cores can be used

for most problem sizes except for the 184323 problem which uses 36 cores per node when

run with 3072 nodes.

The best MPI configuration in the new asynchronous GPU algorithm gives the time to

solution at a resolution of 184323 grid points, using 3072 nodes, at under 15 seconds per

time step. Considering the problem sizes involved, this compares favorably with the largest

simulations performed in the recent past (Yeung et al., 2015; Ishihara et al., 2016) using

CPU-based massive-parallelism. A GPU-to-CPU speedup close to 3X was observed for the

184323 problem. Given the large problem size addressed and the communication-intensive

nature of the application, this speedup is substantial.

2.4.1 2 versus 6 tasks per Node

The DNS code was approximately weak scaled (using more processes to solve a larger

problem size with each process doing the same amount of work) on Summit, starting with

a problem size of 30723 on 16 nodes up to 184323 on 3072 nodes. The scaling is approx-

imate because the number of MPI ranks must be an integer factor of the number of grid
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points on each side of the domain, while focusing on simulating the largest problem size

that can fit into the memory available on the machine, at scale. Timings are reported for the

three MPI configurations defined earlier in Table 2.2. In particular: (A) using 6 tasks per

node, and communicating one pencil at a time; (B) using 2 tasks per node and communicat-

ing 1 pencil at a time (while overlapping MPI with GPU movement and compute); or (C)

using 2 tasks per node but waiting to communicate until all pencils in the slab have been

computed and can be sent in a larger message (no MPI overlap with GPU operations). In all

three cases, data movement to/from the GPU and computation on the GPU are overlapped

with each other, in the manner described in subsection 2.2.4. As might be expected for a

communication dominated code, performance comparisons between these three MPI con-

figurations follow the trends observed in the achieved MPI bandwidth studies of Table 2.2.

Namely, 2 tasks per node perform better than 6 tasks per node and that at 3072 nodes send-

ing an entire slab per all-to-all performs better than asynchronously sending each pencil as

they become ready. Figure 2.9 shows the GPU timing data as well as a standalone MPI

code which only performs the transposes without computation or data movement between

the host and device. This helps us estimate standalone MPI costs; for example, the dif-

ference between the red line and dotted green line of Figure 2.9 is time spent in non-MPI

operations, such as GPU kernels and GPU data transfer. This green line provides an upper

bound on the best possible performance given the network characteristics of the machine

used. Faster GPUs or optimization to the GPU kernels alone can at best approach the per-

formance of the dotted green line. In other words, the dotted green line represents the best

performance achievable in the limit of infinitely fast GPU operations.

2.4.2 Timeline and Asynchronous MPI Analysis

On Summit, the NVIDIA visual profiler (Nvidia, 2019) coupled to a Fortran interface to

Nvidia’s nvtx markers (Appelhans, 2018a) allows the visualization of a timeline of asyn-

chronous CPU and GPU operations. To better understand the performance differences of
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Figure 2.9: Time-per-step of the DNS slab code. The dotted green line is a benchmark of
performing only the required MPI all-to-all calls (no computations). The solid lines are
runs of the DNS code in various configurations benchmarked up to 3072 Summit nodes.

the code under the various configurations, Figure 2.10 shows plots of normalized (by the

time per step) and aligned (to ensure the first operation shown starts at the same time on

different frames) timelines for the various configurations running on 1024 nodes. These

timeline plots are particularly illuminating because they directly show which parts of the

code are contributing to the performance differences.

For example, the MPI time (shown in red) is immediately seen to account for the largest

contribution to the overall run time. Comparison between the MPI times of the two upper-

most timelines shows that MPI in the actual DNS code takes somewhat longer than in the

standalone MPI code. This difference is not fully understood, but the results were very re-

peatable. It should be noted that both CPU-GPU data movement and MPI data movement

simultaneously share the total bandwidth limit of the Power 9 memory. Our standalone

tests revealed that if GPUs and the network card were requesting data movement, the MPI

bandwidth suffered significantly until the GPU transfer was complete. However, even if

the GPU data transfer times are subtracted from the MPI time in the second timeline, the

MPI time still does not equal the MPI time without GPU operations. The discrepancy in

timing is not fully understood, but another important consideration is that these timelines
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Figure 2.10: A normalized timeline comparison of various code configurations running
the 122883 problem size on 1024 nodes. Each slab is divided into 3 pencils. The top
timeline shows the behavior of an MPI only code that communicates the 3 pencils at the
same points in time as the DNS code in the second timeline. The second timeline shows
the actual behavior of the DNS code, where GPU operations are running asynchronously
with the all-to-all communication. The third timeline shows the effect of waiting to send
the entire slab in one MPI all-to-all call, instead of each pencil as it becomes ready. The
final timeline shows the behavior of 6 tasks-per-node when each pencil is asynchronously
sent as they become ready.

were generated using NVIDIA’s profiler, which has non-trivial overhead and file system

resource demands.

Comparison between the second and third timelines shows that the same amount of data

can be transposed faster when processed as one, larger, message. This highlights a tradeoff:

GPU operations can be overlapped with MPI communication of individual pencils (second

timeline), but the resulting MPI calls will have smaller message sizes and must compete

with GPU data movement bandwidth demands. Both factors work to slow down the MPI

operations. The best approach is dependent on the problem size. At large problem sizes, the

39



individual messages in the all-to-all become smaller and the effective bandwidth drops (see

Table 2.2). Beyond 16 nodes, waiting to send the entire slab at once (1 slab/A2A) is faster

than overlapping computation with communications of a pencil at a time (1 pencil/A2A).

In the (bottom) timeline for the case of 6 tasks per node, each MPI call takes longer

than in the case of 2 tasks per node (top). This is because the P2P message size in this

all-to-all is small and there are more MPI tasks for each to communicate with, which in-

creases latency costs. An additional drawback for this case of 6 tasks per node is that the

D2H packing MemCpy2DAsync section of code takes much longer. This is because for the

packing operation, the number of times cudaMemCpy2DAsync must be called is directly

proportional to the number of tasks. For each GPU, the cases of 6 tasks per node and 2

tasks per node pack the same total size buffer, but with 6 tasks per node the packing must

be done at a finer granularity. The number of copies required is now 3X that for the case

of 2 tasks per node. This results in increased overhead, as seen in subsection 2.3.2. A

zero-copy kernel can be used here, but it degrades the performance of the case of 2 tasks

per node by utilizing GPU resources that are critical to the compute kernels.

The last takeaway from these timelines is that for the 2 task per node cases, the MPI

cost is dominating the runtime of the code. The overhead incurred in choosing to batch

data between CPU and GPU is not significant compared to the total runtime. Yet, by

batching, a larger problem can be solved using the much larger CPU memory. Further

gains in performance will be contingent upon code redesigns and hardware innovations can

improve the performance of the all-to-all communication.

2.4.3 Scalability and efficiency of asynchronism

As noted throughout this chapter, the core objective is to solve large problems in a reason-

able amount of time. In most cases, the focus has been on the largest problem size that

can fit inside the memory available for a given node count. As a result, at each problem

size timings over only a narrow range of node counts can be collected, making inferences
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on strong scaling (to solve the same problem faster if given more resources) of limited rel-

evance in this work. The discussion of scalability, as presented below, is this focused on

weak scaling (to solve a bigger problem in proportionate time if given more resources).

The communication-intensive nature of codes dominated by 3D FFTs imply perfect

weak scaling is not achievable (Pekurovsky, 2012; Czechowski et al., 2012; Dalcin et al.,

2018; Chatterjee et al., 2018). Incidentally, when computation are greatly sped up by the

GPU accelerator at only modest cost for copies between host and device, the code becomes

even more communication-intensive (dominated by all-to-all communication), potentially

at the expense of scalability. MPI benchmarks given in Table 2.2 earlier indicate that al-

gorithmic choices that leads to a small number of large messages are usually beneficial.

However, eventually at the large scales the latency of small message sizes gives rise to

longer MPI communication times (and reduced net bandwidth).

Table 2.4: Weak scaling relative to 30723 problem size.

Nodes Ntasks
Problem # pencils Time Weak Scaling

Size per A2A (s) (%)
16 32 30723 1 6.70 -

128 256 61443 3 8.07 83.0
1024 2048 122883 3 10.14 66.1
3072 6144 184323 4 14.24 52.9

The weak scaling percentage (WS) is calculated between two problem sizes N3
1 , N3

2 of

node counts M1, M2 with execution times t1 and t2 respectively using the formula

WS =
N3

2

N3
1

× t1
t2
× M1

M2

. (2.4)

Table 2.4 shows weak scaling computed with respect to the 30723 (16 node) problem size,

using the best performance timings for each problem size as recorded earlier in Table 2.3.

Considering that between 30723 and 184323 the number of grid points has increased by a

factor of 63 = 216, a weak scaling of 53% is actually very reasonable, when considering

the communication-intensive nature of the code.
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Some information on strong scaling was also obtained using the expression below,

SS =
t1
t2
× M1

M2

, (2.5)

where t1 and t2 are the execution times for a fixed problem size on two different node

counts M1 and M2 respectively (such that M2 > M1). Specifically, for the 184323 problem

size, a doubling of node count from 1536 nodes to 3072 nodes leads to a reduction of wall

time per step from 48.7 to 25.4 seconds. This gives a strong scaling of 95.7%, which is

excellent.

Table 2.5: Performance data of batched synchronous and asynchronous DNS code on Sum-
mit. The percent reduction in time for the compute and data copy region of the batched
asynchronous code is computed with respect to a batched synchronous version.

Nodes Problem
Size

Sync GPU Async GPU
Comp &
Copy (s)

Total
(s)

Comp &
Copy (s)

MPI
(s)

Total
(s)

%
saved

16 30723 3.52 8.05 2.55 4.56 7.11 28
128 61443 3.81 8.76 2.68 4.94 7.62 30
1024 122883 4.31 10.52 3.29 6.30 9.59 24
3072 184323 6.90 14.92 5.93 7.98 13.91 14

Figure 2.10 presented earlier serves as a good reference to visualize the asynchronous

nature of the algorithm. However, it is also useful to quantify the performance savings

obtained from overlapping different operations. Table 2.5 reports the efficiency of overlap

calculated with respect to the batched synchronous code for just compute and data copy

regions in the code. The percentage of time saved in overlapping the data copies and com-

putations are computed using (tsync − tasync)/tsync, where tsync and tasync correspond to

the time to copy and compute in synchronous and asynchronous versions of the code, re-

spectively. The performance numbers for the batched synchronous version were obtained

using the same batched asynchronous CUDA Fortran code with the environment variable

CUDA LAUNCH BLOCKING turned on to disable any GPU asynchronism (between

computations and data copies). There is no overlap with respect to MPI as discussed in
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subsection 2.4.2. Therefore, in the batched asynchronous version only data copies and

computations are overlapped. A performance saving of around 15% is observed from en-

abling asynchronism in the code for 184323 with larger performance savings at smaller

problem sizes.

Among the two overlapped operations (data copies and computations), the copies are

dominant, especially for large problem sizes as the strides in memory increase while the

computations, especially the cuFFTs are almost trivial. Therefore, the best achievable

performance is obtained when the data copies completely overlap all computations. Fig-

ure 2.10 shows that the newly developed code is indeed successful in hiding most of the

computations under the data copies, with some inefficiencies that are inevitable.

2.4.4 A performance model towards the exascale

The timings reported in Table 2.5 can be used to establish a performance model that can

help predict the performance of the algorithm on future architectures based on expected

system characteristics. The performance model is developed to predict the effect of future

hardware improvements like faster network interconnect or CPU-GPU bandwidths on the

overall performance of the algorithm before having any opportunity to actually run tests

on these architectures, especially at large node counts. Noting that the data copies overlap

computations almost entirely, the compute+copy timings reported under the asynchronous

column of Table 2.5 can be safely assumed to represent the data copy timings alone. The

difference in compute+copy timings reported under the synchronous and asynchronous

columns gives the time spent in computations. The table also reports the time spent in

performing the MPI all-to-all.

The data movements in the batched asynchronous algorithm are dominated by strided

memory copies, as described in subsection 2.3.2. Figure 2.7 presented earlier shows that

the time to copy a fixed volume of data varies with the size of the contiguous messages

involved in the copies. The sizes of the contiguous messages illustrated in Figure 2.6
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earlier are dependent on the number of grid points in one direction (N ) and the number of

batches (or pencils) per slab (np) in the form N/np (with the strides being (np− 1)N/np).

A careful counting of the number of data copies between the host and device in a single

time-step reveals that a total of 86 slabs of data are copied, each of sizeN3/P (as described

in subsection 2.2.5).

The average time to copy a volume of data, Qcopy = 86N3/P , depends on the peak

GPU-CPU interconnect bandwidth (which is BWGPU = 150GB/s per task) and can be

estimated as t = Qcopy/BWGPU . However, it is not likely that the copies are all performed

at peak bandwidth. A factor α is introduced to account for this, such that the effective

bandwidth achieved is given by BWGPU,eff = αBWGPU . The effective bandwidth further

reduces when strided copies are performed. The time taken to perform these strided copies

may be modeled as,

tcopy = Qcopy

(
1

αBWGPU

+
1

β

)
, (2.6)

where, β accounts for the effects of strided copies. It can be observed from Figure 2.7 that

β will depend on the memory stride. After some curve fitting experiments, it was found that

the β is roughly inversely proportional to the square of the memory strides, i.e., β ∼ 1/S2,

where S is the memory stride which depends on problem size and number of pencils per

batch (np) as S = (np − 1)N/np. The resulting model parameters from linear curve fits

are, α ∼ 0.82 (which suggests 82% of peak bandwidth is achieved for non-strided copies,

i.e., BWGPU,eff = 123 GB/s) and β = 235000/S2 where S is the memory stride in units

of KB. Figure 2.11a shows the performance data and the corresponding model fit described

here. Because 184323 problem is not an exact weak scaling of the smaller problem sizes,

the corresponding copy and MPI timings are scaled to account for this. Reasonably good

agreement between the model and the actual data can be observed from this figure.

Many models exist in the literature to capture the behavior of collective communication

calls, like all-to-all (Hoefler et al., 2010; Pjesivac-Grbovic et al., 2005; Hongbing et al.,

2018). However, these models are complex and require estimates for some key network
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Figure 2.11: (a) Time spent in copying data between the GPU and CPU for different prob-
lem sizes, each corresponding to a different amount of stride in memory. (b) Time spent in
MPI all-to-all for different problem sizes. The dashed curve shows the model fit.

parameters like latency, congestion and overhead. From an application developer perspec-

tive, such a model is not very useful. It is more desirable to develop a model that predicts

the performance of an all-to-all based on input parameters such as the number of nodes

(M ) or the message size exchanged between each node. Curve fitting experiments, using

data in Table 2.5, suggest the MPI all-to-all performance has a logarithmic dependence on

the number of nodes (M ) when the problem size is exactly weak scaled.

tmpi = QMPI

(
1

γBWMPI

+
ln(M)

δ

)
, (2.7)

The DNS code requires 14 slabs of data to be transposed per time-step, which leads to a

total volume of data of QMPI = 14N3/P . Equation 2.7 shows the all-to-all performance

model considered here, where the effective MPI bandwidth BWMPI,eff = γBWMPI has a

similar meaning to BWGPU,eff . The interconnect on Summit is rated at a peak bandwidth

of 23GB/s and the model fit parameters γ and δ are estimated to be around 0.7 and 96

respectively. Figure 2.11b shows the MPI performance data and good agreement can be

seen with the corresponding model.

Using the two performance models developed above, the total performance of the code
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can be estimated using the following equation,

t = Qcopy

(
1

αBWGPU

+
1

β

)
+QMPI

(
1

γBWMPI

+
ln(M)

δ

)
, (2.8)

where α, β, γ and δ are the four model parameters, M , Qcopy and QMPI are user inputs and

BWGPU , BWMPI are system parameters. The batched asynchronous code was also tested

using 4096 nodes for a 245763 problem size and the performance measured was around

29.5s which compares favorably to the model prediction of 28.7s.

It is useful to re-iterate here that the model developed is not always applicable and has

limitations. The curve fit parameters estimated here assume a particular system architec-

ture with a fat tree topology interconnect. The MPI performance model was estimated

using data corresponding to a weak scaled problem, which has a fixed total message size

(although the peer-to-peer message size varies). The model parameters are expected to

change when the total message size varied. Also, the model parameters might not be ac-

curate for other machines with different hardware and needs to be re-tuned. Moreover, the

performance model will work best with weak scaled cases and problem sizes that deviate

from this condition might not be captured accurately. The model also assumes that the

computations were completely hidden by the data copies, which might not always be the

case.

With these limitations in mind, the model can be used to estimate the performance of

the batched asynchronous algorithm for a few problem sizes on Frontier (OLCF, 2021),

which is a future exascale machine with similar architecture to Summit. The machine is

expected to have faster network interconnect with a peak bandwidth of around 100GB/s

(BWMPI = 100) (OLCF, 2021). The peak bandwidth for copies between the CPU and

GPU is assumed to be around BWGPU = 200GB/s. The target problem size will be 327683

on 8192 Frontier nodes with 4 tasks per node. This leads to Qcopy and Qmpi being 344GB

and 56GB respectively. With all the model parameters known, the performance can be
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Figure 2.12: Performance estimates for the batched asynchronous algorithm on Frontier
using the performance model developed. The markers indicate the estimated time-per-step
for problem sizes 20483, 40963, 81923, 163843 and 327683 on 2, 16, 128, 1024 and 8192
nodes respectively.

estimated and is shown in Figure 2.12. The model suggests that using 8192 nodes of

Frontier, the 327683 problem size should take around 19s per time-step. As mentioned

previously, the performance model does not account for modern hardware architecture and

improvements in the algorithm, but the estimate here is obtained based on basic system

parameters and the characteristics of the batched asynchronous algorithm.

2.5 Particle tracking algorithm using GPUs

The Lagrangian viewpoint of fluid dynamics (Yeung & Pope, 1988; Yeung, 2002; Sawford

& Pinton, 2013) is based on studying infinitesimal mass-less fluid elements, referred to as

fluid particles, traveling with the instantaneous flow. A large number of these fluid particles

are tracked forward in time according to a simple ordinary differential equation,

dx+(t)

dt
= u+(t) (2.9)
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where, x+ and u+ denote the particle position and velocity respectively, and u+ is the

Eulerian velocity taken at the instantaneous particle position

u+(t) = u(x+(t), t) (2.10)

Direct numerical simulation is a very powerful approach for Lagrangian investigations,

since the Eulerian velocity field available at (N3) grid points allows the fluid particle ve-

locity to be obtained by interpolation (per Equation 2.9) at its instantaneous position. A

preferred interpolation scheme is by cubic splines, which are fourth-order accurate and

twice continuously differentiable. Each interpolated velocity can be written in the form

u+ =
4∑

k=1

4∑
j=1

4∑
i=1

bi(x
+)cj(y

+)dk(z
+)eijk(x) (2.11)

where bi, cj, dk is the 1-D basis functions that are determined by the particle position co-

ordinates (x+ = (x+, y+, z+)) and eijk are the 3-D spline coefficients that are computed

from the Eulerian velocity field u(x). The workflow to compute the 3-D spline coefficients

are similar to that for 3-D FFTs. That is, 1-D spline coefficients in each of the three direc-

tions are formed with an all-to-all transpose in between from x − z slabs to x − y slabs.

A system of tridiagonal systems modified to account for periodic boundary conditions is

solved in each coordinate direction (Ahlberg et al., 1967).

The batched asynchronous approach implemented for the velocity field (Ravikumar

et al., 2019) has been adapted to compute the spline coefficients. At each time step, once the

velocity components are formed in physical space, the particle tracking proceeds, starting

with velocities in x − z slabs stored in a temporary array on the host. A batch (pencil

oriented along the x direction) of the velocity field is copied from the host to the device,

where CUDA Fortran kernels are used to compute the spline coefficients in the x direction.

The partially formed spline coefficients are then copied back to the host. This process is

then repeated with batches of data oriented along the z direction. The copies of batches
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of data between the host and device are performed using cudaMemCpy2DAsync. After

operations in the z direction, the memory copies, using cudaMemCpy2DAsync, from the

device to the host are performed such that the data on the host arrives in a contiguous

form ready for an all-to-all transpose. After this communication, the data are unpacked

in batches, oriented along the y direction, using zero-copy kernels before splines in y are

completed as well. When multiple GPUs per task are available, the batch is further divided

up vertically, as shown in Figure 2.5, and each GPU operates on a smaller sub-division of

a batch of data.

Once the spline coefficients are formed completely, particle velocities can be obtained

following Equation 2.11. For each particle, 43 = 64 spline coefficients and basis functions

are required based on the particle positions. In the original implementation (Yeung &

Pope, 1988), each MPI task has access to all the particles and could form the interpolated

velocities. The basis functions are computed by each task for a subset of particles, and

MPI ALLGATHER is used to share this with all the tasks. The interpolation is then

performed by each task for particles whose spline coefficients are local to it. REDUCE

and SCATTER operations are required to complete the interpolation and share the final

results globally.

As explained in Buaria & Yeung (2017) the original implementation incurs high com-

munication costs at the large problem sizes and particle counts essential in the future. In-

stead, a “local particle decomposition” gives much better performance. In this approach,

each MPI task is responsible for the particles that are within its physical sub-domain. If a

particle crosses into a different sub-domain kept by a neighboring MPI task, then all of its

information is transferred to this new MPI task. The main idea is to keep the particles ‘local’

to the MPI tasks, such that all information necessary for interpolation are available locally

on an MPI task. To handle particles very close to the boundary of a sub-domain, spline co-

efficients from neighboring MPI tasks are obtained by forming the so-called “ghost layers”,

which hold two extra x− y planes of spline coefficients on each side of the slab (It should
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be noted that, instead of forming ghost layers, Buaria & Yeung (2017) employed one-sided

communication using Fortran co-arrays, which however is not currently widely supported).

These ghost layers are populated using one-sided MPI communication (MPI GET). This

allows the summation in Equation 2.11 to be formed entirely locally, and has led to very

good performance, with virtually no dependence on the number of particles.

Table 2.6: Performance breakdown of slab decomposition DNS code with particle tracking
for different problem sizes (N3, where k stands for 1024) and particle counts (Np, where M
and B stand for millions (10242) and billions (10243) of particles respectively). The spline
coefficients were formed on the GPU using the batched asynchronous approach. The time
spent in computing the 1-D spline coefficients and data copies are shown along with the
time spent in the all-to-all. The time spent in forming the ghost layers is given under the
Ghost column, and the time to compute the triple summation locally is reported under
spcal. All cases were run with 2 tasks-per-node and the weak scaling percentage (WS) is
calculated with respect to performance numbers at 16 (or 32) nodes using Equation 2.4.
The strong scaling percentage (SS) is calculated for a fixed problem size using numbers at
two different node counts according to Equation 2.5.

No. N3 Np
#

node

Time per step
WS SS

Eul.
Spline coeff.

Ghost spcal Total
comp comm

1 3k3 6M 16 7.27 0.86 0.99 0.24 0.040 9.42 - -
2 6k3 48M 128 7.85 0.69 1.13 0.35 0.043 10.08 93 -
3 12k3 384M 1024 10.29 1.12 1.67 1.01 0.065 14.19 66 -
4 18k3 1.5B 3072 15.02 1.88 2.45 2.06 0.083 21.50 49 -
5 3k3 48M 16 7.28 0.86 0.98 0.24 0.29 9.87 - -
6 6k3 384M 128 7.83 0.68 1.13 0.35 0.33 10.63 93 -
7 12k3 3B 1024 10.27 1.11 1.71 0.99 0.49 14.62 68 -
8 3k3 6M 32 3.69 0.43 0.50 0.14 0.020 4.78 - 99
9 6k3 48M 256 4.97 0.45 0.84 0.25 0.023 6.55 73 77

10 12k3 384M 2048 6.08 0.92 1.08 0.92 0.038 9.05 53 78
11 3k3 48M 32 3.68 0.43 0.50 0.14 0.15 5.00 - 99
12 6k3 384M 256 4.94 0.46 0.74 0.25 0.18 6.72 74 79
13 12k3 3B 2048 6.16 0.92 1.07 0.91 0.21 9.29 54 79

The performance of the code with the spline coefficients computed using the batched

asynchronous approach on GPUs is shown in Table 2.6. The performance of the Eulerian

only part of the code reported in this table is consistent with that seen in Table 2.3 earlier,

except for the larger problem sizes (122883 and 184323) where the number of batches per
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slab are higher (4 instead of 3 as in the Eulerian only runs) to accommodate additional

memory requirements for spline coefficients. It may be noted that the scalability of the

routines used to generate cubic spline coefficients is at present lower than desired. For

example, weak scaling between Cases 6 and 7 for the computational and communication

contributions for spline coefficients are only 61% and 66% respectively, while the corre-

sponding strong scaling between Cases 7 and 13 are 60% and 80%. These numbers point

to a need for further improvement in the future.

The all-to-all scalability issues affecting the Eulerian only part of the code also affects

the performance of the particle tracking algorithm. The formation of the ghost layers have

also been observed to scale not as well as desired. This is because the size of the ghost

layers being exchanged scale as N2. Additionally, using MPI GET to populate the ghost

layers without any prior data packing, requires strided memory access to select the last

two planes from the neighboring MPI task in the bottom. That is, if there are N/P planes

per slab each of size N2, the first N/P − 2 planes need to be strided over to reach the

(N/P − 1)th plane which will be the starting memory address for the communication to

begin. This stride in memory (N2×(N/P−2)) decrease as the problem sizeN increases. A

combination of these two effects, namely increase in message size and decrease in memory

stride, leads to an overall drop in weak scaling.

The number of fluid particles being tracked has no effect on the spline coefficients and

the ghost layer formation performance. It only affects the performance of the interpolation

(triple summation) which scales near ideally with the particle count. The GPUs are not

used for these parts of the particle tracking algorithm because the ghost layer formation is

purely communication and the triple summation would have to be written using a batched

approach because the entire slab of spline coefficients may not fit in the GPU memory. This

also comes with the additional memory cost (buffers to hold particle positions, velocities,

etc.) of tracking the particle properties on the GPUs. Since the time spent in this part of the

code is not significant at the particle counts tested, it has not been ported to GPUs yet.
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Table 2.7: Performance of spline coefficients formation routine using CPUs only in the
slab decomposition DNS code. All cases were run with 2 tasks-per-node, and the weak
scaling is calculated with respect to performance numbers at 16 (or 32) nodes. The number
of particles tracked for problem sizes 30723, 61443 and 122883 was 6M, 48M and 384M
respectively.

Problem
Size

#
nodes

Time per step Weak
Scaling

(%)

Strong
Scaling

(%)Eul.
Spline oeffs

Ghost spcal Total
comp comm

30723 16 7.27 3.69 1.02 0.24 0.040 12.30 - -
61443 128 7.81 4.19 1.58 0.35 0.043 14.01 88 -
122883 1024 10.21 6.40 2.51 1.05 0.063 20.25 61 -
30723 32 3.70 1.85 0.52 0.14 0.020 6.26 - 98
61443 256 4.96 2.13 1.19 0.25 0.023 8.56 73 82
122883 2048 6.12 3.57 1.53 0.94 0.042 12.21 51 83

For the largest problem size tested, the weak scaling recorded was 49% comparing cases

1 and 4 in Table 2.6 while the problem sizes between the two cases increased by a factor of

216. This is lower than that recorded for the Eulerian only case reported in Table 2.4 pre-

viously because of the additional communication requirements from the spline coefficients

and ghost layers in the particle tracking algorithm. A strong scaling of approximately 80%

is also observed comparing cases 7 and 13.

In order to understand the speedup obtained by computing the spline coefficients on

the GPUs, the performance of the code is also measured with the splines computed using

the CPUs only, as shown in Table 2.7. For the problem size of 122883 tested using 1024

nodes, the computations of the spline coefficients using the GPUs take 1.1s (Table 2.6)

while using the CPUs it takes 6.4s (Table 2.7), giving a speedup close to 6X. A further

performance improvement in communication is obtained by changing the all-to-allv used

in the CPU version to the simpler all-to-all with slightly larger message sizes.

The performance of the CPU-only pencil decomposition DNS code with particle track-

ing using the same number of nodes with 32 tasks per node is reported in Table 2.8. Not

all the 42 cores per node can be used because in the 2D (pencils) decomposition the row

communicator dimension Pr must be an integer factor of the number of grid points in each
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Table 2.8: Performance of pencil decomposition DNS code with particle tracking. All cases
were run with 32 tasks-per-node with a domain decomposition of the form 32 × nnodes,
where nnodes is the number of nodes. The speedup of the slab decomposition batched
asynchronous DNS code using GPUs with respect to the pencil decomposition DNS code
is also reported.

