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SUMMARY 

Today, the as-is three-dimensional point cloud acquisition process for 

understanding scenes of interest, monitoring construction progress, and detecting safety 

hazards uses a laser scanning system mounted on mobile robots, which enables it faster 

and more automated, but there is still room for improvement. The main disadvantage of 

data collection using laser scanners is that point cloud data is only collected in a scanner’s 

line of sight, so regions in three-dimensional space that are occluded by objects are not 

observable. To solve this problem and obtain a complete reconstruction of sites without 

information loss, scans must be taken from multiple viewpoints. This thesis describes how 

such a solution can be integrated into a fully autonomous mobile robot capable of 

generating a high-resolution three-dimensional point cloud of a cluttered and unknown 

environment without a prior map.  First, the mobile platform estimates unevenness of 

terrain and surrounding environment. Second, it finds the occluded region in the currently 

built map and determines the effective next scan location. Then, it moves to that location 

by using grid-based path planner and unevenness estimation results. Finally, it performs 

the high-resolution scanning that area to fill out the point cloud map. This process repeats 

until the designated scan region filled up with scanned point cloud. The mobile platform 

also keeps scanning for navigation and obstacle avoidance purposes, calculates its relative 

location, and builds the surrounding map while moving and scanning, a process known as 

simultaneous localization and mapping. The proposed approaches and the system were 

tested and validated in an outdoor construction site and a simulated disaster environment 

with promising results. 



 xi 

Keywords: Laser scanning; Point cloud registration; Mobile robot navigation; 

Simultaneous localization and mapping; Scan and path planning; Obstacle avoidance 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Accurate as-is three-dimensional (3D) models of cluttered environments, such as 

construction or disaster sites, using laser scanning devices offer many advantages. For 

example, they can provide virtual views and enable users to walk through the site and 

monitor construction progress from thousands of miles away. Engineers can use these 

models to analyze the stability of a structure and examine possible corrections without 

causing destruction. Furthermore, construction sites change and evolve over time with 

design changes, so an as-designed model may not match a site’s current status. As-is 3D 

models are, therefore, useful when as-designed models are either not available or 

inaccurate. Methods of obtaining these models are becoming faster, more accurate, and 

more automated, but decision making by a human operator is still required. For example, 

routes and the locations of each individual scan must be determined, for which 

conventional methods normally rely on human intuition and experience. The requirement 

for multiple scans is due to the occlusion problem. 

An interesting problem with the Light Detection And Ranging (LiDAR) method is 

that the depth information is generated from the first object on the robot’s line-of-sight 

path, which can cause complications with line-of-sight occlusions, as shown in Figure 1. 

Depending on the environment, critical data may be missed due to line-of-sight 

obstructions, or the invisible region on the map may be treated as impassible. Moreover, 

these issues can cause serious concerns if the LiDAR-scanned point clouds are converted 

into other data forms such as voxel maps or heightmaps. 
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Figure 1 – Point cloud line-of-sight obstructions 

To perform interactive tasks in a physical world, a robot needs a basic set of 

capabilities. This includes not only mobility but also the ability to be aware of the 

environment enough to perform the task. Therefore, most robot systems should be able to 

create an environment map by measuring with sensors and estimating its current position. 

Problems related to mapping, localization, and planning are at the heart of the mobile robot 

field and are mainly addressed in two-dimensional (2D) environments. In order to widely 

used to real-world robots, they need to be able to navigate not only simple environments 

but also large 3D and cluttered environments. The construction environment is dynamic, 

hazardous, cluttered, and irregular. One cannot know whether to expect large equipment, 

holes, a flat terrain, or a random pile of rubble. Therefore, a robust and reliable approach 

is required to enable an autonomous robot to drive safely and build an accurate 3D map. 

To clarify this task, it is necessary to carefully define the problems of mapping, 

localization, and planning. 

Mapping is to collect multiple sensor measurements and correlating them into a 

single map. The map has to deal with the uncertainty of pose estimation and sensor noise 
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in order to accurately correlate sensor measurements as the robot moves. Localization is to 

estimate the pose of a robot based on environmental maps and sensor measurements. It also 

has to deal with sensor noise and uncertainty in the map. In some cases, it may be 

impossible to identify a similar position within a map. Planning is to determine where to 

go next for the robot. One of the important problems for a mobile robot is path planning, 

which is finding a safe and fast path to a specific target location. 

Figure 2 demonstrates that these three issues are interdependent. The 

interdependence between mapping and localization is a well-known problem that is 

commonly referred to as simultaneous localization and mapping (SLAM). This is because 

the localization estimation is required for mapping and the map is needed for localization. 

The path planner selects the next action to the direction of reducing uncertainty, which 

means that both mapping and localization rely on planning. The process of determining the 

next goal position for a mobile robot that reduces uncertainty in both mapping and 

localization is called active SLAM.[1]. 

 

Figure 2 – Relationships between localization, mapping, and planning 
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To be a real application for construction or disaster sites, the obstacle detection and 

avoidance should be fast, robust, and not rely on the as-designed condition. There are 

several ways for robot navigation that work by using a priori map and planning the robot’s 

action in advance [2,3]. However, the conventional approaches are not suitable for 

construction or disaster sites due to the unique characteristics of construction and disaster 

environments. 

This thesis introduces an effective navigation and mapping method for autonomous 

as-is 3D geometric data acqusition by a mobile robot at a cluttered environment with many 

spatial uncertainties. The proposed architecture was implemented and tested with a custom-

designed mobile robot platform, Ground Robot for Mapping Infrastructure (GRoMI), 

which uses multiple LiDARs and sensors to sense and build a 3D environment map. To 

evaluate the overall navigation and mapping performance of GRoMI and the proposed 

software architecture on construction and disaster sites, experiments were conducted on 

several simulated environments and two real environments. 

1.2 Research Objectives and Contributions 

1.2.1 Objectives 

The main objective of this research is to identify an automated and intelligent 3D 

reconstruction method of the built environment for a ground laser scanning robot in an 

unknown cluttered environment by finding self-determined scan locations without a prior 

map. 
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1.2.1.1 Sub-objective #1: Identify and remove the ground and moving objects in the 

point cloud 

The first research question to be solved is how a mobile robot chooses where to go 

to move safely and improves localization accuracy. For a mobile robot to explore an 

unknown environment, it must be able to localize and map of surrounding. Especially, it is 

important to identify the ground near the robot is traversable or not and the objects near the 

robot are moving or stationary. Because it is related to safe navigation without collision 

and SLAM accuracy. To achieve this objective, the mobile robot must be integrated with 

a laser scanning system and must be able to solve the kinematic problem to acquire highly 

accurate, dense 3D point cloud data using rotating 2D LiDAR scanners. When it can build 

a 3D point cloud, it must extract edges in the point cloud using range differences between 

adjacent points. If there is no edge in a region of the point cloud, this means that the region 

is continuous, and there are no obstacles. Based on this approach, a robot can estimate the 

unevenness score and segment out ground points. Then, non-ground points can be divided 

into independent several clusters by using Euclidean distance between them and the cluster 

correspondence of consecutive point clouds is performed. The centroid of each cluster is 

extracted and tracked the location to specify moving objects. Finally, the points identified 

as a moving object are removed from the extracted features which will be used for 

odometry calculation. The tasks for this sub-objective is as follows: 

a) Solve the kinematic and odometry model for the 3D scanning system 

b) Calculate terrain unevenness to identify ground points 

c) Extract moving objects and remove it from odometry calculation 
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The expected outcomes are point clouds which have not include both ground and 

moving objects points. 

1.2.1.2 Sub-objective #2: Estimate a navigation goal and plan path to the goal 

The second research question to be solved is how a mobile robot can avoid both static 

and dynamic obstacles in a cluttered environment. Path planning is to determine an 

collision-free path to reach the goal position. The information that obtained in sub-

objective #1 is stored in a 2D surface map, called a robot navigation map and the path 

planning is based this 2D map. Before plan the path to the goal, the navigation goal should 

be determined. The frontier-based approach is used to select a temporary navigation goal 

in this research. The reason the term temporary goal is used that it is not the final goal or 

the stationary scan location goal. The stationary scan location is determined in the sub-

objective #3 using scan view planning. Once the navigation goal is selected, the global 

planner estimates the shortest path to the goal and D* Lite algorithm is used as global 

planner in this sub-objective. While it moves along the estimated path, it keeps scanning 

and segmenting obstacles, ground, wall, and occlusion area. If the mobile robot faces 

unexpected dynamic obstacles on the planned path, the global planner replaced to the local 

planner and it estimate the velocity of moving obstacles. For this study, potential field 

method is used as the local planner. The global and local planner generates the waypoints 

to each goal location. Finally, the path tracking controller, running at a higher frequency 

than the both global and local planner, continuously generate control inputs which is right 

and left wheel velocities for a differential drive robot to ensure stable navigation from the 

current state to the next waypoint. The tasks for this sub-objective is as follows: 
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a) Determine a navigation goal location and its path for global planner 

b) Update the path in real-time to avoid dynamic obstacles for local planner 

c)  Guide the mobile robot to waypoints with tracking control 

The expected outcomes are waypoints to both planner, and wheel motor speed for 

both side. 

1.2.1.3 Sub-objective #3: Estimate the most effective scan view 

The third research question to be solved is how a mobile robot can determine scan 

locations in an unknown environment without a priori information. To generate highly 

accurate dense 3D point cloud data, this thesis uses a "stop and scan" strategy rather than 

a "continuous incremental scan" as the latter generates noise and inaccuracies in the point 

cloud data. Finding efficient scan locations for the target site is one of the key contributions 

of this thesis. While the mobile robot moves to the determined exploration position, it keeps 

scanning and builds a map for navigation and obstacle avoidance. It can also generate a 

voxel map, which is a downsampled map that uses small cubes to reduce the computational 

load. It then performs scan planning in the currently built map to select the scan location 

that is able to identify locations that will yield new information as many as possible when 

visited, which means to find the occluded area that can be scanned to complete the target 

area map. The tasks for this sub-objective is as follows: 

a) Generate a voxel map using the currently built point cloud 

b) Determine the scan locations through real-time scan view planning 
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The expected outcome is a voxel map containing the scan locations 

1.2.2 Contributions 

This thesis first presents a detailed literature review of existing autonomous mobile 

mapping robotic systems and identifies the major limitations and remaining challenges. To 

address the shortcomings of existing state-of-the-art robotic systems, this thesis develops 

a novel framework for effective navigation and automated, accurate 3D point cloud 

mapping of a cluttered environment using a mobile laser scanning system. 

• It presents traversability estimations for point clouds with unevenness scores using 

range differences between adjacent points. 

• It provides moving objects detection and removal from SLAM calculation to 

improve localization accuracy. 

• It introduces an autonomous navigation approach that combines a grid map based 

on traversable path planning and a voxel map based on scan view planning. 

• It offers a real-time active SLAM approach that integrates 3D LiDAR SLAM, 

planning algorithms, tracking control, and dynamic obstacle avoidance.  

In summary, the proposed approach eliminates the need for physical visits to the site, 

thereby improving construction site monitoring capabilities and saving time and money. 

This may result in changes to the decision-making process and the ways in which modern 

construction projects are monitored and controlled, which, in turn, may affect future 

construction. 

