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SUMMARY

Both humans and machines rely on object classification to perform vital tasks. Classi-

fication is challenging in part because natural variations can greatly alter objects’ appear-

ances while maintaining their identity. An effective classifier must be invariant to these

identity-preserving transformations while also successfully discriminating between sam-

ples from different classes. State-of-the-art machine learning algorithms achieve impres-

sive transformation-invariant classification results by making use of large labeled datasets.

This results in black box models that lose information about the attributes that make sam-

ples unique. Insights about the structure of data can be used to develop models of how

natural data varies which can help create more robust and interpretable classification tech-

niques.

According to the manifold hypothesis, natural variations in high-dimensional data lie

on or near a low-dimensional, nonlinear manifold. Additionally, many identity-preserving

transformations are shared among classes of data which can allow for an efficient repre-

sentation of data variations: a limited set of transformations can describe a majority of

variations in many classes. Therefore, a machine learning model can improve its clas-

sification performance with limited data and its interpretability by directly incorporating

manifold models of natural data variations that are shared among classes.

This work demonstrates the learning of generative models of identity-preserving trans-

formations on data manifolds in order to analyze, generate, and exploit the natural vari-

ations in data for machine learning tasks. The introduced transformation representations

are incorporated into several novel models to highlight the ability to generate realistic sam-

ples of semantically meaningful transformations, generalize transformations beyond their

source domain, and estimate transformations between data samples. We first develop a

model for learning 3D manifold-based transformations from 2D projected inputs. This

work highlights how the manifold transformation structure can be learned with impover-

xvii



ished data and used to perform depth inference from 2D moving inputs. We then confirm

that our generative model of transformations can be generalized across classes by defin-

ing two transfer learning tasks that map transformations learned from a rich dataset to

previously unseen data. Next, we develop the manifold autoencoder, which learns low-

dimensional manifold structure from complex data in the latent space of an autoencoder

and adapts the latent space to accommodate this structure [1, 2]. Finally, we introduce the

Variational Autoencoder with Learned Latent Structure (VAELLS) which incorporates a

learnable manifold model into the fully probabilistic generative framework of a variational

autoencoder [3].
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CHAPTER 1

INTRODUCTION

Both humans and machines rely on object classification to perform vital tasks. They may

need to recognize a pedestrian in an intersection, discern the identity of a person waving to

them on the street, or determine whether an x-ray indicates that a patient has cancer. The

task of classification, while often second nature to humans, is complex. Natural transfor-

mations, such as changes in lighting, pose, size, or viewpoint, can greatly alter an object’s

appearance while maintaining its identity. Therefore, an effective classifier must be invari-

ant to identity-preserving transformations while also effectively discriminating between

samples from different classes.

State-of-the-art machine learning algorithms such as convolutional neural networks [4,

5] and transformers [6] have achieved impressive classification results – reaching nearly

90% classification accuracy on the benchmark ImageNet dataset [7]. Improvements in

machine learning performance can be attributed to the use of large labeled datasets like

ImageNet [7] (21k classes, 14 million images), JFT-300M [8] (18k classes, 303 million

images), and JFT-3B (30k classes, 3 billion images) [9]. These datasets contain many

classes of objects and numerous examples of each class that comprehensively capture in-

class variations. Therefore, the classifier’s invariance to natural transformations is achieved

through the sheer diversity of the training samples presented rather than through a deeper

understanding of the natural data structure.

The need for large labeled datasets presents practical challenges for generalizing the

high-performance classification models to real world settings. First, in many applications,

such as medical, environmental, and defense imaging, it is not possible to collect large

labeled training sets with numerous examples for every class. With limited class examples,

neural network generation and classification performance decreases greatly [10, 11, 12].
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Second, these network models gain invariance to natural transformations at the cost of

losing information about the attributes that make each sample unique, preventing them

from generalizing to novel images and classes. Finally, neural networks are inherently

black boxes which extract relevant information from samples without providing evidence

for how or why they arrive at a certain output. These challenges can be addressed by

utilizing insights about the structure of data and how humans may exploit that structure to

achieve robust classification performance.

According to the manifold hypothesis, natural variations in high-dimensional data lie

on or near a low-dimensional, nonlinear manifold [13]. Additionally, the manifolds repre-

senting different classes are separated by low density regions [14]. Physical laws govern

the possible transformations that objects can undergo and many of the identity-preserving

transformations (e.g., changes in viewpoint, color, and lighting) are shared among classes

of data. The sharing of transformations between classes allows data variations to be repre-

sented efficiently: a limited set of transformations can describe a majority of variations in

many classes.

Work in the neuroscience literature suggests that humans build internal models of nat-

ural transformations when processing data. In particular, experiments suggest that humans

create an analog spatial representation in which the stages of internal mental transformation

processes, such as rotation, correspond directly to the stages of transformation processes

observed in the world [15, 16]. This implies that humans internally imagine transforma-

tions when asked to perform tasks like identifying rotated versions of reference objects [17,

18, 19]. Neuroscience research has also shown that the brain may exploit the manifold na-

ture of object transformations by using hierarchical processing stages to untangle the repre-

sentations of different objects undergoing the same physical transformations (e.g., changes

in pose and position) [20, 21]. Finally, there is experimental evidence that humans gen-

eralize transformation representations across different objects such that a transformation

identified for one object can be used to model the same transformation applied to another
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object [22]. These themes of directly incorporating manifold models of natural data vari-

ations into visual processing and classification can be leveraged to resolve the practical

challenges identified in modern machine learning systems.

Specifically, if machine learning systems directly modeled natural data variations that

are shared among classes, those variations could be learned on a small set of richly sampled

classes and then new samples could be identified as transformed versions of samples that

were already presented to the system. This would reduce the requirement for large num-

bers of labeled examples from each training class, instead allowing for classification using

a global dictionary of known transformations and just a few training samples per class.

Additionally, incorporating transformations into classification systems would maintain in-

formation about the attributes that make samples unique and would boost the explanatory

power of these systems because training samples could be related to test samples through

the known transformations. The cornerstone for such a system is a representation of natural

transformations.

The goal of this thesis is to demonstrate the learning of generative models of

identity-preserving transformations on data manifolds in order to analyze, generate,

and exploit the natural variations in data for machine learning tasks. In order to ac-

commodate the human-inspired classification setting presented, this transformation model

has several requirements. In particular the transformations should be

• Learned from the data with limited supervision. This will provide the flexibility of

identifying dataset-specific transformations that may not be known a priori.

• Constrained to the structure of an estimated data manifold. This ensures that the

transformations represent natural data variations.

• Transferable between classes. This will allow transformations to be learned on one

or a few classes and used on other classes.

• Capable of generating new samples. This enables the system to imagine transformed
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samples.

• Able to infer relationships between samples. This will allow for the comparison

between novel samples and previous training samples to determine if they are related

by known transformations.

In this thesis, transformation learning is incorporated into several novel models, each

of which highlights how the transformation representation satisfies a subset of the require-

ments listed above and together they show the model satisfies all of the requirements. Ex-

periments are performed with a variety of data types (3D points, engineered features, and

features learned by neural networks) using datasets with and without explicitly labeled nat-

ural variations. In these experiments, it is shown that the developed transformation model

can be used to generate realistic samples of semantically meaningful transformations, gen-

eralize transformations beyond their source domains, and estimate transformations between

data samples. This model establishes a foundation from which to build a human-inspired

classification model that directly incorporates natural transformations. This novel classifi-

cation model could be of interest in fields like medicine, defense, and robotics which utilize

label-limited datasets with the goals of understanding natural identity-preserving variations

and performing classification that is invariant to those variations. Additionally it may be

used to develop insight into how humans learn and adapt internal models of transformations

that contribute to their robust understanding of the world.

In the model presented in this thesis, identity-preserving transformations are learned

using the transport operator manifold learning strategy [23]. Manifold learning models es-

timate the low-dimensional manifold structure of data and examine how points are related

through natural transformations. The transport operator technique is a specific manifold

learning model that learns to transform points through nonlinear Lie group operators that

transverse a manifold [24, 25, 23, 26, 27, 11, 1, 3]. Lie group operators represent in-

finitesimal transformations which can be applied to data through an exponential mapping

to transform points along a manifold. This manifold can be globally defined by a set of
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operators that each move in different directions along it [28, 29]. While previous work

with the transport operator manifold model presented simple, proof-of-concept examples,

it is well-suited for representing complex natural data variations because the operators can

be learned from the data, applied to data points to generate new samples beyond their local

neighborhoods, and used to estimate geodesic paths. In this thesis, through a series of en-

gineering advancements, this model is extended to increase its capability to learn complex

transformations. It is then incorporated into a diverse set of applications to highlight the

power and flexibility of this model for representing transformations in different training

environments.

1.1 Organization of Work

Chapter 2 provides background on techniques and context required for understanding the

work in later chapters. Specifically this chapter discusses manifold models for learning

natural variations and current state-of-the-art methods for incorporating transformations

directly into machine learning models.

Figure 1.1 provides a high level view of the chapter organization and how the require-

ments for a desired transformation model are addressed by the chapters. In Chapter 3,

a model is developed for learning transport operators that represent 3D rotational trans-

formations from 2D projected inputs. This work highlights how the transport operator

transformation model can be learned with impoverished data and how the constraint of the

learned manifold model helps enable depth inference from two-dimensional inputs. While

rotation is a well understood transformation, there is no computational model for how hu-

mans develop and adapt their internal model of rotation, which may be needed to perform

mental spatial transformations, depth inference, and third person perspective taking. This

work provides a possible explanation for how humans may incorporate an internal model

of 3D transformations to aid in vision tasks with 2D projected inputs on their retina. The

model is also used to draw conclusions about the possible sensory input requirements for
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(a)

(b)

Figure 1.1: High level view of how the chapters each address the stated requirements for
the desired transformation model.

learning rotation and to perform random dot kinematogram tasks where 3D structure is

inferred from motion.

In Chapter 4, the transport operator manifold model is established as a robust and ac-

curate manifold representation which can be generalized to define the manifold structure

outside of the original training domain. This confirms that the transformations learned us-

ing transport operators can be transferred between classes and used in tasks with limited

training samples and/or training labels. The capability to generate new samples is con-

firmed through the development of two transfer learning tasks that map the transformations
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learned from a rich dataset to previously unseen data. These transfer tasks are shown to

increase classifier robustness, reduce required diversity in the training data, and enable the

generation of novel examples.

In Chapter 5, the transport operator model is incorporated into the latent space of an au-

toencoder to develop the manifold autoencoder which learns the low-dimensional manifold

structure from training data and adapts the latent space to accommodate this structure. By

integrating the transport operator model into an autoencoder latent space, this model can

learn complex data transformations which can be visualized by decoding the transformed

latent vector outputs. This learned manifold model is used to identify unlabeled transfor-

mations in the data, perform data augmentation, and enhance classification performance.

It is first applied to data that has closed transformation paths which extend from a start-

ing point and return to nearly the same point. Through experiments on data with natural

closed transformation paths, it is shown that this model introduces the ability to learn the

latent dynamics of complex systems, generate transformation paths, and classify samples

that belong on the same transformation path. The model is then extended to learn rep-

resentations of natural variations without requiring transformation labels during training.

Finally, a method is developed for learning local regions where each transport operator is

likely to be used while preserving the identity of inputs. This improves data augmentation

performance of the model and introduces the capability of analyzing the transformational

invariances of pretrained classifiers.

In Chapter 6, the Variational Autoencoder with Learned Latent Structure (VAELLS)

is introduced which incorporates a learnable manifold model into the latent space of a

Variational Autoencoder (VAE) [30, 31] . In contrast to the manifold autoencoder, which

uses a deterministic autoencoder mapping, the VAELLS model has a fully probabilistic

generative framework. This enables the model to learn the nonlinear manifold structure

from the data and use that structure to define a prior distribution in the latent space which

can be sampled from to generate transformed outputs. The integration of a latent manifold
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model ensures that the learned prior is well-matched to the data, leading to a more accurate

generative model of the data than other VAE approaches with fixed priors in the latent

space. The latent manifold model also permits defining generative transformation paths

in the latent space and describing class manifolds with transformations stemming from

examples of each class.

Finally, in Chapter 7 we will summarize the contributions of this thesis and discuss

future directions for this work.
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CHAPTER 2

BACKGROUND

2.1 Manifold Models

Envision the following observations that you might have in your everyday life – rotating

your head while viewing your shifting environment, imagining how your friend would look

if their smile transformed into a frown, or watching a basketball bouncing on a basketball

court. Each of these examples represent a complex, smoothly-varying transformation that

humans are accustomed to understanding and interpreting. Natural laws constrain transfor-

mations in the world to be smooth - as an object is transformed from one state to another,

it follows a continuous path with each intermediate step also producing a transformed ver-

sion of that object. These smoothly varying natural transformations support the formation

of data manifolds containing transformed samples from individual classes. A manifold is a

topological space that locally resembles a Euclidean space with a dimension n [32], where

n is less than the dimension of the input space. An intuitive example of a manifold is a

sphere in three dimensions. From every point on a sphere the local neighborhood appears

two-dimensional but the overall nonlinear structure is three-dimensional.

The manifold hypothesis describes high-dimensional data as lying on or near a low-

dimensional, nonlinear manifold [13]. The existence of a nonlinear manifold structure

has been experimentally verified in many domains including natural images [33], neural

recordings [34, 35], hyperspectral imagery [36], and medical data [37]. The implications

of the manifold hypothesis are particularly important for machine learning tasks that utilize

high dimensional data because, rather than attempting to extract useful information from

individual pixels or input features, the data can be distilled to a lower dimensional space in

which the relevant characteristics can be analyzed and utilized.
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Dimensionality reduction techniques have long been employed to capture the low-

dimensional structure in data. When the data variations are within a linear subspace, classic

dimensionaity reduction techniques such as Principle Component Analysis (PCA) [38, 39]

and Independent Component Analysis (ICA) [40] can be employed. PCA decomposes the

data into a linear combination of orthogonal basis vectors that maximize the variance of

the data projection and ICA extends this to non-Gaussian signals by exploiting the statisti-

cal independence between the basis vectors rather than orthogonality. When the manifold

structure is nonlinear, as in many applications, manifold learning algorithms can be used to

discover this structure from the data.

The most common manifold learning approaches (e.g., Isomap [41], Locally-Linear

Embedding (LLE) [42], Maximum Variance Unfolding (MVU) [43], Laplacian Eigen-

maps [44], t-Stochastic Neighbor Embedding (t-SNE) [45], and Uniform Manifold Ap-

proximation and Projection (UMAP) [46]) represent the manifold through a low-dimensional

embedding of the data points without a method for generating transformed points on the

manifold. There have been several techniques introduced (e.g., Locally Smooth Mani-

fold Learning (LSML) [47, 48] and Non-Local Manifold Tangent Learning (NLMT) [49])

that use the training points to learn a function that maps high dimensional points to linear

tangent planes that represent the manifold structure. The Locally Linear Latent Variable

Model (LL-LVM) estimates both the embedded points and the mapping between the high-

dimensional and low-dimensional data using a probabilistic model which attempts to max-

imize the likelihood of the observations [50]. These methods, which we refer to as tangent

plane estimation techniques, can admit representations that have some generative capabil-

ities on the estimated linear tangent planes. However, the linear approximations limit the

magnitude of transformations that can be applied while remaining on the manifold.

Other methods define manifolds through nonlinear Lie group operators that transverse

the manifold [24, 25, 23, 26, 27, 11, 1, 3]. To characterize manifold transformations, a

transformation operator, T ∈ RD×D, needs to be defined that can generate the transfor-
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mations between two data points x0,x1 ∈ RD: x1 = Tx0. This transformation belongs

to a family of operators T (i.e., T ∈ T ) which is endowed with group structure. Specifi-

cally, i) there exists a group operation ◦ to combine transformations; ii) if T0,T1 ∈ T then

T0 ◦T1 ∈ T ; iii) the operators are associative; iv) there exists an identity operator; and v)

there exists an inverse element for each operator T ∈ T . This continuous transformation

group is termed a Lie group [32].

A Lie group of transformation operators defines transformations that describe the natu-

ral variations in the data space X . Thus these operators can be used in conjunction with an

input data point x0 to compactly represent the manifold surface,M ⊂ X stemming from

x0:M = {X ∈ X |x = Tx0,T ∈ T }.

Each of these transformation operators represents a continuous transformation and can

be formulated as the infinitesimal transformation: T = (I + Ψ∆c) where T is a small

offset from the identity matrix. The real number c ∈ R parameterizes T with a matrix

Ψ ∈ RD×D which is an operator for the transformation group. Transformed data points are

defined with the infinitesimal transformation as x∆c = Tx0 = (I + Ψ∆c)x0. As ∆c→ 0,

the previous equation becomes δx
δc

= Ψx. This dynamical system has the well-known

solution xc = expm(Ψc)x0 where expm is a matrix exponential [24, 25].

It is assumed that the manifold is defined by a finite set of transformation operators

{T1,T2, ...TM}, each parameterized by its own coefficient, cm, which specifies the contri-

bution of the individual operator to the given transformation. Therefore a transformation T

can be represented by a weighted combination of transformation dictionary elements, Ψm

T = expm

(
M∑
m=1

Ψmcm

)
. (2.1)

This defines a generative transformation model that characterizes the manifoldM by a

set of transformation operators Ψm. Following previous conventions [23], these transfor-

mation dictionary elements Ψm are called transport operators. The relationship between
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points on the manifold is defined with the following generative model:

x1 = expm

(
M∑
m=1

Ψmcm

)
x0 + n,

n ∼ N (0, I) cm ∼ Laplace (0, b) .

(2.2)

This formulation allows for different geometrical characteristics at various points on

the manifold and it provides the flexibility of defining a different transformation matrix

between every pair of points. The specific local structure of the transformations between a

pair of points is governed by the coefficients c ∈ RM . The Laplace prior on the coefficients

encourages the manifold geometry between any given pair of points to be represented by

only a small subset of dictionary elements. Throughout this document we define T(c) =

expm
(∑M

m=1 Ψmcm

)
and refer to the dynamics matrix A =

∑M
m=1 Ψmcm.

This is an ideal manifold model to incorporate into machine learning techniques to rep-

resent natural variations for a few reasons. First, it defines the manifold through a set of

learned operators that can be used at any point on the manifold. As we discuss in more

detail in Chapter 4, this manifold representation can also generalize beyond the original

training domain better than the tangent plane estimation techniques. Second, the operators

themselves represent a global set of nonlinear transformations that describe natural vari-

ations in the data. These operators can be used to interpret dataset characteristics, infer

relationships between points, and generate long paths along the manifold.

Using the relationship between points in Equation 2.2, a probabilistic generative model

can be written that allows efficient inference. This model assumes a Gaussian noise model

and a Gaussian prior on the transport operators Ψ as well as the sparsity inducing prior on

the coefficients c. The resulting negative log posterior for the model is given by

EΨ =
1

2

∥∥∥∥∥x1 − expm

(
M∑
m=1

Ψmcm

)
x0

∥∥∥∥∥
2

2

+
γ

2

∑
m

‖Ψm‖2
F + ζ‖c‖1, (2.3)
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where ‖ · ‖F is the Frobenius norm and γ, ζ ≥ 0. The Frobenius norm regularizer on

the dictionaries serves two purposes. First, it balances the effect of the coefficient spar-

sity regularizer. The `1 norm term on the coefficients encourages coefficient sparsity but

also encourages small coefficient magnitudes. One way to achieve small coefficient mag-

nitudes while continuing to effectively estimate the path between x0 and x1 is to increase

the magnitudes of the operators. The Frobenius norm regularizer constrains the growth in

magnitude of the operators. The second purpose of the dictionary regularizer term is to

identify which operators are necessary to represent the transformations on the data mani-

fold. If an operator is not being used to represent a transformation between x0 and x1 then

the dictionary regularizer reduces its magnitude to zero. Therefore, during training, the

model order can be estimated based on how many dictionary elements remain non-zero.

Using an established unsupervised algorithm from Culpepper and Olshausen [23], the

transport operator dictionary can be learned from pairs of neighboring points by perform-

ing alternating minimization with the objective in Equation 2.3. Specifically, for a given

batch of point pairs, the algorithm alternates between inferring the coefficients given a

fixed dictionary of transport operators and taking a step in the gradient direction of the

dictionary elements. After training the transport operators, the manifold structure can be

represented by a combination of these learned transport operators and samples that are

known to exist on the manifold. Figure 2.1a shows an example of the dictionary of trans-

port operators learned on point pairs on a sphere. Each plot uses a few example starting

points on the sphere (i.e., on the manifold) xi(0), i = 1, ...N and visualizes the effect of a

single transport operator by applying a single dictionary element Ψm to each point in time

steps xi(t) = exp(Ψmt)xi(0), t = 0, ...., T .

These operators can be used to generate new samples and infer relationships between

samples – these are two of the requirements set forth in the introduction for a human-

inspired classification system. Generation is accomplished by applying the learned oper-

ators with a set of coefficients that are randomly sampled or representative of a particular
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(a)

(b) (c)

Figure 2.1: Examples of transport operator learning, sampling, and inference on 3D spheri-
cal manifold. (a) Orbits generated from transport operators trained on a spherical manifold.
(b) Points generated from sampling transport operator coefficients. The blue ’x’ represents
the original point on the manifold and the red dots represent the generated points. (c)
Examples of inferred paths between points on the manifold. The blue dot represents the
starting point and the red and green dots represent the ending points. The lines show the
interpolation paths.

transformation.

xi = expm(
∑
m

Ψmwi,m)x0, (2.4)

wi,m ∼ Laplace(0, am). (2.5)

Figure 2.1b shows samples generated with the rotational transport operators shown in Fig-

ure 2.1a.

Inference of transformations between samples is a critical step in learning the trans-

formations and can be used for analyzing relationships between points and interpolating

manifold paths. After inferring a set of transport operator coefficients c∗ between points
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on the manifold, a path can be generated: zt = expm
(∑M

m=1 Ψmc
∗
mt
)

z0. When the path

multiplier t is between 0 and 1 that indicates interpolation and path multipliers beyond 1

indicate extrapolation. Figure 2.1c shows interpolated paths between samples on the sphere

using inferred coefficients.

2.2 Incorporating Transformations into Neural Networks

In the introduction, we discussed the benefits of a human-inspired classifier that directly in-

corporates natural transformations into its processing chain and put forth requirements for

a transformation model that could form the basis for this classifier. Namely the transforma-

tion model should learn the natural variations from the data, constrain the transformation

structure to the data manifold, enable transfer of the transformations between classes, have

the capability of generating new samples, and have the ability to infer relationships be-

tween samples. We review state-of-the-at methods for incorporating transformations into

machine learning models. First we review models that incorporate transformations into the

classification pipeline to increase classifier robustness. Next we examine models that incor-

porate estimates of transformations and manifold structure into generative neural networks.

These models are of interest because they are generate realistic image samples to estimate

transformation effects and augment training data.

As we will discuss below, the state-of-the-art techniques do not meet the requirements

we set forth for a transformation model. In particular, most of these models require the use

of predefined transformations. While effective in general cases for incorporating widely

known transformations like rotation and scaling, there are many identity-preserving trans-

formations in complex datasets that are difficult to identify.

2.2.1 Transformations in Classification Pipeline

As mentioned in the introduction, many state-of-the-art classification methods that achieve

the high classification accuracy do so by incorporating training data that includes exam-
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ples illustrating a wide variety of transformations. Without a dataset that includes this

abundance of transformation variability, the resulting accuracy of trained classifiers will

suffer. To avoid this performance degradation and increase the robustness of classifier

performance, there are several approaches that incorporate transformations directly into

the classification pipeline. Some approaches augment input data with transformations and

other incorporate invariance or equivariance to transformations into classifier networks.

The first approach incorporating transformations into the classification pipeline is data

augmentation. Data augmentation applies transformations to training data samples, either

in the input space or in a latent space, in order to present a classifier with a more di-

verse set of samples. The core component of a successful data augmentation technique

is a method for selecting which transformations to apply in order generate new, informa-

tive samples without contaminating the training data with samples that are not reflective of

natural data. The simplest data augmentation strategy manually incorporates transforma-

tions like flipping, cropping, and changing colors into the training set [51]. This has been

proven effective for enhancing image classification performance [52]. There are some tech-

niques that incorporate these known, identity-preserving transformations in an intelligent

manner by modeling human augmentation approaches [53] or identifying an augmentation

policy that leads to the best results on subsets of the training and validation data [54, 55,

56]. If there are accurate models for generating data in the training domain, new examples

can be synthetically generated to incorporate variability that may be lacking in real-world

data [57]. All of these methods require prior knowledge of the image processing functions

that represent identity-preserving transformations.

Rather that defining the image processing functions a priori, representations of data

variability can also be identified through examining relationships between pairs of points

in a dataset. In some cases, pixel-wise image deformations between examples from the

same class can be gathered from a training set and applied to new classes. The transfor-

mations between pairs of images in the same class have been represented as simple affine
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transformations [58] as well as manifold transformations of image velocity fields [11].

There are several methods that use a strategy called mixup to generate new samples that

are combinations of two existing images in the dataset [59]. While these methods estimate

transformations from the datasets that can be used across classes and have the capability of

generating samples, they define data variations through linear paths which may not reflect

the data manifold structure and they do not have methods for estimating the transforma-

tional relationship between samples.

Some data augmentation techniques are applied to few-shot learning problems in which

knowledge of variations in a rich source domain can be used to enable robust classification

of examples in new target classes from few training samples [60]. These techniques are

able to learn generalizable transformation representations and to leverage the shared trans-

formations between classes to enrich sparsely sampled target classes. Some methods use

image analogies to learn a function that can generate a transformed version of an input

sample [61, 62]. The ∆-autoencoder model conditions both the encoder and decoder of

an autoencoder on additional examples from the same class as the training inputs [63]. By

limiting the latent dimension, this model results in latent vectors that represent the varia-

tions between the two examples from the same class. The learned decoder can be used to

augment inputs by decoding sampled latent vectors.

The next set of approaches attempts to incorporate transformation invariance into con-

volutional neural networks (CNNs). The spatial transformer network (STN) accomplishes

this by defining a network layer that estimates warping to apply to input features to in-

crease classification accuracy [64, 65]. The initial STN model defines specific transfor-

mations like translation, scale, and rotation but it has been extended to incorporate more

complex transformations like 3D perspective transformations [66, 67] and diffeomorphic

image transformations [68] as well as combinations of transformations [69]. In a similar

vein, deformable convolutional networks vary the grid of sampling locations for convolu-

tions to mimic data transformations from one layer to the next [70]. By enforcing invari-
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ance to natural, identity-preserving transformations, these methods improve classification

performance while losing information about what makes data samples unique and why a

classifier arrives at a specific output.

Finally, there is a set of work focused on building equivariance to specific transforma-

tions into convolutional networks. To achieve equivariance, a change in the input should

lead to a change in the output which means that information about transformations is pre-

served. In baseline CNNs, the convolutional filters applied on a sampling grid across im-

ages and feature inputs achieve translation equivariance because translations in the inputs

result in translations in the convolved outputs. More recently there have been many models

that incorporate rotational equivariance into convolutional networks by designing specific

convolutional layers [71, 72, 73, 74]. These models have also been expanded to allow for

equivariance to other transformations such as 3D rotation [75, 76] and scale [77]. As with

the data augmentation approaches, most current equivariant approaches are limited to a

simple set of prespecified transformations which constrains their effectiveness on datasets

with more complex shared transformations.

2.2.2 Transformation Structure in Generative Networks

There are several network models which learn functions that map points from a low-

dimensional latent space to a high-dimensional data space including autoencoders [78, 79],

variational autoencoders (VAEs) [30, 31] and generative adversarial networks (GANs) [80].

Autoencoders are deterministic networks which are made up of encoders that map from the

data space to the latent space and decoders that map latent vectors back to the date space.

Autoencoders are trained in an unsupervised manner using a reconstruction loss between

image inputs and reconstructed image outputs. Generative models (VAEs and GANs) rep-

resent complex data distributions through the learned generator functions that map latent

vectors to data outputs. In particular, GANs and VAEs sample from a latent space with a

specified prior distribution in order to generate new, realistic samples. VAEs are trained
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with an objective that maximizes a lower bound on the log likelihood of the data. This

objective contains two terms - the first term contains a reconstruction error between the

input image and the reconstructed output and the second term encourages the variational

posterior of the latent vectors to resemble a prespecified prior distribution.

Autoencoders and generative network models provide the ability to imagine new data

samples and to visualize the transformations resulting from motion in the low-dimensional

latent space. In many instances, the latent space is described as a manifold representation.

However, there is often no objective during training that ensures that the structure in the

latent space corresponds to the true data manifold.

VAE-based models can incorporate structure in the latent space through the use of spe-

cific prior distributions on latent vectors. In the traditional VAE, the latent space prior is de-

fined as a Gaussian distribution for model simplicity [30]. Other models incorporate more

complex latent structures such as hyperspheres [81], tori [82, 83], and hyperboloids [84,

85, 86]. Recently the Lie VAE model was developed which encodes the data into latent

variables that are elements in a Lie group which represent transformations of a reference

object [83]. These models have demonstrated their suitability for certain datasets by choos-

ing a prior that is the best match out of a predefined set of candidates. A predefined latent

structure may not be a good fit for the many datasets which have a complex data distribu-

tion. A mismatch between the specified latent space prior and the true data manifold will

result in a less accurate model for the data.

There are several methods that incorporate a manifold model directly into the latent

space of a neural network in order to learn the manifold structure of the data in a principled

way. The contractive autoencoder (CAE) estimates manifold tangents by minimizing the

the Jacobian of the encoder network, encouraging invariance of latent vectors to image

space perturbations. Tangent directions can then be estimated through top singular vectors

of the encoder Jacobian [87, 88, 14, 89]. Similar to the tangent plane estimation manifold

learning techniques mentioned in section 2.1, the CAE has a limited ability to represent
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long paths on the manifold because the tangent plane estimate is only applicable in small

neighborhoods around points. Several methods estimate interpolated geodesic paths in the

latent space of a trained variational autoencoder (VAE) model [90, 91, 92, 93, 94] and

show that geodesic paths result in more natural interpolations. Some extend this approach

to learn VAEs with priors that are estimated using the Riemannian metrics computed in the

latent space [95, 96].
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CHAPTER 3

LEARNING 3D MANIFOLD STRUCTURE FROM 2D PROJECTIONS

3.1 Introduction

Humans interact with a 3D world1 but only perceive visual inputs as 2D projections on their

retinas. To effectively interact with 3D objects and environments, humans must have the

ability to estimate 3D structure from their limited projected inputs. On its own, the problem

of recovering 3D structure is underconstrained – there are an infinite number of possible

depths for each projected point. To resolve this challenge, humans rely on a variety of cues

to infer depth including motion parallax, binocular disparity, texture, occlusions, shadows,

size, blur, and shading [97]. One of the cues that strongly elicits the perception of 3D

structure is the motion cue.

As an object transforms in 3D, the temporal consistency of this motion provides a con-

tinuous precept that can be used to resolve the ambiguity of depth for points on an object’s

surface. Motion has been shown to enable depth inference in the absence of other cues [98,

99, 100, 101, 102, 103]. Knowledge of the transformations that objects could be under-

going can constrain the possible 3D structure of point stimuli on those objects, leading to

accurate depth perception.