Problem
Size

#
particles

#
nodes

Time
per step

Weak
Scaling (%) Speedup

30723 6M 16 51.09 - 5.4
61443 48M 128 62.33 82 6.2

direction. The time spent in the Lagrangian part of the code can be obtained by subtracting

out the time spent in the Eulerian part alone, reported in Table 2.3. The pencil decom-

position code appears to weak scale, worse than the slab decomposition code up to the

largest problem size tested of 61443. The speedup of the GPU based batch asynchronous

code is around 6X, corresponding to a problem size of 61443, which also happens to be the

largest problem size tested using the pencil decomposition. The speedup is around twice

of that observed for the Eulerian only runs, which suggests a similar speedup holds for the

Lagrangian parts of the code as well.
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Figure 2.13: A scaling plot showing performance data on Summit for simulations without
and with Lagrangian particle tracking.

Performance data for the Lagrangian simulations for different problem sizes are pre-
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sented in Figure 2.13. It can be seen that scalability is well maintained for both Eulerian

and Lagrangian operations, except for the largest two problem sizes. Ideally, weak scaling

of 122883 on 1024 nodes suggests that the 184323 problem size should be run on 3456

nodes. However, since in a 1D decomposition the number of MPI processes must be an in-

teger factor of the number of grid points in each direction, this problem size was run using

3072 nodes instead. GPU acceleration measured relative to a CPU only code (albeit one

that uses a less-efficient nonlocal decomposition of particles) is in the range of 5-6.

2.6 OpenMP implementation strategy

Recent code development efforts, as a part of the Center for Accelerated Application

Readiness for Frontier program led by the Oak Ridge Leadership Computing Facility

(OLCF), have focused on adapting the batched asynchronous algorithm, described in sub-

section 2.2.4, to the new hardware architecture and software environment of one of very

first exascale computers in the world (to be online by early 2022). With portability as the

primary goal, OpenMP is used to target the GPUs. The CUDA API calls used on Summit

to allocate memory and copy data between the host and device are likewise to be replaced

by OpenMP MAPs and TARGET UPDATE constructs. OpenMP TASKs with DEPEND

and NOWAIT clauses are used instead of CUDA streams and events to enforce the desired

asynchronism. The one-dimensional FFTs are also changed to use the ROCm library in-

stead of CUDA. Proper interoperability between non-blocking library calls, like rocFFT,

will require use of the OpenMP 5.0 DETACH construct. Finally, the computations per-

formed using the CUDA Fortran kernels will be ported to target the GPUs using OpenMP

TARGET TEAMS DISTRIBUTE PARALLEL DO regions.

Memory allocators introduced in the OpenMP 5.0 standard are expected to ensure the

host arrays involved in data copies are pinned in memory to achieve maximum bandwidth.

The device memory is managed through the TARGET DATA regions, with MAP clauses

used to allocate memory and copy data to/from the GPUs. Additional data copies of con-
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tinuous memory sections between an array already allocated on the device and the host are

performed using TARGET UPDATE constructs.

In the “batched” scheme described earlier in this chapter, when FFTs in y need to be

computed, a sub-volume of data consisting of N × N/P lines of size N/np need to be

copied to the GPU. That is, for each value of x (between 1 and N ) and z (between 1 and

N/P ), N/np elements from the innermost dimension of size N elements, which are con-

tiguous in memory, needs to be copied. A schematic of 2D strided copy of the data is shown

in Figure 2.6 earlier. Efficient strided data transfers between the CPU and GPU are thus

important. Simple approaches such as packing on the host prior to transfer, or performing

multiple copies one line at a time are inefficient, because of an extra data-reordering op-

eration on the CPU and the overhead of numerous smaller copies respectively (Ravikumar

et al., 2019). Instead, two different approaches are used (as described in subsection 2.3.2),

depending on the complexity of the strided memory accesses.

For some strided copies, the device memory routine, omp target memcpy rect can be

used to copy a specified sub-volume inside a larger array on the host to a smaller buffer

on the device, or vice versa. Since this routine is directly callable only from C/C++, when

making copies we need to account for the difference in memory order between C and For-

tran. A C-to-Fortran interface has been developed to enable calling this routine from a

Fortran program. This OpenMP routine is conceptually similar to cudaMemcpy2d. The

OpenMP 5.1 standard supports an asynchronous version, omp target memcpy rect async,

which will allow for some overlap between strided data copies and computations using

OpenMP. However, the rectangular memory copy calls were found to be very slow on

both Summit and Spock, which is the early access system for Frontier. While the perfor-

mance issues are being addressed by the compiler developers, the hipMemCpy2DAsync

API call can be used to to copy data between the host and device, until the performance of

omp target memcpy rect is improved and support for the asynchronous version is avail-

able.
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1 TARGET ENTER DATA MAP(to:d buf) DEPEND(IN:indep) DEPEND(OUT:tdep) NOWAIT
2

3 TARGET TEAMS DISTRIBUTE PARALLEL DO COLLAPSE(4) IS DEVICE PTR(h buf)
DEPEND(INOUT:tdep) NOWAIT

4 do yg=1,nt
5 do z=1,mz
6 do y1=1,my
7 do x=1,N
8 y = my*(yg−1)+y1
9 d buf(x,y,z) = h buf(x,z ,y1,yg)

10 end do
11 end do
12 end do
13 end do
14 END TARGET TEAMS DISTRIBUTE PARALLEL DO
15

16 TARGET EXIT DATA MAP(from:d buf) DEPEND(IN:tdep) DEPEND(OUT:outdep)
NOWAIT

Figure 2.14: Asynchronous OpenMP implementation of the zero-copy kernel for unpack-
ing data from the pinned host array (h buf) to the device array (d buf). In this example, nt
is the number of MPI ranks and my = mz = N/nt where N is the number of grid points
in each direction.

For more complex stride patterns, like those in unpacking operations, a zero-copy ker-

nel (Appelhans, 2018b) is used. In this approach, GPU threads are used to initiate many

small transfers between pinned memory on the host and the device memory. Figure 2.14

shows the asynchronous OpenMP implementation of the zero-copy kernel. The array re-

siding on the host is made device accessible using the IS DEVICE PTR clause. GPU

threads can then directly access data on the host in a strided manner and copy them to the

device. The kernel is currently housed in a separate subroutine and the host buffer (h buf)

is passed in to it, since the arguments to the IS DEVICE PTR clause have to be dummy

arguments. Asynchronous execution is enabled using the DEPEND and NOWAIT clauses,

with the arguments to the depend clause (indep and outdep) being inputs to the subroutine.

In order to perform one-dimensional Fourier transforms, the code will call the rocFFT

library functions. These functions are written in C/C++ but they can be called by Fortran

routines via vendor-provided interfaces such as hipfort. The FFT plans are created such
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that they execute on a non-blocking stream, obtained using hipStreamCreate. The library

function is called from the host, but the device arrays need to be passed in to it. This is

achieved using the TARGET DATA USE DEVICE PTR clause, which tells the OpenMP

runtime to pass the device pointer of the array, already allocated through a MAP clause, to

the library call.

As noted in earlier sections, the DNS code is communication intensive, with all-to-

all library calls being dominant. On Frontier, the new slingshot interconnect (De Sensi

et al., 2020), is expected to help reduce this performance bottleneck. The code is also

being developed with the capability to perform GPU-aware MPI, which is the recom-

mended method of communication on Frontier for optimal performance, with the addi-

tional advantage of removing the need for some host-device copies. Similar to rocFFTs,

the USE DEVICE PTR clause will be required to pass device pointers to the MPI library

function.

In OpenMP, asynchronous execution can be achieved using the TASK clause for work

on the host, NOWAIT for device kernels and data copies, as well as DEPEND to enforce

the necessary synchronization between different tasks. However, when non-blocking li-

braries such as cuFFT or rocFFT are called from inside an OpenMP task, the desired

asynchronism breaks down. Figure 2.15 shows a 1D FFT example to highlight the pro-

posed approach to mix non-blocking FFT calls and other tasks such as data copies or com-

putes on the GPU. This example consists of three main tasks in the example. Task A calls

the non-blocking libraries to transform the data in the forward and inverse directions. Task

B performs a host-to-device data copy, and Task C multiplies the data by a scalar after

transformation. First, let us consider what happens without the highlighted gray lines. The

host thread that is executing task A will launch the FFT kernels to the GPU, but since these

library calls are non-blocking the control will return immediately back to the host thread

which will proceed to end the task. Therefore, the OpenMP runtime environment does not

ensure the launched device kernels have completed or even started running when task A is
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1 TARGET DATA MAP(tofrom: a)
2

3 TASK DEPEND(out:var) DETACH(event)
4

5 TARGET DATA USE DEVICE PTR(a)
6 FFTExecute (a , forward, stream)
7 FFTExecute (a , inverse , stream)
8 END TARGET DATA
9

10 cudaStreamAddCallback (stream, ptr callback, C LOC(event), 0)
11 END TASK
12

13 TARGET UPDATE TO(b) DEPEND(inout:b) NOWAIT
14

15 TARGET TEAMS DISTRIBUTE DEPEND(IN:var) NOWAIT
16 a (:, :, :) = a (:, :, :) /nx
17 END TARGET TEAMS DISTRIBUTE
18

19 END TARGET DATA

1 subroutine callback (stream, status , event)
2 type( c ptr ) :: event
3 integer(kind=omp event handle kind) :: f event
4 call C F POINTER (event, f event)
5 call omp fulfill event( f event )
6 end subroutine callback

Figure 2.15: Interoperability between non-blocking FFT libraries and OpenMP tasks using
DETACH while ensuring correct asynchronous execution.

︸
︷︷

︸

A©

︸︷︷︸ B©

︸︷︷
︸

C©

considered “completed”. This failure to check for true completion of a pre-requisite task

leads to an incorrect early release of the dependency, that then allows task C to start running

prematurely, leading to incorrect results.

One way of preventing the erroneous scenario above is to use the OpenMP DETACH

clause. Together with the call to cudaStreamAddCallback (lines highlighted in gray), this

will ensure that the host thread launches the FFTs and introduces a callback function into

the stream in which the FFTs are executing. The host thread then detaches itself from task A

to proceed further with other operations, but the OpenMP runtime does not consider the task
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“completed”. Once the FFT kernels finish executing on the device, the callback function

is invoked which “fulfills” the event and completes task A. This releases the dependency

correctly and task C can begin executing, ensuring the desired asynchronous behavior is

achieved. It is also important to note here that, while the FFT kernels in task A were

executing, task B can perform data copies (or other tasks) asynchronously.

Figure 2.16 compares pseudo-code segments in CUDA Fortran with OpenMP. Buffers

labeled as NEXT, CURR and PREV for different sub-volumes in a slab are allocated on

the GPU, and different operations are performed on them asynchronously. In a single loop

iteration, a strided host-to-device copy of the (ip + 1)-th sub-volume to the NEXT buffer,

computations on the CURR buffer (which holds the ip-th sub-volume on the device), a

strided device-to-host copy of the PREV buffer to (ip − 1)-th sub-volume, and all-to-all

from the host on the (ip − 2)-th sub-volume are performed asynchronously. In CUDA

Fortran, events are used to record and synchronize operations on different streams to ensure

correct results. Computations on the CURR buffer (line 8) do not start before copy of

the CURR buffer completes, as enforced by a cudaStreamWaitEvent call on line 7. In

OpenMP, the DEPEND clause with dependency type IN ensures the task does not start

before prior tasks using the same dependency variable with type OUT are completed.
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1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);
4 cudaStreamWaitEvent (trans stream, DtoH(NEXT), 0)
5 cudaMemCpy2DAsync (abuf(NEXT),a(ip+1),trans stream)
6 cudaEventRecord (HtoD(NEXT),trans stream)
7 cudaStreamWaitEvent (comp stream, HtoD(CURR), 0)
8 FFTExecute (abuf(CURR), comp stream)
9 cudaEventRecord (comp(CURR), comp stream)

10

11 cudaStreamWaitEvent (trans stream, comp(PREV), 0)
12 cudaMemCpy2DAsync (snd(ip-1), abuf(PREV), trans stream)
13 cudaEventRecord (DtoH(PREV), trans stream)
14 cudaEventSynchronize (DtoH(COMM))
15 MPI IALLTOALL (snd(ip-2))
16 end do

1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);
4 TASK DEPEND (IN:DtoH(NEXT), OUT:HtoD(NEXT))
5 omp target memcpy rect (abuf(NEXT), a(ip+1))
6

7 TASK DEPEND (IN:HtoD(CURR), OUT:comp(CURR))
DETACH(event)

8 FFTExecute (abuf(CURR), comp stream)
9 hipStreamAddCallback (comp stream, callback, event, 0)

10 TASK DEPEND (IN:comp(PREV), OUT:DtoH(PREV))
11 omp target memcpy rect (snd(ip−1), abuf(PREV))
12

13 TASK DEPEND (IN:DtoH(COMM))
14 MPI IALLTOALL (snd(ip-2))
15 end do

Figure 2.16: Pseudo-code showing batched asynchronous transforms in one direction using CUDA Fortran (on the left) and OpenMP
(on the right). The colors red, blue and green highlight events or dependencies corresponding to the NEXT, CURR and PREV buffers or
sub-volumes as shown in Figure 2.3 discussed previously.
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In Figure 2.16, the OpenMP version differs from CUDA Fortran in three key aspects.

The first is the use of omp target memcpy rect in place of cudaMemcpy2D. The second

is a DETACH clause with an event handle is attached to the TASK construct launching the

FFTs. This task also calls hipStreamAddCallback, on line 9, to insert a callback function

into the stream in which the FFTs will execute. The callback function is executed once the

FFTs complete on the GPU, which calls omp fulfill event to indicate the completion of

the event passed to the DETACH clause. This satisfies the OUT dependency and allows

further tasks to execute. Finally, the use of DEPEND clause to enforce the necessary

synchronization in place of CUDA events.

2.6.1 Plans for OpenMP 5.0
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Figure 2.17: Weak scaling performance of non-batched synchronous 3D FFT kernel on
Summit. Performance of CUDA Fortran (green) and OpenMP (blue) versions are compa-
rable and overlap each other in the plot. Speedup of OpenMP offload version with respect
to the CPU version is given as labels in the plot. Dashed lines indicate perfect weak scaling.

As of June 2021, basic non-batched synchronous versions of the 3D FFT kernels on

Summit have been tested, with comparable performance between CUDA Fortran and OpenMP,

up to 12,2283 resolution, as shown in Figure 2.17. The performance observed at large prob-
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lem sizes shows a weak scaling of 60%, which is less than desired and is a consequence of

dominance by MPI communication. A GPU speedup of 2.57X is observed for the 12,2283

problem size. Larger speedups are expected in the full DNS code, which has more compu-

tation that can benefit from GPU acceleration. However, for purposes of the DNS code, the

full promise of OpenMP offloading is still contingent upon solutions to the challenges dis-

cussed above, associated with strided copies (even using omp target memcpy rect) and

asynchronism (with the DETACH clause not yet fully supported). Progress in the near

future will involve working closely with vendor experts, ideally with improved Fortran

support for OpenMP 5.0 and higher.

2.7 Conclusions

In this chapter, a detailed report on design and performance aspects of a new GPU algorithm

for direct numerical simulations (DNS) of turbulent flow has been given. This work has

in part led to a conference paper at Supercomputing 2019 which was nominated as the

best student paper finalist (Ravikumar et al., 2019). The chapter also highlights some key

challenges in porting the code to OpenMP to target GPUs and has led to two publications

(Bak et al., 2021; Chapman et al., 2021) which are both in press.

The algorithm was optimized for the dense node architecture of Summit, a 200 Petaflops

pre-exascale computer which is currently the world’s second fastest. The best implemen-

tation of this algorithm gives a favorable time to solution for a problem size of 184323 grid

points, of under 15 seconds of wall clock for each second-order Runge-Kutta time step.

This resolution is higher than that reported in previous state-of-the-art simulations, which

mostly employed CPU-based massive parallelism. Speedup measured relative to the best-

performing CPU code is of order 3 or higher for all problem sizes tested. The significant

role of communication implies the FLOP rate, which is expected to be in the range of 1-5%

of the peak for 3D FFT based applications (Czechowski et al., 2012), is not a useful metric

to characterize the performance of the code. Instead, the bandwidth of the MPI all-to-all
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transpose was measured and found to be close to 40% of the peak node injection bandwidth

for the largest problem size of 184323 on 3072 nodes. A larger fraction of the peak band-

width may be possible in future system designs with improved hardware and MPI library

implementations.

Using the latest GPU data movement techniques allows efficient use of the full node

memory, which in turn allowed for solving larger problems and larger MPI message sizes.

A close examination of code region runtimes (Figure 2.10) shows that, as a result of pow-

erful GPUs and fast NVLink connections, the cost of FFT computation and data movement

between CPU and GPU is reduced to less than one seventh of the code runtime. The bulk

of the remaining runtime is spent on network all-to-all communications, which was also

studied independently using a standalone code (subsection 2.3.1).

A one-dimensional decomposition combined with a hierarchy of MPI+OpenMP paral-

lelism allows communication in the form of a smaller number of larger messages, which is

crucial for achieving acceptable scaling performance, especially at larger problem sizes.

The new code features capability to asynchronously overlap compute, GPU-CPU data

movement, and MPI communications (Figure 2.4). However, at node counts of 128 and

greater, performing MPI asynchronously become more expensive than simply waiting for

the entire slab of data to be processed before initiating the MPI all-to-all.

The basic principles of batched asynchronism were applied successfully to the compu-

tations of spline coefficients required when tracking fluid particles. Communication costs

in computing the cubic spline interpolation was also minimized using the local particle de-

composition and “ghost layer” approach (using one-sided MPI). A speedup of around 6X

was observed for the problem size of 61443 and the weak scaling performance was mea-

sured to be close to 50% for the largest problem size of 184323. The number of fluid par-

ticles being tracked has only minimal effect on the performance of the code. The batched

asynchronous algorithm, in general, can be adapted to other numerical computations where

multiple operations like data copies, computations and network communication are in-
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volved, provided the problem size being solved is large such that it would not fit entirely

in the GPU memory. While the algorithm discussed in this chapter focuses mainly on

pseudo-spectral simulations of isotropic turbulence, it is also relevant to some simulations

of inhomogeneous turbulence – e.g. in DNS of channel flows (Lee et al., 2013) where the

spanwise and perhaps streamwise directions are often taken to be periodic.

The research reported in this chapter also presented a brief discussion on some key

challenges encountered in developing a portable implementation of extreme scale 3D FFTs

using OpenMP to target GPUs. Efficient strided data copies are performed using Zero-

copy kernels and omp target memcpy rect. Although full compiler support for it is not

yet available, the OpenMP 5.0 feature DETACH is expected to resolve an issue of inter-

operability between non-blocking GPU library calls and OpenMP tasks. Comparisons of

the batched synchronous code (without DETACH) developed using CUDA Fortran and

OpenMP revealed no significant performance benefits from using one over the other. From

a code development perspective, OpenMP is preferred as it is widely supported while

CUDA Fortran and OpenACC are proprietary tools specific to NVIDIA GPUs. While pro-

gramming GPUs using OpenMP is simpler than using CUDA Fortran, the use of features

like DETACH increases the complexity of the resulting code. Future work will include

testing the DETACH approach and using it to develop a batched asynchronous 3D FFT

code (and eventually pseudo-spectral simulation of turbulence) capable of problem sizes

beyond that recently achieved on Summit.

The lessons learned as well as successes achieved in this work are directly relevant

to large computations in many science domains where 3D Fast Fourier Transforms are

useful, and in fact generalizable to a variety of large production use codes characterized

by substantial needs in communication. This chapter shows that it is possible to efficiently

utilize the very large CPU memory while still extracting substantial benefits from the GPU

as an accelerator. Continuing research in achieving higher communication performance on

leadership computing platforms is still vital in the exascale era and beyond.
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CHAPTER 3

ADVANCING UNDERSTANDING OF TURBULENCE THROUGH

EXTREME-SCALE COMPUTATION: INTERMITTENCY AND SIMULATIONS

AT LARGE PROBLEM SIZES

In turbulence, it is well known that direct numerical simulations (DNS) at massive scales

are very useful for advancing physical understanding, but also very demanding in computa-

tional resources (Moin & Mahesh, 1998; Ishihara et al., 2009). For a given flow geometry,

strong motivation for ever-larger simulations may include reasons of a physical nature, such

as a higher Reynolds number (Ishihara et al., 2016), lower diffusivity in turbulent mixing

(Clay et al., 2017), increasing chemical complexity in reacting flows (Gruber et al., 2018),

higher turbulent Mach numbers in compressible turbulence (Jagannathan & Donzis, 2016);

as well as numerical reasons associated with resolution or sampling in space or time (Schu-

macher et al., 2014; Yeung et al., 2018). Rapid advances in computing power (exponential

growth of roughly 1 million-fold increase over the last 25 years) have enabled simulations

of order 1 trillion grid points in at least isotropic turbulence (Ishihara et al., 2016), channel

flow (Lee & Moser, 2015) and stratified turbulence (Watanabe et al., 2016). With exascale

computers expected to arrive by 2022, future prospects for turbulence simulations appear

to be bright, at least as far as the number of grid points is concerned.

Recent progress in developing a new algorithm to target GPU based heterogeneous

architectures (Ravikumar et al., 2019) have indeed enabled production simulations at un-

precedented problem sizes. However, it must be noted that turbulence computations are

often so demanding that extreme-scale simulations of the largest size that can fit into the

computer memory are likely to be restricted to ever-shorter physical time spans. This is

owing to the fact that because of time stepping, the computational resources required scale

as N4 while the memory is proportional to N3. That is, every halving of ∆x (grid spac-
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ing) is accompanied by at least a 16 times increase in cost–which exceeds the performance

increase enabled by most newly installed top-ranked machines over their predecessors. On

the other hand, recent results (Yeung et al., 2018) showed that if such highest resolution

simulations are performed as a means to improve resolution in the small scale motions,

then such simulations need not be long. However, it is important to ensure good sampling,

which may be possible through ensemble averaging over a number of short simulation “seg-

ments” with good statistical independence, each of these being obtained by grid refinement

from lower resolutions. This approach is referred to as Multiple Resolution Independent

Simulations (MRIS).

The intent in this chapter is to communicate recent innovations in turbulence simu-

lations that are important to the enduring goal of advancing understanding of turbulence

through taking proper advantage of future exascale computing or beyond. The proposed

MRIS technique is not all powerful: for example, in this work, a longer adjustment time for

the numerical solution will be required when attempting to increase the Reynolds number

at a given resolution, compared to that needed to increase the resolution at a given Reynolds

number. A longer adjustment time is likely required also for simulations of wall-bounded

turbulence, such as fully-developed channel flow spanning several flow-through times (Lee

et al., 2014). This is in addition to the obvious inapplicability of this approach for simula-

tions with no stationary state. However, this approach is well suited to the task of obtaining

well-sampled results of the small scale physics, at higher resolution in stationary isotropic

turbulence. More details on the MRIS technique and a validation study are discussed in

section 3.1. Results on 3D local averages from simulations at different Rλ ranging from

390 to 1300 are presented in section 3.2. Conclusions are summarized in section 3.3.

3.1 MRIS: Methodology and Validation

The subsections below begin with a more detailed discussion of the MRIS methodology

and how this approach can be tested, for forced stationary isotropic turbulence. A val-
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idation study is presented which addresses single-point statistics, issues of statistical in-

dependence, and two-point statistics crucial to the material of section 3.2. The forcing

scheme used is designed to reduce the statistical variability of spatially-averaged statistics

in time, by freezing the energy spectrum in the lowest few wavenumber shells (Donzis &

Yeung, 2010), at values derived from long-time averages of results from stochastic forcing

(Eswaran & Pope, 1988). However, the MRIS methodology should be compatible with

other forcing schemes that share the common principle of maintaining energy by forcing at

the large scales, as well.

3.1.1 The MRIS approach and a validation procedure

As noted previously, with expectations for DNS rising due to a combination of scientific

need and advances in computing power, a pressing challenge is that full-length simulations

spanning several large-eddy time scales at extreme-scale resolution pushing the envelope

of the latest leadership-class platforms will likely be inaccessible. However, if a turbulent

flow is statistically stationary and the focus is on small-scale phenomena with short time

scales, a much more viable alternative is available.

βτη

N1

N2

N

time

Figure 3.1: Schematic of the Multiple Resolution Independent Simulation approach, where
simulations at higher resolutions are performed in steps starting from snapshots in a long-
running simulation at lower resolution spaced out in time (as shown by the solid horizontal
line). The dashed horizontal line represents an extension of the lower resolution simulation
to generate more snapshots as required. Blue and Red lines represent short simulations, of
length βτη in time at intermediate (N3

2 ) and final (N3) spatial resolution, respectively.

In the proposed (MRIS) approach, sampling over a long, continuous simulation at high

resolution, say N3 is replaced by sampling over a number of short simulation segments
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that possess a demonstrable degree of statistical independence. Although a full-length

simulation at N3 resolution may be excessively costly, a long simulation at some lower

resolution (say N3
1 ) can be assumed to be available, either from prior work or through new

calculations. The strategy here is to use multiple (say M ) snapshots, with approximate

independence through a separation in time from an N3
1 simulation, as initial conditions for

the short N3 segments, which are then disjoint from each other. Since the small scales

adjust to grid refinement (N3
1 → N3) rapidly, these segments need not be long, only a few

(say β) Kolmogorov time scales in length. Figure 3.1 illustrates the approach described

here. The total cost of simulations at N3 will then be measured in Kolmogorov time scales

(τη) instead of large-eddy time scales (TE). This results in major cost savings, especially

when TE/τη is high, which is the case at high Reynolds number. The savings in turn make

well-sampled results at high resolution much more readily feasible than otherwise.

It may be noted that while ensemble averaging over multiple independent simulations

in turbulence is not common, it has been used before, in situations where statistical vari-

ability per simulation can be very significant (Overholt & Pope, 1996). A critical test for

MRIS is whether the results are close, within some margins of uncertainty, to those from

an actual, full-length N3 simulation. For validation, a full-length DNS that is available

at some affordable value of N is considered, at a Reynolds number sufficiently high to

show clear intermittency, and is very well resolved in space and time — essentially, us-

able as a high-accuracy benchmark that MRIS results can be compared to. Resolution in

space can be expressed by the non-dimensional parameter kmaxη, where kmax =
√

2N/3

is the highest wavenumber resolvable on an N3 grid of length 2π units on each side, and

∆x/η ≈ 2.96/kmaxη. Accuracy in time may be controlled through the Courant number,

which in the present flow without a mean velocity is defined as

C = ∆t

[
|u|
∆x

+
|v|
∆y

+
|w|
∆z

]
max

. (3.1)
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where u, v, w are velocity fluctuations, and the maximum is taken over all (N3) grid points.

In the second-order Runge Kutta scheme used here a combination of kmaxη ≈ 1.4 and

C = 0.6 is usually adequate for low-order statistics, but better resolution in both time and

space are important for higher-order quantities strongly impacted by intermittency.

A well-resolved instantaneous snapshot at N3 resolution can be truncated down to N3
1

by removing content at all Fourier modes with wavenumber higher than the value of kmax

that corresponds to N3
1 resolution. This removal of high-wavenumber modes leads to

an immediate decrease in various quantities, including 〈ε〉, that contain substantial high-

wavenumber content. Next, an N3 simulation segment is run with this truncated field as

initial conditions, by filling in the “extra” Fourier coefficients beyond the value of kmax of

an N3
1 grid with zeroes. The desired outcome is for 〈ε〉 to recover quickly to its original

value in the (reference) N3 simulation. For a given N , this “recovery time” is expected to

increase with N/N1, being longer (thus less economical) if N1 is a very low resolution. In

cases where prior data at resolutions N/3 or N/4 are conveniently available, it would be

useful to reach the desired resolution via an intermediate stage such as N1 → N2 followed

by N2 → N . Incidentally, the “recovery” process examined here has some parallels with

the process by which the large scales can regenerate the small scales if the latter are artifi-

cially removed (Yoshida et al., 2005), provided the large scales are themselves maintained.

Since resolution effects are being investigated, comparisons should be based mainly on

quantities that are sensitive to the small scales. The list we consider includes the mean

dissipation rate (〈ε〉), the dissipation skewness (Kerr, 1985) (Sε), the energy spectrum at

high wavenumber; as well as direct indicators of intermittency such as the statistics of

dissipation rate and enstrophy fluctuations evaluated at a point or averaged locally in space.

Table 3.1 shows important parameters for tests conducted in the MRIS validation study,

with reference to a simulation atRλ ≈ 390 (one of the values tested in (Yeung et al., 2018)),

with N = 3072 at kmaxη ≈ 4.2 which provides good resolution for the small scales. This

full-length “reference” simulation was run for 5.5 TE , with 22 snapshots written at intervals
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Table 3.1: Selected parameters in simulation segments used for MRIS validation: from N3
1

to N3 (via N3
2 if applicable), kmaxη on N3 grid, number of segments (M ), time span in

units of τη, and ensemble-averaged 〈ε〉 and Sε, at the beginning and end of each segment
(subscripts b and e respectively). Initial conditions for Cases 3 and 6 were taken from the
end of Cases 2 and 5. In the reference 30723 simulation, the time-averaged values of 〈ε〉
and Sε were 1.409 and 0.588 respectively. All simulations in this table were performed
using a Courant number of C = 0.25, with the same forcing parameters and viscosity.