1.3 Thesis Structure 
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The rest of the thesis is organized as follows: 

Chapter 2 presents a detailed review of existing state-of-the-art autonomous mobile 

scanning robotic systems. Existing state-of-the-art mapping robotic systems are discussed 

in detail, with a focus on their capabilities and shortcomings. The need for a novel 

framework or system for autonomous mobile mapping is presented at the end of the 

chapter. 

Chapter 3 presents a novel software architecture for autonomous laser scanning and 

the design of a robotic system. It also provides validation of each architecture module with 

simple simulated environments.  

Chapter 4 presents the results of simulations, real construction and simulated disaster 

environment conducted to validate the overall proposed architecture. It then explains how 

the experimental results using the techniques described in Chapter 3 improved the 

planning, control, and error detection of autonomous robots. 

Chapter 5 concludes the thesis by providing a summary of the presented work and a 

discussion about potential directions for future research. 
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CHAPTER 2. LITERATURE REVIEW  

2.1 Objective Detection and Traversability  

Most researchers tried to use 2.5-dimensional representation which is trade-off 

between the completeness of 3D and the simplicity of 2D representation for traversability 

analysis and was used successfully in the defense advanced research agency challenge [4]. 

Identifying obstacles is achieved by height difference or elevation map [5]. This approach 

proves difficult when dealing with overhanging objects, such as tree branches. It could be 

dealt with by employing a safe height [5] or by using extended elevation maps [6], in which 

the obstacles above a free space are safely discarded. Chang et al. [7] tried to use the slope 

for detecting obstacles. The height difference threshold was 1 m to detect large objects 

faraway so the smaller obstacles could not be detected. Morton and Olson [8] utilized a 

height–length–density terrain classifier which could even deal with partial observability 

for detecting obstacles. Kuthirummal et al. [9] utilized graphs to connect traversable cells 

containing height histograms. Guo et al. [10] developed gradient cues of road geometry to 

classify points into four classes: reachable, drivable, obstacle, and unknown regions by 

using Markov random fields.  

Principal component analysis (PCA) can analyze the spatial distribution of points 

with eigenvectors. Lalonde et al. [11] classified areas into scattering, linear, and surface 

with PCA on individual voxels. Pellenz et al. [12] applied PCA recursively on non-flat 

regions to overcome the problem of the sparseness of data in a grid. Sinha and Papadakis 

[13] assessed traversability based on features extracted through PCA. Anguelov et al. [14] 

also used PCA to get point features for further classification. However, the PCA 
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approaches are either computationally expensive or require training in classification 

methods, such as neighborhood search, model fitting, machine learning, Gaussian 

Regression, and PCA. 

2.2 Autonomous Navigation and Path Planning 

The optimal or feasible path between the start point and end point can be found using 

motion planner algorithms such as Bug algorithm [15], A* [16], Rapidly-exploring 

Random Tree (RRT) [17], and RRT* [18]. Bug algorithm is a simple planner applicable in 

2D and practical for objects with two degrees of freedoms. RRT is a sampling-based 

method that can find a path with more than two degree of freedoms by constructing a space 

filling tree. RRT creates a path by sampling random seeds. RRT* is more optimized than 

RRT which provides a smooth path [19]. Unlike A* and Bug, RRT and RRT* can be used 

in cases with many degree of freedoms. These algorithms aim primarily to find a feasible, 

collision-free path, but without guaranteeing high visibility during inspection [20]. 

One of the widely used algorithms for mobile robot and autonomous vehicle 

navigation is D*, which was evoled from A*. The advantage of D* is adding new 

information to its map, when it enters in an unknown environment or encounters obstacles, 

to find a new shortest path from current location to the goal. Another path planning 

algorithm is the Bug algorithm, where the robot moves in a straight line toward goal till it 

senses an obstacle and the robot avoids obstacles by deviating from the line while updating 

new important information. Bug1 and Bug2 [21] are most commonly used path planning 

algorithm but it has a weaknesses that it does not garantee to find the optimal and shortest 

path in general. It also is not a good solution in complex areas due to its simplicity, 
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especially in a construction site having many unpredictable objects in the environment. 

VFH was designed to avoid unexpected and moving objects while simultaneously steering 

a robot toward the goal position [22]. However, VFH does not effective especially in 

construction environment which needs to scan a large area because the occupancy grid map 

requires a huge memory to be able to keep count of the values in each cell. Furthermore, it 

is hard to avoid the local minima problem [23]. The primary idea of Dynamic Window 

Approach method is generating a valid search space, and choosing an optimal path from 

the search space [24]. The optimization goal is to minimize the time by moving fast as 

much as possible in the optimal direction. 

2.3 Mobile Scanning Platforms 

Mobile scanning systems are increasingly being used in industrial, construction and 

artificial intelligence applications. In particular, autonomous scanning plays an essential 

role in the field of automatically generating 3D models of buildings. However, creating a 

3D model of a building from 3D data is still a semi-manual task. A fully autonomous 

system is a system that can perform exploration, 3D data collection, and 3D data processing 

without human interaction without initial knowledge of the scene. A representative 

example of a mobile scanning robot is shown in Figure 3. Sequeira et al. [25] present a 

simple autonomous robot that partially digitizes a single room with a Time-of-Flight laser 

range finder. Surmann et al. developed the Ariadne robot [26], a mobile platform with a 

3D LiDAR which can digitalize a large indoor environment. The Rosete platform is 

proposed by Strand et al. in [27]. They developed a rotating laser scanner mounted on a 

mobile robot and scaned simple indoor environment to overcome the small field of view. 

ATRV-2 AVENUE is designed to collect data for large outdoor environment. The system 
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had a high degree of autonomy, but it is needed a priori knowledge about the target site. 

The scanning robot proposed by Blodow et al. [28] explored indoor environments 

autonomously and generated a map from colored point clouds. The same robot is used in 

[29], but it tested the Next Best View (NBV) algorithm in small environments. Charrow et 

al. [30] presented a ground robot equipped with a 2D LiDAR and an RGB-D camera to 

build 3D map of indoor environments. Iocchi et al. [31] got 3D maps of buildings with a 

2D LiDAR, stereo-vision, and IMU on a mobile platform. Borrmann et al. [32] proposed 

Irma3D, a robotic platform that automatically generates 3D thermal models of indoor 

environments.  

The usage of micro aerial vehicles (MAV) is increasing as an autonomous platforms 

to capture 3D information from indoor and outdoor environments. Bircher et al. [33] 

presented a new path-planning method to explore autonomously for finding an unknown 

volume using a hexacopter and a stereo camera. Rusu et al. [34] tried to acquire kitchen 

3D maps with recognized nearby objects. The output is a coarse 3D model composed of 

cuboids and planes that represent relevant objects, such as containers or tables. Kurazume 

et al. [35] developed a multiple robot team that scans indoor and outdoor environment 

cooperatively. The system was consist of a parent platform equipped with an 3D LiDAR 

system and several child robots, including both ground and aerial robots. The parent robot 

generated 3D model and child robots used to help a precise localization and registration. 

Finally, the platform MoPAD [36] was able to build detailed 3D models of the buildings 

interior. Table 1 presents a summary of representative autonomous mobile scanning 

platforms, including the tested environment and limitations. 
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(a) Surmann [26]        (b) Blaer [37]    (c) Strand [27] 

 

         (d) Borrmann [32]         (e) Potthast [29]                 (f) Prieto [36] 

  

   (g) Bircher [33]              (h) Kurazume [35] 

Figure 3 – Example of autonomous scanning system 
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Table 1 – Summary of mobile scanning platforms. 

Method Year Tested Environment Limitations 

Surmann 
[26] 2003 Corridor Too many scans for simple 

trajectory 

Blaer [37] 2007 Interior and exterior scenes Previous 2D map needed 
Localization based on GPS 

Iocchi [31] 2007 Hallway and some rooms Previous 2D map needed 
Strand [27] 2008 Hallway and some rooms Low 3D model resolution 

Blodow [28] 2011 Single room Based on 2D NBV  
Borrmann 

[32] 2014 Corridor and several rooms Only walls are obstacles 

Potthast 
[29] 2014 Two rooms and corridor Restricted on planned scenarios. 

Accumulative registration error 
Charrow 

[30] 2015 Long corridor Only 2D exploration and map 

Bircher [33] 2016 Indoors and outdoors Low resolution of 3D model 

Prieto [36] 2017 Complex configuration of 
adjacent rooms and corridors 

Too long for preprocessing 
stage 

Kurazume 
[35] 2017 Indoors and outdoors Planning in 2D plane. High 

complexity of the system 
Meng [38] 2018 Indoors Low resolution of 3D model 

 

2.4 Next Best Scan Planning 

The most important things to automatic scanning with occlusion is that of a good 

selection of the next scannig location. This is known in the literature as the NBV problem 

[39], but in our context, this could be renamed as Next Best Scan (NBS). Most of 

autonomous scanning platforms utilized the 2D map of the target site and estimate the scan 

lcoation based on the future visibility, but sometimes it faced to high levels of occlusion 

[40]. It also employed the frontier-based approach which is 2D map based as a starting 

point [41]. However, 2D map provide incomplete information in terms of occlusion of a 

3D real world, so it brings to erroneous or non-optimum locations. 
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The 3D-based NBV algorithms was frequently used for exploring volumes and 

inspecting surfaces of relatively small objects not a large-scale sites. Blaer et al. [37] 

presented a four step planning method. At first step, a coarse 3D model is  collected with a 

2D map. It nominates several randomly selected scan positions for second step. Then, it 

determines an optimal positions which covers the boundaries of the free space. For last 

step, the obtained coarse 3D model is refined. Surmann et al. [26] proposed a 2D-3D 

combined approach that computes several NBVs and selects the best option. Borrmann et 

al. [32] also presented a similar 2D-3D mix algorithm. It enables to move the robot with 

2D NBV until it recognizes an enclosed space. After then, it tries to use a 3D NBV 

algorithm, which is similar to Blaer et al. [37]. Potthast et al. [29] propsed a probabilistic 

NBV with Markov Random Fields. The method allocates the probability to be seen in the 

next scan location to each voxel. Meng et al. [38] generated an octree structure and defined 

the NBV location by using the volumetric information gain approach. They presentd a two-

stage planner, consisting of a frontier-based coverage strategy and a fixed start open 

traveling salesman scheme. Charrow et al. [30] suggested a combined planning approach 

with global planning and local motion primitives. 

2.5 Point of Departure 

Autonomous scanning became more and more important as the sensors are improved. 

Even though some autonomous scanning platforms can scan specific environments and 

simple scenarios autonomously, there are still a number of challenges which are related to 

the achievements and limitations of autonomous scanning methods. As the above literature 

review shows, the current systems still have gaps and serious weaknesses that need to be 



 17 

addressed to enable the creation of autonomous systems that work in realistic 

environments.  

• Most researchers have used pitching or rolling scan mechanisms because they are 

effective in obtaining information about the front region. However, the advantage of a 

yawing scan is that its field of view can be widened to 360°. The laser scanning system 

used in this proposal uses four 2D LiDAR scanners within a continuously rotating 

mechanism (yawing) to build a 3D point cloud. The reason for using four LiDAR scanners 

is to reduce the time required to achieve for 360° scanning. 

• The state-of-the-art technology for registering large-area scanning is continuous 

incremental mapping. However, this approach results in noise and cannot easily obtain a 

high-resolution point cloud. Therefore, the laser scanning system used in this proposal uses 

a combination of stop-and-scan and continuous methods to reconstruct an environment. 

• There are many algorithms for detecting obstacles and computing traversability. 