Mathematically we have precise definitions of geometric transformations, like rotations

and translations, and we know how to employ them to successfully compute point depths

from multiple viewpoints or frames. Many computer vision algorithms utilize mutliview

geometry to develop robust models for estimating depths of image keypoints [104, 105,

106, 107, 108, 109]. Additionally, the knowledge of the geometric relationship between

1This chapter is in collaboration with Dr. Bruno Olshausen and Dr. Christopher Rozell. MC developed
the model and performed the experiments. BO provided valuable technical discussions and feedback and
CR supervised the project. This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1148903 and DGE-1650044
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scenes can be used to develop machine learning algorithms that can estimate depths from

single frames and multiple frames [110, 111, 112, 113]. While all of these methods achieve

the objective of estimating depth from multiple viewpoints, we aim to understand how

humans perceive 3D transformations and how they use their knowledge of transformations

to aid in discerning structure from motion.

It is arguable that humans utilize internal models of 3D transformations based on a vari-

ety of mental transformation experiments. Experiments suggest that humans create an ana-

log spatial representation in which the stages of internal mental transformation processes,

such as rotation, correspond directly to the stages of transformation processes observed in

the world [15, 16]. This, along with descriptions from subjects performing mental transfor-

mation tasks [114], suggests that humans internally imagine transformations when asked

to perform tasks like identifying rotated versions of reference objects [17, 18, 19].

A question remains of how these internal models are formed. The knowledge to form

models of transformations must be accumulated either on a developmental [115] or evolu-

tionary time scale [116, 117]. In either instance there must be a mechanism for learning

the transformation model from data and adapting the model to altered environments and

vision systems. There is evidence that humans are able to learn about data variations in

an unsupervised manner [118] and adapt their representations of data invariances based on

experiences in an altered visual world [119, 120].

Generative manifold models present a possible mechanism for learning and represent-

ing internal models of natural transformations. The manifold hypothesis states that natural

variations in high-dimensional data, like retinal projections of the 3D world, lie on or near

a low-dimensional, nonlinear manifold [13]. Neuroscience research has shown that the

brain explicitly exploits the manifold nature of object transformations by using hierarchi-

cal processing stages to untangle the representations of different objects undergoing the

same physical transformations (e.g., changes in pose and position) [20, 21]. Additionally,

we and others have shown that generative manifold models are able to learn representations
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of natural data variations [23, 26, 1, 3, 2].

In this work, we develop a proof of concept for the viability of learning 3D transforma-

tion representations from 2D projected inputs using a generative manifold model. Focusing

on rotational motion, which is used in many structure from motion tasks [98, 101, 103], we

develop a manifold-based method for inferring depth from moving 2D projected points and

learning 3D rotational transformation models from 2D training stimuli. Finally, we apply

the learned transformation model to structure from motion tasks and compare to human

performance on psychophysical experiments.

3.2 Background

3.2.1 Structure from Motion

The ability for humans to perceive depth from moving points and objects has long been

studied. Wallach and O’Connell first introduced the term kinetic depth effect to describe

this phenomenon [121]. Since then, perception of 3D depth from motion cues has been

investigated through a wide array of physchophysical experiments which aim to isolate the

effect of the motion cue for depth perception [98, 99, 100, 101, 102, 103]. Stimuli for

these experiments include 2D shadow visualizations of 3D objects and random dots on

the surface of invisible rotating shapes. The experimental results suggest that humans can

generate stable precepts of 3D structures in a variety of conditions.

Several computational models have aimed to describe this phenomenon. Ullman pro-

posed a model called the incremental rigidity scheme which builds up a model of the 3D

object structure as it receives new inputs [122]. Many other approaches utilize multiview

geometry to form a 3D structure from multiple views of an object or scene. One of the early

works in this space utilized the understanding that different frames of the same object are

related through rotation and a translation operations to build a computational model for this

process [104]. Many have built off of this initial model to estimate the relative relationships

between views of objects using geometric transformations between points [123, 124, 125,
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126].

Since these early papers, structure from motion has become a rich area of research in

computer vision. Factorization methods estimate the camera orientation and 3D point lo-

cations over continuous frames of a rotating object [106, 127]. Other techniques expand on

the geometric approaches by introducing robust methods for computing point correspon-

dences between multiple views in order to estimate the structure of the full scene [105, 107,

108, 109, 128].

Finally, with the introduction of neural networks, there has been growth in neural-

network-based methods for estimating the depth of objects and scenes. These models use

3D depth labels [129, 130, 131], knowledge of camera viewpoints [110, 111, 112], and

temporal consistency [113] to supervise learning. Several methods use an image recon-

struction objective by estimating depth in one image, transforming it, and projecting it to

compare against a second image [110, 111, 112].

All of these methods, while very successful at estimating camera motion and depth,

either rely on a mathematical understanding of rotational and translational motion and how

it is applied or require ground truth depth labels. In this work we learn a representation of

the 3D transformations without using ground truth knowledge of depth.

3.2.2 Mental Transformations

The evidence that humans create internal representations of 3D transformations comes from

experiments on mental transformation tasks. There are two common mental transformation

tasks. The first is the third-person-perspective (3PP) taking task where subjects must deter-

mine what a scene looks like from different perspectives. Tests of 3PP include the object

perspective test [132], the Money standardized test of direction sense [133, 134], and the

pictures test [135] which all ask users to imagine themselves at a certain location with a

specific viewpoint in order to determine the placement of objects in an imaginary scene

from the specified viewpoint. These tasks are examples of imagining egocentric motion
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(or motion of the observer). The second grouping of tasks are mental rotation tasks where

subjects must determine if input objects are rotated versions of comparison objects [17,

136]. Mental rotation tasks include 2D planar rotation tasks with images of polygons [137],

flags [138], pictures of human bodies [134], and alphanumeric characters [136] as well

as 3D rotation tasks with wire frame objects [17, 139] and visualizations of human bod-

ies [140]. These tasks are examples of allocentric motion (or motion of an object in the

environment). In both of these cases, many subjects describe the process of completing the

tasks as visualizing the full transformation in their head [114]. That is, they develop an

analog spatial representation in which the task performed in their head corresponds to the

imagined transformation happening in the 3D world.

There is quantitative evidence that supports the model that humans perform 3D mental

rotation to compare objects. Early work by Shepard & Metzler asked subjects to deter-

mine if two wire frame images were rotated versions of one another [17]. The key finding

was that the subject response time increased monotonically with the rotation angle which

supports the model that humans perform internal mental rotation on this task. Since then,

this linear relationship between response time and rotation angle on mental rotation tasks

has been proven with a variety of visual inputs [18, 141, 142, 15]. Another set of research

that supports the mental transformation hypothesis notes the impact of external motion on

performance on mental transformation tasks [143, 144, 145, 146], suggesting the mental

rotation tasks use similar brain mechanisms as those used during physical motion.

It should be noted that the true mechanism for performing mental spatial transforma-

tions is still open for debate. While we have presented evidence that humans develop an in-

ternal 3D structural model that is mentally transformed, there is another theory of internal-

izing representations of objects which suggests that the mechanism is more akin to language

models which encode specific representations of object and environmental views [147,

148]. The question of which representation is correct has long been debated [149, 150,

151, 152, 153, 154, 148, 155, 156, 157]. Additionally, we have presented mental rotation
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and perspective-taking tasks as using similar mechanisms of envisioning transformations

but there is evidence that the performance on allocentric spatial visualization tasks (like

mental rotation of objects) differs from performance on egocentric spatial orientation tasks

(like third-person-perspective taking) [135]. For instance, perspective taking tasks result

in faster response times compared to mental rotation tasks [158] and, in some cases, lose

the linear relationship between response time and rotation angle [159, 134, 160]. However,

the mechanism that individual subjects use on each of these tasks may vary. For instance,

subjects have reported solving perspective-taking tasks in an allocentric way by imagining

object motion rather than self motion [161, 162].

With these caveats in mind, we focus on the development of a model that can learn

transformations that may be used to model internal mental rotation. This model can be

naturally applied to both egocentric and allocentric motion tasks. While there have been

computational models introduced for mental rotation [163, 164, 165, 166], they have both

assumed prior knowledge of the rotational transformations and been focused on modeling

specific brain areas that are involved in this process rather than focusing on the representa-

tion of the transformation model itself as we do.

3.3 Model Description

We aim to develop a model for learning 3D rotational transformations from 2D projected

inputs and use that model to describe how humans may employ motion cues to recover

the 3D structure of objects in their environment. This perceptual setting is visualized in

Figure 3.1 where an object is transforming in 3D but the visual inputs are in the form of 2D

projections on the retina. In particular, each object is represented as a combination of 3D

key points x(i) ∈ R3, i = {1, ..., NP} that are projected to 2D point locations y(i) ∈ R2.

Assuming rigid body motion and incorporating a transformation model can constrain the

possible 3D motion between different transformed viewpoints. This provides the structure

necessary to infer depth from points on a moving object. We develop a method that uses a
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generative manifold model as a representation of transformations, and we show that we can

learn rotational transformation operators and use them to accurately infer point depth from

rotating points and scenes. We build up to the learnable model of natural transformations

in two steps. In the first step, we assume the 3D rotational tarnsformation model is known

and we develop a method for inferring the depth of 2D projections of rotating points. In

the second step, we utilize the depth inference approach from the first step to develop a

learning model that can adapt the transformation representation to ensure it corresponds to

the real world transformations. We will preface the descriptions of each of these tasks with

an overview of the transport operator model, a learnable generative manifold model, which

was detailed in section 2.1.

Figure 3.1: Visualization of the 3D depth inference problem. Three dimensional points
x(i) on an object are jointly transformed in the 3D world view and the visual inputs are in
the form of 2D projected points y(i). The projection matrix K projects all 3D points onto
the 2D projection plane.

3.3.1 Transport Operator Model

As discussed in section 2.1, the transport operator manifold model learns a dictionary of

M Lie group operators Ψm which represent transformations. These operators are effective

for representing an internal transformation model for a few reasons. First, once learned,

the transport operators are stored as a representation of possible transformations that may

be experienced or observed. This means they can be reused in the future when the same

type of transformation is visualized. Second, the transport operator model is a generative

manifold model meaning it can interpolate and extrapolate new views of points undergo-
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ing a learned transformation. This provides a way of creating an internal visualization of

how an object transforms similar to the analog spatial representation that humans describe

when performing mental transformation tasks [114]. Finally, transport operators can be

used to infer the relationship between points in two separate viewpoints and define the 3D

transformations between them.

With the transport operator model, the relationship between two individual points x
(i)
0

and x
(i)
1 is defined as follows:

x
(i)
0 = expm

(
M∑
m=1

Ψmcm

)
x

(i)
1 + n,

n ∼ N (0, I) cm ∼ Laplace
(

0,
1

ζ

)
,

(3.1)

where c ∈ RM is the set of coefficients that specifies the local structure of transformations

between x
(i)
0 and x

(i)
1 . Note in this chapter it is always assumed that x ∈ R3, and in order to

make depth inference causal, we model x0 as a transformation of x1, unlike the transport

operator formulation in section 2.1. Given this relationship between points, the original

work from Culpepper & Olshausen [23] defines the negative log posterior of the model as:

EΨ =
1

2

∥∥∥∥∥x(i)
0 − expm

(
M∑
m=1

Ψmcm

)
x

(i)
1

∥∥∥∥∥
2

2

+
γ

2

∑
m

‖Ψm‖2
F + ζ‖c‖1, (3.2)

where ‖ · ‖F is the Frobenius norm and γ, ζ ≥ 0. The first term is a data fidelity term

that specifies how well x
(i)
0 can be represented as a transformed version of x

(i)
1 when the

transformations are constrained by the current dictionary of operators Ψ. The data fidelity

objective term is an indication of how well the transport operators fit the data manifold. The

second term is a Frobenius norm regularizer on the dictionary elements which constrains

the growth of the dictionary magnitudes and helps identify how many operators are neces-

sary for representing transformations on the data manifold. The third term is the sparsity

regularizer which encourages each transformation between point pairs to be represented
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with a sparse set of coefficients.

Given a dictionary of operators Ψ, the 3D transformation between x
(i)
0 and x

(i)
1 can

be estimated by inferring a set of transport operator coefficients c. This inference is per-

formed by minimizing EΨ when γ = 0. If the operators need to be learned or adapted, EΨ

is used as an objective for transport operator training as well. Training proceeds by alter-

nating between coefficient inference between point pairs and gradient steps on the transport

operators.

We adapt the transport operator model to use time-varying views of transforming points

in a 2D projection plane to learn a generative motion model. We begin by developing an

inference procedure that enables joint depth estimation and coefficient inference from pairs

of 2D inputs points in different viewing frames.

3.3.2 Depth Inference with Projected Inputs

In this section, we will assume that the transport operators are either known a priori or

already learned. We describe the training procedure in subsection 3.3.4. We begin defining

the 3D points x(i) ∈ R3 and their 2D projections y(i) ∈ R2. We assume that the viewer is

located at the origin and that the 3D points are orthographically projected onto the viewing

plane. Figure 3.2 shows a top-down view of the setup of this problem. The eye located

at the red ’x’ in the center represents the viewer. Each 3D point x(i) is projected onto the

viewing plane to a corresponding 2D point y(i) with an associated depth λ(i): y(i) = Kx(i).

The matrix K is the orthographic projection matrix which is defined as K =

1 0 0

0 1 0


in all of our experiments. This projection matrix corresponds to setting the viewing plane

to the xy-plane and defining the unknown depth as the z-coordinate of the 3D input points.

It is assumed that the K is known during processing. We observe NP points transforming

jointly on a rigid object and concatenate all NP points into a matrix: X0 =

[
x

(1)
0 ....x

(NP )
0

]
.

In order to test the inference of structure from motion, we generate sequences with two
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(a) (b)

Figure 3.2: Top-down views of the depth inference problem setup. The 3D points x(i) have
an associated depth λ(i). Each point is projected onto the orange viewing plane using the
projection matrix K. This results in the 2D projected points y(i). The 3D points are rotating
counter-clockwise around the axis and the points in the blue shaded box on top indicate the
direction of motion of the projected points. (a) Egocentric framework where the observer
rotates. (b) Allocentric framework where the object rotates around the observer.

or more frames showing the projections of NP points undergoing rotation. Unless other-

wise stated, we assume ground truth knowledge of point correspondences between frames

while acknowledging that identification of accurate point correspondences is an important

part of structure from motion systems that should be addressed in future work. Our model

uses a sequence of several frames of transforming points to reverse the projection proce-

dure on points in the final frame in the sequence. This allows for a causal estimate of the

point depths. We refer to this sequence of frames as the inference window. The relationship

between points in frames at t = 0 and t = 1 is defined as:

Y0 = KT(c)X̂1 (λ) + W, (3.3)

where W is a Gaussian noise matrix, X̂1 is a matrix of estimated 3D point locations asso-

ciated with Y1 and T(c) is the matrix exponential of a weighted combination of transport
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operators which can each represent a different type of motion:

T(c) = expm

(
M∑
m=1

Ψmcm

)
. (3.4)

To compute X̂1, we reverse the process of the projection matrix in two steps. First, we

concatenate the Y1 with a vector of zeros in the z-coordinate position that was lost during

projection:

X̄1 =

y
(1)
1 · · · y

(NP )
1

0 · · · 0

 . (3.5)

The second step for reversing the projection process is adding the depth to the newly

introduced dimension. To do this, we compute the outer product between the standard basis

vector associated with the axis lost during projection ez and the depth vector λ ∈ RNP :

X̂1 (λ) = X̄1 + ezλ
>. (3.6)

This model for incorporating the depth can be integrated into the data fidelity term of

the objective function in Equation 3.2 and used for inferring the depth λ and coefficients c

between point pairs.

Ldf =
1

2

NP∑
i=1

‖y(i)
0 −KT(c)x̂

(i)
1

(
λ(i)
)
‖2

2 (3.7)

=
1

2
trace

((
Y0 −KT(c)X̂1(λ)

)> (
Y0 −KT(c)X̂1(λ)

))
. (3.8)

We add two additional constraints to this model to improve the consistency of accurate

depth estimation. First, we incorporate a Gaussian prior on the depths which constrains

them to magnitudes consistent with the size of the rotating objects. Second, we group

several consecutive views of the transforming points together into our inference window to

infer a fixed set of coefficients that represents the transformations between each consecutive
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view. This assumes a fixed transformation speed over multiple frames. This is consistent

with the slowness principle which posits that natural variations are persistent in time [167].

Figure 3.3 shows this setting where the same coefficients c are inferred between points in

each neighboring frame and the depth is inferred for the final point in the sequence. Using

more than two motion frames for depth inference provides additional information that can

be used to resolve depth ambiguities. To model this setting, we generalize Equation 3.3 for

NT viewpoints:

YNT−n = KTn(c)X̂NT (λ) = KT(nc)X̂NT (λ) , n = {1, ..., NT}, (3.9)

where the change from Tn(c) to T(nc) is possible because the coefficients c are weights

for terms in a summation in a matrix exponential and raising an exponent to the power of

n is the same as multiplying its exponential term by n.

Figure 3.3: Visualization of the inference window sequence for a single point. The in-
ference window is made up of several frames of transformed points. We assume that the
transformation speed is constant between the frames, resulting a constant coefficient value
representing the transformation from one frame to the next. The depth λ is inferred for the
final frame in the sequence.

We define an objective that leverages multiple views and a depth regularizer:

L =
1

2NT

NT∑
n=1

NP∑
i=1

[
‖y(i)

NT−n −KT(nc)x̂
(i)
NT

(λ)‖2
2

]
+ ζ‖c‖1

+
β

2
‖λ‖2

2 +
γ

2

∑
m

‖Ψm‖2
F .

(3.10)
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With this objective, the depth λ and the coefficients c can be jointly inferred for se-

quences of transforming points. See section A.1 for more details on the inference process.

It should be noted that this model can be applied to two viewing frameworks – the allo-

centric framework in which points rotate around the observer and the egocentric framework

in which the observer rotates with respect to the surrounding world. When the motion is

centered around the origin (i.e., when the origin of the observer coordinate system and the

world coordinate system is the same), the allocentric and egocentric learning frameworks

utilize the exact same model. As shown in Figure 3.2, the only difference between the al-

locentric and egocentric frameworks when motion is centered at the origin is the direction

in which the projected points move with respect to the rotational motion. When the viewer

rotates in a counter-clockwise direction in the egocentric framework, the projected points

with positive depth (i.e. points in front of the viewer) move to the right in the viewing plane.

On the other hand, when the points rotate in a counter-clockwise direction in the allocentric

framework, the projected points with positive depth move to the left in the viewing plane.

Therefore, going forward, the model and experiments can correspond interchangeably to

the egocentric or allocentric frameworks.

To highlight the effectiveness of this inference model, we will examine how accurately

it can infer depths and transformations using ground truth rotational operators and explore

the requirements for the inputs that lead to robust depth estimation.

3.3.3 Depth Inference Experiments

Three-dimensional rotational matrices can be defined as elements of the 3D rotational

group SO(3) and ground truth rotational transport operators can be derived from elements

of the so(3) Lie algebra [168]. Figure 3.4 shows the trajectories of these ground truth

3D rotational operators, each rotating around one of the principal axes. These plots are

generated by selecting a few example starting points on a sphere and applying individual

dictionary elements Ψm to each point as they evolve over time: x
(i)
t = expm(Ψm

t
T

)x
(i)
0 ,
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(a) (b) (c)

Figure 3.4: Trajectories generated by ground truth rotational transport operators. Each
line represents the trajectory of an individual transport operator dictionary element applied
to one of several example starting points selected on the sphere. These three operators
generate rotation around each of the three principle axes.

t = 0, ..., T .

Using Equation 3.10 and the fixed Ψ representing ground truth rotational operators,

we jointly infer the coefficients and depths in sequences of transforming points. Figure 3.3

shows a visualization of this inference setting for a single point. GivenNT views of rotating

points, we infer the depth λ for the projected points in the last viewpoint YNT as well

as the coefficients c that correspond to the shared transformation between every pair of

consecutive views in the sequence. This ensures that the depth as time NT is inferred by

samples preceding it in the motion sequence, making this a causal system. Figure 3.5 shows

examples of depth inference for points on the surfaces of three different shapes. The plots

in the first column show the visual input of projected points in the final viewing plane of the

sequence. The plots in the second column show a side view of the point stimuli where the

ground truth depth locations are shown on the x-axis of the plot. In these plots the points

are colored by the ground truth depths. The plots in the third column show a side view with

the estimated depth locations for each of the points. The points are again colored by the

ground truth depths. This shows that the estimated depths correspond with the ground truth

depths for a variety of shapes.

We quantitatively evaluate the accuracy of the inferred depths for many trials to analyze
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Examples of inferred depths for points on the surface of different shapes. Plots
in the first column show the 2D point projections in the final viewing plane. Plots in the
second column show a side view of the ground truth 3D point stimuli where the x-axis in
the plots is the depth axis. The points are colored by the ground truth depth. Plots in the
third column show a side view of the estimated depths for the projected points. The points
are colored by the ground truth depth. (a-c) Points on a cylinder (d-f) Points on a sphere
(g-i) Points on a cube.

the impact of various model parameters. There are three parameters of particular interest

during inference. The first is the number of jointly transforming points NP . This indicates

the amount of coherent rotational motion viewed in the input stimulus. Psychophysical

experiments have been run that indicate a greater number of coherently moving points leads

to a more robust depth percept [100, 101, 102, 99]. Next we are interested in the impact of

the perceptual extent of rotation viewed in a sequence of frames. The perceptual extent of

rotation is a combination of two parameters, the number of frames in a rotation sequence

NT and the ground truth rotation angle between each frame in the rotation sequence θ. The
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full angular extent of rotation viewed is θpath = NT θ.

Figure 3.6: Example of depth-angle ambiguity. Points y
(i)
0 and y

(i)
1 are projections of a 3D

point that is transformed from view 0 (green points) to view 1 (pink points). These points
could result from a small rotation angle θa on points with large depth magnitudes or a larger
rotation angle θb with smaller depth magnitudes.

In order to quantitatively evaluate the success of inferred depth, we use two metrics. The

first is the mean squared error between the estimated depths and the ground truth depths

for the NP rotating points. Ideally depth inference would result in low MSE between the

estimated depth and the ground truth depth. However, with a rotational transformation, as

we are working with here, there exists a depth-angle ambiguity. Namely, when viewing

projected points y
(i)
0 and y

(i)
1 from two separate views, they could be either projections

of points with large depths that undergo rotation with a smaller angle θa or points with

small depths that undergo rotation with a larger angle θb. These two possibilities are vi-

sualized in Figure 3.6. While it is not ideal for the depth to be off by a scaling factor, the

inferred structure can still be accurate. Additionally, this depth ambiguity is observed in

experiments with human subjects [100]. In psychophysical experiments, one metric for de-

termining accuracy of a percept is comparing the estimated ordering of point depths to the

ground truth ordering of point depths [169]. To analyze the accuracy of the inferred struc-

ture in the presence of potential scaling in depth, we compare the ordering of the inferred

depths to that of the ground truth depths using the Kendall’s Tau rank correlation coeffi-

cient [170]. We compare the Kendall’s Tau between all NP points as well as between five

randomly selected points. We choose to compare the ordering of five randomly selected
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Figure 3.7: Quantitative metrics for depth inference when varying angular extent of ro-
tation. (a) Median depth error as angular extent increases. Each line is generated with
different numbers of frames in the inference window NT . The optimal performance occurs
for angular extents in the range of NT to 2NT . (b) Median depth error as angular extent
increases. Each line is generated with different angles of rotation between sequence frames
θ. A rotation angle of θ = 2◦ results in the lowest depth error at 180◦ of rotation.

points in order to define a metric that can be used to fairly compare the performance as

the number of points increases. With greater NP , even if depths are accurate within some

error range, there is a greater chance of incorrectly ordering a few points because there is a

greater point density. Therefore, comparing five randomly sampled points should provide

a consistent metric as we vary NP .

Figure 3.7 shows the median depth error as we vary the angular extent of rotation θpath.

In Figure 3.7a, each line represents a different number of frames NT . The error bars in all

plots in this chapter represent the bootstrap confidence interval. For each line in Figure 3.7a,

because the values of NT are fixed, moving along the x-axis corresponds to increasing the

angle between frames. Each of these lines has a clear minimum and this minimum occurs

at an angular extent in the range of NT to 2NT . This corresponds to an angle θ between

frames of 1◦ − 2◦. Up to this minimum value, the depth error decreases as the rotational

extent increases, indicating the benefit of a more complete view of the rotational sequence.

Figure 3.7b breaks down the performance for individual values of θ. As θ increases up to

θ = 2◦, the depth error decreases with increasing θ. For θ ≥ 5◦, the performance starts to

degrade. This is consistent with the patterns in Figure 3.7a, and it indicates that rotation
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Figure 3.8: Quantitative metrics for depth inference when varying the number of coher-
ently transforming points NP . (a) Median depth error as NP increases. The depth error
decreases as the number of points increases and there is a large decrease in depth error
from NP = 1 to NP = 10. (b) Mean Kendall’s Tau for 5 randomly selected points as NP

increases. Values of this metric for NP < 5 are set to zero because there are not enough
points to compare five randomly selected points. Kendall’s Tau increased as NP increases.

angles between frames that are too large (corresponding to fast rotational motion) result in

less accurate depth inference2. In the remaining tests of inference performance with ground

truth operators, unless otherwise stated, we set NT = 30 and θ = 2◦. See section A.1 for

more details on model parameters.

Figure 3.8 shows the median depth error and the mean Kendall’s Tau as we vary NP .

This shows that the depth estimation improves as more points are added with a large perfor-

mance improvement fromNP = 1 toNP = 10. Going forward, we useNP = 20. Research

in structure from motion has shown that increasing the number of transforming points im-

proves the general depth percept [100, 101, 102] but it may not increase the accuracy of the

inferred depths [99].

The final quantity we analyze in this controlled setting with ground truth rotational

operators is the effect of adding Gaussian noise to the operators. Noisy operators depart

from the ground truth rotational transformations and analyzing the performance with noisy

operators can indicate the influence of accurate rotational transformation models on effec-

2We should note that optimization experiences instability as greater number of frames are used in the
inference window, leading to large increases in depth error for NT > 50 in many settings. Therefore,
in Figure 3.7b, we only display lines until an angular extent of rotation for which instability impacts the
optimization. The angular extent where this occurs is smaller for the smaller values of θ because they require
larger values of NT to achieve the same angular extent of rotation.
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tive depth inference. To provide an intuitive understanding of the effect of noise on the

operators, Figure 3.9 shows the trajectories for operators with increased noise standard de-

viation. Figure 3.10 shows the median depth error and mean Kendall’s Tau metrics as noise

is added to the ground truth operators. Both metrics indicate that the depth inference is

robust to noise with a standard deviation of around 10−3 - 10−2 but performance decreases

sharply with noise larger than that. This shows that the model can perform effectively

with some transformation inaccuracy but performance decreases with increasingly inaccu-

rate transport operators. This highlights the necessity of accurate rotational operators and

inspires the learning and adaptation procedure introduced and analyzed in the next section.

Figure 3.9: Examples of noisy operator trajectories. Each column shows examples of
the ground truth rotational operators with additive Gaussian noise with increasing standard
deviation. Rows 1-3 show the trajectories for the three rotational operators. Row 4 shows
depth inferred for points projected from a rotating cylinder using the three operators in each
column. The operators do not vary much in appearance from the ground truth operators
(first column) with noise standard deviations of 0.01 or less. For noise standard deviations
larger than that, the operators diverge from rotational operators and the point depths no
longer look like a cylinder.

3.3.4 Learning 3D Transport Operators from 2D Projected Inputs

The stated goal of this work is to develop a model that can learn 3D transformational rep-

resentations from rotating 2D projected input points. The learning procedure is a straight-
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Figure 3.10: Quantitative metrics for depth inference when varying the standard deviation
of Gaussian noise added to the ground truth operators. (a) Median depth error as the stan-
dard deviation of dictionary noise increases. The depth error remains relatively low until a
noise standard deviation of around 10−2 after which the depth error increases significantly.
(b-c) Mean Kendall’s Tau for 5 randomly selected points and all 20 stimulus points respec-
tively. The Kendall’s Tau values remains high until noise standard deviations greater than
10−2.

forward extension of the coefficient and depth inference model from the previous sections.

Training of the transport operator dictionary elements is performed using gradient descent.

For each training step, a sequence of projected rotated points Yn, n = {1, ..., NT} is gen-

erated. First the dictionary weights are fixed and the depth and coefficients are inferred.

Then, fixing the depth and coefficients, the gradient on the dictionary elements is com-

puted using the objective in Equation 3.10 with ζ = β = 0. If this gradient step improves

the objective, then it is accepted. Otherwise, the step is rejected and the learning rate is

decreased. See section A.2 for more details on the training procedure.

With this training procedure, we are able to learn rotational transport operators from

randomly initialized operators. Figure 3.11 shows the trajectories of the operators during

one training run in which the number of dictionary elementsM is set to 3. At the beginning

of training, the trajectories do not correspond to common geometric transformations but

they quickly adapt to represent near-rotational operators with trajectories similar to the

ground truth operators shown in Figure 3.4. In the section A.2 we show an example of

learning rotational operators from a dictionary with six operators.

We quantitatively compare these operators to the ground truth operators using the same

depth MSE and Kendall’s Tau metrics employed to analyze inference success. We can
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Figure 3.11: Transport operator trajectories during training. Each row represents one
of the three learned operators. Each column shows the trajectories at a different training
step. The operators begin with random initializations at step 1 and quickly reach a rotation
structure around 200 steps. From 200 steps to 9000 steps, the operators vary relatively
slowly, resulting in operators with clear rotational structure at the end of training.

compute the depth error and Kendall’s Tau metrics for inferred depths using operators at

various points during training and compare them to the metric values resulting from depth

inference using the ground truth operators with noise added. This gives us a proxy for

estimating the deviation between the learned operators and ground truth rotational opera-

tors. In Figure 3.12, we show the depth error and Kendall’s Tau for depths inferred using

transport operators at different points in the training procedure. For reference, we also plot

straight lines which correspond to the values for these metrics in Figure 3.10 which are

computed using ground truth rotational operators with added noise with standard devia-

tions of 10−3, 10−2, 10−1, and 1. This shows that our method learns operators that are close

in structure to the ground truth operators and the performance they achieve is similar to

ground truth operators with additive Gaussian noise with a standard deviation of 10−2. As

we show in Figure 3.10, transport operators with Gaussian noise with a standard deviation

of 10−2 achieve low depth errors and large Kendall’s Tau values. Additionally we see that

the depth inference performance with learned operators improves significantly over the first

100-200 training steps but requires fine-tuning for many steps after that to achieve optimal

performance.
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Figure 3.12: Inferred depth metrics using operators at different steps in training. Dotted
lines represent values of error metrics for depths inferred using ground truth operators with
additive Gaussian noise with the standard deviation specified in the legend. These values
are obtained from the plots in Figure 3.10a. (a) Median depth error for depth inference per-
formed with operators at different steps in training. The depth error decreases significantly
after 200 training steps and continues to decrease until the end of training. The depth error
achieves a value consistent with the estimates using ground truth operators with a additive
Gaussian noise with a standard deviation of 10−2. (b) Mean Kendall’s Tau for 5 randomly
selected points. The Kendall’s Tau increases significantly around 200 training steps and
starts to plateau around 1000 training steps. The Kendall’s Tau reaches a value consistent
with ground truth operators with a noise standard deviation of 10−3

3.4 Model Analysis

In this section, we analyze the robustness of our model to a mismatch between the model

assumptions and data characteristics. The first assumption is that we have ground truth

keypoints locations. We analyze the model robustness to noise in the keypoints locations

when using ground truth rotational operators by adding Gaussian noise with progressively

larger standard deviations to the 2D point locations and observing the variations in the depth

error (Figure 3.13a). For reference, points in these experiments have values in the range of

[−1, 1]. Results indicate that the model is robust to noise with a standard deviations of up

to around 10−2.