Case N1 N2 N kmaxη M β 〈ε〉b Sεb 〈ε〉e Sεe
1 768 - 3072 4.2 11 4 1.374 0.471 1.410 0.588
2 768 - 1536 2.1 22 2 1.375 0.471 1.409 0.585
3 - 1536 3072 4.2 22 2 1.409 0.585 1.410 0.587
4 384 - 1536 2.1 22 4 1.135 0.264 1.397 0.577
5 384 - 768 1.05 22 4 1.135 0.264 1.403 0.529
6 - 768 1536 2.1 22 2 1.403 0.529 1.404 0.586

of 0.25 TE apart. Each snapshot is truncated down to 7683, and studied to understand

how the numerical solutions recover when a 4X increase in resolution back to 30723 is

directly applied (Case 1), or through two successive 2X increases in resolution (Cases 2-

3, combined). It is important to check whether a new stationary state forms in a short

period of time, with statistics closely resembling those extracted from the 30723 reference

simulation. Similar tests (Cases 4 and 5-6) are conducted to see if acceptable results can be

obtained from poorly-resolved velocity fields (in this case, 3843 with kmaxη as low as 0.5)

similarly. Although, through the definition of η, changes in 〈ε〉 lead to changes in η and

hence kmaxη since η ∝ 〈ε〉−1/4, this effect is weak even if long-time variations in the order

of 10% (Donzis & Yeung, 2010) are considered. All the simulations listed in this table

were performed using CPU-based codes on the machine Frontera at the Texas Advanced

Computing Center, which as of 2021 is the most powerful academic-based supercomputer

in the world.

3.1.2 Single-point statistics and spectra

Both Table 3.1 and Figure 3.2 provide information on the dissipation rate and dissipation

skewness (Kerr, 1985), which can both be written explicitly in terms of the dissipation spec-
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(a) (b)

t/τη t/τη

〈ε〉 Sε

Figure 3.2: Evolution of (a) 〈ε〉 and (b) Sε ensemble-averaged over multiple simulation
segments, for Cases 1 (red), 3 (green), 4 (blue), and 6 (black), of different lengths as noted
in Table 3.1.

trum. When a substantial collection of high wavenumber modes is abruptly removed, the

dissipation rate drops, while subsequent transfer of energy from the large scales (which are

forced) will allow a recovery. Since forcing is applied at the large scales, its details are not

expected to affect the small-scale dynamics significantly (Sreenivasan, 1998). The contrast

between Cases 1 and 4 shows, as expected, that truncation down to a lower wavenumber

cutoff leads to a stronger reduction of dissipation rate and a slower subsequent recovery.

The route of two successive refinements (2X each) requires fewer time steps to be run on

the targeted finer (N3) grid than a direct 4X refinement — which translates to lower re-

source requirements overall. Similar but stronger trends are observed for the dissipation

skewness, which contains more high wavenumber content than the mean dissipation rate.

In wavenumber space, an immediate consequence of grid refinement is that energy can

now be transferred to higher wavenumbers that were not represented before. Figure 3.3

confirms that the small scales do adjust rapidly, with the energy spectrum (E(k)) at the end

of the short simulation segments being nearly indistinguishable from results in the reference

simulation. For Case 3, although the spectrum initially has a mild pileup at the kmax of the

intermediate-sized (15363) grid (resulting from Case 2), a well-behaved functional form

soon emerges.

Two important measures of intermittency and small scales are the energy dissipation
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Figure 3.3: Development of the energy spectrum as a result of grid refinement for (a) Case
1 and (b) Case 3 (per Table 3.1). For clarity, only early-time data in the short segments (at
increments of 0.1 τη, following the arrows) are shown. A blended red and blue dashed line
gives spectra at the end of the short segments and time-averaged within the 30723 reference
simulation.

rate (ε) and enstrophy (Ω), which are defined by,

ε = 2νsijsij ; Ω = ωiωi (3.2)

where ν is the kinematic viscosity and sij and ωi are components of strain and vorticity rate

respectively. Interest in the behavior of fluctuations of these quantities is a primary motiva-

tor for resolving the small scales as well as possible. Figure 3.4 shows information on the

time history of (a) peak values (over all grid points) and (b) the probability density function

(PDF) of normalized dissipation and enstrophy, obtained from the simulation segments of

Case 3. In frame (a), despite substantial variability, the peak values can be seen to adjust

to a new, stable stationary state, after only about 0.5 τη. The observed peak values in this

new stationary state agree well with time-averaged values in the reference 30723 simulation

(black dashed lines, partly hidden). Higher values of peak Ω/〈Ω〉 also indicates enstrophy

is more intermittent (Yeung et al., 2018). The dissipation PDF data at different times in

frame (b) are also in support of a rapid approach to a new stationary state, consistent with

the reference simulation.
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Figure 3.4: Statistics of normalized dissipation and enstrophy obtained from multiple sim-
ulation segments for case 3 in Table 3.1. (a) Peak values: ensemble-averaged (solid lines)
and 25th and 75th percentiles (dashed lines), red for dissipation, blue for enstrophy. (b)
PDFs: red for data at t = 0, green, blue, magenta, cyan for t/τη = 0.5, 1.0, 1.5, 2.0 respec-
tively. In both frames, black dashed lines (partly hidden) give results from the reference
30723 simulation for comparison.

3.1.3 Tests of statistical independence

The statistical quality of results from MRIS depends on the number of segments (M ) avail-

able for ensemble averaging, and their degree of statistical independence. The latter is

expected to be a function of scale size, and closely related to the time separation (τ0) be-

tween lower-resolution snapshots used as initial conditions for the MRIS segments, with

the overall sampling period being effectively T = Mτ0. Statistical errors in DNS results

can often be quantified via confidence intervals computed after the fact. However, it would

be useful to develop some a priori estimates for the minimum τ0 desired, depending on the

nature of the quantity being sampled, and in relation to the time scales τη and TE . This

issue is explored below using both one- and two-time statistics.

With stationary turbulence in mind, a basic question for one-time statistics, such as the

volume-averaged energy dissipation rate (〈ε〉), is whether significant and random depar-

tures from the mean of either sign are consistently observed within a time period T . If a

signal shows persistent behaviors (such as monotonic variations) then the sampling period

is too short. Conversely, a predominance of rapid oscillations would suggest a small τ0 is

sufficient, although strict independence over an interval of τ0 is not necessary.
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(a) (b) (c)

t/TE t/TE t/TE
Figure 3.5: (a) 〈ε〉/〈ε〉T over a period of 5.5 TE in Rλ 390 simulations at kmaxη ≈ 1.4
(solid curve) and 4.2 (dashed curve) respectively, where the notation 〈..〉T denotes a time
average of volume-averaged quantities. (b) Energy spectrum E(k) normalized by a time
average, for k = 6 (red) and k = 0.95 kmax (blue), from the kmaxη ≈ 1.4 simulation. (c)
shows similar data, with kmaxη 4.2.

Data from two long simulations at Rλ ∼ 390, of different resolutions, are shown in

Figure 3.5. The first is the one used to initiate high-resolution MRIS segments, whereas

the second is the high-resolution reference simulation in the validation study. In frame (a)

it can be seen that, in both simulations, dissipation varies to about the same degree (of

order 10% or less), and with similar time scales. This behavior is not a surprise, since the

mean dissipation rate is determined by the large scales, and the same forcing is used in both

datasets. However, quantities at disparate scale sizes should behave differently. Frames (b)

and (c) show, that the energy spectrum E(k) is indeed very dependent on wavenumber.

At low wavenumber, the red lines in both (b) and (c) show slow and modest variations. In

contrast, at high k (near kmax at each resolution) the lines in blue resemble rapid oscillations

superimposed on a smooth background signal, which itself varies more strongly at high

resolution. Incidentally, sinceE(k) is (at high k) the sum of energies held in a large number

of Fourier modes in a spectral shell, it can be inferred that individual Fourier modes vary

in time even more rapidly than for the E(k) values shown.

While one-time statistics show directly how different quantities evolve in time, it is

tempting to ask if independence between two single-time snapshots can be assessed, at

times t1 and t2 = t1 + τ , by computing some statistical correlations. For example, one may
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consider the two-time correlator σ(τ) = 〈ε(x, t1)ε(x, t2)〉/〈ε2〉 which is analogous to the

two-point correlator in space related to intermittency exponents (Sreenivasan, 1993). An-

other possible scale-dependent measure of statistical coupling may be the coherency spec-

trum, defined by ρ(k, τ) = Ec(k, τ)/
√
E(k, t1)E(k, t2) where Ec(k, τ) is the co-spectrum

between û(k, t1) and û(k, t2) in wavenumber space. However, both of these quantities

are subject to contamination by the “random-sweeping” effect (Tennekes, 1975), in which

small-scale structures may be simply moved to another location as a result of advective

transport by the large scales. Such an effect will cause an artificial drop of σ(τ) even if the

turbulence were frozen in time. Likewise, since a coherency spectrum basically measures

the phase coupling between Fourier-transformed quantities in wavenumber space (Yeung,

1996), random sweeping can also cause an artificial decrease of the coherency spectrum,

especially at high Reynolds numbers.

Since random sweeping is an artifact of a fixed observer seeing differences in time

while small-scale structures are swept along by the fluid, an alternative approach free of

this effect is thus to consider the flow conditions experienced by an observer moving with

the flow, i.e. to use a Lagrangian framework (Yeung, 2002). For a general flow variable q,

we can define the Lagrangian two-time correlator as,

σL(q; τ) = 〈q+(t)q+(t+ τ)〉/〈q2〉 (3.3)

where superscripts + denote Lagrangian quantities evaluated along the trajectories of fluid

particles moving with the local fluid velocity. Clearly, σL(q; τ) is unity at τ = 0 but

approaches the ratio 〈q〉2/〈q2〉 < 1 when τ is large enough for q+(t) and q+(t + τ) to be

statistically independent. Subtracting 〈q〉2 from both the numerator and denominator of

σL(q; τ) gives the correlation coefficient ρL(q; τ), which approaches 0 at large τ for any q.

Figure 3.6 shows sample results in the two-time correlators (in (a)) and correlations (in

(b)), for three choices of the quantity q being (i) u2 (square of one fluctuation), (ii) ε or (iii)
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Figure 3.6: (a) Eulerian (dashed lines) and Lagrangian (solid lines) two-time correlators
versus time lag in units of TE , for q = u2 (red), ε (green) and ε2 (blue). (b) Lagrangian
two-time correlations, with same color coding for each variable. Both (a) and (b) show data
obtained at two resolutions, kmaxη ≈ 1.4 and 4.2, at Rλ 390. The only sensitivity evident
is for ε2 (resolution increasing in the direction of the arrows).

its square, whose behavior mimics extreme events of very high amplitude. In this ordering,

as the dominant scales are shifted to quantities associated with increasingly smaller scales,

it is not surprising that both measures of dependence or correlation decrease with time

lag more rapidly. The discrepancy between the green lines for σL(ε; τ) and its Eulerian

counterpart σ(ε; τ) confirms the importance of random sweeping, whose effect is strongest

at small τ . The contrast between Eulerian and Lagrangian data here is also consistent

with past comparisons between the statistics of Eulerian and Lagrangian time derivatives

(Yeung & Pope, 1989; Tsinober et al., 2001). However, at τ = 0.4 TE this discrepancy

is mild, which is also expected, since the large-scale motions responsible for the sweeping

are well-sustained only for a finite time interval. For the velocity, at τ/TE = 0.4, σ(u2; τ)

is not close to the asymptotic value of 1/3 (for velocity fluctuations, which are Gaussian

distributed). A clearer view of the degree of independence that remains at this time lag is

given by the Lagrangian correlation functions in frame (b), where a value of 0.1 for ρL(ε; τ)

suggests a high degree of independence in practice. Both frames show that ε2 has short time

scales, which become shorter yet as resolution is increased, consistent with the emergence

of stronger extreme events of short lifetimes. Finally, although data at only one Reynolds

number is given in this figure, since the Lagrangian integral timescale of the dissipation rate
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decreases with respect to large-eddy time scales as the Reynolds number increases (Yeung

et al., 2006b), it seems likely that τ0/TE ∼ 0.4 as a criterion for statistical independence of

small-scale quantities will hold better yet at higher Reynolds numbers.

The assessment of resolution effects in Figure 3.6 as discussed above suggests two

high-resolution snapshots obtained by grid refinement from two modestly-resolved ones

will retain the degree of independence that originally existed in the former. Although this

statement is less valid for high amplitude events which are likely to be under-represented

if the resolution is low, results are in support of the hypothesis that good sampling at high

resolution can be derived from good sampling at modest resolution, in the MRIS approach

that is proposed.

3.1.4 Moments of 3D local averages

Next, an examination of MRIS results for multi-point statistics in physical space is pre-

sented. Specifically, the scaling of moments of the 3D local averages of dissipation rate

and enstrophy, over scale sizes r, ranging from the smallest (one grid spacing, ∆x) to the

largest (half of the length, L0, of the periodic domain).

εr(x) =
1

V ol

∫
r

ε(x + r)dr ; Ωr(x) =
1

V ol

∫
r

Ω(x + r)dr (3.4)

Because the DNS is performed using Cartesian coordinates, 3D averaging over sub-cubes

(instead of spheres) is convenient. In the limit of r → 0 the pth order moment of εr/〈ε〉

approaches 〈εp〉/〈ε〉p, which implies (for p > 1) small-scale resolution is crucial. In the

other limit of r → ∞ all moments approach unity, regardless of order, with homogeneity

in space being the only requirement. However, the most important range of r is in the

inertial range η � r � L1, where the longitudinal integral length scale L1 is about 0.2 L0

in simulations considered here. In this range, classical refined similarity theory suggests

〈εpr〉/〈ε〉
p ∝ (r/η)−ζp (3.5)
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Figure 3.7: Moments (top row) and logarithmic local slopes (bottom row) for 3D local av-
erages of εr/〈ε〉 (solid lines) and Ωr/〈Ω〉 (dashed lines), ensemble-averaged over multiple
simulation segments from Cases 2 (red) and 3 (green). Lines in blue are from the reference
30723 simulation. Second moments on the left, sixth moments on the right. Dotted lines
in green (very close to solid and dashed lines of the same color) show ±95% confidence
interval for the sixth order moments and local slopes.

where the dependence of the scaling exponents ζp (all positive) on the order p is of fun-

damental interest. Unfortunately since 3D averaging is challenging in both experiments

and computation, many studies in the literature have, until recently (Iyer et al., 2015), used

instead 1D averages along a line, and/or a one-dimensional surrogate ((∂u/∂x)2, motivated

by Taylor’s frozen turbulence hypothesis) of ε which is more intermittent than ε itself. Fur-

thermore, accurate inferences of ζp require having a well-defined scaling range (hence a

high Reynolds number), and attention to possible contamination from limitations in both

resolution and sampling.

In the MRIS validation effort here, the focus is on resolution and sampling. Figure 3.7
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shows results averaged over multiple MRIS segments, for orders 2 to 6 (the latter being

more demanding). Scaling exponents are estimated through logarithmic local slopes: i.e.

d ln〈εpr〉/d ln r, which would be equal to −ζp if a well-defined plateau exists. The notations

µpε(r) and µpΩ(r) denote the local slopes for (the moments of) εr and Ωr respectively. Since

the Reynolds number in the MRIS validation study is not high, it is not surprising that local

slopes in this figure do not show a clear scaling range. Instead, there is a hint of an inflec-

tion point developing in the neighborhood of r/η ∼ O(100). Stronger intermittency in Ωr

versus εr is manifested clearly in higher values of the moments at small r, an effect that is

noticeable up to r/η ≈ 200. Values of the moments at small r increase very strongly with

p, indicating that the resolution needed to observe flat plateaus as r → 0 becomes harder to

achieve. For the data shown, comparison between red and green lines suggests the effects

of resolution are largely confined to r/η ≤ O(5), with very little apparent effect at interme-

diate scales close to the inflexion point noted above. This suggests kmaxη ≈ 2 (as for the

red lines) may be sufficient for investigating some aspects of inertial-range intermittency,

although sufficient sampling is still necessary. With good sampling, very good agreement is

seen between lines in green and blue: i.e. results on the local averages from the full-length

30723 reference simulation can be well recovered from much less-expensive data derived

from MRIS (Case 3). It can also be seen that the data from the reference simulation, in blue,

falls within the ±95% confidence intervals for the sixth order moments (and local slopes)

of both dissipation and enstrophy. This shows good sampling from the MRIS approach is

achieved, and very good agreement with the reference simulation is observed within sam-

pling uncertainties. The difference in sixth order moments of locally averaged enstrophy at

small r/η is likely due to the removal of Fourier modes contaminated by aliasing errors, as

the velocity field from the reference simulation was initially truncated.
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3.2 MRIS: Study of intermittency at high resolution

A major motivation in this chapter has been a desire to contribute towards a high-fidelity

characterization of both dissipation range and inertial range intermittency in high Reynolds

number turbulence. This pursuit is very resource intensive, and large simulations that re-

solve the small scales well are necessary. The works described in subsection 2.2.4 and

section 3.1 were in fact undertaken in order to identify a viable path towards meeting these

challenges.

Table 3.2: Parameters for production simulations at different Reynolds numbers, using the
MRIS approach. All simulations in this table were performed using a Courant number of
C = 0.3.

Rλ N kmaxη β M 〈ε2〉/〈ε〉2 〈Ω2〉/〈Ω〉2
390 1024 1.4 2 22 3.869 7.665
390 1536 2.1 2 22 4.034 7.938
390 3072 4.2 2 22 4.074 7.969
650 2048 1.4 2 15 4.357 8.718
650 3072 2.1 2 15 4.575 9.133
650 6144 4.2 2 15 4.664 9.214
1000 4096 1.4 2 10 4.949 9.901
1000 6144 2.1 2 10 5.250 10.556
1000 12288 4.2 2 10 5.381 10.745
1300 12288 3.0 1 10 6.103 12.238
1300 18432 4.5 1 10 6.142 12.288

The resolution levels and selected parameters of production simulations that have been

performed using GPUs on Summit, combined with the MRIS approach starting from mod-

est resolutions at four targeted Reynolds numbers, are shown in Table 3.2. Results at Rλ

390 here are equivalent to those reported in the MRIS validation study of section 3.1. As re-

source requirements increase, the number of short simulation segments employed is fewer.

Following estimates obtained in section 3.1, each segment is 2 τη long, except for those at

highest Reynolds number on a 184323 grid. In the latter case, shorter segments of duration

1 τη are acceptable, partly because approach to a new stationary state in the manner of

Figure 3.4a took only about 1 τη, and partly because better overall sampling is likely from
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taking averages over more segments of shorter duration than over fewer segments of longer

duration. Normalized second-order single-point moments in Table 3.2 are seen to increase

systematically with both Reynolds number and resolution, while being higher for enstro-

phy than the dissipation. Sensitivity to resolution from kmaxη ≈ 2 on-wards appears to be

relatively weak, thus suggesting, at least at kmaxη ≈ 4, a certain degree of convergence has

been reached.

3.2.1 Single point statistics

Rλ = 390

1k3 1.5k3 3k3

Rλ = 650

2k3 3k3 6k3

Rλ = 1000

4k3 6k3 12k3
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Figure 3.8: Ensemble averaged peak energy dissipation (A) and enstrophy (B) at differ-
ent Rλ. The different colors in each frame correspond to different spatial resolutions, as
indicated by the labels in each frame.

Two very useful diagnostics of extreme events in high Reynolds number turbulence are

the peak values of dissipation and enstrophy over all grid points at a given time. Figure 3.8

shows the evolution of normalized peak dissipation (ε/〈ε〉) and enstrophy (Ω/〈Ω〉) with
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Figure 3.9: Ensemble averaged PDFs of dissipation (left) and enstrophy (right) over mul-
tiple realizations with average over time during the second half of simulations in each
segment at Rλ 1000 (top) and 1300 (bottom). The different colors correspond to kmaxη of
1.4 (red), 2.1 (green) and 4.2 (blue) in the top row and kmaxη of 3.0 (red) and 4.5 (blue) in
the bottom row.

time, averaged over M realizations, for each segment in the MRIS run. A substantial drop

in the peak values during the first τη for Rλ 390, 650 and 1000 is observed. The initial

drop is steeper yet for Rλ ∼ 1300, because a simultaneous improvement of both spatial

and temporal resolution in this case leads to stronger suppression of aliasing errors than at

the other three lower Reynolds numbers. A jump in the peak values as each segment with

finer grid spacing begins has also been observed. This is expected, since after reducing the

alias errors, subsequent improvements in spatial resolution will enable the simulations to

capture the larger magnitude velocity gradients more accurately. Spurious spikes (such as

that seen at t/τη = 4.3 in data at Rλ ∼ 650) indicate numerical issues arising from alias

errors (Yeung et al., 2018) are still not completely absent. The spike in peak dissipation rate

is larger than that in peak enstrophy, because (due to a constraint from incompressibility)
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dissipation rates are more sensitive to numerical inaccuracies (Yeung et al., 2018). The

source of the spike was identified to one particular simulation among the 15 at Rλ ∼

650. The spike vanishes if the Courant number is further reduced to 0.15. Generally,

differences between results at C = 0.3 and 0.15 are mild, except for such rare cases.

However, relatively stable statistics of the peak values can be obtained using data from the

second half of the simulation segments, as in this study.

Figure 3.8 also shows that the peak dissipation and enstrophy are 3 to 4 orders of mag-

nitude larger than its mean value, with the peak enstrophy being 2 to 3 times larger than

the peak dissipation rate. As Rλ increases, peak values of both dissipation and enstrophy

increase, as both variables become more intermittent. Therefore, more stringent resolution

requirements are needed to accurately capture the extreme events at higher Rλ.

The probability density functions (PDFs) of normalized dissipation (ε/〈ε〉) and enstro-

phy (Ω/〈Ω〉) are also of great interest, especially concerning the likelihood of extreme

events. Figure 3.9 shows the PDFs ensemble averaged over multiple realizations and time

averaged over the second half of the simulations in each segment at different resolutions

corresponding to Rλ 1000 and 1300. Higher spatial resolution results in wider PDF tails

when larger magnitude dissipation and enstrophy are observed. This is consistent with the

increase in peak values discussed above in Figure 3.8 as the spatial resolution is improved.

The curves also appear to be smooth, suggesting good sampling, especially at the tails.

A feel for the intricacies in the flow structure can be obtained through a visualization

of the entire domain. Figure 3.10 shows the enstrophy field from a 122883 snapshot at

Rλ 1000. The overall picture shows clusters of high activity regions, visible in a color

resembling gold, which is due to the combination of multiple colors depicting enstrophy of

different intensities. A closer look at the region where the peak enstrophy (approximately

5500 times the mean) occurs shows the structure of these regions in greater detail. The

high intensity enstrophy structures (colored in yellow indicating regions of enstrophy more

than 400 times the mean) are worm-like, as often reported in the literature (Jiménez et al.,
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Figure 3.10: Visualization of the Enstrophy field from one simulation in the MRIS segment
at Rλ ≈ 1000 and kmaxη ≈ 4.2 (using 122883 grid points). A close-up of the high activity
region (peak value of approximately 5500 times the mean) can be seen in the inset. Flow
regions of intensity 400 times the mean and higher are colored in yellow in the inset. Image
credit: M. A. Matheson and D. R. Pugmire, ORNL

1993; Yeung et al., 2015).

3.2.2 Statistics of local averages of energy dissipation and enstrophy

The study of intermittency is a very broad subject, including the statistics of velocity gra-

dients (Buaria et al., 2019; Das & Girimaji, 2019), velocity increments (Iyer et al., 2015,

2016), use of multifractal theory (Meneveau et al., 1990; Meneveau & Sreenivasan, 1991),

and various other aspects. A specific focus here is the behavior of the moments of the lo-

cally averaged dissipation rate (εr) and enstrophy (Ωr), and their statistical relationships to

each other while results from a multifractal viewpoint are presented later in chapter 4. The
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moments of εr directly enter into a number of intermittency corrections based on the Re-

fined Similarity Hypothesis (Kolmogorov, 1962; Obukhov, 1962; Stolovitzky et al., 1992).

For instance, the Refined Similarity prediction for the nth order velocity structure function

is of the form

Dn(r) = Cn〈εn/3r 〉rn/3 , (3.6)

where Cn are to be universal constants. Statistics of 3D local averages have been available

only recently (Iyer et al., 2015). The moments of Ωr provide a useful contrast, as well as

information on the structural differences between strain-dominated and rotation-dominated

regions in the instantaneous turbulent flow.

Data on second and fourth moments from the highest resolution simulations (all with

kmaxη ≥ 4) available at all four Reynolds numbers are shown in Figure 3.11, in a manner

similar to that of Figure 3.7 earlier. In principle, local slopes should smoothly approach

zero at both the small r and large r limits, scaling with η for the former but L1 for the latter.

For the second moment, this scaling at small r explains why the local scopes are nearly

independent of Reynolds number up to r/η at least about 10, while the scaling at large

r explains why, with L1/η ∝ Rλ
3/2 according to classical scaling, the local slope curves

eventually diverge at intermediate scale ranges in the manner shown.

In Figure 3.11, two vertical dotted lines are included at r/η ∼ 60 and 600, which have

been proposed (Iyer et al., 2015) as approximate bounds for inertial range scaling where

applicable. It can be seen that as Reynolds number increases, an inflexion point gradually

develops into a plateau, which is somewhat flatter for dissipation than enstrophy. The

values of the exponents µ2ε and µ2Ω appear to differ only very slightly, with both being

close to 0.23. This difference appears to be less than what past experimental data based on

1D surrogates averaged along a line suggested (Meneveau & Sreenivasan, 1991; Anselmet

et al., 2001; Chen et al., 1997). On the other hand, greater intermittency in the dissipation

range for enstrophy compared to dissipation implies local slopes at smaller r/η are of larger

magnitude than those for dissipation (most significantly at r/η ≈ 10 in the figure), while
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Figure 3.11: Ensemble averaged normalized second-order moments ((a) and (b)) of 3D
local averages of dissipation rate, εr (left), and enstrophy, Ωr (right), from simulations at
highest resolution available at each Rλ. Ensemble average of the logarithmic local slopes
of the second-order ((c) and (d)) and fourth-order ((e) and (f)) moments of local averages.
The different colors correspond to different Rλ: 390 (red), 650 (green), 1000 (blue) and
1300 (black). Horizontal dashed lines in frames c-f are included to assist in inference of
scaling exponents from the graphs, at the highest Rλ.

homogeneity ultimately force both sets of curves to agree with each other at sufficiently

large r. Further investigations are appropriate in the future, especially when data at yet

higher Reynolds numbers with a comparable degree of resolution become available.

Curves for local slopes for the fourth order moments shown in the bottom row of the
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figures are of generally similar shape when compared with those for the second order mo-

ments. However, as can be expected, differences at small r indicate the small-scale reso-

lution at higher orders is less satisfactory, especially at higher Reynolds numbers. Careful

observation in the nominal inertial range of r/η also indicates inertial range behavior is less

clearly developed at fourth order, while the difference between dissipation and enstrophy

in the same range is more significant than that seen for the second moment.

r/η r/η

〈ε
6 r
〉/
〈ε
〉6

Figure 3.12: Normalized 6th order moments of 3D local averages of dissipation rate
(〈ε6r〉/〈ε〉6) from Rλ 1000 simulations. Multiple lines in each plot correspond to data from
different samples. In the left, the samples are obtained from one long 122883 C = 0.15 sim-
ulation and in the right the samples are obtained from 10 ensembles of the MRIS approach
using the same grid size but with C = 0.3.

An issue of sampling specific to local averages is that, at intermediate r, many samples

of sub-cubes being counted are overlapping, and therefore not independent of each other.

Figure 3.12 shows results on sixth order moments (which are more sensitive), comparing

the spread among 10 snapshots for εr taken from a simulation of length∼ 4τη (on left) with

those from simulation segments obtained using the MRIS approach. It can be seen that all

snapshots from the case of a single simulation behave similarly, especially at intermediate

and large r, whereas snapshots from independent simulation segments show significant

variability for most values of r except the largest which are subjected to the constraints of a

finite-sized domain. The latter variability is an indication that the MRIS approach provides

more independent ensembles for averaging.