However, most approaches use computationally expensive methods or require a machine 

learning process for classification. The proposed method uses simple point-level 

segmentation to compute a unevenness by using the ranges and scan geometry of LiDAR 

data. 

• Most researchers who have attempted to develop autonomous systems have used a 

previously built 2D map and NBV planning on a 2D plane in the indoor environment. 

However, the approach used here combines 3D SLAM, effective scan view planning with 

3D NBV, and path planning considering terrain unevenness to build a high-resolution point 

cloud with no prior information about the environment. 
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CHAPTER 3. METHODOLOGY 

3.1 Problem Statement  

Exploration in mobile robotics is an iterative process that involves navigation. 

During exploration, the robot autonomously moves through an unknown environment with 

the aim of creating a map of the environment that can be used for subsequent navigation. 

Exploration is closely related to the other essential tasks of mobile robotics shown in Figure 

1. It involves creating a map of the environment, which can then serve as a model for 

planning further exploration steps. The central question in autonomous exploration is: 

“given what you know about the world, where should you move to gain as much new 

information as possible?” [41]. A simplified generic exploration frame entails in the 

following five steps: 

1. Scan and integrate: capture sensor measurements (e.g., a point cloud) and integrate 

them into the map. 

2. Evaluate: find and evaluate appropriate goals; select the next goal. 

3. Plan: create a motion plan (trajectory) to reach the next goal. 

4. Move: execute the motion plan created in the previous step. 

5. Repeat: unless a termination criterion has been met, continue to repeat these steps.  

The termination criterion for exploration can be specified as complete or almost 

complete coverage of the search space. 
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Search problems are closely related to exploration. A generic search algorithm frame 

would look very similar to that presented above, but it would differ not only in the 

termination criterion (object searched for has been found) but also in the evaluation step. 

Whereas exploration strives to minimize the overall time needed to explore the whole 

search space, search attempts to minimize the time needed to find the object it is searching 

for. 

A famous problem linked to exploration is the art gallery problem illustrated in 

Figure 4. Also called, the museum problem, this is a well-studied visibility problem in 

computational geometry. It originates from the real-world problem of guarding an art 

gallery and, specifically, of computing the minimum number of guards who together can 

observe the whole gallery. The task is to find the optimal placement of guards or cameras 

on a polygonal representation of a known map, such that the entire space is covered by 

their field of view. 

 

Figure 4 – Art gallery problem illustration from Wikipedia 

 



 20 

The frontier-based class of exploration algorithms originally proposed by Yamauchi 

[41] represent a classic exploration approach in 2D. A frontier can be defined as the 

boundary between known unoccupied space and unknown territory. The frontier-based 

approach is based on the idea that to gain the newest information from the environment, 

the robot (or its sensor) should move to the boundary between free space and unknown 

territory. Figure 5 shows a simple exploration scenario illustrating the concept of frontiers. 

In this thesis, these problems will be expanded to 3D with the concept of NBV which 

computes a sequence of viewpoints until an entire scene has been observed by a sensor 

based on the above approaches. 

 

Figure 5 – Concept of frontiers from Wikipedia: obstacles shown in black, explored 

free areas in grey, and frontiers in red 

In this thesis, the ground robot for site mapping must be suitable for deployment, 

ranging from construction sites to war zones, and disaster areas, therefore, it should be easy 

and intuitive to operate. Due to their inherent mechanical advantage, wheeled systems can 

pass over many obstacles. However, there are cases where the robot might roll over or get 
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stuck. Even with recent advancements in the autonomous capabilities of robotic systems, 

state-of-the-art robotic systems cannot match the decision-making capabilities of a human 

operator especially for applications in disaster scenarios. However, as Figure 6 shows, even 

teleoperated systems can fail under rough terrain conditions. This thesis aims to improve 

the traversability of ground robots on challenging terrain conditions in both autonomous 

and semi-autonomous operating modes. 

 

Figure 6 – Failure of teleoperated tracked robotic systems. K. Massey, “Squad 

Mission Equipment Transport (SMET): Lesson Learned for Industry,” 2016 

3.2 Map Representation 

This section describes two map representation methods used in this thesis: occupancy 

grid cell mapping, a fundamental mapping approach that uses range sensors, and OctoMap, 



 22 

another probabilistic type of mapping that uses an efficient tree-based data structure to 

enable 3D mapping of relatively large environments. 

3.2.1 Occupancy Grid Maps 

Occupancy grid cell maps, shown in Figure 7, were originally designed for sonar 

sensor-based mapping, which was introduced in [42]. Sonar sensors provide rather 

inaccurate conic measurements, so multiple readings must be used to obtain a reasonable 

model of the environment. Today, they are commonly used in combination with 2D 

LiDAR-based mapping with 3 Degree of Freedom (DoF) localization, e.g. in Hector SLAM 

[43], SPM-ICP [44], and gmapping [45]. 

 

Figure 7 – An example of occupancy grid cell map [48] (Black cells are occupied, 

white means free, and grey represent unknown space) 

3.2.2 Octree Maps (OctoMap) 

OctoMap [46] is octree-based mapping [47]. It is a highly optimized framework for 

volumetric 3D mapping. Similar to occupancy grid approaches, OctoMap represents the 



 23 

environment using random binary variables. The data structure of an octomap is an octree, 

which is a tree structure with non-leaf nodes, each of which has eight descendants. Each 

node represents a cubic volume (voxel) and stores the corresponding probability of being 

occupied. Descendant nodes split the voxel represented by their parent node into eight sub-

voxels, as shown in Figure 8 [48]. Figure 8 demonstrates how voxels are extended to sub-

voxels when sensor measurements are collected. Unknown space is represented by 

transparent voxels, occupied space by black voxels, and free space by gray voxels. Memory 

can be saved by avoiding unnecessary branching when nodes represent free space. 

 

Figure 8 – Octomap map representation [48] : occupied shown in black, free areas 

in grey, and unknown in transparent 

The downside of the octree-based data structure, compared to other structures such 

as that of array-based grid maps, is that direct map access is not possible. The log odds 

notation is used to store occupancy probabilities. This enables the map to be updated in a 

computationally efficient manner and direct rendering of the map in different 

resolutions.Figure 9 presents an example of the same map rendered in four different 

resolutions. 
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Figure 9 – Four different resolutions of the same octomap [48]: from the top left in 

clockwise 0.05 m, 0.1m, 0.2 m, and 0.4 m  

3.3 Overall Architecture 

The overall framework for the proposed research is shown in Figure 10. There are 

five main procedures: (i) 3D SLAM, (ii) navigation, (iii) a scan view planning, (iv) 

stationary scanning, and (v) point cloud registration. When the mobile robot platform 

with the hybrid 3D laser scanning system is moving within an environment, it calculates 

its current position and orientation using both current and previous maps. First, the robot 

takes input about the target scanning region boundary with the coordinate which has an 

origin at the initial location of the robot. Then, the robot turns on the 3D SLAM to 

estimate the current location and collect environmental information. The global planner 

determines a local goal position within the scanned area and plans the path to reach the 

local goal as a set of waypoints. These waypoints are then sent to the path tracking 

controller which takes a step to each waypoint. While it moves to a local goal position, 

the robot receives measurements from the laser scanning system, which it uses to update 
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the surrounding map. Using these measurements, the scan view planning module tries to 

 

Figure 10 – Flowchart of the proposed architecture 
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calculate where a good scan location in the known area that measurement reached is. Once 

the stationary scan location is determined, the robot sets a new goal position and tries to 

move to that location to perform a stationary scan and generate a high-resolution point 

cloud. It then returns to the first step, 3D SLAM, to determine a new local goal position 

and finds a path between the current position and the local goal. If the robot senses 

obstacles while it travels on the determined path, it switched the artificial potential field 

module to avoid the obstacles. Once its view is clear of obstacles, the robot requests a new 

local goal position. This process is repeated until the target region is scanned completely.  

3.4 Data Acquisition System  

3.4.1 Hardware Design and Sensors 

In this thesis, a custom-built ground robot, GRoMI, was used to verify the proposed 

method. GRoMI is composed of two major parts: a hybrid laser scanning system and an 

autonomous UGV platform, as shown in Figure 11 along with its subsystems. The GRoMI 

was designed for weighing around 135 kg (300 lbs), with an overall size of approximately 

4ft x 3 ft x 6 ft (L x W x H). 

The upper part is a robotic hybrid laser system, consisting of five 2D and one 3D 

LiDAR devices. The 3D LiDAR, commonly used for autonomous vehicles and advanced 

driver-assistance systems, was mounted on the top of the laser scanner system and utilized 

to acquire real-time laser scans of the site. It has a range of up to 100 m with a ±15° vertical 

field of view. As it has only 16 scan lines in the vertical direction, the scanned point cloud 

gets sparser as it gets farther from the scanner. Therefore, this 3D LiDAR was used only 

for the localization process. For building a high-resolution 3D point cloud map, the 
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vertically-mounted 2D LiDARs were used to scan the environment at calculated scan 

locations. Each line laser is mounted vertically and has a range of up to 80 m with 0.1667° 

resolution in a vertical direction. The cylinder-shaped scanning system rotates to scan the 

environment, accumulates the scan data, and generates a high-resolution 3D point cloud 

map. It takes 200 seconds to rotate 360°, and the scan frequency of each line laser is 50 

Hz. Therefore, the point cloud resolution of the laser scanning system is 0.036° in a 

horizontal direction. The scanning system also has a camera for mapping the texture to 

generate a more realistic 3D point cloud map.  

On the other hand, the lower part is an autonomous platform. The most important 

thing for the platform is to make a division for the front and back parts of the ground robot 

and connect with a rotating bearing axis to stabilize when it moves in uneven terrain. The 

autonomous platform has four wheels and it controls as a set of left wheels and right 

wheels. Therefore, the robot can turn around with moving a different direction for the left 

and right wheels. All other sensors are attached to upper laser scanning system, but 

GPS/IMU sensor module for increasing the localization accuracy is mounted on lower 

autonomous platform. The upper laser scanning system has more sensor noise sources for 

IMU than a lower autonomous platform while the robot is moving and also the laser 

scanning system should rotate to get a high-resolution point cloud, which could be another 

sensor noise source.  
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Figure 11 – Mobile robot platform with a hybrid laser canning system 

3.4.2 Software and Communication Architecture 

The GRoMI system is designed to be operated fully autonomous and capable of 

specifying a target area in construction or disaster sites. This requires the robot to be able 

to navigate autonomously in rugged terrain, and to overcome the challenges introduced by 

dynamic environmental interactions. To achieve this aim, it must play a role in a distributed 

communication middleware and provide an infrastructure that makes it possible to connect 
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components easily and facilitates modular design in both simulated and real environments. 

This project uses the Robot Operating System (ROS), the most well-known robotics 

middleware, comprising a collection of software frameworks for robot software 

development. It also provides useful libraries (including libraries for coordinate frame 

transformations, point cloud manipulation, visualization, and data logging to name a few) 

into which it groups tools. Although ROS is not an operating system, it provides services 

such as hardware abstraction, low-level device control, implementation of commonly used 

functionality, message passing between processes, and package management, which are 

designed for a heterogeneous computer cluster. Running sets of ROS-based processes are 

represented in a graph architecture where processing takes place in nodes that can receive, 

post, and multiplex sensor data and messages, including those related to control, state, 

planning, and actuation.  

