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In that simple statement is the key to science — it doesn’t make a difference how beautiful

your guess is, it doesn’t make a difference how smart you are, who made the guess, or

what his name is — if it disagrees with experiment, it’s wrong.

Richard Feynman
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SUMMARY

Three significant advancements are proposed for improving numerical methods in the

solution of forward-backward stochastic differential equations (FBSDEs) appearing in the

Feynman-Kac representation of the value function in stochastic optimal control (SOC)

problems. First, borrowing from the nomenclature of the reinforcement learning (RL)

community, we propose a novel characterization of FBSDE estimators as either on-policy

or off-policy, highlighting the intuition for these techniques that the distribution over which

value functions are approximated should, to some extent, match the distribution the poli-

cies generate. This insight leads to an FBSDE SOC problem, a specialization of the SOC

problem which posits that obtaining a good probability measure over which to approximate

the value function is as important as finding the approximation itself.

Second, two novel numerical estimators are proposed for improving the accuracy of

single-timestep updates. In contrast to the current numerical approaches that are based

on the discretization of the continuous-time FBSDEs, we propose a converse approach,

namely, we obtain a discrete-time approximation of the on-policy value function, and then

we derive a discrete-time estimator that resembles the continuous-time counterpart. The

proposed approach allows for the construction of higher accuracy estimators along with

error analysis. The proposed estimators show significant improvement in terms of accuracy

over Euler-Maruyama-based estimators used in competing approaches. In the case of LQR

problems, we demonstrate both in theory and in numerical simulation that our estimators

result in near machine-precision level accuracy, in contrast to previously proposed methods

that can potentially diverge on the same problems.

Third, we propose a new method for accelerating the global convergence of FBSDE

methods. By the repeated use of the Girsanov change of probability measures, it is demon-

strated how a McKean-Markov branched sampling method can be utilized for the forward

integration pass, as long as the controlled drift term is appropriately compensated in the

xvi



backward integration pass. Subsequently, a numerical approximation of the value func-

tion is proposed by solving a series of function approximation problems backwards in time

along the edges of a space-filling tree. Moreover, a local entropy-weighted least squares

Monte Carlo (LSMC) method is developed to concentrate function approximation accu-

racy in regions most likely to be visited by optimally controlled trajectories. The pro-

posed methodology is numerically demonstrated on linear and nonlinear stochastic opti-

mal control problems with non-quadratic running costs of dimension up to n = 5, which

reveals significant convergence improvements over previous FBSDE-based numerical so-

lution methods.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The Feynman-Kac representation theorem establishes the intrinsic relationship between the

solution of a broad class of second-order parabolic and elliptic partial differential equations

(PDEs) and the solution of forward-backward stochastic differential equations (FBSDEs)

(see, e.g., [1, Chapter 7]), investigations of which were brought to prominence in [2, 3, 4].

Among this class of PDEs are the Hamilton-Jacobi (HJ) PDEs, including the Hamilton-

Jacobi-Bellman (HJB) PDE which is associated with the solution of stochastic optimal

control (SOC) problems [1, 5, 6, 7]; the Hamilton-Jacobi-Isaacs PDE which is associated

with the solution of stochastic differential games [8, 9, 10]; and other applications relat-

ing to level set propagation [11], stochastic exit time problems [12], and pursuit evasion

reachability [13, 14]. For deterministic control problems associated with first-order PDEs,

especially those without classical solutions (problems for which the necessary derivatives

exist everywhere), the vanishing viscosity method can be used to approximate the PDE

with a non-degenerate second order PDE by effectively adding a small amount of noise

to the dynamics [15, 6]. Given its potential for application to a wide variety of problems,

Feynman-Kac FBSDE-based numerical methods have been gaining traction as a frame-

work to solve nonlinear SOC problems in robotics and controls, including problems with

quadratic cost [16], minimum-fuel (L1-running cost) problems [17], differential games [18,

19], and reachability problems [16].

While initial investigations of Feynman-Kac FBSDE applications in robotics domains

demonstrate promise in terms of flexibility and theoretical validity, numerical algorithms

that leverage this theory have not yet matured. For even modest problems, state-of-the-art

algorithms can be unstable, producing value function approximations which quickly di-

verge. The primary issue originates from the fact that the forward sampling distribution of
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interest (e.g., the near-optimal trajectory distribution for the SOC problem) is not initially

available, leading to the iterative methods discussed below. Producing more robust numer-

ical methods is critical for the broader adoption of FBSDE methods for real-world tasks.

For the purposes of this work, we choose to focus on improving Feynman-Kac FBSDE

techniques for nonlinear SOC applications; we note that since the theory across different

problems follows from the same Feynman-Kac representation methodology, any advance-

ments in the SOC domain are likely to be easily adaptable to FBSDE techniques for solving

problems like differential games or random stopping time problems.

Numerical methods for solving SOC problems remain an active area of research be-

cause state-of-the-art methods satisfy some, but not all, of the following desirable proper-

ties: (a) are computable in high-dimensional state spaces (n ≥ 4), (b) they admit general

nonlinear dynamics and nonquadratic costs, (c) they search globally for an optimal policy,

and (d) converge rapidly to the solution. The focus of this research is to develop a method

that satisfies most of these properties, though the trade-off between finding the global op-

timum and rapid convergence may depend on the complexity and dimensionality of the

problem being solved.

1.1 Iterative Feynman-Kac FBSDE Systems

Feynman-Kac FBSDE systems are a pair of stochastic differential equations (SDEs): a

forward SDE (FSDE) whose solution Xs takes values in an n-dimensional state space and

has an initial value constraint, and a backward SDE (BSDE) Ys, whose solution is a 1-

dimensional value process that has a terminal value constraint. In this work, we investigate

what we call here iterative FBSDE (iFBSDE) numerical methods of the Feynman-Kac-

type, first explored in [18, 16, 19, 17]. These methods are distinct from the wide swath of

research into non-iterative FBSDE methods [20, 21, 22, 23, 24] in that iFBSDE methods

modify the characterization of the FBSDE system being solved in every iteration. Although

the theoretical justification of non-iFBSDE and iFBSDE methods are similar, the numerical
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challenges and application domains differ: non-iFBSDE methods are frequently applied to

numerical finance problems dominated by high diffusion where the state space distribu-

tion of interest can be sampled in a straightforward way because its dynamics are already

available, whereas iFBSDE methods are more suited to SOC problems where diffusion

is relatively low but the state space distribution of interest (e.g., the optimally controlled

trajectory distribution) is not initially known.

Non-iFBSDE methods typically begin by sampling a large number of forward SDE

trajectories, often M ≥ 100, 000, and then solve the backward SDE over this distribution.

Since in iFBSDE methods the forward SDE distribution changes after each iteration, these

methods must be more efficient in sampling, e.g., M ≤ 5, 000 trajectory samples, because

local accuracy is not important if the local FBSDE distribution is not of particular interest.

The challenge at each iteration is to find a good enough approximation of the value function

along the current distribution of forward trajectories, so that we may improve subsequent

trajectory sampling distributions. Asymptotic convergence and accuracy guarantees for the

solutions of BSDEs are largely unhelpful because we will not densely sample until, at least,

our forward distribution is close to the optimal distribution. Further, methods like Picard-

type iteration, e.g., the estimation of the Ys and Zs processes in [21, p. 1795], break down

with smaller number of samples because the estimators have relatively high conditional

variance. A more detailed characterization of the iFBSDE problem is a contribution of this

work and is the topic of Chapter 3.

Algorithm 1 Iterative FBSDE

1: Π1 ← (f 1, σ, h1, g, etc.) . Initial FBSDE representation

2: for k = 1, · · · , Niter do . Iteration loop

3: Xs ← FORWARDPASS(Πk) . Generate FSDE distribution

4: Ys ← BACKWARDPASS(Πk, Xs) . Solve BSDE

5: Πk+1 ← IMPROVEFBSDE(Πk, Xs, Ys) . Adjust FBSDE problem

6: end for
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Algorithm 2 BackwardPass

1: YT ← g(XT ) . Terminal condition (time t = T )

2: for ti = T −∆t, T − 2∆t, · · · , 0 do . Backward step loop

3: Ŷti ← ESTIMATOR(Πk, Xs, Yti+1
) . Backwards integration

4: Yti ← LEASTSQMONTECARLO(Πk, Ŷti) . Function regression

5: end for

Iterative FBSDE numerical methods, as illustrated in Algorithm 1, broadly consist of

three steps per iteration: a forward pass which generates Monte Carlo samples of the for-

ward stochastic processXs, a backward pass which iteratively approximates the value func-

tion backwards in time using the Feynamn-Kac representation equality Yt = V (t,Xt), and

finally an improvement of the FBSDE characterization to be utilized in the next iteration.

The backward pass, as illustrated in Algorithm 2 consists of a series of steps backward in

time where first an estimator Ŷti for the value function is computed via backward integra-

tion of the backward SDE, and next, a least-squares Monte Carlo (LSMC) scheme is used

to implicitly solve for Yti using parametric function approximation [25]. Before discussing

this method in more detail, next we discuss how iFBSDE methods fit into the broader field

of SOC numerical methods.

1.2 Related Works

Feynman-Kac FBSDE methods solve SOC problems that do not fit neatly under any of the

classes of techniques typically used to solve problems in the robotics and controls commu-

nities. In this section we will discuss how FBSDE methods compare to these other classes,

then briefly discuss the state-of-the-art in FBSDE methods.

1.2.1 Finite Difference-Type Methods

Finite-difference (FD) and finite-element schemes represent a set of methods which obtain

a solution over a bounded domain by directly solving the HJB equation. Grid-based-FD

4



algorithms (see, e.g., [26, 27]) discretize the entire state space and hence find a global

solution, but perform poorly when the space dimension is greater than, say, 4, an issue

commonly known as the “curse of dimensionality”. There is also ample research into the

development of meshless methods for solving PDEs, such as radial basis function (RBF)

collocation and RBF-finite difference (RBF-FD) formulations [28]. FBSDE methods share

significant similarities with these RBF-FD methods, in the sense that the value function is

approximated by solving the PDE at an unstructured set of collocation points. The primary

drawback of RBF methods is that they do not offer an efficient method for choosing the

collocation points, and since it is difficult to know a priori what the best points are, point

selection might regress into a grid-based method. Specifically, a sufficiently broad and

dense sampling of a high-dimensional state space might require roughly the same number

of collocation points as a grid-based method in order to be well-conditioned for value func-

tion regression [29]. FBSDE methods, on the other hand, provide a framework by which

to choose the collocation points, the forward SDE, and thus ground the solution in paths

reachable from the initial state of interest.

Another drawback of RBF methods, particularly for use as a value function model, is

that obtaining the parameterized model requires the solution of a linear regression problem

of size equal to the number of collocation points. Although there are methods to induce

sparsity in the problem, regression of this size is still time consuming, especially if a dif-

ferent model is used for every time step and iteration.

1.2.2 Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem is a special type of SOC problem where the

dynamics are linear and costs are quadratic, the solution of which can be found via the

Riccati equations, and whose optimal value function is proven to be quadratic (see, e.g., [1,

Chapter 6]). Since the Riccati equations are ordinary differential equations (or recurrence

relations in the discrete-time case), the solution to LQR problems is obtained very rapidly

5



and with very high accuracy. The fact that optimal control problems are well behaved for

LQR systems forms the basis, in part, for many of the following methods.

1.2.3 Differential Dynamic Programming

Differential dynamic programming (DDP) methods such as classic DDP [30], iterative lin-

ear quadratic regulator (iLQR) [31], and Gauss-Newton shooting methods [32], sample a

trajectory following a nominal policy in a forward pass, followed by a subsequent back-

ward pass which locally approximates the value function around the trajectory. The policy

is updated and the forward-backward passes repeat until convergence. The algorithm scales

well to high dimensions because the value function parameterization uses a quadratic local

approximation.

Although FBSDE methods seem similar to differential dynamic programming (DDP)

techniques [30, 31, 33], the approach is significantly different. DDP methods require first

and second order derivatives of the dynamics, and directly compute a quadratic approx-

imation of the value function using constraints on the derivatives of the value function.

Comparatively, FBSDE LSMC only uses estimates of the value function at a distribution

of states, using derivatives of the value function to improve the accuracy of the estimator.

FBSDE methods are more flexible in that they do not require evaluating or approximating

derivatives of the dynamics terms and can be used with models of the value function which

are not necessarily quadratic. Furthermore, for most DDP applications, a quadratic running

cost with respect to the control is required for appropriate regularization [34, Section 2.2.3],

whereas the FBSDE method more easily accommodates non-quadratic running costs (e.g.,

of the class L1 or zero-valued), lending to a variety of control applications [17].

A key feature of FBSDE methods is their ability to generate a parametric model for

the value function over the entire time horizon which, in turn, can be used for the evalu-

ation and assessment of the stochastic performance of closed-loop control policies. This

feature differentiates both FBSDE and DDP methods from model predictive control (MPC)
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methods [35], which, in general, only produce the current-best optimal control signal, re-

evaluated at every time step [36].

1.2.4 Stochastic Maximum Principle

Similarly to DDP, methods based on Pontryagin’s maximum principle such as adjoint-

process shooting methods involve forward and backward passes. However, the stochastic

maximum principle (SMP) formulation for nonlinear problems [37] is challenging to ap-

ply without reducing it to an approximate LQR method with Riccati-equation backward

passes. The challenge with using generalized SMP is that far more variables are needed for

approximation: in addition to the value function, the adjoint vector must be approximated,

as well as a second order adjoint matrix (similar to the Riccati matrix), adding n + n2 de-

grees of freedom to the problem, instead of just approximating the one-dimensional scalar

value function. Since all function approximations introduce an error, increasing the number

of functions to be approximated is likely to significantly increase the numerical error for

high-dimensional problems.

1.2.5 Model Predictive Control

Multi-parametric optimization model predictive control (MPC) approaches like those used

in [38, 39] cast optimal control problems as linear or nonlinear optimization problems.

Such approaches typically require linear dynamics and specific cost forms, and are thus less

general for application. Further, complicated optimization problems in high-dimensions

might not reliably produce a solution within a reasonable amount of time.

Path-integral (PI) approaches (introduced in [40]) like PI-relative entropy policy search

[41], and model predictive path integral (MPPI) [31, 42] typically rely on rolling out trajec-

tories using randomly sampled controls, computing their path-integrated costs, and using

inference schemes to inform a control policy. In MPPI’s case, a weighted average of the

random control signals is used to produce a new nominal control signal, giving more weight
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to paths with low costs. The advantage of path-integral schemes is that value function ap-

proximation is largely sidestepped, eliminating the potential error and instability it brings

along with it. Further, trajectory sampling is highly parallelizable and fast. The disadvan-

tage is that, like DDP-based methods, exploration is largely local, and thus highly suscepti-

ble to local optima. Further, the construction of the problem makes quadratic assumptions

about control costs, reducing slightly the generality of its application.

1.2.6 Reinforcement Learning

The reinforcement learning (RL) community has given increasing attention to solving

SOCs [43, 44, 45, 46, 47], especially as deep neural network (DNN) function models

and policy gradient methods [48] have grown increasingly popular. DNNs are particularly

attractive for representing value functions because they can: (a) easily scale to high dimen-

sions, (b) represent increasingly complex functions by adding more layers and units to lay-

ers, and (c) theoretically approximate any function with enough parameters [49]. The gen-

eral trade-off for these methods is that parameters must be slowly trained using stochastic

gradient descent (SGD), a method which converges slowly. Recently “actor-critic” meth-

ods have received increasing interest. They maintain a separate representation of both the

“actor” (the policy) and the “critic” (the value function associated with the current policy).

Actor-critic methods combine the stability advantages of learning the policy directly with

the sample efficiency1 of Q-value learning methods. Though the RL community has plenty

of well-studied approaches including dynamic programming methods such as value itera-

tion and policy iteration, temporal-difference (TD) methods such as Q-learning or SARSA,

and Monte Carlo n-step extensions to TD methods, most of the early work was constrained

to state spaces that could be fully enumerated, like grids [50]. With the development of

policy gradient methods [48] and eventually deep RL algorithms within the past several

years, it has become clear that RL methods could compete with, and in several ways sur-

1The number of training samples needed to converge.
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pass, optimal control methods for computing and representing optimal control policies in

high dimensions [43].

A large difference between most SOC approaches in previous sections and TD RL

methods is that in previous methods the value function is computed in a systematic way,

a full timestep at a time, either by analytic back-propagation with DDP methods, finite

difference grid updates, or by function approximation in FBSDE methods. TD methods,

on the other hand, typically treat collected state-action-reward-state-action (SARSA) tuples

as unstructured data, called a replay buffer, which informs a generalized machine learning

algorithm. The slow and incremental updates of SGD allows learning on these unstructured

datasets to converge even when the policy is changing. Least-squares TD methods, which

attempt to solve a least-squares regression problem and thus result in large steps in the

parameter space, are known to have issues in RL applications because they fail to forget

old data [50, Section 9.8, p. 229].

1.2.7 Path/Motion Planning

In path/motion planning problems, rapidly-exploring random tree (RRT) methods effi-

ciently explore a state space for a path from the initial state to some goal set [51]. Path

planning methods typically focus on navigating around a set of obstacles, for which paths

cannot cross, in a high-dimensional state space. RRT* methods consistently “rewire” the

tree to guarantee that the best path in the tree approaches global optimal in the limit [52].

Various RRT* derivatives have been proposed to improve convergence speed and to expand

the types of metrics which can be considered [53]. However, many RRT*-based implemen-

tations are not general in terms of the costs because they typically consider path length as

the running cost.
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1.2.8 Iterative FBSDEs

Feynman-Kac FBSDE methods exploit variations on the following theorem, by first casting

the control problem as a PDE (the HJB equations in the case of SOC problems), and then

solving the FBSDEs which represent the solution of the PDE.

General Nonlinear Feynman-Kac Representation Theorem

Theorem 1.1. [1, Chapter 7, Theorem 4.5] For Lipschitz-continuous functions2f(t, x),

σ(t, x), h(t, x, y, z), g(x), the PDE

∂tV +
1

2
tr[σσ>∂xxV ] + (∂xV )>f + h(t, x, V, σ>∂xV )

∣∣
t,x

= 0,

V (T, x) = g(x),
(FK-PDE)

has the representation

Ys = V (s,Xs), (1.1)

Zs = σ(s,Xs)
>∂xV (s,Xs), (1.2)

Q-almost surely (a.s.) where (Xs, Ys, Zs) is the solution to the FBSDEs

dXs = f(s,Xs) ds+ σ(s,Xs) dWQ
s , X0 = x0, (1.3)

dYs = −h(s,Xs, Ys, Zs) ds+ Z>s dWQ
s , YT = g(XT ), (1.4)

where WQ
s is Brownian in Q.

There is a lot of flexibility in how f and h are chosen, in the sense that the pair can

be chosen differently, yet still represent the equivalent (FK-PDE). This suggests that for a

given problem associated with a particular (FK-PDE), the f term in (1.3) can be modified
2Refer to the citation for the precise assumptions.
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at will, and as long as the h term in (1.4) is compensated appropriately, the pair will, by

virtue of the theory, solve the same PDE.

In fact, we can arrive at a stronger result through application of Girsanov’s theorem

(see, e.g., [7, Chapter 5, Theorem 10.1]) to both (1.3) and (1.4).

General Nonlinear Feynman-Kac-Girsanov Representation Theorem

Theorem 1.2. The Feynman-Kac PDE (FK-PDE) has the representation

Ys = V (s,Xs), (1.5)

Zs = σ(s,Xs)
>∂xV (s,Xs), (1.6)

P-a.s. where (Xs, Ys, Zs) is the solution to the FBSDEs

dXs = (f(s,Xs)− σ(s,Xs)Ds) ds+ σ(s,Xs) dW P
s , X0 = x0, (1.7)

dYs = −(h(s,Xs, Ys, Zs) + Z>s Ds) ds+ Z>s dW P
s , YT = g(XT ), (1.8)

where W P
s is Brownian in P and Ds is any adapted process, bounded P-a.s..

This is much stronger than the method discussed previously, since Ds can be an arbi-

trarily selected process and not just a deterministic function of x.