A recurrent question in the study of intermittency is whether the dissipation rate and
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Figure 3.13: First-order conditional moments of (a) enstrophy given dissipation rate and
(b) dissipation given enstrophy at Rλ 390 (red), 650 (green), 1000 (blue) and 1300 (black).
Dashed line of slope 1 corresponds to enstrophy and dissipation scaling similarly.

enstrophy, as quadratic invariants of the symmetric and anti-symmetric parts respectively

of the velocity gradient tensor, possess the same scaling properties (Nelkin, 1999), or even

scale together (Yeung et al., 2012). For an update on this question, some conditional mo-

ments derived from the present database are presented below. In the literature, conditional

statistics given dissipation and or enstrophy have been used recently to study vortex stretch-

ing (Buaria et al., 2020). Figure 3.13 shows the (single-point) conditional mean of (a)

enstrophy given the dissipation, and (b) dissipation given the enstrophy, at four Reynolds

numbers. While samples where the conditioning variable up to nearly 104 in magnitude do

exist, results only up to 103 on the x-axes are shown, since data beyond that are noisy. The

present results are similar to those in a previous investigation (Donzis et al., 2008) at low to

moderate values of the conditioning variable, but more accurate at high conditioning values

of the enstrophy. The data indicate that a high ε is likely to be accompanied by a high Ω;

but in contrast a high Ω is likely to be accompanied by a ε which, although still large, may

be nearly an order of magnitude smaller. At the other extreme of very low dissipation or

enstrophy both of the conditional means are relatively flat, with a weak trend of decrease

with increasing Reynolds number. This suggests, in the limit of vanishingly small dissi-

pation or enstrophy, both variables become independent of each other while being mostly

substantially below their average intensities. This observation is also consistent with results
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on joint probability density functions presented in Yeung et al. (2012).

(a) (b) (c)

(d) (e) (f)

εr/〈ε〉 εr/〈ε〉 εr/〈ε〉

Ωr/〈Ω〉 Ωr/〈Ω〉 Ωr/〈Ω〉

〈Ω
p r
|ε r
〉1
/
p
/〈

Ω
〉

〈ε
p r
|Ω

r
〉1
/
p
/〈
ε〉

Figure 3.14: Conditional moments of order p of local averages of enstrophy given local
averages of dissipation rate (top) and vice versa (bottom) for (a,d) r/η ≈ 0.7, (b,e) r/η ≈
11 and (c,f) r/η ≈ 90. First, second, third and fourth order moments are shown by curves
in red, green, blue and black colors. Solid lines from simulations at Rλ ≈ 390 and dashed
lines from Rλ ≈ 1000. Dashed line of slope 1 corresponds to enstrophy and dissipation
scaling similarly.

Results on conditional means are extended to moments of different orders, and to local

averages over volumes of linear size associated with the dissipation and inertial ranges in

Figure 3.14. To facilitate the comparisons, for each p > 1 the pth root of the moments are

taken. For a given εr, and as order p increases, moments of the conditional samples of Ωr

become increasingly dominated by samples that turn out to be very large. This explains,

for instance, in the top half of the figure, why the black lines lie uniformly higher than

the blue, as can be seen in frames (a) and ((b). Effects of Reynolds number on these joint

statistics appear to be weak. On the other hand, in frame (c), data for moments of all

orders all collapse upon the line that indicates 〈Ωr|εr〉 = εr. The bottom half of this figure
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shows conditional moments of dissipation given the enstrophy. It can be seen that, as r/η

approaches the inertial range, both sets of conditional moments, for all Reynolds numbers,

and at all orders, largely collapse together on the diagonal line that would be satisfied also

if the two locally averaged variances were to take the same values. This behavior suggests,

εr and Ωr do, to a good approximation, scale together in the inertial range.

It should be apparent that the results reported in this section, involving simulations

at 122883 and 184323 resolution, have required use of substantial computational power,

which is itself in high demand. Recalling considerations in section 3.1, in the case of Rλ

1300, with the ratio TE/τη ≈ 136 (based on Yeung et al. (2015)) a simulation of 5.5 TE in

length similar to the MRIS validation study earlier in this paper will be 748 τη in length.

In contrast, to obtain 22 simulation segments (same number as in Table 3.2) only 1 τη each

in length, the cost would be roughly equivalent to 22 τη. This is a factor of 34 reduction

in resource requirements — changing hypothetical periods of nonstop computing from

months (which is incidentally not allowed) to days, thus making a great impact on the

feasibility of the computations.

3.3 Conclusions and Discussion

This chapter reports on advances in developing, and actually applying, a new capability

of performing direct numerical simulations (DNS) of turbulence at extreme-scale problem

sizes, that would otherwise be impossible or impractical in their resource requirements.

The challenges faced here have arisen due to the fact that, despite dramatic advances in

world-class computational resources, insatiable demands for high Reynolds number, im-

proved small-scale resolution, and other needs, are pointing to increasingly unfavorable

(although somewhat ironical) prospects for researchers’ abilities to conduct long simula-

tions at leadership-class problem sizes.

Despite the algorithmic advancement noted in chapter 2, it is important to point out

that since resource requirements for simulating a N3 problem for a prescribed period of
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time increases at least as fast as N4, full-length simulations spanning multiple large-eddy

time scales at “leadership-class” problem sizes are essentially impossible. However, if the

prime interest is in small-scale motions of short time scales, it can be shown that a much

more viable alternative exists, in an approach here termed Multiple Resolution Independent

Simulations (MRIS). The essence of MRIS is to first perform a (much less costly) simula-

tion at low or modest resolution, take multiple snapshots well separated in time, and refine

the grid to obtain multiple short simulation segments at the highest resolution. With ap-

propriate attention given to statistical independence, it was shown that ensemble averaging

over a number of such short segments produces results essentially equivalent to sampling

from a long simulation with samples separated from each other by fractions of a large-eddy

timescale. In the new paradigm, the total cost of a simulation of stationary isotropic tur-

bulence at very high resolution can be measured in (multiples of) Kolmogorov time scales

rather than eddy-turnover times, resulting in tremendous savings at high Reynolds num-

bers. A validation study involving several single- and multi-point diagnostics as presented

in this paper has apparently been successful. In particular, results in Figure 3.3, Figure 3.4

and Figure 3.7 provided several examples of small-scale statistics obtained from the MRIS

procedure being a close match with those taken directly for a full-length reference simula-

tion at high resolution.

The new MRIS approach was successfully applied to obtain high-fidelity results con-

cerning intermittency in both dissipative and inertial scale ranges in isotropic turbulence at

four Reynolds numbers ranging from 390 to 1300 based on the Taylor scale. This work has

provided an opportunity to overcome some of the limitations due to resolution and sam-

pling in previous efforts. In particular, reliable statistics on higher order moments had been

difficult to achieve, but results presented in section 3.2 are very robust, showing the ben-

efits of leadership-class computing power applied productively. Calculations based on the

statistics of 3D local averages of the dissipation rate and enstrophy show that although these

quantities scale differently throughout the dissipation range, their inertial range properties
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are much more (although not exactly) similar. Conditional statistics also suggest strongly

that these two variables do, to a good approximation, scale together when in the inertial

range. The high fidelity of results obtained in this paper gives rise readily to the search

for further physical insights, such as how differences and similarities in locally averaged

dissipation and enstrophy may be connected to the incidence of canonical flow structures

such as local shear layers (Ishihara et al., 2013) and vortex filaments of finite size.

In summary, the body of work described in this chapter provides, hopefully, a useful

perspective concerning how turbulence researchers may be able to truly use emerging ex-

ascale platforms to the fullest, and the challenges that the community can expect to face,

as well. The MRIS approach in this work has been developed to address the issue of how

large simulations of limited time span imposed by practical constraints on resource avail-

ability can be designed to meet specific scientific needs. Other than physical problems

where early-time phenomena are of the greatest interest, the MRIS approach is likely to

be applicable to studies of dissipation rate, as discussed in chapter 4, and fine-scale struc-

ture in passive scalar fields (Donzis & Yeung, 2010; Iyer et al., 2018), as well as the fluid

particle acceleration (Yeung et al., 2007), which are both dominated by intermittency and

characterized by short time scales.
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CHAPTER 4

EXTREME DISSIPATION AND ITS MULTIFRACTAL NATURE AT HIGH

REYNOLDS NUMBERS

It is well known that a key feature in classical turbulence theory (Richardson, 1922; Kol-

mogorov, 1941) is that of a self-similar energy cascade, where large scales break down into

smaller scales which further break down to even smaller scales each receiving a fraction

of the total energy, in the manner of a so-called multiplicative process. However, it has

also been well accepted for some time (Kolmogorov (1962); Frisch (1995)) that this self-

similarity is only approximate, and in particular it fails to account for fluctuations of the

energy dissipation rate. One of the major achievements in this thesis has been (in chapter 3)

the study of the statistics of 3D local averages of the dissipation rate, with high numerical

fidelity and using extreme-scale computational tools to provide such results at Reynolds

numbers rivaling those in the most advanced laboratory facilities currently available.

In this chapter, further insights into the highly intermittent nature of the energy dissi-

pation rate are obtained from a geometric, multifractal viewpoint. The intermittent, highly

non-Gaussian nature of dissipation fluctuations imply that a purely statistical viewpoint (as

in chapter 3) is necessarily incomplete. Low-order moments, for instance, provide little

information, while high-order moments connected to fluctuations as large as 1000 times

the mean are difficult to sample accurately. A multifractal framework is well-suited to

describe the behavior of such highly intermittent quantities (Sreenivasan, 1991a). Multi-

fractals, simply put, are built on the idea that a “measure”, in this case energy dissipation, in

a process is distributed unequally among the smaller scales (offspring) from the large scales

(parent). As the process repeats, where the offsprings further generate smaller scales until

reaching scale sizes comparable to the Kolmogorov length scale, the distribution of energy

dissipation among the progressively smaller scales becomes increasingly uneven. This
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chapter will focus on establishing the characteristics of multifractal scaling and computing

the multifractal spectrum, which is a function that characterizes the fractal dimension of

energy dissipation rate of different strengths.

As to be discussed in section 4.1, the multifractal spectrum has a direct connection to

moments of the 3D local averages. In particular, moments of high positive order represent

extreme events of very high amplitude, while moments of high negative order represent

events of very low dissipation rate. However, because of their sensitivity to extreme events

of low probability, accurate sampling is difficult. One helpful strategy for high moments is

to first obtain an accurate model of the probability density function of the locally averaged

dissipation, then extrapolate it beyond the tails of the PDF, and finally used the modeled

PDFs to evaluate the moments. The tails of the PDF of εr have been observed to closely

approximate a stretched exponential, corresponding to scale sizes ranging from the dissi-

pation to the inertial range (Kailasnath et al., 1992). The moments are computed using

these extrapolated PDFs and the power-law scaling exponents, also known as generalized

dimensions, Dq (Meneveau & Sreenivasan, 1991), are estimated using least square fits for

different order of moments ranging from -15 to 15. These Dq’s are then used to compute

the multifractal spectrum.

The generalized dimensions and multifractal spectrum can be used to compute the in-

termittency exponents of energy dissipation and estimate the energy and volume occupied

by incipient singularities (or near-singular regions) of different strengths. Past experiments

in the literature have suggested that the multifractal spectrum has little dependence on

the Reynolds number once a sufficiently high value has been reached. Data from DNS

free from limitations including 1D averaging, 1D surrogacy and Taylor’s frozen turbulence

hypothesis appear to confirm these expectations. In addition, results on the multifractal

spectrum support the existence of “negative dimensions” (Chhabra & Sreenivasan, 1991)

corresponding to highly singular regions of the flow.

Strict resolution requirements due to the highly intermittent nature of energy dissipa-
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tion rate are very challenging (Yakhot & Sreenivasan, 2005; Yeung et al., 2018; Buaria

et al., 2019). Simulations of inadequate resolution are limited by the magnitude of velocity

gradients they can accurately capture, which in turn limits the peak energy dissipation rate

that can be resolved accurately. In practice, it becomes important to estimate the contribu-

tion of such extreme values to the moments of different orders, which may be quantified

by computing the contribution to moments of specific orders from samples below a certain

threshold.

The following sections begin with a brief summary (section 4.1) of the procedure by

which the multifractal spectrum is obtained from the DNS datasets (as listed in section 4.2).

Practical issues concerning the convergence of moments and extrapolation of PDF tails are

addressed in section 4.3. Results on high order moments, generalized dimensions and the

multifractal spectrum are presented from the largest, 184323, simulation in the database

(Yeung & Ravikumar, 2020) at a Reynolds number of 1300 and resolution of kmaxη ∼ 4.5.

In section 4.5, Reynolds number dependence is examined by comparison with data at lower

Reynolds numbers. Moment contributions from regions of energy dissipation of different

magnitudes will be presented in section 4.6. Conclusions are summarized in section 4.7.

4.1 Computing the multifractal spectrum using DNS data

Prior to discussions of the multifractal spectrum, a brief review of multiplicative processes

is essential. In the turbulence energy cascade process, as the large scale eddies break down

into smaller and smaller eddies, multiple generations can be defined. Each generation

consists of a number of eddies of a characteristic linear size r. The ratio between the

energy dissipation measured at two successive generations is called a “measure multiplier”,

defined by,

Mj = Er(j)/Er(j−1) (4.1)
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where Er is the total energy dissipation in a certain region of space (ψ) of size r and can be

obtained from the instantaneous energy dissipation rate, ε, as follows,

Er =

∫
x∈ψ

ε(x)d3x (4.2)

where ε is computed using the full definition involving all the velocity gradients as shown

in Equation 3.2. Er can further be related to the 3D local averages of energy dissipation

rate, εr(x), as,

Er = εr(x)r3 (4.3)

where εr is defined, in accordance with Equation 3.4. Similarly, E0 = 〈ε〉L3
0 is the total

energy dissipation in the cubic fluid domain of linear size L0 = 2π in each direction.

An abbreviated derivation following the outline of Meneveau & Sreenivasan (1991)

follows. For a multiplicative process, where the energy dissipation rate is conserved at all

scale sizes such that fluid motions of size r receive a fraction of the total energy dissipation

rate contained in the entire fluid volume of size (L0)3, it is reasonable to assume a power-

law behavior, of the form, ∑
Eq
r ∼ Eq

0(r/L0)τ(q) (4.4)

where q is the order of moments, and the summation on the right is to account for the total

energy dissipation over all fluid elements of size r. A scaling exponent Dq, also called

generalized dimension (Sreenivasan, 1991a), is defined (Meneveau & Sreenivasan, 1991)

by,

Dq = τ(q)/(q − 1) (4.5)

The Dq’s are estimated as the slope of the linear portion of a graph of the quantity,

F (r, q) = [
∑

(Er/E0)q](1/(q−1)) (4.6)

= (r/L0)3[〈εqr〉/〈ε〉
q](1/(q−1)) (4.7)
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with respect to r/L0 on log-log scales.

These generalized dimensions, Dq, are then used to compute the multifractal spectrum,

f(α). Here, α is defined as the power-law scaling exponent in (Meneveau & Sreenivasan,

1991),

Er/E0 ∼ (r/L0)α (4.8)

Since Er is a random variable, with its PDF parameterized by r denoted here by Πr(α).

The summation on the right-hand side of Equation 4.4 can be represented by an integral of

the form, ∑
Eq
r ∼

∫
Eq
rNr(α)dα (4.9)

where Nr is the number of “fluid pieces” of linear size r that assume a value of α within a

band of width dα. Accounting for the energy dissipation contribution of all “fluid pieces”

of different strengths (α), as shown by the integral, results in the total energy dissipation

contained in fluid motions of size r3. Nr can be obtained by multiplying the total number

of fluid pieces of linear size r, which is (r/L0)−3, by the probability Πr(α)dα,

Nr(α)dα = (r/L0)−3Πr(α)dα (4.10)

Next, the definition of f(α) is introduced as (Meneveau & Sreenivasan, 1991),

f(α) =
log(Nr(α))

log(L0/r)
(4.11)

Using Equation 4.10, it can be shown that,

f(α) =
log(Πr(α))

log(L0/r)
+ 3 (4.12)

97



Equation 4.11 can be re-written as,

Nr(α) = ρ(α)(r/L0)−f(α) (4.13)

where ρ(α) is introduced as some α-dependent prefactor similar to that in Meneveau &

Sreenivasan (1991). Substitution of Equation 4.8 and Equation 4.13 into Equation 4.9

produces, ∑
Eq
r ∼ Eq

0

∫
ρ(α)(r/L0)qα−f(α)dα (4.14)

In the limit of small r/L0, the integrand in the above equation can be approximated by a

Gaussian centered around an α value that minimizes qα−f(α) (Meneveau & Sreenivasan,

1991) such that,

∫
ρ(α)(r/L0)qα−f(α)dα ∼

∫
exp

(
−(α− α∗)2

2c2

)(
r

L0

)qα∗−f(α∗)

dα (4.15)

where α∗ corresponds to the value of α which minimizes qα − f(α) and c is the standard

deviation of the Gaussian. The integral on the right-hand side in the above equation can be

evaluated by taking the r/L0 term out, which leaves only the integral of the Gaussian PDF

and is unity. The integral can ultimately be evaluated as,

∫
ρ(α)(r/L0)qα−f(α)dα ∼ rqα−f(α) (4.16)

under the condition that,

df(α)/dα = q (4.17)

According to Equation 4.4 and Equation 4.5,

∑
Eq
r ∼ Eq

0(r/L0)(q−1)Dq (4.18)
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equating the powers of r in Equation 4.16 and Equation 4.18 results in,

f(α(q)) = qα(q)− (q − 1)Dq (4.19)

Further using Equation 4.17 yields,

α(q) =
d

dq
[(q − 1)Dq] (4.20)

More details can be found in Meneveau & Sreenivasan (1991).

4.2 Description of DNS database

Table 4.1: A brief summary of DNS datasets (obtained using the MRIS method) analyzed
in this chapter: showing the Reynolds number (Rλ), problem size (N3 where k = 1024),
number of realizations (Nr), spatial resolution (in terms of kmaxη), corresponding simula-
tion time span (T ) in eddy turnover times (TE), turbulence kinetic energy (K), mean en-
ergy dissipation rate (〈ε〉) and its normalized root-mean-square, Kolmogorov length scale
(η) and kinematic viscosity (ν). In all cases the Courant number was 0.3. Values of TE and
integral length scale (L) are close to 0.82 and 1.1 (on a (2π)3 domain) respectively.

Rλ N3 Nr kmaxη t/TE K 〈ε〉 〈ε2〉1/2/〈ε〉
η

(×10−3)
ν

(×10−4)

390 3k3 22 4.2 12.88 3.6 1.34 2.03 2.8 4.4
650 6k3 15 4.2 3.17 3.5 1.31 2.16 1.4 1.7
1000 12k3 10 4.2 3.78 3.9 1.43 2.32 0.69 0.69
1300 18k3 10 4.5 2.53 3.8 1.35 2.48 0.5 0.44

Multifractal analyses are generally performed through post-processing of instantaneous

snapshots of velocity fields archived in the direct numerical simulation database. With

Reynolds number dependence as the focus, results presented in this chapter are only for the

best-resolved data at each of four different Reynolds numbers listed earlier in Table 3.2. For

convenience, a summary of the those “best-resolved” datasets with additional information

is given in Table 4.1. It should be noted that the simulations were not run continuously for

the number of eddy-turnover times given in the table. Instead, a number of short simulation
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segments at high resolution were performed using the MRIS approach (as described in

section 3.1) but sampled over initial conditions at lower resolution spanning the period of

time shown in the table. As discussed earlier, for studies of physical phenomena with short

time scales occurring in stationary turbulence (in our case, via numerical forcing), this

approach provides quality results at much lower cost than “full-length” simulations at the

highest grid resolutions that can be supported by leadership-class computational facilities

at this time. The most important case is that at the highest Reynolds number, Rλ ∼ 1300,

averaged over 10 snapshots, at kmaxη ≈ 4.5 (corresponding to the grid spacing ∆x being

0.68 Kolmogorov time scales).

ε
〈ε〉

ε2

〈ε〉2

ε4

〈ε〉4

ε4

〈ε〉4

ε
〈ε〉

x/L

z/ηy/ηx/η

(a)

(b)

(c)

(d)

(e) (f) (g)

Figure 4.1: (a) Energy dissipation rate, (b) its second and (c,d) fourth powers along a line
through a region of extreme dissipation that is 1/7 in intensity compared to the global peak.
(e,f,g) Orthogonal line cuts around the peak.
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Figure 4.2: (a) Energy dissipation rate, (b) its second and (c,d) fourth powers along a line
capturing more peak values as compared to Figure 4.1. (e,f,g) Orthogonal line cuts around
the peak.

As noted at the beginning of this chapter, the multifractal framework involves charac-

terizing intermittency in terms of geometric measures. Figure 4.1 shows the instantaneous

energy dissipation rate, and its second and fourth powers along a line cut through a region

of intense energy dissipation rate of intensity around 1/7 of the peak value observed from

one snapshot atRλ ∼ 1300. In frames (a) to (d) the x axis extends over the complete length

(L0) of one side of the solution domain. Frame (a) shows a single spike at x/L ≈ 0.5 corre-

sponding to the peak value recorded along this line. There are smaller variations of ε of the

order 10 or 100 times the mean at around x/L ≈ 0.17 and 0.9 while too low to be readily

visible elsewhere. The higher powers of ε help emphasize the extreme events. Frames (b)
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and (c) show only one discernible spike, while all the smaller variations of order 100 or

lower are negligible in comparison.

The conspicuous degrees of “emptiness” in frames (a) to (c) are direct consequences

of the “spottiness” nature in space of the energy dissipation rate behaving as a highly in-

termittent signal. Frame (d) shows the fourth power of ε on log scale, which confirms the

presence of the energy dissipation rate at all points along the x axis. Frames (e), (f) and

(g) show line cuts in orthogonal directions in the neighborhood of the peak value. It can

be seen that the extreme region extends only a few Kolmogorov length scales in all three

directions. Figure 4.2 shows an alternate line cut capturing a lower peak value compared

to Figure 4.1, but there are a few more extreme events (of order 100 times the mean) along

this line. Although the line cut captures more peaks, most of the space along the line is

“empty” with events of low magnitude. Frames e, f and g in Figure 4.2 also show that

the extreme region extends only for Kolmogorov length scales consistent with the higher

magnitude extreme region observed previously. It should be noted that 1D cuts placed at

random are likely to miss these highly localized extreme events, in a manner consistent

with the observation of negative fractal dimensions (Chhabra & Sreenivasan, 1991).

r/η r/η

〈ε
r
2
〉/
〈ε
〉2

,〈ε
r
3
〉/
〈ε
〉3

σ
ε r

,µ
ε r

〈ε3r〉 ∼ (r/η)−0.67

〈ε2r〉 ∼ (r/η)−0.22

µεr ∼ (r/η)−0.36

σεr ∼ (r/η)−0.22

(a) (b)

Figure 4.3: Moments of volume averaged energy dissipation rate over a subcube of size r.
(a) Absolute second (red) and third order (blue) moments normalized by the global mean
energy dissipation rate. (b) Standard deviation (red) and skewness (blue). Dashed slopes
show the power-law scaling obtained from the least square fit performed in the scaling
range marked by the vertical dashed lines. For the standardized moments, the lower limit
of the scaling range decreases as the order of moment is increased.
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The 3D local averages of energy dissipation rate (εr) are critical to the computation of

multifractal spectrum, as discussed in section 4.1 and in Appendix A. For a basic illustra-

tion of the statistical properties of εr Figure 4.3 shows second and third order absolute and

centralized moments, computed from the high-resolution data at Rλ ∼ 1300. Clear scaling

ranges can be observed in both the frames, where the moments show a power-law behavior

with respect to the scale size r. Least-square fits are used to estimate the slopes, which are

written in the body of the figures. For the absolute moments shown in frame (a), the scal-

ing range used to estimate the scaling exponent corresponds to 50 < r/η < 1000, which is

wider than that used in Iyer et al. (2015). Frame (b) shows the second and third centralized

moments, i.e. standard deviation and skewness factor. It can be seen that the moments in

this form show a different scaling range, 2 < r/η < 300 for the skewness, varying with

the order of the moment. The second moment has the same exponent whether one uses

central moments or otherwise, as was also observed by Sreenivasan & Kailasnath (1993).

The numerical value of 0.22 shown in the figure is in excellent agreement with the bound of

0.25± 0.05 provided by those authors. For the third moment, on the other hand, it is clear

that the scaling exponent depends strongly on whether one considers central moments or

not. These preliminary calculations of moments of the local averages of energy dissipation

show clearly the existence of a wide scaling range.

4.3 Convergence of moments and extrapolation of PDFs

Computation of the multifractal spectrum depends on the generalized dimensions, Dq, ob-

tained from the q-th moments of Er/E0, as discussed in section 4.1. Therefore, it is im-

portant to ensure that data on these normalized moments, especially for higher positive

and negative orders, possess a degree of statistical convergence necessary for confidence

in the results presented in later sections. The PDFs of local averages of energy dissipation

rate (pr) are used to compute these moments through their connection to Er (as given in

Equation 4.3). If X denotes the random variable εr/〈ε〉, and pr(x) denotes its PDF at the
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sample value x, a straightforward assessment of convergence is to compute the integrand,

xqpr(x), that arises in computing the moments of the random variable X . Convergence

can be confirmed if this term approaches zero closely at both large and small values of x

corresponding to positive and negative moments q respectively.

εr/〈ε〉 εr/〈ε〉

q = −1

q = −2

q = −4

q = 1

q = 4

q = 6

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Check for statistical convergence of moments computed from the PDFs of local
averages of energy dissipation rate. The integrand when computing the moments from the
PDFs, xqpr(x), are shown for different orders of magnitude, q, where X is the random
sample, εr/〈ε〉, and pr(X) is the PDF of εr/〈ε〉. Curves of color red, green, blue, magenta,
cyan and black correspond to r/η ∼ 0.7 (single point statistics), 38, 76, 174, 305 and 524
respectively. A closer look at the regions of interest can be seen in the insets.

The integrand, xqpr(x), as a function of the sample value x is shown in Figure 4.4 for

different values of scale size r and moment orders q. In order to focus on the small values of

εr/〈ε〉, frames (a), (c) and (e) are shown using logarithmic scale on the x-axis. Frames (a)
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and (b) show good convergence for all values of r/η in the dissipation and inertial ranges,

for moments of orders 1 and -1. On the right hand, frames (c) and (e) suggest possible

convergence issues for second and fourth order negative moments of the single-point ε

(approximated by data at r/η ≈ 0.7, which corresponds to a cubic grid cell of one grid

spacing in size). The moments at order q = −2 converge well for larger values of r/η as

seen in the inset in frame (c) there is potentially a mild issue for r/η ≈ 38 at q = −4 seen

in the inset in frame (e).

Frame (d) and its inset show good convergence for the positive fourth order moment

for all values of r/η considered here. However, frame (f) shows convergence issues corre-

sponding to q = 6 for r/η < 38. The inset in frame (f) also illustrates some problems with

the values of integrands corresponding to the last few bins of the PDFs, where sampling un-

certainties are inevitably present. Figure 4.4 shows that lack of convergence, if any, can be

observed mostly for lower values of r/η in the dissipation range scales, while those in the

inertial range remain fairly unaffected at least up to q = 6. It also shows that convergence

for negative moments is more difficult to achieve than for positive moments. However,

since the PDF values in both the lowest and highest bins are prone to uncertainty due to

sampling limitations, it is useful to see whether better-behaved results can be obtained by

extrapolating the tails of the PDF by some suitable means

Four different functional forms for extrapolating the PDFs are considered. The first is

power-law (also called hyperbolic in Meneveau & Sreenivasan (1991)) where the tails will

decay linearly on log-log plots according to

p(εr/〈ε〉) ∼ [εr/〈ε〉]−w(r) (4.21)

where w(r) is the scaling exponent. The second is exponential, where the tails will decay

linearly on log-linear plots according to

p(εr/〈ε〉) ∼ exp[−w(r)εr/〈ε〉] (4.22)
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where w(r) is a scaling exponent. The third is to assume εr/〈ε〉 has a log-normal dis-

tribution (such that its logarithm is Gaussian distributed). Consider, z = [ln(εr/〈ε〉) −

〈ln(εr/〈ε〉)〉]/σln εr , where σln εr is the standard deviation of ln(εr/〈ε〉). The PDFs of Z and

X = εr/〈ε〉 are related by,

pZ(z) = σln εr

εr
〈ε〉
pX(x) (4.23)

In order to test for agreement with log-normal behavior the PDF of Z, can be computed

and compared with a standard normal distribution. If the lognormal behavior holds, the

standard normal can be used to extrapolate the tails of the PDF of Z and then the PDF of X

can be recovered by using Equation 4.23 in reverse. Finally, extrapolation of the PDF tails

using a stretched exponential (SE) (Elsinga et al., 2020; Buaria et al., 2019) of the form

shown below are considered,

p(εr/〈ε〉) ∼ exp[−a(r)(εr/〈ε〉)γ(r) + b(r)] (4.24)

where γ(r) is the stretching parameter and a(r) and b(r) are additional parameters in this

model. The PDF tails that conform to this behavior will exhibit a linear decay on log-linear

plots with [εr/〈ε〉]γ(r) on the x-axis, where lower values of γ(r) represent wider tails. The

case γ = 0.5 is sometimes called a “square-root” exponential.