A node is a process that performs computation. Nodes are combined in a graph and 

communicate with one another using streaming topics, remote procedure call services, and 

the parameter server. The nodes are meant to operate at a fine-grain scale, and a robot 

control system will usually comprise many such nodes. For example, a system may have 

one node to control a laser rangefinder, another to control the robot’s wheel motors, another 

to perform localization, another for path planning.  

Topics are named buses over which nodes exchange messages. Topics have 

anonymous publish-and-subscribe semantics, which decouples the production of 

information from its consumption. In general, nodes are not aware of who they are 

communicating with. Instead, nodes that are interested in data on a topic subscribe to that 

topic; nodes that generate data publish the data to the relevant topic. A topic might have 
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multiple publishers and subscribers. For example, a node that controls a laser rangefinder 

would publish a laser scan topic message. The localization node might subscribe to the 

laser scan topic to estimate the current location of the robot, while the wheel motor control 

and path planning nodes might subscribe to the same topic to avoid obstacles and determine 

the path to the goal. 

 

Figure 12 – Data flow diagram 

Figure 12 presents a data flow diagram of the proposed software architecture in the 

ROS environment during navigation. The blue circles denote ROS nodes, and the black 

rectangles denote ROS topics. The blue arrows indicate subscription to a topic by a node 

and the green arrows indicate publication to a topic by a node. There are four major nodes: 

SLAM, scan view planning, path planning, tracking control. The SLAM node subscribes 

to the 3D LiDAR topic message and publish the estimated pose of the robot in 6D (x, y, z, 

roll, pitch, and yaw) and the map of the environment in the point cloud. These SLAM 

outputs are the inputs for the scan view, path planning, and tracking control modules. The 

scan view planning node computes the best position for the next scan on the 2D plane, 
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which comprises the x-y plane and the yaw angle. Then, the path planning node generates 

waypoints to that position. Finally, the tracking control node calculates the wheel speed 

necessary for the mobile robot to reach the waypoints and the goal. 

3.4.3 Kinematic Solution and RGB Data Fusion 

The customized laser scanning system provides more flexibility in terms of hardware 

control and software programming compared to a commercial LiDAR scanner. For 

example, the real-time sensor data is stored and processed to generate a 3D point cloud 

integrated with RGB values by using the kinematic solution of the laser scanning system 

and transformed into a global coordinate. This type of concept could be applied both 

customized and commercial laser scanning system if the kinematic parameters are known. 

The schematic of the kinematics solution of the hybrid laser scanning platform used in this 

thesis is shown in Figure 13. 

The coordinate system 0 (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) is fixed on the laser scanning system, which is 

the base reference frame for localization in the 3D environment. The local coordinate 

system 1 is located at the center of the laser scanner’s body frame, which is rotating along 

the 𝑧𝑧1 axis in terms of 𝜃𝜃1. The local coordinate systems 2 and 3 are fixed on the center of 

each of the two vertically-mounted LiDAR scanner. Each LiDAR can collect distance 

measurements from -95o to 95o which is named 𝜃𝜃3 with a 0.1667o-increment resolution. 

Finally, the local coordinate system 4 indicates a measured point (𝑥𝑥4,𝑦𝑦4, 𝑧𝑧4) on an object 

surface. Based on the relationships identified, the kinematics problem is solved using 

Denavit–Hartenberg parameters, as shown in Table 2 and Equation 1. The red box in 
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Equation 1 is the point coordinate of a map location in terms of the body rotation angle 𝜃𝜃1 

and laser scanner beam angle 𝜃𝜃3. 

 

 

Figure 13 – The kinematics of the hybrid laser scanning system 
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Table 2 – D-H parameters for the hybrid laser scaning system 

 𝜃𝜃 d r 𝛼𝛼 

0 - - 0.4246 0 o 
1 𝜃𝜃1 0.1549 0.2922 90 o 
2 0 o 0 0 0 o 
3 𝜃𝜃3 0 𝑟𝑟3 0 o 
4 0 o 0 - - 
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Equation 1 

3.5 SLAM-based Point Cloud Registration 

3.5.1 2D Pose Estimation with Hector Mapping 

As described in Chapter 1, the SLAM algorithm is the process that builds the 

environmental map and estimates the current location at the same time, which is 

interdependence with each other. There are a lot of SLAM algorithms from the traditional 

wheel odometry-based filtering method to a camera or LiDAR-based advanced method. 

The target environment of this thesis is cluttered construction or disaster sites. Such 

environments have many possibilities to slip due to the ground condition so that the 

traditional wheel odometry-based filtering approaches are not appropriate in these 

environments because the slip is the main source of wheel odometry. The camera-based 

visual SLAM is the hottest topic in the robotics field. However, there is a critical limitation 
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on visual SLAM that it is vulnerable the light conditions. If the light conditions differ with 

the same environment, visual SLAM could occur localization error. Therefore, visual 

SLAM works excellently in the indoor environment, however, the target environment of 

this thesis is outdoor. 

Furthermore, the SLAM problem belongs to a difficult problem because the mapping 

should be performed while estimating the location and direction of the sensor continuously 

and simultaneously when the sensor is moving during mapping. Also, there are various 

challenging factors such as the time difference that sensor data comes in and the error while 

it estimates motion. Numerous LiDAR-based SLAM algorithms have been studied since 

the LIDAR sensor has a relatively small distance error compared to other sensors. It 

depends on the LiDAR device but the accuracy is approximately ±𝟐𝟐.𝟓𝟓𝒄𝒄𝒄𝒄 in 150 𝒄𝒄. The 

2D LiDAR-based SLAM algorithm utilizes the horizontal LiDAR data to calculate the 

position and orientation of the mobile platform on 2D plane. The Hector SLAM algorithm, 

developed by Kohlbrecher et al. is to perform laser scan matching between the current 

LiDAR scan and the incrementally built map for pose estimation and to generate a 

horizontal map. Figure 14a demonstates the raw LiDAR data. After then, scan matching is 

performed using the current estimated map and the previously built map to get translation 

and rotation, as shown in Figure 14b. This will keep calculating the robot pose as the robot 

moves along the path as well as the 2D map, which is shown in Figure 14c. 
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(a) (b) (c) 

Figure 14 – Scan matching with horizontal LiDAR: (a) raw LiDAR data, (b) 2D 

map, (c) trajectory of the mobile robot 

The coordinate frames are visualized in Figure 15 to estimate 6D pose with use of 

Hector SLAM. Both "odom" and "map" frame is a fixed world frame. The base footprint 

frame does not provide height information and represents only the 2D pose of the robot in 

2D plane. The base stabilized frame adds the robot height relative to the base footprint 

frame. The base laser link frame has origin at the horizontally-mounted LiDAR and adds 

the roll and pitch angles relative to the base stabilized frame. Therefore, the base stabilized 

and base laser link frames are equal if there is no roll/pitch motion which is calculated by 

IMU measurement. 
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Figure 15 – The coordinate frames to estimate 6D pose 

3.5.2 3D Motion Estimation with LiDAR Odometry 

The problem of pose estimation with Hector SLAM has the possibility of some 

distortions when it moves because it is based on a rotating 2D laser scanner in spite of IMU 

compensation. This poses a major challenge for correct and accurate registration. 

Currently, most 3D reconstruction systems estimate the motion and reconstruct the 

environment through post-processing. They generally collect the data using the sensor and 

then process it on a powerful computer to obtain an accurate model of the environment. In 

contrast, the LiDAR Odometry And Mapping (LOAM) algorithm [49] to estimate and 

calculate the odometry and mapping with 6 degrees of freedom space (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧) in 

real-time with 3D LiDAR sensor data. It continuously estimates the motion of the sensor, 

removes distortion from the point cloud, and registers the local point cloud to obtain the 

whole map. The algorithm assumes that the movement of the sensor is continuous and 

smooth over time without abrupt changes, and a sweep is defined as one complete 360° 

scan. The right superscription k indicates the number of sweeps, and Pk indicates the point 

cloud perceived during sweep k. 
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The LOAM contains two major threads, "odometry" and "mapping," which run in 

parallel, as shown in Figure 16, which provides characteristics of low drift and low 

computational load. The main function of the "odometry" thread is to estimate the relative 

motion of the sensor between two sweeps by finding LiDAR feature points and their 

correspondences at a higher frame rate. It also removes distortion in the point cloud caused 

by the motion of the LiDAR using the estimated motion. It assumes that the angular and 

linear velocities of the sensor during a sweep are constant, which enables it to linearly 

interpolate the pose transform within a sweep for the points that are scanned at different 

times. The "mapping" thread takes the undistorted point cloud and incrementally builds a 

map. It simultaneously computes the pose of the LiDAR on the map using pose 

optimization at a lower frame rate, which is once per sweep. The estimation of the LiDAR 

state is a combination of the outputs from the two threads.  

 

Figure 16 – Block diagram of the LiDAR odometry and mapping software [49] 
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Figure 17 – Block diagram of the modified LOAM algorithm for this research 

Figure 17 is the modified diagram of the LOAM algorithm used in this research. 

Among this diagram, the feature extraction modules revised and the ground segmentation, 

clustering, and moving object detection and removal parts are added. At first, the raw 

LiDAR data is collected and generated to point cloud. After the ground segmentation and 

feature extraction is done, it clusters point cloud into several objects. Then, the moving 

objects are detected and removed from the extracted features for better SLAM calculation. 

This is because the LOAM algorithm is to estimate odometry by calculating a relative pose 

between current and previous point cloud data. At the same time, it also computes the Lidar 

Mapping which is correcting the pose by matching the accumulated point cloud with the 
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current point cloud. The detailed modification of algorithm will be described in the section 

3.7. 

3.6 Real-time Terrain Traversability Assessment  

A LiDAR edge is a point in the point cloud that shows discontinuities or large 

changes. The laser scan data of flat ground without any objects should be in the form 

concentric circles on the ground plane. This is because each circle is generated by the 

ranges detected by the complete rotation of a single specified angle laser. This formation 

means that there are no LiDAR edges and no discontinuities or large changes in the point 

cloud. However, the data would deviate from a circular pattern if there were walls or 

objects around the laser scanning system, as shown in Figure 18. If an object was present, 

the range data would be less than that expected on flat ground. In contrast, the range data 

would be greater than that expected on flat ground if a hole was present. This demonstrates 

that the vertical and horizontal geometry of the scan data can be utilized to determine 

traversable regions and obstacles. 

 

Figure 18 – Detecting obstacles using vertical laser lines 
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The customized laser scanning system collects 3D range data while it is rotating 

about an axis. While the system is rotating, it samples the surrounding environment 

vertically by firing lasers at several elevation angles (θ). At the same time, it collects data 

at a discrete azimuth angle (φ) horizontally. This approach is dependent on the difference 

in ranges and the angle between the neighboring laser beams and not on the azimuth angle 

φ. Figure 9 depicts the laser scanner system and its laser firings at a specific azimuth φ 

when lasers sample the flat ground at various points away from the sensor position for 

several elevation angles θ along a radial direction. In this paper, the measured range data 

is described as Rθ,φ, where θ is the vertical index along the elevation angle and φ is the 

horizontal index along the azimuth angle. The raw scan data is also pre-processed by 

running a simple median filter with a three-point window in vertical to smooth the data. 