This theory is used in [18, 16, 17, 19], to create an iFBSDE technique, described as

an importance sampling algorithm. In each iteration, a different Ds process is selected to

change the forward distribution, and the compensated BSDE is solved accordingly.

One of the problems with this formulation is that it is easy to misinterpret what the

numerical application of the theory can realistically produce, especially in the context of

an SOC problem. Specifically, it suggests that we can choose nearly any drift in (1.7)

through modification of Ds, including cancelling out the drift entirely, and still arrive at

the solution to the optimal value function. In numerical applications of this theory, the
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trajectory distribution produced by (1.7) is critical to our understanding of what it means to

“solve” the SOC problem. Among the other contributions of this work, we re-characterize

this generalization in the context of iterative SOC methods, presented in Chapter 3.

While the generalized Feynman-Kac-Girsanov theorem is interesting from a theoretical

perspective, it is unwieldy for practical numerical applications. Since the result is grounded

in theorems unknown outside of stochastic systems theory, it is difficult for the uninitiated

to gain an intuition for how and why error is introduced into a numerical method. Further,

though the introduction of the Ds term offers significant flexibility in the theoretical ap-

proach to solving SOC problems, it is unclear how this flexibility can be utilized without

producing methods with poor performance in numerical approximations.

1.3 Thesis Contributions

The goal of the investigations presented in this work is to prepare Feynman-Kac iFBSDE

methods for broader numerical application and research. To this effect, we offer three major

contributions:

• We characterize FBSDE systems as on- or off-policy and propose the FBSDE SOC

problem, a specialization of the SOC problem for the FBSDE methodology, for the

purposes of improving problem intuition (Chapter 3).

• We re-derive FBSDE theory using discrete-time methods, resulting in estimators with

significantly improved accuracy over small timesteps (Chapter 4).

• We propose a framework by which global convergence of FBSDE methods is im-

proved by interpreting path/motion planning methods as the forward pass of the FB-

SDE method (Chapter 5).

We briefly summarize these contributions in more detail.
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1.3.1 On/Off-Policy FBSDE and The FBSDE SOC Problem (Chapter 3)

The contribution of Chapter 3 is to provide a more interpretable formulation of the FBS-

DEs, borrowing partly from the RL nomenclature of denoting methods either as on-policy

or off-policy. Instead of solving directly for an approximation of the optimal value function

V ∗, we solve for the on-policy value function V µ, which returns the expected cost-to-go un-

der the policy µ. We designate as on-policy FBSDE estimators those that are produced by

forward sampling the dynamics governed by µ, then solving for V µ, the same value func-

tion associated with the sampled dynamics. We designate off-policy estimators as those

where the forward sampling is not strictly governed by µ. On-policy estimators have the

benefit of high accuracy especially along the distribution of trajectories associated with the

policy. Off-policy estimators offer a significant amount of flexibility in how the forward

distribution is sampled, but in numerical approximations tend to add bias to the estima-

tor. The framing of the estimators in this way naturally cues the interpretation of how one

should choose the drift in the off-policy method, that it should be kept small to reduce bias.

The on/off-policy designation also highlights the importance of the trajectory distribu-

tion in arriving at a numerical solution for FBSDE methods. It is not enough to find the

optimal value function/policy for some arbitrary region of the state space, we need to find a

good approximation which widely covers the distribution of optimal trajectories. The other

primary contribution of this section is a formalization of this nuance in a proposed FBSDE

SOC problem.

1.3.2 Improving FBSDE Estimators With Discrete-Time Analysis (Chapter 4)

In the currently available algorithms in the literature, Euler-Maruyama approximations are

employed for discretizing the continuous-time FBSDEs to solve for an approximation of

the continuous-time value function [16]. In this chapter, instead of the direct application

of the Euler-Maruyama approximation on the Feynman-Kac FBSDEs, we begin by formu-

lating a discrete time problem with the Euler-Maruyama approximation of the dynamics,
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costs, and value function. Next, we derive discrete-time relationships which resemble their

continuous-time counterparts using Taylor expansions and the discrete-time Bellman equa-

tion. By doing so, we arrive at a set of alternative estimators for the value function which

are far more accurate, especially on the LQR problem, for which it results in near-machine-

precision accuracy.

The primary contributions of Chapter 4 are as follows:

• Proposing a pair of alternative estimators for the value function used in the backward

pass of a Girsanov-drifted Feynman-Kac FBSDE numerical method.

• Characterizing the theoretical bias and variance of these estimators and showing their

theoretic superiority to previously proposed estimators.

• Numerically confirming the theoretical results on representative SOC problems.

1.3.3 Solution of FBSDEs Using McKean-Markov Branched Sampling (Chapter 5)

We expand upon the above ideas and invoke Girsanov’s theorem for Feynman-Kac FBSDEs

in a broader setting than that of [16, 17, 19], showing that the forward sampling measure

can be modified at will; this enables us to incorporate methods from other domains, namely,

rapidly-exploring random trees (RRTs) (see, e.g., [51] and the recent survey in [53]) in or-

der to more efficiently explore the state space in the forward pass. Using RRTs in the

forward sampling allows us to spread samples evenly over the reachable state space, in-

creasing the likelihood that near-optimal samples are well-represented in the forward pass

sample distribution. By sampling more efficiently and relying less on incremental approx-

imations of the value function to guide our search, we can achieve faster and more robust

convergence than previous FBSDE methods. In the backward pass, we take advantage of

the path-integrated running costs and estimates of the value function to produce a heuristic

which weighs paths in the function approximation according to a local-entropy measure-

theoretic optimization. Although local-entropy path integral theory and RRTs have been
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used together in [54], the method of this article is more closely related to the path-integral

approach to control [31]. Our method similarly performs forward passes to broadly sample

the state space, but, to the contrary, follows them with backward passes to obtain approx-

imations for the value functions, and consequently to obtain closed loop policies over the

full horizon.

The primary contributions of this chapter are as follows:

• Providing the theoretical basis for the use of McKean-Markov branched sampling in

the forward pass of FBSDE techniques.

• Introducing an RRT-inspired algorithm for sampling the forward SDE.

• Presenting a technique for concentrating value function approximation accuracy in

regions containing optimal trajectories.

• Proposing an iterative numerical method for the purpose of approximating the opti-

mal value function and its policy.

A subjective review of the performance of the reviewed SOC methods is provided in

Table 1.1, alongside the two contributed improvements detailed in Chapter 4 and Chap-

ter 5. Given the contributions discussed in the previous sections, we now present our thesis

statement:

Thesis Statement

The contributed methodology significantly improves the attractiveness of

Feynman-Kac FBSDE-based numerical methods by providing a more intuitive pre-

sentation, estimators with provable accuracy guarantees, and a framework which ac-

celerates global convergence.

The proposed methodology is very general, flexible, and relatively simple to apply, and
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Table 1.1: Comparison of SOC methods: finite-differences (FD), differential dynamic pro-
gramming (DDP) (iLQR in particular [31]), model predictive control (MPC) (MPPI in
particular [35]), deep reinforcement learning (RL), rapidly-exploring random trees (RRT),
forward-backward SDEs (FBSDEs) [16, 55], the contributed discrete-time FBSDEs (DT-
FBSDE) of Chapter 4, and the contributed forward-backward RRTs (FBRRT) of Chapter 5.
The subjective performance ratings are interpreted as “- -” for very poor performance, “-
” for poor, “-” for good, and “+ +” for very good. The closed-loop policy row refers to
whether the representation naturally produces a representation for the policy (and value
function), as opposed to a nominal trajectory. Model flexibility refers to how accommodat-
ing the algorithm is to problems which are not linear-quadratic, and whether linearization
is required. LQR-accurate refers to whether the algorithm immediately and accurately con-
verges to the optimal solution when presented with the LQR problem.

Method

Related Methods Contributions

FD DDP MPC RL RRT FBSDE DT- FBRRT

High dimension - - ++ + ++ + + + +

Closed-loop policy ++ + - ++ - + + +

Computational speed - - ++ ++ - - - - - -

Model flexibility ++ - + ++ + ++ ++ ++

LQR-accurate + ++ - - - - - ++ ++3

Broad exploration ++ - - + ++ - - ++
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thus offers a wide range of applications and opportunities for further research. The results

of numerical experiments demonstrate that our contributions have significantly improved

the state-of-the-art in Feynman-Kac FBSDE methods, and thus show that this area of re-

search has plenty of room for further enhancements.

The following chapter introduces the background for the continuous-time SOC prob-

lem. The next three chapters comprise the contributions of this work, discussed previously.

The final chapter presents a conclusion and discusses some potential directions for future

work.

3This work only evaluates the improvements in DT-FBSDE and FBRRT independently, but the estimator
in FBRRT can easily be substituted with the estimators developed in the DT-FBSDE work.
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CHAPTER 2

STOCHASTIC OPTIMAL CONTROL THEORY

In this chapter we introduce the continuous-time stochastic optimal control (C-SOC) prob-

lem, beginning with a detailed presentation of the theory used in this work. If the reader is

mostly familiar with stochastic systems theory, it is suggested that they skip to Section 2.2

and reference the following section as needed.

2.1 Stochastic Systems Theory

We begin with an overview of important topics from probability theory which will be used

in this work.

2.1.1 Probability Spaces and Random Elements

We begin with an overview of basic probability theory which is contextually relevant to

the discussion in later chapters. Letting Ω denote a sample space, a σ-field (-algebra) F

is a collection of events A ∈ F , A ⊆ Ω, such that Ω ∈ F , A ∈ F implies AC ∈ F ,

and A,B ∈ F implies A
⋃
B ∈ F . A set and a σ-field (Ω,F) is called a measurable

space. A probability space is a triple (Ω,F ,P) consisting of some measurable space, and

a probability measure P whose domain is the events in F and satisfies the basic postulates

of probability:

• P(Ω) = 1,

• P(A) ≥ 0, ∀A ∈ F ,

• If {Ai} are disjoint events, then P(
⋃
iAi) =

∑
i P(Ai).
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A random element is a map

X : Ω 7→ Ω′,

from one measurable space (Ω,F) to another (Ω′,F ′) which has the property that it is

measurable, that is,

X−1(F ′) ⊆ F ,

where,

X−1(F ′) := {X−1(A) : A ∈ F ′},

X−1(A) := {ω ∈ Ω : X(ω) ∈ A}.

Random elements induce the set function P ◦X−1, defined as

P ◦X−1(A′) = P(X−1(A′)), ∀A′ ∈ F ′,

and denoted PX . The triple (Ω′,F ′,PX) is a probability space where PX is called the

distribution of X . For the metric space over n-dimensional vectors (and 1-dimensional

variables) equipped with the L2-norm, (Rn, ‖ · ‖2), the Borel σ-field B(Rn) is the smallest

σ-field generated by the open sets of the metric space. Unless otherwise noted, (Rn,B(Rn))

is considered to be the measurable space associated with random vectors or 1-dimensional

random variables. The other random elements considered in this work include joint ran-

dom variables over pairs or sets of random vectors ω 7→ (X(ω), Y (ω)) generating the

joint distribution P(X,Y ), discrete-time processes ω 7→ {Xi(ω)}, and continuous-time

processes ω 7→ Xs(ω). If we would like to talk only about the possible events some random

element may have, we denote this σ-field σ(X) := X−1(F ′). We note that for continuous
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functions f , f(X) (including X) is always σ(X)-measurable.

2.1.2 Expectations and Radon-Nikodym Derivative

The expectation value of some expression is an integral over the sample space Ω, denoted

EP[X] ≡
∫

Ω

XdP ≡
∫

Ω

X(ω)dP(ω).

For simple random variables defined as

X(ω) =
k∑
i=1

ai1Ai(ω), such that
k∑
i=1

Ai = Ω, |ai| <∞,

where 1Ai is the indicator function

1Ai(ω) :=


1 ifω ∈ Ai

0 o.w.
,

the expectation is defined as

EP[X] ≡
∫

Ω

k∑
i=1

ai1Ai(ω)dP

=
k∑
i=1

ai

∫
Ω

1Ai(ω)dP

=
k∑
i=1

aiP(Ai).

We say that a random variable is integrable if the expectation of its absolute value is finite.

When we use the expression P-almost surely (P-a.s.) to refer to some statement φ,

involving random variables on a probability space, we mean that for the event E := {ω ∈

Ω : φ(ω) is true}, there exists a null-event N ∈ F in P, that is, P(N) = 0, such that

EC ⊆ N . For two measures Q and P on the same measurable space, we say Q is absolutely
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continuous with respect to P if for all A ∈ F , P(A) = 0 implies Q(A) = 0, and denote it

Q� P. We say Q and P are equivalent if both Q� P and P� Q. The Radon-Nikodym

theorem suggests that if Q � P, then there exists a measurable random variable Θ such

that

Q(A) =

∫
Ω

1A Θ dP,

for all A ∈ F , which we often denote

dQ = Θ dP.

We can construct a probability measure Q using this theorem, given P and a non-negative

measurable random variable Θ ≥ 0, P-a.s. such that EP[Θ] = 1. If Θ > 0, P-a.s. then Q

and P are equivalent probability measures.

The density of a random vector X in P is the Radon-Nikodym derivative pX := dPX
dx

between the distribution PX of X and the Lebesgue measure dx, the standard measure of

volume in Rn.

2.1.3 Stochastic Processes

Letting the time interval be T = {0, . . . , N}, N ∈ N, in the discrete-time case or T =

[0, T ], T ∈ R+, in the continuous-time case, a stochastic process (or just, process) is

a random element {Xi}Ni=0 / Xs such that for each time in i/t ∈ T , Xi / Xt is a ran-

dom vector in Rn. A sample path / trajectory is the realization of a particular sample ω

as {Xi(ω)}Ni=0 / Xs(ω). When discussing conditional expectations and probabilities, we

sometimes discuss conditioning on the full set of events possible up to that time. The fil-

tration {Fi}Ti=0 / {Fs}s∈[0,T ] is an increasing set of σ-fields representing the history of all

events on all processes up to and including that time. By increasing, we mean Fi ⊆ Fi+j /

Fs ⊆ Fs+∆t for j > 0 / ∆t > 0, the idea that we only learn more about events as time pro-
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gresses. A complete, filtered probability space is a triple (Ω, {Fi},P) / (Ω, {Fs},P) where

(Ω,FN =: F ,P) / (Ω,FT =: F ,P) is a probability space which contains all the P-null

sets, events with probability zero. We say a process Xs is adapted to the filtration if Xt is

Ft-measurable. This expresses the concept that if we know the distribution of everything

at time t, then we know the distribution of Xt as well. This concept is easier to understand

with the definition of conditional expectation.

Let G ⊆ F be a sub-σ-field of σ-field F . The conditional expectation of an integrable

random variable X with respect to G in the measure P is the integrable and G-measurable

random variable EP[X|G] such that

∫
Ω

1GX dP =

∫
Ω

1GEP[X|G]dP, ∀G ∈ G.

The primary settings of G we use in this work are either conditioning on random vectors,

G = σ(X), → EP[Y |X] := EP[Y |σ(X)],

or on the filtration

G = Ft, → EP[Xs|Ft] similar to EP[Xs|X0, . . . , Xt, Y0, . . . , Yt, . . .].

In reality, σ(X0, . . . , Xt, Y0, . . . , Yt, . . .) ⊆ Ft. Letting G ⊆ F be a σ-field, X, Y be two

F-measurable random vectors, and f be a continuous function, the primary properties of

conditional expectation are

• Stability: If X is G-measurable then EP[X|G] = X .

• Pulling out known factors: If X is G-measurable then EP[XY |G] = X EP[Y |G]

and EP[f(X)Y |G] = f(X)EP[Y |G].

• Law of total expectation: EP[X ] = EP[EP[X|G] ].
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• Tower property (smoothing): For sub-σ-fields G1 ⊆ G2 ⊆ F ,

EP[EP[X|G2] |G1] = EP[X |G1].

• Conditional variance: VarP[X|G] := EP[ (X − EP[X|G])2 |G].

For the processXs adapted to the filtration, this means that for 0 ≤ t ≤ τ ≤ T , EP[f(Xt)Y |Fτ ] =

f(Xt)EP[Y |Fτ ] and EP[EP[Xτ |Ft] ] = EP[Xτ ].

The conditional expectation of Y given X = x ∈ Rn is the Radon-Nikodym deriva-

tive

EP[Y |X = x] :=
dν

dPX
,

where PX is the distribution of X and

ν(B) =

∫
Y −1(B)

XdP,

for B ∈ F ′, the σ-field X maps to. It has the property that

EP[Y |X = x](X) = EP[Y |X],

P|X−1(F ′)-a.s.. Essentially, this special type of conditional expectation is only defined on

the parts of the space where X has non-trivial density.

A P-martingale is a special type of adapted process Xs which P-a.s. satisfies

EP[Xτ |Ft] = Xt.

A standard n-dimensional P-Brownian process (Wiener process) W P
s is a special type of
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martingale where W P
0 = 0n and

EP[(W P
τ −W P

t )(W P
τ −W P

t )>|Ft] = (τ − t)In,

P-a.s., i.e., the distribution of differences is a multivariate normal distribution

W P
τ −W P

t ∼ N (0n, (τ − t)In).

2.1.4 Stochastic Differential Equations

An Itô integral (for a Brownian differential) is the asymptotic limit of integrating with

respect to successive differences of a Brownian process W P
s , denoted

Yt,τ :=

∫ τ

t

σsdW
P
s .

We have two important properties: that the conditional mean is zero with respect to the

beginning of the integral,

EP

[ ∫ τ

t

fsdW
P
s

∣∣∣∣Ft] = 0,

for vector process fs, and Itô isometry, the following result for matrix process σs,

EP

[(∫ τ

t

σsdW
P
s

)(∫ τ

t

σsdW
P
s

)>∣∣∣∣Ft] = EP

[ ∫ τ

t

tr(σsσ
>
s )ds

∣∣∣∣Ft],

where tr is the trace operator, the sum of the diagonal elements of the matrix.

We say that a continuous process Xs solves a Markovian Itô stochastic differential

equation (SDE) if it satisfies a particular Itô integral equation defined by a given starting

random variable ξ0, a drift function f : [0, T ]× Rn → Rn, and a diffusion function matrix
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σ : [0, T ]× Rn → Rn×k, and denoted as

dXs = f(s,Xs) ds+ σ(s,Xs) dW P
s , X0 = ξ0.

If the condition is given at the end of the interval, i.e. XT = ξT , we call this, instead,

backward SDE (BSDE), the former called a forward SDE (FSDE) in this context. We say

the solution Xs is strong if for any given Brownian process, Ws, X0 = ξ0 P-a.s. and for

t ∈ [0, T ]

Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs,

P-a.s.. We say the solution is weak if the particular Brownian process W P
s and measure

P used is part of the solution. We are now mostly equipped to state the problem we are

interested in.

2.2 Stochastic Optimal and On-Policy Value Functions

In this section we introduce the continuous-time stochastic optimal control (C-SOC) prob-

lem, the assumptions and corresponding guarantees which can be made about the existence

of solutions, and introduce the on-policy value function which will be used to approx-

imate solutions. We are specifically interested in the finite-horizon C-SOC problem on

the time interval [0, T ]. Based upon the Dynamic Programming methodology [1, Chap-

ter 4], we first consider the generalized sub-problem on the interval [t, T ] where t ∈ [0, T ].

Let (Ω,F , {Fs}s∈[t,T ],Q) be a complete, filtered probability space, on which WQ
s is a k-

dimensional standard Brownian (Wiener) process with respect to the probability measure

Q and adapted to the filtration {Fs}s∈[t,T ]. Consider a stochastic nonlinear system governed
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by the Itô differential equation

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWQ
s , (2.1)

where Xs is a state process taking values in Rn, u[t,T ] is a progressively measurable input

process taking values in the compact set U ⊆ Rm, and f : [0, T ] × Rn × U → Rn,

σ : [0, T ]× Rn × U → Rn×k are the Markovian drift and diffusion functions, respectively.