Next we analyze the assumption that each frame in the inference window results from

rotations with the same speed and direction as preceding frames. In natural systems, objects

are unlikely to undergo rotation at the exact same speed over many frames. To test the
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Figure 3.13: Depth error for depth inference in the presence of mismatch between the
model assumptions and stimulus characteristics. (a) Depth error as the standard deviation
of additive Gaussian noise in the 2D point locations increases. The model is robust to
noise with a standard deviation up to around 10−2. (b) Depth error as we increase the
standard deviation of the Gaussian noise added to the magnitude of the rotation angles
between frames in the inference window θ. The model is robust to noise with a standard
deviation up to around 10−1. (b) Depth error as the percent of incoherently moving points
is increased. The depth error quickly increases after 5− 10% of points are incoherent.

effect of variations in the rotation speed, we create rotation sequences in which each frame

uses the same axis of rotation but the magnitude of the rotation angle is varied by adding

Gaussian noise with a standard deviation scaled by the angle of rotation3. In this setting,

we infer the depth and coefficients using ground truth rotational operators and compute the

depth error shown in Figure 3.13b. Our model is robust to noise in rotation angle up to a

standard deviation of around 10−1. Finally we analyze the performance of our model in

the presence of points that are moving incoherently with the rotating points. Figure 3.13c

shows the depth error as we increase the percentage of incoherently moving points when

NP = 100. This shows that incoherent points significantly impact the accuracy of the 3D

structure estimate.

3.5 Kinematogram Experiments

Random dot kinematograms are displays of dots on the surface of or within invisible rotat-

ing shapes. Still frames of kinematogram inputs appear as random dots with no perceptible

structure (see Figure 3.14a). However, the motion of the dots elicits the perception of a 3D

3The angles used in this experiment have a mean of 2◦.
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Figure 3.14: Visualization of kinematogram visual stimuli. (a) Example of a 2D kine-
matogram stimulus which is the projection of random dots on the surface of a cylinder.
(b) 3D ground truth structure of the points in the kinematogram stimulus. The points are
randomly sampled from the cylinder surface and colored by their depth.

structure. Figure 3.14 shows the 2D projection of random points along with the 3D struc-

ture of the points on the surface of a cylinder. This perception of depth through motion is

termed the ”kinetic depth effect” [121]. The random dot kinematogram visual stimulus has

been used for many structure from motion experiments because it isolates the use of mo-

tion cues from the use of other possible depth cues. We use our depth inference model with

transport operators learned from 2D projections of rotational motion in order to estimate

depths for random points that are located within the volume of invisible rotating shapes.

We compare characteristics of our experimental results to the performance of humans on

structure from motion tasks with random dot kinematograms.

For these experiments, we create kinematogram stimuli by randomly selecting NP 3D

points within the volume of a cylinder. Sequences are generated by rotating points around

the x-axis at a rotational speed specified by the angle θ. The points in each frame are

ortographically projected to the xy-plane. Point correspondences are estimated by pairing

nearest neighbors in the projected inputs from one frame to the next using the Hungarian

algorithm [171]. We use the inference procedure described in subsection 3.3.2 to infer the

depth and coefficients. During inference, we use an inference window of NT −1 preceding

frames to infer depths for the points in the current frame. We can vary the parameters of
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Figure 3.15: Example of depths inferred for random dots in a kinematogram sequence. (a)
In the top plot, each line represents the ground truth depth of a single random point over
the rotational sequence of the kinematogram. In the middle plot each line represents the
estimated depth for the same points as in the top plot. The bottom plot shows the depth
error between the estimated and ground truth depths over the sequence. (b) Each plot shows
the estimated depth for a single point with the sequences of positive and negative ground
truth depths overlaid.

the stimuli and the inference procedure and analyze their impact.

Figure 3.15 shows depths that are inferred for a random dot kinematogram sequence on

a cylindrical structure by minimizing the objective in Equation 3.10. In this experiment,

NP = 20, θ = 2◦ and NT = 30. Each line in the top and middle plot of Figure 3.15a is the

depth for one of five stimulus points. In the early stages of the kinematogram sequence, the

number of frames in the inference window is only as large as the number of frames that has

appeared (which is less thanNT ). Once more thanNT frames have appeared, the depth and

coefficients inference will make use of only the current frame and the NT − 1 preceding

frames. This build up in the angular extent of rotation explains the larger depth errors early

in the sequence, and we will analyze this further below.

The estimated depth in Figure 3.15 has discontinuities that result from the sign of the

depth switching. This natural phenomenon is due to the fact that the orthographically pro-
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jected random dot kinematogram stimulus is a bistable perceptual representation [172].

That is, it is an ambiguous representation in which there are two correct perceptual struc-

tures. All the points could be rotating in a clockwise direction points with a specific com-

bination of positive and negative depths or they could be rotating in a counterclockwise

direction with the opposite combination of positive and negative depths. Each of these per-

ceptual estimates is equally correct for the stimulus. Therefore, when computing the error

metrics, we correct for the direction of the inferred rotation so it corresponds to the ground

truth direction (which is clockwise in all of our experiments). This is done by generating a

path with the inferred transformation coefficients and identifying the rotation direction of

the points on that path. If the inferred rotation is moving in a counterclockwise direction,

we reverse the signs of the depths prior to computing the error metrics. The bottom plot

Figure 3.15a shows the depth error for the kinematogram sequence. The depth error is high

at the beginning of the sequence due to the limited angular extent of rotation. As the angu-

lar extent of rotation increases, the depth error decreases and remains low even while the

signs of the depths switch. In Figure 3.15b, we overlay the estimated depth for individual

points on top of sequences with both of positive and negative ground truth depth values.

This shows, whichever direction of rotation is inferred, the depths are aligned with either

the positive or negative ground truth depth values.

This bistable phenomenon is observed in pyschophysical experiments as well. Specifi-

cally, subjects incorrectly identify the rotation direction of orthographically projected stim-

uli 50.3% of the time [98]. In the experiments shown in Figure 3.17c, the clockwise rotation

is estimated 50.04% of the time.

Our model has the capability of reducing the amount of depth sign switching and trans-

formation direction switching by adding a dynamic regularizer during inference. We as-

sume that there is a constant speed of rotation and encourage the transport operator coeffi-

cients to be similar from one frame to the next. Note that we already utilize this coefficient

consistency in the inference procedure by inferring the same coefficients for all frames
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in the inference window. The additional regularizer encourages the set of coefficients to

be similar from one inference window to the next. This amounts to adding a term to the

inference objective that incorporates the previous coefficient estimate:

L =
1

2NT

NT∑
n=1

NP∑
i=1

[
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(3.11)

With the addition of the dynamic regularizer on the coefficients, we infer smooth depth

estimates for kinematogram sequences. Figure 3.16 shows the estimated depths and depth

error with dynamic regularization. This regularization eliminates sign-flipping but it also

impacts the depth error in the beginning frames of the kinematogram sequence. The initial

depth estimates are less accurate because they use only a small window of frames for depth

inference and the coefficient regularizer encourages coefficient estimates in later frames to

be similar to the initial inaccurate estimates. The depth estimates eventually achieve low

error as the inference window gets larger.

Figure 3.17 contains plots demonstrating the performance of our model on random dot

kinematogram stimuli as we vary parameters of both the inference algorithm and the kine-

matogram inputs. These plots compute the depth MSE for all NP points and the Kendall’s

Tau for 5 randomly selected dots in the stimulus. Figure 3.17a and Figure 3.17b each show

the impact of including the dynamic regularizer from Equation 3.11. When ξ = 0, the

median depth error looks the same as in Figure 3.15, where it begins high due to the lim-

ited angular extent of rotation and decreases as the kinematogram sequence continues. The

Kendall’s Tau values with both ξ = 0 and ξ = 20 have a spike at the beginning of the kine-

matogram sequence. Without the dynamic regularizer, the Kendall’s Tau value plateaus and

remains around the same value until the end of the sequence. As we saw in Figure 3.16,

the integration of the dynamic regularizer on the coefficients leads to a delay in achiev-

ing optimal accuracy for depth estimates measured by both the depth MSE and Kendall’s
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Figure 3.16: Example of depths inferred for random dots in a kinematogram sequence
with a dynamic regularizer. In the top plot, each line represents the ground truth depth of
a single random point over the rotational sequence of the kinematogram. In the middle
plot each line represents the estimated depth for the same points as in the top plot. The
bottom plot shows the depth error between the estimated and ground truth depths over
the sequence. The dynamic regularizer removes the sign switching of the depth values
observed in Figure 3.15 but it also leads to larger error early in the kinematogram sequence.

Tau. We examine the influence of the number of stimulus points in Figure 3.17c and Fig-

ure 3.17d4. Increasing the number of points improves the accuracy of the depth estimates

but does not significantly impact the accuracy of the depth ordering. However, it is notable

that decreasing the number of points eliminates the spike in the Kendall’s Tau at the very

beginning of the rotational sequence5. Finally, we examine the impact of adding Gaussian

noise to the point locations in Figure 3.17e and Figure 3.17f. Similar to the results we saw

in Figure 3.13b, the depth is consistently accurate with point location noise up to a standard

deviation of 10−2 and depth error increases after that. The introduction of point noise also

eliminates the spike in Kendall’s Tau at the beginning of the sequence.

This perceptual build up of an accurate estimate of point depths is observed in structure

4Note in this experiment we use ground truth correspondences between sample points in each kine-
matogram frame in order to focus on the impact of NP on the inferred depth sequence independent of our
point correspondence technique.

5The Kendall’s Tau we report in Figure 3.17d is for five randomly selected stimulus points so the value
for NP = 3 is set to zero because there are fewer than five points to use for this metric computation.
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(c) (d)

(e) (f)

Figure 3.17: Quantitative metrics for random dot kinematogram depth estimates. Depth
error and Kendall’s Tau: (a-b) with and without a depth regulerizer. (c-d) as NP increases.
(e-f) as the standard deviation of noise added to the point locations increases.

from motion experiments [169]. Hildreth, Grzywacz, Adelson, & Inada perform experi-

ments where they display orthographic projections of three points rotating about a central

axis and ask subjects to order the depths of the three points [169]. They computed the

percentage of correct ordering responses - a metric similar in nature to our Kendall’s Tau

metric. They found that the percent of correct depth ordering increased as the angular ex-

tent of rotation increased up to about 40◦ of rotation after which it plateaued. We observe

the same build up and plateau of point ordering accuracy (as judged by Kendalls’ Tau).

They also observed degredation in performance as Gaussian noise was added to the point
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locations as we see in Figure 3.17f.

3.6 Discussion

In this chapter we develop a method for learning 3D manifold-based transformation models

from 2D training stimuli using an inference procedure that jointly estimates point depth and

transformation coefficients. We show that we can learn dictionary elements that generate

rotational motion from 2D projections of rotating points. This model lays the groundwork

for explaining the development and adaptation of internal representations of natural varia-

tions that are observed in the world. Additionally, our depth inference model enables the

investigation of data characteristics that may influence the capacity for accurate depth esti-

mation. This allows us to connect model performance with various data characteristics and

algorithmic parameters to human performance on perceptual studies.

We show the importance of a large angular extent of the rotation stimuli for accurate

depth estimation and ordering (see Figure 3.7 and Figure 3.17). This supports the notion

that humans build up their perception of 3D structure during random dot kinematogram

rotation sequences [169]. We also show that increases in the number of random dot stim-

uli result in improvements in depth inference performance (see Figure 3.8, Figure 3.17c,

and Figure 3.17d). This connects to kinematogram experiments that indicate a greater

number of coherently transforming points results in a stronger depth percept from mov-

ing points [100, 101, 102, 99]. Our model also demonstrates the same direction switching

phenomenon with the bistable kinematogram stimulus that humans perceive [98].

3.6.1 Future Investigations

Our model has the flexibility to adapt to many different test scenarios that are inspired by

human performance on mental rotation and structure from motion tasks. In our experi-

mentation, we tuned parameters like the inference window length NT , the angle between

frames θ, the number of stimulus pointsNP , and the weight on the dynamic regularizer ξ to
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achieve the most accurate depth estimates. However, experiments show, even when humans

perceive the correct shape, they often have inaccurate estimates of depth magnitude [100],

especially when viewing limited numbers of transforming points [101]. From our model

performance, this may suggest that humans rely on a smaller angular extent of rotation for

inferring depth or that they do not utilize a prior on expected depths. In the future, we

can vary our model parameters to explore comparisons with potentially inaccurate human

depth estimation in various tests settings.

In this work we do not directly relate the internal rotation model developed here to

the rich area of mental rotation experiments. In particular, the seminal work in that area

suggests a monotonically increasing relationship between rotation angle between views of

an object and the human reaction time [17]. The manifold based model presented here

may have a similar connection between processing time and rotation angle because the

transport operators can generate transformations similar to the analog spatial representation

described by humans in these studies. It may be a fruitful to examine the performance of

our transformation model on mental rotation tasks and to compare to human performance

on similar tasks.

3.6.2 Future Improvements

In this work we develop the framework for inferring structure from motion and learning

the operators that represent rotational motion. With this baseline, we can move forward to-

wards a more biologically plausible methodology. The inference and learning in the current

model are performed using quasi-Newton optimization and gradient descent, respectively.

The optimization objective is non-convex and does not naturally lend itself to a parallel

representation similar to neural architectures. Moving forward, we suggest developing an

optimization procedure that is more biologically plausible.

As our focus in this work is on the development of a transformation learning framework,

we assume ground truth point correspondences for the learning and inference experiments
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in subsection 3.3.2 through subsection 3.3.4. However, identifying point correspondences

from different views of the same scene is a challenging task and one that has been a focus of

many computer vision algorithms [173, 105, 174, 175]. Going forward, incorporating point

correspondence estimates into this framework will lead to a more versatile, biologically

plausible model.

Finally, a step towards biological plausibility is extending this model to be robust to

incoherent point motion and additional moving objects. As we showed in Figure 3.13c, the

current inference model significantly decreases in performance with greater than 10% of

points moving incoherently. An initial approach to improving the robustness to incoher-

ent motion is to employ random sample consensus (RANSAC) [105]. With this method,

transport operator coefficients could be estimated from random subsets of points in the

scenes and the final transformation parameters could be chosen as those that explain the

transformation between the largest number of random subsets of points.
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CHAPTER 4

GENERALIZATION OF TRANSPORT OPERATOR MANIFOLD

REPRESENTATION

4.1 Introduction

As we previously described1, there are several requirements for a transformation model

that can be utilized in a human-inspired classification system. Namely the manifold-based

transformation model should learn a representation from the data, be capable of generating

new samples and identifying relationships between samples, and be transferable between

classes. By factor of its construction, the transport operator model is capable of learning

generative operators that constrain motion to the manifold and inferring relationships be-

tween samples. The ability to transfer the learned transport operators between classes is

the focus of our work in this chapter.

Because natural transformations are shared between classes, the manifold structure of

classes can potentially be exploited for several transfer learning tasks of interest. For ex-

ample, creating augmented datasets by transferring identity-preserving variations from a

rich source class with dense samples to target classes with sparse training samples has the

potential to significantly enhance performance in tasks such as few-shot classification and

data visualization. Our work leverages the transport operator model for a novel approach

to transfer learning that would not be possible using classic manifold learning methods

(where the learned representation is inherently built out of embeddings of discrete training

points).

1This chapter is in collaboration with Dr. Benjamin J. Culpepper, Huy Nguyen, and Dr. Christopher
Rozell. MC analyzed the transport operator manifold representation, developed the transfer techniques, and
ran experiments with the swiss roll and USPS digit data. MC learned the facial expression transport operators
on facial landmark points and BC and HN trained the GAN model for generating facial image outputs. CR
supervised the project. This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1148903 and DGE-1650044.
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Densely sampled manifold Sparsely sampled manifold

Generated 
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Figure 4.1: Transferring manifold paths learned from point pairs on a densely sampled
manifold to a new point in sparsely sampled manifold in order to generate novel samples
that are consistent with the manifold model of natural variations.

Initially we highlight that the transport operator model is a robust and accurate manifold

representation of the data that can effectively embed manifold points and identify errors in

other embeddings. After that we describe two transfer learning approaches. First, we

describe an approach where the transfer process consists of the probabilistic exploratory

mapping of the manifold around individual data points in a target class. This is akin

to seeing a new object and visualizing its appearance after undergoing natural transfor-

mations. Second, we describe an approach where the transfer process consists of inter-

polation/extrapolation along the specific manifold paths associated with transformations

between pairs of points on an object manifold. This is similar to envisioning an object

evolving over an action sequence that transforms the object from a beginning state to an

end state. Figure 4.1 shows a picture of transferring manifold models learned in a densely

sampled source domain to a sparsely sampled target domain to generated novel samples

that are consistent with the learned natural variations.

In this chapter, we describe the proposed transfer learning approaches and show that

manifold transport operators [23] display consistently superior performance on transfer

tasks due to a combination of capturing richer nonlinear structure and achieving decom-

posability of the representation (which allows more variation in the structure applied to

sample generation, as well as additional semantic labeling of known transformations). We

show the capability of the proposed transfer learning approach to augment data with natural
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transformations and to generate realistic data sequences in both stylized ground-truth sim-

ulations as well as machine learning tasks of interest on established datasets. Specifically,

we demonstrate that the proposed approach can achieve superior performance on few-shot

classification tasks and photorealistic generation of animated facial expressions as part of

a GAN architecture.

4.2 Background

As we described in section 2.1, there are a few categories of manifold learning techniques.

The first we refer to as embedding techniques because they represent the manifold through

a low-dimensional embeddings of the data points [41, 42, 43, 44, 45]. Unfortunately,

such approaches capture manifold structure through a transformation of the data points

themselves into a lower dimensional space and there is no generative model of the data.

These methods require a manifold neighborhood definition for the data points in order to

estimate the low dimensional data structure, and they are sensitive to inaccuracies in the

defined neighborhoods. Our second category of manifold learning techniques is tangent

plane estimation techniques. These techniques represent the manifold through functions

that map high-dimensional points to planes tangent to the manifold at those points [47,

48, 49, 50]. They generate new samples in the local neighborhoods around data points

but the linear approximation of the neighborhood structure limits their effectiveness for

representing long manifold paths. By contrast, the transport operator model possesses two

characteristics required for the successful generalization of the manifold model of natural

variations: 1) it can generate samples consistent with the manifold model, and 2) as we will

show, it is the most effective manifold learning method for generalizing to new samples

outside the source domain.
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Figure 4.2: Example 2D embedding formed using the transport operator objective function
as a similarity metric.

4.3 Learning Accurate Manifold Representations

The objective function in (Equation 2.3) is the negative log posterior for the transport op-

erator model, and serves as a quantifiable metric for how well a given pair of points is rep-

resented in the model. This metric combines the approximate length of the path between

the points (measured by coefficient magnitudes) and the accuracy of the approximation

(measured by the MSE). With this objective function as a similarity metric between pairs

of points and running classical Multidimensional scaling (MDS), we can create an embed-

ding of the points in 2D that shows their intrinsic low-dimensional structure (Figure 4.2).

As with conventional manifold learning techniques, the quality of this embedding demon-

strates that the learned transport operators are accurately capturing the low-dimensional

structure of the manifold data.

4.4 Learning Robust Manifold Representations

The manifold representation learned by the transport operators is robust. Most other man-

ifold learning techniques require a local neighborhood definition, and even small mistakes

in this neighborhood definition can lead to major errors if shortcuts are created (i.e., points

nearby in Euclidean distance are considered neighbors even though they are far away on the

manifold). Additionally, with many algorithms there is no way to know if a neighborhood

definition has caused a shortcut error.

While the transport operator model does require a neighborhood definition to pick point
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True 2D Embedding

Original Isomap: k = 5 Cut Isomap: k = 5

Original Isomap: k = 11 Cut Isomap: k = 11

(a) (b)

Figure 4.3: (a) Left column: True embedding of 400 swiss roll points. Middle column:
Isomap embedding of swiss roll points for neighborhoods defined by k-nearest neighbors
with k = 5 and k = 11. When k = 11, the embedding is distorted due to the large
neighborhoods which include shortcuts. Right column: Embeddings after the transport
operator objective function is used to identify and eliminate shortcuts. (b) View of the
swiss roll points with lines between the points which had connections broken due to large
objective function values that identified shortcut errors.

pairs during training, this algorithm is robust to errors in this definition because the infor-

mation from each pair is averaged with many other point pairs in the learning process. Fur-

thermore, after learning the transport operators on the dataset, the objective function value

in Equation 2.3 can be used to evaluate the likelihood of points being in a neighborhood.

Figure 4.3 provides an example of how the objective function metric can be used to

correct the neighborhoods for an Isomap embedding. When the Isomap embedding is com-

puted with a neighborhood defined by the k-nearest neighbors with k = 11, there are

shortcut connections that lead to a distorted embedding. We compute the transport oper-

ator objective function between each pair of points and “cut” the connections where this

value surpasses a threshold (this threshold is determined based on outliers in a histogram

of the objective function values). The corrected neighborhood definition produces a much

more accurate embedding. While LL-LVM [50] uses an objective function that can identify

when an entire embedding is bad due to a neighborhood error, the transport operator ap-

proach defines an objective function on each point pair that can be used to identify precisely

which pairs are causing erroneous neighborhood definitions.
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Figure 4.4: Visualization of the two transfer tasks that learn a generative manifold model
from a densely sampled source domain which is used to apply transformations to points in
the target domain. Generative manifold mapping applies transport operators with coeffi-
cients sampled from a probability distribution to a single point. Structured manifold path
generation infers a transformation between points in the source domain that is applied to a
starting point in the target domain to generate a path.

4.5 Generalization Tasks

Our transfer approach uses transport operators to represent transformations that are trans-

ferred from a source domain to a target domain, which lacks data, in order to generate new

samples and enrich the target domain. We present two transfer techniques that both use

a probabilistic generative model of a manifold but address different transfer learning ap-

proaches. Both of these approaches can be visualized in Figure 4.4. In the first approach,

the goal is to map out a manifold around individual data points to augment a sparsely sam-

pled dataset. We develop a method to achieve this goal, called generative manifold map-

ping, which generates new samples around a given data point x0 by applying the manifold

representation with a probabilistic model on the parameters associated with each manifold

motion direction. For the manifold tangent plane representations, like LSML and NLMT,

these parameters define the direction of exploration on the linear tangent plane. For the

transport operator representation, the parameters are coefficient values and this amounts to

applying learned transport operators with coefficients sampled from a specified distribu-
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tion:

xi = expm

(∑
m

Ψmwi,m

)
x0 (4.1)

wi,m ∼ U(0, am) (4.2)

The coefficients are sampled from a uniform distribution for the applications in this work.

However, the different distribution can be selected to match a new application.

In the second transfer approach, the goal is to generate paths associated with specific

transformations. In contrast to the first approach, where the transferred transformations

were defined entirely by the learned manifold model, this approach also requires a pair

of points that represent the starting and ending points of the manifold path that we wish

to transfer. This addresses settings in which the manifold data represents transformation

sequences such as walking, speaking, facial expressions, or when manifold paths associ-

ated with labeled transformations are transferred. Our developed method for this second

approach, which we call structured manifold path generation, infers a transformation be-

tween a starting point xi,0 and an ending point xi,1 that can be applied to new starting

points. This is challenging for models based on manifold tangent plane representations

which are not designed to generate large non-linear manifold paths. The transport operator

method represents a transformation i between xi,0 and xi,1 by a set of inferred coefficients

(c∗i ) which define the operator, Ai, that can be transferred to new points.

c∗i = argmin
c

1

2

∥∥∥∥∥xi,1 − expm

(
M∑
m=1

Ψmc

)
xi,0

∥∥∥∥∥
2

2

+ ζ‖c‖1 (4.3)

Ai =
M∑
m=1

Ψmc
∗
i,m (4.4)

This transformed path can be applied to the original starting point, x0, to interpolate the
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path or it can be applied to a new point, xj , to extrapolate a new path with N steps:

x[n] = expm(
∑
m

Ψm(
n

N
c∗i,m))xj. (4.5)

4.5.1 Generative Manifold Mapping

In this section we show how a manifold model of natural variations learned in a source

domain can be used to map out unseen regions of the manifold. First we show a visualiza-

tion of generative manifold mapping transfer technique on a swiss roll manifold to provide

intuition before moving to a few-shot learning application with digit data. To establish a

transfer learning setting with the swiss roll, we train the manifold representations on a lim-

ited portion of the swiss roll that does not represent the behavior of the manifold as a whole.

Specifically, the training set does not represent the range of tangent plane orientations of

the full model, and it does not extend the full width of the transverse directions present.

Figure 4.5a shows the training domain in dark gray. The testing region is shown in blue,

and it has no overlap with the training region. From the training domain, we are able to

learn the transport operators with the motion trajectories shown in Figure 4.5b. Each plot

uses a few example starting points on the swiss roll, xi(0), and visualizes the effect of a

single transport operator by applying a single dictionary element Ψm to each point in time

steps xi(t) = exp (Ψmt) xi(0), t = 0, ...., T . In this case, the two operators have learned

to move in an expanding (shrinking) rotational motion and in a transverse motion.

Using the learned transport operators, we extrapolate to data outside the training region.

Specifically, we apply the learned transport operators with coefficients sampled from a uni-

form distribution to data points on the edge of the training region as in (Equation 4.1).

Repeating that process many times, Figure 4.5c shows how learned knowledge can be

transferred to map out an approximation of the new portion of the swiss roll manifold.

In this demonstration, each colored dot is the result of an extrapolation from a data point

on the edge of the training region using a single randomized set of coefficients. The other
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(a) (b) (c)

Figure 4.5: (a) The dark gray shaded area shows the training domain and the blue shaded
area shows the testing domain. (b) Trajectories of the two dictionary elements, Ψm, trained
on point pairs on a swiss roll. Each plot shows a single transport operator acting on several
example points. (c) The transport operators are applied with uniformly distributed coeffi-
cients to the black ‘x’ points at the edge of the training domain to extrapolate the points
outward.

techniques that learn global manifold mappings (i.e., LSML, NLMT) can extrapolate by

computing local tangent directions at each point and projecting from known points along

those directions. Because of the linearity assumption inherent in tangent plane approxima-

tions, there are limits to the size of the extrapolations that are likely before departing from

the manifold.

We utilize the USPS handwritten digit image dataset [176] to demonstrate the capabil-

ity of generative manifold mapping for a few-shot learning classification task. To train the

transport operators, we create a dataset that consists of examples of the digit ‘8’ rotated to

a randomly selected starting angle paired with that same image rotated an additional 1◦.

The transport operators are learned between those rotated image pairs2. The neighborhood

graph is defined with one nearest neighbor and all techniques are parameterized to learn a

one-dimensional manifold (i.e. M = 1 and γ = 0). In other words, without telling the

algorithms about the concept of rotation, we seek to have them learn the general trans-

formation manifold from examples of only pairs of slightly rotated ‘8’ digits. This task

extends the transfer learning example described in [49] where they trained the Non-Local

Manifold Tangent Learning mapping on all numerical digits and tested on a letter. In this

case, we are training only on a single digit, providing less information for learning and

increasing the chance of overfitting to the training class.

2The images are padded to 18× 18 to allow rotation and cropping without losing digit information.
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Figure 4.6: Data augmentation through transfer learning with USPS digits. (a) An example
of manifold transformations trained on ‘8’ digits being applied to the letter ‘M’. The top
row shows a digit rotated to specific angle using a ground truth rotation matrix. Rows 2-4
show the effect of applying each of the manifold learning techniques to the letter with the
magnitude of the applied transformation increasing from left to right. (b) Convolutional
neural network classifiers are tested on rotated USPS digits. The classifiers are trained
on USPS digits in five variations: the original data, data trained with true rotations, and
data augmented through transfer learning using transport operators, LSML, and NLMT
manifold approximations based on only seeing rotated ‘8’ digits.

To highlight the performance when information is transferred between manifolds, we

apply the transformation learned on rotated ‘8’ digits to the letter ‘M’. Figure 4.6a shows

the effect of applying each of the generative manifold learning techniques to an example of

the letter ‘M’. Each column shows an increase in the magnitude of the applied transforma-

tion. For the tangent plane estimation techniques, this corresponds to increasing the length

of the path along the linear tangent plane. The transport operator approach can easily rotate

the letter to 30 degrees of rotation. The tangent plane estimation techniques, LSML and

NLMT, can effectively generate small rotations of about 10◦ but they are unable to generate

large transformations. This highlights the benefit of using a nonlinear generative manifold

learning technique for transferring large transformations.

Through generative manifold mapping, an impoverished training set from some classes

can be bolstered by transferring variability learned from other classes with more abundant

training data. We test this data augmentation technique on rotated USPS digits classified by

a convolutional neural network classifier [177].3 In this demonstration we use five versions
3We employed a LeNet convolutional network with 5 × 5 filters in the first and second convolutional

layers.
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of the classifier that are trained using different augmented datasets: 1) only the original

USPS digits with no rotation introduced (naive classification), 2) the original USPS dig-

its with ground truth rotation matrices applied (oracle classification), 3) the USPS digits

transformed many times by applying the transport operator that was learned only on ro-

tated ‘8’ digits with uniformly distributed coefficients, 4) the USPS digits transformed by

the LSML-estimated tangent vectors, and 5) the USPS digits transformed by the NLMT-

estimated tangent vectors. For both LSML and NLMT, the functions mapping sample

points to tangent vectors were learned only on rotated ‘8’ digits.

The classification accuracy for networks trained on each of these augmented datasets is

shown in Figure 4.6b. As expected, the network trained with the rotated digits (oracle clas-

sification) is not significantly affected by a change in the rotation angle of the test digit and

the network trained only on the original USPS data with no rotation (naive classification)

experiences a significant performance decrease with larger rotations. The network trained

using the dataset augmented with transport operators improves the performance signifi-

cantly over naive classification. Data augmentation with LSML and NLMT improves the

performance for smaller rotation angles but the accuracy on larger angles with these aug-

mentation techniques is significantly lower that the accuracy using the transport operator

augmented network.