 

 

Figure 19 – Illustration of single LiDAR firings to the flat ground 

The range difference between a laser at elevation angle θ and a neighboring laser at 

elevation angle θ+δθ is represented by δR. If the ground in the surrounding environment is 

perfectly flat, there is an expected δR for the elevation angles θ and θ+δθ, as described in 

Equation 2 and Figure 19. 
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ℎ = 𝑅𝑅𝑖𝑖 sin𝜃𝜃𝑖𝑖 = (𝑅𝑅𝑖𝑖 + 𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓) sin(𝜃𝜃𝑖𝑖 + 𝛿𝛿𝜃𝜃) 

𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓 = 𝑅𝑅𝑖𝑖 �
sin𝜃𝜃𝑖𝑖

sin(𝜃𝜃𝑖𝑖 + 𝛿𝛿𝜃𝜃) − 1� 
Equation 2 

Since 𝛿𝛿𝜃𝜃 is positive and sin𝜃𝜃𝑖𝑖 < sin(𝜃𝜃𝑖𝑖 + 𝛿𝛿𝜃𝜃), the expected range difference for flat 

ground 𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓 should be a negative value. On the other hand, 𝛿𝛿𝑅𝑅𝑚𝑚 can be defined as the 

range difference between neighbor points in Equation 3. 

𝛿𝛿𝑅𝑅𝑚𝑚 = 𝑅𝑅𝜃𝜃𝑖𝑖+1,𝜑𝜑𝑗𝑗 − 𝑅𝑅𝜃𝜃𝑖𝑖,𝜑𝜑𝑗𝑗 Equation 3 

The value of 𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓 can vary from small to large. For example, if 𝜃𝜃 is small, then 𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓 

will have a very large value. In contrast, if 𝜃𝜃 is large, then 𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓 will have a relatively small 

value. This is visualized in Figure 19. Therefore, it is necessary to use a ratio between the 

measured range difference and the expected range difference for flat ground, as shown in 

Equation 4. 

𝜌𝜌 = 1 −
𝛿𝛿𝑅𝑅𝑚𝑚
𝛿𝛿𝑅𝑅𝑓𝑓𝑓𝑓

 Equation 4 

This represents the unevenness of the nearby terrain. If the value of ρ is close to zero, 

this means that the points are nearly flat. On the other hand, the further away from zero the 

value, the greater the degree of deviation from unevenness. Figure 20 shows four examples 

of ground shape calculation.  
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Using this geometric characteristic, it is possible to detect object locations from the 

mobile platform, which is helpful for navigation. However, it is also necessary to compute 

the slope of the ground to determine its traversability, as in Equation 5. Slopes are 

traversable if they are within the navigational capability of the robot; so a terrain with a 

slope of less than a given threshold is traversable [8,50]. Here is an example of this 

approach in Figure 21 which shows an example point cloud of the ground and wall.  

 

 

Figure 20 – Illustration of single LiDAR firings to the non-flat ground 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(ℎ − 𝑅𝑅𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖) − (ℎ − 𝑅𝑅𝑖𝑖+1 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1)

𝑅𝑅𝑖𝑖 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 − 𝑅𝑅𝑖𝑖+1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1
 

=
𝑅𝑅𝑖𝑖+1 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1 − 𝑅𝑅𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖
𝑅𝑅𝑖𝑖 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 − 𝑅𝑅𝑖𝑖+1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1

= tan(𝛼𝛼) 

𝛼𝛼 = tan−1 �
𝑅𝑅𝑖𝑖+1 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1 − 𝑅𝑅𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖
𝑅𝑅𝑖𝑖 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 − 𝑅𝑅𝑖𝑖+1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖+1

� 

Equation 5 

   

(a) (b) (c) 

Figure 21 – (a) Example point cloud, (b) unevenness and elevation angle, (c) slope 

angle and elevation angle 

The proposed method performs obstacle detection at the laser scanning point level 

by classifying points as belonging to the ground or to an obstacle. It performs real-time 

classification along a LiDAR measurement angle. It identifies the traversable region 

without using normal classification, plane fitting, Gaussian Regression, or PCA, which are 

computationally expensive or require training for classification. The fact that the 

traversable region can be obtained solely by the geometry and ranges of a rotating laser 

scanner makes this method simple and effective. The aim is not to identify or recognize 

10 15 20 25 30 35 40

theta (vertical angle, deg)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25 30 35 40

theta (vertical angle, deg)

-20

0

20

40

60

80

100

120

140

al
ph

a 
(s

lo
pe

 a
ng

le
, d

eg
)



 44 

obstacles but simply to detect objects and identify the traversable region for the mobile 

robot. 

3.7 Moving Objects Detection and Removal from SLAM calculation  

The approach used in this section detects and removes moving objects from the 

incoming point cloud frames in real-time which can later be used by any available SLAM 

algorithm to improve localization accuracy. The main idea is to observe relative motion 

between the LiDAR and the objects within its surroundings. The data far from the LiDAR 

does not required to detect nearby moving objects because it usually has noisy data and 

inaccurate. Therefore, the LiDAR raw data could be cropped to a specific range of data 

around the LiDAR. With the cropped point cloud considered as input for moving object 

detection and removal, the process has been proposed as shown in Figure 22.  

 

Figure 22 – Block diagram of the moving object removal process 
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Figure 23 demonstates an example of a point cloud scanned in an indoor environment 

and the process of moving objects removal. The captured data are shown after the 10×10 

𝑚𝑚2 cropping around the sensor. There are several moving objects in the consecutively 

captured point cloud. As shown in the figure, the points corresponding to the ground 

become connecting links between each object observed in the point cloud. Due to this 

reason, clustering the points into individual groups of point clusters becomes difficult. If 

there exists ground plane points, the Euclidean clustering cannot be used. This is because 

the multiple independent objects could be grouped as a single cluster due to their 

connectivity through the ground plane points. The color of a given points in Figure 23 

represents the height of laser point cloud. 

 

Figure 23 – Illustration of the moving object removal process 
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The well-known ground plane removal methods is the RANSAC algorithm, which 

is an iterative plane fitting procedure that randomly selects points from the point cloud to 

fit a 2D plane according to a provided threshold. However, the conventional RANSAC 

algorithm frequently fails in extracting the ground plane satisfactorily from cluttered 

environments. Therefore, the ground segmentation is achieved by the method by using 

calculating the unevenness of terrain in section 3.6, as shown in Figure 23 (b). Then, the 

features are extracted by computing curvature using Equation 6, which is an existing 

method in the LOAM algorithm. If the curvature is larger than threshold, it designates as 

edge feature. The extracted edge feature points without ground points are clustered with 

respect to the Euclidean distance between them. This process separates the point cloud into 

clusters by using the minimum distance threshold between two points to be considered 

belonging to the same cluster and minimum number of point’s threshold within a cluster, 

as shown in Figure 23 (c). 

𝐶𝐶 =
1

|𝑆𝑆|�𝑋𝑋(𝑘𝑘,𝑖𝑖)
𝐿𝐿 �

� � �𝑋𝑋(𝑘𝑘,𝑖𝑖)
𝐿𝐿 − 𝑋𝑋(𝑘𝑘,𝑗𝑗)

𝐿𝐿 �
𝑗𝑗∈𝑆𝑆,𝑗𝑗≠𝑖𝑖

� Equation 6 

Once the point cloud is segmented for several clusters, the cluster correspondence is 

performed, which is the task of finding relationship between clusters. In other words, every 

pair of consecutive point cloud frame has an associated map 𝑀𝑀𝑡𝑡  that saves the cluster 

correspondence relations between the clusters of the two consecutive frames. An example 

of such cluster correspondence is shown in the Equation 7. 
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𝑀𝑀𝑡𝑡 = ([2 → 5] [3 → 7] … [𝑠𝑠 → 𝑞𝑞]) 

1 ≤ 𝑠𝑠 ≤ 𝑘𝑘𝑡𝑡−1; 1 ≤ 𝑞𝑞 ≤ 𝑘𝑘𝑡𝑡  

(𝑘𝑘𝑡𝑡 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑠𝑠𝑛𝑛𝑚𝑚𝑛𝑛𝑠𝑠𝑟𝑟 𝑠𝑠𝑜𝑜 𝑐𝑐𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑑𝑑 𝑎𝑎𝑡𝑡 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠 𝑡𝑡) 

Equation 7 

A volume constraint is implemented with the bounding box (BB) approach to deal 

with the false positive correspondence. The two matched clusters should have similar 

volume of its BB. This condition must hold true because the time frame between two 

consecutive point cloud is around 0.1 sec based on the LiDAR specification and the 

viewpoint does not change drastically due to the less mobile robot speed. Equation 8 shows 

the the normalized volume constraint and it can be utilized for removing outliers such as 

false positive from the map 𝑀𝑀𝑡𝑡. Let assume that a cluster captured at time t is represented 

as 𝑃𝑃𝐶𝐶𝑡𝑡𝑘𝑘 and the identical cluster k is represented as 𝑃𝑃𝐶𝐶𝑡𝑡+1𝑘𝑘  which is captured at time t+1. 

𝑣𝑣1 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛𝑚𝑚𝑠𝑠 �𝐵𝐵𝐵𝐵�𝑃𝑃𝐶𝐶𝑡𝑡𝑘𝑘�� 

𝑣𝑣2 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛𝑚𝑚𝑠𝑠 �𝐵𝐵𝐵𝐵�𝑃𝑃𝐶𝐶𝑡𝑡+1𝑘𝑘 �� 

|𝑣𝑣1 − 𝑣𝑣2|
|𝑣𝑣1 + 𝑣𝑣2| < 𝛿𝛿 

Equation 8 

 

A moving object can be described that the pose changes constantly with respect to 

the inertial frame. The centroid of each cluster is extracted and tracked the location utilizing 

relative pose of the sensor about the objects. If the location of centroid has certain direction 

and speed for several consecutive point cloud, it can be detected as a moving object as 
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shown in Figure 23 (d). Finally, the points identified as a moving object are removed from 

the extracted features which will be used for odometry calculation. 

 

Figure 24 – Effect of moving object removal 

Figure 24 and Table 3 provides to verify the effect of moving object removal on the 

performance of SLAM odometry estimation. As shown in Figure 24, even though the 

sensor did not move, the estimated odometry can fluctuate because the calculation is 

performed using extracted feature points and does not consider movement. In other words, 

if there are many moving objects near the sensor, this will lead to many false feature points, 

which create inconsistencies in the odometry calculation and can be a source of error. As 

shown in Figure 24 and Table 3, the odometry estimation varied by 5 cm in position and 
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oscillated by less than 0.5 degrees in orientation using the original LOAM calculation. 

However, this was reduced to a 1.5 cm variation in position and 0.1 degree variation in 

orientation when moving object removal was applied. In short, the variation in the 

odometry estimation when moving object removal was applied was reduced to 28.6% that 

of the original algorithm. Therefore, removing moving objects from the point cloud yielded 

odometry results that were 3.5 times more accurate. 

Table 3 – Effect of moving object removal 

 
RMSE 

(1) w/o moving 

object removal 

(2) w moving 

object removal 

Variation (%)    

= (2)/(1) 

Position 

X (m) 0.0660 0.0144 21.8 

Y (m) 0.0471 0.0134 28.5 

Z (m) 0.0517 0.0159 30.8 

Avg. 0.0549 0.0146 26.6 

Orientation 

Roll (deg) 0.3285 0.0792 24.1 

Pitch (deg) 0.4420 0.1509 34.1 

Yaw (deg) 0.2265 0.0726 32.1 

Avg. 0.3323 0.1009 30.4 

 

3.8 Path Planning and Tracking Control 

Path planning means determining an collision-free path to reach the goal position. 