The cost associated with a given starting time t ∈ [0, T ], starting state Xt = xt ∈ Rn, and

control process u[t,T ] is

J(t, xt;u[t,T ]) := EQ

[ ∫ T

t

`(s,Xs, us) ds+ g(XT )

]
, (2.2)

where ` : [0, T ] × Rn × U → R+ is the running cost g : Rn → R+ is the terminal cost,

and EQ refers to the expectation over the probability measure Q. The optimal expected

cost-to-go for any start time and state (t, xt) is encoded in the following function.

Continuous-Time Stochastic Optimal Value Function

The continuous-time stochastic optimal value function V ∗ : [0, T ] × Rn → R+ is

defined as the optimization

V ∗(t, xt) = inf
u[t,T ]

J(t, xt;u[t,T ]), (C-V ∗)

over the space of admissible control processes u[t,T ] (see [1, Chapter 4, Section 3.1]).

Determining this function is important for finding optimal policies and solving the op-

timal control problems, in general.

We now briefly discuss what assumptions may be made about the parameters f, σ, `, g

of (C-V ∗) and what guarantees they provide. Henceforth, for any function φ(t, x) or φ(x),

we denote ∂tφ, ∂xφ, and ∂xxφ the partial derivative of φ with respect to t, the gradient with
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respect to x, and Hessian with respect to x, respectively. Further, we denoteC1,2([0, T ],Rn)

(C1,2
b ([0, T ],Rn)) as the set of functions for which φ, ∂tφ, ∂xφ, ∂xxφ are all continuous (and

bounded) on (t, x) ∈ [0, T ]× Rn.

We always make the following assumption of (C-V ∗):

Assumption (A1) The functions f, σ, `, g are uniformly Lipschitz continuous in x,

that is, there exists a constant L > 0 such that for each φ = f, σ, `, g,

‖φ(t, x, u)− φ(t, x̂, u)‖ ≤ L‖x− x̂‖, ∀t ∈ [0, T ], x, x̂ ∈ Rn, u ∈ U ,

‖φ(t, 0, u)‖ ≤ L, ∀t ∈ [0, T ], u ∈ U .
(A1)

Given assumption (A1), (C-V ∗) is a unique viscosity solution of the Hamilton-Jacobi-

Bellman (HJB) equations

∂tV
∗ +

1

2
tr[σ(t, x)σ(t, x)>∂xxV

∗] + inf
u∈U

{
(∂xV

∗)>f(t, x, u) + `(t, x, u)
}

= 0,

V ∗(T, x) = g(x),

(C-HJB)

[1, Chapter 4, Theorem 5.2, Theorem 6.1]. The optimal value function is guaranteed to be

Lipschitz in xt for fixed t, but only Hölder continuous of order 1/2 in t for fixed xt. [1,

Chapter 4, Proposition 3.1].

In order to guarantee a smoother value function we must make stronger assumptions on

the parameters.

Assumption (A2) (Implies A1) For each φ = f, σ, ` and u ∈ U ,

φ ∈ C1,2
b ([0, T ],Rn). (A2)
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We further assume g is thrice continuously differentiable and bounded in x.

Assumption (A3) The diffusion term σ is square, nonsingular on [0, T ] × Rn, and

its inverse is uniformly bounded, that is,

sup
t,x
‖σ(t, x)−1‖ <∞. (A3)

If we make the stronger assumptions (A2) and (A3), we can guarantee that (C-HJB)

has a unique solution V ∗ ∈ C1,2
b ([0, T ],Rn) [6, Chapter 4, Theorem 4.2]. In this case,

we say that (C-HJB) has a classical solution since ∂tV ∗, ∂xV ∗, ∂xxV ∗ are well defined on

[0, T ]× Rn.

When we have a problem which satisfies (A1) but not (A2) and (A3), it might be use-

ful to approximate V ∗ with an auxiliary problem guaranteed to be smooth. Consider the

following assumption:

Assumption (A4) (Implies A3) The nominal diffusion term σ̂ has been modified

to add a small ε > 0 amount of noise in all n dimensions such that

σ = σε ≈ squaren(σ̂), (A4)

satisfies assumption (A3), where squaren fits the matrix into an n × n matrix padded

with zeros.

For example, the following choice always exists for any σ̂ ∈ Rn×m. The matrix

S = σ̂σ̂> + εIn is uniformly strictly positive definite and thus it can always be decomposed

as S = σεσε> for some invertible σε, obtained, e.g., with the Cholesky decomposition or
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matrix square root. Taking assumption (A1) and the regularization (A4), we have both

that the augmented problem converges to the nominal problem as ε → 0 [1, Chapter 4,

Proposition 4.1], and that (C-HJB) admits a classical solution [1, p. 197]. This method for

regularizing PDEs is called the vanishing viscosity method. We can use this method for

any nominal σ̂, including deterministic problems where σ̂ ≡ 0.

The iterative approach to solve the optimal control problem is to successively improve

approximations of the optimal policy and optimal value function (π∗, V ∗), refining an ar-

bitrary policy µ and its associated on-policy value function V µ which characterizes the

cost-to-go under this policy. Consider the space of admissible feedback policies, that is,

measurable functions µ : [0, T ]× Rn → U for which there exists a weak SDE solution for

dXs = fµs ds+ σs dWQ
s , (2.3)

where fµs := fµ(s,Xs), fµ := f(t, x, µ(t, x)), and henceforth abbreviate `, and σ similarly.

Given a target policy µ, the on-policy value function V µ : [0, T ]× Rn → R+ is defined as

V µ(t, xt) = EQ[

∫ T

t

`µs ds+ g(XT ) ], (2.4)

with the process Xs satisfying the SDE (2.3), and starting at Xt = xt ∈ Rn. The associated

continuous-time on-policy Hamilton-Jacobi PDE is

∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fµ + `µ

∣∣
t,x

= 0,

V µ(T, x) = g(x),
(C-HJ)

for (t, x) ∈ [0, T )×Rn. The guarantees on the solutions of (C-HJ) are similar to the C-HJB

case, with fµ, `µ replacing f, `. Note, however, that the smoothness properties of fµ, `µ are

not necessarily guaranteed by smoothness properties of f, `.

Since we are searching over a space of feedback policies for an optimal policy, it is
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useful to know when we can guarantee the existence of an optimal policy in this space.

When (C-HJB) has a classical solution, a feedback policy π∗ satisfying the inclusion

π∗(t, x) ∈ arg min
u∈U

{`(t, x, u) + f(t, x, u)>∂xV
∗(t, x)}, (2.5)

is optimal, that is, V π∗ ≡ V ∗, according to the classical stochastic verification theorem [1,

Chapter 5, Theorem 5.1]. When (C-HJB) has a viscosity solution which is not classical,

we may need additional assumptions. If π∗ satisfies (2.5) where ∂xV ∗ and ∂xxV ∗ exist, and

there exist corresponding superdifferential replacements when they do not, then π∗ might

be optimal under some additional assumptions [1, Chapter 5, Theorem 6.2]. We can satisfy

most of these assumptions by assuming (A3) [1, Chapter 5, Theorem 6.6].

For ease of presentation we assume that the underlying C-SOC of interest satisfies

assumption (A1) and that the on-policy value function parameters satisfy (A2) and (A3),

or (A1) and (A4) (for a reasonably small ε), such that (C-HJ) yields a classical solution

and σ−1 is uniformly bounded. Later we will discuss how the regularization of (A4) might

effect the accuracy of the proposed methods.

Given the previous discussion, we now formally state the C-SOC problem.

Continuous-Time Stochastic Optimal Control Problem (C-SOC)

The C-SOC problem is to determine or approximate the optimal value function V ∗

(C-V ∗) and the optimal feedback policy π∗ on [0, T ]× Rn.

Of course, fully approximating the function over the entire space is usually unreason-

able for numerical methods applied to generalized problems because nonlinear dynamics

and nonquadratic costs can introduce locally irregular topology in the value function. In

the next chapter we will discuss how this assumption may be relaxed to produce a more

realistic problem.
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CHAPTER 3

ON/OFF-POLICY FBSDE AND THE FBSDE SOC PROBLEM

In this chapter we discuss the on-policy and off-policy FBSDE representations of the on-

policy value function. We also discuss a few tools which are useful for numerically solving

FBSDEs, and conclude with a reformulation of the C-SOC problem presented at the end

of the previous section, which is more sensitive to the numerical challenges of FBSDE

methods.

Henceforth, we use the following example problem to illustrate the various concepts.

1-D Nonlinear SOC Example

We define the costs and dynamics as

dXs =
(
0.1(Xs − 3)2 + 0.2us

)
ds+ 0.8 dWs, x0 = 7,

J(t, xt;u[t,T ]) = EQ

[ ∫ T

t

(
12 |Xs − 6|+ 0.4u2

s

)
ds+ 25X2

T

]
,

over a time interval of length T = 10. We alternately consider the target policy µ as

either the optimal policy µ = π∗ or the suboptimal policy µ = π̃, defined as

π̃(t, x) = −0.5(x− 3)2 − 2(x− 1).

3.1 On-Policy FBSDE

As discussed in the previous section, we first focus on solving the on-policy value function

V µ, for an arbitrary policy µ. To that end, we begin our investigation of Feynman-Kac

FBSDE numerical methods by introducing the on-policy representation. The positivity of
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(a) FSDE distributions (b) Optimal value function with (Xs, V
∗(s,Xs)) under π∗

Figure 3.1: Visualizing the 1-D Nonlinear SOC Example. The red/green trajectories are
generated from samples of (2.3) following the suboptimal policy π̃ or optimal policy π∗.
Thick lines are mean values. The cyan trajectories follow π∗.

σσ> yields that (C-HJ) is a parabolic PDE and, hence, we can apply the Feynman-Kac

Theorem, originally attributed to [56].

On-Policy Feynman-Kac FBSDEs

Theorem 3.1 (On-Policy Feynman-Kac Theorem). Letting V µ be the solution of

(C-HJ), consider the pair of FBSDEs

dXs = fµs ds+ σs dWQ
s , X0 = x0, (3.1)

dYs = −`µs ds+ Z>s dWQ
s , YT = g(XT ), (3.2)

where Ys and Zs are, respectively, one and n-dimensional adapted processes. There
I
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On-Policy Feynman-Kac FBSDEs (cont)

exists a unique solution (Xs, Ys, Zs) of this FBSDE system that satisfies

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(3.3)

Q-almost surely (a.s.). In particular, Y0 = V µ(0, x0). �

Proof. See [1, Chapter 7, Theorem 4.5, (4.29)].

We call (3.1) the forward SDE (FSDE) and (3.2) the backward SDE (BSDE). Hence-

forth, we assume (Xs, Ys, Zs) is a solution to the FBSDE system (3.1) and (3.2).

This theorem demonstrates that there is an intrinsic relationship between the solution of

FBSDEs following a target policy µ and the smooth surfaces of its on-policy value function

V µ, as is illustrated in Figure 3.2. The relationship works both ways in how it can be used

numerically: solving the FBSDEs can inform the solution of the value function, and solving

the value function can inform the solution of the FBSDEs. The following result makes this

more clear, demonstrating how the BSDE relationship applies over short time intervals

[t, τ ], where 0 ≤ t ≤ τ ≤ T . We define

Ŷt,τ := Yτ −∆Ŷt,τ , (3.4)

as an estimator for Yt, where ∆Ŷt,τ is an estimator for the difference ∆Yt = Yτ − Yt. We

have the following two results for the choice of this difference estimator.

Corollary 3.2. If

∆Ŷ noisy
t,τ := −

∫ τ

t

`µsds+

∫ τ

t

Z>s dWQ
s , (3.5)
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Figure 3.2: Illustrating the on-policy Feynman-Kac representation theorem. The two dis-
tributions (Xs, Ys) solve the FBSDE system (3.1) and (3.2) starting at X0 = x0 = 7, where
the target policy is either optimal µ = π∗ or suboptimal µ = π̃. The Feynman-Kac theorem
indicates that each distribution will Q-a.s. lie on the surface of its respective value function
V µ.

then,

Yt = Ŷ noisy
t,τ = EQ[Ŷ noisy

t,τ |Xt] = V µ(t,Xt), (3.6)

Q-a.s.. �
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Proof. By the definition of a BSDE solution [1, Chapter 7, Definition 3.1],

Yt = g(XT ) +

∫ T

t

`µsds−
∫ T

t

Z>s dWQ
s

= g(XT ) +

∫ T

τ

`µsds−
∫ T

τ

Z>s dWQ
s +

∫ τ

t

`µsds−
∫ τ

t

Z>s dWQ
s

= Yτ −∆Ŷ noisy
t,τ

= Ŷ noisy
t,τ ,

Q-a.s.. Since Yt (and consequently Ŷ noisy
t,τ ) is Xt-measurable due to (3.3), it follows that

Yt = EQ[Ŷ noisy
t,τ |Xt].

Corollary 3.3. If

∆Ŷ noiseless
t,τ := −

∫ τ

t

`µsds, (3.7)

then,

Yt = EQ[Ŷ noiseless
t,τ |Xt] = V µ(t,Xt), (3.8)

Q-a.s.. �

Proof. The equality EQ[Ŷ noisy
t,τ |Xt] = EQ[Ŷ noiseless

t,τ |Xt] follows immediately from the stan-

dard property of Itô integrals [1, Chapter 7, Theorem 3.2] (and the tower property of con-

ditional expectation) yielding EQ[
∫ τ
t
Z>s dWQ

s |Xt] = EQ[
∫ τ
t
Z>s dWQ

s |Ft] = 0.

In the language of estimation theory, Ŷ noisy
t,τ and Ŷ noiseless

t,τ are unbiased estimators of Yt.

While unbiasedness is a good property of an estimator, low variance is also good.
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Proposition 3.4. The conditional variance of these estimators is

VarQ[Ŷ noisy
t,τ |Xt] = 0 (3.9)

VarQ[Ŷ noiseless
t,τ |Xt] = EQ

[ ∫ τ

t

‖Zs‖2 ds

∣∣∣∣Xt

]
(3.10)

Q-a.s.. �

Proof. Note that the deviation can be reduced to

Ŷ noisy
t,τ − EQ[Ŷ noisy

t,τ |Xt] = Yt − EQ[Yt|Xt] = 0

and

Ŷ noiseless
t,τ − EQ[Ŷ noiseless

t,τ |Xt] = Yτ −∆Ŷ noiseless
t,τ − EQ[Yτ −∆Ŷ noiseless

t,τ |Xt]

= Yτ −∆Ŷ noisy
t,τ − EQ[Yτ −∆Ŷ noisy

t,τ |Xt] +

∫ τ

t

Z>s dWQ
s

= Ŷ noisy
t,τ − EQ[Ŷ noisy

t,τ |Xt] +

∫ τ

t

Z>s dWQ
s

=

∫ τ

t

Z>s dWQ
s

We plug both of these into the definition of conditional variance

VarQ[Ŷt,τ |Xt] := EQ[(Ŷt,τ − EQ[Ŷt,τ |Xt])
2|Xt],

and the result for the noisy estimator follows easily. The result for the noiseless estimator

follows from the Itô isometry [1, Chapter 1, Proposition 5.3].

In theory, the noiseless estimator is a better estimator because it has less variance, but in

numerical methods this requires accurate computation of
∫ τ
t
Z>s dWQ

s for the estimator to be

unbiased. By excluding the term entirely, we may introduce some variance in the estimator,

but we will introduce less bias into the estimator through numerical error. Also consider
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that the variance of the noiseless estimator (and likely the bias in a numerical estimate of

the noisy estimator) scales linearly with the duration of the time interval ∆t := τ − t,

justifying that time intervals be kept short.

3.2 Least Squares Monte Carlo

Least squares Monte Carlo (LSMC) is a scheme for obtaining the parameters of a paramet-

ric model of the value function V µ, originally credited to [25] for use in BSDE problems.

We first state a general property of conditional expectation that arises from the fact that

V µ(t,Xt) = EQ[Ŷt,τ |Xt].

Corollary 3.5. The minimizer φ∗ of

inf
φ∈L2

EQ[(Ŷt,τ − φ)2], (3.11)

over Xt-measurable square integrable variables φ coincides with the value function, that

is, φ∗ = V µ(t,Xt). �

Proof. This follows from theL2-projective properties of conditional expectation [57, Chap-

ter 10.3, Property 11] applied to (3.6).

In LSMC numerical methods, we approximate the minimization in (3.11) over the

subspace of Xt-measurable variables {φ(Xt;α) : α ∈ A}, where φ(x;α) is a function

representation with parameters α ∈ A (we assume henceforth that φ(x;α) ∈ C2(Rn) for

all α ∈ A). Let {(xkt , ŷkt )}Mk=1 be a set of samples approximating the joint distribution

(Xt, Ŷt,τ ), denoted as Q̃. The optimal parameters for this representation are found by min-

imizing

arg min
α∈A

EQ[(Ŷt,τ − φ(Xt;α))2] ≈ arg min
α∈A

EQ̃[(Ŷt,τ − φ(Xt;α))2]

= arg min
α∈A

M∑
k=1

1

M
(ŷkt − φ(xkt ;α))2 =: α∗t . (3.12)
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When the function representation is linear in the parameters φ(x;α) = Φ(x)α this opti-

mization is a linear least squares regression problem in A. The optimal parameters define

the new approximate representation of the value function, by

V µ(t, x) ≈ Ṽ µ(t, x) := φ(x;α∗t ). (3.13)

Figure 3.3 illustrates, from a theoretical perspective, how Feynman-Kac FBSDEs and

LSMC are used in numerical methods to approximate the on-policy value function V µ.
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(a) FSDE (3.1) sampled (b) Yτ determined from relationship (3.3)

(c) Yt estimated from backward integrating (3.2) (d) V µ(t, ·) determined from LSMC (3.12)

Figure 3.3: Feynman-Kac FBSDE methods over short intervals for the suboptimal policy
µ = π̃. (a) First, the FSDE is sampled to the end of the interval s = T . (b-d) In a
series of backward steps from s = τ to s = t, starting at τ = T , we estimate the value
function V µ(t, ·). (b) The distribution (Xτ , Yτ ) is determined from Yτ = V µ(τ,Xτ ), then,
(c) backward integrated to produce Ŷt,τ , an estimator for Yt. (d) Finally, using LSMC
regression the value function V µ(t, ·) is approximated using a parametric optimization. In
numerical methods, the distribution (Xt, Yt) obtained by backward integration will incur
numerical error and will not lie exactly on the curve.

We make a brief comment about conditional expectation EQ[·|Xt = xt] given Xt =

xt ∈ Rn. Let QXt := Q ◦ X−1
t denote the distribution of the random vector Xt in the
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probability measure Q. The statement Yt = V µ(t,Xt), Q-a.s., implies

EQ[Yt|Xt = xt] = EQ[V µ(t,Xt)|Xt = xt] = V µ(t, xt), QXt-a.s.,

but not for all xt ∈ Rn. We must use the qualification QXt-a.s. because EQ[·|Xt = xt] is

not well-defined over QXt-null sets. In other words, when xt is a point where the distribu-

tion of Xt is non-trivial in Q, the relationship above can be assumed. Although for many

systems the distribution of Xt might be broadly non-trivial in the same sense that Gaussian

distributions are everywhere non-trivial, the statement still has an important interpretation

in numerical methods, especially when the LSMC approximate optimization (3.12) is used.

Numerical on-policy Feynman-Kac FBSDE methods are only capable of determining the

value function V µ(t, ·) over the Monte Carlo approximation of the distribution QXt . We

must rely on the smoothness of the value function and its approximation to extrapolate to

values far from the distribution used to approximate it. In Section 3.3 we will show that

although this relationship will always be restricted to a distribution over Xt, it need not

necessarily be the distribution QXt associated with the FSDE (3.1).

3.3 Off-Policy Drifted FBSDE

As discussed at the end of Section 3.2, applying LSMC to the on-policy pair of FBSDEs

(3.1) and (3.2) only allows for us to solve for V µ(t, ·) in the distribution QXt , generated

by the FSDE governed by policy µ. This is a very rigid constraint, considering the value

function is defined on all of [0, T ]× Rn. Further, we are iteratively looking to improve the

policy and thus our target policy µ (and thus the distribution QXt) is constantly changing.

It is useful, in general, to solve for the value function in regions outside of this distribution.