4.5.2 Structured Manifold Path Generation

In this section we will show how we can infer transformations between point pairs on the

manifold and transfer the structured manifold paths to new starting points to generate spe-

cific transformations. Path interpolation is first demonstrated on the sphere where we can

visualize how well interpolated paths follow the underlying manifold. To enable transfer

learning on this manifold, we specify one half of the sphere as the source domain from

which training points are selected and use the other half as the target domain. Two points

are selected from the target domain and the manifold models are used to infer a path on the
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Figure 4.7: Two views of path estimates on the sphere manifold between points from the
target domain in a transfer learning setting. The transport operator path follows the sphere
manifold closely while the other three techniques generate paths that depart significantly
from the manifold. The NLMT and Isomap paths in this figure go through the sphere rather
than moving along it.

0 1 2
0

0.2

0.4

0.6

M
e
a
n
 M

a
x
 M

a
n
if
o
ld

 O
ff
s
e
t No Transfer

0 1 2

Category Mean Distance

0

0.2

0.4

0.6

Transfer

TransOpt

LSML

NLMT

Isomap

Figure 4.8: Average maximum manifold path offset for interpolated paths as a function of
true path distance in both the no transfer (left) and transfer (right) scenarios. All techniques
have small path offsets in the source domain. The path offsets of the paths interpolated
using transport operators are still small in the transfer scenario while the paths estimated
from the other three techniques deviate from the manifold.

manifold between the two points. For LSML and NLMT, the paths are generated using a

snake active contour method described in [47]. Figure 4.7 shows example paths between

two points selected from the target domain. In this case, the transport operator path is

the only one that does not depart significantly from the manifold. Because the LSML and

NLMT paths are estimated by recomputing tangents along the route to ensure the path re-

mains on the manifold, the path offset suggests an error in the tangent mappings in this area

due to the differences between the training and testing regions.

To quantify the error in the manifold representation, we compute a path offset met-

ric that indicates how far an estimated path departs from the true manifold. This offset is

computed by calculating the maximum distance between any point on the estimated path
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and its closest corresponding point on a densely sampled manifold. The manifold points

are defined using a uniformly spaced grid over a sphere with a distance of 0.046 between

neighboring points. The manifold path offset that we report is the mean value of the maxi-

mum offsets for nearly 4,000 paths in the test set. In the no transfer scenario, we evaluate

each algorithm using point pairs from the source domain, and in the transfer scenario, us-

ing point pairs from the target domain. Figure 4.8 shows the average maximum manifold

offset for both of these scenarios. In these figures the test cases are divided into distance

categories based on the ground truth path length to analyze how the performance changes

with path length. When no transfer is required, all algorithms can generate paths with small

manifold offsets. In the transfer scenario, the performance degrades for all algorithms ex-

cept for the transport operator approach. The ability to map out longer paths that remain

close to the manifold highlights the benefit of using transport operators for defining and

transferring paths that represent specific transformations.

We demonstrate the effectiveness of structured manifold path generation using facial

expression sequences. In this setting, we can learn transport operators associated with ex-

pressions manifolds that can be used to apply specific expressions, represented through a

structured set of transport operator coefficients, to input faces. Both the MUG facial ex-

pression database [178] and the Extended Cohn-Kanade (CK+) database [179, 180] contain

image sequences from a variety of subjects making six expressions (anger, disgust, fear,

happiness, sadness, and surprise). Each sequence starts with a neutral face and reaches the

apex of the expression. By learning transport operators on facial landmark point sequences,

we can identify natural facial dynamics that lead to expressions.

The transport operators are trained on 68 facial landmark points from pairs of images in

the MUG database expression sequences, using 12 of the 52 subjects. The training does not

require expression labels for the sequences – only pairs of images from the same sequence.

Landmark points in each image are identified using the facial landmark detection functions

in the dlib python library [181]. We sweep over the parameters in Equation 2.3 and find
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Figure 4.9: The center image shows the neutral facial landmark points. The leftmost and
rightmost images are the result of applying a transport operator that qualitatively creates
“happiness” and “surprise” respectively.

the best performance for γ = 5 · 10−5, ζ = 0.01, and M = 20. Because the training

is unsupervised, there is not a single transport operator associated with each expression.

However, several operators elicit transformations that can be qualitatively associated with

expressions (see Figure 4.9 for two examples).

The learned transport operators can be used to generate realistic expression sequences

for new subjects by extrapolating an expression from neutral landmark points. Prior to

extrapolating expressions from neutral landmark points, the coefficients need to be inferred

for each desired expression as in Equation 4.3. Coefficient inference requires landmarks

from an image at the apex of the expression (x1) and landmarks from a neutral image

in the same sequence (x0). Once the coefficients (c∗i ) are obtained for expression i, the

resulting dynamics matrix, Ai, can be applied to any set of neutral landmark points to

create expression i. We use the generated facial landmark point paths animate faces with

specified expressions using a Generative Adversarial Network (GAN) [80] conditioned on

the landmark point locations.

We incorporate the landmark sequences into a progressive GAN [182] that is trained on

the CelebA dataset [183] by conditioning the generator on individual attributes and the gen-

erated landmark points locations from the expression paths. See Figure 4.10 for a detailed

look at the GAN architecture used. Figure 4.11 shows two examples of how transport op-

erators are used to animate new faces. The top row shows an expression sequence from the

CK+ dataset. Coefficients are inferred between the first and last image in this sequence and

used to estimate the expression transformation. This expression transformation is applied

to landmark points for several starting faces to generate the landmark expression sequences
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Figure 4.10: Visualization of conditional GAN used to generate faces with expressions
specified by transferred manifold paths. The generator takes a normally distributed vector
(z) as input and is conditioned on facial landmark points and attributes associated with
CelebA images. The discriminator outputs a real/fake indicator and an estimate of the
landmark points and attributes from the generated image.

(a) (b)

Figure 4.11: In each image, the top row shows a ground truth expression sequence from the
CK+ dataset. Rows 2-4 show the faces created with landmarks from expression sequences
generated through structure manifold path generation. Each row is the result of a single
latent vector, z, and single set attributes.

that the trained generator network is conditioned on in order to output the faces shown in

rows 2 - 4. Each row is the result of a single latent vector, z, and single set of attributes.

In addition to facial animation, a learned model of manifold operators can be used for

few-shot learning to classify samples of labeled transformations from only a few training

points. The transport operator coefficients are an efficient representation of labeled trans-

formations that define operators which can be transferred to new starting points to augment

a training set. We test this structured data augmentation by using the transport operators

trained on facial landmark points from images in the MUG database to augment a small

amount of labeled data from the CK+ database. Therefore, we transfer not only between

individual faces but also between datasets. We assume the only labeled data for each ex-
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Figure 4.12: Example of few shot learning on facial expression landmark points. The
boxes represent the classification accuracy distribution when the classifier is trained us-
ing the transport operator-augmented dataset (transport operator), using only one example
per expression without data augmentation (single example), and using landmarks from the
expression frames in all of the training sequences from the CK+ database (CK+).

pression is one neutral image and an associated expression image from the same sequence.

In this one-shot learning scenario, we randomly choose one example sequence for each

of the six expressions (anger, disgust, fear, happiness, sadness, and surprise) and infer the

coefficients between landmarks in the first frame (neutral) and the last frame (expression

apex). The transformations defined by these coefficients are then applied to the landmark

points in the neutral frames from all the remaining sequences in the training set. A support

vector machine (SVM) is trained with this generated expression data to classify the six

expressions as well as the neutral expression.

Figure 4.12 shows the classification accuracy for 500 trials. In each trial, the data was

split randomly into training, validation, and testing sets and a new set of labeled examples

for each of the six expressions is chosen. The boxes in this plot extend from the 25th per-

centile to the 75th percentile of classification accuracy. When training with a fully labeled

training set (CK+), the median accuracy was 0.7729. The low classification accuracy in

this supervised scenario may be due to the difficulty of discriminating expressions given

only landmark points. When training with only single examples of each expression, the

median accuracy is 0.4857. The transport operator data augmentation improves the median

accuracy to 0.6419. This shows how the manifold model of unlabeled, natural variations

can be used to represent and transfer labeled transformations in a classification scenario

with limited training samples.
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4.6 Conclusion

We have shown that the transport operator manifold model is effective for transferring

learned transformations between classes. We define two transfer tasks that use generative

manifold models to transfer meaningful transformation information from a densely sam-

pled source domain to a target domain with limited data, and we develop techniques to

perform each of these tasks. In the first task, we use learned manifold transport operators,

which represent natural variations in the data, to map out the manifold around individual

data points. In the second task, we transfer structured paths associated with specific trans-

formations by inferring the manifold transformation between two points and incrementally

applying that transformation to new starting points. The transfer learning potential was

shown in the context of data generation and augmentation applications by animating indi-

viduals with new facial expressions and providing examples of few-shot learning for digit

and facial expression classification. In the future, these techniques can be used to learn

transformations on a few densely sampled object manifolds which can be transferred to

new classes that are constrained by the same natural physical processes in order to reduce

the amount of training data required to obtain accurate classification for all classes.
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CHAPTER 5

LEARNING NATURAL TRANSFORMATIONS IN NEURAL NETWORK

LATENT SPACE

5.1 Introduction

An effective model1 for learning manifold-based data transformations needs to be applica-

ble to high dimensional data inputs. Standard manifold learning algorithms rely on nearest

neighbor similarity metrics which can be problematic with high dimensional data in which

similarity in the input space may not be most indicative of data similarity. Additionally,

it is inefficient to work directly with the high-dimensional inputs when many of the input

features are meaningless for understanding the true data structure. This motivates learn-

ing a low-dimensional feature space within which the manifold model can be learned. In

subsection 2.2.2, we describe autoencoders, VAEs, and GANs which all learn generator

functions f : Z → X that map points from a low-dimensional latent space, Z ⊆ Rd,

to a high-dimensional data space, X ⊆ RD. The latent space of these networks is of-

ten described as a manifold in which natural data transformations are defined by linear

paths [184]. However, there are several characteristics in these embeddings that make them

poor manifold representations. Namely distances in the latent space may not correspond

directly to data similarity, linear paths in the latent space may depart from the manifold and

result in unrealistic data points, and linear transformation representations will ultimately

1This chapter is in collaboration with Kion Fallah and Dr. Christopher Rozell. MC developed the mani-
fold autoencoder model, the manifold offset distance, and performed all experiments with closed transforma-
tion paths resulting in the publication [1]. This chapter contains material from [1] with modifications. The
original material is located here. This material is under copyright by Association for the Advancement of
Artificial Intelligence. MC and KF contributed equally on the extension to learning unlabeled natural varia-
tions using the perceptual loss metric and the development of the coefficient encoder network and coauthored
the corresponding publication [2]. CR supervised the project. Code for the closed transformation path ex-
periments and the extensions are found here: https://github.com/siplab-gt/Manifold Autoencoder and here
https://github.com/siplab-gt/manifold-autoencoder-extended
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extend to infinity and result in meaningless extended extrapolated paths. By incorporating

a manifold model in an autoencoder latent space we not only improve the efficiency and the

effectiveness of the manifold learning strategy but also integrate an objective that encour-

ages the autoencoder latent representation to better match the nonlinear manifold structure

of the data.

There are two general approaches that incorporate natural data structure into latent

spaces of generative networks to represent more complex transformations. The first ap-

proach encourages geometric priors in the latent space that may better accommodate nat-

ural data variations [81, 82, 83, 84, 85, 86, 83, 95, 96]. The second approach defines

transformations using geodesic paths in the latent space rather than linear paths [90, 91,

92, 93, 94]. We combine both of these approaches by explicitly incorporating a learned

generative manifold model into the latent space of an autoencoder. This manifold model

will allow us to both learn structure associated with natural variations in the data and define

nonlinear paths necessary for representing paths along the manifold.

With this model, which we title the manifold autoencoder (MAE), we focus our analysis

on two specific settings in which current methods are insufficient. The first is when the

data has closed transformation paths that extend from a starting point, z0, and return to

nearly the same point zN ≈ z0 after N steps. There are many examples of applications

that fit this setting including 3D rotating objects, temporal action sequences, and natural

systems governed by underlying dynamical processes. These transformations cannot be

represented by linear paths in the neural network latent space but instead require a more

complex representational model for latent data variations.

Figure 5.1 provides an example of why it is necessary to address closed transformation

paths directly and why we are using an autoencoder model to define our encoded latent

space. The training data for these plots are 20-dimensional features that are mapped from

the two-dimensional, ground truth latent space in Figure 5.1a. The points are embedded

onto two circular manifolds. Figure 5.1b shows the embedding from a learned autoencoder
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with a two-dimensional latent space. This autoencoder effectively represents the concen-

tric circular latent structure of the data. By contrast, the embedding from the trained VAE

mixes the points from the two manifolds (Figure 5.1c). This is due to the VAE training

objective which encourages the latent vectors to have a Gaussian prior distribution which

aims to center all latent points around the origin. This Gaussian prior is clearly not appro-

priate for data with closed transformations paths. To address this manifold mismatch, the

hyperspherical VAE implements a hyperspherical prior into the latent space [81]. The hy-

perspherical structure in the latent space introduces the possibility of creating closed paths.

However, this technique does not effectively define individual object manifolds but rather

combines the manifolds of all training objects onto the same hyperspherical space. Fig-

ure 5.1d shows this effect because points from the two data manifolds are embedded on the

same circle in the two-dimensional latent space. The manifold autoencoder helps repre-

sent closed transformation paths by learning the nonlinear structure from the data itself and

adapting the latent space of the autoencoder to fit that learned structure. We highlight the

effectiveness of the MAE model on data with closed transformation paths in section 5.4.

(a) (b) (c) (d) (e)

Figure 5.1: Embedding of concentric circle inputs in network latent spaces. (a) Ground
truth latent embedding. (b) Circle points embedded in the autoencoder latent space. (c)
Circle points embedded in the VAE latent space. (d) Circle points embedding in the hyper-
spherical VAE latent space (e) Circle points embedded in the manifold autoencoder latent
space

The second setting that we focus on is when a dataset has no labeled transformation

structure. As described in section 2.1, the transport operator training objective is computed

using point pairs on the manifold. These points should be nearby on the manifold and

related through transformations that the user desires to learn. For most complex datasets,

information about the transformations of interest is not available. This necessitates a strat-
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egy for selecting training point pairs which can be used to learn natural transformations in

complex datasets without requiring additional transformation supervision. In the absence

of labeled transformations, point pairs may be selected as random samples from the dataset

or from within the same class. These points, however, are likely to be outside of local

manifold neighborhoods and may not provide representations of the natural, perceptually

smooth variations in the dataset. Point pairs can also be selected as nearest neighbors in

the pixel space or autoencoder latent space, but many semantic transformations of interest

may not be exhibited through pixel similarity nor through unsupervised autoencoder feature

similarity. We introduce a method for selecting training point pairs without transformation

supervision in subsection 5.3.2 and detail experiments using this method in section 5.5.

Overall, in this chapter, we introduce an approach to learn and represent natural mani-

fold structure in a neural network, with the following specific contributions:

• We develop a model for learning generative, nonlinear transport operators between

pairs of points in a network latent space that represent natural transformations in the

data. We show that this model can interpolate paths between points and extrapolate

paths from arbitrary starting points.

• We create a network architecture that incorporates the manifold transport operators

into an autoencoder latent space. This enables us to define a latent space structure

that adheres to the structure in the data itself. We show that incorporating a learned,

nonlinear manifold structure in the latent space greatly improves our ability to gen-

erate extended transformations paths.

• We define a distance metric that determines the likelihood that two points, z0 and z1,

lie on the same manifold given the learned manifold transport operators. We show

that this distance can be used to find new samples that exist on the same transforma-

tion path as a reference point.

• We introduce a point pair selection strategy to learn a manifold representation of nat-
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ural variations shared across multiple data classes without requiring transformation

labels. We show that training the manifold autoencoder with this point pair selection

strategy leads to learned transport operators that generate semantically meaningful

transformations.

• We develop a method that uses a pretrained classifier (measuring identity-preservation

of transformed samples) to learn the local regions where each transport operator is

likely to be used while preserving the identity of transformed samples. This ap-

proach enables us to analyze the local structure of the data manifold in the context of

the learned operators and to describe the invariances of the pretrained classifier.

5.2 Background

Representation learning is an area of machine learning research that involves learning rep-

resentations of high-dimensional data from which it is easier to extract useful informa-

tion [185]. This is often necessary because it can be difficult to discern features of interest

directly from high-dimensional data inputs. Additionally, due to the curse of dimension-

aity, as the dimension of the data increases, it becomes more challenging to accurately

determine similarity between samples. Finally, it can be computationally taxing to work

with high-dimensional inputs. Representation learning encompasses many possible areas

of research (such as supervised learning, unsupervised learning, autoencoders, and mani-

fold learning), and there are many different desired goals when performing representation

learning.

One representation learning goal relevant to our manifold autoencoder work is learning

representations in which similar samples are close together in the feature space. This type

of representation can be useful for classifying samples based on their feature location.

Contrastive representation learning techniques learn data embeddings using objectives that

keep similar points close and dissimilar points farther apart. These objectives include the

contrastive loss [186], the triplet loss [187, 188], and soft nearest neighbor loss [189]. Some
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representation learning techniques are integrated with clustering approaches in order to

maintain geometric proximity between similar samples in a latent space without requiring

labels [190, 191, 192]. While the techniques presented above focus on feature similarity in

a Euclidean feature space, the manifold autoencoder model enables feature comparison in

the latent space using geodesic distances on the manifold and the manifold offset distance

described in subsection 5.3.3.

Another relevant goal of representation learning is defining features that are disentan-

gled [193]. In the ideal scenario, disentangled features should each vary one distinct char-

acteristic of the data. With such a feature representation, users would be able to identify

naturally varying characteristics of the data, including identity-preserving characteristics

that do not impact classification outputs. In a supervised learning scenario, there are many

disentangling techniques that separate data style from content by encouraging similarity

between the content features in samples from the same class [194, 195, 196, 197] or en-

couraging a subset of features to map to known class labels [198] or known transformation

labels [199, 200, 201]. There are also many techniques that do not require supervision in

order to disentangle latent representations. InfoGAN [202] and β-VAE [203] are two stan-

dard models used to disentangle representations. InfoGAN is a GAN-based architecture

that maximizes the mutual information between a subset of the latent dimensions and the

generated output. β-VAE uses the same network structure as the VAE but with a weight

on the KL-divergence term in the VAE training objective that can be increased to encour-

age latent space disentanglement. There have been several follow-up papers to the original

β-VAE network that improve reconstruction quality [204, 205] and encourage additional

interpretability of the latent factors [206]. Though the disentangling of the data represen-

tation is not the prime motivation of the manifold autoencoder model, it has many charac-

teristics that encourage disentangling of data representations including a learned dictionary

of operators that represent data variations, an objective that encourages a sparse set of op-

erators to represent a given transformation between data samples, and a training strategy
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Figure 5.2: Visualization of the three phases of training the manifold autoencoder.

that estimates transformations between points that should be nearby on the data manifold

which likely share the same class. Experiments in section 5.5 show qualitative results that

suggest the learned operators disentangle data variations.

In this chapter we will first describe the details of the manifold autoencoder model and

its training and implementation details in section 5.3. We then detail the experiments using

data with closed transformation paths in section 5.4 and detail the experiments learning un-

labeled natural variations in section 5.5. Finally we will describe our method for estimating

the local transport operator statistics on the data manifold in section 5.6.

5.3 Manifold Autoencoder Model

5.3.1 Manifold Autoencoder Training

To incorporate the transport operators into the autoencoder network architecture, we create

a new transport operator layer that applies a transformation defined by the current dictio-

nary of M operators, Ψm ∈ Rd×d, and a set of coefficients, c ∈ RM , to an input latent

vector, zin:

zout = expm

(
M∑
m=1

Ψmcm

)
zin.

We develop a three phase approach for training the manifold autoencoder. See Fig-

ure 5.2 for a visualization of the phases.
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• Autoencoder Training Phase: Train the autoencoder on input data.

• Transport Operator Training Phase: Fix the autoencoder weights and train the

transport operators on pairs of samples from the encoded latent space as described in

section 2.1.

• Fine-tuning Phase: Fine-tune the autoencoder network weights and transport oper-

ators simultaneously.

We begin with the autoencoder training phase in which we train an autoencoder with a

reconstruction loss. We then progress to the transport operator training phase in which we

fix the network weights and train the transport operators as described in section 2.1 with

the objective:

EΨ =
1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψmcm

)
z0

∥∥∥∥∥
2

2

+
γ

2

∑
m

‖Ψm‖2
F + ζ‖c‖1. (5.1)

which is comparing the estimated manifold transformations between latent vectors z rather

than data inputs x (as was described previously). The weights γ and ζ are both greater than

or equal to 0. The strategy for selecting training point pairs x0 and x1 associated with latent

vectors z0 and z1 is described in subsection 5.3.2.

As mentioned in section 2.1, the Frobenius norm regularizer on the dictionary elements

in Equation 5.1 can aid in model order selection because it encourages the operators not

being used to reduce their magnitudes to zero. This built-in selection of dictionaries allows

us to initially overestimate the number of dictionaries, M , and rely on the model to identify

the number necessary for representing the transformations.

During the fine-tuning phase, we simultaneously update the transport operators and the

autoencoder weights. The dictionary elements are updated with the same objective function

as in Equation 5.1. The network weight, φ, updates are supervised by both reconstruction
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losses and a transport operator loss:

Eφ = ‖x0 − x̂0‖2
2 + ‖x1 − x̂1‖2

2 + λEΨ, (5.2)

where x̂0 = f(z0) and x̂1 = f(z1) are the reconstructed image outputs.

As with transport operator training, fine-tuning the network weights and dictionary el-

ements involves alternating between inferring transformation coefficients between samples

and taking gradient steps on the dictionaries and network weights. Algorithm 1 shows the

pseudo-code for the training procedure during the fine-tuning phase. The procedure for co-

efficient inference was improved by Kion Fallah and details on the optimization procedure

are available in appendix section B.2 and in the revelant sections of our joint paper [2].

Algorithm 1: Fine-tuning of network weights and transport operators
Data: Training samples x ∈ X , pretrained dictionaries Ψ, pretrained network

weights φ
Result: Fine-tuned operator dictionary elements Ψ and network weights φ
for i = 0, ...., N do

Select a batch of point pairs x0 and x1;
Encode point pairs to get z0 and z1;
for j = 0, ...., num pairs do

Initialize c as cm ∼ Unif[0, 1];
Fix c to c∗ = argmincEΨ;
Ψ = Ψ− η δEΨ

δΨ
;

φ = φ− ζ δEφ
δφ

;

To visualize the transport operators learned in the latent space, we revisit the dataset

used in Figure 5.1 and train an autoencoder with a two-dimensional latent space on 2D cir-

cular points that are mapped into a 20-dimensional space. Figure 5.1b shows these points

encoded in the latent space after the autoencoder training phase. Point pairs for transport

operator training are created by randomly selecting z0 from the training set and selecting

a z1 that is one of the 20 nearest neighbors of z0. Figure 5.3a shows the orbits of the

four transport operators after the transport operator training phase. The number of trans-
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port operators starts at M = 4 but the Frobenius norm term in Equation 5.1 reduces the

magnitude of the unused dictionary elements to nearly 0, resulting in only the rotational

operator (transport operator 1). Finally, the fine-tuning phase adjusts both the transport op-

erators and the latent space to accommodate one another. Figure 5.1e shows the embedded

points after fine-tuning. These points have a more clearly circular structure than the initial

embedding points in Figure 5.1b.

(a) (b) (c)

Figure 5.3: (a) Orbits of transport operators learned in the neural network latent space.
(b) Heat map of the manifold offset distance from the red reference point to every point on
the grid. The manifold offset distance is small on the 1D circular manifold on which the
reference point resides. (c) AUC curve for classification of points on the same or different
circles during fine-tuning process. As fine-tuning progresses, the manifold offset distance
becomes better able to separate samples from the inner and outer circles.

5.3.2 Training Point Pair Selection

To learn transport operators that represent a data manifold, pairs of training points are

selected which lie within a neighborhood of one another. The training objective encourages

efficient paths between these nearby points and the choice of training point pairs strongly

influences the types of manifold transformations that are learned. The best selection process

for these point pairs depends on the application. If the application involves temporal data,

neighboring points are defined as points that are a few time steps apart. If the data does not

include temporal sequences, there are several other methods for selecting point pairs during

training including finding points that are close together in an embedding space, points that

share similar attribute labels, points that are identified as similar through human input, and

points that are close in a neural network feature space.
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We generalize transport operator training to incorporate an unsupervised learning strat-

egy that can be applied to a wide array of datasets that do not have external transformation

information. In particular, we select point pairs using a perceptual loss metric [207]. The

perceptual loss measures the distance between feature representations of input images that

are extracted from a classifier pretrained on a large dataset, like ImageNet. It has been

shown that high-level features in pretrained classifier networks correspond to general se-

mantic characteristics of the data and finding points that are nearby in this feature space

can result in image pairs that are perceptually similar without being exactly the same [207,

208].

Figure 5.4 shows examples of nearest neighbors selected using pixel similarity, similar-

ity in the autoencoder latent space, and the perceptual loss metric. This highlights how the

perceptual loss metric can be useful for identifying inputs with similar qualitative charac-

teristics. For instance, in the set of images on the left, the perceptual loss metric identifies

another bald man as a nearest neighbor which has similar characteristics of the initial image

even though the exact image looks quite different.

Figure 5.4: Examples of nearest neighbors identified through pixel similarity, latent sim-
ilarity, and the perceptual loss metric. In each set of 12 images, the images in the first
column (contained in green boxes) are the initial reference images and the images to the
right of those show three selected nearest neighbors. The perceptual loss metric identifies
neighbors that share similar characteristics, like hair style, without being exactly the same.

When examining the success of learned operators, one characteristic we care about is

how well the operators maintain the stability of generated paths. We consider generated

paths stable if the latent vectors do not expand quickly to infinity. We have defined this as

a useful characteristic for identity-preservation of applied operators – if operators expand

80



latent vectors to infinity, that will very likely lead to a change in identity. Each of the

operators can be viewed as the dynamics matrix of a continuous time linear dynamical

systems model and we can analyze their stability as dynamical systems by observing their

eigenvalues [209].

In continuous time linear dynamical systems, there are three classifications of system

stability. If a system is stable, the real parts of all eigenvalues are below zero. In a sta-

ble system, the magnitude of an input shrinks as time progresses forward. If a system is

unstable, the real part of at least one eigenvalue is above zero. In unstable systems, the

magnitude of an input expands to infinity as time progresses forward. Finally, if a system is

marginally stable, then the magnitude of an input remains constant and the real parts of all

of its eigenvalues are zero2 . The transport operator model is unique because operators can

represent dynamics matrices that define the natural data variations which do not have the

same directionality as temporal systems (where time moves forward). Therefore transport

operators can be applied with positive or negative coefficients and the traditional view of

stability of temporal systems no longer applies.

In order to maintain the stability of generated paths, the operators need to generate

cyclic transformation paths that neither increase nor decrease the latent vector magnitudes.

This corresponds to marginal stability in linear dynamical systems. A marginally stable

system has only imaginary eigenvalues with no real parts [209]. Therefore, we can identify

transport operators approaching marginal stability by investigating the magnitudes of the

real parts of their eigenvalues. The maximum real magnitude of an eigenvalue of a dynam-

ics matrix drives the speed with which the generated paths expand to infinity. Therefore

this maximum real magnitude is the focus of our investigation into the stability of paths

generated by learned operators. When the maximum magnitude of the real part for all

eigenvectors associated with an operator is close to zero, that indicates that the operator is

2Note that a system can also be marginally stable with at least one pair of eigenvalues with a zero real part
and non-zero imaginary parts and the rest of the eigenvalues with non-positive real parts. For simplification
of this analysis, we will focus on striving for systems which have eigenvalues with all real parts equal to 0.
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(a) (b)

Figure 5.5: Analysis of eigenvalues of operators learned in the MNIST experiment. (a)
The maximum absolute value of the real parts of eigenvalues computed from each learned
operator. (b) Plot of the real and imaginary parts of the eigenvalues for each operator.

closer to marginal stability. Therefore, we quantify the stability of transport operator gen-

erated paths by looking at the maximum magnitude of real parts of eigenvalues associated

with each transport operator. Figure 5.5a shows the sorted maximum magnitude of the real

parts of eigenvalues in each of the 16 operators learned in the experiment in section 5.5

which learns natural MNIST variations. The blue x’s are associated with the operators

trained using the perceptual point pair selection strategy and the red dots are associated

with the operators trained using a simple strategy of selecting point pairs as nearest neigh-

bors in the latent space. With the exception of one operator, all the operators trained using

latent space similarity for supervision have larger maximum magnitudes of real eigenvalue

components than the operators trained using the perceptual loss metric. This indicates that

the operators trained using the latent space similarity to select training point pairs are far-

ther from marginal stability and can be seen as less stable by our definition of transport

operator stability.

To view the effect of these learned operators more intuitively, we plot the values of the

latent dimensions as individual operators are applied in Figure 5.6. Each line in these plots

shows the influence of the operators on a single latent dimension (Note that this experiment

utilizes a latent dimension of 10). Figure 5.6a shows the paths generated by transport oper-

ators trained with the perceptual point pair selection strategy . The plots with straight lines
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(i.e., operators 3, 4, 7, 12, 14, and 16) indicate that those operators had their magnitudes

reduced to zero during training and therefore they have no impact on the latent vectors

when applied. Most of the operators learned using the perceptual point pair selection strat-

egy are close to cyclic except for operator 2 (the operator with the large real component

magnitude in Figure 5.5a). By contrast, several of the operators trained with point pairs

selected as nearest neighbors in the latent space extend to infinity (Figure 5.6b). This can

explain the larger maximum real value magnitudes in Figure 5.5a. This analysis leads us

to conclude that the perceptual point pair selection strategy has a greater potential to yield

identity-preserving transport operators.

(a)

(b)

Figure 5.6: Visualizations of the effect of each learned transport operator on each dimen-
sion of an encoded latent vector. In each plot, each line represents a single latent dimension
and the coefficient magnitude of the transformation varies on the x-axis. (a) Paths from op-
erators learned with perceptual point pair supervision. (b) Paths from operators learned
with point pairs selected as nearest neighbors in the latent space.
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5.3.3 Manifold Offset Distance

The learned transport operators define motion on class manifolds and constrain possible

directions of transformations. We can use the operators to define a distance that indicates

the likelihood that two latent vectors lie on the same manifold path. We call this distance

the manifold offset distance and it indicates the how well a point z1 can be estimated from

a starting point z0 using the learned operators Ψ. The manifold offset distance is defined

as:

doffset =

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψmc
∗
m

)
z0

∥∥∥∥∥
2

2

, (5.3)

with the inferred coefficients c∗ = argmincEΨ.

Figure 5.7: Stylized view of the manifold offset distance (labeled here as d). The manifold
offset distance is a measure of the distance between the transformed point on the manifold
using inferred coefficients ẑ1 (blue dot) and the true value of z1 (red dot)

We use the concentric circle data set and the transport operators shown in Figure 5.3a to

intuitively understand the usefulness of the manifold offset distance. Figure 5.3b shows a

heat map of the manifold offset distances from the red reference point. The manifold offset

is very small for the points that exist on the same 1D circular manifold as the reference

point and much larger for points off of this circular manifold.