There are three prime objectives for inspection using ground robots: (1) minimum time of 

operation, (2) collision avoidance, and (3) maximum coverage. Shortening the path length 
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plays is the most efficient way of reducing the operation time and can be achieved by the 

global planner. The global planner is also used to avoid static obstacles, but dynamic 

obstacles require a local planner. The block diagram of the path planning algorithm 

including global and local planners is shown in Figure 25 how to relate to each other. 

Lastly, the maximum coverage is computed by the scan view planning module, which is 

described in section 3.9. 

 

Figure 25 – Block diagram of path planning algorithm 
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3.8.1 Global Planner  

For the global path planner to perform, the goal position must be selected. The 

proposed system uses the frontier-based approach to determine the exploration goal 

location. When the GRoMI begins scanning, it first detects objects around it. Then, the 

local goal position is determined using the frontier algorithm [51] within the range of the 

currently built map area. Instead of choosing the nearest frontier, the global planner 

considers both distance and heading angle to select a goal position within the un-scanned 

area shown in Figure 26 using Equation 9. 

𝐺𝐺𝑠𝑠𝑎𝑎𝑠𝑠 = argmin
𝑖𝑖

(|𝜃𝜃 − 𝛽𝛽𝑖𝑖| × 𝑑𝑑𝑖𝑖) Equation 9 

 

Figure 26 – Example of selecting the global planner goal position 

The most advanced existing methods for mobile robot path planning are probabilistic 

approaches such as RRT, RRT*, or variants thereof [52]. The general approach using 
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RRT* is to plan in higher-dimensional state space; the planner randomly samples states 

and either specifically calculates or randomly guesses actions that will take the robot from 

the current state to the target state. The success of these approaches depends largely on the 

accuracy of the modeling. If the higher-dimensional state-space model is created, the 

success rate of planning will be increased. However, the random sampling required to 

expand the states leads to high computational cost, which makes the RRT-based approach 

unsuitable for real-time planning in dynamic environments. 

Since this study focuses on path planning in an unknown environment, D* Lite is a 

more appropriate global planner as it has efficient re-planning capabilities that enable it to 

handle changes in the environment [53]. D* Lite is more computationally efficient than A* 

searches and easier to implement than the original D* [54]. D*Lite works in the XY plane 

which is a grid-based planner and the Euclidean distance from the goal position is used as 

a heuristic. To reduce complexity, it uses a simple model that can move from the current 

cell to eight adjacent cells as long as there are no obstacles in the adjacent cells. The global 

planner is initialized with a uniformly discrete 2D occupied grid model of the environment 

with all unknown edge costs set to a minimum. This enables the planner to estimate an 

initial guess for the path to the goal without a full map. It is called the robot navigation 

map (shown in Figure 27) and is based on the unevenness value and slope angle described 

in section 3.6. First, the currently built point cloud is divided into cells. The cell size must 

be chosen with care because it is related to computational load and resolution. If the cells 

are too large, the map may not be encoded properly due to low resolution. The smaller the 

scale of the cells, the more accurate the voxel map but the larger the memory footprint. For 

example, in this study, the GRoMI has a footprint of approximately one square meter. 
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Therefore, it might be assumed that selecting a scale of one meter per cell would be correct. 

However, while this is a fine starting place, it is less than ideal. If we decide the robot needs 

a cell plus adjacent cells available to drive through, then we require three traversable cells. 

Very few doorways are three meters wide, so our robot would be unable to pass, even 

though in reality it would easily fit. Therefore, a scale of 0.5 meters by 0.5 meters was used 

as this created a sufficiently detailed map but allowed for the somewhat tight passage of 

the robot. 

 

Figure 27 – Robot navigation map (white: traversable, black: non-traversable) 

3.8.2 Local Planner  

By assuming that all the obstacles are static, the global planner can take into account 

potential collisions while the robot moves to the goal without considering the actions of 

the robot in the velocity space or adding the dimension of time to the planning space. 

However, a cluttered environment may contain unexpected dynamic obstacles. By 

replacing the global planner with a local planner and estimating the velocity of moving 

obstacles, the proposed approach can handle moving obstacles efficiently. In this thesis, 

the object-detection-based potential vector field method [55] is adopted as the local 
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planner. The concept is that obstacles generate an artificial repulsive force and a goal 

position generates an artificial attractive force. The direction in which the mobile platform 

moves is determined by the direction of total field intensity, which is the sum of the 

artificial forces. Dynamic obstacles are detected while the ground robot is moving, and a 

potential field is constructed to avoid them. The ground robot then will follow the gradient 

direction of the potential field and requests re-planning from the global planner once it 

clears the obstacle. Examples of paths estimated using an artificial potential field from a 

start point (0,0) to a goal point (5,5) are indicated by red lines in Figure 28. 

 

Figure 28 – Example of an artificial potential field and the trajectory 

The simulated data were used to evaluate the artificial pre-gastric method. As shown 

in Figure 29, the laser line was simulated with a yellow line detecting obstacles. In this 

simulation, moving obstacles were used to demonstrate the robustness of this method. The 

black circle is the original position of the obstacle, and the red circle is the current position 

of the obstacle moving over time. The sky blue circle near the red circle, which is the 

mobile robot's current position, indicates the expected position of the obstacle detected by 

LiDAR. Finally, the light red circle represents the mobile robot's current position, and the 
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red line represents the mobile robot's optimal trajectory calculated from the pre-artificial 

camouflage. The contour line shows the potential level with a column barrier obstruction 

at every point in the field and a local minimum at the target location. 

  

  

Figure 29 – Simulation of the artificial potential field and odometry model 

3.8.3 Path Tracking Control  

In order to accurately model the motion of the physical robot, the planner must also 

take into consideration the low-level controller that drives the physical robot [56]. The 

tracking controller is essentially a PD controller that drives the robot with generating the 

motor commands for the left and right wheels of a robot to the nearest waypoint as provided 

by the global planner. In order to drive the robot from current location (𝑥𝑥,𝑦𝑦) to a goal 

location (xg, yg), the robot has to first align towards the goal and then drive forward till it 
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reaches a location within the threshold distance to the goal point. A schematic showing the 

status of the robot, goal and the control inputs given to the robot is given in Figure 30.  

 

Figure 30 – The input of the path tracking controller 

The slope of the line connecting the robot and the goal position, θ∗, is the desired 

orientation of the robot. Based on the heading error the angular velocity control input (𝜔𝜔) 

to the robot can be determined from the equations given below: 

θ∗ = tan−1 �
𝑦𝑦𝑓𝑓 − 𝑦𝑦
𝑥𝑥𝑓𝑓 − 𝑥𝑥

� 

𝑠𝑠 = θ∗ − θ 

𝑤𝑤 = kp𝑠𝑠 + 𝑘𝑘𝑑𝑑�̇�𝑠 

Equation 10 
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where, kp, and kd are the proportional, and derivative gains respectively, e is the error 

limited between [–π, π). 

The linear velocity of the robot is scaled non-linearly based on the angular velocity 

as given by:  

𝑉𝑉𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑉𝑉𝑚𝑚𝑙𝑙𝑥𝑥 �1 −
2 tan−1(|𝑤𝑤|)

𝜋𝜋
� Equation 11 

This allows the robot to slow down before taking turns and the velocities of the left 

and right wheels are generated as follows: 

𝑉𝑉𝑙𝑙𝑙𝑙𝑓𝑓𝑡𝑡 = 𝑉𝑉𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − βθ 

𝑉𝑉𝑙𝑙𝑖𝑖𝑓𝑓ℎ𝑡𝑡 = 𝑉𝑉𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + βθ 

Equation 12 

3.9 Scan View Planning 

3.9.1 Frontier-Void-based Exploration  

One problem related to exploration in 3D is NBV computation, which is the 

computation of a sequence of viewpoints that continues until an entire scene has been 

observed by a sensor. This thesis begins with the frontier-void-based exploration approach 

to exploration in 3D introduced by Dornhege and Kleiner [57]. This approach was chosen 

as it extends the widely used 2D frontier-based exploration algorithms into three 

dimensions and can deal with the kinematic constraints of the robot. 
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The algorithm is built on top of an occupancy grid, which is a map consisting of a 

regular grid of cube cells (voxels) that can be classified into three disjunct categories: 

occupied voxels, which contain points from the point cloud; free voxels, which have been 

covered by the sensor’s field of view and do not contain any points (obstacles); and 

unknown voxels, which have not been covered by the sensor’s field of view. A 

visualization of occupied and free voxels is presented in Figure 31 (a) and (b), respectively. 

Voxels that are neither occupied nor free are unknown and are not shown. 

 

       (a) Occupied voxels                (b) Free voxels 

Figure 31 – Visualization of voxels 

Free and unknown voxels are further differentiated. In accordance with Yamauchi 

[41], frontier voxels are defined as free voxels that are neighbors of unknown voxels. Void 

voxels are unknown voxels that are neighbors of occupied voxels. In this study, two voxels 

are considered neighbors if and only if they share a common corner, which is following the 

26-connected of the definition of pixel connectivity. 
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The idea behind the frontier-void-based exploration approach is to estimate the 

exploration potential, that is, the utility, of free voxels in the known map and to use this 

utility to find the next best scan position. The method proceeds as follows: 

1. Void voxels are extracted and clustered, 

2. frontier voxels are extracted and clustered, 

3. a set of frontier-voids is created that binds together frontier clusters with void 

clusters, and 

4. the set of frontier-voids is used to determine the best location for the next view. 

The frontiers are detected during the map update process and stored. Each time the 

dynamic point cloud is updated and integrated into the map, the voxels are also updated. 

Voxels are considered frontiers if their occupancy probability is lower than 0.5 and at least 

one of their 26 direct neighbor voxels has an occupancy probability of exactly 0.5 (which 

indicates an unknown or void voxel). Put more intuitively, frontier voxels are free voxels 

located next to unobserved voxels. The sorted frontier list is updated as new frontier voxels 

emerge and previously unobserved regions are observed. This frontier update is performed 

continuously at each LiDAR measurement integration. 

3.9.2 Determining the Next Best Scan Location  

The optimal position for the mobile robot to stop in 3D and acquire a high-resolution 

stationary scan is determined using the voxel map and visibility analysis. The ray-tracing 

algorithm [58] is used to calculate the line-of-sight visibility. First, point cloud of the target 
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area is divided into voxels, which are small cubes utilized to represent 3D space, as shown 

in bottom right of Figure 32. Figure 32 demonstrates the process of generating 3D voxel 

and 2D robot navigation maps from a dynamic increment point cloud. The occupied voxel 

is then generating if there are points in a point cloud in the voxel area. Each voxel is 

allocated one of two statuses, visible or invisible, based on the ray-tracing result.  

 

Figure 32 – Process of generating 3D voxel and 2D navigation map from point cloud 

To estimate whether a ray intersects with a voxel or not, let assume that the voxels 

are small spheres with a radius of r = a
√2

, where a is the length of voxel's side [59]. The ray 

intersects the voxel if its distance from the center of the voxel is less than r. In Figure 33, 

θ is the angle between the ray touching the edge of the sphere of voxel A and the ray 
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crossing the center of the sphere of voxel A, and φ is the angle between the ray crossing 

the center of the sphere of voxel A and the ray crossing the center of the sphere of voxel 

B. If θ > φ, voxel B is occluded by voxel A; otherwise, voxel B is visible. 

 

Figure 33 – Example of an occluded voxel 

 

(a) Scan location selection in 2D view           (b) Scan location selection in 3D view 

Figure 34 – Procedure of scan location selection 

The stationary scan locations should be reachable for the ground robot, have a large 

field-of-view of the surroundings with minimal obstructions, and have minimal 

overlapping areas between scans to reduce redundancy. To sum up, the scan location 

selection process should meet the following steps. 
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1) The traversable area displayed by the gray area in Figure 34 (a) should be 

identified, which was described in section 3.6 and 3.7.  