One potential solution is to solve the value function at (t, xt) with low density by re-

peating the FBSDE method on the interval [t, T ] for different start states xt, but there are

several problems with this approach. First of all, a number of samples must be produced to
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represent each start state, potentially wasting their ability to contribute information to each

other. Secondly, it is hard to determine exactly where these points should be located and

how they should be distributed. Finally, such an approach potentially breaks the continuity

of distribution that a forward SDE provides. In backward steps, we are trying to produce

estimates of the value function which eventually lead back to x0. If we start over at new

(t, xt) which is unreachable by x0 we will waste computation on subproblems which are

unhelpful for the original problem.

Instead of creating a complicating set of subproblems, we can utilize a result from

stochastic control theory to simply change the probability measure over the trajectory dis-

tributions, and still maintain the results from the Feynman-Kac theorem. We now present

a result based on Girsanov’s theorem, namely, that an alternative pair of drifted FBSDEs

with a different trajectory distribution can be used to estimate the same value function V µ.

This result will be used to disentangle the drift of the forward distribution from the policy

associated with the value function.

Off-Policy Feynman-Kac-Girsanov FBSDEs

Theorem 3.6 (Feynman-Kac-Girsanov Theorem). Let (Ω,F , {Ft}t∈[0,T ],P) be a new

filtered probability space on whichW P
s is Brownian and letKs be anyFs-progressively

measurable process on the interval [0, T ] such that

Ds := σ−1
s (fµs −Ks), (3.14)

is bounded and

dXs = Ks ds+ σs dW P
s , X0 = x0, (3.15)

admits a unique square-integrable solutionXs (see e.g. [1, Chapter 1, Theorem 6.16]).

Then, the Hamilton-Jacobi PDE (C-HJ) has a representation as the unique square-
I
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Off-Policy Feynman-Kac-Girsanov FBSDEs (cont)

integrable solution (Xs, Ys, Zs) to the FBSDE system consisting of (3.15) and

dYs = −(`µs + Z>s Ds) ds+ Z>s dW P
s , YT = g(XT ), (3.16)

in the sense that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(3.17)

P-a.s.. �

Proof. The existence of a square-integrable solution to (3.15) allows the conditions of [1,

Chapter 7, Theorem 3.2] to be satisfied for (3.16), guaranteeing a unique square-integrable

solution (Ys, Zs). Now define the processes

WQ
t := W P

t −
∫ t

0

Ds ds, (3.18)

Θt := exp

(
− 1

2

∫ t

0

‖Ds‖2 ds+

∫ t

0

D>s dW P
s

)
, (3.19)

for t ∈ [0, T ]. Since Ds is bounded, Girsanov’s theorem [7, Chapter 5, Theorem 10.1]

implies that the process WQ
s defined by (3.18) is Brownian in some measure Q derived

from P in the form of

dQ = ΘT dP, (3.20)

where ΘT is the Radon-Nikodym derivative. With a simple algebraic reduction (checked

with the substitution dW P
s = dWQ

s +Dsds), Girsanov’s theorem also guarantees separately

thatXs (weakly) solves the on-policy FSDE (2.3), and that (Xs, Ys, Zs) solves the on-policy
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BSDE (3.2). Here, the idea is that the sample functions for the processes are the same, but

the probability measure (acting on sets of trajectory samples ω) which characterizes their

distributions changes.

Since Ds is bounded, it satisfies Novikov’s criterion [58, Theorem 15.4.2] and thus,

it follows that Θt is P-a.s. strictly positive, and further that the measures P and Q are

equivalent, that is, they are absolutely continuous with respect to the other [59]. Since (3.3)

holds Q-a.s., there exists an N ∈ F such that Ec ⊆ N , where E := {ω ∈ Ω : Yt(ω) =

V µ(t,Xt(ω))}, and Q(N) = 0. It subsequently follows from the definition of absolute

continuity that P(N) = 0. Thus, (3.3) holds P-a.s. as well.

As before, we have the following relationships over short intervals, given (Xs, Ys, Zs),

a solution to the drifted FBSDE system (3.15) and (3.16), and the definition

Ŷt,τ := Yτ −∆Ŷt,τ ,

identical to the previous definition (3.4).

Corollary 3.7. If

∆Ŷ noisy
t,τ := −

∫ τ

t

(`µs + Z>s Ds)ds+

∫ τ

t

Z>s dW P
s , (3.21)

then,

Yt = Ŷ noisy
t,τ = EP[Ŷ noisy

t,τ |Xt] = V µ(t,Xt), (3.22)

P-a.s.. �

Proof. The proof follows similarly to the proof of Corollary 3.2.
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Corollary 3.8. If

∆Ŷ noiseless
t,τ := −

∫ τ

t

(`µs + Z>s Ds)ds, (3.23)

then,

Yt = EP[Ŷ noiseless
t,τ |Xt] = V µ(t,Xt), (3.24)

P-a.s.. �

Proof. The proof follows similarly to the proof of Corollary 3.3.

The analysis of conditional variance of the drifted estimators given in Proposition 3.4

holds true when the measure Q is replaced with P, as well as the discussion about LSMC

in Section 3.2. Since the approximation of Zs is required in both of these estimators (as

opposed to just the noisy estimator in the on-policy formulation), there is additional bias

and variance introduced in either case.

We can interpret the Feynman-Kac-Girsanov theorem in the following sense. As long as

the diffusion function σ is the same as in the problem formulation, we can pick an arbitrary

process Ks to be the drift term, which generates a distribution for the forward process Xs

in the corresponding measure P. The BSDE yields an expression for Yt using the same

process W P
s as used in the FSDE. The term Z>s Ds acts as a correction in the BSDE to

compensate for changing the drift of the FSDE. We can again use the minimization (3.12) to

approximate the value function V µ, the only difference being that (xkt , ŷ
k
t ) are now samples

approximating the distribution P(Xt,Ŷt,τ ).

Figure 3.4 illustrates the results of this theorem. Note that the drifted, off-policy for-

mulation is a generalization of the on-policy formulation. Indeed, when Ks ≡ F µ
s , we have

Ds ≡ 0 and WQ
s ≡ W P

s . When comparing this figure to Figure 3.2, we see that since the

optimal drift Ks = F π∗
s corresponds to the target policy µ = π∗, the off-policy result is the
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same as the on-policy result. The forward SDE distributions Xs for the suboptimal case are

also identical in both figures, that is, if we were to remove the value axis from the figures

the distributions would be the same for the orange trajectories. The only difference between

the figures is that the joint process (Xs, Ys) now lies on the value function associated with

the target policy V π∗ (the yellow surface) instead of its on-policy value function V π̃ (the

magenta surface). In practice it is not likely that we will have access to the optimal policy

π∗, but we use it in these examples for ease of illustration.

It should be highlighted that Ks need not be a deterministic function of the random

variable Xs, as is the case with fµs . For instance, it can be selected as the function Ks(ω) =

h(s,Xs(ω), ω) for some appropriate function h, producing a non-trivial distribution for the

joint process (Xs, Ks). Further, Ks need not satisfy a Markovian property, as long as the

smoothness properties in [1, Chapter 1, Theorem 6.16] hold. This insight will be explored

more in the next chapter.

One of the key insights behind this application of Girsanov’s theorem is the fact that it

is applied simultaneously to both the forward and backward SDE in the FBSDE system.

Although the application has been described as an importance sampling technique (e.g.,

[16]), intuitively, this description is misleading. First of all, no likelihood weights are

involved in LSMC because we have cast the whole problem into another measure. We can

draw identically distributed samples from P because W P
s is Brownian in this measure, and

we can do LSMC expectations on the backward process because the integration is over

W P
s . Secondly, the change of measure is not being performed to reduce variance, but rather

to change the distribution over which function regressions are being performed. The goal

of this change is to approximate the value function V µ along trajectories not necessarily

governed by the policy µ.
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3.4 Weighted-Drifted LSMC

Once we have produced a forward SDE distribution P we may want to further concentrate

approximation accuracy in the backward pass using weighted regression. For example,

during the backward pass we can form heuristics from approximate values for the cost-to-

go and the cost-to-come for sampled states. These heuristics can then be converted into

weights for the regression.

Consider the short time horizon characterization of the FBSDEs, noting thatXs, Ys, Zs,

Ks, W P
s , and Ŷt,τ are Fτ -measurable for s, t ∈ [0, τ ]. These variables are fully character-

ized by the probability measure Pτ , the restriction of P to the sigma-algebra Fτ . For any

weighting variable (Radon-Nikodym derivative) Θ
R|P
τ which is Pτ -a.s. strictly positive, we

can define the equivalent measure Rτ as

dRτ = ΘR|P
τ dPτ , (3.25)

[60, Chapter 10, Remark 10.4]. In the context of LSMC for FBSDE methods we offer the

following theorem.

Theorem 3.9. Assume Θ
R|P
τ is selected such that W P

s is Brownian on the interval [t, τ ] with

respect to the induced measure Rτ . It holds that

Yt = ERτ [Ŷt,τ |Xt] = V µ(t,Xt), Rτ -a.s.. (3.26)

Furthermore, the minimizer φ∗ of the optimization problem

inf
φ∈L2

ERτ [(Ŷt,τ − φ)2] = inf
φ∈L2

EPτ [Θ
R|P
τ (Ŷt,τ − φ)2], (3.27)

over Xt-measurable square integrable variables φ coincides with the value function φ∗ =

V µ(t,Xt) Rτ -a.s.. �
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Proof. The proof of Theorem 3.6 shows that since Pτ and Rτ are equivalent, (3.17) holds

Pτ -a.s. iff it holds Rτ -a.s.. Since W P
s is Brownian in Rτ over the interval, we have

ERτ [
∫ τ
t
Z>s dW P

s |Xt] = 0. The rest of the proof of (3.26) follows similarly to the proof

of Corollary 3.2.

Equation (3.27) follows similarly to the proof of Theorem 3.5, followed by a change of

measure (3.25).

Continuing the discussion of approximate LSMC in Section 3.2, let {(xkt , ŷkt , θkτ )}Mk=1

be a set of point-samples approximating the joint distribution (Xt, Ŷt,τ ,Θ
R|P
τ ), denoted as

P̃. For drifted, weighted LSMC we instead use the approximate optimization

arg min
α∈A

EP[ΘR|P
τ (Ŷt,τ − φ(Xt;α))2] ≈ arg min

α∈A
EP̃[ΘR|P

τ (Ŷt,τ − φ(Xt;α))2]

= arg min
α∈A

M∑
k=1

θkτ
M

(ŷkt − φ(xkt ;α))2 =: α∗t . (3.28)

3.5 Policy Improvement

For the purposes of finding an approximate solution to the (C-V ∗) problem we are not

only interested in the on-policy value function V µ, but also how its solution can be used to

improve the policy. Supposing we have a policy µ and its corresponding on-policy value

function V µ, we now discuss how we may produce a feedback policy π which is more

optimal and thus a closer approximation of the optimal policy π∗.

Proposition 3.10 (Policy Comparison Principle). Take Assumption (A2) and Assumption (A3)

for feedback policies µ and π.1 If the inequality

(∂xV
µ)>fπ + `π ≤ (∂xV

µ)>fµ + `µ, (3.29)

is satisfied on on [0, T ]× Rn then V π ≤ V µ is as well.
1We mainly need continuity and boundedness of the derivatives ∂t`µ and ∂x`µ and boundedness of the

solutions.
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Proof. By the assumptions we have classical, bounded solutions for both (C-HJ) PDEs

corresponding to µ and π. Substituting the inequality into the PDE corresponding to µ

yields

0 = ∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fµ + `µ

≥ ∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fπ + `π,

confirming that V µ is a supersolution of the (C-HJ) PDE corresponding to π. By [6, Chap-

ter 5, Theorem 9.1] and the fact that V π(T, ·) ≡ V µ(T, ·), we have V π ≤ V µ.

If we take

π(t, x) ∈ arg min
u∈U

{(∂xV µ(t, x))>f(t, x, u) + `(t, x, u)}, (3.30)

to be this policy we satisfy (3.29) immediately. Further, if V µ ≡ V ∗, we obtain an optimal

policy π∗.

3.6 Revised SOC Problem

Now that we have discussed the Feynman-Kac FBSDE approach, we revise the C-SOC

problem proposed at the end of Section 2.2. Define P∗ as the probability measure over the

on-policy FBSDE solution (Xs, Ys, Zs) associated with the target policy µ = π∗ for some

optimal policy π∗.

FBSDE SOC Problem

Let T := (t0 = 0, t1, . . . , tN−1, tN = T ) be a partition of the interval [0, T ].

The FBSDE SOC problem is, for each ti ∈ T , to determine or approximate the op-

timal value function V ∗(ti, ·) (C-V ∗) and the optimal feedback policy π∗(ti, ·) in the

weighted distribution Rτi,Xti for appropriately selected measures Rτi for each ti. An
I
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FBSDE SOC Problem (cont)

appropriate measure Rτi will be close to P∗τi , but not necessarily coincide.

There are two primary changes to the original problem, which sought to solve the value

function and policy on all [0, T ] × Rn. First, we only seek to solve for the value function

at a finite set of discrete times ti. As formulated, the LSMC method performs a regression

over a distribution at particular time based on short time interval estimators. The question

of how V ∗(s, ·) and π∗(s, ·) are approximated over the open interval s ∈ (ti, ti+1) is left to

other methods such as interpolation.2

The second change is the vaguely worded, by intention, qualification that these func-

tions be determined in an appropriate distribution Rτi,Xti . Numerical Feynman-Kac FBSDE

methods are primarily useful for SOC problems because they concentrate approximation

of the optimal value function and policy in a local region around the distribution of optimal

trajectories. The optimal trajectory distribution is unlikely to be the optimal distribution

for approximating the value function and policy for two reasons. First, especially if the

diffusion in the system is small, the optimal distribution will have near-degenerate density,

that is, all trajectories will clump together in some dimension. In this case, function re-

gression is likely to be ill-posed, resulting in instability in the determination of function

parameters due to a singular Gram matrix. Second, optimizing over the average P∗Xt will

concentrate all approximation near the mean, resulting in poor sensitivity in the tails of the

distribution. Better approximation near the mean has diminishing returns when the func-

tion is smooth, but the cost of having one trajectory diverge due to poor approximation of

the value function on the tails is very high.

The idea that the distribution over which the optimal value function is approximated

should be included in the fundamental problem of optimal control is crucial for modern

2The theory presented might be expanded to allow any time t ∈ [0, T ], and perform one large LSMC over
the full interval instead of a series of LSMC optimizations at each ti ∈ T . We have not investigated such
generalizations and choose not to include them for ease of presentation.
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methods. In fact, the idea that broader exploration produces more robust value function

approximation is the key concept in “soft”-reinforcement learning (RL) literature [45].

3.7 Chapter Summary and Contributions

In this section we discussed the continuous-time methodology for solving drifted Feynman-

Kac FBSDEs with weighted LSMC. We discussed the various assumptions about the dy-

namics and costs, what smoothness guarantees they offer, and how we can use the on-

policy value function as the iteratively-improved approximation of the value function. We

introduced the on-policy FBSDEs and showed how the LSMC method can be used to ap-

proximate the value function. We showed how the value function estimate can be used to

improve the policy in an iterative method. The weighted-drifted FBSDE framework allows

us to arbitrarily choose the distribution over which to solve the value function. Finally, we

reframed the generalized SOC problem in the context of Feynman-Kac FBSDEs.

In this chapter we introduced three measures: (a) Q, the measure associated with the

target policy µ for the value function V µ, (b) P, the sampling measure used in the forward

pass to explore the state space, and (c) Rτ , the weighted measure used in the backward

pass to control function approximation accuracy. In the following chapters we will further

develop how we choose these measures and how we approximate them with numerical

methods.

This presentation of Feynman-Kac FBSDEs for SOC is novel in the following ways:

• The design choice to solve for a general on-policy value function V µ and not just the

optimal value function V ∗.

• The characterization of Feynman-Kac FBSDEs as on-policy vs. off-policy.

• The analysis of variance of the value function estimators Ŷt,τ .

• The integration of weighted LSMC with drifted FBSDEs to further change the mea-

sure.
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In previous methods featuring Girsanov-drifted FBSDEs, authors directly apply the

Feynman-Kac theorem to the HJB equation and then add a drift term to reduce variance [23,

16]. The problem with this presentation is first, that it requires knowledge of the gradient

of the value function to compute the optimization over control appearing in (C-HJB) to

perform the backward integration, before the value function is known. Our presentation

does not require such an assumption, recognizing that whatever policy µ we are currently

targeting is always based on an approximation and does not require any guarantee of being

optimal. Further, the presentation allows us to distinguish between on-policy methods

which are associated with high accuracy since Zt may not need to be computed, and off-

policy methods, which allow us to choose a different drift, e.g., the drift associated with a

different policy. For example, we may, as a part of a numerical method, want to determine

the value function associated with the current policy, as well as a different policy.

Although the reduction of Ŷ noisy
t,τ to Ŷ noiseless

t,τ was presented in [16], the variance analysis

presented here is novel. Weighted LSMC has been represented elsewhere (e.g. [61]), but

has not been applied to drifted FBSDEs.
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Figure 3.4: Illustrating the off-policy Feynman-Kac-Girsanov representation theorem. The
two distributions (Xs, Ys) solve the drifted FBSDE system (3.15) and (3.16) starting at
X0 = x0 = 7, where the target policy is the optimal policy µ = π∗ and the drift is
either Ks = fπ

∗
s (cyan trajectories) or Ks = f π̃s (orange trajectories). The Feynman-

Kac-Girsanov theorem indicates that each distribution will P-a.s. lie on the surface of the
on-policy value function V µ. In this example, since the target policy is incidentally the
optimal policy, the on-policy value function is the optimal V µ = V π∗ = V ∗. Further, when
the drift is Ks = fπ

∗
s , then Ds ≡ 0 and the off-policy FBSDE system becomes equivalent

to the on-policy system.
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CHAPTER 4

IMPROVING FBSDE ESTIMATORS WITH DISCRETE-TIME ANALYSIS

In Chapter 3 we showed how LSMC methods ultimately resolve to a regression problem,

determining an approximation of the on-policy value function Ṽ µ(t, ·) ≈ V µ(t, ·) from

an estimator Ŷt,τ given the known relationship EP[Ŷt,τ |Xt] = V µ(t,Xt).1 For the drifted

forward SDE over the interval [t, τ ],

dXs = Ks ds+ σs dW P
s ,

this estimator is characterized as one of two backwards integrated SDEs:

Ŷ noisy
t,τ := Yτ +

∫ τ

t

(`µs + Z>s Ds)ds−
∫ τ

t

Z>s dW P
s ,

or

Ŷ noiseless
t,τ := Yτ +

∫ τ

t

(`µs + Z>s Ds)ds.

Although, in theory, we can use a simplistic approximation of these SDEs over short

intervals, such as Euler-Maruyama [62, Section 10.2], arguing that a sufficiently small

∆t = τ − t will provide a decent approximation, over this chapter we will demonstrate that

careful treatment of the estimator can significantly improve accuracy of the full FBSDE

method. Since the backward pass of FBSDE methods integrates error in each backward

step, small errors accumulate quickly and cannot be recovered from. We propose novel

estimators with guarantees, offered from error analysis and confirmed in numerical simula-

tion. In fact, we will show that on linear-quadratic-regulator (LQR) problems our proposed

1In this chapter we ignore the weighted measure Rτ . The results will naturally generalize.
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estimators are nearly optimal, while previously proposed methods diverge in the backward

pass.

Henceforth, following the revised SOC problem in Section 3.6 we adjust the notation

over short intervals from [t, τ ] to [ti, ti+1], where

ti, ti+1 ∈ T := (t0 = 0, t1 = ∆t, t2 = 2∆t, . . . , tN−1 = T −∆t, tN = T ),

a partition of the interval [0, T ] with constant step size ∆t. Further, for variables we denote

Xi := Xti , and for functions V µ(t, x) denote V µ
i (x) := V µ(ti, x), and similarly for other

variables and functions, for brevity.