We also use the manifold offset distance to perform a simple classification task to show-

case the usefulness of the fine-tuning phase of training. The classification task is to deter-

mine whether two points are on the same circle in the concentric circle data set or different
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circles (see Figure 5.1a). To perform this classification, we compute the manifold offset dis-

tances between two points and use a binary classifier on the distances to determine whether

two points are from the same circle or different circles. We quantify the performance using

the area under a receiver operator characteristic (ROC) curve. The area under the curve

(AUC) is a measure of class separability that spans from 0 to 1 with 1 indicating perfect

separability. Figure 5.3c shows the evolution in the AUC during the fine-tuning phase. We

compare the AUC using the manifold offset distance and the Euclidean distance. This plot

shows that the classification is no better than chance when using the Euclidean distance

between points. By contrast, there is high AUC using the manifold offset distance and an

increase in AUC as fine-tuning progresses. This provides evidence that the fine-tuning is

structuring the latent space so the transport operators more accurately fit the encoded data.

5.4 Closed Transformation Paths Experiments

In this section, we analyze the performance of our transport operator model on two datasets

that contain closed transformation paths: rotated MNIST digits and gait sequences from

the CMU Graphics Lab Motion Capture Database.3 We demonstrate the usefulness of the

manifold autoencoder for transformation extrapolation and manifold identification.

(a) (b)

Figure 5.8: Two examples of extrapolated rotations in the autoencoder latent space. Row
1: Extrapolated linear path in latent space prior to fine-tuning. Row 2: Extrapolated linear
path in latent space after fine-tuning. Row 3: Extrapolated hyperspherical VAE path Row
4: Extrapolated transport operator path prior to fine-tuning. Row 5: Extrapolated transport
operator path after fine-tuning.

3CMU Graphics Lab Motion Capture Database found here: http://mocap.cs.cmu.edu/
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5.4.1 Rotated MNIST Digits

We train our autoencoder and transport operators using a subset of 50,000 images from the

MNIST training set [177]. In the autoencoder training phase, we train on batches of rotated

MNIST digits. During the transport operator training phase, we generate pairs of rotated

training digits. The first image in the pair is a digit image rotated to an angle, θ, between 0

and 350◦ degrees and the second image is that same digit image rotated to θ+6◦. The train-

ing results in one operator with a much higher magnitude than the others (see Figure B.1b

for transport operator magnitudes after transport operator training). Therefore, during the

fine-tuning phase, we only use the single high-magnitude operator in the transport operator

layer. We compare our technique against a hyperspherical VAE trained on rotated digit

data. This network was trained using the network architecture and the loss functions in the

code provided by the authors [81]. In order to define paths in the hyperspherical VAE latent

space, we compute geodesic paths on a hypersphere [210]. See the appendix sections sec-

tion B.3 and subsection B.11.1 for more details of the network architecture and training

process.

Figure 5.8 shows a visualization of extrapolated paths in the latent space. These paths

are defined by estimating the transformations between latent representations of pairs of

digits with 1◦ of rotation between them and extrapolating the transformation to estimate

the full rotation path. To generate the visualizations, we i) encode a starting image into the

latent space using the encoder function g(·): z0 = g(x0); ii) apply the transformation to

the the starting point; and iii) decode the image output: x̂t = f(zt). This figure shows that

the linear paths produce a small amount of rotation but quickly transform the appearance

of the digit itself. The path in the hyperspherical VAE latent space also induces a small

rotation, but as the path extends, the appearance of the original digit transforms. This is

an example of how the single hyperspherical latent space is not effective for representing

large, identity-preserving transformations.

The transport operator before fine-tuning extrapolates rotation to about 45◦ before the
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Figure 5.9: Average nearest neighbor classification accuracy of rotated test digits with
standard deviation error bars.

digit appearance significantly changes. The transport operators resulting from the fine-

tuning phase can generate full, 360-degree rotations with only small changes to the digit

appearance. This makes it clear that the fine-tuning phase is needed to adjust the network

weights and transport operators to represent the full closed transformation paths.

The manifold offset distance can be used to identify samples on the same manifold

transformation path. The rotated paths of individual images represent 1D manifolds in

this setting and our task is to identify points on the same rotated digit manifolds using the

manifold offset distance. This is shown through nearest-neighbor classification in the latent

space. We define 10 training samples, the latent representation of one image for each digit

class at zero degrees of rotation. The testing samples are latent representations of each

of the training samples rotated to different angles. We classify each rotated sample using

the class label of the nearest neighbor in the training set. Figure 5.9 shows the nearest

neighbor classification accuracy at different rotation angles using the Euclidean distance,

the geodesic distance in the hyperspherical VAE latent space, and manifold offset distance

before and after fine-tuning for 50 trials. This shows that the manifold offset distance prior

to fine-tuning, the Euclidean distance, and the geodesic distance in the hyperspherical VAE

are poor measures for nearest neighbor classification at large rotation angles. However,

after fine-tuning, the manifold offset distance is very effective for identifying points on the

same rotational manifold.
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(a)

(b) (c)

Figure 5.10: Analysis of gait sequence paths generated with learned transport operators.
(a) The effect of applying a learned operator which generates a full gait sequence. (b)
Example of one feature from the data space as it progresses during an extrapolated gait
sequence. (c) The error in between the estimated gait sequences and the ground truth gait
sequences. The estimated sequences are extrapolated from a starting point in the latent
space.

These experiments highlight key benefits of our method which encourages nonlinear

manifold structure in the autoencoder latent space. First, we show how the learned transport

operators can be used to extrapolate full closed transformation paths from arbitrary starting

points. Second, we demonstrate the advantage of incorporating the manifold model into

the training of the network itself to fine-tune the encoder mapping. Finally, we show the

manifold offset distance can be used to identify pairs of points on the same transformation

manifold.
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5.4.2 Gait Sequences

The CMU Graphics Lab Motion Capture Database includes human walking sequences that

were recorded by a motion capture system. The motion data is represented through 62-

dimensional feature vectors that specify locations and orientations of joints. We use the

preprocessing procedure discussed in [211] which converts the 62-dimensional features

into 50-dimensional features. We train on walking sequences 1-16 from subject 35. Walk-

ing data from this subject is abundant and this subject has been widely used for gait analy-

sis [91, 211, 212].

We train an autoencoder with a five-dimensional latent space using features from the

gait sequences. The point pairs used to train the transport operators are composed of fea-

tures from two frames that are separated by a five frame interval. We begin with 10 transport

operator dictionary elements but we eliminate all but three operators due to their low mag-

nitudes after the transport operator training phase (see Figure B.1c for transport operator

magnitudes after transport operator training). Each of these three operators induces a con-

tinuous gait sequence with some difference between the mechanics of the movement. See

the appendix section B.3 for more details on the training process and an analysis of how

the three highest magnitude operators are jointly used.

Figure 5.10a shows an example gait sequence generated using the learned operator

with the highest magnitude after the transport operator training phase. This operator can

represent the full loop of a gait transformation. To quantify our ability to estimate ground

truth gait paths, we begin at a latent vector that encodes a neutral standing pose and use

both a learned manifold transport operator and a linear path to estimate the ground truth

gait sequence. We estimate the transformation between latent representations of features

that are six frames apart in the gait sequence. We then use the estimated transformations

to extrapolate full gait sequence paths in the latent space. We test gait estimates on test

sequences 30 -34. Figure 5.10b shows the extrapolated paths of a single feature in a gait

sequence that is decoded from the extrapolated latent paths. We see that the linear path
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can effectively estimate the ground truth gait sequence in the initial frames but it eventually

plateaus at a meaningless value. In comparison, the transport operator extrapolated path can

match the ground truth for several gait sequences. Figure 5.10c shows the mean squared

error between the ground truth gait sequence and the estimated gait sequences for five test

walking sequences. The error in the transport operator paths is largely due a mismatch in

the speed of the extrapolated and the ground truth gait sequences.

5.5 Unlabeled Natural Variations Experiments

In these experiments, we examine the ability of the MAE to learn natural transformations

from complex datasets in which the underlying identity-preserving transformations are not

easily identifiable using our perceptual point pair selection strategy. We work with three

datasets: MNIST [177], Fashion-MNIST [xiao2017online], and CelebA [183]. We select

MNIST and Fashion-MNIST because they contain several classes that share natural trans-

formations but they do not have transformation labels. We select CelebA to highlight our

ability learn natural transformations in a larger, more complex dataset. As a classic dataset

used in papers that aim to disentangle dataset features [203, 202, 213, 214], CelebA con-

tains semantically meaningful natural transformations that may be amenable to qualitative

labeling.

In all experiments, we follow the three-phase training procedure as described in subsec-

tion 5.3.1. We select training point pairs that are nearest neighbors in the feature space of

the final, pre-logit layer of a ResNet-18 [215] classifier pretrained on ImageNet [216]. Ad-

ditional details on the datasets, network architectures, and training procedure are available

in the section B.4.

We compare against the contractive autoencoder (CAE) [87] and β-VAE [203], two

other autoencoder based methods that incorporate data structure into the latent space. The

CAE represents another technique (discussed in more detail in subsection 2.2.2) that learns

a manifold representation in a neural network latent space. In their model, the manifold
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is represented by estimated manifold tangent planes at latent point locations. The β-VAE

learns to disentangle factors of variation along latent dimensions through an increase in

the weighted penalty on the KL-divergence term in the VAE objective. We choose these

methods as they provide approaches to learn natural dataset variations in the latent space

without transformation labels.

First we show how well our MAE model is able to learn natural data variations in a

dataset when selecting point pairs using the perceptual point pair selection strategy and we

highlight the usefulness of a nonlinear manifold model for generating latent space paths.

Figure 5.11 shows the paths generated by transport operators trained in this model. Each

block of images corresponds to the same operator or variational factor being applied to

multiple inputs images. The image in the middle column in each block of images is the

reconstructed version of the input image x0. The images to the left and right of the middle

show the reconstructed images generated by an individual learned operator applied to the

encoded latent vector z0: zc = expm(Ψmc)z0, c = −Nc, ..., Nc. We see an individual

operator generates a similar transformation across multiple inputs, and in many cases, the

transformations induced by the transport operators are semantically meaningful. We also

show that the perceptual point pair selection strategy, though relying on network trained on

ImageNet, is effective over a range of datasets.

While many of the operators can be assigned a semantic label through qualitative visual

inspection, the CelebA dataset has attribute labels for the images which enable a quantita-

tive analysis of the connection between learned transport operators and dataset attributes.

To classify attributes, we fine-tune a ResNet-18 pretrained on ImageNet with 16 classifica-

tion heads for attributes including smile, beard, hair color, and pale skin [217]. With this

classifier, we are able to identify transport operators that correspond to specific dataset at-

tributes. Figure 5.12 shows the classification outputs of the attribute classifier for example

transport operators. Our model learns operators that vary hair color, skin paleness, smiling,

beard, sunglasses, and bangs.
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(a)

(b)

(c)

Figure 5.11: Paths generated by applying a subset of learned transport operators on three
datasets. Each block of images corresponds to the same operator or variational factor be-
ing applied to multiple inputs images. In each figure, images in the middle column of the
image block are the reconstructed inputs and images to the right and left are images de-
coded from transformed latent vectors in positive and negative directions, respectively. (a)
Comparing the transformations generated by three learned transport operators to transfor-
mations generated by β-VAE and CAE. The transport operators learn semantically mean-
ingful transformations similar to the disentangled β-VAE representation while maintaining
a higher resolution in image outputs. (b-c) Transport operators learned using the perceptual
point pair selection strategy generate natural transformations on both MNIST and Fashion-
MNIST.

In Figure 5.11 we compare the transport operator paths to paths generated by the CAE

and the β-VAE. The CAE-generated paths represent the directions of motion on the tangent

planes estimated by a SVD at individual points so each transformation is specific to the in-

put point. The β-VAE paths are generated by varying the value of one latent dimension

while the others remain fixed. While our method and the β-VAE learn several qualitatively

similar transformations, our method is capable of doing so without significantly sacrific-
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(a) (b)

(c) (d)

(e)

Figure 5.12: Paths generated by the application of learned transport operators with the
associated attribute classifier probability outputs for the transformed images. Our model
learns operators that correspond to meaningful CelebA dataset attributes like (a) hair color
(b) pale skin (c) smiling (d) beard/sunglasses (e) bangs

ing reconstruction performance. In the appendix section B.4, we include examples of the

transformations generated by each learned transport operator.

In Figure 5.13, to highlight the ability of the transport operators to estimate nonlinear

manifold paths between points in the latent space, we compare the MAE-based interpolated

and extrapolated paths to those estimated using CAE and β-VAE, as well as linear paths

in our original autoencoder latent space before fine-tuning it to fit the manifold structure

defined by the learned transport operators. With each method, we estimate a path between

the latent vectors associated with two points z0 and z1, interpolate along the path between

the two points, and extrapolate beyond z1 to extend the path. For MAE, this path is es-

timated by inferring the set of transport operator coefficients c∗ between the latent points

and then generating the path: zt = expm
(∑M

m=1 Ψmc
∗
mt
)

z0. When the path multiplier t

is between 0 and 1 that indicates interpolation and path multipliers beyond 1 indicate ex-

trapolation. To estimate paths in AE, CAE and β-VAE, we compute the vector difference

between z0 and z1 and interpolate and extrapolated on that vector direction. In these fig-

ures, the first block of images corresponds to the interpolated path with final column in that
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block showing the selected final point x1 surrounded in an orange box. The second block

of images corresponds to the extrapolated paths.

For quantifying the identity preservation of each transformation, we input each gener-

ated image into a pretrained classifier and plot the probability of the class label associated

with the inputs. For instance, if the input class for a given example is ‘1‘ then the plot

shows the probability output for class ‘1‘. All four methods perform interpolation effec-

tively but our trained model estimates the extrapolated paths more accurately. Figure 5.14

shows how the classification accuracy varies during extrapolation sequences for 4000 sam-

ples. This shows that the MAE is better at generating extrapolated outputs that maintain

class identity. The lower classification accuracy in Fashion-MNIST is due to both a more

challenging dataset and the lower resolution of autoencoder image outputs when compared

to input images.

(a)

(b)

Figure 5.13: Identity preservation of transformed paths as quantified by a pretrained clas-
sifier output. In the figures on the top, the first block of images corresponds to the interpo-
lated path with selected final point x1 surrounded in an orange box. The second block of
images corresponds to the extrapolated paths. Below the images are plots of the probability
of the class label associated with the inputs z0 and z1. A path multiplier between 0 and 1
indicates interpolation and path multipliers beyond 1 indicate extrapolation. (a) MNIST (b)
Fashion-MNIST

Figure 5.15 shows an interesting feature in the transport operators learned on CelebA

images – many of them generate cyclic paths that begin and end at nearly the same point.
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(a) (b)

Figure 5.14: The average accuracy of the classifier output for images at each point along
the interpolation/extrapolation sequence. When the path multiplier is between 0 and 1 that
indicates interpolation and path multipliers beyond 1 indicate extrapolation. (a) MNIST (b)
Fashion-MNIST

Also, in these cyclic sequences, the transformations seem to lead to a change in gender. The

image sequence in Figure 5.15a shows the path generated by a single operator. The image

in the middle is the reconstructed input image and the images to the left and right are the

paths generated by negative and positive coefficients respectively. This operator changes

the hairline and quantity of bangs. As we apply the transport operator with a negative

coefficient (to the left of center), the woman gains bangs and then becomes a man with a

moustache on the far left of the image. As we apply the transport operator with a positive

coefficient (to the right of center), the woman’s forehead gets higher and then she becomes

a man with a high forehead. Eventually, on the far right, the woman transforms into a

man with bangs, similar to the man on the far left. The similarity between the generated

images on the far left and far right is notable because this indicates the transformation path

is nearly closed. Figure 5.15b shows the change in five of the 32 latent dimensions over the

generated path. These paths have a nearly cyclic structure.

This is particularly interesting because in section 5.4 we learn closed transformation

paths by selecting point pairs on known cyclic transformation paths and highight the benefit

of the transport operator model for representing these types of paths. In this case, we learn

this cyclic path with only perceptual point pair supervision. Additionally, this identifies a

benefit of the transport operator approach over other models of the manifold in a neural
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network latent space. We can learn nonlinear paths that keep the generated points in the

same neighborhood in the latent space without extending to infinity which is inevitable

when linear paths that are used to represent natural transformations.

(a)

(b)

Figure 5.15: An example of an operator that generates a nearly cyclic path in the latent
space. (a) Image outputs along a path generated by a single learned operator. The images
on the far left and far right look similar which indicates that this operator generates a
nearly closed path that begins and ends at the same point. (b) Paths of five of the 32 latent
dimensions as the learned operator is applied to them. This again highlights the cyclic
nature of the transport operator generated paths.

5.6 Learning Local Transport Operator Statistics to Encourage Identity Preserva-

tion

A trained transport operator model provides a dictionary of operators that can be applied

globally across the entire data space. This model has flexibility to define local manifold

characteristics through the coefficients c which specify the combination of operators to

apply to a given point. The standard prior on the transport operator coefficients is a fac-

torial Laplace distribution parameterized by a single scale parameter ζ , which encourages

transformations to be defined by a sparse set of operators:

pζ(c) =
M∏
m=1

1

2ζ
exp

(
−|cm|

ζ

)
. (5.4)

By setting a fixed prior on coefficients across the entire manifold, there is an implicit

assumption that the manifold structure is the same over the whole dataset and every oper-
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ator is equally likely to be applied at every point. However, this is a flawed assumption

because not all transformations in one class of data are present in all other classes and even

within classes there may be regions with different manifold structure. Additionally, in a

dataset with several manifolds (each representing a different class), there is a limited extent

to which a transformation can be applied without moving a point onto another manifold.

Not capturing the local statistics of transport operator usage could result in transformed

points that depart from the data manifold and change their identity.

To address this limitation, we introduce a coefficient encoder network which maps la-

tent vectors to scale parameters that specify the Laplace distribution on the coefficients at

those points in the latent space. The goal of this network is to estimate local coefficient

distributions that maximize the identity-preservation of points that are transformed with

operators characterized by randomly sampled coefficients:

ẑ = TΨ(c)z + ε, ε ∼ N (0, σ2
ε I), (5.5)

where TΨ(c) = expm
(∑M

m=1 Ψmcm

)
.

Given labeled observations (z, y) and a pretrained classifier r(·), we aim to learn a

network qφ(c|z), which we call a coefficient encoder, that outputs parameters that can be

used to produce augmented samples ẑ without changing the classifier output r(ẑ) = y.

To maximize the likelihood of obtaining the labeled classifier output for augmented

samples, we adapt the concept of consistency regularization from semi-supervised learn-

ing. Consistency regularization is applied when training a classifier in a semi-supservised

setting in order to ensure that known, identity-preserving augmentations cause only small

changes in the classifier output [218]. In our context, we have a pretrained classifier and a

dictionary of transport operators and we want to find a distribution on the coefficients at in-

dividual input points that results in consistent classification outputs when TΨ(c) is applied

to inputs. The specific objective can be chosen from a variety of loss functions that encour-
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age similarity in classifier probability outputs. We specifically minimize the KL-divegernce

between the classifier output r(z) and the estimated probability of the transformed output

r(ẑ).

The consistency regularization objective can be trivially minimized by setting c = 0,

resulting in an identity transformation and the same classifier output. Therefore, we want to

encourage the largest coefficient values possible while maintaining the identity of our initial

data point. This motivates the addition of a KL-divergence regularizer that encourages the

distribution qφ(c|z) to be similar to a specified Laplace prior with a fixed scale ζ like in

Equation 5.4. Our final objective for training the coefficient encoder network is:

E = DKL(r(z)‖r(ẑ)) +DKL (qφ(c|z)‖pζ(c)) . (5.6)

A more detailed derivation can be found in appendix section B.10

This coefficient encoder introduces a principled way to build identity-preservation di-

rectly into our model and to identify local manifold characteristics throughout the latent

space. Since this model is trained using outputs from a pretrained classifier, the resulting

encoded coefficient scale weights can be informative about classifier invariances. Specifi-

cally, we can quantify which operators are associated with large encoded coefficient scale

weights in different parts of the latent space, indicating that the classifier is invariant to

those transformations. Additionally we can identify points or regions of space that have

small encoded coefficient scale weights, indicating they are near class boundaries and can

undergo only small transformations without changing identity.

After the MAE is trained, we have a dictionary of transport operators that describe man-

ifold transformations and a network with a latent space that is adapted to the manifold. We

fix the transport operators and network weights and then train the coefficient encoder net-

work to estimate the coefficient scale weights as a function of points in the latent space. To

visualize how the use of the transport operators varies over the latent space, we generate an

Isomap embedding [41] of latent vectors and color each point by the encoded scale parame-
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Figure 5.16: Visualizations of the encoded coefficient scale weights for the MNIST dataset.
The leftmost image shows an Isomap embedding of the latent vectors with input images
overlaid. The scatter plots on the right show the same Isomap embedding colored by the
encoded coefficient scale weights for several operators (yellow indicates large scale weights
and blue small scale weights). We see operators whose use is localized in regions of the
manifold space.

ter for coefficients associated with each of the transport operators. Figure 5.16 shows these

embeddings for MNIST data and Figure 5.17 shows these embeddings for Fashion-MNIST.

Each operator has regions of the latent space where their use is concentrated (indicated by

the yellow coloring).

Figure 5.17: Visualizations of the encoded coefficient scale weights for the Fashion-
MNIST dataset. The leftmost image shows an Isomap embedding of the latent vectors with
input images overlaid. The scatter plots on the right show the same Isomap embedding col-
ored by the encoded coefficient scale weights for several operators (yellow indicates large
scale weights and blue small scale weights). We see operators whose use is localized in
regions of the manifold space.

In data augmentation the goal is to create new samples by applying identity-preserving
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Figure 5.18: Examples of samples generated by transport operators using coefficients
sampled with encoded scale weights (top row) and with a fixed scale weight (bottom row).
Images in the green box are the input images and the remaining images in each row are
transformed outputs.

variations. This task can be aided by the coefficient encoder which identifies scale weights

for the local coefficient distributions that best preserve the identify of transformed outputs.

To highlight this benefit, in Figure 5.18 we show samples augmented by applying trans-

port operators with randomly sampled coefficients to an input latent vector. In each block

of images, the leftmost image (in a green box) is the input image and the images to the

right are decoded augmentations. The top row shows samples augmented with transport

operators controlled by coefficients sampled from Laplace distributions with encoded co-

efficient scale weights. The bottom row shows samples augmented with transport operators

controlled by coefficients sampled from Laplace distributions with a fixed scale parameter.

While both strategies generate some realistic variations of the data, using the encoded scale

weights improves identity-preservation of the transformed output. The augmentations with

the encoded scale weights are better at maintaining the identity of the sampled points.

With the coefficient encoder, we can now investigate the patterns of scale weights across

the operators and classes. This analysis can be used to inform us about the types of man-

ifold transformations the classifier is invariant to. The colored plots in Figure 5.19a and

Figure 5.19b show the average coefficient scale weights for each class (rows) and each

transport operator (columns) for MNIST and Fashion-MNIST. From this we can identify

classes for which the classifier is both robust and sensitive to transformations, represented

by large and small scale weights respectively. For instance, the Fashion-MNIST classifier

seems to be robust to transformations in the trouser and sandal classes (classes 1 and 5)

because they have large scale weights for a majority of operators. On the other hand, the

MNIST classifier seems to be sensitive to transformations in the ‘9‘ class because it has
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(a)

(b)

Figure 5.19: The average coefficient scale weights for each class on each transport opera-
tor. High scale weights for a given operator (yellow) indicate it can be applied to a given
class without easily changing identity. The images on the right show examples of the op-
erators applied to classes with high encoded scale weights (in the top yellow boxes) and
classes with low encoded scale weights (in bottom blue boxes). The examples with low
coefficient scale weights change classes more easily than other examples. (a) MNIST (b)
Fashion-MNIST

small scale weights for all operators. The sensitivity to transformations in ‘9‘s is intuitive

because they can fairly easily transform into ‘4‘s and even ‘1‘s. We can also examine which

classes share the use of the same transformations. The images on the right in Figure 5.19a

and Figure 5.19b show transport operators being applied to samples with high encoded

scale weights (in a yellow box) and samples with low encoded scale weights (in a blue

box). It is interesting to examine the characteristics of transformations that are better suited

to some classes than others. For instance, operator 3 in Figure 5.19a increases the curve at

the bottom of digits. This is a natural transformation for classes 3, 5, and 6 which all have

higher coefficient scale weights for this operator, but when this is applied to a 1, that makes

it look like an 8.
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5.7 Summary

In this chapter we develop the manifold autoencoder which incorporates learnable mani-

fold transport operators into the latent space of an autoencoder. This allows us to learn a

model of the data manifold and adapt the structure of the autoencoder latent space to fit

that manifold model. The MAE enables the interpolation and extrapolation of paths in the

latent space, the computation of manifold distances between points, and the generation of

realistic transformed outputs. We perform experiments on data with closed transformation

paths, including rotated MNIST digits and human gait sequences, to highlight the value of

having a built-in method for defining nonlinear transformation paths. We show how the

fine-tuning of the autoencoder enables accurate extended extrapolated paths and how the

manifold offset distance can be used to classify samples that are on the same manifold. We

learn transport operator representations of natural, unlabeled transformations in MNIST,

Fashion-MNIST, and CelebA datasets using the perceptual point pair selection strategy

during training and show that these operators generate semantically meaningful transfor-

mations. Finally, we create the coefficient encoder which uses a pretrained classifier to

learn local regions where operators are likely to be used while preserving the identity of

transformed samples. Overall, the work in this chapter establishes a foundational represen-

tation of transformations that can be used in a human-inspired classification system. We

have shown the potential of this model to learn complex, unlabeled transformations on a va-

riety of datasets, perform identity-preserving data augmentation with the learned operators,

and achieve distance based classification on a learned manifold.
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CHAPTER 6

VARIATIONAL AUTOENCODER WITH LEARNED LATENT STRUCTURE

6.1 Introduction

Natural data1 is distributed with an unknown probability distribution. A goal in accurate

data generation is to be able to sample directly from the data distribution. However, for

most datasets, the data distribution is complex and difficult to parameterize. Generative

models have been introduced with the aim of approximating sampling from natural data

distributions. In particular, the variational autoencoder (VAE) model is derived with the

objective of maximizing the marginal likelihood of the data p(X). To do this, a variational

inference algorithm is introduced that learns a generator from a low-dimensional latent

vectors to the high-dimensional data outputs. This enables sampling from the latent space

with a specified prior distribution in order to generate new, realistic data samples.

There are several aspects of the traditional VAE framework that prevent it from faith-

fully representing complex natural variations on manifolds associated with separate data

classes. First, VAEs enforce a global structure in the latent space through the use of a prior

distribution, and that prior may not match the true data manifold; this model mismatch

can result in a less accurate generative model of the data. Second, natural paths, which

interpolate or extrapolate natural data variations, are poorly defined in the latent space of

traditional VAEs. In many cases, the data transformations are defined using linear paths in

a Euclidean latent space [184]. These simple paths can diverge from the true data mani-

fold, leading to interpolated points that result in unrealistic decoded image outputs. Finally,

1This chapter is in collaboration with Dr. Gregory Canal and Dr. Christopher Rozell. MC and GC jointly
developed the probablistic framework for the VAELLS model and MC performed the experiments and was
the lead author on the associated publication [3]. CR supervised the project. This chapter contains material
from [3], with some modifications. The original material is located here. This work is copyrighted with
the Creative Commons Attribution 4.0 International License. Code is available here: https://github.com/
siplab-gt/VAELLS
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traditional VAEs encourage points from all data classes to cluster around the origin in the

latent space [30]. Without adequate class separation, traversing the latent space can easily

result in a change of class, making it difficult to learn identity-preserving transformations

and subsequently use them to understand within-class relationships.

In this chapter, we incorporate the transport operator model into the latent space of a

VAE which enables the model to learn the manifold structure from the data and use that

structure to define a latent space prior that is a better match to the true data manifold. The

resulting model, which we call the Variational Autoencoder with Learned Latent Structure

(VAELLS), allows us to sample points from an estimated manifold.

Overall in this chapter we have the following specific contributions:

• We adapt the VAE probabilistic model by integrating transport operators which learn

the latent structure from the data.

• We introduce anchor points which are points in the data space that correspond to

samples on the desired manifold. This enables the manifold structure to be defined

by a combination of anchor points and learned transport operators and alleviates the

need for selecting point pairs during transport operator training.

This model ensures the prior is well matched to the data and allows us to define nonlin-

ear transformation paths in the latent space and describe class manifolds with transforma-

tions stemming from examples of each class. The VAELLS model shares a similar motiva-

tion to the manifold autoencoder introduced in the previous chapter but it incorporates the

manifold model in the context of a full probabilistic generative framework.

6.2 Background

The VAE model learns a low-dimensional latent representation by defining a generator

function g : Z → X that maps latent points z ∈ Rd to high-dimensional data points

x ∈ RD. The desired objective for training a VAE is maximizing the log-likelihood of a
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dataset X = {x1, . . . ,xN} given by 1
N

log p(X) = 1
N

∑N
i=1 log

∫
p(xi, z)dz. However, this

objective is difficult to maximize, especially when parameterized by a neural network. To

address this complication, VAEs instead maximize the Evidence Lower Bound (ELBO) of

the marginal likelihood of each datapoint xi:

log p(xi) ≥ L(xi) = Ez∼qφ(z|xi)[− log qφ(z | xi) + log pθ(xi, z)], (6.1)

where qφ(z | x) is a variational approximation of the true posterior, parameterized by φ. In

the VAE neural network model, φ represents the weights of an encoder network fφ(x).

Kingma and Welling [30] developed an efficient method to approximate the ELBO by

introducing the reparameterization trick that enables the stochastic latent variable z to be

represented by a deterministic function z = hφ(x, ε), where ε is an auxiliary random vari-

able with a parameter-free distribution. In the traditional VAE framework, the variational

posterior is selected to be a multivariate Gaussian distribution, meaning that z is reparam-

eterized around the encoded point z = fφ(x) + σε where ε ∼ N (0, I). Additionally, the

prior pθ(z) is modeled as a zero-mean isotropic normal distribution that encourages the

clustering of latent points around the origin.

6.3 VAELLS model

In VAELLS, we fuse the versatile manifold learning capabilities of transport operators with

the powerful generative modeling of VAEs. Specifically, we integrate transport operators

into both the VAE variational posterior distribution and the prior in order to learn a latent

probabilistic model that is adapted directly from the data manifold.

We start with the expanded ELBO from [30]:

L(x) = Ez∼qφ(z|x) [log pθ(x | z) + log pθ(z) − log qφ(z | x)] . (6.2)
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(a) (b)

... ...

(c) (d)

Figure 6.1: Visualizations of the VAELLS model: (a) Posterior sampling process using
transport operator-generated paths and Gaussian noise. (b) Transformation path (green
dotted line) inferred between fφ(x) (black dot) and z (green dot) when computing the pos-
terior. (c) Encoding of anchor points into the latent space. (d) Transformation paths (green
dotted lines) inferred between fφ(ai) (yellow stars) and z (green dot) when computing the
prior.