2) The frontier cell locations which are displayed with the blue dots in Figure 34 (a) 

should be extracted and determine the temporary navigation goal location which is 

displayed with the orange color dot by using the frontier-based approach. Both are 

explained in section 3.8.1. 

3) The candidate scan locations are uniformly sampled near the temporary navigation 

goal location which is displayed in red dots with a predefined number Nc of 

candidate positions 𝑃𝑃𝑖𝑖 = [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖]𝑇𝑇 . Because that locations can capture more 

unknown voxels. 

4) The distance between one scan location and others should be greater than the 

minimum distance threshold between scans. If there is some candidate scan locations 

in the threshold, it will be removed. This is required to achieve a spatially uniform 

candidate position which avoids overlapped scan coverage and scan redundancy. 

5) The scan view calculation is performed by following equation. It will list in order 

to maximize the number of visible and void voxels, and to minimize the number of 

invisible voxels from each candidate scan location. 

𝑆𝑆𝑐𝑐𝑎𝑎𝑠𝑠 𝐿𝐿𝑠𝑠𝑐𝑐𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 = argmax
𝑖𝑖

�
#𝑣𝑣𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙 + #𝑣𝑣𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑑𝑑

#𝑣𝑣𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑙𝑙𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙
� Equation 13 

6) It should be checked at least one available path is existing from the current location 

to the selected scan location. 
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CHAPTER 4. EXPERIMENT RESULTS AND DISCUSSION 

4.1 Experiment in Construction Site 

4.1.1 Experimental Setup 

To validate the proposed framework for autonomous 3D mapping with ground robot 

in an uneven outdoor environment, an experiment was conducted in a real-world 

construction site with uneven terrains and obstacles. The location of the experiment was 

located on the Georgia Institute of Technology campus. Figure 35 shows the test field used 

in the experiment. The test field contains a building, multiple structures, and obstacles such 

as construction equipment, materials, fences, rocks, trees, hills, trenches, and piles of dirt. 

Therefore, the validation for this testbed emphasizes on navigation accuracy compared to 

simulation and posture stability. 

 

Figure 35 – Field test construction site surrounded by obstacles and hills 
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4.1.2 Experimental Scenario and Results 

Before the experiment, the simulation of scan view calculation is performed to verify 

the scan completeness in virtual environment based on the approach described in section 

3.9.2. The scan view planning proposed in this thesis locates satisfactory stationary 

scanning locations for ground robots by evaluating the candidate scan locations with a line-

of-sight simulation using a 3D laser scanner. To generate this virtual environment, an UAV 

was deployed the target site at first to build 3D point cloud by using photogrammetry. The 

UAV-generated 3D point cloud, as shown in the top left side of Figure 36, was used to 

make the virtual environment which act a basic map to calculate the scan positions and the 

paths between them. The UAV-generated 3D point cloud converted to 3D voxel for 

reducing computational load, as shown in bottom middle of Figure 36. All of the 3D voxel 

size used in this research is 30 cm x 30 cm. 

Table 4 demonstrates the results of scan planning simulations with various 

parameters. The last column represents the lack of completeness (LoC), which measures 

the completeness of the target site in terms of voxels. This is calculated using Equation 14  

It calculates how many number of voxels that cannot be obtained when the stationary scans 

are performed at the selected scan locations compared to the number of voxels from the 

UAV-generation point cloud in percentage. In other words, LoC represents to the 

percentage of unscanned voxels, which are voxels that are not visible from any of the 

selected scan locations. Therefore, the lower number of LoC would better because the less 

number of voxels are missed. As shown in Table 4, all 8 simulations were successful in 

identifying a number of scan locations that cover the complete model with smaller than 4% 

LoC. Among the eight simulation trials in Table 4, the sixth trial of parameter set was 
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chosen and used to estimate scan locations for the rest of this research. Figure 37 

demonstrates the scan locations, planned and actual paths for the testbed which reflects the 

simulated result of Figure 37 and Table 4. 

 

Figure 36 – Procedure of scan view planning with UAV-generated 3D point cloud 

LoC = 1 − number of visible voxels from a scan location 
𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑙𝑙 𝑙𝑙𝑛𝑛𝑚𝑚𝑣𝑣𝑙𝑙𝑙𝑙 𝑣𝑣𝑓𝑓 𝑣𝑣𝑣𝑣𝑥𝑥𝑙𝑙𝑙𝑙𝑣𝑣 𝑖𝑖𝑙𝑙 𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙 𝑚𝑚𝑙𝑙𝑚𝑚

× 100 Equation 14 

Table 4 – Results of scan view planning simulation  

Trials 
Min distance 

between scans (m) 

Grid size 

(m) 

Total number 

of candidate 

locations 

Number of 

selected 

locations 

LoC (%) 

1 
15 

0.5 1145 8 3.67 
2 1 557 7 3.31 
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3 1.5 278 7 2.78 
4 2 131 6 2.42 
5 

20 

0.5 1145 7 3.89 
6 1 557 6 3.44 
7 1.5 278 5 2.96 
8 2 131 5 2.65 

 

Figure 37 – Determined scan locations and the path from the scan planning 

simulation  

In the experiment, the postural limits for GRoMI were set to both 15° for roll and 

pitch. The calculation with the shapes and weights of components of GRoMI showed that 

GRoMI withstands 20° roll angle and 35° pitch angle (See Figure 38). Since soft ground 

conditions cannot be detected by the LiDAR, however, the postural limits were set 

marginally to prevent possible tip-over of GRoMI. The linear maximum velocity of the 

path tracking controller was set to 0.5 m/s, with the proportional control constant 0.4. The 

global path planner and the path tracking controller stop when GRoMI is within 0.3 m of 
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the goal location until a new goal location is given after scanning at the current location is 

finished. 

 

Figure 38 – GRoMI configuration with inclination limits 

In the experiment, GRoMI safely navigated to all the scan locations and successfully 

finished the scanning operation without tipping-over or making a collision with obstacles. 

Figure 37 illustrates the trajectory of GRoMI following the path generated by the proposed 

method. Although the testing areas along the navigation trajectory from scan location 1 to 

6 were surrounded by various obstacles such as fences, rocks, trees, construction 

equipment, and materials, the proposed architecture generated safe paths that minimized 

the distance and postural instability, and GRoMI avoided the obstacles and restricted areas 

and reached each of the scan locations safely. The average position difference between 

planned goals and arrived positions was 0.94 m. 

While the paths between scan locations 2 and 6 at the test site were mostly planar 

and surrounded by only a few obstacles, the path from scan location 1 to scan location 2 
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had many obstacles to avoid with multiple small hills and piles of dirt that easily 

destabilizes the posture of GRoMI. However, GRoMI succeeded in reaching scan location 

2 without tipping-over by minimizing the postural instability. Figure 39 shows that GRoMI 

passed through a narrow space between obstacles over an unavoidable hill. GRoMI 

changed the direction to a hill as it was the only possible way to reach the next scan location 

while avoiding obstacles. Figure 40 illustrates the pitch and roll angles of GRoMI in the 

experiment. Both pitch and roll angles mostly remained within the allowed ranges. 

Although the roll angle was close to the limit in the early period due to the localization 

error, it soon got back to the position within the limit and remained near 0°.  

 

Figure 39 – GRoMI navigation which avoids obstacles and hills to minimize the 

postural instability. (a) t=10s. (b) t=20s. (c) t=30s. (d) t=40s. (e) t=50s. (f) t=60s. 

A possible improvement identified in the experiments was to have the algorithm 

prefer a path on a paved road, if available, to the path with water, mud, or covered with 

thick grass. In the experiment, GRoMI often took a shortcut on such areas to minimize the 

path distance. However, the posture of GRoMI was slightly more unstable than expected 
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since GRoMI often moved over small pits or rocks that were not detectible with laser 

scanners. If GRoMI instead prefers a path on hard flat ground, the postural instability will 

be further minimized. On wet grounds, GRoMI’s wheels were often stuck in the mud, and 

GRoMI was not able to move out. As further work, the ground condition from camera 

images will be classified using a convolutional neural network, and the information will be 

added to the map. Then the path planner can generate path not only for the postural 

instability but also for the harsh ground conditions such as wet, muddy, or covered with 

thick grass areas, which will guide a safer and more robust path. 

 

(a)                                                                    (b)                  

Figure 40 – Postures of GRoMI. (a) Pitch angles. (b) Roll angles. (Blue solid line: 

expected angle, red dashed line: experimental result 

4.2 Experiment in Disaster Site 

4.2.1 Experimental Setup 
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In environments such as disaster sites after an earthquake or explosion, geometric 

data is difficult to obtain because these environments are hazardous. Therefore, the 

autonomous scanning platforms should be a reasonable and ethical solution to provide 

high-resolution 3D map data that can assist human activity such as exploration, mapping, 

or search and rescue. To achieve this purpose, the Guardian Center is shown in Figure 41, 

which has simulated damaged structures from earthquakes, hurricanes, and terrorist 

attacks, was selected to carry out experiments with the proposed architecture. In this 

environment, it was possible to investigate the ability of the inspection robot to complete 

time-critical scanning missions with registration accuracy and scan completeness as 

validation criteria. 

 

Figure 41 – Field test simulated disaster environment surrounded by debris 

4.2.2 Experimental Scenario and Results 

A construction site and a simulated disaster site were selected as testbeds for 

validating the proposed framework and the procedure is presented in the form of a 

flowchart in Figure 10. The target scanning region should be specified as a form of 
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rectangle with four corner points coordinate which has an origin point at the initial location 

before it starts. As a first process, a high-resolution stationary scan is performed at the 

initial location. Once the stationary scan and RGB mapping are completed, the mobile 

robot starts to move and the dynamic pre-scanning process (i.e., 3D SLAM) is initiated. 

The horizontal scanner collects horizontal distance information, performs localization, and 

builds a 2D map using Hector SLAM. At the same time, the 3D LiDAR collects 3D 

information on the surroundings to avoid obstacles and build a pre-scanning 3D map with 

3D SLAM. Figure 42 shows the dynamic pre-scanning and localization process. The 

coordinate symbol in the circle represents the current position of the mobile robot, the white 

line means the trajectory of the mobile robot, and the dots show the generated 3D point 

cloud with height-based color.  

 

Figure 42 – 3D dynamic pre-scanning, localization, and trajectory 

Although the pre-scanning process generates 3D point clouds during the dynamic 

scan, the proposed framework uses the static scan method to generate the final 3D point 

cloud. This is because the statically scanned point cloud provides more accurate visual 



 72 

information. Figure 43 compares the results of the statically and dynamically scanned point 

clouds. The dynamic pre-scan process is more susceptible to noise due to the continuous 

movement involved, and the points on the pre-scanning 3D map are less dense due to the 

large size of the data points. The static scan point cloud is not only less noisy but is also 

captured in higher resolution and includes color information. However, the dynamically 

scanned 3D information is useful for the robot to better understand the environment it must 

navigate as it includes features such as downhill slopes, uphill slopes, floor openings, 

ground obstacles, and entrance height. 