Extrapolation of the PDF tails is relevant mostly at large εr for high-order positive

moments, and at small εr for high order negative moments. The latter case corresponds to

large 〈ε〉/εr, i.e. tails on the left of the PDF of 〈ε〉/εr, which is related to the PDF of εr/〈ε〉

by the formula,

p

(
〈ε〉
εr

)
∼
(
εr
〈ε〉

)2

p

(
εr
〈ε〉

)
(4.25)

A few tests have been performed to assess the merits of the several possible extrapo-

lation formulas listed above. Figure 4.5 shows the PDFs of energy dissipation rate in two

different forms to focus on the large values of εr in (a) with [εr/〈ε〉]γ(r) on the x-axis, and

small values of εr in (b) with [〈ε〉/εr]γ(r) on the x-axis. The behavior of the PDF tails and
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Figure 4.5: PDFs of (a) εr/〈ε〉 and (b) 〈ε〉/εr with the solid lines showing the actual PDFs
and dashed lines showing the stretched exponential (SE) extrapolation with a variable
stretching factor (γ(r)) obtained from nonlinear curve fits. Curves of color red, green,
blue, magenta, cyan and black correspond to r/η ∼ 0.7 (single point statistics), 38, 76,
174, 305 and 524 respectively.

the applicability of stretched exponential extrapolation can be tested from this. The values

of γ(r) for different values of r/η are obtained by performing nonlinear fits of the form

shown in Equation 4.24 to the PDF tails of each individual realization, prior to ensemble

averaging. To minimize contamination from sampling uncertainties in the outermost bins,

the curve fits were performed using PDF data starting three points to the right of the max-

ima of the PDF and ending three to four points before the tail terminates. The extrapolated

PDFs were then ensemble averaged, and the final results are shown. The tails of the PDFs

are showing a clear linear decay, in the scales chosen, which suggests the stretched ex-

ponential fit shown by the dashed curves is in good agreement with the PDF data. The

extrapolated PDFs are seen to continue to decay in a matter consistent with the stretched

exponential form. Results in Elsinga et al. (2020); Buaria et al. (2019) also support the

stretched exponential behavior of the PDF tails.

While tests for stretched-exponential fits are encouraging, for completeness similar tests

have been performed for the other functional forms as well. Figure 4.6 is used to check the

quality of a square-root exponential extrapolation, i.e., a stretched exponential with γ(r) =

0.5 being a constant. A simple least squares fit can be used to estimate the parameters a(r)

107



[〈ε〉/εr]0.5[εr/〈ε〉]0.5

p(
〈ε
〉/
ε r

)

p(
ε r
/〈
ε〉

)
(a) (b)

Figure 4.6: PDFs of (a) εr/〈ε〉 and (b) 〈ε〉/εr with the solid lines showing the actual PDFs
and dashed lines showing the square-root exponential extrapolation. Curves of color red,
green, blue, magenta, cyan and black correspond to r/η ∼ 0.7 (single point statistics), 38,
76, 174, 305 and 524 respectively.

and b(r) instead of a nonlinear fit that would be required if γ(r) were to vary. It is clear that

the PDF tails (solid lines) deviate substantially from the square-root exponential (which

appears as straight lines in the linear-log scales used).

Zεr/〈ε〉

p(
Z

)

p(
ε r
/〈
ε〉

)

(a) (b)

Figure 4.7: PDFs of local averages of energy dissipation rate over a subcube of size r
on (a) log-log scales with the dashed curves showing stretched exponential extrapolation
for comparison and (b) log-normally transformed PDFs with the dashed curve showing
the log-normal extrapolation. Curves of color red, green, blue, magenta, cyan and black
correspond to r/η ∼ 0.7 (single point statistics), 38, 76, 174, 305 and 524 respectively.

Tests for other functional forms, namely power-law tails and log-normality assumptions

as listed earlier, are shown in Figure 4.7. In frame (a) it is clear that a linear behavior on the

logarithmic scales employed is not observed in the data, except perhaps in the limit of very
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small εr, for values of r/η which are definitely below the inertial range. It is also worth

noting that the stretched exponential describes accurately the behavior of the single point

PDFs corresponding to small εr as well (Figure 4.5b). In frame (b) reasonable agreement

with the Gaussian (dashed curve) can be seen for the PDF of the standardized logarithmic

variable Z = (ln εr − 〈ln εr〉)/σln εr in the range between -3 and 3 approximately. The

PDF of Z for small r/η is negatively skewed with a wide tail on the left, which is con-

sistent with previous data on single-point moments of the dissipation rate (Yeung et al.,

2006). However, for larger values of r/η the PDF tails are sub-Gaussian. These observa-

tions suggest that log-normal fits may produce good results for lower-order moments, but

are less satisfactory for higher-order moments where the tails of the PDF make stronger

contributions.

r/η r/η

a
(r

),
b(
r)

γ
(r

)

(a) (b)

Figure 4.8: Stretched exponential fit parameters, (a) stretching parameter γ(r) (b) a(r)
(red) and b(r) (blue). Solid and dashed curves correspond to extrapolation of PDF tails for
large and small values of εr respectively.

The discussion above highlights the fact that overall the behavior of the PDF tails cor-

responding to both small and large εr is best modeled by a stretched exponential (SE) with

a variable stretching parameter, γ(r) for different values of r/η ranging from the dissipa-

tion range to the inertial range. Therefore, in the following section only results from PDFs

from actual data or from use of SE extrapolation will be presented. The parameters γ(r),

a(r) and b(r) estimated using nonlinear curve fits for PDFs at different values of r and are

shown in Figure 4.8. The stretching parameter γ increases with r for tails on both sides of
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the PDF, while the parameters a and b decrease rapidly at small r before starting to plateau.

The general trends observed in this figure are also consistent with those in Kailasnath et al.

(1992). However, quantitative differences arise due to the inevitable use of 1-D surrogates

and Taylor’s frozen turbulence hypothesis in laboratory experiments, as in Kailasnath et al.

(1992). More recently, the tails of the single point energy dissipation PDFs have been stud-

ied and found to behave as a stretched exponential (Buaria et al., 2019; Elsinga et al., 2020)

as well, but those papers focused only on the single point statistics. PDFs of local averages

of energy dissipation were previously reported by Yeung et al. (2015), but the present re-

sults are more accurate and includes information on the modeling of PDF tails over a wide

range of scale sizes in greater detail. The value of the stretching parameter corresponding

to the single point PDFs for large ε is around 0.17, which is consistent with that used in

Buaria et al. (2019). As γ(r) increases towards a value of 2, a behavior similar to Gaussian

is expected, but whether that will be observed for larger values of r is a question that is yet

to be studied.

4.4 Multifractal moments and spectrum

As discussed in section 4.1, the moments of F (r, q) defined in Equation 4.7 are important

when computing the multifractal spectrum. In particular, the scaling exponents Dq (or gen-

eralized dimension) are estimated by identifying and estimating the slope of the moments

F (r, q) as a function of r/L0 (or r/η) on log-log scales.

The moments, F (r, q), and their logarithmic local slopes (d(log(F (r, q)))/d(log(r/L0)))

as a function of r/η are shown in Figure 4.9 on log-log plot for different orders of moments

q. Here F (r, q) is computed from the PDFs of εr/〈ε〉 both without any extrapolation (solid

lines) and with SE extrapolation (dotted lines). Frames (a) and (b), for negative and positive

moments respectively, show that the moments scale linearly with r/η on log-log scales, es-

pecially in the scaling range (60 < r/η < 600) marked by the vertical dashed lines, which

suggests a power-law behavior of the moments with scale size r does exist. As the order of
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Figure 4.9: Multifractal moments (a,b) of εr/〈ε〉 and their logarithmic local slopes (c,d)
for different orders. The colors red, green, blue and magenta in each frame corresponds to
(a,c) q = −8,−6,−4,−2, (b,d) q = 2, 4, 6, 8 respectively. The dotted lines correspond to
moments obtained from SE-extrapolated PDFs. Vertical dashed lines corresponding to a
fixed scaling range of 60 ≤ r/η ≤ 600 are shown.

moment q increases, the slope of the moments in the scaling range is observed to decrease.

The logarithmic local slopes are computed using a quadratic interpolating polynomial that

makes use of three points to estimate the slope when the data involved has variable grid

spacing. An exact power-law behavior would be represented by a plateau (or trough) in

the plot of local slopes in frames (c) and (d). For the positive moments, especially for

higher q, a flat scaling range starts to develop for 20 ≤ r/η ≤ 200. The range of scales

corresponding to which a clear plateau is also emerging for q = −2 but this not very clear
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for high-order negative moments. Although, an exactly flat scaling range is not observed

corresponding to the high positive and negative order moments, the variability observed in

the scaling range (60 < r/η < 600) is approximately 10% or less.

The moments computed from the SE-extrapolated PDFs have been observed to agree

well with those obtained from the actual PDFs without any extrapolation. This holds true

even for the local slopes, especially for −4 ≤ q ≤ 4. However, for larger values of |q|

some noise in the local slopes can be observed that arise potentially due to the extrapolation

parameters in Figure 4.8 not being entirely smooth. However, the local slopes, in the scaling

range, are varying around some nominal value which remains constant for a wide range of

scales similar to those shown by the local slopes from PDFs without extrapolation. Also,

since a least-squares method is used to estimate the power-law scaling exponents from the

moments in frames (a) and (b), the slight variability in the local slopes is not expected to

affect the exponents estimated. The SE extrapolations were only performed for r/η < 1100

since the tails of the PDFs are not wide for larger r/η and the number of bins that can be

used for the curve fit are few.

Before the generalized dimensions can be computed, it is important to identify the scal-

ing range where the least-square fit should be performed. Two approaches are examined

here. The first is a fixed scaling range corresponding to 60 ≤ r/η ≤ 600 for all order of

moments, q. This corresponds to the inertial range used in Iyer et al. (2015) and in sec-

tion 3.2. Such a fixed scaling range is reasonable, since the local slopes shown in Figure 4.9

vary by less than 10% over this range of scales for the values of q shown there. The second

option is to use a scaling range that is a function of q. In the first approach, the scaling range

considered corresponds to the range of r/η, mentioned above, where the exact Kolmogorov

1941 result for the third-order velocity structure function is observed to hold well. Here,

the Kolmogorov length scale (η) is defined based on the mean energy dissipation rate, 〈ε〉.

However, for moments of higher orders the scaling range tends to shift to lower values of

r/η as evidenced by the local slopes. In order to account for this variability, a generalized
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version specific for each order q is proposed by replacing 〈ε〉 by 〈εq〉1/q in the definition of

Kolmogorov length scale and is referred to as the order-dependent generalized Kolmogorov

length scale ηq.

ηq =

(
ν3

〈εq〉1/q

)1/4

;
ηq
η

=

(
〈ε〉
〈εq〉1/q

)1/4

(4.26)

The scaling range is defined in terms of r/ηq instead of r/η as before. That is, the order-

dependent variable scaling range considered is 60 ≤ r/ηq ≤ 600. Using Equation 4.26 the

scaling range limits can be expressed in terms of r/η as,

r

η
= 60

ηq
η

= 60

(
〈ε〉
〈εq〉1/q

)1/4

(4.27)

Similarly the upper limit of the scaling range can be computed using,

r

η
= 600

(
〈ε〉
〈εq〉1/q

)1/4

(4.28)
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Figure 4.10: Scaling range as a function of q obtained from actual PDFs (solid lines) and
PDFs with SE extrapolation (dashed lines). Red and blue are for lower and upper limits
of the scaling range computed using Equation 4.27 and Equation 4.28. Empirically deter-
mined scaling ranges are marked by + signs. Dashed horizontal lines corresponding to r/η
of 60 and 600 are drawn for reference to mark the chosen scaling range corresponding to
q = 1.
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The upper and lower limits of the scaling range computed from moments of energy

dissipation rate according to Equation 4.27 and Equation 4.28 are shown in Figure 4.10.

This suggests that for moments of order 6 the scaling range will be 20 ≤ r/η ≤ 200

and for moments of order -6 the scaling range will be 740 ≤ r/η ≤ 7400. The range of

scales corresponding to which the local slopes remain fairly constant, for some values of q

shown in Figure 4.9 previously, is determined empirically and marked by + symbols. The

empirically determined scaling ranges seem to agree relatively well with those determined

using the approach described above, based on the order-dependent generalized Kolmogorov

length scale. The scaling range limits for the negative order moments correspond to very

large values of r/η where reliable curve fits for extrapolation of PDF tails may not be

available. The figure also shows good agreement between the scaling ranges obtained from

SE-extrapolated PDFs and the actual PDFs.

q

D
q

Figure 4.11: Generalized dimensions (Dq) for different orders of magnitude estimated in
the scaling range using a least-square fit. Data from PDFs with no extrapolation using a
fixed scaling range (red), SE-extrapolated PDFs with a fixed scaling range (green) and SE-
extrapolated PDFs with variable scaling range (blue) are shown. Results from log-normal
extrapolation of PDFs are shown using a black dashed curve for reference.

The generalized dimensions, Dq, can be estimated using the least square method to fit

a straight line to the curves of log(F (r, q)) vs log(r/L0) shown in Figure 4.9 previously.

This fit was performed for moments of order q ranging from -15 to 15 using both the fixed

scaling range based on the classical Kolmogorov length scale and the variable scaling range
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based on the order-dependent generalized Kolmogorov length scale. The parameters of the

fit are estimated for each realization individually and then ensemble averaged. The slope

of the line fit gives the generalized dimension, Dq and is shown in Figure 4.11 for different

values of q. The values of Dq estimated from the actual PDFs and SE-extrapolated PDFs

are in good agreement with each other for q in the range -8 to 8. For |q| > 8 results shown

as dashed lines do differ significantly from one another, reflecting the degree of uncertainty

for higher-order moments which does persist, regardless of whether the tails of the PDFs

are extrapolated (as stretched exponential). The power-law scaling exponents from the

actual PDFs show a clear tendency to level off for both, higher positive and negative order

moments. The values of Dq estimated using a variable scaling range using SE extrapolated

PDFs also show good agreement with results obtained from a fixed scaling range. The

difference is more prominent for higher orders of q ≥ 10 and q ≤ −3. Also, at q = 0,

the value of Dq from all the curves in the figure is 3.0 which is expected as the quantity is

space filling for q = 1.

Before proceeding further to the actual multifractal spectrum, it is important to under-

stand the significance of the quantity αwhich characterizes the strength of “near-singularities”

or flow regions of varying energy dissipation rate. Frame (a) in Figure 4.12 shows α as a

function of the order q. Moments at large values of q, which are dominated by regions

of very high energy dissipation rate lead to lower values of α while for small values of q,

which are dominated by regions of very low energy dissipation rate lead to higher values

of α.

As noted earlier, accurate knowledge of the functional form of Dq versus q allows the

quantity α and ultimately the multifractal spectrum f(α) to be determined, according to

Equation 4.20 and Equation 4.19 respectively. Frame (b) of Figure 4.12 shows the multi-

fractal spectra for the same three cases as in Figure 4.11, with a number of corresponding

features. Specifically, the spectrum computed from the actual PDFs and extrapolated PDFs

are in good agreement at least for values of α corresponding to q in the range of -8 to 8

115



q α

α f
(α

)

(a) (b)

Figure 4.12: (a) Strength of the near-singularities characterized by α as a function of the
order q and (b) multifractal spectrum f(α) vs α. Data from PDFs with no extrapolation
using a fixed scaling range (red), SE-extrapolated PDFs with a fixed scaling range (green)
and SE-extrapolated PDFs with variable scaling range (blue) are shown. The multifractal
spectrum in the form of a parabola corresponding to log-normal extrapolation of PDFs are
shown using black dashed curve in frame (b) for reference.

shown by the solid lines. The spectrum computed from the SE extrapolated PDFs extend

further out to lower (and higher) values of α as compared to the spectrum from actual PDFs.

It is also important to note here that the f(α) values are negative, corresponding to small

and large values of α. The spectrum from the SE-extrapolated PDFs with variable scaling

range also is in good agreement with the other curves, except for large and small values of

α similar to the Dq curves.

If the PDFs of energy dissipation rate were log-normal, the corresponding generalized

dimensions, Dq, would be scaling linearly with the order q as shown in frame (a) of Fig-

ure 4.11 and in Meneveau & Sreenivasan (1991). An equation of a straight line of the

form Dq ∼ mq can be used to describe this, where m is the slope of the line. Simplifying
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Equation 4.20 and Equation 4.19 using the linear form ofDq the following can be obtained,

α = 2mq + 3− a (4.29)

f(α) = mq2 + 3 (4.30)

This shows that the corresponding spectrum expected will be a parabola if the log-normal

hypothesis holds and is shown by the dashed black curve in frame (b) of Figure 4.12 above.

The figure shows the spectrum from actual and SE-extrapolated PDFs are narrower than

those expected from log-normal PDFs for large and small α, i.e., log-normal theory predicts

a larger fractal dimension corresponding to singularities of fixed strength (α).

r/η r/η

(r
/L

0
)−

D
q
F

(r
,q

)

(a) (b)

Figure 4.13: Compensated multifractal moments weighted by (r/L0)−Dq for different or-
ders of moments obtained from actual PDFs (solid lines) and PDFs with SE extrapolation
(dashed lines) similar to Figure 4.9. Vertical dashed lines corresponding to a fixed scaling
range of 60 ≤ r/η ≤ 600 are shown. Colors red, green, blue and magenta correspond to
moments (a) q =-8,-6,-4,-2 and (b) q =2,4,6,8 respectively.

The results discussed here show that the data from SE-extrapolated PDFs with fixed

scaling range can be used for further analysis, as very little difference is observed when

a variable scaling range is used, as shown in Figure 4.12. Additionally, the large scaling

range required to capture the higher-order negative moments cannot be met because SE-
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extrapolated PDFs are not available for r/η > 1100.

In order to test the accuracy of the generalized dimensions estimated previously, the

moments, F (r, q) defined in Equation 4.7, are weighted by (r/L0)−Dq using Dq values

from Figure 4.11. Figure 4.13 shows these compensated moments for different orders

of moments, q. A plateau in the plot of these compensated moments corresponding to the

scaling range 60 ≤ r/η ≤ 600 suggests the values ofDq estimated are reasonably accurate.

The figure indeed shows that a relatively flat region is observed for the different orders of

moments considered here and for data from both actual PDFs and SE extrapolated PDFs.

dµq

dq

q

µq

q

(a) (b)

Figure 4.14: (a) Intermittency exponent computed using Dq. (b) Slope of the intermittency
exponent with respect to the moment order q. Data from PDFs with no extrapolation is
shown in red and from SE extrapolation in blue. Asymptotic value of the local slopes for
large q gives D∞.

One of the important uses of the generalized dimensions is to compute the intermit-

tency exponent, µq, defined by the scaling behavior 〈εrq〉 ∼ 〈ε〉q(r/L0)−µq for high or-

ders q. These exponents are important to many intermittency theories (Sreenivasan, 1993;

Watanabe & Fujisaka, 2000) and are related to Dq as

µq = (d−Dq)(q − 1) (4.31)

where d is the topological dimension of the space (which is 3 in 3D turbulence). As noted
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in Bershadskii & Mikishev (1994), differentiation of both sides of Equation 4.31 with re-

spect to q, in the limit where dD/dq → 0 as q → ∞ gives the result dµq/dq → D∞.

Figure 4.14 shows the intermittency exponent computed according to Equation 4.31 and its

slope with respect to the moment order q. The exponents estimated from both actual PDFs

and SE-extrapolated PDFs agree well up to q = 8, beyond which the two curves diverge.

The intermittency exponent corresponding to the second order moments is the most fun-

damental (Sreenivasan, 1993) and the corresponding value estimated here is around 0.22,

which is consistent with the results presented in section 3.2 and section 4.2.

The slope of the intermittency exponent in frame (b) shows that, for q ≥ ±8, the local

slopes are nearly constant corresponding to results from PDFs with no extrapolation while

those from SE-extrapolated PDFs are not showing a clear tendency to flatten out in the

range of q considered here. The value of the slope corresponding to large q is around 1.1

for data from no extrapolation, while data from SE-extrapolated PDFs suggest a plateau is

expected at a much larger value. The asymptotic value of the slope corresponds to D∞,

as discussed previously. As q increases, the Dq curves in Figure 4.11 discussed previously

will continue to decrease and eventually flatten out close to the value ofD∞ estimated from

Figure 4.14.

4.5 Multifractal spectrum at different Reynolds numbers

While section 4.3 and section 4.4 contained only results at the highest Reynolds number

available (Rλ 1300), useful information on Reynolds number dependence can be obtained

by comparing results at different (lower) Reynolds numbers. Figure 4.15 shows the gen-

eralized dimensions, Dq, and multifractal spectrum for Rλ ∼ 390, 650, 1000 and 1300,

all at comparably high resolution of the small scales. Frames (a) and (b) show results ob-

tained from PDFs without any extrapolation, while frames (c) and (d) show results from

PDFs with extrapolated stretched exponential tails. Generalized dimensions for negative

moment orders show less dependence to Reynolds number than those for positive orders.
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Figure 4.15: Generalized dimensions (a,c) and the multifractal spectrum (b,d) for Rλ ≈
390 (red), 650 (green), 1000 (blue) and 1300 (magenta). The top row corresponds to data
obtained from actual PDFs without extrapolation, and the bottom row corresponds to data
from SE extrapolated PDFs. A parabola corresponding to the expected spectrum from
log-normal behavior of PDFs is shown by the black dashed curves in frames (b) and (d).
Dashed curves correspond to data for q > ±8.

At high negative orders, the case of Rλ ∼ 650 appear to be an outlier, which may be due

to undersampling of samples of dissipation rate several orders of magnitude smaller than

the mean. The positive moments, however, show a clear trend of decreasing generalized

dimensions as the Rλ increases for a fixed q. This observation is more prominent in the Dq

values computed using SE-extrapolated PDFs in frame (c).

The multifractal spectra in frames (b) and (d) both show little dependence on Reynolds

number at high α. The figures show that the spectrum is narrower than the parabola (black
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dashed line) which corresponds to a log-normal behavior in the energy dissipation rate,

similar to observations corresponding to Figure 4.12. However, at lower values of α the

multifractal spectrum clearly becomes wider at higher Reynolds number. An interesting

observation is that the solid lines representing the spectrum terminate at lower values of

f(α) and α when the Rλ is higher. Therefore, near-singularities of greater strength (lower

α) and lower fractal dimension are observed asRλ increases. It is also important to observe

that the fractal dimensions f(α) are negative (Chhabra & Sreenivasan, 1991), even more

so, when SE-extrapolated PDFs are used. Large α corresponds to the higher order negative

moments which are dominated by the regions of very low energy dissipation, whereas small

α correspond to the higher order positive moments which are dominated by the regions of

very high energy dissipation, as shown in Figure 4.12a previously.

Negative fractal dimensions are mostly observed for small or large values of α corre-

sponding to very high or very low energy dissipation. These regimes, as indicated by the

PDFs in Figure 4.7a, have very low probability of occurrence. Consider that the events are

being sampled using box cuts in the entire domain. Such events would be missed by any

single cubic box in space, but averaging over many such boxes would amount to collect-

ing information about such low probability events. A negative exponent in Equation 4.13

corresponds to a decrease in the number of boxes as r decreases, which means that smaller

boxes are not likely to capture these rare events, with many of them remaining empty. This

provides a unique geometrical viewpoint to intermittency as compared to the statistical

viewpoint taken in chapter 3. It is important to note here that such large negative dimen-

sions are observed only corresponding to very high and low values of energy dissipation,

which are obtained from extrapolating the PDF tails. Therefore, the results need to be inter-

preted carefully, as these extrapolations do not confirm the occurrences of such rare events

in physically realizable flows. Another important factor is the small number of samples

that capture these rare events, which may contribute to undersampling. This consideration

raises the possibility that if more samples show the occurrence of these rare events, then
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the resulting dimensionality may not be negative. Chhabra & Sreenivasan (1991) provided

a more detailed account of “negative dimensions” as observed in the multifractal spectrum.

On the other hand, moderately high or low values of energy dissipation correspond to posi-

tive values of fractal dimensions. Such events are more likely, and hence many if not all the

box cuts are likely to capture occurrences of these events. As the box size r decreases, there

are more such boxes capturing these events. Therefore, a positive exponent corresponds to

an increase in Nr when r decreases corresponding to the argument above.

α ε/〈ε〉

p(
ε/
〈ε
〉)

f
(α

)

Rλ

Rλ

Figure 4.16: (a) Multifractal spectrum at Rλ 390 (red), 650 (green), 1000 (blue) and 1300
(magenta). Solid circles (•) show data obtained from figure 38a in Meneveau & Sreeni-
vasan (1991). Inset shows the values of the multifractal spectrum at fixed values of α
corresponding to 2.2 (red), 2.4 (green) and 2.6 (blue) as a function of Rλ on the x-axis.
Vertical dashed lines in the main frame are used to mark the intersection with the f(α)
curves corresponding to the fixed values of α. (b) PDFs of energy dissipation rate at Rλ

390 (red), 650 (green), 1000 (blue) and 1300 (magenta). The inset shows the values of the
PDFs at fixed values of ε/〈ε〉 corresponding to 200 (red), 500(green) and 800 (blue) as a
function of Rλ on the x-axis. Vertical dashed lines in the main frame are used to mark the
intersection with p(ε/〈ε〉) curves corresponding to the fixed values of ε/〈ε〉.

An attractive characteristic of the multifractal spectrum is that it is independent of

Reynolds number, especially at higher Rλ. While the PDFs of energy dissipation rate can

also be used to study intermittency, as in chapter 3 previously, they are highly dependent

on Rλ. Figure 4.16 shows the multifractal spectrum (same as in Figure 4.15b) alongside

the PDFs of normalized energy dissipation rate at different Rλ. In order to compare the
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variability of the two quantities with Rλ, fixed values of α and ε/〈ε〉 are chosen, as both

these variables characterize the intensity of the extreme events, and the corresponding val-

ues of f(α) and p(ε/〈ε〉) are shown as a function of Rλ in the insets in each frame. The

largest variation in the multifractal spectrum among the tested values of α is observed, cor-

responding to α = 2.2. The relative variation between results at Rλ ∼ 390 and 1300 with

respect to those at Rλ ∼ 1300, defined as (f1300(α) − f390(α))/f1300(α), is found to be

close to 30% while the same corresponding to α = 2.6 is approximately 2%. It is also

clear from frame (a) that the variation with Rλ is low corresponding to α > 3 which corre-

sponds to regions of weak energy dissipation rate. Similarly, the relative variation between

the PDFs at ε/〈ε〉 = 800 for Rλ ∼ 390 and 1300, using the definition described above,

is approximately 97% while the same for ε/〈ε〉 = 200 is approximately 86%. This shows

that the tails of the PDFs vary more significantly with Rλ in comparison to the multifractal

spectrum. Although variations as high as 30% are recorded for small values of α, at lower

Rλ very few samples with such strong energy dissipation rate are observed, which could

lead to sampling uncertainties contributing to less than accurate values for the multifractal

spectrum at low Rλ. For example, the relative variability in the multifractal spectrum cor-

responding to α = 2.2 between Rλ ∼ 1000 and 1300 is approximately 6% only, while the

variation in the PDFs corresponding to ε/〈ε〉 = 800 for the same two Reynolds numbers is

close to 84%. This shows that the Rλ-dependence of the spectrum indeed reduces at higher

Rλ while the Rλ-dependence is still significant in the PDFs.

Figure 4.16a also shows some data points corresponding to the multifractal spectrum,

taken from figure 38a of Meneveau & Sreenivasan (1991). The spectrum was obtained from

measurements in laboratory flows like wakes and boundary layers with Rλ around 100. A

1D surrogate for the energy dissipation rate was used, with Taylor’s frozen turbulence hy-

pothesis and 1D local averaging. In contrast, in DNS the results from the 3D local averages

of full energy dissipation rate computed using all nine velocity gradient components and

at Rλ of 390, the lowest in this work, are found to be relatively in good agreement with
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each other. This suggests the multifractal spectrum is very robust to both Rλ and use of

approximations like 1D surrogates and Taylor’s frozen turbulence hypothesis.

The multifractal spectrum is especially useful in the study of near-singularities in the

equations of fluid motion. In practical turbulent flows, strictly singular regions (where ve-

locity gradients are infinite) are not observed, since they are smoothed out by viscosity.

However, regions of very high velocity gradients or energy dissipation may be considered

as incipient singularities or near-singular regions. An important question in the study of

these incipient singularities is regarding the amount of energy dissipation contributed, and

the volume occupied by these regions. Let S denote the set of near-singularities character-

ized by their strength α. (Sreenivasan & Meneveau, 1988) showed that the volume occu-

pied (V (S)) and fraction of total energy dissipation contained (E(S)) in the near-singular

set (where α < 3 indicates high dissipation) are given by the formulas

V (S) =

∫
α∈S

(r/L0)d−f(α)dα (4.32)

E(S) =

∫
α∈S

(r/L0)α−f(α)dα (4.33)

where d = 3 in three-dimensional flow.