For the likelihood pθ(x | z), we follow prior work and choose an isotropic normal distri-

bution with mean defined by the decoder network gθ(z) and fixed variance σ2, which has

worked well in practice.

Our first key contribution lies in the selection of the variational posterior, which we

choose as the family of manifold distributions parameterized by learned transport operators

described in section 2.1. Intuitively, this posterior measures the probability of vector z lying

on the manifold in the local neighborhood of the latent encoding of x where the structure

of the manifold is defined by learned transport operators. We encode the latent coordinates

of x with a neural network fφ(·) and then draw a sample from qφ(z | x).

To approximate Equation 6.2 with sampling, first letLx(z) ≡ log pθ(x | z)+log pθ(z)−

log qφ(z | x) and note that by marginalizing over transport operator coefficients c we have

Ez∼qφ(z|x) [Lx(z)] = Ez,c∼qφ(z,c|x) [Lx(z)] which allows us to estimate Equation 6.2 by sam-

pling from qφ(z, c | x). We draw a sample from qφ(z, c | x) in two steps: first, as defined

in the generative model in Equation 2.2, we sample a set of coefficients ĉ from a factorized

Laplace distribution q(c), and then sample z from qφ(z | ĉ,x). Both of these sampling steps

can be achieved with deterministic mappings on parameter-free random variates, allowing
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for the use of the reparameterization trick. Specifically,

ĉ = l(u; b) u ∼ Unif

(
−1

2
,
1

2

)M
z = TΨ(ĉ)fφ(x) + γε ε ∼ N (0, I),

(6.3)

where l(u; b) is a mapping described in Appendix section C.1 with Laplace scale parameter

b and TΨ(c) = expm
(∑M

m=1 Ψmcm

)
.

Figure 6.1a shows this sampling process where the data x is encoded to a mean location

µ = fφ(x). The latent vector z is the result of transforming µ by TΨ(ĉ), which moves the

vector on random paths along the manifold, and adding Gaussian noise specified by γ.

The resulting transport operator variational posterior follows as

q(c) =

(
1

2b

)M M∏
m=1

exp(−|cm|
b

)

qφ(z | c,x) ∼ N
(
TΨ(c)fφ(x), γ2I

)
qφ(z | x) =

∫
c

qφ(z | c,x)q(c)dc (6.4)

≈ max
c
qφ(z | c,x)q(c), (6.5)

where the approximation in Equation 6.5 is motivated by the fact that the sparsity-inducing

Laplace prior on c typically results in joint distributions with z that are tightly peaked in

coefficient space, as described in [219] (see appendix section C.1 for details). This ap-

proximation is widely used in sparse dictionary learning for computational efficiency. The

inferred coefficients c∗ that maximize qφ(z | c,x)q(c) define the estimated transformation

between the encoded latent coordinates and the sampled point. The dotted green line in

Figure 6.1b shows a visualization of the inferred transformation path between fφ(x) (the

black dot) and z (the green dot).

Our next key contribution lies in the construction of a prior distribution learned directly

from the underlying data manifold using transport operators. To gain intuition about this
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prior, imagine a set of Na anchor points in the data space that correspond to samples on

the desired manifold. The data manifold structure is represented by a combination of these

anchor points, encoded in the latent space, and the learned transport operators that can

extrapolate the manifold structure in the latent neighborhood of each of them. Figure 6.1c

shows a set of anchor points encoded into the latent space which represent the scaffold

off of which the manifold structure is built. The prior is defined by the same probabilistic

manifold model used in the variational posterior, but starting at each anchor point ai ∈ RD

rather than x. This prior requires that paths be inferred between z and each encoded anchor

point ui = fφ(ai), visualized in Figure 6.1d as green dotted lines. The overall prior density

for z is then defined as

pθ(z) =
1

Na

Na∑
i=1

qφ(z | ai). (6.6)

The introduction of anchor points into the definition of the prior provides a unique op-

portunity for the user to define the classes within which they want to learn natural, identity-

preserving transformations. If desired, the user can choose a set of anchor points, indepen-

dent of class labels, to define the full data manifold and learn transformations throughout

the entire dataset. If the user wants to learn identity-preserving transformations on specific

class manifolds, they can separate the anchor points into classes and define the prior with

respect to class-specific anchor points. Even when the prior is defined with respect to an-

chor points in each class individually, the set of learned transport operators is shared over all

classes. Finally, if the user desires to learn a manifold representing specific transformations

of individual samples, they can select anchor points that are sampled from transformation

paths of specific example data points. In practice, the anchor points are initialized by either

uniformly sampling the manifold space or through manual selection by a practitioner (e.g.,

by selecting several anchors per data class) and they can be updated throughout training.

In Tomczak & Welling [220], a prior is adopted that is similarly composed of a sum of

variational posterior terms, and is motivated as an approximation to an optimal prior that

maximizes the standard ELBO. However, our motivation for the prior in Equation 6.6 as a
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direct sampling of the data manifold is novel, and our prior more directly aligns with the

data manifold because it is constructed from operators that traverse the manifold itself.

The final addition to the VAELLS objective is a Frobenius-norm regularizer on the dic-

tionary magnitudes as used in the original transport operator objective [23]. This prevents

the magnitudes of the dictionaries from increasing without bound and helps identify how

many transport operators are necessary to represent the manifold by reducing the magni-

tude of operators that are not used to generate paths between samples. We define the loss

function to be minimized as the approximate negative ELBO in Equation 6.2, restated here

for convenience:

Lx(z) ≡ log pθ(x | z) + log pθ(z)− log qφ(z | x)

LV AELLS(x) = −Eu,ε [Lx(TΨ(l(u; b))fφ(x) + γε)]

+
η

2

M∑
m=1

‖Ψm‖2
F , (6.7)

We optimize this loss simultaneously over encoder-decoder networks fφ and gθ, anchor

points {ai}1:Na , and transport operators Ψ. The implementation details of our ELBO and

its optimization are described in more detail in appendix section C.1.

6.4 Related Work

There are currently many adaptations of the original VAE that handle a subset of the limita-

tions addressed by VAELLS, such as learning the prior from the data, defining continuous

paths in the latent space, and separating the individual class manifolds. Table 6.1 provides

a comparison of techniques which we describe in detail below.

Traditionally, the latent space prior is defined as a Gaussian distribution for model sim-

plicity [30]. However this prior encourages all points to cluster around the origin which

may not occur in the natural data manifold. A mismatch between the latent prior distribu-

tion of a VAE and the data manifold structure can lead to over regularization and poor data
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representation. Other models incorporate more complex latent structures such as hyper-

spheres [81], tori [82, 83], and hyperboloids [84, 85, 86]. These models have demonstrated

their suitability for certain datasets by choosing a prior that is the best match out of a pre-

defined set of candidates.

However, these methods are only capable of modeling a limited number of structured

priors and are not able to adapt the prior to match the data manifold itself. This is a serious

drawback since, in most practical cases, the latent structure of data is unlikely to easily fit

a predefined prior. The variational diffusion autoencoder (VDAE) and the R-VAE define

the latent space prior directly from the data using Brownian motion on a Riemannian man-

ifold [221, 96]. The VampPrior is defined using a sum of variational posterior distributions

with learnable hyperparameters [220]. As noted in discussion around Equation 6.6, this

definition of a prior incorporating variational posterior terms is the same as what is used

in VAELLS. However, the form of the variational posteriors differ between VampPrior and

VAELLS with VAELLS using the structured manifold model in Equation 6.4. This affords

the VAELLS model the additional benefits noted below.

In addition to differences in how latent space structure is represented, there are various

approaches for defining natural paths in this space. In the simplest case, paths in VAEs

with a Euclidean latent spaces are modeled as linear paths. Some methods define geodesic

transformation paths in the latent space. This can be done by incorporating a structured

latent prior, like a hypersphere, on which geodesic paths are natural to compute [81]. Inter-

polated geodesic paths can also be estimated in a Euclidean latent space using an estimated

Riemannian metric [96, 90, 91, 92]. However, these methods are limited to defining ex-

trapolated paths by random walks in the latent space rather than structured paths. Finally,

there are other methods that lack straightforward definitions for how to compute continuous

paths from one point to another [220, 82].

Another limitation of most VAE models is that they do not encourage class separation

and therefore generated paths often do not represent natural identity-preserving transforma-
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Table 6.1: Comparison of VAE Techniques

Model Adaptive Prior Defines Paths Class Separation
VAE [30] No Linear No
Hyperspherical VAE [81] No Geodesic No
∆VAE [82] No No No
VDAE [221] Yes Linear No
VAE with VampPrior [220] Yes No No
R-VAE [96] Yes Nonlinear No
Lie VAE [83] No Nonlinear No
VAELLS (our approach) Yes Nonlinear Yes

tions on separate class data manifolds. This makes it difficult to understand the within-class

relationships in the data. Some techniques encourage class separation through the choice

of a prior that does not encourage data clustering [81] but they do not explicitly define

separate class manifolds. By defining the prior structure with respect to anchor points on

specified data manifolds, VAELLS has the flexibility to define which manifolds it wants

to learn transformations on. This results in a latent space structure where transformations

correspond to identity-preserving variations in the data.

One model that has notable similarities to ours are the Lie VAE [83]. This model also

uses Lie group representations of transformations in the latent space. The Lie VAE model

encodes the data into latent variables that are elements in a Lie group which represent trans-

formations of a reference object. This model requires the type of Lie group transformations

that the network will represent (e.g., SO(3)) to be specified prior to training which may

result in a model mismatch.

6.5 Experiments

Our experiments highlight the strengths of VAELLS: the ability to adapt the prior to the

true data manifold structure, the ability to define nonlinear paths in the latent space, and

the ability to separate classes by learning identity-preserving transformations within classes

specified by anchor points. First, we begin with two simple datasets with known ground
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truth latent structures in order to validate the ability of our model to learn the true latent

structure. Next, we apply VAELLS to rotated and naturally varying MNIST digits to show

that our prior can adapt to represent rotations of individual digits through a learned operator

and extend to real-world data with natural transformations.

The unique characteristics of the VAELLS variational posterior and prior lead to spe-

cific training considerations. First, as shown in Equation 6.5, to compute both the varia-

tional posterior and prior distributions we must infer transformation coefficients that maxi-

mize qφ(z | c,x)q(c) and qφ(z | c, ai)q(c) respectively. This involves coefficient inference

between each sampled point z and its neural network encoding fφ(x) as well as between

z and all encoded anchor points fφ(ai). The coefficient inference is performed using a

conjugate gradient descent optimization solver.

For training the networks weights we use the Adam algorithm [222]. To add stability

and improve efficiency of training, we alternate between steps where we update the network

and anchor points while keeping the transport operators fixed, and steps where we update

the transport operators while keeping the network weights and anchor points fixed.

The selection of anchor points is important for learning identity-preserving transport

operators. Training VAELLS on a dataset with multiple classes requires class labels for

both the anchor points and training points in order to compare each training sample with

only anchor points from the same class. Anchor points are initialized by selecting training

samples from each class in the input space. While we do allow for updates to the anchor

points, in practice they only vary by a negligible amount during the entire training process.

Details of the network architectures and training parameters for each experiment as well as

an algorithmic view of the training procedure (algorithm 2) are available in the Appendix C.

6.5.1 Swiss Roll

We begin by applying VAELLS to a dataset composed of 20-dimensional vector inputs that

are mapped from a 2D ground truth latent space with a swiss roll structure (Figure 6.2a). We
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selected this classic manifold test structure because many VAE techniques that incorporate

specific structured priors into the latent space have not demonstrated the ability to adapt to

this specific geometry. The latent space is two-dimensional and the VAELLS prior uses four

anchor points that are spread out along the swiss roll (shown as black x’s in Figure 6.3b).

Because this experiment involves only one class, the same four anchor points are used for

each training sample. In the swiss roll test we learn a single operator.

(a) (b) (c) (d) (e)

Figure 6.2: Embedding of swiss roll inputs in VAE latent spaces. (a) Ground truth latent
structure. (b) VAE. (c) Hyperspherical VAE. (d) VAE with VampPrior. (e) VAELLS.

Figure 6.2 shows the latent space embedding for several VAE techniques. The tradi-

tional VAE with a Gaussian prior in the latent space loses the latent structure of the true

data manifold because it encourages all points to cluster around the origin (Figure 6.2b).

The hyperspherical VAE similarly loses the true data structure because it distributes the

latent points on a hypersphere (Figure 6.2c). The VAE with VampPrior is able to estimate

the spiraling characteristic of the swiss roll structure (Figure 6.2d), but it is not a smooth

representation of the true data manifold. By contrast, the encoded points in VAELLS (Fig-

ure 6.2e) clearly adapt to the swiss roll structure of the data.

We also utilize the swiss roll dataset to provide an intuitive understanding of how the

prior in our method is formed as a combination of the learned transport operators and the

encoded anchor points. Figure 6.3a contains the encoded latent points overlaid with the

orbit of the operator learned by VAELLS. Specifically, the colored line shows how the

transport operator trajectory for our learned operator evolves over time when applied to

a single starting point. This trajectory can be generated for any dictionary element Ψm:

zt = expm(Ψm
t
T

)z0, t = 0, ..., T . Figure 6.3b contains latent points sampled from the

prior using the sampling detailed in Equation 6.3 with increased b and γ parameters to
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(a) (b) (c) (d)

Figure 6.3: Visualization of the components of the VAELLS prior on the swiss roll dataset:
(a) The orbit of the transport operator learned on the swiss roll dataset plotted on top of
encoded latent points. (b) Sampling of the latent space prior from each of the anchor
points (labeled with black x’s); each color indicates a separate anchor point of origin. (c-d)
Transport operator paths inferred between pairs of points on the swiss roll manifold in the
latent space. The cyan circle is the path starting point and the red x is the desired path
ending point

make the sampling easier to visualize. This shows how the prior has been well-adapted

to the swiss roll structure. Finally, we demonstrate how transport operators can be used

to define nonlinear paths in the latent space. To generate paths between pairs of points

with our learned operators, we first infer the coefficients c∗ between each pair. We then

interpolate the path from the starting point z0 as follows: zt = expm
(∑M

m=1 Ψmc
∗
mt
)

z0.

Figure 6.3(c-d) show two example inferred paths between points encoded on the swiss

roll manifold. This experiment highlights three beneficial characteristics of VAELLS -

learning a specific latent space manifold structure, sampling points from that manifold, and

generating paths directly on the manifold surface.

6.5.2 Concentric Circle

(a) (b) (c) (d) (e)

Figure 6.4: Embedding of concentric circle inputs in VAE latent spaces. (a) Ground truth
latent structure. (b) VAE. (c) Hyperspherical VAE. (d) VAE with VampPrior. (e) VAELLS.

Next we apply VAELLS to a dataset composed of 20-dimensional data points that are

mapped from a 2D ground truth latent space with two concentric circles (Figure 6.4a). As in
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the previous example, our network maps these inputs into a two-dimensional latent space.

This experiment has two classes (inner circle and outer circle) so we select three anchor

points per concentric circle with the anchor points evenly spaced on each circle. During

training, the training points from each circle are compared against only those anchor points

on the same circle manifold. In the concentric circle test we learn four operators.

This dataset in particular is well-suited for assessing how well each method is able

to discriminate between the two concentric circle manifolds once points are mapped into

the latent space. Figure 6.4 shows the encoded latent points for several different VAE

approaches. All three comparison techniques (Figure 6.4(b-d)) lose the class separation

between the ground truth concentric circle manifolds. Additionally, as in Figure 6.2, the

Gaussian prior of the traditional VAE distorts the true data structure (Figure 6.4b), and the

VAE with VampPrior encodes a latent structure with similar characteristics to the ground

truth manifold but fails to model the exact shape (Figure 6.4d). By contrast, the encoded

points in the VAELLS latent space maintain the class separation while simultaneously en-

coding the true circular structure. This verifies two characteristics of our approach that

improve upon the traditional VAE model – learning the prior from the data and class sepa-

ration.

6.5.3 Rotated MNIST Digits

The rotated MNIST dataset [177] is a natural choice for demonstrating VAELLS because

it consists of real images in which we have an intuitive understanding of what the rota-

tional transformations should look like. To define the rotated digit manifold, we specify

anchor points as rotated versions of training inputs and aim to learn a transport operator

that induces a latent space transformation corresponding to digit rotation. In practice this

means that for each training sample we select several rotated versions of that digit as anchor

points.

First, to highlight that we can learn a transformation model that is adapted to the ro-
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(a) (b)

Figure 6.5: Examples of images decoded from latent vectors sampled from the posterior
of models trained on rotated MNIST digits. In each example, the center digit (in the green
box) is the decoded version of the input digit and the surrounding digits are images decoded
from the sampled latent vectors. Sampling in the VAELLS latent space results in rotations
in the sampled outputs.

tated digit manifold, we show the result of generating data from input points in the test

set using the sampling procedure described in Equation 6.3. Figure 6.5 shows the decoded

outputs of latent vectors sampled from the posterior for two example test points using four

different VAE models. In each example, the center image (enclosed in a green box) is the

decoded version of the input test sample. The images surrounding each center are decoded

outputs of latent posterior samples. In order to visualize noticeable sampling variations,

we increase the standard deviation and scale of the sampling noise in each of these models.

The key result is that the VAELLS sampling procedure using the learned transport oper-

ator leads to latent space transformations that correspond to rotations in decoded outputs.

This verifies that the transport operator corresponds to movement on a learned rotated digit

manifold, unlike comparison techniques which only capture natural digit variations and not

specifically rotation.

In Figure 6.6 we show how we can extrapolate rotational paths in the latent space using

our learned transport operator. To generate this figure, we randomly select example MNIST

digits with zero degrees of rotation and then encode those digits to get each starting point

z0. The decoded versions of these initial points are shown in the middle columns (enclosed

by a green box) in each figure. We then apply the learned operator with both positive and

negative coefficients to z0 and decode the outputs. The images to the left of center show the

path generated with negative coefficients and the images to the right of center show the path

generated with positive coefficients. This shows how we can generate rotated paths using
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the learned transport operator. It also highlights the ability for VAELLS to define identity-

preserving transformations with respect to selected input points. In these examples, the

class identity of the digit is qualitatively preserved for about 180 degrees of rotation.

(a) (b)

Figure 6.6: Extrapolated rotation paths in the VAELLS latent space. The center digit in
each row is a decoded version of an input digit and the digits to the left and right of center
show decoded outputs from latent paths extrapolated using the learned transport operator
with negative and positive coefficients respectively.

6.5.4 Natural MNIST Digits

In our final experiment, we highlight our ability to learn the natural manifold structure in

MNIST digits. The anchor points are initialized by randomly selecting training examples

from each digit class without any special consideration given to the specific image selec-

tion. Without a priori knowledge of the manifold structure, we have flexibility in how to

parameterize our model; two parameters of specific interest are the number of transport

operator dictionary elementsM used to define latent space transformations and the number

of anchor points per class Na. These parameters impact the two components of the prior

definition: the learned transport operator model and the anchor points. Table 6.2 shows

how varying these parameters impacts the quantitative performance of VAELLS as mea-

sured by estimated log-likelihood (LL) and mean-squared error (MSE) between input and

reconstructed images. Our estimated log-likelihood is based off of Bruda et al. [223] and

the details of its computation with our model are given in appendix section C.4. The num-

ber of dictionary elements M has a large impact on the estimated log-likelihood. As the

number of dictionary elements increases, the value of − log [qφ(z | c,x)] decreases signif-

icantly which increases the prior term in our log-likelihood computation. This indicates
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Table 6.2: Evaluation Metrics of VAELLS Trained on MNIST

M Na LL MSE
2 8 −4.026× 106 0.0315
4 8 −1.169× 106 0.0232
8 8 −731.91 0.0244
4 12 −9.248× 105 0.0221
4 16 −7.523× 105 0.0232

that more dictionary elements enable the model to more accurately estimate paths between

sampled latent points and the encoded anchor point locations. The number of anchor points

does not have a clear impact on the log-likelihood and the MSE stays fairly constant as we

vary the M and Na parameters. For the rest of the results we use M = 8, Na = 8.

Figure 6.7 shows the result of sampling the variational posterior in a similar manner to

Figure 6.5. Note that sampling in the VAELLS latent space leads to natural digit transfor-

mations in the decoded outputs that maintain the class of the original digit. By contrast, the

sampling in the latent space of the comparison techniques can lead to changes in class. Ap-

pendix section C.9 contains paths generated by each of the learned transport operators that

highlight how they represent natural transformation paths. This experiment demonstrates

the strengths of VAELLS in cases where the data manifold is unknown. By training on

points associated with anchor points of the same class, we are able to define the prior using

learned identity-preserving transformations, sample from the class manifold, and generate

continuous paths on the latent space manifold.

(a) (b)

Figure 6.7: Examples of images decoded from latent vectors sampled from the posterior
of a model trained on naturally varying MNIST digits. In each example, the center digit (in
the green box) is the encoded digit input and the surrounding digits are from the sampled
latent vectors. Sampling in the VAELLS latent space results identity-preserving variations.
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6.6 Summary

In this chapter we develop a model that has the flexibility to learn a structured VAE prior

from training data by incorporating manifold transport operators into the latent space. This

adaptable prior allows us to define a generative model with a latent structure that is a better

fit to the data manifold. It also enables us to both interpolate and extrapolate nonlinear

transformation paths in the latent space and to explicitly incorporate class separation by

learning identity-preserving transformations. We verify the performance of this model on

datasets with known latent structure and then extend it to real-world data to learn natural

transformations. VAELLS can be used to not only develop more realistic generative models

of data but it can also be used to more effectively understand natural variations occurring

in complex data.

Another benefit of this model is the introduction of the anchor points into a transport-

operator-based manifold representation. Until now, the transport operator model was al-

ways be trained using training point pairs. Modeling the manifold as a combination of

specific anchor points and associated transport operators provides additional model flexi-

bility. Training can be performed by selecting individual training points (rather than point

pairs) and comparing the manifold paths between those points and the anchor points. Data

augmentation can be initiated from the anchor points themselves rather than requiring new

samples from class manifolds. Importantly for a potential human-inspired classification

model, the anchor points could act as the stored representations of individual objects and

new objects could be identified as transformed versions of these stored anchor points where

the transformations are constrained by the transport operators.
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CHAPTER 7

CONCLUSION

7.1 Summary

This dissertation is motivated by the goal of developing a human-inspired classification sys-

tem. Rather than achieving transformation invariant classification through the use of large

labeled datasets, as is done in modern state-of-the-art classification systems, the human-

inspired classification system would directly incorporate models of transformations that

are shared among classes. Therefore classification could be performed using a global dic-

tionary of learned transformations and a few samples of each class. We develop and inves-

tigate a learnable transformation model, based on the transport operator manifold model,

that would be the foundation to this human-inspired classification system. We show that

the transformation model meets the following requirements set forth in the introduction.

The transformations are:

• Learned from data with limited supervision.

• Constrained to the structure of an estimated data manifold.

• Transferable between classes.

• Capable of generating new samples.

• Able to infer relationships between samples.

We build models around this baseline transformation model that are applied to a di-

verse set of tasks which each highlight different aspects of the transformation model’s

performance and flexibility.
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In Chapter 3, we develop a model that learns 3D transformations in the context of the

depth inference inverse problem. We use this model to successfully learn rotational trans-

port operators from 2D moving inputs. The manifold structure provided by the learned

transport operators allows us to simultaneously infer the depth of projected points and the

transformations between rotated versions of the same object. This model presents a hypoth-

esis for how humans incorporate internal models of 3D rotation and use them to perform

tasks like mental spatial transformation, depth inference, and third person perspective tak-

ing.

In Chapter 4, we extend the transport operator model to transfer learning scenarios. The

ability for transport operators to generalize beyond the training domain is an essential char-

acteristic necessary for developing our suggested transformation-informed classification

system. To demonstrate transfer learning, we train transport operators in densely sampled

source domains and present their successful application on samples in target domains with

limited data. We define two transfer tasks which both highlight the ability of our trans-

formation model to generate new samples. In the generative manifold mapping task, we

generate new samples around data points in a target domain by applying the manifold rep-

resentation with a probabilistic model on the coefficients associated with each manifold

motion direction. In the structured manifold path generation task, we infer a transforma-

tion path between points in the source domain and apply that same transformation path to

samples in the target domain. The transfer learning potential is shown in the context of

data generation and data augmentation applications by animating individuals with new fa-

cial expressions and providing examples of few-shot learning for digit and facial expression

classification.

In Chapter 5, we develop the manifold autoencoder which incorporates transport oper-

ators into the latent space of an autoencoder. With this model we are able to learn complex,

semantically meaningful data transformations and adapt the latent space to fit the manifold

structure associated with the learned transformations. By directly incorporating a manifold
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model into the latent space of an autoencoder, we have built-in methods for generating sam-

ples on the manifold and estimating geodesic paths between points. We train the manifold

autoencoder on MNIST digits, Fashion MNIST images, motion capture gait sequences and

CelebA face images. We perform nearest neighbor classification tasks using the manifold

offset distance derived from the transport operator model. We also generate data by ex-

trapolating estimated paths with inferred transport operator combinations and by randomly

applying transport operators. To encourage identity-preserving data augmentation through-

out the latent space, we incorporate a coefficient encoder which uses a pretrained classifier

to learn local regions where operators are likely to be used while preserving the identity of

transformed samples.

In Chapter 6, we introduce VAELLS which incorporate the transport operator model

into the probabilistic framework of a VAE to define a manifold-based latent prior distribu-

tion. Developing this probabilistic model results in the introduction of anchor points which

represent the scaffold off of which the transport operator-based manifold structure is built.

The adaptable, manifold-based prior enables us to both interpolate and extrapolate nonlin-

ear transformation paths in the latent space and to explicitly incorporate class separation by

learning identity-preserving transformations. We verify the performance of this model on

datasets with known latent structure and then extend it to real-world data to learn natural

transformations.

7.2 Future Work

With the completion of this thesis work, we have contributed a transformation model that

has been shown to learn complex, semantically meaningful transformations without requir-

ing transformation labels. We have also demonstrated that the transport operators can rep-

resent structure that maps out the manifold beyond the source domain. With these key char-

acteristics, we have laid the groundwork to build off of to develop a new human-inspired

classification strategy. From here, there are three paths for innovation that could both build

122



towards a human-inspired classification model and provide valuable insights on intermedi-

ate sub-problems. These three paths are:

1. Exploiting the flexibility of the manifold autoencoder model for learning representa-

tions of meaningful variations.

2. Developing a human-inspired classification system.

3. Enhancing biological-plausibility of the transformation model and comparing it to

human visual performance.

7.2.1 Exploiting the Flexibility of Transport Operator Learning

The manifold autoencoder is a flexible model which can learn transport operators that rep-

resent data variations and adapt the latent space structure to fit the learned operators. This

structure of the transport operators and latent space is enforced during training through the

selection of training point pairs. By intelligently selecting point pairs, we can encourage

the manifold autoencoder model to adapt the latent space to reflect the manifold associated

with specific types of transformations.

One approach to intelligent supervision is to train the manifold model on data with

semantic labels associated with training samples. Transport operators could be learned

that are directly associated with specific, labeled transformations. This generative model

of semantically labeled transformations could as the baseline for interactive robotics and

recommender systems in which a machine could imagine an sample of interest through a

transformation-based description provided by a human user.

Another appealing choice for intelligent supervision is to use training point pairs (or

tuples) that are determined to be similar through human judgement. In many cases it is

difficult to define the characteristics that humans use to identify whether samples are most

similar to one another or whether samples should be placed in a certain order. By incorpo-

rating a human in the loop during point pair selection and manifold autoencoder training,

123



the model could learn transformations that are specifically meaningful to humans. This

could provide insights into which characteristics humans find important when comparing

or ranking samples. A model of human-relevant transformations could aid in applications

that typically require time-consuming expert guidance by distilling the information from

experts and incorporating it into machine-based classifiers. Additionally, a system like this

may be able to identify biases in how humans compare and rank samples.

While the above are just two examples of unique supervision strategies, there are many

possibilities for future approaches which can tailor the developed model to new domains.

7.2.2 Developing a Human-Inspired Classification System

This thesis investigates the ability to transfer the transport operator manifold representation

beyond the source domain and confirms that transport operators are generalizable to new

points in target domains. Additionally, it demonstrates the effectiveness of the MAE and

VAELLS models for representing complex transformations in rich datasets. Building from

this starting point, future work can develop the discussed human-inspired classification

system by learning a dictionary of operators that represent natural variations in the data

and identifying new samples as transformed representations of anchor samples in each

class. This is a new approach to classification which will require updates to the manifold

model as well as new ways of identifying, defining, and storing anchor samples.

Steps towards achieving this goal of few shot learning involve investigating the ability

to transfer transport operators between classes in the manifold autoencoder model. The

manifold autoencoder model is necessary for learning complex transformations in high

dimensional data but it adds complications to the transfer learning procedure. There are

two transfer learning scenarios to consider in the manifold autoencoder framework. In the

first scenario, there is ample unlabeled data for all classes. In this case, an autoencoder

can be trained on all of the data and the transport operators can be learned on samples

from limited classes and applied to new samples in the pretrained latent space. In the
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second scenario, there are novel classes with examples that will be presented after the

initial training of the autoencoder network. In this case, the autoencoder may not present

an accurate latent representation of the new data and greater consideration should be given

to how to approach this problem. Suggested future work involves innovating in both of

these scenarios to understand and improve the transferability of transport operators that

represent complex transformations between classes.

Future work should also investigate the best way to combine the learned manifold model

with anchor samples to develop the transformation-based classification system. Following

from experiments shown in this thesis, a good initial approach is to investigate nearest

neighbor classification by estimating the manifold offset distance from newly presented

samples to anchor samples from each class. The selection for anchor samples for each

class could be inspired by the anchor points introduced in the VAELLS model. The learned

transport operators could also be used to augment exemplar anchor samples with known

transformations to present a classifier with a diversity of samples during training without

requiring a multitude of labeled data. Finally, the transport operator model could be incor-

porated directly into a neural network classifier in order to transform input points similar

to the spatial transformer networks.

7.2.3 Enhancing Biological Plausibility

The models presented here have been inspired greatly by human performance but also by

neuroscience research. In the future, this work can be expanded to more directly connect

it to models of human visual performance. For instance, the work from chapter 3 can be

compared more directly with human performance on mental rotation and structure from

motion tasks. Specifically the computations in this model can be adjusted to be more

biologically plausible. Additionally, our model can make estimates of performance with

different stimulus characteristics. The hypotheses developed with our model can be tested

in scientific experiments to develop a feedback loop between our machine learning model
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of the human visual performance and examples of real-world human visual performance.