While it moves to the goal and performs the dynamic pre-scanning, the scan view 

planning calculate the next best scan location for stationary scan by an evaluation of fitness 

technique, as described in section 3.9.2. While the mobile robot moves to the temporary 

navigation goal, the scan planning algorithm extracts the candidate scan locations near the 

navigation goal and tries to calculate the scan view based on the previously scanned data. 

The location estimated by scan planning should be an answer of question where is the best 

scan location to capture the unknown voxels as many as possible. Once the robot finds the 

location and arrives, the coordinate transformation is calculated from the previous 

stationary scan position to the current position by using SLAM localization data. These 

process cycle keeps going until it covers all the specified region that a ground robot can be 

reached. After the last stationary scan, the robot returns to the initial position and the final 

registered point cloud is generated. When all the scans are done, an RGB-texture mapping 

is performed for better visualization as shown in Figure 44 by using a panoramic view by 

using Equation 15. 
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(a) Stationary scan result 

 

(b) Dynamic scan result 

Figure 43 – Comparison of the result of stationary and dynamic scanned point cloud 

in the same region 
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𝑥𝑥 =
1
∆𝜃𝜃

tan−1
𝑣𝑣
𝑤𝑤

 

𝑦𝑦 =
1
∆𝜃𝜃

tan−1
𝑤𝑤

√𝑛𝑛2 + 𝑣𝑣2
 

Equation 15 

 

Figure 44 – Panorama image to map RGB data on to point cloud 

To verify the efficiency of the proposed scan planning algorithm, it was compared to 

existing 2D NBV [60] and 3D NBV [61] methods in terms of the number of scans required 

to reconstruct the target scene and LoC. Most autonomous methods of environmental 

mapping use the currently built 2D map of the scene and estimate the next scan position 

based on the future visibility of the scene with low levels of visibility and occlusion. 

However, 2D information is highly incomplete in terms of occlusion in a 3D world and 

frequently leads sensors to erroneous or non-optimum positions. By contrast, 3D 

information-based NBV algorithms are more efficient when exploring volumes and 

inspecting surfaces of objects. The 3D NBV algorithm is executed in a voxel space with 

labels: unknown, free, and occupied. The algorithm determines the location with the most 

unknown voxels as the next scanning position. The approach is similar to the proposed 

scan planning algorithm. However, the normal 3D NBV does not consider occlusion by 

objects between the sensor and the target objects or the effects of scan redundancy. 
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The comparison of the scan location selection process was conducted in a simulated 

environment built from the UAV-generated point cloud. The scan location results for each 

case are presented in Figure 45. As Table 5 shows, the proposed method of scan planning 

generated twelve scan locations with less than 5% LoC, which was the lowest LoC, while 

the 2D and 3D NBV methods generated a similar or greater number of scans with 6~7% 

LoC. Therefore, the proposed scan planning approach was superior because it reduced the 

number of scans or kept the same number of scans with reduced LoC. The proposed method 

reduced the unscanned area by 2.498% compared to the 2D NBV algorithm with the same 

number of scans and reduced the unscanned area by 1.29% compared to the 3D NBV 

algorithm with one fewer scan. 

Table 5 – Results of scan view planning 

 Methods Number of scans Time (min) LoC (%) 

Simulation 
Proposed method 12 0.924 4.925 

2D NBV 12 0.259 7.423 
3D NBV 13 0.895 6.215 

Real 

GRoMI 
(Automated data 

collection) 
11 70 5.573 

Faro Scanner 
(manual data 
collection) 

16 160 5.292 
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Figure 45 – Simulated scan locations for each scan planning algorithm from the 

map created by a drone 

For the real-world experiment, the proposed scan planning method was applied in 

the GRoMI and generated eleven scan locations with 5.573% LoC. One difference between 

the simulation and the real-world experiment concerns whether information on the target 

site is known or not. For the simulation, the goal was to find all the scan locations with a 

known map; however, the goal of the real-world experiment with GRoMI was to find the 

next scan location using the currently built map, which contained partial information on 

the target site. Therefore, the latter cannot guarantee optimal locations. Nevertheless, the 
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real-world experiment results of 5.573% LoC and eleven scan locations were relatively 

good compared with conventional approaches in terms of both the number of scans and 

LoC. By contrast, the results using human intuition and a Faro Scanner were sixteen scan 

locations with 5.292% LoC as shown in Figure 46. The number of scans was reduced 

remarkably (by five scans) and there was little difference (0.281%) between the LoC of the 

Faro Scanner and that of the GRoMI data as shown in Table 5.  However, comparing human 

intuition to the algorithm is not rational, and one of the scan locations of the Faro Scanner 

was located in a region that was inaccessible for GRoMI, which was scan #16 in Figure 

46. This is why the LoC of the Faro Scanner was better than that of GRoMI. Even though 

the comparison with the Faro Scanner was only for reference purposes, the proposed scan 

planning method reduced the number of scans required. 

 

Figure 46 – Scan locations of Faro Scanner in a disaster site 
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Figure 47 – Scan locations and path of mobile robot in a disaster site scanned by 

GRoMI 

Figure 47 shows the selected eleven stationary scan locations of the target site and 

path between scan locations. These scan locations and path are determined while the 

ground robot is moving in real-time. Figure 48 demonstrates the result 3D point cloud by 

using Faro Scanner and GRoMI.  
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Figure 48 – Registered RGB point cloud both GRoMI and Faro generated 

 

4.3 Discussion 

These experimental results show that the proposed autonomous laser scanning 

framework can effectively collect and model large-scale sites or surrounding areas using a 

hybrid robotic data collection system without a priori knowledge of the target site. The 

results were favorable for both a construction site and a disaster site and for both simulated 

and real-world environments. The proposed method of scan planning generated twelve 

scan locations with less than 5% LoC, while the conventional methods generated a similar 

or greater number of scans with 6~7% LoC. This means that 3D-based view planning, 
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which considers occlusions and scan redundancy, can improve the process of identifying 

scan locations.   

Table 6 – Total length of path and RMSE deviation from the experiment 

  
Total path 

length (m) 

RMSE deviation (m) 

(Plan-Actual) 

𝑅𝑅𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠 (%)

=
𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 𝑑𝑑𝑠𝑠𝑣𝑣𝑠𝑠𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑎𝑎𝑡𝑡ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡ℎ

 

Construction 

site 

Planned 146.17 - - 

Actual 149.25 0.5426 0.36% 

Disaster site 

Planned 295.12 - - 

Actual 297.78 0. 4195 0.14% 

 

Table 7 – Total length of path and RMSE deviation from literature 

Scenario #1 [93] #2 [93] #3 [93] #4 [93] #5 [94] #6 [95] #7 [96] #8 [97] #9 [97] 

Total path 

length (m) 
97.12 97.12 196.35 196.35 10.68 21.28 40 70 80 

RMSE 

deviation (m) 
0.19 0.27 0.27 0.31 0.03 0.039 0.162 0.255 0.321 

Ratio (%) 0.20 0.28 0.14 0.16 0.28 0.18 0.40 0.36 0.40 
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Table 6 demonstrates the navigation accuracy of the proposed framework by 

comparing the planned path to the actual path. The path planner generates the waypoints 

to the next goal. The total length of the planned path is computed from the distance from 

the first planned waypoint to the last, which is determined by drawing a straight line 

between each waypoint. The actual path joining the waypoints is calculated by tracking 

control. Therefore, the actual path is always longer than the planned path. The actual path 

was around 3.08 meters longer than the planned path for the construction test site and 

around 2.66 meters longer for the disaster test site. The RMSE deviation is also computed 

to show the extent to which the actual path was off track by taking the planned path as a 

ground truth. The RMSE deviation was 0.5426 meters for the construction site and 0.4195 

meters for the disaster site. Navigation accuracy was reported in the literature [62–66] by 

measuring the RMSE of the degree of deviation from the planned path. However, this can 

vary depending on the shape or length of the path. Therefore, the ratios between the degree 

of deviation from the planned path and the total length of path are compared and evaluated, 

as shown in the last column of Table 6. The ratios reported in the literature vary from 0.16% 

to 0.4% in nine scenarios as shown in Table 7. The experiment results for this thesis show 

ratios of between 0.14% and 0.36%, which are comparable results reported in the literature. 

Even though the total length of the path through the disaster site is longer than the length 

of the path through the construction site, the overall navigation accuracy is better for the 

disaster site than for the construction site. This is because SLAM errors accumulate, so the 

longer the navigation length, the greater the error. Since the path through the construction 

site was not closed but open, the SLAM error kept accumulating. However, the mobile 

robot returned to the initial location in the disaster site, so a SLAM loop closure was 
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performed. This is why the overall navigation accuracy is better for the disaster site. 

Therefore, when mission planning for the site mapping process with the proposed 

framework, a return to the initial location should be considered to improve navigation 

accuracy. 
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CHAPTER 5. CONCLUSION 

The 3D laser scanning with mobile platform has become increasingly important in 

the civil engineering and construction fields. The operators are usually determinie the 

number and location of the scans in the data acquisition stage, however, this approach does 

not efficient because it is labor-intensive and time-consuming. The human intuitive 

decision making could include human error. To solve this problem, many researchers 

developed laser scanning platforms and had contributed to the remote sensing for civil 

engineering applications. However, the self-determined robotic laser scan, path planning, 

and SLAM for cluttered environments are still challenging if there is no a priori map.   

To address these issues, the three sub-objectives were presented and validated using 

simulations and real outdoor experiments. First, the ground and moving objects in the point 

cloud were identified and removed for better SLAM calculation. The variation in the 

odometry estimation when moving object removal was applied was reduced to 28.6% that 

of the original algorithm, which means the odometry results were 3.5 times more accurate. 

Second, a navigation goal location and the path to that goal were estimated and 

continuously updating. Even though the navigation accuracy relies on the ground condition 

or shape of the path, the overall path accuracy with the RMSE metric was around 0.4~0.5 

meters for 150~300 meters total path length, and the ratio of deviation compared to total 

path length was between 0.14% and 0.36%, which turned out acceptable in literatures' 

result. Lastly, the steps for determining effective scan view locations to capture the point 

cloud were presented. The proposed method reduced the unscanned region by 2.498% 
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compared to the 2D NBV algorithm with the same number of scans and by 1.29% 

compared to the 3D NBV algorithm with one fewer scan. 

The advantages of the proposed framework over those presented in prior studies are 

as follows: (1) the framework automates the point cloud acquisition process by self-

determined the robot’s preferred scan locations and planning navigation paths, (2) the 

ground and moving objects are filtered out for better odometry calculation, and (3) it 

requires fewer scans to reconstruct large sites by reducing redundant scans and missing 

area using the scan view planning, thus reducing the time required for and cost of data 

collection and processing.  

Even though all of the proposed methods in this dissertation have been validated through 

simulation and experiments, they can be further improved in future studies by considering 

aspects such as terrain materials conditions or roughness to provide more detailed estimates 

of traversability and level of slip. Moreover, there are still some regions that cannot be 

modeled due to their inaccessibility for a ground robot. If drones can be used with ground 

robots, the scanning performance can be improved. The movement of drones is more 

flexible than that of ground robots as the former are not affected by terrain conditions or 

ground obstacles (e.g., debris, holes) and, therefore, have better access to cluttered 

environments. However, drone-based data collection should be limited to zones that cannot 

be accessed by ground robots because the data quality (i.e., accuracy, density, noise level) 

from drones is not as good as that from ground robots.     
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