Results from a theoretical calculation of the quantities V (S) and E(S) are shown as

a function of Reynolds number in Figure 4.17. It should be noted that, of course, the

bulk of the Rλ range is this figure is beyond the reach of DNS at present and even po-

tentially far into the future. Data points in this figure are obtained by (i) taking f(α) to

be the same as that from DNS data at Rλ 1300 using SE-extrapolated PDFs, and (ii) that

r/L0 = (r/η)R
−3/2
λ . Assumption (i) is supported by the weak sensitivity of the multi-

fractal spectrum with Reynolds number (as seen in Figure 4.16 earlier), while assumption

(ii) is just based on classical scaling for the ratio L/η (with L/L0 also nearly constant in

forced turbulence). Frame (a) shows that, for near-singular regions defined by α < 3, dom-

inated by high dissipation, the energy dissipation contained increases with Rλ while the
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Figure 4.17: Fraction of energy dissipation contributed (red) and volume occupied (blue)
by near-singular regions, forming the set S, of strength (a) −∞ < α < 3, (b) 2.7 < α < 3,
(c) 2.1 < α < 2.7 and (d) −∞ < α < 2.1. The multifractal spectrum at Rλ ∼ 1300
was used to compute these quantities at all Rλ. Near-singularities correspond to r/η ∼ 0.7
(solid curves) and volume averaged energy dissipation (dotted curves, r/η ∼ 305).

corresponding volume occupied decreases. That is, regions of small α (large dissipation),

occupy small volumes because the fractal dimension (f(α)) is largely negative while con-

tributing most of the energy dissipation. Frames (b), (c) and (d) focus on different bands

of α such that the sum of contributions from each of these three frames will add up to

that shown in frame (a). Frame (b) shows that the majority of the energy dissipation is

contained in the near-singular regions of strength 2.7 < α < 3 and occupies most of the

volume, especially at higher Rλ. Singular regions of strength of 2.1 < α < 2.7 contribute

some energy dissipation corresponding to lower values of Rλ while occupying very little

volume in space (close to negligible when viewed on linear scales). In contrast to the other

two regions, the region with α at 2.1 or below occupies little space and contributes almost

negligibly to the total dissipation. In frame (d) shows both the energy dissipation contribu-
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tion and volume occupied decrease with Rλ. This suggests these extremely high regions of

energy dissipation do not contribute much to the total energy dissipation and occupy very

small volumes; hence they are unimportant, especially for α < 2.1. It may be noted that,

as seen in frame (a), the rate at which V (S) and E(S) approach their high Reynolds num-

ber limits is very slow: it appears that asymptotic values are not truly reached at Reynolds

numbers encountered in any terrestrial applications of interest.

Results for 3D averages at scale size r/η ≈ 305 (representative of the inertial range)

are shown as dashed lines in the figure. The figure shows that for the case when near-

singular regions defined by 2.7 < α < 3 (frame (b)) are considered, the volume occupied

is larger while the energy dissipation contained is lower than those for r/η ≈ 0.7, i.e.,

the energy dissipation averaged over scale size representative of the inertial range is less

dense compared to those representative of the dissipation range. But considering near-

singularities corresponding to bands of α in frames (c) and (d), it can be seen that both the

energy contributed and the volume occupied are greater than those for r/η ≈ 0.7.

4.6 Contribution of samples below a threshold to moments of energy dissipation rate

Given the nature of dissipation as a highly intermittent quantity, it is useful to estimate

how much of the total dissipation is derived from peaks of different sizes in space. The

contribution to the overall moments of energy dissipation rate by values below a threshold,

εt, are computed at different orders q and scale sizes r is given by

G(εt/〈ε〉) =
1

〈εqr〉

∫ εt/〈ε〉

0

εqr p(εr/〈ε〉) d(εr/〈ε〉) (4.34)

where p(εr/〈ε〉) is the PDF of the normalized local average. It is clear that G(0) = 0 and

G(∞) = 1. Figure 4.18 shows these contributions for different orders q and for volume

averages of different scale sizes. The SE-extrapolated PDFs were used in Equation 4.34

to compute this quantity. Data from a Gaussian distribution with the same mean and stan-
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Figure 4.18: Contribution to moments of order (a) q = 1, (b) q = 2, (c) q = 4 and (d) q = 6
by samples below different values of threshold εt. Different curves correspond to local
averages over volumes of size r/η ≈ 0.7 (red), r/η ≈ 16 (green) and r/η ≈ 305 (blue).
Data corresponding to a Gaussian distributed random variable with mean (µε = 〈ε〉 = 1.35)
and standard deviation (σε = 2.3) similar to that of the PDFs at r/η ≈ 0.7 is shown by black
dashed curves.

dard deviation as that of the PDFs at r/η ≈ 0.7 (black dashed curves) are included for

comparison.

Contributions to the mean value of energy dissipation rate are shown in frame (a). These

first-order moments are dominated by samples of energy dissipation rates only as large as a

few mean values. Specifically, for r/η ≈ 0.7 (red curve), samples up to 50 times the mean

value account for most of the dissipation. Data corresponding to r/η of 16 (green curve)
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and 305 (blue curve) show that the contributions to the mean value are mostly dominated

by samples less than 25 and 5 times the mean, respectively. The Gaussian is observed to

return to the actual value by considering samples less than a threshold of 5 times the mean.

Upon closer observation of frame (a), a crossover between the curve corresponding to the

Gaussian and others can be observed. Since the Gaussian is based on the mean and standard

deviation of r/η ≈ 0.7 it is reasonable to only compare against the curves corresponding

to this value of r/η, i.e., the red curve. The crossover between these two curves (red and

black) can be interpreted as the actual PDFs showing probabilities higher than those shown

by the Gaussian corresponding to sample values around the mean. However, since the tails

are far from Gaussian more samples far away from the mean value need to be considered

before the actual mean can be captured while the Gaussian quickly returns to its mean as

its tail rolls off exponentially.

At higher orders, the figure shows that the thresholds need to be larger, especially for

r/η ≈ 0.7 (red curve), while the Gaussian consistently captures the actual moments con-

sidering samples less than 5 times the mean. For q = 2 shown in frame (b), approximately

90% of the contribution for r/η ≈ 0.7 is dominated by flow regions with energy dissipation

rate less than 50 times the mean. Contributions corresponding to higher r/η (green and blue

curves) are dominated by samples of lower magnitudes, similar to that observed in frame

(a). However, contributions from flow regions with higher energy dissipation rate dominate

the higher order moments, as can be expected. Frame (c) and (d) show that only around

40% and 15% of the contributions come from samples less than a threshold of 50 times the

mean for r/η ≈ 0.7 (red curve) respectively. For volume averages over scale sizes typical

of the inertial range (blue curve), contributions to moments as high as the sixth-order can

be accurately captured by samples less than a threshold of 20 times the mean. It is also

interesting to note that the crossover observed in frame (a) between the Gaussian and the

contribution to moments for r/η ≈ 0.7 is not observed at higher orders (frames (b), (c)

and (d)) since these higher orders are mostly dominated by the tails of the PDFs and the

128



samples close to the mean do not contribute much.

εr/〈ε〉
Figure 4.19: Plot of the integrand, x pr(x), where x = εr/〈ε〉, observed in computation
of the first moment from the PDFs of local averages of energy dissipation rate for r/η =
0.7 (red), 16 (blue) and 306 (green) on linear scales. The black dashed curve shows the
corresponding integrand from Gaussian PDF with mean (µ = 〈ε〉 = 1.35) and standard
deviation (σε = 3.06) same as that of the PDF at r/η ≈ 0.7.

To understand the crossover observed in frame (a) of Figure 4.18 more clearly, the in-

tegrand in Equation 4.34 as a function of the sample value x is shown in Figure 4.19. As

noted earlier, results from Gaussian and PDF at r/η ≈ 0.7 are compared as they corre-

spond to the same mean and standard deviation. The figure shows that for small εr/〈ε〉 the

integrand increases quickly for the PDFs compared to the Gaussian, leading to a greater

contribution to the moments. However, as sample values increase, the integrand for the

Gaussian continues to grow while those for r/η ≈ 0.7 (red curve) drops. This leads to the

observed crossover in Figure 4.18.

Table 4.2 shows the same data for chosen values of the thresholds normalized by stan-

dard deviations, instead of mean values as before, at the three different scale sizes. The

table shows that close to 90% of the mean energy dissipation rate can be recovered, con-

sidering samples less than a threshold of 5 standard deviations. For larger scale sizes,

more than 90% of the mean can be recovered. When considering higher order moments,

it is clear that as the scale size increases, more of the actual value can be recovered for a

fixed value of the threshold. For third and fourth order moments, thresholds as high as 10
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Table 4.2: Percentage of actual value recovered for different values of thresholds (in units of
standard deviations) for first, second, fourth and sixth order moments computed using PDFs
with stretched exponential extrapolation. The standard deviations (σεr) corresponding to
r/η = 0.7, 16 and 305 are 3.06, 2.05 and 1.03 respectively.

r/η
q = 1 q = 2 q = 4 q = 6
εt/σεr εt/σεr εt/σεr εt/σεr

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10
0.7 50 76 89 95 30 51 66 79 7 14 20 29 2 3 5 8
16 42 80 90 97 32 64 76 89 13 31 42 57 6 15 20 30
305 24 83 96 100 29 79 92 99 24 64 81 95 19 50 67 87

standard deviations can only capture 30% and 10% of the total contribution respectively,

which implies larger values of energy dissipation rate dominate these moments as can be

expected.

4.7 Conclusions

An analysis undertaken from a multifractal perspective has been presented in this chapter,

using primarily three-dimensional local averages of the energy dissipation rate obtained

from direct numerical simulations (DNS) at high Reynolds number with good small-scale

resolution. In contrast to past data, especially from experiments, the full energy dissipation

rate (including all nine velocity gradients) computed from DNS data is used to compute the

multifractal spectrum. The effect of Reynolds number, extrapolation of PDFs of local aver-

ages of energy dissipation, as well as the contributions of different ranges of the dissipation

rate magnitude to moments of the 3D local averages have been examined.

Higher-order moments of the dissipation rate averaged over scales sizes in the dissipa-

tion range are sensitive to issues of statistical convergence associated with finite sampling.

A similar, and somewhat more prominent, issue is observed for high-order negative mo-

ments, as well. Extrapolation of the PDF tails has been considered as a possible means

of alleviating the impact of statistical noise at extremely small or extremely large sample

values. A stretched exponential with variable stretching parameter appears to be the best

functional form compared to several others. Nonlinear curve fits are performed for scale

130



sizes ranging from dissipation to inertial range scales to estimate the parameters in the

stretched exponential model.

Moments of energy dissipation rate in the form necessary to compute the power-law

scaling exponents Dq, also known as generalized dimensions, are analyzed. Clear power-

law scaling behavior is observed for a wide range of moments. The generalized dimensions

were computed by performing least square fits using a scaling range defined based on ei-

ther the classical Kolmogorov length scale or an order-dependent generalized Kolmogorov

length scale. Results showed very little difference between the two, at least for moments at

order q ≤ ±8. Accordingly, a fixed scaling range 60 ≤ r/η ≤ 600 proposed in recent work

is used to obtain generalized dimensions and other multifractal quantities in the inertial

range. The multifractal spectrum (f(α)), where α characterizes the strength of the near-

singularities, is shown to give negative values corresponding to regions of high dissipation,

especially if calculated from extrapolated dissipation PDFs. Comparing the spectrum from

different Reynolds numbers showed that higher Rλ leads to lower values of α and f(α).

This result can be interpreted as a greater incidence of near-singularities with lower or neg-

ative fractal dimensions in high Reynolds number turbulence with increased intermittency.

The multifractal spectrum computed from high resolution DNS data in this thesis are found

to be in relatively good agreement with Meneveau & Sreenivasan (1991), especially for

the lower values of Reynolds number. However, it is important to isolate the effects of the

differences in methodology between data obtained from laboratory experiments, where 1D

surrogacy, Taylor’s frozen turbulence hypothesis and 1D averages were used, in contrast to

DNS, where 3D averages of the full energy dissipation rate are now available.

The multifractal spectrum was used to compute the intermittency exponent (µq) which

suggested a value of 0.22 for the second order moments (q = 2) of local averages of en-

ergy dissipation, similar to that observed in section 3.2. The multifractal spectrum was

also used to estimate the energy dissipation contributed and volume occupied by the near-

singularities of different strengths. A major fraction of the total energy dissipation comes
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from near-singular regions of strength, 2.7 ≤ α ≤ 3 while the volume occupied by these

regions is small. Stronger near-singular regions contribute very little to the energy dissipa-

tion while occupying very small volumes in space. It was also found that as Rλ increases,

singularities of the same strength contribute more to the total energy dissipation while occu-

pying even smaller volumes as theRλ is increased. However, the curves did not converge to

values corresponding to a full singularity, i.e., all the energy dissipation being contributed

by singular regions of strength α < 3 while occupying zero volume, even for Rλ as high as

1012, which exceeds the Reynolds number expected in all terrestrial applications.

Finally, the relative contributions of samples of different values to moments of different

orders are estimated for local averages of energy dissipation rate. The results show that the

mean value receives most of the contributions from samples less than a few times the mean

while samples of larger values contribute a more significant fraction to the higher order

moments. As the local averaging scale size increases, samples of lower values have a more

significant contribution to the moments at a fixed order of the moment.

In summary, the work presented in this chapter provides results from a multifractal

viewpoint using state-of-the-art numerical simulation data. Specifically, results on the be-

havior of PDF tails, the multifractal spectrum, intermittency exponents, singularities and

contribution of different values of energy dissipation rate to its overall moments are pre-

sented, from well resolved DNS data at Reynolds numbers rivaling those in the best labo-

ratory facilities at this time. The present results provide a significant extension to past work

on multifractality in turbulence, in part through avoidance of one-dimensional surrogacy

(versus the full energy dissipation) 1D versus 3D local averaging in space, and the Taylor’s

frozen turbulence hypothesis necessary in many laboratory settings.
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CHAPTER 5

HIGH RESOLUTION STUDIES OF INTERMITTENCY IN SCALAR

DISSIPATION RATES

Turbulence is an efficient agent of mixing of substances or properties known as scalars

(Warhaft, 2000; Sreenivasan, 1991b). When the concentration of these substances being

mixed are very low such that it does not affect the flow itself, they are called passive scalars.

It is generally known (Gotoh & Yeung, 2013) that passive scalar fields of Schmidt number

of order unity or higher exhibit stronger intermittency in the small scales than does the

velocity field. Extreme values of the scalar dissipation rate, are directly related to large

scalar gradients, which can be difficult to resolve and sample. Incorporation of passive

scalar fields also adds to the cost of the numerical simulations, making long and well-

resolved simulations even more difficult. As a result, the MRIS approach discussed for the

velocity field in chapter 3 is appealing for the investigation of passive scalar intermittency.

As for the velocity field, simulations where the degree of resolution of small scales,

reflected by the parameter kmaxη, is higher than 4 are performed. These simulations will

provide detailed information on fluctuations of scalar dissipation rate, which could not

be resolved adequately in previous work. The new data will provide a new and much-

needed test concerning whether prior observations of departures of the scalar field from the

classical theory of local isotropy may have been contaminated by insufficient resolution.

The highly intermittent nature of scalar dissipation rates raises key questions regarding

the refined similarity hypothesis of passive scalars. The moments of 3D local averages

of scalar dissipation rate are important to understanding this. However, the difficulty in

computing such quantities has rendered such results hard to come by. This chapter will

present some results comparing the moments of 3D local averages of energy and scalar

dissipation rate at different resolutions and Reynolds numbers studied. The relationship
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between energy and scalar dissipation rates at different scale sizes will be studied through

conditional moments as well.

A brief overview of the numerical approach to simulate passive scalars is made in sec-

tion 5.1. Basic simulation parameters for the MRIS technique and single point statistics

of scalar dissipation rates and scalar gradients are given in section 5.2. Results on the

volume averages of scalar dissipation rate of passive scalars are presented in section 5.4.

Conclusions are summarized in section 5.5.

5.1 Numerical approach

Turbulent mixing being a small-scale process, it is appropriate to study its fundamentals

in incompressible isotropic turbulence as well. Numerically, scalar fluctuations can be

sustained by an isotropic forcing mechanism at the large scales (analogous to f in Equa-

tion 2.1), or by a uniform mean gradient. The latter is chosen here, since it allows to

study the question whether the scalar field satisfies local isotropy when the mean gradi-

ent imposes a preferential direction. In addition to solving for the velocity fluctuations

(Equation 2.1), the scalar fluctuations (φ) are also computed from its advection-diffusion

transport equation of the form,

∂φ/∂t+ u · ∇φ = −u · ∇Φ +D∇2φ (5.1)

where D is the molecular diffusivity of the passive scalar and ∇Φ is a uniform mean

scalar gradient, which (along with the velocity fluctuations) is responsible for generating

the scalar fluctuations and preserves homogeneity.

The Fourier transform of Equation 5.1 are taken, where the scalar Fourier coefficient

φ̂(k, t) satisfies,

∂φ̂/∂t+ ∇̂ · uφ = −û∇Φ−Dk2φ̂ (5.2)

Integration in time is performed using the RK2 scheme similar to that used for the velocity
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fluctuations. Multiple scalars that are both dynamically passive and chemically inert may

be incorporated by simply writing separate equations in the same form as Equation 5.2, say

with different molecular diffusivities.

Computing the scalar fluctuations using the Fourier pseudo-spectral framework (Canuto

et al., 1988) is fairly straightforward. The beginning of each time step in the DNS code

starts with velocity and scalar fluctuations in the wavenumber space. There will be a total

of 3 + Nc flow variables (3 for the velocity, Nc being the number of scalars). The ve-

locity and scalar Fourier coefficients along with the y-derivatives of scalar fluctuations are

transformed from wavenumber to physical space in y direction alone (3 + 2Nc transforms).

Next, the z and x derivatives for the scalars are computed. Finally, the velocity fluctuations

and the three derivatives (3 + 3Nc transforms) of the scalars are transformed to physical

space, where the nonlinear products are formed. This approach allows for statistics of the

scalar gradients to be computed readily in physical space. In addition to the nonlinear prod-

ucts necessary for the momentum equation, the products of velocity and scalar derivatives,

uidφ/dxi’s, are formed. The mean scalar gradient term is also accounted for in physical

space. These nonlinear products along with the mean gradient term, only 1 for each scalar,

are then transformed from physical space back to wavenumber space before the integra-

tion in time can be performed. The diffusion term is treated exactly through an integrating

factor similar to the viscous term in the momentum equation.

Pseudo-spectral direct numerical simulations using the approach described here have

been used for many decades (Gotoh & Yeung, 2013). Majority of these simulations used

a massive CPU-based parallel implementation, as in Donzis & Yeung (2010). While more

recent work (Clay et al., 2017) focusing on high Schmidt number scalars have used a

multi-grid approach to account for the difference in size of small-scales in the velocity

and scalar fields and have been extended to use OpenMP to target GPUs in Clay et al.

(2018). In this work, the batched asynchronous code, described in chapter 2, has been ex-

tended to include passive scalars. This enables simulations are very large problem sizes,
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unattainable previously. However, due to limited computational resources on Summit, re-

sults from simulations of passive scalars, using the CPU-based pencil decomposition code,

up to Reynolds numbers 650 using a grid of 61443 performed on Frontera supercomputer at

Texas Advanced Computing Center (TACC) are presented in this thesis. CUDA kernels to

compute the derivatives of scalars in each of the three directions are written, and the kernel

to compute the nonlinear products in physical space is extended to include the formation of

velocity and scalar derivative products relevant to the advection-diffusion equation. Addi-

tional memory requirements due to the presence of scalars are accounted for by increasing

the number of batches per slab (4 simulations with up to 2 scalars versus 3 for velocity field

only). Additional cost for including passive scalars is about 40% per scalar at each time

step.

5.2 Description of DNS database

Table 5.1: Basic parameters for simulations conducted at different Rλ using the MRIS
approach along with the second order moments of energy and scalar dissipation rate and
scalar gradient skewness. For each Schmidt number mean gradients in all three directions
are considered, i.e., the Rλ = 390 and 650 simulations have 6 and 3 scalars in total. All
simulations were performed using a Courant number of 0.3.

Rλ N kmaxη
Sc

β M 〈ε2〉/〈ε〉2 〈χ2〉/〈χ〉2 µ3(∇||φ)
Sc1 Sc2 Sc1 Sc2 Sc1 Sc2

390 1024 1.4 1 0.125 2 11 4.19 13.42 11.99 1.24 1.85
390 1536 2.1 1 0.125 2 11 4.35 15.32 11.95 1.36 1.85
390 3072 4.2 1 0.125 2 11 4.39 15.77 11.90 1.38 1.84
650 2048 1.4 1 - 2 21 4.62 16.90 - 1.19 -
650 3072 2.1 1 - 2 21 4.88 19.70 - 1.32 -
650 6144 4.2 1 - 1 21 4.98 20.52 - 1.35 -

The MRIS approach has been used to conduct simulations of passive scalar mixing at

a combination of Reynolds numbers and Schmidt numbers, as shown in Table 5.1. As in

section 3.2, in each case, a short segment at the lowest resolution is run after reducing the

Courant number to 0.3 (from 0.6 which was used to generate the initial snapshots). Sub-

sequently, the grid spacing is refined twice, until the resolution parameter kmaxη reaches
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4.2 (such that ∆x/η ≈ 0.7). Because of present limitations on resource allocations on

Summit, the simulations reported in Table 5.1 have been limited to 61443 in size, and were

conducted instead using a CPU code on the Frontera supercomputer at the Texas Advanced

Computing Center (TACC). As was the case for simulations of the velocity field (chap-

ter 3), statistics of the small scales are found to adjust to increases in resolution quickly,

well within 1 Kolmogorov time scale for every halving of the grid spacing.

In principle, since the turbulence is isotropic the mean scalar gradient can be in any

direction, say one of the coordinate axes, such that the mean gradient term in Equation 5.1

is coupled to any one of the three velocity components (u, v, w). However, in practice,

especially if sampled over only a short period of time, the r.m.s values of u, v, w can differ

significantly. This introduces statistical variability into results on the scalar fluctuations.

This issue can be addressed by (i) a larger domain with more grid points to allow better

sampling of the large scales in the velocity field while keeping the grid spacing fixed,

or (ii) simulating multiple scalars with ∇Φ in different directions and taking ensemble

averages over them (Buaria et al., 2016). The second approach is preferable because of

lower computational cost compared to the first, which would have required 8 times as

many grid points.

Similar to the studies of intermittency in chapter 3, an important measure for the passive

scalar intermittency is the fluctuating scalar dissipation rate χ defined as,

χ = 2D
∂φ

∂xi

∂φ

∂xi
(5.3)

which is a quadratic measure of the scalar gradient fluctuations. Second-moment data given

in Table 5.1 indicates the second moment of the normalized scalar dissipation is some 3–4

times larger than for the energy dissipation. It is apparent that the these moments for χ

are 3-4 times higher in magnitude compared to ε. This is consistent, at least at the second

moment levels, with claims (Overholt & Pope, 1996; Yeung et al., 2005) that the scalar
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dissipation is more intermittent than the energy dissipation. It can also be seen that a scalar

of Sc = 1 has larger high-order moments than that of Sc = 0.125, which is not a surprise,

because higher molecular diffusivity in the scalar of low Sc tends to smooth out the scalar

gradients before they can grow to larger magnitudes.

It is also important to note the variability of these second-order moments with respect

to the spatial resolution. For Rλ 650, when the resolution is improved from kmaxη 2.1

to 4.2, the moments of ε increase by 2% while the second moments of χ increase by 4%

suggesting further improvements in resolution will have a greater impact on the accuracy

of higher-order statistics of the scalar dissipation rate. The increase in these moments with

Reynolds number (if computed at same kmaxη) is also much stronger for χ than ε. This

further supports the argument that the scalar field is more intermittent, especially at higher

Rλ.

Given the presence of the mean scalar gradient in the equations above (and their coun-

terpart in laboratory experiments (Mydlarski & Warhaft, 1998; Warhaft, 2000)) it is impor-

tant to explain observed departures from local isotropy, as seen in the skewness and other

higher odd-order moments of the gradient ∇||φ parallel to ∇Φ (Donzis & Yeung, 2010;

Sreenivasan, 1991b). Classical Kolmogorov phenomenology suggests the small scales of

turbulence become increasingly isotropic at high Rλ. However, the small scales of the pas-

sive scalar have been widely observed (Warhaft, 2000; Gotoh & Yeung, 2013) to deviate

strongly from local isotropy in the presence of a mean scalar gradient. A convenient diag-

nostic is the skewness of the mean scalar gradient parallel to the mean gradient, µ3(∇||φ)

which is computed for the data sets studied here and reported in Table 5.1. For the Rλ

390 simulations, as the Sc number increases, the scalar gradient skewness is observed to

increase as well. Increasing spatial resolution helps capture the higher magnitude scalar

gradients more accurately can lead to an increase in the gradient skewness. Because of

some partial cancellation between positive and negative values of the scalar gradient, this

increase may, however, be weaker than that in even order moments. In Table 5.1 the skew-
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ness also appears to decrease slightly with Reynolds number, but the increase is less signif-

icant when resolution is high These trends are consistent with results in Donzis & Yeung

(2010) and highlight the need for high resolution simulations for an accurate study of this

topic.

5.3 Single point statistics

t/τη

χ
/〈
χ
〉,
ε/
〈ε
〉

Figure 5.1: Ensemble averaged peak energy dissipation rate (blue) and scalar dissipation
rate for Sc = 1 (red) and Sc = 0.125 (green) from the Rλ ∼ 390 simulation.

The evolution of the peak normalized energy and scalar dissipation rates at Rλ ∼ 390,

over a period of 4 τη with resolution increases from kmaxη 1.4 to 2.1 and 2.1 to 4.2 at t/τη =

0 and 2 respectively are shown in Figure 5.1. Ensemble averaging over 11 realizations

(see Table 5.1) has been applied. The scalar at Sc = 0.125, being of higher molecular

diffusivity, is, of course better resolved; it is not surprising that results for this scalar show

little sensitivity to further improvements in grid resolution. Results for the scalar at Sc = 1

display sensitivities to resolution that are qualitatively similar to those seen for the energy

dissipation rate. The figure further shows that the peak values adjust rapidly, within 0.5τη,

to the higher resolution grid. This re-affirms the applicability of the MRIS approach to

studies of fine-scale intermittency in passive scalar fields. It is interesting to note that the

peak values in both χ (for Sc = 1) and ε are comparable in amplitude, with the energy

dissipation being slightly higher.

The probability distribution of the scalar dissipation rate allows to quantify the likeli-
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Figure 5.2: PDFs of normalized scalar dissipation rate on log-log (left) and log-linear
(right) scales for Sc = 1 (solid lines) and Sc = 0.125 (dashed line) at Rλ 390 (red) and
Rλ 650 (green) at kmaxη ≈ 4.2. PDFs of normalized energy dissipation and enstrophy are
shown in magenta and cyan, respectively.

hood of events of different amplitudes, ranging from the very small to very high. Figure 5.2

shows the PDFs of scalar dissipation rate for Sc = 1 at different Rλ for kmaxη ≈ 4.2. It

also shows the PDF of χ for Sc = 0.125 scalar at Rλ 390, ε and Ω at Rλ 650. The frame on

the left is helpful for focusing on the small magnitude events. Yeung et al. (2012) argued

that the behavior of velocity gradients at small sample values is similar to that of a Gaussian

Random Field (GRF). This implies, enstrophy being the sum of squares of three velocity

gradients, will have a chi-square distribution of order three at these small sample values.

This corresponds to a power-law as observed in the PDFs. Similarly, the scalar gradient

PDFs also show a Gaussian behavior corresponding to small sample values. Therefore,

scalar dissipation rate, which is the sum of squares of the three Gaussian scalar gradients

will lead to a chi-square distribution of order three. This explains the observed that the

slope of the tails corresponding to small values for enstrophy and scalar dissipation are

similar. The slope is different for energy dissipation as it behaves as a chi-square of order

five due to incompressibility as described in Yeung et al. (2012). It can also be seen that as

the Rλ increases, the probability of these low magnitude events also increase.

The right frame in Figure 5.2 provides greater clarity in the regime of extreme events

of high amplitude. It is clear that the tails of enstrophy are widest, followed by the tails of
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energy dissipation rate. Consistent with the lower peak values observed in Figure 5.1, the

scalar dissipation tails are narrower than those for ε. The PDFs of χ become wider with

increasing Rλ which is consistent with increased intermittency.

Another interesting observation in Figure 5.2 is that even though the extreme events in

χ are not as strong and frequent as those in ε, at more moderate values, say between 10 and

1000, the probability of such events occurring is much higher for χ than ε. This suggests

that the higher values for the second-order moments observed in Table 5.1 are mostly due

to contributions from the moderately large values of χ. For higher order moments, it is

expected that the trend will reverse. The cross-over observed between the PDFs of χ and ε

warrants a more detailed analysis.
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Figure 5.3: Ensemble averaged joint PDFs of (a) scalar and energy dissipation rate and (b)
enstrophy and energy dissipation rate on log-log scales from simulations at Rλ ∼ 650 and
kmaxη = 4.2. The contour levels are logarithmically spaced, as shown by the color bar.