Another path of research in this space is inspired by the work that identifies the untan-

gling of the manifold structure in hierarchical visual processing stages [20, 21]. Specifi-

cally, future work can formulate the transport operator transformation model in a hierar-

chical fashion, akin to the layers of the visual cortex. This would allow for comparing

performance of each transport operator-based layer to the performance of the layers of the

visual cortex. Hierarchical structure in the transport operator model may be accomplished

by learning transformations on data patches and integrating the data and transformation

parameters from one layer to the next or by separating the the model into style and con-

tent paths where style is represented by the transport operators and content represents the

underlying object.
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APPENDIX A

DETAILS ON LEARNING 3D MANIFOLD STURCTURE FROM 2D

PROJECTIONS

A.1 Inference Details

We perform depth inference in subsection 3.3.2 through subsection 3.3.4 using the objective

in Equation 3.10. In the inference experiments in subsection 3.3.3, we set γ = 0.1, ζ =

0.01, and β = 10−3. These parameters are selected because they yield accurate inferred

depth estimates. We add Gaussian noise with a standard deviation of 10−3 to the ground

truth operators in most experiments in subsection 3.3.3. Unless otherwise stated, we set

NP = 20, θ = 2◦, and NT = 30. For the quantitative analysis of inference on many trials,

we use inputs points that are 2D projections of random 3D points that are undergoing

rotation about a randomly selected 3D axis. The rotation angle used for a given trial was

sampled from a distribution with a mean of θ and a standard deviation of 0.516◦.

Because the training objective is nonconvex, optimization may result in local minima.

To avoid resulting in local minima, we perform inference for the same inference window

several times using several random restarts. That is, we randomly sample a new intial-

ization and infer coefficients and depths using that starting point. This often results in

different final inferred outputs. We choose the inferred output associated with the lowest

final objective from inference. For the experiments in subsection 3.3.3, we use five random

restarts.

For the inference experiments, we compute the mean squared error between the ground

truth depths and estimated depths and the Kendall’s Tau between the ordering of the truth

depths and estimated depths. As mentioned in section 3.5, the kinematogram stimulus

is bistable which means it can result in two separate percepts (i.e., clockwise rotation or

128



counter-clockwise rotation). We observe switching in inferred direction and signs of the

depths with our model and account for that when computing the depth inference metrics.

Specifically we generate a path with the transformation defined by the inferred coefficients

and observe the direction of motion of that path to determine which direction of rotation

we inferred. If the inferred rotation is counter-clockwise then we multiply the depths by

−1 because the rotation of the points in ground truth sequence is clockwise.

A.2 Training Details

We train the transport operators using gradient descent. The operators are intialized with

Gaussian noise with a standard deviation of 0.3. The training run in the kinematogram

experiments used the parameters in Table A.1.

Table A.1: Training parameters for learning rotational operators from 2D projected inputs.

Training Parameters
M : 3
lrbegin : 0.5
ζ : 0.1
γ : 0.15
β: 10−4

θ : 10◦

NT : 20
NP : 20
Training Steps: 10,000
number of restarts for coefficient inference: 25

We begin training at a specific learning rate and increase it if there is a successful learn-

ing step (i.e., one that decreases the learning objective) or decrease it if there is a failed

learning step. While large learning rates aid in efficient gradient steps in the beginning of

training, we find that decreasing the learning rate consistently towards the end of training

leads to more stable final transport operator representations. Specifically, we start decreas-

ing the learning rate at 3000 training steps and decay it by a multiplication factor of 0.9997

at each step.
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Figure A.1 shows the trajectories of operators learned when M = 6. This highlights

the usefulness of the Frobenius norm regularizer on the dictionary elements. If a transport

operator is not being used for representing manifold paths, then its magnitude is reduced

to nearly zero. Training with six operators utilizes the following parameters: ζ = 0.1,

γ = 0.08, β = 10−4, θ = 10◦, NT = 20, NP = 20, 10000 training steps, and 25 random

restarts.

Figure A.1: Transport operator trajectories during training. Each row represents one of
the six learned operators. Each column shows the trajectories at a different training step.
The operators begin with random initializations at step 1 and reach a rotation structure
around 400 steps. After that, the three operators that do not represent rotation have their
magnitudes reduced because they are not being used. At the end of training, there are three
operators with clear rotational structure.

A.3 Kinematogram Experimental Details

For the kinematogram experiments, we use a base set of parameters which are shown in

Table A.2. For individual experiments, we vary subsets of the parameters from these base-

line values. As with the other experiments, we correct for depth sign switching before

computing the error metrics for the kinematogram tasks.

130



Table A.2: Parameters for random dot kinematogram experiments.

Kinematogram Inference Parameters
ζ : 0.01
γ : 0.1
β: 0
θ : 2◦

ξ : 0
NT : 30
NP : 20
number of restarts for coefficient inference: 5
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APPENDIX B

MANIFOLD AUTOENCODER DETAILS

B.1 Manifold Autoencoder Training Details

B.1.1 Training Strategy

In all experiments, we follow the general training procedure put forth previously [1]. We

train the MAE with three training phases: the autoencoder training phase, the transport

operator training phase, and the fine-tuning phase. During the autoencoder training phase,

the network weights are updated using a reconstruction loss objective: EAE = ‖x− x̂‖2
2.

During the transport operator training phase, the network weights are fixed and the

transport operators are trained between pairs of points using the objective (Equation 5.1).

Pairs of training images x0,x1 are selected using different selection methods depending on

the experiment or application. The images are then encoded into the latent space z0, z1.

For each batch, the first step is to infer the coefficients between all pairs of latent vectors.

Coefficient inference is best performed when the entries of the latent vectors are close to the

range [−1, 1]. Because of this, we define a scale factor that can be applied to encoded latent

vectors to reduce the magnitude of their entries prior to performing coefficient inference.

In practice, we inspect the latent vector magnitudes after the autoencoder training phase

and choose a scale that will adjust the magnitudes of the latent vector entries to be in the

range [−1, 1]. This does not have to be a precise range for the latent vector magnitudes

but instead is a practical guideline. Coefficient inference is performed on the scaled latent

vectors as described in appendix section B.2. After the coefficients are inferred for a batch,

the weights on the dictionary elements are updated. This phase of training is performed

until the loss values and dictionary magnitudes reach a plateau.

The fine-tuning training phase begins after the transport operator training phase is com-
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plete. In this phase, both the network weights and the transport operator weights are up-

dated using the joint objective:

E = λ
(
‖x0 − x̂0‖2

2 + ‖x1 − x̂1‖2
2

)
+ (1− λ)EΨ, (B.1)

where EΨ is defined in (Equation 5.1). Using this objective, we alternate between taking

steps on the transport operator weights while the network weights are fixed and taking steps

on the network weights while the transport operator weights are fixed. Additionally, during

the fine-tuning phase we incorporate occasional steps in which we update the network

weights using only the reconstruction loss to ensure effective image reconstruction.

In most cases, it is necessary to reduce the γ parameter in front of the Frobenius norm

dictionary regularizer prior to fine-tuning or the dictionary magnitudes will reduce to zero.

We report the γ we use for transport operator training and fine-tuning in the experimental

details sections below. It may also be necessary to decrease the network learning rate during

fine-tuning.

The coefficient encoder training requires a network that is trained to classify data from

our selected dataset. We train this classifier using training data from a given dataset. For

datasets with worse autoencoder reconstruction quality, we train the classifier in the latent

space. Otherwise we train the classifier on images in the data space. With the MAE and

classifier trained, we train the coefficient encoder network following the strategy described

in section 5.6 and appendix section B.10.

Hyper-parameter tuning for all experiments was performed on the Georgia Tech Part-

nership for Advanced Computing Environment (PACE) clusters [224]. Experiments were

performed using a Nvidia Quadro RTX 6000.
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B.1.2 Parameter Selection

The MAE model has several hyperparameters that must be tuned and we will provide guid-

ance to determining ideal parameter values for our experiments and future experiments.

First we will describe some signs to look out for to identify if a run is succeeding or failing.

One indicator that we compute is the transport operator difference which is:

EΨdiff =
1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψmcm

)
z0

∥∥∥∥∥
2

2

− 1

2

∥∥∥∥∥z1 − expm

(
M∑
m=1

Ψ̂mcm

)
z0

∥∥∥∥∥
2

2

, (B.2)

where Ψ̂m is the dictionary after the gradient step is taken. A gradient step should decrease

the transport operator objective meaning the EΨdiff value should be positive for an effective

step. If there are many gradient steps that result in negative EΨdiff values, that indicates that

the parameters are not optimal or that the learning rate is too large. This is an important

metric to observe during fine-tuning to determine whether to select a smaller γ or smaller

network learning rate.

Signs of failure of a training run with selected training parameters:

• All operator magnitudes reduce towards zero.

• All inferred coefficients between point pairs are zero.

• Most of the operators generate transformation paths with latent values that increase

quickly to infinity.

• Many steps have negative values for EΨdiff.

• The operator magnitudes increase which results in unstable training steps with NaN

values in the computed objective.

Dictionary regularizer parameter The dictionary regularizer parameter γ is the weight

on the Frobenius norm term in (Equation 5.1). This objective term serves two purposes.
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First, it balances the effect of the coefficient sparsity regularizer with the parameter ζ . If

ζ is large, the sparsity regularizer encourages small coefficient magnitudes and one way

to achieve that while still effectively inferring paths is to increase the magnitude of the

operators. The Frobenius norm term must have a large enough influence to counterbalance

this force or the operators will increase in magnitude to the point of being unstable. If a run

is becoming unstable, we recommend decreasing ζ or increasing γ.

The second purpose of the dictionary regularizer term is to identify which operators

are necessary to represent the transformations on the data manifold. If an operator is not

being used to represent a transformation between z0 and z1 then the dictionary regularizer

reduces its magnitude to zero. Therefore, during training we are able to estimate the model

order based on how many dictionary elements remain non-zero. In our tests we vary γ

between 2× 10−8 and 2× 10−4. If γ is too small, it will not counterbalance the coefficient

sparsity term and the dictionaries will grow to unstable magnitudes. If γ is too large it will

reduce the magnitude of all operators to zero. During the fine-tuning steps, we have often

found it necessary to reduce the γ because, with a larger γ, both the operator magnitudes

and the latent vector magnitudes can decrease substantially which leads to an ineffective

manifold model.

Coefficient sparsity parameter The coefficient sparsity parameter ζ in (Equation 5.1)

controls the sparsity of the coefficients that are used to estimate paths between z0 and z1.

We run tests with values of ζ between 0.005 and 2. From dataset to dataset the ideal value

varies. If ζ values are too small then all of the operators are used to represent all of the paths

between point pairs. The ζ should be increased so fewer than M coefficients are used for

each inferred path. When ζ is too large, all the coefficients go to zero during inference. This

means there is no path inferred between z0 and z1 because of overweighting the sparsity

constraint.
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Number of dictionary elements As mentioned above, the dictionary regularizer acts as

a model order selection tool so our strategy for selecting number of dictionary elements

M is to increase the number of dictionary elements until some of their magnitudes begin

reducing to zero during training. This indicates that some of the operators are not necessary

for representing transformations.

Latent dimension The latent dimension of the autoencoder is selected to ensure quality

reconstructed image outputs.

Relative weight of reconstruction and transport operator objectives The parameter λ

determines the weight of the reconstruction term relative to the transport operator term. We

observe good performance of the model for λ between 0.5 and 0.75.

B.2 Coefficient Inference

In order to perform coefficient inference in the extended manifold autoencoder model used

to learn unlabeled natural variations, we use the PyTorch implementation of the matrix ex-

ponential that allows for automatic differentiation. Furthermore, to handle the non-smooth

`1 norm in objective Equation 2.3, we apply a proximal gradient step in a forward-backward

splitting scheme [225]. For the `1 norm, the proximal gradient has a known, closed-form

solution in the soft-thresholding function [226]:

Tλ(c) = sign(c) ∗max
(
|c| − λ, 0

)
(B.3)

Let ∇c
1
2

∥∥∥z1 − expm
(∑M

m=1 Ψmcm

)
z0

∥∥∥2

2
≈ ∇f̃(c) be a numerical approximation to

the gradient of the `2 term, found through automatic differentiation. Given initial coefficient

values c0 drawn from an isotropic Gaussian with variance 4 × 10−4, our gradient descent

step is:

ck+1 = Tζαk
(
ck − αk∇f̃(ck)

)
(B.4)
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These steps are iterated upon until either a max iteration count is reached, or the change in

coefficients, ‖ck+1−ck‖2, falls below some threshold. For all experiments learning natural

unlabeled variations, we use a max iteration count of 800 and a tolerance of 1 × 10−5.

For our step-size, we use αk = (0.985)kα0 with α0 = 1 × 10−2. We experimented with

different acceleration methods [222, 225], and found that in many cases they resulted in

worse performance.

B.3 Details on Closed Transformation Path Experiments

All manifold autoencoder experiments were run in PyTorch [227]. In 2D circle experiment,

we used single-layer neural networks with 512 hidden units and ReLU nonlinearities for

both the encoder and decoder. Figure C.6 shows the magnitude of transport operators after

the transport operator training phase. We select a threshold that is 70% of the magnitude of

the transport operator with the maximum magnitude and use only transport operators with

magnitudes above that threshold in the fine-tuning phase. In this setting the threshold is

0.0492 and only transport operator 1 surpasses the threshold. The training parameters are

shown in Table C.3.

Table B.1: Training parameters for 2D circle experiment

Autoencoder Transport Operator Fine-tuning
Training Training
batch size: 64 batch size: 10 batch size: 10
steps: 3000 steps: 3000 steps: 100
lrφ : 0.0001 lrφ : - lrφ : 0.0001
lrΨ : - lrΨ : 5 lrΨ : 0.0005
ζ : - ζ : 0.0001 ζ : 0.0
γ : - γ : 0.005 γ : 0.0
λ : - λ : - λ : 1000
M : - M : 4 M : 1

For training on MNIST digits we select 50,000 training digits from the traditional

MNIST training set and save the additional 10,000 images for validation. We use the

traditional MNIST test dataset for testing. We pre-process the MNIST digits by scaling the
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(a) (b)

(c)

Figure B.1: Magnitude of the operators after the transport operator training phase of the
closed transformation path experiments. (a) For 2D circle experiment (b) For the rotated
MNIST dataset (c) For gait sequences.

pixel values between 0 and 1. During transport operator training, we scale the latent vectors

prior to performing coefficient inference in order to maintain a maximum value of about

1 for the latent vectors. The network architectures are given in Table B.2 and the training

parameters are given in Table B.3. Figure B.1b shows the magnitude of transport operators

after the transport operator training phase with the threshold for transport operator selec-

tion. In this experiment the threshold is 2.4556 and only transport operator 1 surpasses this

threshold. Therefore only transport operator 1 is used during fine-tuning.

We use walking sequences from subject 35 in the CMU Graphics Lab Motion Capture

Database in the gait experiment. We use sequences 1-16 for training, sequences 28 and 29

138



Table B.2: MAE architecture for rotated MNIST experiment

Encoder Network Decoder Network
Input ∈ R28×28 Input ∈ R2

conv: chan: 64 , kernel: 4, Linear: 3136 Units
stride: 2, pad: 1
ReLU ReLU
conv: chan: 64 , kernel: 4, convTranpose: chan: 64 ,
stride: 2, pad: 1 kernel: 4, stride: 1, pad: 1
ReLU ReLU
conv: chan: 64 , kernel: 4, convTranpose: chann: 64 ,
stride: 2, pad: 0 kernel: 4, stride: 2, pad: 2
ReLU ReLU
Linear: 2 Units convTranpose: chan: 1 ,

kernel: 4, stride: 2, pad: 1
tanh

Table B.3: Training parameters for rotated MNIST experiment

Autoencoder Transport Operator Fine-tuning
Training Training
batch size: 64 batch size: 32 batch size: 32
epochs: 25 steps: 2250 steps: 7800
lrφ : 0.0001 lrφ : - lrφ : 0.005
lrΨ : - lrΨ : 0.01 lrΨ : 1
ζ : - ζ : 0.01 ζ : 0.0
γ : - γ : 8e− 5 γ : 0.0
λ : - λ : - λ : 10
M : - M : 10 M : 1

for validation, and sequences 30-34 for testing. During transport operator training, we scale

the latent vectors prior to performing coefficient inference in order to maintain a maximum

value of about 1 for the latent vectors. Figure B.1c shows the magnitude of transport

operators after the transport operator training phase with the threshold for transport operator

selection. The threshold in this experiment is 15.197 and transport operators 3, 5, and 6

all have magnitudes above that threshold. In this case, the transport operators from the

transport operator training phase generate full gait sequences so we use these operators for

our experiments without undergoing the fine-tuning phase. The network architectures are

given in Table B.4 and the training parameters are given in Table B.5.
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Table B.4: MAE architecture for gait experiment with closed transformation paths

Encoder Network Decoder Network
Input ∈ R50 Input ∈ R5

Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 5 Units Linear: 50 Units

Table B.5: Training parameters for gait experiment with closed transformation paths

Autoencoder Training Transport Operator Training
batch size: 64 batch size: 32
training steps: 15000 training steps: 14500
lrφ : 0.0005 lrφ : -
lrΨ : - lrΨ : 0.005
ζ : - ζ : 0.05
γ : - γ : 0.0001
λ : - λ : -
M : - M : 10

(a)

(b)

Figure B.2: (a) Gait sequence generated from operator 3. (b) Gait sequence generated
from operator 6.
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B.4 Details on Unlabeled Natural Variation Experiments

B.4.1 MNIST Experiment Details

The MNIST dataset is made available under the terms of the Creative Commons Attribution-

Share Alike 3.0 license. We split the MNIST dataset into training, and testing sets. The

training set contains 60,000 images from the traditional MNIST training set. The tradi-

tional MNIST testing set is used for our testing set. The input images are scaled so their

pixel values are between 0 and 1. The network architecture used for the autoencoder is

shown in Table B.6. The training parameters for the transport operator training phase and

the fine-tuning phase are shown in Table B.7 and Table B.8.

Prior to training the coefficient encoder for the MNIST dataset, we train a classifier

on the labeled MNIST image data which we use to encourage identity-preservation during

coefficient encoder training. The training parameters for the coefficient encoder are shown

in Table B.8. The image classifier we use is based on the simple LeNet architecture with

two convolutional layers and three fully connected layers [177].

Table B.6: MAE architecture for MNIST and Fashion MNIST experiments with unlabeled
natural variations

Encoder Network Decoder Network
Input ∈ R28×28 Input ∈ R2

conv: chan: 64 , kern: 4, stride: 2, pad: 1 Linear: 3136 Units
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chan: 64, kern: 4, stride: 1, pad: 1
conv: chan: 64, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 64
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chann: 64, kern: 4, stride: 2, pad: 2
conv: chan: 64, kern: 4, stride: 1, pad: 0 BatchNorm: feat: 64
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chan: 1, kernel: 4, stride: 2, pad: 1
Linear: 2 Units Sigmoid
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Table B.7: Training parameters for the MNIST transport operator training phase.

MNIST Transport Operator Training Parameters
batch size: 250
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 10
M : 16
lrnet : 10−4

lrΨ : 10−3

ζ : 0.1
γ : 2× 10−6

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 30

Table B.8: Training parameters for MNIST fine-tuning phase and coefficient encoder train-
ing

MNIST Fine-tuning Parameters
batch size: 250
transport operator training epochs: 100
lrnet : 10−4

lrΨ : 10−3

ζ : 0.1
γ : 2× 10−6

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

MNIST Coefficient Encoder Parameters
batch size: 250
training epochs: 300
lr: 10−3

ζprior : 0.1
λkl: 0.5
coefficient spread scale: 0.1
classifier domain: image

B.5 MNIST Experiment Additional Results

Here we show additional experimental details and results for the MNIST experiment. Fig-

ure B.3 shows the magnitude of all 16 operators after the fine-tuning phase. Six of the

operators have their magnitudes reduced to zero. Figure B.4 shows the paths generated by

transport operators trained on MNIST data.
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Figure B.3: The magnitudes of the learned operators after fine-tuning for the MNIST
experiment with unlabeled natural variations.

B.6 Fashion-MNIST Experiment Details

The Fashion-MNIST dataset is made available under the terms of the MIT license. We split

the Fashion MNIST dataset into training, and testing sets. The training set contains 60,000

images from the Fashion-MNIST training set. The traditional Fashion-MNIST testing set

is used for our testing set. The input images are scaled so their pixel values are between

0 and 1. The network architecture used for the autoencoder is the same as in the MNIST

experiment and it is shown in Table B.6. The training parameters for the transport operator

training phase and the fine-tuning phase are shown in Table B.9 and Table B.10.

Prior to training the coefficient encoder for the Fashion-MNIST dataset, we train a

classifier the latent vectors associated with labeled Fashion-MNIST data which we use to

encourage identity-preservation during coefficient encoder training. The training parame-

ters for the coefficient encoder are shown in Table B.10. The latent vector classifier has a

simple architecture of Linear(512), ReLU, Linear(10), Softmax.

B.7 Fashion MNIST Experiment Additional Results

Here we show additional experimental details and results for the Fashion-MNIST experi-

ment. Figure B.5 shows the magnitude of all 16 operators after the fine-tuning phase. Six

of the operators had their magnitudes reduced to zero.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure B.4: Paths generated by all non-zero transport operators trained on the MNIST
dataset with unlabeled natural variations. Images in the middle column of the image block
are the reconstructed inputs and images to the right and left are images decoded from
transformed latent vectors in positive and negative directions, respectively

B.8 CelebA Experiment Details

The CelebA dataset is publicly available for non-commercial research purposes. We split

the CelebA dataset into training and testing sets. The training set contains the first 150,000
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Table B.9: Training parameters for the Fashion-MNIST transport operator training phase.

Fashion-MNIST Transport Operator Training Parameters
batch size: 200
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 10
M : 16
lrnet : 10−4

lrΨ : 10−3

ζ : 0.5
γ : 2× 10−5

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 30

Table B.10: Training parameters for the Fashion-MNIST fine-tuning and coefficient en-
coder training.

Fashion-MNIST Fine-tuning Parameters
batch size: 200
transport operator training epochs: 150
lrnet : 10−4

lrΨ : 10−3

ζ : 0.5
γ : 2× 10−6

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

Fashion-MNIST Coefficient Encoder Parameters
batch size: 200
training epochs: 300
lr: 10−3

ζprior : 0.5
λkl: 0.5
coefficient spread scale: 0.1
classifier domain: latent

Figure B.5: The magnitudes of the learned operators after fine-tuning for the Fashion-
MNIST experiment with unlabeled natural variations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure B.6: Paths generated by all non-zero transport operators trained on the Fashion-
MNIST dataset. Images in the middle column of the image block are the reconstructed
inputs and images to the right and left are images decoded from transformed latent vectors
in positive and negative directions, respectively
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images accompanied with the entire test set. The input images are scaled so their pixel

values are between 0 and 1. The network architecture used for the autoencoder is shown

in Table B.11. The training parameters for the transport operator training phase and the

fine-tuning phase are shown in Table B.12.

The attribute classifier is a ResNet-18 model adapted from Duo Li’s github repository1

with 16 classifier heads after the layer with 512 hidden units. Each classifier head corre-

sponds to a single attribute and is modeled as a fully-connected linear layer with 256 hidden

units, followed by batch normalization, dropout, and ReLU layers. Afterwards, two logits

are output for a 0/1 prediction for each classifier output. The training procedure, including

the dynamic loss weighting, follows [217].

Table B.11: MAE architecture for CelebA experiments

Encoder Network Decoder Network
Input ∈ R64×64 Input ∈ R32

conv: chan: 32 , kern: 4, stride: 2, pad: 1 Linear: 80,000 Units
BatchNorm: feat: 32 ReLU
ReLU convTranpose: chan: 256, kern: 3, stride: 1, pad: 0
conv: chan: 64, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 64 ReLU
ReLU convTranpose: chann: 256, kern: 3, stride: 1, pad: 0
conv: chan: 128, kern: 3, stride: 2, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 256, kernel: 3, stride: 1, pad: 1
conv: chan: 256, kern: 3, stride: 1, pad: 1 BatchNorm: feat: 256
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 128, kernel: 3, stride: 1, pad: 1
conv: chan: 256, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 128
BatchNorm: feat: 256 ReLU
ReLU convTranpose: chan: 128, kernel: 3, stride: 1, pad: 0
conv: chan: 128, kern: 4, stride: 2, pad: 1 BatchNorm: feat: 128
BatchNorm: feat: 128 ReLU
ReLU convTranpose: chan: 3, kernel: 4, stride: 2, pad: 0
Linear: 32 Units Sigmoid

1https://github.com/d-li14/face-attribute-prediction
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Table B.12: Training parameters for the CelebA experiment

CelebA Transport Operator Training Parameters
batch size: 500
autoencoder training epochs: 300
transport operator training epochs: 50
latent space dimension (zdim): 32
M : 40
lrnet : 10−4

lrΨ : 10−3

ζ : 1.5
γ : 1× 10−5

initialization variance for Ψ: 0.05
number of restarts for coefficient inference: 1
nearest neighbor count: 5
latent scale: 2

CelebA Fine-tuning Parameters
batch size: 500
fine-tuning epochs: 10
lrnet : 10−4

lrΨ : 10−3

ζ : 0.8
γ : 5× 10−7

λ: 0.75
number of network update steps: 50
number of Ψ update steps: 50

B.9 CelebA Experiment Additional Results

Here we show additional experimental results for the CelebA experiment. Figure B.7 shows

the paths generated by the 40 transport operators trained on celebA data. Each row rep-

resents a different operator acting on the same input image. Images in the middle column

of the image block are the reconstructed inputs and images to the right and left are images

decoded from transformed latent vectors in positive and negative directions, respectively.

B.10 Coefficient Encoder Details

Our motivation in training an encoder to learn the coefficient statistics is to understand the

regions of the manifold in which specific transport operators are applicable and the invari-

ances of a pretrained classifier to the learned transport operator-induced transformations. In

this section, we will outline a derivation of our coefficient encoder training objective from

a variational inference perspective by learning a variational posterior for the coefficients

using a deep neural network [30, 31]. Given observations (zi, yi) for i = 1, . . . , N , and a

pre-trained classifier r(·), we aim to learn a distribution qφ(c|z) from which we can sample

to define the transformation TΨ(c) that can be applied to z while maintaining class identity.
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(a) (b)

(c) (d)

Figure B.7: Paths generated by all 40 transport operators trained on the CelebA dataset.
Images in the middle column of the image block are the reconstructed inputs and images
to the right and left are images decoded from transformed latent vectors in positive and
negative directions, respectively

Figure B.8: System diagram for learning local coefficient statistics.
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In other words, we want the augmented ẑ = TΨ(c)z + ε to result in r(ẑ) = y.

To encourage identity-preservation of vectors transformed with transport operators that

are controlled by sampled coefficients, we maximize the likelihood of a class output for

an observation under the system model diagrammed in Figure B.8. This system connects

the observed latent vector z to an output y through a transformation defined by c. We

follow the derivation used in Rezende & Mohamed [228] which introduces the variational

posterior to estimate the log likelihood of the data.

Consider a parameterized distribution for the conditional likelihood of our observations:

log pθ(y|z) = logEpζ(c) [pθ(y|c, z)] (B.5)

= log

∫
c

pζ(c)pθ(y|c, z)dc (B.6)

= log

∫
c

qφ(c|z)
pζ(c)

qφ(c|z)
pθ(y|c, z)dc (B.7)

≥
∫

c

qφ(c|z) log

[
pζ(c)

qφ(c|z)
pθ(y|c, z)

]
dc (B.8)

= Eqφ [log pθ(y|c, z)]−DKL (qφ(c|z)|pζ(c)) (B.9)

= Eqφ [logEεpθ(y|c, z, ε, ẑ)]−DKL (qφ(c|z)|pζ(c)) . (B.10)

In Equation B.5 and Equation B.6, we marginalize over the coefficients c as required

under our system model in Figure B.8. In Equation B.8, we lower bound the conditional

likelihood with a variational lower bound derived from Jensen’s inequality. Finally, we

use the reparameterization trick to define ẑ as a deterministic function of c, z, and the

parameter-free random variable ε in Equation B.10.

In order to sample from qφ(c | z) when computing the expectations, we first use the

reparameterization trick [3, 30, 31] to define the sampled coefficients ĉ as a function of a

uniform random variable u ∼ Unif
(
−1

2
, 1

2

)M :

ĉ = lφ(u, z) = −hφ(z) sgn(u) log(1− 2 |u|), (B.11)
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where lφ is a defined mapping from a uniform distribution to a Laplace distribution and the

Laplace scale parameters are defined by the output of the coefficient encoder hφ that we

aim to learn.

Using the reparameterization of ĉ and ẑ, we can define the expectation:

Eqφ [logEεpθ(y|c, z, ε, ẑ)] = Eu [logEεpθ(y|ĉ = lφ(u, z), ε, ẑ)] (B.12)

≈ 1

JK

J∑
j=1

log
K∑
k=1

pθ
(
y|ĉ(j) = lφ(u(j), z), ε(k), ẑ

)
. (B.13)

Our pre-trained classifier defines pθ which allows us to specify final objective using

r(·). Using a KL-divergence as the likelihood function between the ground truth labels

yi and the classifier output for the augmented inputs r(ẑ(j)
i ) and simplifying the model by

setting ε to 0, we get:

log pθ(y|z) ≥ − 1

J

J∑
j=1

DKL

(
yi|r(ẑ(j)

i )
)
−DKL (qφ(c|z)|pζ(c)) , (B.14)

where in practice we use a single sample J = 1 and we estimate DKL

(
yi|r(ẑ(j)

i )
)
≈

DKL

(
r(z

(j)
i )|r(ẑ(j)

i )
)

for test samples for which we may not have class labels. These

practical simplifications result in the objective in Equation 5.6 which we want to minimize.

The KL divergence between the qφ(c|z) and pζ(c) has a closed form expression [229]:

DKL (qφ(c | z)‖pζ(c)) = log(hφ(z))− log(ζ) +
ζ

hφ(z)
− 1 (B.15)
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B.11 Training Comparison Techniques

B.11.1 Hyperspherical VAE

Our hyperspherical VAE implementation came from the Nicola De Cao’s github page.2

For both the concentric circle dataset and the gait sequences dataset, we trained the hyper-

spherical VAE with the same network architectures as our autoencoder experiments and a

mean square error reconstruction loss. For the rotated MNIST dataset, we used the net-

work architecture from the MNIST example in the hyperspherical VAE code and used the

binary cross entropy loss for the reconstruction error on dynamically binarized rotated digit

images.

To estimate paths on the hyperspherical VAE latent space, we used the Manifold-valued

Image Restoration Toolbox3 to compute geodesic paths on a 10-dimensional hypersphere.

B.11.2 Contractive Autoencoder and β- VAE

In order to train the contractive autoencoder, we use the same autoencoder architecture used

with the MAE with the addition of a Frobenius norm regularizer on the encoder Jacobian,

weighted by a selected λ value (different from the λ in Equation C.6). The Jacobian is

computed using PyTorch automatic differentiation. We find the Jacobian norm decreases

to the same value irrespective of our choice of λ, leading us to choose λ = 1. For the

β-VAE, we use the same architectures outlined in [203] with β = 10 for CelebA and

β = 5 for MNIST and Fashion-MNIST. We find that setting β any higher results in poor

reconstructive performance. Scripts for training both comparison methods are included in

the code repository4.