4.1 Euler-Maruyama FBSDE Approximation

Many approaches to solving the FBSDEs propose approximating both the forward and

backward steps with Euler-Maruyama-like SDE approximations (see, for instance, [23],

[16], and the survey in [63]). For the drifted FSDE the approximation is

Xi+1 −Xi = Ki ∆t+
√

∆t σi ∆W
P
i , (4.1)

where ∆W P
i is an n-dimensional normal random variable ∆W P

i ∼ N (0, In). For the

drifted BSDE step we have

Ŷi = Yi+1 −∆Ŷi, (4.2)

where ∆Ŷi is either

∆Ŷ noisy
i = −(`µi + Z>i+1Di) ∆t+ Z>i+1

√
∆t∆Wi, (4.3)
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or

∆Ŷ noiseless
i = −(`µi + Z>i+1Di) ∆t. (4.4)

The variable Zi+1 is evaluated at the end of the interval so that it can utilize the latest

approximation of the value function gradient. The primary contribution of this chapter is

to propose new estimators for Ŷi to be used in the LSMC function regression step.

4.2 Motivation of the Proposed Approach

In Chapter 3 we presented results from continuous-time FBSDE theory, then, in the previ-

ous section, used standard methods in SDE approximation to form a discrete-time approx-

imation of the forward and backward SDEs. In the remainder of this chapter we propose

the converse approach: we begin by forming a discrete-time approximation of the dynam-

ics and the value function, then we derive relationships which resemble those arrived at

previously. In doing so, we make two contributions: first, we arrive at better estimators

compared to the direct discretization of the continuous time relations because we are able

to exploit characteristics of the discrete-time formulation obscured by the continuous-time

problem, and, secondly, we provide a discrete-time intuition for the continuous-time theory

by using familiar theorems in its derivation.

4.2.1 Insights from Continuous-Time FBSDE Theory

Before detailing our approach, we briefly analyze the mechanisms of how continuous-time

FBSDE theory arrives at its result, that is, the question of how the continuous-time the-

ory can inform a discrete-time theory. The first insight is that the local smoothness of

value functions can be leveraged in backward integration, using the derivatives of V µ
i+1 to

estimate V µ
i . Consider that the proof of the Feynman-Kac representation theorem (Theo-

rem 3.1) utilizes Itô’s formula, a classic result in stochastic control theory which represents
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the extrapolation of smooth functions of stochastic processes [1, p. 378]. For the on-policy

dynamics dXs = fµs ds+ σsdW
Q
s on the interval [ti, ti+1], Itô’s formula yields

V µ(ti+1, Xi+1)

= V µ(ti, Xi) +

∫ ti+1

ti

∂tV
µ(s,Xs) + (∂xV

µ(s,Xs))
>fµs +

1

2
tr(σsσ

>
s ∂xxV

µ(s,Xs)) ds

+

∫ ti+1

ti

(∂xV
µ(s,Xs))

>σs dWQ
s , (4.5)

where tr is the trace operator [1, Chapter 1, Theorem 5.5]. FBSDE methods are founded

on the intrinsic relationship between Yi = V µ(ti, Xi), the random variable we are trying

to estimate and V µ(ti+1, Xi+1), but also on the gradient ∂xV µ and the Hessian ∂xxV µ. In

the Feynman-Kac theorem, the (C-HJ) equation is substituted in for the ∂tV µ term, con-

veniently cancelling out the other two terms in the first integral and yielding the on-policy

BSDE. However, in a discrete-time approximation, such cancellations may be inappropri-

ate since the integral will be replaced with a zero-order hold. Instead of Itô’s formula, we

can rely on Taylor’s theorem, its deterministic counterpart, to include higher order deriva-

tives in the estimator.

The second insight comes from the continuity of the FBSDE processes. When we find

an approximation of the value function V µ(ti+1, ·), the accuracy of the approximation will

be generally concentrated about some distribution PXi+1
(or RXi+1

in the weighted case).

When we compute the approximation of the value function V µ(ti, ·) at the previous time

step using backward integration, we will rely on the fact that the distribution PXi+1
over

which V µ(ti+1, ·) will be evaluated will be close to, or covered by, PXi+1
. This ensures

that the backward integration accumulates little error from extrapolation in the backward

pass. Further, since each backward integration is performed pathwise, the error in approx-

imation should be low because the Ys process will be continuous over the interval. That

is, Yi+1(ω) − Yi(ω) will always be small for sufficiently small intervals, so each estimate

Yi(ω) is unlikely to introduce significant error, even if the Yi’s distribution has much higher
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variance. The continuity of distributions and paths continues backwards in time, eventually

collapsing to a deterministic point mass starting state, concentrating approximation accu-

racy on trajectories reachable from this state. The continuity of paths and distributions is

further examined in Chapter 5.

The third insight comes from the drifted formulation, the idea that we can use a trajec-

tory distribution which is not strictly related to the policy associated with the value func-

tion. Said another way, we can use a change of measure to produce off-policy estimators

with better accuracy than biased off-policy estimators which do not compensate for using

a drift different from the policy. Girsanov’s theorem shows that we can change SDEs by

substituting in the relationship dWQ
s = dW P

s − Dsds, where WQ
s is Brownian in Q and

W P
s is Brownian in P. By changing both the forward and backward SDEs, we can change

the measure (and particularly the forward SDE distribution) without introducing weights

in the LSMC regression step. This change of measure is necessitated by the fact that we

would like to improve policies after we sample forward distributions over Xs, and it is very

inefficient to resample every time the policy changes in order to be in compliance with the

on-policy formulation.

4.2.2 Discrete-Time FBSDE Simplified Example

In this section we motivate the more fully developed methods of later sections with a greatly

simplified example that illustrates the approach taken. Define a 1-dimensional C-SOC

problem with f ≡ ` ≡ 0, σ = ∆t = 1, and WQ
i := WQ

ti+1
−WQ

ti ∼ N (0, 1). The short

interval on-policy FBSDE relationships for this system are

Xi+1 = Xi +WQ
i ,

Yi+1 = Yi +WQ
i .
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Recalling that Yi = V µ
i (Xi), we take the expectation of both sides of the BSDE to arrive at

a discrete on-policy Bellman equation,

V µ
i (Xi) = EQ[V µ

i+1(Xi+1)|Xi].

Upon substitution of Xi+1 into this equation, we can perform a second-order Taylor expan-

sion around Xi,

V µ
i (Xi) = EQ[V µ

i+1(Xi +WQ
i )|Xi]

≈ EQ[V µ
i+1(Xi) + ∂xV

µ
i+1(Xi)W

Q
i +

1

2
∂xxV

µ
i+1(Xi)(W

Q
i )2|Xi]

= V µ
i+1(Xi) +

1

2
∂xxV

µ
i+1(Xi).

Thus, we have arrived at the estimator

Ŷi = V µ
i+1(Xi) +

1

2
∂xxV

µ
i+1(Xi),

for Yi = V µ
i (Xi). The estimator’s bias depends on higher order terms in the Taylor expan-

sion (when they exist) and its variance is VarQ[Ŷi|Xi] = 0. In fact, in this on-policy exam-

ple, since odd multiples of normal random variables have an expectation EQ[(WQ
i )2j+1|Xi] =

0, j = 0, 1, . . ., only even-ordered derivatives affect the bias (so our estimator’s bias is ac-

tually accurate up to the third order Taylor expansion).

In Figure 4.1 we illustrate how our on-policy Taylor-expansion estimator performs on

a given value function V µ
i+1. The estimator is fairly accurate and does not require a convo-

lution to evaluate.
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Figure 4.1: Illustrating the on-policy 1-step discrete-time example. We assume that we are
given the value function V µ

i+1 (black curve in top figure) and probability density qXi(xi) =
dQXi/dxi (blue curve in bottom figure). From V µ

i+1 we can compute the ground truth value
of V µ

i (green curve in middle figure) via the convolution V µ
i (x) = EQ[V µ

i+1(Xi+W
Q
i )|Xi =

x] =
∫∞
−∞ V

µ
i+1(x + w)(2π)−1/2 exp(−1/2w2)dw. The blue section of the curve in the top

figure, along with its second derivative, is used to compute the estimator variable Ŷi in the
middle figure (also in blue). In LSMC methods distributions are represented by Monte
Carlo samples, illustrated by the circle markers. Each of the markers in the middle figure is
an approximation of the expected value of the function in the top figure over the respective
PDF in the bottom figure.

Suppose in Figure 4.1 the value function V µ
i+1 is not available on the interval [0, 4], but

instead a shifted interval [k, 4 + k] for some k ∈ R. We can produce an estimator again
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using the Taylor-expansion as

V µ
i (Xi) = EQ[V µ

i+1(Xi+1)|Xi]

= EQ[V µ
i+1(Xi +WQ

i )|Xi]

= EQ[V µ
i+1(Xi + k + (WQ

i − k))|Xi]

≈ EQ[V µ
i+1(Xi + k) + ∂xV

µ
i+1(Xi + k)(WQ

i − k)

+
1

2
∂xxV

µ
i+1(Xi + k)(WQ

i − k)2|Xi]

= V µ
i+1(Xi + k)− ∂xV µ

i+1(Xi + k) k +
1

2
∂xxV

µ
i+1(Xi + k)(1 + k2).

Notice that the value function and its derivatives are only evaluated on the distribution

Xi + k, relying on Taylor expansion extrapolation to compute each V µ
i (xi). We call this

formulation drifted off-policy because it is associated with a new forward difference equa-

tion

Xi+1 = Xi + k +W P
i ,

where W P
i = WQ

i − k is normal in another measure. Consider the probability density

functions (PDFs) for these variables, where W P
i is normally distributed in P and WQ

i is

normally distributed in Q,

dQWQ
i

= (2π)−1/2 exp(−1

2
(wQ

i )2) dwQ
i

= (2π)−1/2 exp(−1

2
(wP

i + k)2) dwP
i

= exp(−1

2
k2 + (−k)wP

i )(2π)−1/2 exp(−1

2
(wP

i )2) dwP
i

= exp(−1

2
k2 + (−k)wP

i )dPWP
i

.

It is a property of log-normal distributions that EP[exp(−1
2
k2 + (−k)W P

i )] = 1, for any

k ∈ R, when W P
i is normally distributed [64], confirming that P is a probability measure
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iff Q is one. We also see that we have arrived at a weighing variable which coincides with

(3.19), used in Girsanov’s theorem, for Ds ≡ −k.

Figure 4.2 illustrates how the estimator performs for different values of k. For smaller

values of k, the bias is not unreasonable, but eventually the bias grows larger. The mag-

nitude of this bias is related to how well a local second order Taylor expansion might

represent the value function V µ
i+1. When the value function is a quadratic polynomial this

representation is exact for any distribution over Xi and any drift k.

Figure 4.2: Illustrating the off-policy 1-step discrete-time example. The shifted uniform
intervals of Xi + k, for k = 0, 0.5, 1, 1.5 are used to query the value function V µ

i+1 as seen
in the top figure. The resulting estimators Ŷi approximating Vi(Xi), for different values of
k, are visualized in the bottom figure.

It is important to recall that introducing drift is not desirable if V µ
i+1 is accurately known

everywhere. The purpose of introducing drift is to align the distribution over which V µ
i+1

is queried for computing the estimator, with the distribution over which V µ
i+1 was approx-

imated in the previous LSMC backward step. Extrapolation far from the edges of the

distribution used to approximate the function is often undesirable. For example, in the case
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Figure 4.3: The off-policy 1-step discrete-time example with random drift K. For this
example, we consider the scenario where V µ

i+1 is only known on the distribution Xi+k, for
k = 0, 0.5, 1, 1.5, as illustrated in the top plot in Figure 4.2. Differently from that example,

we choose the drift term to be K =

{
k −Xi ifXi < k

0 o.w.
. In the top figure we illustrate

only the segments of the value function used to compute the estimators in the bottom figure.
By reducing the average magnitude of K, the accuracy of the estimators improves.

of high-degree polynomial regression, Runge’s phenomenon sometimes arises, resulting

in large oscillations near the edges of the distribution. Instead of extrapolation, we pro-

pose using a localized low-order Taylor expansion to arrive at values we do not have direct

access to. Such an approach will tame the high-frequency elements and thus reduce the

impact of problems associated with extrapolation.

This method has several avenues of generalization away from this simplified presenta-

tion, the first being that the drift need not be a constant term k, but instead can be a random

variable K. Figure 4.3 illustrates how this generalization might be used, for example, to

reduce error in the approximation. Although in this example K is a deterministic function

of Xi, it can also have non-trivial variance as long as it is independent of W P
i .

62



If we are willing to introduce more variance in the estimator, we are able to produce an

estimator with less bias. If we directly compute the backward difference

Yi+1 − Yi = V µ
i+1(Xi+1)− V µ

i (Xi)

= V µ
i+1(Xi+1)− EQ[V µ

i+1(Xi+1)|Xi],

then apply the drifted Taylor expansion simultaneously to both V µ
i+1(Xi+1) terms, we get

≈
(
V µ
i+1(Xi + k) + ∂xV

µ
i+1(Xi + k)(WQ

i − k) +
1

2
∂xxV

µ
i+1(Xi + k)(WQ

i − k)2
)

−
(
V µ
i+1(Xi + k)− ∂xV µ

i+1(Xi + k) k +
1

2
∂xxV

µ
i+1(Xi + k)(1 + k2)

)
= ∂xV

µ
i+1(Xi + k)(W P

i + k) +
1

2
∂xxV

µ
i+1(Xi + k)((W P

i )2 − 1− k2).

The estimator for the higher variance, lower bias Yi estimator is thus,

V µ
i+1(Xi+1)− ∂xV µ

i+1(Xi + k)(W P
i + k)− 1

2
∂xxV

µ
i+1(Xi + k)((W P

i )2 − 1− k2),

where Xi+1 = Xi + k +W P
i so as to keep the variables in the measure P. We refer to this

estimator as the noisy formulation because it now has non-trivial variance. The reason this

formulation has lower bias is because the higher order terms cancel out, to some degree, in

the difference between the Taylor expansions outside and under the conditional expectation.

In fact, the bias is zero in the on-policy case where k = 0. Naturally, however, since the

normal variable W P
i is involved in the computation, variance is introduced in the estimator.

The performance of the noisy estimator over the previous estimator (denoted noiseless)

is visualized in Figure 4.4. For high numbers of samples the approximation can improve,

but it cannot overcome bias introduced from the drift. The highest relative gains of the

noisy over the noiseless come from the on-policy estimator, when the bias is zero. This

effect suggests the respective roles for these estimators in numerical methods. When the

policy is far from optimal and the drift is large, noiseless estimators provide an estimate
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which is roughly on-par with the quality of an asymptotically sampled noisy estimator, with

the convenient property of being zero variance, so the noiseless estimator should be used.

When the policy is near optimal and drift is low or zero, noisy estimators can be utilized to

refine accuracy.

Figure 4.4: Charting performance of the noisy estimator applied to the problem visualized
in Figure 4.2. The noisy estimator is computed by averaging over a number of samples of
W P
i , as indicated in the x-axis, for each given value in the uniform distribution overXi. We

then form the root mean squared error (RMSE) statistic (EP[(Ŷi−Yi)2])1/2, which averages
over the uniform distribution of Xi. These statistics are compared to the previous noiseless
estimator for differing values of k and numbers of samples. The noiseless estimator does
not vary with the number of samples because it has zero variance.

The remainder of this chapter is devoted to generalizing the approach introduced here

to n-dimensional discrete-time FBSDEs with non-trivial, non-linear dynamics and costs.

We also compare this approach to the Euler-Maruyama-type approaches discussed in the

previous section, demonstrating how they reflect an improved approximation of the same

approach. The theorems utilized in this construction are the well-studied on-policy Bell-

man equation and Taylor’s theorem, and the less-studied discrete-time Girsanov theorem.

64



Similarly to its continuous-time counterpart, this theorem is very flexible in how it can be

applied. To illustrate this, consider this single-step Girsanov result:

Lemma 4.1 (Discrete Girsanov 1-Step). Let W P be a normal random vector in Rn, let

D be an independent, bounded random vector, and let P be the product measure which

represents their joint distribution. Then, the measure Q defined as

dQ = exp

(
− 1

2
‖D‖2 +D>W P

)
dP, (4.6)

is a probability measure and the variable

WQ := W P −D, (4.7)

is a normal random vector in Q. �

Proof. See Appendix A.1.

The random vector D need only be bounded and independent of W P for the change

of measure to produce an alternative normal vector WQ. It can be a discrete collection of

point masses, a continuous random variable with density, or anything in between. We can

expand this result even further to produce the following:

Discrete-Time Girsanov

Lemma 4.2 (Discrete-Time Girsanov Theorem). Let (Ω, {Fi}Ni=0,P) be a filtered

probability space and let {ξi}Ni=0 be an adapted process where ξ0 := (0n, 0n) and

ξi+1 := (Di,W
P
i ) for i = 0, . . . , N − 1, such that, in P, Di is a bounded random

vector, W P
i is normal random vector, and Di is independent of W P

i . If Q is the measure
I
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Discrete-Time Girsanov (cont)

defined by

dQ =
N−1∏
i=0

exp

(
− 1

2
‖Di‖2 +D>i W

P
i

)
dP, (4.8)

then Q is a probability measure and

WQ
i := W P

i −Di, (4.9)

are Fi+1-measurable, independent normal random vectors in Q. �

Proof. See Appendix A.2.

So long as the random vectorDi is independent ofW P
i , it can depend on the full history

of the process, the joint distribution {(Dj,W
P
j )}i−1

j=0, which means, for example, it can be

a function of (X0, X1, . . . , Xi). Now that we have introduced the approach, the remainder

of the chapter is a self-contained study of the method in general.

4.3 Discrete-Time Forward-Backward Difference Equations

4.3.1 Discrete-Time SOC Approximation

We begin by discretizing the C-SOC problem. Let (Ω̃, F̃ , {F̃i}i∈{0,...,N}, Q̃) be the discrete-

time filtered probability space and let {WQ
i }N−1

i=0 be a discrete time Brownian process in Q̃,

that is, WQ
i ∼ N (0, In) is normally distributed, F̃i+1-measurable, and {WQ

i } are mutually

independent. The on-policy forward stochastic difference equation is

Xi+1 −Xi = F µ
i + ΣiW

Q
i , X0 = x0, (4.10)
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where, using the Euler-Maruyama approximation method,2

F µ
i = f(ti, Xi, µi(Xi))∆t, Σi = σ(ti, Xi)

√
∆t, (4.11)

and the on-policy value function is

V µ
i (Xi) = EQ̃[

N−1∑
j=i

Lµj + g(XN) |Xi], (4.12)

where

Lµj = `(tj, Xj, µj(Xj))∆t. (4.13)

According to [62, Chapter 10, Theorem 10.2.2], when a linear growth condition in x is

imposed on fµs , σs, and `µs along with a few other conditions, then it can be shown that the

absolute error between the Euler-Maruyama approximation Xi and the continuous forward

process Xt is of order O((∆t)1/2). When σs is constant with respect to x, the error bound

improves to O(∆t) [62, Chapter 10, Theorem 10.3.5].

4.3.2 Discrete-Time BSDE Approximation

For the discrete-time value function {V µ
i } and forward process {Xi} we define the pro-

cess {Yi := V µ
i (Xi)}. Further, we define the term ∆Yi as one that satisfies the backward

difference,

∆Yi := Yi+1 − Yi, (4.14)

where we use separate estimators Ŷi+1 ≈ Yi+1 and ∆Ŷi ≈ ∆Yi to obtain a combined esti-

mator
2Or some other approximation scheme that results in the form (4.10), (4.12).
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Combined Backward Step Estimator

Ŷi := Ŷi+1 −∆Ŷi. (4.15)

with the interpretation Ŷi ≈ V µ
i (Xi). Both Ŷi+1 and ∆Ŷi can be chosen according to dif-

ferent approximation schemes; these choices are investigated below. These approximation

schemes assume the availability of some approximate representation of the value function

at the next step Ṽ µ
i+1 ≈ V µ

i+1, as well as its derivatives, and they produce a representation

Ṽ µ
i ≈ V µ

i using LSMC.