Statistical interrelationships between energy and scalar dissipation rates can be explored

using their joint PDF, which is compared with the joint PDF of dissipation and enstrophy (in

log-log scales) in Figure 5.3. Outermost contour lines in the first quadrant corresponding

to large values of the variables concerned have a more rounded appearance in frame (a)

in contrast to that in frame (b). This suggests the extreme events of scalar dissipation and

energy dissipation become less tightly coupled to each other while enstrophy and energy

dissipation evolve with each other, indicated by the fact that the contours are stretched
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along the diagonal.
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Figure 5.4: Conditional PDFs of scalar dissipation given energy dissipation (solid lines)
and enstrophy given energy dissipation (dashed lines) from simulations at Rλ ∼ 650 and
kmaxη = 4.2. Different colours correspond to different values of the conditioning variable:
ε/〈ε〉 = 0.1 (red), 1 (green), 10 (blue) and 95 (black).

A more precise assessment of the degree of independence between two random vari-

ables can be made by inquiring whether the conditional PDF of one variable given the

other is the same for different choices of the conditioning variable. Conditional PDFs of

scalar dissipation given energy dissipation, as well as enstrophy given energy dissipation

extracted from joint PDFs are compared in Figure 5.4. The behaviors seen in this figure

differ significantly between low and high values of each variable. For example, for χ/〈χ〉

up to 1, the spacings between solid lines of different colors are quite small, suggesting

that low χ can occur with comparable probability in regions of low ε as well as high ε. In

contrast, the relative positions of dashed lines of different colors indicate that low Ω be-

comes increasingly unlikely as the conditioning ε becomes large. At the other end, curves

corresponding to high-intensity extreme events in χ or Ω behave quite differently. If the

conditioning ε is low (lines in red) χ has wider tails than Ω. But if the conditioning ε is

high (lines in black) then Ω has considerably wider tails. This means high ε has a strong

likelihood to lead to high Ω but its effect on the incidence of high χ is much weaker.

As noted earlier, departure of scalars from local isotropy is an important issue which
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Figure 5.5: PDFs of scalar gradients parallel (left) and perpendicular (right) to the mean
gradient at Rλ ≈ 390 (red) and 650 (green). The solid curve corresponds to Sc = 1 and
dashed curve to Sc = 0.125.

can be investigated through the gradient skewness, which in turn implies some degree of

asymmetry in the PDF of the scalar gradient. Figure 5.5 shows PDFs of scalar gradients

both parallel and perpendicular to the imposed mean gradient, at two different Reynolds

numbers. The latter is close to symmetric, as expected. However, the PDF of the parallel

component shows a mild degree of skewness to the right, which is consistent with a pos-

itive skewness. As Reynolds number increases, the the tails on both sides become wider,

possibly widening slightly more on the left versus the right. This observation is consistent

with trends seen for the scalar gradient skewness in Table 5.1. However, since the effect

appears to be weak, a higher Reynolds number as well as better sampling are necessary to

confirm this result.

5.4 Study of intermittency using 3D local averages of scalar dissipation rate

This section presents a brief study of the refined similarity hypothesis as applied to passive

scalars. Moments of locally averaged scalar dissipation rate are computed and analysed for

a power-law behavior in the inertial range. Conditional moments are used to investigate the

statistical connections between locally averaged energy and scalar dissipation rates.

Similar to the case for energy dissipation rate discussed at length in chapter 3, the
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locally averaged scalar dissipation,

χr(x) =
1

V ol

∫
r

χ(x + r)dr (5.4)

is an important quantity in the study of passive scalar intermittency. It has been computed

in the same manner as described earlier for εr. Normalized moments of 3D local averages

and corresponding characteristic local slopes (d ln 〈χqr〉 /dr) of scalar dissipation rate for

Sc = 1 are shown in Figure 5.6. Frames on the left and right show the sensitivity of the

data to spatial resolution and Reynolds number respectively, including comparisons with

corresponding results for energy dissipation and enstrophy.

In frame (a) of Figure 5.6 lines in red, green, blue are almost coincident, showing that

the second moment of χr is sufficiently well-resolved at least with kmaxη ∼ 4.2, for most

values of r/η. Single-point moments approximated by χr data at the smallest possible r/η

(with r = ∆x) are highest for χ, followed by Ω and then by ε. Although the curves in

(a) appear to be reaching a plateau as r → 0 the logarithmic local slopes, which would

be scaling exponents if well-defined power-laws were to apply, do show some significant

departures from zero at both second and fourth moments (frames (c) and (e), respectively).

However, results for scale sizes in the inertial range are well-converged as far as resolution

is concerned. While attainment of flat scaling ranges is not perfect, a comparison between

frames (c) and (e) show that the scalar dissipation has a larger scaling exponent than both

energy dissipation and enstrophy at second order but the difference is significantly smaller

at fourth order.

In frames (b), (d) and (f), although the Reynolds number range reported (Rλ 390 and

650) is somewhat limited, it can been seen clearly that a high Reynolds number leads to

an increase in the moments of χr, as well as (more importantly) a significantly better-

defined inertial-convective scaling range. The latter observation is also encouraging for

future simulations of yet higher Reynolds number. It should be noted that results at low
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Figure 5.6: Ensemble averaged normalized second-order (a,b) moments of 3D local av-
erages of scalar dissipation rate (of Sc = 1), their logarithmic local slopes (c,d) and the
logarithmic local slopes of fourth-order moments (e,f). Results from (left) simulations at
Rλ ∼ 650 for kmaxη 1.4 (red), 2.1 (green) and 4.2 (blue) and (right) from simulations at
kmaxη ∼ 4.2 for Rλ 390 (red) and 650 (green). The red dashed curve corresponds to mo-
ments of scalar with Sc = 0.125. The magenta and cyan curves correspond to moments
of energy dissipation and enstrophy respectively from Rλ ∼ 650 and kmaxη ∼ 4.2 for
comparison. Vertical dashed lines mark the inertial range, 60 < r/η < 600.

Schmidt number Sc = 0.125 also differ significantly. In the dissipation range the moments

of χr are smaller than those for Sc = 1 and very well resolved, as can be expected from

higher molecular diffusivity. However, at intermediate scale sizes this scalar gives larger

local slopes while development of a proper inertial-convective scaling range (at this low

Sc) may require a considerably higher Reynolds number than currently available.

Another important question is how, and to what degree, samples of locally averaged

energy dissipation, enstrophy and scalar dissipation are related to each other. As in Yeung
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Figure 5.7: Ensemble averaged conditional moments of scalar dissipation of Sc = 1 given
energy dissipation rate (d,e,f) at Rλ 650. For comparison the conditional moments of en-
strophy given energy dissipation rate are shown in frames a,b and c. The three columns
correspond to a scale size (r/η) of 0.7 (a and d, single point statistics), 11 (b and e) and 90
(c and f). The curves of different colours correspond to moments of order 1 (red), 2 (green),
3 (blue) and 4 (black). Dashed line indicates the two variables scaling perfectly with each
other.

& Ravikumar (2020) and Vedula et al. (2001) it is useful to study conditional expectations

at various orders, such as (for passive scalars) the quantity 〈χqr|εr〉. Figure 5.7 shows data

for these quantities, at Rλ 650 and Sc = 1. The q-th root of these moments are taken to

allow for easier comparison in a single frame. For comparison the conditional moments of

enstrophy given energy dissipation are also shown in the top row.

As reported in Yeung & Ravikumar (2020) (and chapter 3 of this thesis), conditional

statistics in the top row of Figure 5.7 indicate that dissipation and enstrophy scale differ-

ently in the dissipation range but together in the inertial range; while homogeneity in space

ensures that all data points converge on the diagonal (dashed) line in the limit of large r.

However, the scalar dissipation rate paints a different picture. Curves for conditional mo-

ments of χr are generally flatter than those for Ωr, indicating the connection between the

variables εr and χr is not a strong one. The position of the red curve in frame (d) suggests,

in the dissipation range, a low εr may co-exist with a larger but still below-average χr,
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whereas a large εr may be associated with χr that is only slightly above average. As the

scale sizes increase, the curves are seen to move towards the diagonal line, which represent

the scenario of both variables scaling together. However, even at considerably larger scale

sizes (frames (c) and (f)) differences between conditional moments of Ωr and χr are still

strong. One reason for the persistent differences is the fact that in the limit of the largest

r possible, εr, Ωr and χr all approach their mean values. In such a scenario homogeneity

ensures that 〈ε〉 = ν〈Ω〉 (with ν being constant). As r increases thus, as εr and Ωr become

less prone to extreme values, they also become closer to each other. In contrast, no such

constraint exists between εr and Ωr.

5.5 Conclusions

This chapter is concerned with an application of the MRIS approach (Yeung & Raviku-

mar, 2020) described in chapter 3 to the study of passive scalar intermittency of Schmidt

numbers 1 and 0.125 at higher Reynolds number and resolution. The MRIS technique

has proven useful in generating valuable results without being limited by the computa-

tional resource requirements, especially since the addition of scalars leads to an increase

in computational costs. Sampling of the large scales in the scalar field is also improved by

simulating scalars of the same Schmidt number with mean gradients in all three directions.

The results presented are averaged over mean gradients in these three directions.

Numerical results on the moments of energy and scalar dissipation rates along with

their PDFs suggest that scalar dissipation rate is more intermittent than energy dissipation

although the peak values of scalar dissipation, are lower than those of energy dissipation.

The PDFs of scalar and energy dissipation were observed to cross over with the probability

of moderately large scalar dissipation rates being higher than those for energy dissipation.

Therefore, lower order moments of scalar dissipation will dominate those of energy dis-

sipation but at higher orders the opposite is expected. Further, the PDFs and skewness of

scalar gradients parallel to the mean gradient were computed. This shows the strong devia-

147



tion from local isotropy as has been widely observed in flows where the passive scalar fields

are sustained by a mean gradient. A slow return to isotropy was observed with increasing

Rλ but yet higher Reynolds numbers are required to make a definite argument. The highest

spatial resolution of kmaxη ∼ 4.2 considered is found to be sufficient for studies of local

isotropy, with the gradient skewness changing very little upon a doubling of small-scale

resolution from kmaxη ∼ 2.1 to 4.2.

Studies of refined similarity hypothesis were also performed, and a clear power-law

behavior in the inertial range was observed for scalars of Sc = 1. It was also found

that the scalar dissipation rate had stricter resolution requirements compared to energy

dissipation and enstrophy. Further, the conditional moments showed that while the peak

values of energy dissipation and enstrophy scale well with each other, scalar dissipation and

energy dissipation do not. Results such as those presented in this chapter are not widely

available, especially since 1D surrogates which are commonly used along with Taylor’s

frozen-flow hypothesis in laboratory measurements were not used to compute energy and

scalar dissipation.
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CHAPTER 6

AN EXPLORATORY STUDY OF ACTIVE SCALAR TURBULENCE AND

DOUBLE DIFFUSIVE PHENOMENA

In the final thesis topic, the behavior of stratified flows in the presence of two active scalars

is explored. Active scalar turbulence refers to problems characterized by two-way cou-

plings between the velocity field and one or more diffusing scalars, typically via small

changes in the fluid density leading to buoyancy forces which may either suppress or

amplify motions in the vertical direction. A most important application is in the ocean,

with temperature and salinity at high Schmidt number being the active scalars concerned.

There is also fundamental interest for this also in other contexts where Schmidt numbers

may be low (Garaud, 2018). The physics is most intriguing when two scalars with dif-

ferent molecular diffusivities having opposing stabilizing versus de-stabilizing influences

are present, where differential diffusion clearly plays a pivotal role (Turner, 1974; Schmitt,

1994). Stable stratification usually leads to oscillatory behavior and suppressed turbulence

in the vertical direction, while unstable stratification leads to a strong growth of turbulence

that also poses more stringent resolution requirements. Both types of stratification lead

to non-stationarity and anisotropy, such that time-dependent Reynolds stress budgets can

provide much useful information.

Simulations of active scalars can be performed using both the pencil decomposition

code on CPUs or the GPU-based batched asynchronous slab decomposition code, where

anisotropic domains with unequal number of grid points in each direction may be required.

A rigorous check of the numerics under unstable stratification is also provided by compar-

isons with a numerical scheme (detailed derivations given in Appendix B) that diagonalizes

the system of velocity-scalar equations that is advanced in time at every time step in Fourier

space. Unfortunately, resource limitations have made it difficult to perform simulations at
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sizes approaching those of the prior chapters. Thus, work presented in this chapter is some-

what exploratory. Nevertheless, it provides an appropriate foundation for further work in

the future.

6.1 Numerical approach

The incompressible Navier-Stokes equations are used with Boussinesq approximation and

advection-diffusion equation for each scalar, consistent with Kimura & Herring (1996), to

describe the behavior of flows under stable and unstable density stratification.

∇ · u = 0 (6.1)

∂u/∂t+ u · ∇u = −∇(p/ρ0)− ρ′g/ρ0ez + ν∇2u (6.2)

∂φ1/∂t+ u · ∇φ1 = −u · ∇Φ1 +D1∇2φ1 (6.3)

∂φ2/∂t+ u · ∇φ2 = −u · ∇Φ2 +D2∇2φ2 (6.4)

where φ1 and φ2 are active scalars with molecular diffusivities D1 and D2, g is the acceler-

ation due to gravity, ez in the unit vector in the vertical, ρ0 is a fixed reference density and

ρ′ is the density fluctuation defined as

ρ′/ρ0 = −c1φ1 − c2φ2 (6.5)

In this equation c1 and c2 are fixed constants of nature analogous to the coefficient of

thermal expansion in the case of temperature. If they are positive, then an increase in scalar

fluctuation (of either scalar) leads to a decrease in density fluctuation. In the DNS code, if

scalar fluctuations are initially absent, the values of both scalars are proportional to their

mean gradients at all times. Without loss of generality, the values of g, ρ0, c1 and c2 are

set to unity and use the magnitude and signs of dΦ1/dz and dΦ2/dz to control the type
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and strength of the respective contributions to stratification. The strength of stratification

can be characterized by comparing the turbulence time scales (L/u′) to the buoyancy time

scales, Ti = 2π/(gci|dΦi/dz|)1/2, where L is the integral length scale and u′ is the r.m.s

velocity. The ratios between these time scales define the Froude number, Fi = Ti/(L/u
′).

Lower values of Fi correspond to stronger stratification. Positive values of the mean scalar

gradient correspond to stable stratification, and negative for unstable stratification. The

most interesting cases are when there are two scalars of different Sc opposing each other

with equal magnitude scalar gradients. In such cases, differential diffusion between the two

scalars plays a vital role.

Strong anisotropy inherent in stratified flows suggest the use of domains that are flat-

tened and shorter in the case of stable stratification, and domains that are vertically elon-

gated and of refined resolution in the case of unstable stratification. However in the pre-

liminary results below focus is on understanding the effects of differential diffusion at low

Schmidt numbers, in the context of application towards turbulence subjected to a strong

magnetic field. In the so-called low-magnetic Reynolds number regime of magnetohydro-

dynamic turbulence, the turbulence develops very long length scales in the direction of the

magnetic field, making the use of (horizontally) elongated domains important (Zhai & Ye-

ung, 2018). An increase in domain size in the direction of mean gradient is also useful

because of very low Sc which leads to longer length scales for the scalar field itself. In an

effort to minimize any numerical uncertainties associated with rapid growth of turbulence

under unstable stratification, a numerical scheme was developed that also integrates the

velocity-scalar coupling terms exactly in wavenumber space, using a diagonalized linear

system, which is described in Appendix B.

6.2 Preliminary results

A number of simulations initially motivated by interest in mixing in MHD turbulence (sec-

tion 6.1) have been performed (without a magnetic field), on the 39-Petaflop supercomputer
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Table 6.1: Basic parameters of simulations using two active scalars of Sc1 = 0.1 and
Sc2 = 0.01 for different problem sizes. Subscript 0 and n indicates data at the beginning
and end of the simulations, respectively. Simulation S1 was run with both diagonalized and
non-diagonalized scheme, while S2 to S4 were run using the non-diagonalized scheme.

No. Problem
size

Froude Mean
Rλ0 Rλn kmaxη0 kmaxηnNo. Gradient

Sc1 Sc2 Sc1 Sc2

S1 4096× 5122 1 1.1 93 -77 22 89 1.64 0.88
S2 16384× 20482 2 2 82 -82 64 129 1.29 1.41
S3 16384× 20482 1 2 328 -82 64 166 1.29 3.83
S4 16384× 20482 1 1 328 -328 64 143 1.29 0.70

Frontera at the Texas Advanced Computing Center. While many distinct parameter regimes

arise, in this work focus has been on the case of two scalars at Sc = 0.1 and 0.01 providing

opposing effects of stable and unstable stratification respectively. Table 6.1 lists three sim-

ulations. The first (S1) was a (successful) test of the numerics performed using a simulation

where the respective Froude numbers were 1.0 and 1.1, with excellent agreement observed

between numerical schemes without and with the diagonalization procedure described in

Appendix B. Results from simulations S2 to S4 are discussed further below.

t/(L/u′)0 t/(L/u′)0

Figure 6.1: Turbulence kinetic energy, 〈K〉 (red), vertical contributions to K, 0.5〈w2〉
(green) and horizontal contributions to K, 0.5(〈u2〉 + 〈v2〉) (blue), from simulations S2
(left) and S3 (right). These results are obtained from the non-diagonalized scheme.

Figure 6.1 shows the evolution of turbulence kinetic energy (TKE) as the sum of hori-

zontal and vertical contributions. The active scalar simulations here have been performed
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with naturally decaying isotropic turbulence as initial conditions, with integral length scales

small enough that numerical distortion due to a non-cubic domain is minimal. Scalars of

low Sc tend to have smaller variances, since strong molecular diffusivity tends to dissipate

the scalar fluctuations quickly, preventing large buildup of fluctuations. As a result, al-

though simulation S2 was run with equal Froude numbers, the unstable stratification from

the scalar of Sc = 0.1 (higher of the two) may be expected to dominate. After a period of

about one initial eddy-turnover time, the turbulence kinetic energy grows. If the stratifica-

tion were made stronger, as in simulation S4, the small scales can become poorly resolved,

as indicated by the value of kmaxη falling below unity at the final time. This indicates a

need for progressive grid refinement at later times for simulations with strongly unstable

stratification. In addition there are two other questions about long-time behaviors. The first

is, since the two scalars have different time scales, effects of the low Sc scalar may poten-

tially become stronger at later times. The second is whether the buoyancy contributions to

the equations of motion may ultimately raise concerns about the validity of the Boussinesq

approximation.

In the right half of Figure 6.1 it can be seen that the vertical TKE is quickly subjected to

oscillatory damping due to an overall stable stratification. The horizontal TKE also decays,

but slowly. The ratio between horizontal and vertical TKEs indicate a strong degree of

anisotropy, at least in the large scales that dominate the Reynolds stress tensor.

To further study the development of anisotropy, consider the behaviors of different

terms in the budget equation for the Reynolds stress tensor, in the form

d〈uiuj〉/dt = 〈2p(s)sij〉+ 〈2p(b)sij〉 − 〈ρ′uiδj3〉 − 〈ρ′ujδi3〉 − 〈εij〉 (6.6)

where terms on the r.h.s represent, respectively, contributions from correlation between

slow pressure and strain rate, buoyancy pressure and strain rate, buoyancy flux (includ-

ing effects of both scalars), and viscous dissipation. The first two of these are (because

153



t/(L/u′)0t/(L/u′)0

Figure 6.2: Reynolds-stress tensor budget of 0.5(〈u2〉+〈v2〉) (top) and 0.5〈w2〉 (bottom) for
S2 (left) and S3 (right). The different colors represent different terms in the Reynolds stress
evolution equation: slow pressure strain (red), buoyancy pressure strain (green), buoyancy
flux (blue), dissipation rate (−ε, magenta), and rate of change of Reynolds-stress compo-
nent in black.

of incompressibility) traceless and hence re-distributive in nature, with a direct effect on

anisotropy. The buoyancy flux is nonzero only for the vertical velocity component, i.e.

〈u3u3〉.

Figure 6.2 shows data on the Reynolds stress budget corresponding to Figure 6.1. On

the left, where overall conditions are unstable, at early times the buoyancy flux is nega-

tive, whereas the slow pressure acts to transfer energy from the horizontal components to

the vertical. However at later times the buoyancy flux becomes a strong positive produc-

tion effect, and the direction of inter-component energy transfer reverses. The buoyancy

contribution to the pressure strain appears to follow a similar trend. These behaviors are

clearly drastically different in the case of stable stratification (on the right). Oscillatory

behavior in the buoyancy flux is clearly seen, being the result of a net effect between two

scalars leading to opposing stratification effects. A corresponding oscillatory behavior in

the pressure-strain terms is also observed. The frequent changes in sign of the buoyancy
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flux term imply a large production effect cannot be sustained. In the absence of sustained

production, viscous dissipation leads to an almost monotonic decay of the TKE, as seen

earlier in the right half of Figure 6.1.

tt

Figure 6.3: Turbulence kinetic energy budget for S2 (left) and S3 (right). The different
colors represent different terms in the turbulence kinetic energy equation: buoyancy flux
(red), dissipation rate (−ε, green), and rate of change of kinetic energy (blue).

It can be seen in the frame on the left of Figure 6.3, which represents unstable strat-

ification, that the buoyancy flux is generating turbulence while viscosity acts to dissipate

the energy. At early times the buoyancy flux is negative, which suggests the high Sc sta-

ble scalar determines the behavior, before the unstable scalar begins to dominate. The rate

of change term shows this behavior clearly, with negative values at early times indicating

decaying turbulence followed by positive values corresponding to a growth in the energy.

The frame on the right shows the terms from a stable case, where an oscillatory behavior

in the buoyancy flux can be observed. The amplitude of oscillations decrease with time as

the turbulence decays.

6.3 Conclusions

A numerical scheme based on linear, diagonalized equations in Fourier space was devel-

oped to minimize the numerical discretization errors associated with the two-way coupling

term in the conservation of momentum equation. However, preliminary simulations sug-

gest the solution from the new diagonalized scheme behaves exactly the same as the non-
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diagonalized scheme.

Basic trends for active scalar turbulence covering cases of (overall) unstably and stably

stratified turbulence extracted from some fairly large exploratory simulations have been

demonstrated in Figure 6.1 and Figure 6.2. Preliminary results have raised important ques-

tions that need to be addressed.

Simulations using vertically elongated domains for unstably stratified flows with finer

spatial resolution along the mean gradient direction and using flattened domains for stably

stratified flows may help alleviate concerns of growing integral length scales. The validity

of the Boussinesq approximation needs to be assessed, using properties of the active scalar

fields involved. With buoyancy being just one type of additional forces in typical fluid flow

problems, comparisons can also be made with simulations in which the velocity field is

also subjected to an electromagnetic (Lorentz) force due to an imposed magnetic field.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

The complex, yet common nature of turbulence has garnered the interests of many re-

searchers over the past century (Lumley & Yaglom, 2001; Sreenivasan, 1999). The search

for universal theories to understand and predict the behavior of turbulent flows, especially

in the small-scales (Schumacher et al., 2014), is of particular interest to many. Tests for

such theories are crucial and dependent on attainment of high Reynolds number, which

is a challenge in both simulations and laboratory experiments (Bodenschatz et al., 2014).

The intermittent nature of turbulence where large fluctuations over a wide range of scales

in both space and time make the problem harder yet to study. Direct Numerical Simula-

tions (DNS) of turbulence are used as the primary research tool in this thesis. Insatiable

needs for high resolution and Reynolds numbers have placed DNS of turbulence as a grand

challenge topic in High Performance Computing (HPC) (Yokokawa et al., 2002). Newer

exascale architectures provide a unique opportunity to push the boundaries of large scale

scientific computing to reach for simulations at world-leading problem sizes. In particular,

this has motivated the GPU-based algorithmic advances reported in this thesis and have

formed the basis of an exascale coding project selected in 2019 to be part of the Center

for Accelerated Application Readiness (CAAR) for Frontier, which is expected to offer

1.5 exaflops (1.5 × 1018 operations per second) in theoretical peak performance in early

2022. The overarching scheme of this thesis is concerned with the development of new

state-of-the-art computational tools for turbulence, and the application of such tools to the

fundamental physics of intermittency, mixing and stratification in turbulence. This chapter

presents a summary of major outcomes resulting from work described in this thesis, with

a view towards challenges and potential solutions which can further improve our ability to

simulate and understand turbulence.
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7.1 Summary of results and contributions

Heterogeneous platforms where computational work is offloaded to fast processors of smaller

memory are currently primary drivers towards the next generation of leadership computers.

However the adaptation of codes to fully exploit these rapidly evolving new architectures

is not trivial. The research reported in this thesis has demonstrated how HPC and modern

exascale computing platforms can be used efficiently in the pursuit of fundamental under-

standing of turbulence. The following subsections provide a summary of the major results

and contributions from each chapter of this thesis.

7.1.1 GPU acceleration of extreme scale pseudo-spectral simulations of turbulence using

asynchronism

A batched asynchronous algorithm allowing a currently world-leading grid resolution of

184323 (more than 6 trillion grid points) has been developed for dense node heterogeneous

architectures, and presented at a prominent conference (SC’19) after a rigorous review pro-

cess (Ravikumar et al., 2019). The algorithm was recently further extended to simulate

passive and active scalars, as well as track fluid particles to obtain Lagrangian statistics.

This code was designed for a specific machine (Summit, an IBM Power 9 with NVIDIA

GPUs) but significant work has also been performed to develop a more portable version.

For example, data management and computations on the GPU are ported to OpenMP in-

stead of CUDA Fortran. Interoperability of asynchronous library calls (such as cuFFT or

rocFFT) and OpenMP task management is addressed using new features in the OpenMP

5.0 parallel programming standard. Porting the new CUDA Fortran code to OpenMP is

essential for execution on a future machine Frontier that is expected to be the first GPU

machine to break the Exascale barrier, in early 2022. Basic elements of the OpenMP port-

ing strategy and challenges faced are reported in a group paper accepted for publication in

the Parallel Computing Journal (Bak et al., 2021) and in the proceedings of the IWOMP
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2021 conference (Chapman et al., 2021). This work has led to many presentations at lead-

ing conferences and workshops in the high-end HPC community.

7.1.2 Advancing understanding of turbulence through extreme-scale computation:

intermittency and simulations at large problem sizes

Although the batched asynchronism algorithm above provides good performance per time

step at extreme problem sizes, the overall cost of any production simulation also depends on

the number of time steps needed to span a prescribed physical time period, which increases

with the number of grid points and the Reynolds number of the turbulent flow simulated.

A new technique of “Multiple Resolution Independent Simulations” (MRIS) using short

segments at high resolution evolved from longer lower-resolution runs was developed and

validated to meet this challenge. The approach was used in the studies of intermittency

in stationary isotropic turbulence for flows of Rλ as high as 1300 and a spatial resolution

of kmaxη = 4.5 using 184323 grid points, which is, to our knowledge, the highest reso-

lution reached in published work at this time. Scaling exponents of the moments of local

averages of energy dissipation and enstrophy were computed, and a wide inertial scaling

range was observed. Conditional moments of locally-averaged energy dissipation given en-

strophy and vice versa show that while localized regions of high energy dissipation scales

with enstrophy, the opposite is not always true. Advances through both computation and

the MRIS paradigm have been instrumental in securing well-sampled results on fine-scale

intermittency at much lower cost than full-length simulations at extreme-scale resolutions,

which remain infeasible otherwise. This work was published as an invited paper in the

Physical Review Fluids journal (Yeung & Ravikumar, 2020) and has also been presented

at a number of recent conferences and invited talks.
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7.1.3 Extreme dissipation and its multifractal nature at high Reynolds numbers

Turbulence being a self-similar multiplicative process can be studied under a multifractal

framework. The study of energy dissipation rate from a multifractal viewpoint helps under-

stand the intermittent nature of the small-scales from a geometric perspective as compared

to a statistical perspective employed in chapter 3. High resolution simulations at Reynolds

numbers as high as 1300 have been used to compute the multifractal spectrum of energy

dissipation rate. The behaviors of the PDF tails of locally-averaged dissipation rate were

studied and modeled using stretched exponential for local averages over different scale

sizes. The multifractal spectrum and the generalized dimensions were computed at dif-

ferent Rλ and compared with results from (Meneveau & Sreenivasan, 1991). The results

show that the spectra are in good agreement with each other and is relatively robust to

changes in Rλ and the use of approximations like 1D surrogates and Taylor’s frozen turbu-

lence hypothesis in laboratory experiments. However, further numerical experiments using

1D surrogates might help understand the effect of such approximations more clearly. The

spectrum from extrapolated PDFs were found to strongly support the existence of “nega-

tive dimensions” (Chhabra & Sreenivasan, 1991). It was also used to compute the energy

dissipation contributions and the volume occupied by incipient singularities of different

strengths. Finally, the contribution of energy dissipation rates, of different magnitudes to

the overall moments, was computed. It was found that the mean value can be captured

accurately by considering samples that are only as large as a few mean values, while higher

order moments need samples of much larger magnitude (O(100) times the mean). A jour-

nal manuscript on this work is under preparation.