2https://github.com/nicola-decao/s-vae-pytorch/tree/master/hyperspherical vae
3https://ronnybergmann.net/mvirt/
4https://github.com/siplab-gt/manifold-autoencoder-extended
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APPENDIX C

VARIATIONAL AUTOENCODER WITH LEARNED LATENT STRUCTURE

DETAILS

C.1 Derivation of the Loss Function

In this section, we describe the details of our VAELLS implementation. We define the loss

function E to be minimized as the approximate negative ELBO in Equation 6.7, restated

here for convenience:

Lx(z) ≡ log pθ(x | z) + log pθ(z)− log qφ(z | x)

E(x) ≡ −Eu,ε [Lx(TΨ(l(u; b))fφ(x) + γε)] +
η

2

M∑
m=1

‖Ψm‖2
F

ε ∼ N (0, I) u ∼ Unif

(
−1

2
,
1

2

)M
.

In practice, when optimizing this loss function we approximate it with a set of Ns samples:

Ê(x) ≡ − 1

Ns

Ns∑
s=1

Lx(TΨ(l(us; b))fφ(x) + γεs) +
η

2

M∑
m=1

‖Ψm‖2
F (C.1)

εs ∼ N (0, I) us ∼ Unif

(
−1

2
,
1

2

)M
.

The deterministic mapping l(u; b) is an inverse transform that maps independent uniform

variates to the following factorial Laplace distribution:

q(c) =
M∏
m=1

q(cm),
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where for b > 0,

q(cm) =
1

2b
exp

(
−|cm|

b

)
.

Specifically, we sample independently from each marginal q(cm) by defining the mth ele-

ment of l(u; b) as follows:

lm(u; b) = −b sgn(um) log(1− 2 |um|).

Next we derive expressions for each expanded term in Equation C.1. For the likelihood

term, we have

− log pθ(x | z) = − log

[
(2π)

−D
2 σ−D exp

(
−‖x− gθ(z)‖2

2

2σ2

)]

= C1 + ζ1 ‖x− gθ(z)‖2
2 ,

where ζ1 = 2−1σ−2 is treated as a hyperparameter and C1 = D
2

log(2π) +D log σ. For the

variational posterior term, we have

log qφ(z | x) = log

∫
c

qφ(z, c | x)dc (C.2)

≈ max
c

log [qφ(z | c,x)q(c)] , (C.3)

where the approximation in Equation C.3 is motivated by the fact that the sparsity-inducing

Laplace prior on c typically results in joint distributions with z that are tightly peaked in the

coefficient space, as described in Olshausen & Field (1997) [219]. Due to this tight peak in

qφ(z, c | x), we can approximate the integral in Equation C.2 by approximating the volume

under the surface in a small neighborhood around the density maximizer. Specifically, we

approximate this volume by evaluating the joint density at its maximum, weighted by the

volume of a ball with a small radius centered at the maximizer. This volume approxima-

tion results in an additive constant in the log posterior that reflects the area of the chosen
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neighborhood, which we omit from this log-likelihood computation.

We have

log [qφ(z | c,x)q(c)] = C2 − ζ2 ‖z− TΨ(c)fφ(x)‖2
2 − ζ3

M∑
m=1

|cm| ,

where ζ2 = 2−1γ−2 and ζ3 = b−1 are treated as a hyperparameters and C2 = −d
2

log(2π)−

d log γ +M log 1
2b

. Using the notation

c∗(z,x; ζ) = argmin
c

[
ζ2 ‖z− TΨ(c)fφ(x)‖2

2 + ζ
M∑
m=1

|cm|

]
, (C.4)

we have (with hyperparameter ζq)

log qφ(z | x) ≈ C2 − ζ2 ‖z− TΨ(c∗(z,x; ζq))fφ(x)‖2
2 − ζ3

M∑
m=1

|c∗m(z,x; ζq)| . (C.5)

Finally, for the prior distribution (with hyperparameter ζp) we have

− log pθ(z) = − log
1

Na

Na∑
i=1

qφ(z | ai)

≈ logNa − C2 − log
Na∑
i=1

exp

(
−ζ2 ‖z− TΨ(c∗(z, ai; ζp))fφ(ai)‖2

2 − ζ3

M∑
m=1

|c∗m(z, ai; ζp)|

)
,

where we use the same approximation as Equation C.3.

All together, dropping additive constants and letting zs = TΨ(l(us))fφ(x) + γεs, we

have

Ê(x) =
1

Ns

Ns∑
s=1

ζ1 ‖x− gθ(zs)‖22 − ζ2
∥∥zs − TΨ(c∗(zs,x; ζq))fφ(x)

∥∥2

2
− ζ3

M∑
m=1

|c∗m(zs,x; ζq)|

− log

Na∑
i=1

exp

(
−ζ2

∥∥zs − TΨ(c∗(zs,ai; ζp))fφ(ai)
∥∥2

2
− ζ3

M∑
m=1

|c∗m(zs,ai; ζp)|
)

+
η

2

M∑
m=1

‖Ψm‖2F .

In practice, one may wish to construct the prior with different constants than those used

for the variational posterior term (i.e., constants ζ4, ζ5 instead of ζ2, ζ3). This substitution
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results in the final VAELLS objective

Ê(x) =
1

Ns

Ns∑
s=1

ζ1 ‖x− gθ(zs)‖22 − ζ2
∥∥zs − TΨ(c∗(zs,x; ζq))fφ(x)

∥∥2

2
− ζ3

M∑
m=1

|c∗m(zs,x; ζq)|

− log

Na∑
i=1

exp

(
−ζ4

∥∥zs − TΨ(c∗(zs,ai; ζp))fφ(ai)
∥∥2

2
− ζ5

M∑
m=1

|c∗m(zs,ai; ζp)|
)

+
η

2

M∑
m=1

‖Ψm‖2F .

(C.6)

We allow the user to tune all of the hyperparameters during training.

C.2 DETAILS ON VAELLS TRAINING PROCEDURE

In this section we provide additional details on the general training procedure for all of the

experiments. A detailed view of the VAELLS training steps is provided in algorithm 2.

For specific architecture details and parameter selections, see each experiment’s respective

Appendix section.

Network training To enhance the generative capability of the decoder, in some exper-

iments, we use a warm-up as in Tomczak & Welling (2018) [220]. Our warm-up includes

updates to the network weights driven by only the reconstruction loss. During warm up

there is no Gaussian sampling in the latent space and the sampled Laplace distribution for

the transport operator coefficients has a large ζ3 parameter which encourages sampling co-

efficients that are very close to zero . As mentioned in section 6.5, during VAELLS training

we alternate between steps where we update the network weights and anchor points while

keeping the transport operators fixed and steps where we update the transport operators

while keeping the network weights and anchor points fixed. As we alternate between these

steps, we vary the weights on the objective function terms. Specifically, we decrease the

importance of the prior terms during the steps updating the network weights and decrease

the importance of the reconstruction term during the steps updating the transport operators.

Transport operator learning As mentioned in section 6.5, one component of comput-

ing the prior and posterior objective is the coefficient inference between the sampled point

z and the neural network encoding fφ(x) as well as all the encoded anchor points fφ(ai).
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Note that the transport operator objective is non-convex which may result in coefficient

inference optimization arriving at a poor local minima. This issue can be avoided by per-

forming the coefficient inference between the same point pair several times with different

random initializations of the coefficients and selecting the inferred coefficients that result

in the lowest final objective function. We leave the number of random initializations as a

parameter to select during training.

Transport operator coefficient inference is best performed when the magnitude of the

latent vector entries is close to the range [−1, 1]. Because of this, we allow for the selection

of a scale factor that scales the latent vectors prior to performing coefficient inference. In

practice, we inspect the magnitude of the latent vectors after warm-up training steps and

select a scale factor that adapts the largest magnitudes of the latent vector entries to around

1.

During every transport operator update step, our optimization routine checks whether

the transport operator update improves the portion of the objective that explicitly incorpo-

rates the transport operator:

Êtransopt(x) =
1

Ns

Ns∑
s=1

−ζ2 ‖zs − TΨ(c∗(zs,x; ζq))fφ(x)‖2
2 − ζ3

M∑
m=1

|c∗m(zs,x; ζq)|

− log
Na∑
i=1

exp

(
−ζ4 ‖zs − TΨ(c∗(zs, ai; ζp))fφ(ai)‖2

2 − ζ5

M∑
m=1

|c∗m(zs, ai; ζp)|

) (C.7)

If this portion of the objective does not improve with a gradient step on the dictionary

then we reject this step and decrease the transport operator learning rate. If the transport

operator portion of the objective does improve with the gradient step on the dictionary then

we accept this step and increase the transport operator learning rate. This helps us settle

on an appropriate learning rate and prevents us from making ineffective updates to the

dictionaries. We also set a maximum transport operator learning rate which varies based

on the experiment.

Another unique consideration during transport operator training is that we generally
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assume that the transport operator training points are close on the manifold. In the formu-

lation of the variational posterior, this is a reasonable assumption because z is a sample

originating from fφ(x). However, in the prior formulation, while the anchor points are

generally sampled in a way that encourages them to be evenly spaced in the data space, it is

unlikely that every latent vector associated with a data point is close to every anchor point.

In order to aid in constraining training to points that are relatively close on the manifold,

we provide the training option of defining the prior with respect to only the anchor point

closest to z rather than summing over all the anchor points:

pθ(z) = qφ(z | a∗), (C.8)

where a∗ is the anchor that is estimated to be closest to z. Since we do not have ground truth

knowledge of which anchor point is closest to a given training point on the data manifold,

we estimate this by inferring the coefficients that represent the estimated path between z

and every ai. We then select a∗ as the anchor point with the lowest objective function (i.e.,

ζ4 ‖zs − TΨ(c∗(zs, ai; ζp))fφ(ai)‖2
2 + ζ5

∑M
m=1 |c∗m(zs, ai; ζp)|) after coefficient inference.

This objective function defines how well ai can be transformed to zs using the current

transport operator dictionary elements Ψ.

There are several hyperparameters that need to be tuned in this model. However, we

have found through experimentation that the model is robust to changes in several of the

parameters (such as ζ2, ζ3,ζ4). The hyperparameters that were shown to have the largest

effect on training effectiveness were:

• The weight on the reconstruction term (ζ1) - use this in combination with warm-up

steps to ensure reasonable reconstruction accuracy from the decoder.

• The posterior coefficient inference weight (ζq) - this is the weight on the sparsity reg-

ularizer term used in the objective Equation C.4 during coefficient inference between

points in the posterior term. If this weight is too large, then inference can result in
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zero coefficients for all the operators which is not informative.

• The prior coefficient inference weight (ζp) - this is the weight on the sparsity regular-

izer term used during coefficient inference between points in the prior term.

• Number of restarts used during coefficient inference for transport operator training.

• Starting lrΨ - As mentioned above, we do vary lrΨ during transport operator train-

ing depending on whether our training steps are successful or not. If this learning

rate starts too high, it can result in many unsuccessful steps with no updates on the

transport operator dictionaries which greatly slows down training.

Comparison techniques We implemented the hyperspherical VAE [81] using the code

provided by the authors: https://github.com/nicola-decao/s-vae-pytorch. For the concen-

tric circle and swiss roll experiments we used the network specified in Table C.1. For

MNIST experiments, we used the network architecture from their MNIST experiments,

and we dynamically binarized the MNIST inputs as they did. We implemented the VAE

with VampPrior [220] model using the code provided by the authors: https://github.com/

jmtomczak/vae vampprior. For the concentric circle and swiss roll experiments, we used

the network architecture specified in Table C.1 and 100 pseudoinputs for each experiment.

For the MNIST experiments we adapted the network in Table C.4 to add a linear layer

between the final convTranspose layer and the sigmoid layer. We used 500 pseudoinputs

in each of the MNIST experiments. The VAE with VampPrior MNIST tests were also per-

formed on dynamically binarized MNIST data. We implemented our own VAE code with

the same network architectures detailed in Table C.1 and Table C.4.

C.3 Variational Posterior Contours

In order to more intuitively visualize the learned variational posterior we show contour plots

of the variational posterior given an input point. The variational posterior (Equation C.5)

consists of two terms: the data fidelity term
(
−ζ2 ‖z− TΨ(c∗(z,x; ζq))fφ(x)‖2

2

)
and the
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Algorithm 2: Training of network weights, transport operators, and anchor points
Data: Training samples X , anchor points {a1, ..., aNa} selected from the input

space
Result: Trained transport operator dictionary elements {Ψ1, ...ΨM}, network

weights φ and θ, fine-tuned anchor points {a1, ..., aNa}
Ψ, φ, θ ← randomly initialize dictionaries, network weights;
for k = 0, ...., N do

Sample mini-batch from X : {x1, ...,xNs};
for s = 0, ...., Ns do

Encode samples: µs ← fφ(xs);
Sample us ∼ Unif

(
−1

2
, 1

2

)M ;
ĉs ← l(us);
Sample zs from qφ(zs | ĉs,xs) ∼ TΨ(ĉs)µs + γεs;
Decode sampled vectors: x̂s ← gθ(zs);
c∗(zs,xs)← Infer Coefficients(zs,xs, dstart, dstop);
for i = 0, ...., Na do

for r = 0, ...., num restart do
c(r)(zs, ai)← Infer Coefficients(zs, ai, dstart, dstop);
Ec(c

(r)(zs, ai))← log
[
qφ(zs | c(r)(zs, ai), ai)q(c

(r)(zs, ai))
]

c∗(zs, ai)← argmaxr Ec(c
(r)(zs, ai))

Calculate Ê in (Equation C.6) using x̂s, c∗(zs,xs), and c∗(zs, ai) for
s = 0, ...., Ns and i = 0, ...., Na;

Ψnew ← Ψ− lrΨ δÊ
δΨ

;
if Êtransopt(Ψnew) < Êtransopt(Ψ) then

Ψ← Ψnew;
lrΨ ← lrΨ

decay

else
lrΨ ← lrΨ · decay

φ← φ− lrnet
δÊ
δφ

;

θ ← θ − lrnet
δÊ
δθ

;
a← a− lranchor

δÊ
δa

;

Algorithm 3: Infer Coefficients(z,x, dstart, dstop)

Data: Latent vector z, input data x
Result: Inferred coefficient vector c
Initialize c: cm ∼ Unif[dstart, dstop];
Fix c to c∗ ← argmaxc log [qφ(z | c,x)q(c)];
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coefficient prior term
(
−ζ3

∑M
m=1 |c∗m(z,x; ζq)|

)
. The data fidelity term expresses the

probability of z given an input point x. Figure C.1a shows a contour of the data fidelity

term. The red x is the location of the encoded point and the black dots are encoded data

samples. This shows how the data fidelity term maps out the contour of the latent swiss

roll manifold around the encoded point. The coefficient prior is a Laplace distribution

which encourages the coefficients to be tightly peaked around zero. Figure C.1b shows the

contour of the prior term. There is a high log probability in the slice of the space that can

be reached by applying small coefficients to the transport operators and the log probability

reduces in parts of the space that require larger coefficient values to reach.

The final variational posterior in Figure C.1c is a combination of these two terms. In

our experimental setting, the data fidelity term is the dominant term that characterizes the

variational posterior. However, as the weights ζ2 and ζ3 vary, the contribution of each term

towards the variational posterior will change.

(a) (b) (c)

Figure C.1: Variational posterior contour plots. The red x is the location of the encoded
point z. The black dots are encoded data points. (a) Contour of data fidelity term (b)
Contour of coefficient prior term (c) Contour of log qφ(z | x)

C.4 Estimated Log-Likelihood

We estimate the log-likelihood using the importance sampling from [223] with 500 data-

points and 100 samples per datapoint. We follow the derivation from appendix section C.1

for computing log pθ(x | z), log qφ(z | x), and log pθ(z) and include all the constants

defined there. We set ζ1 to the same value used during training. While we hand-select

161



ζ2, ζ3, ζ4, and ζ5 during training, when computing the estimated log-likelihood, we com-

pute each of these values based on the parameters γ and b which are used for sampling

the latent vectors as specified in Equation 6.3. To be explicit, ζ2 = ζ4 = 2−1γ−2 and

ζ3 = ζ5 = b−1. When we infer coefficeints as in Equation C.4, we set ζ2 = 1 and we set the

hyperparameters ζq and ζp (which are used for the posterior and prior respectively) to the

same values used during training which yield successful coefficient inference. As noted by

Equation C.3, the approximation of log
∫
c
qφ(z, c | x)dc will result in an additive constant

that we do not include in our estimated log-likelihood computation.

The results presented in Table 6.2 show a wide variation in estimated log-likelihood

over the trials. These values are largely dominated by the data fidelity term in the prior

which decreases significantly as the number of dictionaries increase from 2 to 8. Because

this experiment sets γ = 0.001, any variation in the data fidelity terms for the log qφ(z | x)

and log pθ(z) are magnified when they are multiplied by ζ2 = ζ4 = 1
2(0.0012)

.

C.5 Swiss Roll Experiment

Table C.1 and Table C.2 contain the VAELLS network architecture and parameters for the

swiss roll experiment. In this experiment, we sample our ground truth 2D data manifold

from a swiss roll and then map it to the 20-dimensional input space using a random linear

mapping. We use 1000 swiss roll training points and randomly sample swiss roll test points.

We initialize anchor points as points that are spaced out around the swiss roll prior to

mapping to the 20-dimensional input space. We allow for the anchor points to be updated;

however, these updates result in negligible changes to the anchor points. As described in

section C.2, in this experiment we define the prior only with respect to the anchor points

that are estimated to be closest to each training point.
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Table C.1: VAELLS network architecture for swiss roll and concentric circle experiments

Encoder Network Decoder Network
Input ∈ R20 Input ∈ R2

Linear: 512 Units Linear: 512 Units
ReLU ReLU
Linear: 2 Units Linear: 20 Units

C.6 Analysis of Sensitivity to Anchor Points

The anchor points are a key feature needed to specify the learned latent prior and its impor-

tant to understand the role that anchor point selection plays in the success of learning the

data manifold. We investigate this question on the swiss roll manifold with a known latent

structure that will allow us to determine the success of the VAELLS training procedure as

we vary the anchor points.

We begin by varying the number and location of anchor points. In the initial formulation

of the swiss roll experiment, the anchor points are selected to be well distributed around

the swiss roll manifold. Figure 6.3b shows the locations of the anchor points used for

experiment detailed in the paper. The anchor points are well spaced around the swiss roll

manifold. Figure 6.3a shows the learned operator from this experiment which successfully

generates paths with the desired swiss roll manifold structure.

While the experiment we presented uses four well-spaced anchor points, we can vary

both the number and locations of the anchor points and still learn a mapping to a swiss roll

latent structure and a transport operator that generates paths along the swiss roll. Figure C.2

shows examples of tests where VAELLS successfully learns the swiss roll structure in the

latent space with different numbers of anchor points. While we achieve success with ran-

domly positioned anchor points, there are tests where the anchor points are relatively evenly

spaced over the manifold and the transport operators do not learn the swiss roll structure.

Figure C.3 shows examples of tests where VAELLS fails to learn the swiss roll manifold

even when the anchor points are relatively evenly spaced on the encoded manifold. These
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Table C.2: VAELLS training parameters for swiss roll experiment

VAELLS Training - Swiss Roll
batch size: 30
training steps: 3000
latent space dimension (zdim): 2
Ns : 1
lrnet : 10−4

lranchor : 10−4

starting lrΨ : 5× 10−5

max lrΨ : 0.05
ζ1 : 0.01
ζ2 : 1
ζ3 : 1
ζ4 : 1
ζ5 : 0.01
ζq: 1× 10−6

ζp: 5× 10−5

η : 0.01
number of network and anchor update steps: 20
weight on prior terms during net update steps: 0.01
number of Ψ update steps: 20
weight on recon term during net update steps: 0.001
γpost : 0.001
warm-up steps: 0
number of restarts for coefficient inference: 2
M : 1
number of anchors: 4
latent space scale: 1
define prior with respect to closest anchor point: yes

results indicate that the success of learning transport operators to represent the true latent

manifold depends on a factor other than the anchor point locations.

Another possible factor important for successful learning of the latent manifold is the

initialization of the dictionary elements. To analyze the impact of dictionary initializa-

tion, we train 10 separate instances of VAELLS which we initialize with the same network

weights and anchor point locations and a different dictionary element weights. Figure C.4

shows the final training outputs of five of these trials. The trials shown in Figure C.4(a-b)

successfully learn a transport operator that traverses a swiss roll manifold and the trials
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(a) (b) (c) (d)

Figure C.2: Outputs of trials where VAELLS learns the correct swiss roll manifold while
the number of anchor points is varied and the anchor point locations are randomly selected
on the manifold. The black dots are encoded data points, the blue x’s are the encoded an-
chor point locations, and the red line is the generated orbit of the learned transport operator.
Each plot shows a result with a different number of anchor points: (a) 3 anchor points (b)
4 anchor points (c) 6 anchor points (d) 8 anchor points.

(a) (b) (c)

Figure C.3: Outputs of trials where VAELLS fails to learn the correct swiss roll manifold
while the number of anchor points is varied and the anchor point locations are randomly
selected on the manifold. The black dots are encoded data points, the blue x’s are the en-
coded anchor point locations, and the red line is the generated orbit of the learned transport
operator. Each plot shows a result with a different number of anchor points: (a) 4 anchor
points (b) 6 anchor points (c) 8 anchor points.

shown in Figure C.4(c-e) fail to learn a transport operator that traverses the swiss roll man-

ifold. This experiment shows that the final transport operator orbits and latent space encod-

ing can vary significantly with different initializations of the dictionary element and this

indicates that the dictionary initialization is a more important factor for successful training

than the anchor point locations.

The transport operator objective is a non-convex optimization surface which can result

in the optimization settling in local minima that do not represent the true data manifold.

There are a few cues to observe when determining whether a training run is successfully

learning the data manifold. First, as mentioned in appendix section C.2, during every

transport operator update step, we check whether the update improves the portion of the

objective that incorporates the transport operator. If this portion of the objective does not
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(a) (b) (c) (d) (e)

Figure C.4: Outputs of trials that are initialized with the same network weights and anchor
point locations and different dictionary weights. The black dots are encoded data points,
the blue x’s are the encoded anchor point locations, and the red line is the generated orbit
of the learned transport operator. (a-b) Trials that successfully learn a transport operator
that traverses the swiss roll structure. (c-e) Trials that fail to learn a transport operator that
traverses the swiss roll structure.

improve with a gradient step on the dictionary, we reject the step and decrease the learn-

ing rate. Often, if the initialized dictionary does not yield effective learning of the data

manifold, then we see a large number of the gradient steps that do not improve the trans-

port operator portion of the objective and those steps are rejected. Therefore, examining

the number of rejected steps can be an indicator of the effectiveness of transport operator

training. Another indicator for poor performance is the amount of time it takes to perform

coefficient inference when computing the prior. As the transport operator model becomes a

better match for the latent manifold, the coefficient inference will require fewer optimiztion

steps which will reduce the amount of inference time. When comparing a VAELLS model

that learns to match the data manifold to one that is a poor match, the inference time is

often noticeably lower for the successful model.

C.7 Concentric Circle Experiment

The concentric circle experiment uses the same network architecture as the swiss roll ex-

periment which is specified in Table C.1. Table C.3 shows the training parameters for the

concentric circle experiment. In this experiment, we sample our ground truth 2D data man-

ifold from two concentric circles and then map those sampled points to the 20-dimensional

input space using a random linear mapping. We use 400 training points and randomly

sample test points.
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Figure C.5: The orbits of each of the transport operators learned in the concentric circle
test case plotted on top of encoded points.

It should be noted that, in this experiment, we do not alternate between steps where we

update the network weights and anchor points while fixing the transport operator weights

and steps where we update the transport operator weights while keeping the network weights

and anchor points fixed. Instead the network weights, anchor points, and transport operator

weights are all updated simultaneously. We use three anchor points per circular manifold

and initialize them by evenly spacing them around each circle prior to mapping into the

20-dimensional input space. While the anchor points are allowed to update during training,

the changes in the anchor points are negligible. For each input point, the prior is computed

as a sum over the variational posterior conditioned on only the anchor points on the same

circle as the input point.

Figure C.5 shows the encoded latent points overlaid with the orbits of the learned trans-

port operators. These orbits are generated by selecting one point on each circular manifold

and applying a single operator as its trajectory evolves over time. Notice that one of the

operators clearly represents the circular structure of the latent space while the other three

have much smaller magnitudes and a limited effect on the latent space transformations.

The Frobenius norm regularizer in the objective function often aids in model order selec-

tion by reducing the magnitudes of operators that are not used to represent transformations

between points on the manifold. To see the magnitudes more clearly, Figure C.6 shows

the magnitude of each of the transport operators after training the VAELLS model in the

concentric circle test case.

Figure C.7a shows latent points sampled from the prior using the sampling described

in Equation 6.3 with larger standard deviation and scale parameters to aid in visualization.
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Table C.3: VAELLS training parameters for concentric circle experiment

VAELLS Training - Concentric Circle
batch size: 30
training steps: 4000
latent space dimension (zdim): 2
Ns : 1
lrnet : 0.005
lranchor : 0.0001
starting lrΨ : 4× 10−4

max lrΨ : 0.1
ζ1 : 0.01
ζ2 : 1
ζ3 : 1
ζ4 : 1
ζ5 : 0.01
ζq: 1× 10−6

ζp: 5× 10−6

η : 0.01
number of network and updates steps: N/A
number of Ψ update steps: N/A
γpost : 0.001
warm-up steps: 0
number of restarts for coefficient inference: 1
M : 4
number of anchors per class: 3
latent space scale: 1
define prior with respect to closest anchor point: no

Figure C.7(b-c) show two example inferred paths between points encoded on the concentric

circle manifold.

C.8 Rotated MNIST Experiment

We split the MNIST dataset into training, validation, and testing sets. The training set

contains 50,000 images from the traditional MNIST training set. The validation set is

made up of the remaining 10,000 image from the traditional MNIST training set. We

use the traditional MNIST testing set for our testing set. The input images are scaled by

255 to keep the pixel values between 0 and 1. To generate a batch of rotated MNIST
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Figure C.6: Magnitude of the operators after training in the 2D concentric circle experi-
ment.

(a) (b) (c)

Figure C.7: Visualization of the components of the VAELLS prior on the concentric circle
dataset. (a) Latent points sampled from the anchor points showing the concentric circle
structure learned by the VAELLS model. (b-c) Transport operator paths inferred between
points on the same concentric circle manifold.

digits, we randomly select points from the MNIST training set and rotate those images to

a random angle between 0 and 350 degrees. Separate anchor points are selected for each

training example. Anchor points are generated by rotating the original MNIST sample

by angles that are evenly spaced between 0 and 360 degrees. Because we have separate

anchor points for each training sample, they are not updated during training. Table C.4

and Table C.5 contain the VAELLS network architecture and parameters for the rotated

MNIST experiment. As described in appendix section C.2, in this experiment, we define

the prior only with respect to the anchor points that are estimated to be closest to each

training point. Figure C.8 shows more examples of images decoded from latent vectors

sampled from the posterior of the models trained on rotated MNIST digits.
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Table C.4: VAELLS network architecture for MNIST experiment

Encoder Network Decoder Network
Input ∈ R28×28 Input ∈ R10
conv: chan: 64 , kern: 4, stride: 2, pad: 1 Linear: 3136 Units
ReLU ReLU
conv: chan: 64, kern: 4, stride: 2, pad: 1 convTranpose: chan: 64, kern: 4, stride: 1, pad: 1
ReLU ReLU
conv: chan: 64, kern: 4, stride: 1, pad: 0 convTranpose: chann: 64, kern: 4, stride: 2, pad: 2
ReLU ReLU
Linear: 10 Units convTranpose: chan: 1, kernel: 4, stride: 2, pad: 1

Sigmoid

(a) (b)

Figure C.8: Examples of images decoded from latent vectors sampled from the posterior
of models trained on rotated MNIST digits. In each example, the center digit (in the green
box) is the decoded version of the input digit and the surrounding digits are images decoded
from the sampled latent vectors. Sampling in the VAELLS latent space results in rotations
in the sampled outputs.

C.9 Natural MNIST Experiment

This experiment uses the same training/validation/testing separation as described in the ro-

tated MNIST experiment in section C.8. The only pre-processing step for the digit images

is scaling by 255. Our qualitative results use a network that is trained with eight anchor

points per digit class. These anchor points are initialized by randomly sampling eight ex-

amples of each class at the beginning of training. The anchor points are allowed to update

during training but the changes in the anchor points during training are negligible. We use

the same network architecture as in the rotated MNIST experiment (shown in Table C.4).

Table C.6 shows the training parameters for this experiment. As described in appendix sec-

tion C.2, in this experiment, we define the prior only with respect to the anchor points that

are estimated to be closest to each training point.

Figure C.9 shows more examples of images decoded from latent vectors sampled from
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Table C.5: VAELLS training parameters for rotated MNIST experiment

VAELLS Training - Rotated MNIST
batch size: 32
training steps: 35000
latent space dimension (zdim): 10
Ns : 1
lrnet : 10−4

lranchor : N/A
starting lrΨ : 1× 10−5

max lrΨ : 0.008
ζ1 : 1
ζ2 : 1
ζ3 : 1
ζ4 : 1
ζ5 : 0.01
ζq: 1× 10−6

ζp: 1× 10−6

η : 0.01
number of network and anchor update steps: 20
weight on prior terms during net update steps: 0.0001
number of Ψ update steps: 60
weight on recon term during net update steps: 0.0001
γpost : 0.001
warm-up steps: 30000
number of restarts for coefficient inference: 1
M : 1
number of anchors per class: 10
latent space scale: 10
define prior with respect to closest anchor point: yes

the posterior of the models trained on MNIST digits. Figure C.10 and Figure C.11 show

the effect that each of the eight learned transport operators has on digits. To generate each

figure, input images randomly selected from each class are encoded into the latent space

and a single learned operator is applied to each of those latent vectors. The decoded version

of the input image is shown in the middle column (in a green box). The images to the left

of the middle column show the result of applying the operator with a negative coefficient

and the images to the right of the middle column show the result of applying the operator

with a positive coefficient.
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Table C.6: VAELLS training parameters for natural MNIST experiment

VAELLS Training - MNIST
batch size: 32
training steps: 34600
latent space dimension (zdim): 6
Ns : 1
lrnet : 10−41
lranchor : 10−4

starting lrΨ : 1× 10−5

max lrΨ : 0.008
ζ1 : 1
ζ2 : 1
ζ3 : 1
ζ4 : 1
ζ5 : 0.01
ζq: 1× 10−6

ζp: 1× 10−6

η : 0.01
number of network and anchor update steps: 20
weight on prior terms during net update steps: 0.0001
number of Ψ update steps: 60
weight on recon term during net update steps: 0.0001
γpost : 0.001
warm-up steps: 30000
number of restarts for coefficient inference: 1
M : 4
number of anchors per class: 8
latent space scale: 10
define prior with respect to closest anchor point: yes

(a) (b)

Figure C.9: Examples of images decoded from latent vectors sampled from the posterior
of models trained on natural MNIST digits. In each example, the center digit (in the green
box) is the decoded version of the input digit and the surrounding digits are images decoded
from the sampled latent vectors.
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(a) (b)

(c) (d)

Figure C.10: Extrapolated paths using the first four transport operators learned on natural
MNIST digit variations.
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(a) (b)

(c) (d)

Figure C.11: Extrapolated paths using the second four transport operators learned on nat-
ural MNIST digit variations.
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