4.3.3 On-Policy Taylor-Expanded Backward Difference

We now propose an estimator for ∆Ŷi, the discrete analogue to the on-policy terms defined

in (3.5) and (3.7). We begin by noting that the on-policy value function satisfies the on-

policy Bellman equation

V µ
i (Xi) = Lµi + EQ̃[V µ

i+1(Xi+1)|Xi]. (4.16)

Consider the second-order Taylor expansion of the approximation Ṽ µ
i+1 ≈ V µ

i+1 of the term

inside the conditional expectation,

Ṽ µ
i+1(Xi+1) = Ṽ µ

i+1(X
Q

i+1 + ΣiW
Q
i ) = Ỹi+1 + δh.o.t.

i+1 , (4.17)

Ỹi+1 := Y i+1 + Z
>
i+1W

Q
i +

1

2
WQ>
i M i+1W

Q
i , (4.18)

centered at the conditional mean,

X
Q

i+1 := EQ̃[Xi+1|Xi] = Xi + F µ
i , (4.19)
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where

Y i+1 := Ṽ µ
i+1(X

Q

i+1), (4.20)

Zi+1 := Σ>i ∂xṼ
µ
i+1(X

Q

i+1), (4.21)

M i+1 := Σ>i ∂xxṼ
µ
i+1(X

Q

i+1)Σi, (4.22)

and δh.o.t.
i+1 includes the third and higher order terms in the Taylor series expansion. Sub-

stituting Ỹi+1 in for V µ
i+1(Xi+1) in (4.16) and rearranging terms, and in light of (4.15), we

arrive at an estimator for the backward step

On-Policy Taylor ∆Ŷi Estimator

∆Ŷ taylor
i := −Lµi + Z

>
i+1W

Q
i +

1

2
tr(M i+1(WQ

i W
Q>
i − I)). (4.23)

For the purposes of comparison we restate the on-policy Euler-Maruyama estimators

derived in Section 4.1,

∆Ŷ noisy-em
i := −Lµi + Z̃>i+1W

Q
i , (4.24)

∆Ŷ nless-em
i := −Lµi , (4.25)

where,

Z̃i+1 := Σ>i ∂xṼ
µ
i+1(Xi+1). (4.26)

There are two differences in the proposed Taylor series expansion approach compared

to the Euler-Maruyama approach. First, the gradient of the value function is evaluated

at X
Q

i+1 instead of Xi+1. This effect can be exploited because in the discrete-time ap-
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proach the difference equation separates the drift step and the diffusion step, whereas in the

continuous-time approach the drift and diffusion are considered inseparable. However, if

the continuous-time SDEs are eventually discretized using Euler-Maruyama, this assump-

tion is broken over short intervals anyways. Secondly, the trace term now appears in the

Taylor-expansion estimator. While in the continuous-time counterpart second-order effects

are infinitesimally small, they can no longer be ignored in the discrete-time approximation.

Note, however, that EQ

[
1
2

tr(M i+1(WQ
i W

Q>
i − I))

∣∣Xi

]
= 0 since EQ[WQ

i W
Q>
i |Xi] = I

and M i+1 is Xi-measurable.

The following theorem suggests that this choice of approximation of ∆Yi has relatively

small residual error.

Error in On-Policy Taylor Estimator ∆Ŷi

Theorem 4.3. The choice ∆Ŷ taylor
i in (4.23) is an unbiased estimator of the actual

value function difference ∆Yi, i.e.,

EQ̃[∆Ŷi|Xi] = EQ̃[∆Yi|Xi]. (4.27)

Further, the residual error is

∆Yi −∆Ŷi = δ∆Ŷ
i+1 − EQ̃[δ∆Ŷ

i+1 |Xi], (4.28)

δ∆Ŷ
i+1 := δṼi+1 + δh.o.t.

i+1 , (4.29)

where δṼi+1 := V µ
i+1(Xi+1)− Ṽ µ

i+1(Xi+1) is the error in the (i+ 1)st step value function

representation. �

Proof. The relationship (4.27) follows directly from taking the conditional expectation

EQ̃[ · |Xi] of both sides of (4.28). We now show (4.28).
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Comparing (4.23) with (4.18), it can be easily shown that

∆Ŷi = −Lµi + Ỹi+1 − EQ̃[Ỹi+1|Xi], (4.30)

and, similarly, the Taylor expansion (4.17) immediately yields Yi+1 = Ỹi+1 + δ∆Ŷ
i+1 . Com-

bining these two expressions yields

∆Ŷi = −Lµi + Yi+1 − δ∆Ŷ
i+1 − EQ̃[Yi+1 − δ∆Ŷ

i+1 |Xi]. (4.31)

Substituting in the Bellman equation (4.16) and rearranging we arrive at (4.28).

In general, the on-policy Taylor expansion residual δh.o.t.
i+1 has a small mean due to the

following result.

Proposition 4.4. Of the higher order terms in the Taylor expansion residual δh.o.t.
i+1 , the terms

with odd order, starting with the third order term, have zero conditional expectations given

Xi. �

Proof. See Appendix A.3.

Further, under a very basic function approximation scheme, we can entirely dismiss the

term δh.o.t.
i+1 .

On-Policy Taylor ∆Ŷi Estimator Exact on LQR Problems

Proposition 4.5. If the value function approximation Ṽ µ
i+1 is quadratic then δh.o.t.

i+1 ≡ 0.

Thus, the residual error is determined entirely by the residual error of the function

approximation of V µ
i+1,

∆Yi −∆Ŷ taylor
i = δṼi+1 − EQ̃[δṼi+1|Xi]. (4.32)

I
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On-Policy Taylor ∆Ŷi Estimator Exact on LQR Problems (cont)

If Ṽ µ
i+1 is exact Ṽ µ

i+1 ≡ V µ
i+1 then the estimator is exact,

∆Yi = ∆Ŷ taylor
i . (4.33)

Proof. This is a direct consequence of the fact that if Ṽ µ
i+1 is quadratic then its second order

Taylor expansion is exact.

Note that this does not require the true value function to be quadratic, only its approx-

imation. Although using a less expressive representation improves the error coming from

the term δh.o.t.
i+1 , there may be a trade-off in terms of increasing the magnitude of the error in

δṼi+1, since the function V µ
i+1 might be less appropriately modeled.

The most remarkable aspect of Proposition 4.5 is that it suggests that for linear-quadratic-

regulator (LQR) problems these estimators are exact up to function approximation error,

due to the fact that for LQR problems V µ
i itself is in the class of quadratic functions.

This provides a fundamental guarantee for these estimators. On the contrary, the Euler-

Maruyama estimators are not exact when applied to LQR problems.

Remark 4.1. If the value function approximation Ṽ µ
i+1 is quadratic, the residual error of

the Euler-Maruyama estimators is

∆Yi −∆Ŷ noisy-em
i = δṼi+1 − EQ̃[δṼi+1|Xi] + (Zi+1 − Z̃i+1)>WQ

i

+
1

2
tr(M i+1(WQ

i W
Q>
i − I)). (4.34)

�

Though all three ∆Yi estimators are unbiased, the Taylor-expansion estimator is theo-

retically far superior on the baseline LQR problem. In numerical experiments illustrated
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later we confirm this near-machine precision performance of the Taylor estimator and the

divergence of the EM estimators on the same LQR problem.

4.3.4 Estimators of Ŷi+1

We propose two potential estimators for Ŷi+1 ≈ V µ
i+1(Xi+1).

Proposed Ŷi+1 Estimators

First, we propose using the value function approximation associated with the pre-

vious backward step to re-estimate the Ŷi+1 values,

Ŷ re-est
i+1 := Ṽ µ

i+1(Xi+1). (4.35)

Alternatively, we can also use the estimator

Ŷ noiseless
i+1 := Ỹi+1, (4.36)

which ends up cancelling out the terms with WQ
i in them, so that (4.15) reduces to

Ŷ noiseless
i = Lµi + Y i+1 +

1

2
tr(M i+1). (4.37)

The following theorem establishes the error analysis of the two Taylor-expansion-based

estimators.

On-Policy Estimator Ŷi Bias and Variance

Theorem 4.6. For the estimator Ŷi := Ŷi+1 −∆Ŷi, where ∆Ŷi is defined in (4.23) and
I

73



On-Policy Estimator Ŷi Bias and Variance (cont)

Ŷi+1 is defined in (4.35) or (4.36), the bias is

EQ̃[Yi − Ŷ re-est
i |Xi] = EQ̃[δṼi+1|Xi], (4.38)

EQ̃[Yi − Ŷ noiseless
i |Xi] = EQ̃[δṼi+1 + δh.o.t.

i+1 |Xi]. (4.39)

The variances of these estimators are

VarQ̃[Ŷ re-est
i |Xi] = VarQ̃[δh.o.t.

i+1 |Xi], (4.40)

VarQ̃[Ŷ noiseless
i |Xi] = 0. (4.41)

Proof. See Appendix A.4.

This theorem shows that the re-estimate condition has less bias than the noiseless condi-

tion, but it is a higher variance estimator. We also observe that when δh.o.t.
i+1 = 0 the bias and

variance of these two estimators are identical. However, since it is not immediately clear

which condition is superior when this is not true, we examine both methods and compare

the results in Section 4.5.

4.3.5 Drifted Taylor-Expanded Backward Difference

We now offer a discrete-time approximation of the drifted off-policy FBSDEs. Let

(Ω̃, F̃ , {F̃i}i∈{0,...,N}, P̃) be an alternative discrete-time filtered probability space whereW P
i

is the associated Brownian process. Define on this space the difference equation

Xi+1 −Xi = Ki + ΣiW
P
i , X0 = x0, (4.42)
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where the process {Ki}N−1
i=0 is chosen at will, F̃i+1-measurable, and independent of W P

i .

For example, Ki can be constructed using the function Ki(ω) = Ki(Xi(ω), ξi(ω)), where

{ξi} is some random process where ξi is F̃i+1-measurable and independent of W P
i (but not

necessarily of W P
i−1). Each Ki must also be selected such that

Di := Σ−1
i (F µ

i −Ki), (4.43)

is bounded.

The discrete-time version of Girsanov’s theorem, Lemma 4.2, can be used to produce

the measure Q̃, defined as

dQ̃ =
N−1∏
i=0

exp

(
− 1

2
‖Di‖2 +D>i W

P
i

)
dP̃, (4.44)

which satisfies the assumptions of Section 4.3.1. Under the theorem,

WQ
i := W P

i −Di, (4.45)

for i = 0, . . . , N − 1 is an Fi+1-measurable process of independent, normally distributed

random vectors. It is easy to see that the drifted forward difference (4.42) and the on-policy

forward difference (4.10) are identical under the substitution (4.45). Thus, we conclude that

the drifted process {Xi} still satisfies the on-policy Bellman equation (4.16) for the same

on-policy value function V µ.

To derive the backward step, we perform a Taylor expansion centered at

X
P

i+1 := EP̃[Xi+1|Xi, Ki] = Xi +Ki, (4.46)

instead of X
Q

i+1. The expressions defining Ỹi+1, Y i+1, Zi+1, and M i+1 (4.17), (4.18),

(4.20), (4.21), (4.22) are all identical except for replacingX
Q

i+1,W
Q
i withX

P

i+1,W
P
i . Again,
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substituting Ỹi+1 in for V µ
i+1(Xi+1) in (4.16) and rearranging terms in light of (4.15), we

arrive at an estimator for the backward step.

Off-Policy Drifted Taylor ∆Ŷi Estimator

The off-policy drifted Taylor-expanded ∆Ŷi estimator is defined as

∆Ŷ drift
i := −Lµi + Z

>
i+1W

P
i − Z

>
i+1Di

+
1

2
tr(M i+1(W P

i W
P>
i − I −DiD

>
i )).

(4.47)

where

X
P

i+1 := EP̃[Xi+1|Xi, Ki] = Xi +Ki,

Y i+1 := Ṽ µ
i+1(X

P

i+1),

Zi+1 := Σ>i ∂xṼ
µ
i+1(X

P

i+1),

M i+1 := Σ>i ∂xxṼ
µ
i+1(X

P

i+1)Σi,

Di := Σ−1
i (F µ

i −Ki).

Recognize that this is a generalization of (4.23), by noting that when Ki = F µ
i then

Di = 0 and the drifted forward difference (4.42) and the backward step reduce to their

on-policy form (4.10), (4.23).

Error in Off-Policy Drifted Taylor Estimator ∆Ŷi

Lemma 4.7. The choice (4.47) yields the residual error

∆Yi −∆Ŷi = δ∆Ŷ
i+1 − EQ̃[δ∆Ŷ

i+1 |Xi, Ki]. (4.48)
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Proof. Substituting (4.45) into

Ỹi+1 := Y i+1 + Z
>
i W

P
i +

1

2
W P>
i M iW

P
i , (4.49)

yields

Ỹi+1 = Y i+1 + Z
>
i+1(WQ

i +Di) +
1

2
(WQ

i +Di)
>M i+1(WQ

i +Di)

= Y i+1 + Z
>
i+1W

Q
i + Z

>
i+1Di +D>i M i+1W

Q
i +

1

2
tr
(
M i+1(WQ

i W
Q>
i +DiD

>
i )
)
.

Note that Di, Y i+1, Zi+1, and M i+1, are (Xi, Ki)-measurable. Taking the conditional

expectation in the on-policy measure Q̃ yields

EQ̃[Ỹi+1|Xi, Ki] = Y i+1 + Z
>
i+1Di +

1

2
tr
(
M i+1(I +DiD

>
i )
)
. (4.50)

Comparing (4.47), (4.49), and (4.50), it can be easily shown that

∆Ŷi = −Lµi + Ỹi+1 − EQ̃[Ỹi+1|Xi, Ki]. (4.51)

The Taylor expansion (4.17) immediately yields Yi+1 = Ỹi+1 + δ∆Ŷ
i+1 . Combining these two

expressions yields

∆Ŷi = −Lµi + Yi+1 − δ∆Ŷ
i+1 − EQ̃[Yi+1 − δ∆Ŷ

i+1 |Xi, Ki]. (4.52)

Substituting in the Bellman equation Yi = Lµi + EQ̃[Yi+1|Xi] (4.16) and rearranging, we

have

∆Yi −∆Ŷi = δ∆Ŷ
i+1 + EQ̃[Yi+1 − δ∆Ŷ

i+1 |Xi, Ki]− EQ̃[Yi+1|Xi]. (4.53)
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Under the measure Q̃, Yi+1 is independent of Ki given Xi, so we have

EQ̃[Yi+1|Xi, Ki] = EQ̃[Yi+1|Xi],

and by subsituting into the previous equation we arrive at (4.48).

The distribution of the residual error ∆Yi − ∆Ŷi depends on the measure we use to

interpret it. For numerical applications we sample from the measure P̃ instead of Q̃, and

thus this estimator is no longer unbiased with respect to the sampled distribution. The

conditional expectation with respect to P̃ of the right hand side of (4.48) is

ε
P|Q
i+1 := EP̃[δ∆Ŷ

i+1 − EQ̃[δ∆Ŷ
i+1 |Xi, Ki]|Xi, Ki]

= EP̃[δ∆Ŷ
i+1 |Xi, Ki]− EQ̃[δ∆Ŷ

i+1 |Xi, Ki]. (4.54)

The two estimators for Ŷi+1, (4.35) (4.36), presented in Section 4.3.4, can be used

without modification, given that in the noiseless condition, Ỹi+1 is taken to be (4.49). The

drifted noiseless estimator now resolves to

Ŷ noiseless
i = Lµi + Y i+1 + Z

>
i+1Di +

1

2
tr(M i+1(I +DiD

>
i )). (4.55)

Off-Policy Estimator Ŷi Bias and Variance

Theorem 4.8. For the estimator Ŷi := Ŷi+1 −∆Ŷi where ∆Ŷi is defined in (4.47) and

Ŷi+1 is defined in (4.35) or (4.36) the bias is

EP̃[Yi − Ŷ re-est
i |Xi, Ki] = EQ̃[δ∆Ŷ

i+1 |Xi, Ki]− EP̃[δh.o.t.
i+1 |Xi, Ki], (4.56)

EP̃[Yi − Ŷ noiseless
i |Xi, Ki] = EQ̃[δ∆Ŷ

i+1 |Xi, Ki]. (4.57)
I
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Off-Policy Estimator Ŷi Bias and Variance (cont)

The variances of the estimators are

VarP̃[Ŷ re-est
i |Xi, Ki] = VarP̃[δh.o.t.

i+1 |Xi, Ki] (4.58)

VarP̃[Ŷ noiseless
i |Xi, Ki] = 0. (4.59)

Proof. See Appendix A.4.

Since Q̃ is not available during computation, we characterize EQ̃[δ∆Ŷ
i+1 |Xi] exclusively

in the measure P̃ using the next result.

Proposition 4.9. The bias term appearing in Theorem 4.8 is bounded as

|EQ̃[δ∆Ŷ
i+1 |Xi, Ki]| ≤ exp(

1

2
‖Di‖2) EP̃[(δ∆Ŷ

i+1)2|Xi, Ki]
1/2. (4.60)

Proof. See Appendix A.5.

Although the error bound in Proposition 4.9 suggests that the bias grows rapidly with

the magnitude ‖Di‖, when this magnitude is small (‖Di‖ ≤ 1) the first term in the product

on the right hand side of (4.60) is bounded by
√
e ≈ 1.65. To illustrate the effect of ‖Di‖

on the error bound, consider a one-dimensional problem where we select Ki = F µ
i + a for

some random variable a with bounded magnitude |a| ≤ Σi a.s.. It subsequently follows

that exp(‖Di‖2) ≤
√
e a.s.. This suggests that, in general, the magnitude of the difference

F µ
i − Ki should be proportional to the diffusion Σi. Further, it is still the case that if the

value function approximation is quadratic then the higher order terms δh.o.t.
i+1 drop out.

These analytical results justify the assumption that for appropriately chosen Ki, the

choice of (4.47) represents a low bias, low variance approximator for the backward differ-

ence step. It also provides guidance for how to select Ki.
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4.4 Policy Improvement

In this section we discuss how policies can be improved based on the value function pa-

rameters obtained from the backward passes. First, we discuss a naı̈ve continuous-time

approximation approach arising from the Hamiltonian used in HJB equations. Continuous-

time analysis of the Hamiltonian suggests that the optimal control policy π∗ satisfies the

inclusion (2.5), so a naı̈ve approach to improving the policy would be to use the Euler-

Maruyama approximation of the dynamics and costs along with the gradient of the recent

approximation of the value function to evaluate this policy optimization. This Hamiltonian-

based approach

π̃∗i (x) ∈ arg min
u∈U

{`(ti, x, u) + f(ti, x, u)>∂xṼi(x)}

≡ arg min
u∈U

{Li(x, u) + Fi(x, u)>∂xṼi(x)}, (4.61)

is used for estimating the optimal policy in [16, 17].3

According to the discussion in the previous section, we propose an alternative Taylor-

based approach to (4.61) as follows. We begin with a discrete approximation of the contin-

uous problem and form the Q-value function at time i, given the value function V µ
i+1,

Qµ
i (x, u) := Li(x, u) + EQ̃i

[V µ
i+1(Xi+1)|Xi = x], (4.62)

where Q̃i is the measure corresponding to the forward difference step

Xi+1 − x = Fi(x, u) + ΣiW
Q
i . (4.63)

3The equivalence is in the case the Euler-Maruyama approximation is used.
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The optimal Bellman equation indicates that the optimal policy satisfies

π∗i (x) ∈ arg min
u∈U

Qπ∗

i (x, u),

and the optimal value function satisfies

V π∗

i (x) = min
u∈U

Qπ∗

i (x, u).

Notice that when V π
i+1 ≤ V µ

i+1 and Qπ
i (x, πi(x)) ≤ Qµ

i (x, µi(x)) then V π
i ≤ V µ

i , so π will

be an improved policy over µ. Letting

X
x,u

i+1 := EQ̃i
[Xi+1|Xi = x] = x+ Fi(x, u), (4.64)

and performing the same Taylor expansion approach as in (4.17), (4.18), we arrive at the

approximation Q̃µ
i ≈ Qµ

i defined as

Approximate Taylor Q-Value Function

Q̃µ
i (x, u) := Li(x, u) + Y

x,u

i+1 +
1

2
tr(M

x,u

i+1), (4.65)

where

Y
x,u

i+1 := Ṽ µ
i+1(X

x,u

i+1),

M
x,u

i+1 := Σ>i ∂xxṼ
µ
i+1(X

x,u

i+1)Σi.