7.1.4 High resolution studies of intermittency in scalar dissipation rates

Direct numerical simulations have been performed of intermittency in the turbulent mixing

of a passive scalar field subjected to a uniform mean gradient, at high small-scale resolution

and moderately high Reynolds numbers. The MRIS technique is again used to avoid long-
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running simulations that come with high computational resource demands, especially with

addition of passive scalars. The PDFs of scalar dissipation rate and the moments of their

3D local averages show that stricter resolution requirements are necessary to accurately

capture the small-scales of the scalar field. The PDFs also show that moderately large

scalar dissipation is more probable than energy dissipation rate, which supports the fact

that lower-order moments are higher for scalar dissipation compared to energy dissipation.

The moments of scalar gradients, joint PDFs and conditional PDFs of scalar and energy

dissipation rates were computed. The conditional moments of locally averaged scalar dis-

sipation given energy dissipation was analyzed and found that their peak values do not scale

with each other, unlike the case between enstrophy and energy dissipation.

7.1.5 Active scalar turbulence and double diffusive phenomena

A preliminary study of stratified turbulence with two active scalars of different molecular

diffusivities has been conducted. Special attention was given to to anisotropy development

in the Reynolds stress tensor for stably and unstably stratified flows. The numerical fidelity

in the treatment of two-way coupling between the velocity and active scalar fields has

been checked with reference to a diagonalized scheme that allows the body force term to

be computed exactly via an integrating factor in wavenumber space. Important questions

regarding the need for elongated domains with finer spatial resolution along the direction

of unstable stratification are explored.

7.2 Future considerations

The research presented in this thesis has included computational algorithm development in

anticipation of heterogeneous exascale computing, turbulence simulations at world-leading

resolution, intermittency in velocity and passive scalar fields, multifractal analysis of tur-

bulence and anisotropic turbulence generated by density stratification. Advances in both

GPU implementation (chapter 2) and the MRIS paradigm (chapter 3) are expected to be
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prime drivers for ambitious simulations at yet-higher resolution on the 1.5 exaflops com-

puter called Frontier that will be available in early 2022. In this section, some of the many

ways in which the current research can be extended to further improve our capabilities in

large scale numerical simulations and understanding of turbulence are briefly described.

7.2.1 Using GPU-Direct technology for global transposes

In the current implementation of the batched asynchronous algorithm, data is copied from

the GPU to the CPU in order to perform a global transpose through the network and re-

turned to the GPU afterwards. However, future architectures are expected to have hard-

ware support capable of performing network communication directly from the GPU. The

batched asynchronous approach can be adapted to send the batch of data directly out of the

GPU to the network, after computation, while receiving the transposed data on the CPU.

This ensures that additional buffers are not needed on the GPU to hold the transposed while

some other batches are being processed. Using this feature will also eliminate the need for

additional, which should lead to further potential performance improvements.

7.2.2 Use of 3D domain decomposition and other alternatives

Message-passing communication is well known to be a dominant cost in HPC applications

based on pseudo-spectral methods in multi-dimensional space. A central theme of opti-

mization is thus to communicate either less, faster, or overlap with other operations. It may

be possible to develop new 3D FFT algorithms that can compute the transforms partially

on each parallel process using only distributed data. For example, use of a 3D domain

decomposition can also potentially help reduce the communication costs by localizing the

communication, within sub communicators, rather than performing large global transposes.

However, in order to perform FFTs entire lines of data are required, which is not possible

with a 3D decomposition. The use of FFT libraries that can handle distributed memory

will be required, but these are not expected to give the best performance. An in-house
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FFT implementation can be developed, which might open up some unique opportunities

for overlap. Alternative to handle the global transpose such as the use of one-sided MPI

communication or Partitioned Global Address Space (PGAS) libraries like OpenSHMEM

can be explored.

7.2.3 Alternatives to FFT based DNS

A primary reason for use of pseudo-spectral approaches versus other discretization schemes

is superior accuracy. However one interesting alternative, compatible with periodic bound-

ary conditions, is the Combined Compact Finite Difference scheme developed by Gotoh

et al. (2012) and demonstrated to provide spectral-like accuracy. This code is especially

appealing for the study of high Schmidt number mixing with dual grid resolution (Clay

et al., 2017, 2018). Unlike FFTs, this does not require a global transpose, instead it relies on

nearest neighbor communication. A DNS code using this scheme might have better com-

munication characteristics than the pseudo-spectral code and can potentially show much

better scalability. It will be interesting to see if such a scheme can be used for the velocity

field as well. However, the pressure term in the Navier-Stokes equation will require careful

consideration.

7.2.4 Numerical simulations of Stoke’s particles

While fluid particles strictly follow the flow, many transported entities in practice do not.

Examples include tracer particles used in laboratories studies, suspended particulate mate-

rial such as soot in a flame, and even disease agents carried in the ambient environment. In

order to study such flows, effects of particle inertia as well as finite particle sizes need to

be considered. As noted in chapter 2 the GPU turbulence code has been extended to enable

particle tracking for very large particle counts (over a billion). Further extension to inertial

point particles is very straightforward. The study of particle size effects leading to two-way

coupling involving use of an immersed boundary method is a potential task for the future.

163



7.2.5 Passive scalar simulations at high Schmidt number using GPUs

Turbulent mixing at high Schmidt number (i.e. low molecular diffusivity), such as salinity

in the ocean, imposes severe resource requirements because of the need to resolve the

Batchelor scale which is smaller than the Kolmogorov scale of the velocity field by a factor

of
√
Sc. The complexities arising due to the difference in the size of the small-scales of the

velocity and scalar field are challenging to address using computations. Clay et al. (2017)

developed a dual-grid approach where the high Schmidt number passive scalar was handled

on a finer grid using compact finite differences while the velocity field was on a coarser

grid handled using a Fourier pseudo-spectral approach. This work was extended to GPUs

in Clay et al. (2018). The batched asynchronous algorithm discussed in this thesis can be

further extended, following the work referenced here, to include a dual-grid approach with

the pseudo-spectral method being used for both the velocity and scalar fields.

7.2.6 Studies of intermittency at higher Reynolds numbers via extreme scale computing

With the advent of exascale architectures like Frontier, the future for extreme-scale numeri-

cal simulations of turbulence is bright. Recent progress in developing a portable implemen-

tation of the batched asynchronous algorithm provides the perfect platform for ever-larger

simulations. On Frontier, simulations using 327683 (close to 34 trillion) grid points, which

is 5.5 times larger than the current largest simulation using 184323 grid points, will be the

target. Studies of intermittency using the MRIS approach, discussed in this thesis, for flows

of Reynolds number as large as 1950 can be attempted at a spatial resolution kmaxη ≈ 4.5.

These simulations will go a long way in advancing our understanding of the small-scales

in turbulent flows.

7.2.7 Circulation statistics to study intermittency

Local averages of energy dissipation rate are an integral part of the refined similarity hy-

pothesis (Kolmogorov, 1962). However, recent work (Iyer et al., 2019) shows an alternative
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approach where line integrals of the velocity field (called circulation) can be used to study

intermittency. The new high resolution simulation data generated in this thesis can be used

to further investigate the use of circulation instead of local averages.

7.2.8 Passive scalar intermittency at high Reynolds number

Current simulations (as presented in chapter 5) were limited by the available computational

resources. The batched asynchronous code can be used for simulations of turbulence mix-

ing using 184323 grid points with 1 passive scalar of moderate Schmidt number. Such

simulations enable reaching Reynolds numbers as high 1300 and a spatial resolution of

kmaxη ≈ 4.5. The resulting data will prove to be very valuable in studies of passive scalar

intermittency and multifractal analysis. Also, recent code development efforts to target

exascale architectures, discussed in this thesis, can be leveraged to enable even larger sim-

ulations of turbulence mixing.

7.2.9 Multifractal analysis of passive scalars

The multifractal analysis of energy dissipation rate was presented in some detail in this

thesis. The scalar dissipation rate is also known to be highly intermittent and evolve in

a self-similar manner. The multifractal formalism can be applied to the study of scalar

dissipation rate. Comparisons of the multifractal spectra of energy and scalar dissipation

rates, the effect of Schmidt number on the multifractal spectrum and the study of incipient

singularities in the passive scalar field are some interesting topics to address.

7.2.10 Refined similarity theory of passive scalars at high resolution and Reynolds number

The results discussed in this thesis corresponding to the refined similarity hypothesis of

passive scalars using 3D local averages provide a strong motivation to explore such tests

for datasets available at higher Reynolds number and resolution. It will also be interesting

to study the refined similarity hypothesis using spatial increments of velocity and scalar as
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in Stolovitzky et al. (1995).

7.2.11 Resolution effects and Boussinesq approximation in active scalar simulations

More work (beyond chapter 6) can be done to address issues concerning insufficient spa-

tial resolution along the mean gradient in strongly unstable stratified flows by performing

simulations with vertically elongated domains with finer resolution. Similarly, flattened

domains for stably stratified flows might help alleviate concerns of growing integral length

scales along the plane perpendicular to the mean gradient. Statistics of density fluctua-

tions should be computed to understand the validity of the Boussinesq approximation as

the turbulence grows under unstable stratification.

7.2.12 Differential diffusion effects in stratified flows

Some preliminary results for density stratified flows in the presence of two active scalars

were discussed in this thesis. A key problem of focus is on the behavior of turbulence due

to differential diffusion between two scalars with different molecular diffusivities but same

intensity of stratification. Interesting questions regarding the change in behavior of the flow

under conditions where the unstable scalar, in one case, is of lower Schmidt number and in

the other case is of higher Schmidt number can be studied.
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APPENDIX A

COMPUTING MOMENTS OF MEASURE MULTIPLIERS USING PDFS OF

LOCAL AVERAGES OF ENERGY DISSIPATION RATE

As the large eddies break down into progressively smaller and smaller eddies, characteristic

of multiplicative processes, such that each smaller piece receives a fraction of the total

dissipation from the larger piece. This defines a cascade with multiple steps, where each

step has Nr pieces of size r. The total dissipation over a fluid volume, ψ(r), characterized

by a linear size r is given by,

Er =
∫
x∈ψ ε(x)d3x (A.1)

where ε(x) is the energy dissipation per unit mass given by,

ε(x) =
∑
i,j

ν

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

(A.2)

The quantity Er can be computed from the 3D local averages of energy dissipation rate,

εr(x), using,

Er = εr(x)r3 (A.3)

where

εr(x) = 1
r3

∫
x∈Ω

ε(x)d3x (A.4)

Consider the q-th order moment of the total energy dissipation rate of all fluid volumes

of linear size r. By conservation laws, this is related to the total energy dissipation (E0)
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over the largest fluid volume in the flow of size L3
0 such that

∑
Eq
r ∼ Eq

0(r/L0)τ(q) (A.5)

where L0 = 2π is the size of the cubic domain in one direction and the summation on the

right-hand side is over all fluid volumes of size r. The exponents Dq can now be defined as

Hentschel & Procaccia (1983),

Dq = τ(q)/(q − 1) (A.6)

Equation A.5 can re-written as,

Nr∑
n=1

(Er/E0)q ∼ (r/L0)Dq(q−1) (A.7)

[
Nr∑
n=1

(Er/E0)q

]1/(q−1)

∼ (r/L0)Dq (A.8)

where Nr is the number of samples of size r. The value of the exponents Dq can then be

estimated by computing the slope of

[
∑Nr

n=1(Er/E0)q]1/(q−1) vs r/L0. Using Equation A.3 the right-hand side of Equation A.7

can be re-written by
Nr∑
n=1

(Er/E0)q ∼
Nr∑
n=1

(εr/〈ε〉)q(r/L0)3q (A.9)

Therefore, the moments of Er/E0 can be obtained from the moments of εr/〈ε〉, which

are computed from the DNS data using post-processing codes without having to compute

moments of Er/E0 explicitly. The post-processing code generates moments up to order

8. However, some of these higher order moments have not converged statistically, making

the data unreliable (see section 4.3). These moments can be computed from the PDFs of

3D local averages of energy dissipation rate (pr(X)), with appropriate extrapolation of the
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PDF tails. Using the PDFs, the number of samples of size r whose total dissipation falls in

the range X± 1
2
∆X can be estimated by using nr(X) = pr(X)(L0/r)

3. Summing over all

such values of X allows Equation A.9 to be re-written as,

Nr∑
n=1

(Er/E0)q = (r/L0)3(q−1)
∑
M

(εqr/〈ε〉
q)pr(M)∆M (A.10)

where the summation above is nothing but the q-th moments of local averages of energy

dissipation rate, 〈εqr〉/〈ε〉
q. Therefore,

Nr∑
n=1

(Er/E0)q = (r/L0)3(q−1)(〈εqr〉/〈ε〉
q) (A.11)

Equation A.10 shows that the moments of Er/E0 can be readily computed from the PDFs

of εr/〈ε〉.

Once the moments on the left-hand side of Equation A.8 are computed using Equa-

tion A.10 the value of exponents Dq can be estimated by computing the slope of the linear

portion of the curve of [
∑Nr

n=1(Er/E0)q]1/(q−1) vs r/L0 on log-log scales. For simplicity,

the following has been defined,

F (r, q) =

[
Nr∑
n=1

(Er/E0)q

](1/(q−1))

= (r/L0)3[(〈εqr〉/〈ε〉
q)](1/(q−1)) (A.12)

Using these values of Dq for different values of q the multifractal spectrum, f(α) can

be computed. Using central difference, the quantity α(q)) is computed by,

α(q) =
d

dq
[(q − 1)Dq] (A.13)

Now using the values of α(q) computed at different values of q, f(α) can be computed
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using,

f(α(q)) = qα(q)− (q − 1)Dq (A.14)

Special case: q=1

Consider the following equation from Hentschel & Procaccia (1983),

σ = − lim
r→0

lim
N→∞

S(r)/log(r) (A.15)

where σ is the information dimension and is related to D1.

The limit on N says that the number of samples is very large and has been left out in

the equations below. Applying the L’Hospital’s rule for the limit on r yields,

σ = − lim
r→0

r
dS(r)

dr
(A.16)

= − lim
r→0

dS(r)

dlog(r)
(A.17)

where, dlog(r) = dr/r is used in the last step to simplify. This is the same asD1 (Hentschel

& Procaccia, 1983), that is, σ = −D1. Therefore to compute Dq for q = 1 the slope of

S(r) vs log(r) needs to be computed. Here, S(r) is defined as,

S(r) =
Nr∑
n=1

enlog(en) (A.18)

where en = Er/El. Therefore, Equation A.18 can re-written in terms of local averages of
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dissipation rates using Equation A.3 as,

S(r) =
Nr∑
n=1

(Er/E0)log(Er/E0)

=
Nr∑
n=1

(εr/〈ε〉)(r/L0)3log((εr/〈ε〉)(r/L0)3)

=
∑
X

(εr/〈ε〉)(r/L0)3log((εr/〈ε〉)(r/L0)3)nr(X)∆X

where, as seen before, nr(X) is the number of boxes of size r whose energy dissipation

rate (εr/〈ε〉) take on values in a range X ± 1
2
∆X . A summation over all such values of X

is then performed to obtain the required sum over all Nr boxes of size r. Re-writting the

above equation in terms of the PDF of εr/〈ε〉, i.e., using nr(M) = pr(M)(L0/r)
3 yields,

S(r) =
∑
M

(εr/〈ε〉)log((εr/〈ε〉)(r/L0)3)pr(M)∆M (A.19)

Equation A.19 can be used to plot S(r) vs log(r/L0) and the slope of the resulting line

will give the value of D1.
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APPENDIX B

LINEAR DIAGONALIZED SCHEME TO TREAT THE TWO-WAY COUPLING

TERMS EXACTLY

The first step, on account of incompressibility, involves projecting the velocity vector in

wavenumber space onto two coordinate axes, e1 and e2, orthogonal to each other, ez and the

wavenumber vector k, such that k · û = 0. The two resulting velocity Fourier coefficients

are denoted by v1 and v2,

v1 = û · e1 = (kyû− kxv̂)/
√
k2
x + k2

y (B.1)

v2 = û · e2 = −ŵ/ sin β (B.2)

where β is the angle between k and ez. We now rewrite the governing equations Equa-

tion 6.2-Equation 6.4, in Fourier space and project it onto the new coordinate axes.

∂v1/∂t = ∂û/∂t · e1 = −k2νv1 +N1 (B.3)

∂v2/∂t = ∂û/∂t · e2 = −c1 sin β φ̂1 − c2 sin β φ̂2 − k2νv2 +N2 (B.4)

∂φ̂1/∂t = dΦ1/dz sin β v2 − k2Dφ1 +N3 (B.5)

∂φ̂2/∂t = dΦ2/dz sin β v2 − k2Dφ2 +N4 (B.6)

The pressure gradient vector is balanced out by the non-linear terms vector parallel to the

wavenumber vector. N1 and N2 are the non-linear products projected onto e1 and e2.

N3 and N4 are the non-linear products from the equation for the scalar fluctuations. The

buoyancy force acts only along the z direction, and hence the buoyancy force does not
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appear in Equation B.3. The resulting system can be expressed compactly as,

dY/dt = sin β MY − k2λY +N (B.7)

where Y is a vector of the four unknowns, v1, v2, φ1 and φ2, N is the non-linear terms

vector, λ is a 4× 4 diagonal matrix with elements (ν, ν, D1, D2) and M is given by,

M =



0 0 0 0

0 0 −c1 −c2

0 B1 0 0

0 B2 0 0


(B.8)

where B1 and B2 are used as alternate notations for dΦ1/dz and dΦ2/dz. The matrix M

can be diagonalized using its Eigen values which are 0, 0, ±ι
√
c1B1 + c2B2. We form

a matrix S consisting of the Eigen vectors of the matrix M such that Λ = S−1MS is a

diagonal matrix of the Eigen values.

S =



1 0 0 0

0 0 i
√
C√

B2
1+B2

2+C
−i

√
C√

B2
1+B2

2+C

0 − c2√
c21+c22

B1√
B2

1+B2
2+C

B1√
B2

1+B2
2+C

0 c1√
c21+c22

B2√
B2

1+B2
2+C

B2√
B2

1+B2
2+C


(B.9)

where C = c1B1 + c2B2. We now pre-multiply equation Equation B.7 by S−1 and use

Y = SX such that,

dX/dt = sin β ΛX− k2S−1λSX + f (B.10)
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where f = S−1N . When both scalars are of unity Sc (D = ν), S−1λS is diagonal and we

can solve for X directly using integrating factors of the form eat,

∂eatX/∂t = eatf (B.11)

where a = −νk2 for equations corresponding to v1 and v2 and a = ±ι
√
C sin β − νk2 for

equations corresponding to φ1 and φ2. The above equation can be numerically integrated

in time using Runge-Kutta second or fourth order schemes.

However, when we have non-unity Sc the matrix S−1λS is no longer diagonal and

hence the diffusion term can not be treated exactly using integrating factors. This can be

avoided by using an operator splitting approach as described below,

1. Consider the following equation, without the viscous/diffusion term

∂X/∂t = ΛX + f

We first obtain the solution for the above equation using integrating factors. Next,

we recover Y using Y = SX and finally project v1 and v2 (in Y) onto ex, ey and ez

to recover û, v̂ and ŵ. The third and fourth components of Y gives the scalars φ̂1 and

φ̂2.

2. We can use the solution from the step above as the initial value for the current step

and solve for û, φ̂1 and φ̂2 according to the following equation

∂û/∂t = −νk2û

∂φ̂1/∂t = −D1k
2û

∂φ̂2/∂t = −D2k
2û

The solution above can be obtained using the viscous and diffusive integrating fac-
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tors.

Below, we describe the steps involved to make use of the above diagonalization scheme

in the DNS code. We start with knowledge of û, φ̂1 and φ̂2 in Fourier space, at time tn.

Then we do the following:

Step 1. Go to physical space, compute nonlinear terms, transform back, project onto the

coordinate axes e1 and e2. This gives us N .

Step 2. Calculate v1 and v2 (at tn) by projecting û onto the coordinate axes e1 and e2 (equa-

tions Equation B.1-Equation B.2).

Step 3. Form X = S−1Y and f = S−1N .

Step 4. Obtain predictor estimate of X at the next time step using the equation where the

viscous/diffusive terms are neglected as described above.

Step 5. Recover Y from X using Y = SX. We can then recover the intermediate velocity

using û = v1e1 + v2e2. φ̂1 and φ̂2 are obtained from the third and fourth components

of Y.

Step 6. Obtain final predictor estimates of velocity and scalar using the viscous and diffusive

integrating factors with a = νk2 for the three velocity components and a = Dik
2 for

each of the two scalars. This gives the new values of velocity and scalar fluctuations

at the predictor step.

Step 7. In the corrector step, the regular approach described in Rogallo (1981) can be used.

However, when forming the non-linear terms for the scalar, the mean gradient term

should not be included.
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APPENDIX C

GPU ACCELERATION OF EXTREME SCALE PSEUDO-SPECTRAL

SIMULATIONS OF TURBULENCE USING ASYNCHRONISM

K. Ravikumar, D. Appelhans and P. K. Yeung. 2019 Proceedings of The International

Conference for High Performance Computing, Networking and Storage Analysis (SC’19),

Denver, CO.

Abstract

This paper presents new advances in GPU-driven Fourier pseudo-spectral numerical al-

gorithms, which allow the simulation of turbulent fluid flow at problem sizes beyond the

current state of the art. In contrast to several massively parallel petascale systems, the

dense nodes of Summit, Sierra, and expected exascale machines can be exploited with

coarser MPI decomposition’s which result in improved MPI all-to-all scaling. An asyn-

chronous batching strategy, combined with the fast hardware connection between the large

CPU memory and the fast GPUs allows effective use of the GPUs on problem sizes which

are too large to reside in GPU memory. Communication performance is further improved

by a hybrid MPI+OpenMP approach. Favorable performance is obtained up to a 184323

problem size on 3072 nodes of Summit, with a GPU to CPU speedup of 4.7 for a 122883

problem size (the largest problem size previously published in turbulence literature).
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APPENDIX D

ADVANCING UNDERSTANDING OF TURBULENCE THROUGH

EXTREME-SCALE COMPUTATION: INTERMITTENCY AND SIMULATIONS

AT LARGE PROBLEM SIZES

P. K. Yeung and K. Ravikumar. 2020 Physical Review Fluids 5, 110517.

Abstract

Sustained and rapid advances in computing have enabled the conduct of direct numerical

simulations (DNS) at increasing problem sizes and higher levels of physical realism, which

have in turn contributed to many advances in understanding turbulence. However, con-

tinuing and future success at the “extreme-scale” level will likely require new algorithms

adapted to emerging heterogeneous architectures, and even then, long simulations at ex-

treme problem sizes are probably still too costly. In this paper we first describe the essential

elements of an asynchronous parallel algorithm for DNS of incompressible isotropic turbu-

lence, which scales effectively up to 184323 resolution (more than 6 trillion grid points) on

a world-class IBM-NVIDIA CPU-GPU machine. We then propose a simulation paradigm,

built on the idea that, for physical quantities of short timescales, sampling over well- sep-

arated snapshots in a long simulation at high resolution can be replaced by sampling over

short simulation segments with a high degree of statistical independence evolved from

snapshots at modest or even low resolution. The total computational cost is now counted

in Kolmogorov timescales instead of large-eddy timescales, leading to tremendous savings

at high Reynolds number. This “Multiple Resolution Independent Simulations” (MRIS)

approach is validated through a series of comparisons, and subsequently applied to obtain

results on fine-scale intermittency, at Taylor-scale Reynolds numbers 390 to 1300, with

grid spacing smaller than the Kolmogorov length scale. The results show conclusively that

extreme fluctuations of the dissipation rate are usually accompanied by extreme enstrophy,
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while extreme enstrophy is usually accompanied by less-intense dissipation. Statistics of

the locally averaged dissipation and enstrophy suggest these two variables scale together at

inertial-range scale sizes (but not in the dissipation range). Finally, brief remarks are made

concerning perspectives on likely major challenges in an exascale future, and several other

topics of study where the MRIS approach may be useful.
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APPENDIX E

EXTREME-SCALE COMPUTING FOR PSEUDO-SPECTRAL CODES USING

GPUS & FINE-GRAINED ASYNCHRONISM, WITH APPLICATION TO

TURBULENCE

K. Ravikumar, D. Appelhans and P. K. Yeung. Nov. 2018 71st Annual Meeting of the

Division of Fluid Dynamics of The American Physical Society, Atlanta, GA.

Abstract

As computing advances to the pre-Exascale era dominated by accelerators such as Graph-

ical Processing Units, a substantial re-thinking is necessary for many communication-

intensive applications, including turbulence simulations based on pseudo-spectral methods.

We have developed an asynchronous algorithm with one-dimensional domain decomposi-

tion optimized for machines with large CPU memory and fast GPUs, in particular SUM-

MIT at the Oak Ridge National Laboratory, which consists of IBM Power-9 CPU’s and

NVIDIA V100 GPU’s. Data located in the CPU memory are processed in a fine-grained

(batch) manner by overlapping high BW NVLINK transfers, with fast GPU computations

and high BW system interconnect allowing a much larger problem to be run than the much

smaller GPU memory might suggest. Pinned memory and zerocopy approaches are used to

transfer strided data between the GPU and CPU obtaining high NVLINK throughput. Sev-

eral advanced communication protocols are explored in order to obtain maximum network

throughput for collective communication. Benchmarks at the scale of 122883 grid points

on 1024 SUMMIT nodes show good weak scaling, with a speedup of over 3X compared to

the multi-threaded CPU-only algorithm.
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APPENDIX F

REACHING HIGH RESOLUTION FOR STUDIES OF INTERMITTENCY IN

ENERGY AND SCALAR DISSIPATION RATES

K. Ravikumar, P. K. Yeung and K. R. Sreenivasan. Nov. 2020 73rd Annual Meeting of the

Division of Fluid Dynamics of The American Physical Society, Virtual (Chicago time), IL.

Abstract

Passive scalar fields in high Reynolds number turbulence are often observed to be highly

intermittent in both the inertial-convective (via the extreme anomaly of structure function

exponents) and viscous-diffusive ranges (via intense fluctuations of the scalar dissipation

rate, χ), with the Schmidt number, Sc, acting as an additional parameter. High-resolution

direct numerical simulations are clearly crucial, and reliable conclusions on the Sc-effects

require that resolution be adequate for all scalars involved. Such calculations are compu-

tationally very expensive. However, it is possible (Yeung & Ravikumar, to appear in Phys.

Rev. Fluids, 2020) to replace long simulations of stationary isotropic turbulence at high

resolution by multiple short segments evolved from lower-resolution data, at much lower

cost. It is also useful to perform ensemble averaging over the statistics of scalars with the

same Sc but subjected to uniform mean gradients in different directions. Fluctuations of χ

for a scalar with Sc = 1 are more intermittent than those of the energy dissipation rate (ε).

Numerical results including moments of local averages of χ and conditional moments of χ

given ε at resolution up to 61443 will be presented.
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APPENDIX G

ACHIEVING PORTABILITY FOR A HIGHLY OPTIMIZED GPU CODE FOR 3D

FOURIER TRANSFORMS AT EXTREME PROBLEM SIZES

K. Ravikumar, O. Hernandez, J. Levesque, S. Nichols and P. K. Yeung. Sep. 2020 Perfor-

mance, Portability, and Productivity in HPC Forum, Virtual.

Abstract

The current drive towards exascale performance in the supercomputing community has

seen a sustained rise of heterogeneous architectures where GPUs provide massive compu-

tational power. Communication intensive codes require a high degree of adaptability in

both network and GPU usage to achieve optimal performance on such architectures. For

instance, differences in the types and numbers of GPU devices attached to each CPU host,

compilers and programming libraries influence how best to construct a code that can scale

up efficiently to largest node counts or largest problem sizes. This is the case for a recently

developed pseudo-spectral code for the three-dimensional Navier-Stokes equations, where

an asynchronous batched approach with efficient memory usage is used to solve large prob-

lem sizes without being limited by the available GPU memory (Ravikumar et al., 2019).

On Summit at the Oak Ridge Leadership Computing Facility, CUDA Fortran was used to

target NVIDIA Volta 100 GPUs and achieve good speedups and scalability to very large

problem sizes.

A natural follow-up task is to extend this programming strategy to other machines

which are populated with other types of GPUs, or for which CUDA Fortran support is not

available. We consider targeting GPUs using OpenMP, especially version 5.0 and beyond,

which is expected to provide enhanced support for management of asynchronous library

calls. Ideally, we hope to achieve substantial interoperability between different GPU plat-

forms, to a degree approaching that for CPU codes, which can often be ported from one
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CPU machine to another, with very few changes. In this talk we will discuss some possible

ideas and recent progress made towards achieving objectives along these lines. We also ad-

dress the potential use of alternative approaches for overlapping computation and all-to-all

communication.
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