Proposition 4.10. The error when using (4.65) to approximate the Q-value function is

Qµ
i (x, u)− Q̃µ

i (x, u) = EQ̃i
[δ∆Ŷ
i+1 |Xi = x]. (4.66)
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Proof. Due to (4.17) we have Yi+1 = Ỹi+1 + δ∆Ŷ
i+1 . We arrive at (4.66) by subtracting (4.65)

from (4.62), and then substituting in Yi+1 for V µ
i+1(Xi+1).

In general, we seek a policy that minimizes this Q-value function,

µ∗i (x; Ṽ µ
i+1) := min

u∈U
Q̃µ
i (x, u). (4.67)

When the function Li is quadratic in terms of u and/or contains an L1 regularization term

like
∑n

j=1 |uj|, U is an interval set, Fi is affine in the control, and Ṽ µ
i+1 is quadratic, then the

optimization (4.67) has an analytic solution. Also, similarly to the previous section, when

Ṽ µ
i+1 is quadratic, as is the case in LQR problems, the Taylor expansion of the Q-value

function is exact. Thus, this optimization will yield the exact optimal control solution for

the LQR problem.

4.5 Numerical Results

Next, we numerically evaluate and compare the proposed Taylor estimators to the naı̈ve

Euler-Maruyama estimators on two problems, a nonlinear 1-dimensional problem and an

LQR 4-dimensional problem. The estimators discussed in this work are summarized in

Table 4.1.

4.5.1 Nonlinear 1D Problem

Consider the scalar optimal control problem with the dynamics and cost

dXs =
(
0.1(Xs − 3)2 + 0.2us

)
ds+ 0.8 dWs, x0 = 7,

J(t, xt;u[t,T ]) = EQ

[ ∫ T

t

(
12 |Xs − 6|+ 0.4u2

s

)
ds+ 25X2

T

∣∣∣∣Xt = xt

]
,
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Table 4.1: Expressions for the proposed noiseless and re-estimate estimators, as well as the
competing Euler-Maruyama estimators (4.3), and (4.4) (used in [16]).

Estimator Ŷi =

Taylor Noiseless Lµi + Y i+1 + Z
>
i+1Di

+1
2

tr(M i+1(I +DiD
>
i ))

Taylor Reestimate Ṽ µ
i+1(Xi+1) + Lµi − Z

>
i+1W

P
i + Z

>
i+1Di

+1
2

tr(M i+1(I +DiD
>
i −W P

i W
P>
i ))

Euler-Maruyama Noiseless [16] Ṽ µ
i+1(Xi+1) + Lµi + Z̃>i+1Di

Euler-Maruyama Noisy Ṽ µ
i+1(Xi+1) + Lµi − Z̃>i+1W

P
i + Z̃>i+1Di

over a time interval of length T = 10, with N = 200 discrete timesteps. We compute a

ground-truth optimal value function V ∗i by directly evaluating the optimal Bellman equa-

tion using a finely-gridded state space, control space, and noise space, and set the optimal

policy as the target µ ≡ π∗. The optimal value function is visualized in Figure 4.5 (the yel-

low surface), along with two forward-backward trajectory distributions {(Xi, Yi)} consid-

ered for evaluation: (a) the optimal Koptimal
i = F π∗

i (the cyan trajectories in Figure 4.5(a)),

and (b) the suboptimal Ksubopt
i = −0.2Xi (the orange trajectories).

Although FBSDE methods are typically iterative methods, to investigate performance

of estimators in a controlled setting, each trial performs one forward pass, and then uses

Chebyshev polynomials to locally approximate the optimal value function in a single back-

ward pass. For evaluation, we are interested in an interpretation of accuracy which weighs

accuracy in the center of the distribution Xi equally to accuracy a few standard deviations

away from the mean. We are interested in this because future iterations should shift the

distribution away from the mean as the policy improves. To this end, we first compute the
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time-varying interval set

Ci := [ci, ci] := [xi −max{3σi, 1}, xi + max{3σi, 1}]

≈ {ci, ci + ∆x, . . . , ci} =: C̃i, (4.68)

for i = 0, . . . , N , where xi, σi are the mean and standard deviation of Xi for the optimal

or suboptimal forward trajectory distribution, which we denote confidence regions and vi-

sualize in Figure 4.5(b). For the uniform distribution over Ci, we use the relative absolute

error (RAE) metric [65, Chapter 5]

∫
Ci |Ṽi(x)− V ∗i (x)| dx∫

Ci |
∫
Ci V

∗
i (y) dy − V ∗i (x)| dx

≈
∑

x∈C̃i |Ṽi(x)− V ∗i (x)|∑
x∈C̃i |

∑
y∈C̃i

1

|C̃i|
V ∗i (y)− V ∗i (x)|

, (4.69)

to quantify accuracy.

In Figures 4.6(a)-(b) we illustrate the approximate value functions for each estimator,

restricted to the optimal confidence region Coptimal
i , in a trial where the forward distribution

is generated with the suboptimal driftKsubopt
i . The Taylor estimators match the ground truth

with relatively no error, and, while the EM noiseless condition largely matches the ground

truth, some fluctuation is apparent. The EM noisy estimator diverges significantly from the

ground truth, though its curvature still somewhat matches the curvature of the ground truth.

We also performed a series of trials to compare accuracy over time for a 2 × 2 set of

forward sampling conditions (Koptimal
i andKsubopt

i ), and accuracy metrics (RAE over Coptimal
i

and Csubopt
i ). For each estimator/sampling condition/accuracy metric 10 independent trials

were run.

For all conditions, the Taylor-based estimators show little difference in performance

between each other, and, in general, significantly outperform the Euler-Maruyama (EM)

estimators. The EM noiseless estimator is, in general, far more accurate than its noisy

counterpart, though it could be argued that the noisy estimator is better behaved. For all

estimators the plots illustrated at the top-left and bottom-right of Figure 4.6(c) perform bet-
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(a) Optimal and suboptimal trajectory distributions (with corresponding drifts
Koptimal
i / Ksubopt

i ) used as the forward pass

(b) Optimal and suboptimal confidence regions (Coptimal
i / Csubopt

i ) used for accuracy
evaluation

Figure 4.5: Optimal value function and trajectory distributions for the 1-dimensional non-
linear problem. The yellow surface is the ground truth optimal value function and the
cyan and orange trajectories are the optimal and suboptimal trajectory distributions, re-
spectively, used as forward distributions for evaluation. The regions in (b) are computed
from the statistics of the trajectory distributions {Xi} visualized in (a). The trajectories and
regions are projected onto the value function so they can be easily compared to forthcoming
figures.
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(a) Value function approximations, restricted to the
optimal confidence region Coptimal

i . Each estimator’s
parameters are computed with the suboptimal trajec-
tory distribution condition (drift is Ksubopt

i )

(b) Rotated view of (a)
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(c) Relative absolute error (RAE) (4.69) for the two sampling conditions (Koptimal
i /

Ksubopt
i ) and two evaluation distributions (Coptimal

i / Csubopt
i )

Figure 4.6: Value function accuracy experiments for each estimator on the 1-dimensional
nonlinear control problem. We use Chebyshev polynomials to represent the value function
basis functions, using 7 basis functions (which can represent degree 6 polynomials). Each
of the two figure columns in (c) refer to the sampling condition used in the FBSDE trial
to compute the value function parameters. The rows refer to the confidence regions over
which the value function approximation is evaluated for accuracy.
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ter than the those at top-right and bottom-left because the confidence region completely

overlaps the sampling distribution. Thus, the top-right and bottom-left plots are largely

measures of extrapolation accuracy on a distribution far different from the one used to ap-

proximate the value function. The Koptimal
i /Csubopt

i condition in the bottom-left has relatively

high error for all estimators, even compared to the other extrapolation condition (top-right

plot). If we compare the distributions and regions in Figure 4.5, it appears that the sub-

optimal distribution better covers the optimal region than the optimal distribution covers

the suboptimal region. The high error in this condition is likely due to this fact, coupled

with the fact that Runge’s phenomenon begins to dominate outside the region covered by

forward distribution.

The poor performance in the bottom-left plot suggests that while an on-policy estima-

tor with forward sampling distribution following the optimal policy may produce accurate

function estimates within the tight region of the optimal trajectories, off-policy estimators

with sampling distributions which cover a broader region of the state space may be more

robust (i.e., accurately represent the value function over a broader region of the state space)

without significantly reducing approximation accuracy. The idea that broader exploration,

especially of regions for which the value would not significantly increase, produces more

robust value function approximation is a key idea in “soft”-reinforcement learning (RL) lit-

erature [45]. However, while soft-RL methods propose changing the objective function to

incentivize exploration, the proposed methods in this chapter demonstrate that exploration

can be achieved without changing the target value function.

We also ran a series of simulations to investigate how each estimator performs under

different algorithmic conditions, visualized in Figure 4.7. For each element in Figure 4.7

we average the RAE approximations (4.69) over both 20 trials and N = 200 timesteps.

The results show that in all cases the proposed Taylor-based estimators perform as well

as the Euler-Maruyama estimators, and for the vast majority perform significantly better.

Although the Taylor-based estimators generally perform equally well, there are slight dif-
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(a) Optimal forward sampling distribution generated with Koptimal (On-
policy estimators).
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(b) Suboptimal forward sampling distribution generated with Ksubopt

(Off-policy estimators).

Figure 4.7: Heatmaps of experiments comparing the proposed estimators (Noiseless/Re-
estimate) against naı̈ve estimators (EM Noiseless/EM Noisy), with varying numbers of
basis functions and numbers of trajectory samples. Each matrix element is the RAE in the
Coptimal
i distribution, averaged over both 20 trials and N = 200 timesteps.
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ferences in how they perform in different conditions. The Taylor-noiseless estimator seems

to outperform the re-estimate estimator when the number of trajectory samples is low, and

vice versa when the number is high. Recall that the error analysis suggests that the re-

estimate estimator has lower bias but higher variance than the Taylor-noiseless estimator.

The simulated results confirm the theoretical results, that is, when the number of trajectory

samples is low, high variance makes the re-estimate estimator perform poorly, but when

there are enough samples to overcome the variance in the estimator, the low bias properties

can result in better accuracy. In practice, however, it is likely that the low variance of the

Taylor-noiseless estimator is preferable to the slightly more bias it introduces.

To evaluate the policy improvement scheme proposed in Section 4.4, we took the value

function approximation produced in the Taylor noiseless condition (visualized as the red

surface in Figures 4.6(a)-(b)) and used it for Ṽ µ
i+1 in the Q-value function approximation

(4.65). We then produce the policy optimization (4.67) based on these parameters (the red

surface in Figure 4.8). We compare this to the Hamiltonian-based policy (4.61) (the green

surface in Figure 4.8), where the value function Ṽi comes from the EM-noiseless condition

(the green surface in Figures 4.6(a)-(b)). This method replicates the policy optimization

used in [16, 17]. Although the Hamiltonian-based optimization shows reasonable perfor-

mance, our proposed Taylor-based approximation is far more accurate and well-behaved.
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(a) Local representations of estimated optimal policy

(b) Rotated view of (a)

Figure 4.8: Comparing the proposed policy optimization to the method utilized in [16] [17],
(4.61) using the EM-noiseless value function approximation, and the ground truth (yellow
surface). The red surface is computed as (4.67) where Ṽ µ

i+1 is based on the results of the
Taylor-noiseless estimator backward pass. Both policies are restricted to Coptimal

i .
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4.5.2 LQR 4D Problem

We also tested the proposed estimators on a linearized version of the 4-dimensional finite

time cart-pole problem,

dXs =





0 1 0 0

0 a1 a2 a3

0 0 0 1

0 a4 a5 a6


Xs +



0

b1

0

b2


us


ds+



0.01 0 0 0

0 0.1 0 1

0 0 0.01 0

0 0 0 0.1


dWs

= (AXs +Bus)ds+ σdWs,

where a1, a2, a3, a4, a5, a6, b1, b2 are constant parameters and x0 = [0, 0, π/9, 0]>. For the

suboptimal sampling distribution we selected a discrete time approximation of the time-

invariant feedback policy

Ksubopt
s =

(
A+B

[
0 0 k1 k2

])
Xs,

where k1, k2 are constant parameters. The optimal policy is found through the solution of

the associated Riccati equations (distributions visualized in Figure 4.9(a)).

The value function model for Ṽi used Chebyshev functions of degree 2 and lower (15

basis functions). The RAE approximations (4.69) are visualized in Figure 4.9(b) where

C̃i := C̃1
i × C̃2

i × C̃3
i × C̃4

i and each C̃ji is defined similarly to (4.68) based on the mean and

standard deviation of the optimal trajectories in each of the 4 dimensions.

As predicted by the error analysis, since this is an LQR problem and the value func-

tion is in the class of quadratic functions, the Taylor expansion-based estimators are able

to produce approximations of the value function with accuracy near machine precision
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(a) Trajectory distributions for the two sampling conditions (Koptimal
i / Ksubopt

i )
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(b) Relative absolute error (4.69) for the two sampling conditions (Koptimal
i / Ksubopt

i )

Figure 4.9: Comparing the accuracy of the estimators on a 4-dimensional LQR approxima-
tion of cart-pole balancing system.
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for both conditions. For the suboptimal forward sampling condition the EM estimators

diverge quickly during the backward pass. For the optimal forward sampling condition,

corresponding to the on-policy estimation, the EM estimators perform mediocre compared

to the value function’s variance and their error is still several orders of magnitudes higher

than the Taylor estimators.

These results confirm that the proposed estimators are able to achieve near machine-

precision performance on the most common problem in stochastic optimal control. Further,

they confirm that utilizing the second-order derivatives of the value function is crucial for

Girsanov-inspired off-policy estimator schemes, contrary to what naı̈ve application of the

theory would suggest.

4.6 DT-FBSDE Iterative Method

Now that we have both a method to approximate the value function and a method to gener-

ate a policy from this value function approximation, we can discuss how these methods can

be combined to create an iterative method. We start with any initial drift {K0
i } and sam-

ple a forward pass to produce a distribution over the process {Xi}. A good choice for the

initial target policy is something similar to the initial drift, since we have established that

on-policy estimators are very accurate. Using this target policy {µ0
i }, we perform a back-

ward pass to compute the initial value function approximation {Ṽ 1
i }. Using the relation

(4.67) we can obtain a new optimized policy µ1
i (x) := µ∗i (x; Ṽ 1

i+1).

We now have the iterative part of the method, assuming we start with a pair of value

function approximation and a target policy at iteration j, {(Ṽ j
i , µ

j
i )}, and would like to find

an improved pair {(Ṽ j+1
i , µj+1

i )}. This new pair can be produced equivalently to the initial

iteration, except we must choose some drift {Kj
i } for the current forward pass. The im-

proved selection of drift is a primary topic for the following chapter, but for the purposes of

demonstration we offer a simple choice. For a given matrixGi(x), and normally distributed

random vector δi, independent of W P
i , we can choose the drift to be the dynamics driven
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by the target policy with some noise added

Kj
i = F µj

i +Giδi.

The benefit of such a choice will be expanded upon in more detail in the next chapter, but

the primary benefit is that it maintains a wide distribution about the trajectories driven by

the current best policy. Thus, even if the optimal distribution collapses to a set of trajec-

tories with relatively small variance, the value function will still have good approximation

accuracy in a region around the optimal distribution.

When the curvature of the value function is relatively tame, the method described above

might be sufficient, but executing a new policy {µji} might drive the system into regions

where it is heavily extrapolating the value function computed previously. If the value func-

tion is computed, for example, with high dimensional polynomial regression, this extrap-

olation might make the policy very unstable due to Runge’s phenomenon. Since we know

the distribution over which the previous iteration’s value function was approximated to

some degree of accuracy, we can use {Ṽ j
i } on this distribution, then blend to some other

value function approximation which is more tame in the extrapolative regions.

One potential choice for the tame extrapolative function we test here is to compute

the value function using quadratic polynomials {Ṽ j,quad
i } in addition to higher dimensional

polynomial approximations. Then, in (4.67), we use the blended value function

Ṽ j,blend
i := γi(x)Ṽ j

i + (1− γ(i, x))Ṽ j,quad
i , (4.70)

where γi is a weighing function

γi(x) ∼ exp

(
−
(
x− xi
βσi

)4)
, (4.71)

instead of the original value function itself Ṽ j
i . The constant β > 0 is tuning parameter
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which varies the width of the plateau generated by the weighing function (β = 6 in our

experiments), and thus is a control on how much we will exploit extrapolation of Ṽ j
i versus

how much we will rely on Ṽ j,quad
i for extrapolated values.

This method is illustrated after 3 iterations of the iterative method in Figure 4.10. Note

that, despite the fact that far from the distribution the approximation with 7 basis functions

(degree 6 polynomial) has extreme oscillation, the blended approximation acts as a suitable

approximate supersolution of the optimal function. By approximate supersolution we mean

that, for most of the state space, the blended function overestimates the optimal. This is

preferable to underestimating, since the policy optimization is less likely to hallucinate an

optimal value basin and attempt to exploit it.

The performance of the iterative method is illustrated in Figure 4.11. To evaluate the

solution at each iteration, we test the policy directly by sampling M = 2000 trajectories

following the policy and computing the average cost. The curves for approximations with

a number of basis functions ≥ 5 are all overlapping, suggesting that adding more basis

functions seems to have diminishing returns. This is likely due to the fact that the blended

method confines the value function approximation to a relatively tight region which, due to

smoothness, only requires a relatively low polynomial to represent accurately.
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(a) The weighing function (4.71) (in yellow) for the trajectory distribution
(in red)

(b) The blended value function (4.70)

Figure 4.10: Illustrating the blended value function method for taming oscillations of the
high-degree polynomial value function approximation in extrapolative regions of the state
space.
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# Basis Fns. = 3

# Basis Fns. = 4

# Basis Fns. = 5

# Basis Fns. = 6

# Basis Fns. = 7

Figure 4.11: Iterative method applied to approximations with varying numbers of basis
functions. Ten trials are executed per condition.

4.7 Discrete-Time FBSDE Conclusion

Taylor-based estimators for numerically solving Feynman-Kac FBSDEs have been demon-

strated to be significantly more accurate than naı̈ve Euler-Maruyama-based estimators through

both error analysis and numerical simulation. These estimators are derived by using higher-

order Taylor expansions and following the spirit of the continuous-time Feynman-Kac-

Girsanov formulation. Both error analysis and numerical simulation confirm that these

estimators have very high accuracy when applied to LQR problems. Further, in simulation,

the proposed estimators are orders of magnitude more accurate than the EM estimators in

both LQR and nonlinear problems. Using these results, this chapter also proposes a method

to use the estimated value function parameters for generating an improved policy. Finally, a

full iterative method is proposed and evaluated, demonstrating that the techniques converge

to an optimal solution after a few iterations.
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CHAPTER 5

SOLUTION OF FBSDES USING MCKEAN-MARKOV BRANCHED SAMPLING

5.1 Introduction

In the previous chapter we proposed methods for improving Feynman-Kac FBSDE meth-

ods at the time step-wise level, demonstrating that we can achieve a level of performance

that is very accurate on LQR problems, and for non-LQR problems is improved over pre-

vious methods. In this chapter we focus on how the methods can be improved at the full

time interval level.

Recall from the previous section that one of the primary problems with this method is

that extrapolation far from the sampled trajectories has limited utility. Due to the iterative

nature of the method, it is challenging to strike a balance between exploiting extrapola-

tion, and controlling the instability this exploitation might introduce. Thus, the trajectory

distributions between iterations cannot change significantly. For this reason, the method

proposed in Section 4.6 is largely a local trajectory optimization technique, heavily reliant

on a good initial sampling drift {K0
i } to converge to the optimal trajectory distribution.

5.1.1 Chapter Overview and Approach

We now motivate an interpretation of the Feynman-Kac theory, which can be utilized for

global exploration and local optimization simultaneously. In Section 3.7 we summarized

the results of Chapter 3, that Feynman-Kac FBSDE theory requires the choice of three

measures: (a) Q, the measure associated with the target policy µ for the value function V µ,

(b) P, the sampling measure used in the forward pass to explore the state space, and (c)

Ri+1, the weighted measure used in the backward pass to control function approximation

accuracy. The contributions of this chapter are first, to change the numerical representation
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of the sampling measure P, second, to suggest a method by which we select Ri+1, and third,

to show how these choices can work together to quickly find a global solution to the SOC

problem.

We denote the numerical method of representing P as a collection of independent trajec-

tory samples a parallel-sampled distribution. We propose instead to represent the sampling

distribution as a branch-sampled distribution, where Monte Carlo samples are represented

numerically as nodes in a tree. Figure 5.1 briefly summarizes the approach proposed in

this chapter, compared to the previous chapter, how these three measures work together to

rapidly find the optimal distribution. The density of optimal trajectory distribution we are

interested in approximating the value function over is illustrated in Figure 5.1(a). Previ-

ously, we would use iterated executions of the parallel-sampled method applied to subopti-

mal policies, e.g., see the density in Figure 5.1(b). Regardless of whether noise is added to

the drift, the policy (when stable) constrains trajectories to a local region. It is easy to see

how, even in this simplistic one-dimensional example, little overlap with the optimal tra-

jectory distribution will require several iterations until the iterative method will converge.

If we instead choose to broadly sample the state space using space-filling, randomized

sampling algorithms like rapidly exploring random trees (RRTs), we can cover the optimal

trajectory distribution with Monte Carlo samples, even if they do not come from optimal

trajectories themselves, without even having an initial drift process for initialization. As

we solve for the value function in the backward pass, we can use these approximations in

heuristics to produce the weighted measure Ri+1, concentrating function approximation in

the regions likely to contain optimal trajectories.

5.2 Repeated Least-Squares Monte Carlo

In this section we present a new perspective on the interpretation of least-squares Monte

Carlo (LSMC): that we can treat each optimization independently, with different measures

for each application. Recall the LSMC optimization used to obtain the value function
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(d) Branch-Sampled, Weighted (R)

Figure 5.1: Heatmap of different state distributions for a 1-dimensional SOC problem,
illustrating how RRT-sampling and weighing can accelerate discovery of the optimal dis-
tribution.
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approximation,

arg min
α∈A

EP[(Ŷi − φ(Xi;α))2],

where (Ω, {Fi}Ni=0,P) is the discrete-time filtered probability space.1 For any choice of the

estimator Ŷi from Chapter 4, the integrand is Fi+1-measurable, and thus this optimization

is equivalent to

≡ arg min
α∈A

EPi+1
[(Ŷi − φ(Xi;α))2],

where Pi+1 is the restriction of P to the algebra F i+1. Further, since the process {Θi},

defined as

Θi+1 =
i∏

j=0

exp

(
− 1

2
‖Dj‖2 +D>j W

P
j

)
, (5.1)

is a P-martingale (adapted to the filtration and EP[Θi+k|Fi] = Θi, ∀k ≥ 0), then we have

the change of measure relationship

dQi+1 = Θi+1 dPi+1, (5.2)

due to [57, Corollary 10.1.2]. Although these facts do not fundamentally change the result

of the optimization, they highlight the insight that LSMC optimizations only depend on the

measure Pi+1 and do not necessarily need to be connected to the same total measure P.

Suppose we define N − 1 pairs of drift processes and corresponding measures

{({Ki
j}ij=0,Pi+1)}N−1

i=0 where each process is {Ki
j}ij=0 := {Ki

0, K
i
1, . . . , K

i
i}. Applying

the discrete-time version of Girsanov’s theorem, Lemma 4.2, separately to each pair, we

can construct a series of LSMC problems, all of which are valid approximation schemes

1We let Q/P refer to the discrete-time FBSDE measures in this chapter instead of the Q̃/P̃ used previously.
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for the respective value functions {V µ
i }N−1

i=0 . However, since each measure is constructed

using a different drift, we have that each of the measures is no longer a restriction of the

others, that is, for j > 0, the restriction of Pi+j to the algebra Fi, Pi+j|Fi , is no longer

equivalent to Pi itself. As discussed in Section 4.2, continuity of the processes (Xs, Ys, Zs)

is an important insight that the continuous-time problem imparts upon the discrete time

problem, so radically changing the measure at each backward step is unlikely to succeed.

If we can maintain continuity of the {Xi} process, note that the other two processes will

follow since the value function is smooth, and the estimators can be computed using only

the parameters found in the previous backward step. We use the measure-theoretic notion

of absolute continuity, assuming that we choose drift processes which satisfy the relation

Repeated LSMC Continuity Condition

Pi+1|Xi � Pi|Xi , (5.3)

where the notation |Xi refers to the restriction of the measure to events in the sigma algebra

σ(Xi). This relationship effectively suggests that the support of the distribution of Xi on

Pi+1 is contained in the support of its distribution on Pi. In the context of Monte Carlo

methods, it suggests that every sample of Xi in Pi+1 coincides with some sample in Pi,

although the converse is not necessarily true. Applying this assumption iteratively means

that we can affirmatively trace any sample back to the initial state at time i = 0.

These points, and how this chapter’s approach differs from the approach discussed in

Section 4.6, is illustrated in Figure 5.2. We assume that we start with a continuous density

overXi in Pi with support covering the x-axis, the blue dots representing samples from this

distribution. The left figure characterizes the previous approach, where the joint distribution

(Xi,Ki(Xi)) is determined by a deterministic function, and thus is restricted to a curve.
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Figure 5.2: Comparing Monte Carlo representations of the joint distribution (Xi, Ki) in
Pi+1, regions of high probability colored green. The distribution of Xi in Pi is approxi-
mated by blue dots, the distribution of Xi in Pi+1 by yellow dots, and the distribution of
(Xi, Ki) in Pi+1 by reddish-orange dots. Left: Pi+1|Xi ≡ Pi|Xi Right: Pi+1|Xi � Pi|Xi

If we use the method of adding independent Gaussian noise, the distribution will look

similar, expanding to a band about the same curve and the joint samples shifted randomly

up and down. On the right, the joint distribution (Xi, Ki) in Pi+1 is given an arbitrary

distribution in the support of the Xi distribution on Pi. The absolute continuity assumption

Pi+1|Xi � Pi|Xi holds true for the Monte Carlo approximations, and this can be seen by

verifying that every yellow dot corresponds to some blue dot.

5.3 Branching Path LSMC

Now that we have motivated the approach from a theoretical perspective, we discuss more

formally the numerical representation and how it forms a sufficient approximation of the

underlying theory. For ease of presentation, we begin by presenting, in Section 5.3.1, the

construction of a stochastically sampled tree as a data structure used to approximate the

FSDE distribution. Next, we demonstrate in Section 5.3.2 how this data structure can be

interpreted as a series of McKean-Markov path measures {
−→
P i}Ni=0 to approximate the for-

ward sampling distributions. In Section 5.3.4 we discuss how these measures can be used

in the backward pass to approximate the BSDE solution by estimating the value function.
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5.3.1 Forward SDE Branched Sampling

We begin by discussing the construction of the tree data structure G representing the for-

ward SDE. In this section we only generally describe how edges are added and what data

is stored. Later, in Section 5.4.1, we propose a specific methodology for selecting nodes

for expansion and choosing the drift value. The tree is initialized with a root node x0 and

is constructed asynchronously as long as new nodes and directed edges are added using

the following procedure. Let xparent
i ∈ Rn be a state node in the tree at time i selected

xparent
i ∼ hexpand(G) from the tree for expansion, as the parent of a new edge. The drift

ki ∼ hdrift(xparent
i , {xki }k) is sampled from some random function which can depend on both

the state and the distribution of nodes at that time. Independently the noise is sampled

wi ∼ N (0, In). The child state node is computed using an Euler-Maruyama SDE step

approximation of the FSDE (3.15),

xchild
i+1 = xparent

i + ki∆t+ Σi(x
parent
i )wi. (5.4)

The edge (xparent
i , ddata

i , xchild
i+1 ) is added to the tree G, where ddata

i = (ki, wi, . . .) is the data

attached to the edge. A new parent can then be selected for expansion, including selecting

the same parent again. Figure 5.3 (a-b) illustrates the branching tree data structure.

5.3.2 McKean-Markov Measure Representation

We approximate the continuous-time sampling distributions with discrete-time McKean-

Markov branch sampled paths as presented in [66]. McKean-Markov models encompass

a wide variety of process sampling techniques, including particle filters, sequential Monte

Carlo, Monte Carlo Markov chain, and others. The difference between Markov processes

and McKean-Markov processes is that, for the Markov process {Xi}, the distribution of

Xi+1 depends on the singular value Xi takes at that time, xi, and for the McKean-Markov

process {Xi}, the distribution of Xi+1 depends on the distribution of Xi at that time. From
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(a) Branch-Sampled (
−→
P i) (b) Branch-Sampled (

−→
P i+1)

(c) Parallel-Sampled (d) Weighted-Branched (
←−
R i+1)

Figure 5.3: (a-b) Illustrating how the branch sampled measures are represented based on
the underlying data structure. The colored paths represent the collection of paths represent-
ing the respective measure. Dotted lines represent edges in the data structure which are not
included in the path measure for that time step. (c-d) Comparing the unweighted parallel-
sampling method from previous approaches to the proposed weighted and branch-sampled
method.

105



a numerical standpoint, this means that the distribution of particles representing Xi+1’s

distribution is allowed to depend on some function or method based on the set of particles

representing the distribution of Xi. The tree data structure G represents a series of path

measures {
−→
P i}Ni=0, each approximating the distribution

−→
P i ≈ Pi ◦ ξ−1

i ,

where ξi is the discrete-time random path defined as

ξi := (X0,D0, X1, · · · ,Di−1, Xi),

and ξ−1
i is the inverse map from events on the path space to events on the sample space

Ω [57, Chapter 3]. We use Di to refer to the set of Fi+1-measurable random variables

associated with the edges of the tree, including Ki and W P
i . The purpose of including

other unspecified variables in this set is for the purposes of representing variables used in

heuristic methods, presented in more detail later. The empirical measure approximations

are defined as

−→
P i :=

1

M

M∑
j=1

δξji
, (5.5)

where δ is the Dirac-delta measure acting on sample paths

ξji := (xj0,i, d
j
0,i, x

j
1,i, d

j
1,i, . . . , d

j
i−1,i, x

j
i,i). (5.6)

The notation xjm,i indicates that this element is the sample of a random variable Xm that is

the ancestor of sample xji,i in the path ξji , and similarly for the edge variables Dm. Each

node in the tree xji (alternatively called a particle) is associated with a unique path ξji whose

final term is xji,i = xji . Figs. 5.3(a)-(b) illustrate how each colored node at a particular time
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step is associated with its matching colored path, and that all of these paths collectively

constitute the path measure.

Recall that in this construction there is no requirement for
−→
P i and

−→
P i+1 to agree

over the interval {0, . . . , i}. This property is illustrated by the fact that, for example, the

path ending at x3
i in Figure 5.3(a) is represented in

−→
P i but not represented in

−→
P i+1 in

Figure 5.3(b).

It can be observed in Figure 5.3(b) that some edges are multiply represented in the

distribution. If the drift term Ki were restricted to be a deterministic function of Xi (as

is the case in [16, 17, 19]), such a construction would represent an unfaithful characteri-

zation of the path distribution because samples of the Brownian process are independent

and thus should be sampled as in Figure 5.3(c). However, since Ki itself is permitted to

have a distribution, the overlapping of paths is justified as the drift having been selected

so as to concentrate the paths in a certain part of the state space. Again, referring back

to Figure 5.2, this figure illustrates why parallel sampling is naturally suited for represent-

ing deterministic functions and branch sampling is necessary for representing nontrivial

joint distributions (Xi, Ki). While a faithful representation of the independent process W P
s

might be weakened by this construction, there exist some guarantees about the conver-

gence of such measures with increasing numbers of samples (see, e.g., [66]). We have the

following asymptotic basis for this numerical approximation scheme.

Convergence of Expectations of Path Integral Measures

Theorem 5.1. For any arbitrary function Gi+1 evaluated on paths ξi+1, we have the

almost surely convergence

E−→
P i+1

[Gi+1(ξi+1)] =
M∑
j=1

1

M
Gi+1(ξji+1)→ EPi+1

[Gi+1(ξi+1)], (5.7)

as the number of particles M →∞
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Proof. See [66, Section 4.1.2].

Thus, our measure approximation converges with large numbers of particles and de-

creasing time intervals.

5.3.3 Local Entropy Weighting

The methods discussed in the previous section provide the opportunity to employ broad

sampling schemes to cover the state space with potential paths. However, fitting a value

function broadly to a wide support distribution might degrade the quality of the function

approximation since high accuracy of function approximation is more in demand in those

parts of the state space in proximity to optimal trajectories. Once forward sampling has

been performed and some parts of the value function have been approximated, we can

apply a heuristic in which sample paths closer to optimal trajectories are weighted more to

concentrate value function approximation accuracy in those regions.

To this end, we propose using a bounded heuristic random variable ρi+1 to produce a

new measure Ri+1, the weighted counterpart to Pi+1. We use the i + 1 notation, instead of

just i, to coincide with the notation from previous sections, where LSMC optimization is

performed over the expectation ERi+1
. In order to avoid underdetermination of the regres-

sion by concentrating a single or few samples, we select Ri+1 as

Local-Entropy Optimization Problem

arg min
Ri+1

{
ERi+1

[ρi+1] + λH(Ri+1‖Pi+1)
}

, (5.8)

with λ > 0, a tuning variable, and

H(Ri+1‖Pi+1) = ERi+1

[
log

(
dRi+1

dPi+1

)]
, (5.9)
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the relative entropy of Ri+1 which takes its minimum value when Ri+1 = Pi+1, the distribu-

tion in which all sampled paths have equal weight. The minimizer of (5.8), which balances

between minimizing the value of ρi+1 and minimizing the relative entropy of its induced

measure, has a solution of R∗i+1 determined as [67, p. 2]

Local-Entropy Optimization Solution

dR∗i+1 = Θ
R|P
i+1dPi+1, Θ

R|P
i+1 :=

exp(−1/λρi+1)

EPi+1
[exp(−1/λρi+1)]

. (5.10)

Henceforth, we let Ri+1 refer to this minimizer R∗i+1. During numerical approximation

we can interpret the weights as a softmin operation over paths according to this heuristic, a

method often used in the deep learning literature [49].

5.3.4 Local-Entropy Least Squares Monte Carlo

To approximate the measure Ri+1 in Theorem 3.9 we use

θji+1 = exp(−1

λ
ρji+1). (5.11)

The heuristic value is calculated as ρji+1 = ρi+1(ξji+1), taking care to exclude wji,i+1 so that

its distribution remains Brownian. Recall that Theorem 3.9 expects that W P
s is Brownian

over the interval [ti, ti+1]. Although the inclusion of xji+1,i+1 in this function might violate

this assumption, the amount of bias added is likely minimal because only a single time step

of noise is at stake.

In each step of the backward pass, we use
←−
R i+1 and value function approximation

Ṽ µ
i+1(x) = φ(x;αi+1), parameterized by αi+1 ∈ A, where A is the parameter space, to

approximate the value function at the previous time step φ(x;αi) ≈ V µ
i (x), by producing

some αi ∈ A. We use the weighted LSMC presented in (3.28),
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Local-Entropy Weighted LSMC

arg min
α∈A

ERi+1
[(Ŷi − φ(Xi;α))2] = arg min

α∈A
EPi+1

[Θ
R|P
i+1(Ŷi − φ(Xi;α))2]

≈ arg min
α∈A

E−→
P i+1

[Θ
R|P
i+1(Ŷi − φ(Xi;α))2]

= arg min
α∈A

M∑
k=1

θki
M

(ŷki − φ(xki ;α))2 =: α∗i , (5.12)

to compute parameters for the local-entropy-weighted, path-integral LSMC approximation

φ(·;α∗i ) ≈ V µ
i (·).2

The novelty of this method over classic LSMC [25], developed for parallel-sampled

paths, comes from (a) the observation that solving the FBSDE problem over a changing

set of measures {Pi} validates the choice of branch-sampled path distributions; (b) we

can weigh regression points using a heuristic that acts on the entire path history, not just

the immediate states; and (c) weighing as in (5.11) has a particular interpretation as the

selection of a measure with desirable properties for robustness using (5.8).

5.4 Forward-Backward RRT

In this section we present a novel algorithm to which we refer as FBRRT since it presents

forward-backward rapidly exploring random trees for solving SDEs. The FBRRT algo-

rithm is a particular numerical application of the generalized theory presented in Section

5.3. The ultimate goal of the FBRRT algorithm is to produce the set of parameters {αi}Ni=1

which approximate the optimal value function as φ(·;αi) ≈ V ∗i (·). This is achieved by,

first, generating a forward pass producing a graph representation G of the path measures

2For the remainder of this chapter, we use as the estimator for Ŷi the Euler-Maruyama noiseless estimator.
In evaluation this allows for more direct comparisons to the methods in [17], since the estimator is the same.
We leave the integration of Taylor estimators into the methodology in this chapter to future applications.
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{
−→
P i}Ni=1. Next, the backward pass uses G, µi, and ρi+1 to produce αi, backwards in time.

For this method, we choose the Hamiltonian-based policy (4.61) as the target policy3

µi(x) ∈ arg min
u∈U

{Li(x, u) + Fi(x, u)>∂xṼi(x)}.

The policy cost Jk associated with a set of parameterized policies is evaluated by sampling

a parallel-sampled set of trajectories and computing the mean cost E[
∑N−1

i=0 Lµi + g(XN)].

At the end of each iteration, nodes with high heuristic value ρi+1 are pruned from the tree

G, and new nodes are added in the forward pass in the next iteration. This outer loop of the

FBRRT algorithm is summarized in Algorithm 3.

Algorithm 3 Forward-Backward RRT
1: procedure FBRRT(x0)
2: G̃.init(ξ0)
3: for k = 1, · · · , Niter do
4: G ← FORWARDPASS(G̃, (αi)i) . Generate tree which represents {

−→
P i}i

5: (αi)i ← BACKWARDPASS(G) . Approximate value functions {V (·;αi)}i
6: Jk ← POLICYCOST(x0, (αi)i) . Evaluate computed policy {µi(·;αi+1)}i
7: G̃ ← ERODE(G, (αi)i) . Prune tree to remove suboptimal paths
8: end for
9: return (αi)i

10: end procedure

5.4.1 Kinodynamic RRT Forward Sampling

In general, we desire sampling methods that seek to explore the whole state space, thus in-

creasing the likelihood of sampling in the proximity of optimal trajectories. For this reason,

we chose methods inspired by kinodynamic RRT, proposed in [51]. The selection proce-

dure for this method ensures that the distribution of the chosen particles is more uniformly

distributed in a user-supplied region of interest X roi ⊆ Rn, more likely to select particles

which explore empty space, and less likely to oversample dense clusters of particles.

3As discussed in the previous footnote, we use a policy comparable with [17].
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With some probability εrrt
i ∈ [0, 1] we choose the RRT sampling procedure, but other-

wise we choose a particle uniformly from {xji}Mj=1, each particle having equal weight. This

ensures dense particle clusters will still receive more attention. Thus, the choice of the pa-

rameter εrrt
i balances exploring the state space against refining the area around the current

distribution.

For choosing the drift values, that is, those sampled from the distribution h left unspec-

ified in Section 5.3.1, we again choose a random combination of exploration and exploita-

tion. For exploitation we choose

Ki = Fi(Xi, µi(Xi;αi)). (5.13)

For exploration we choose

Ki = Fi(Xi, u
rand). (5.14)

where the control is sampled randomly from a user-supplied set urand ∼ U rand. For example,

for minimum fuel (L1) problems where the control is bounded as u ∈ [−1, 1] and the

running cost is L = |u|, we select U rand = {−1, 0, 1} because the policy is guaranteed to

only return values in this discrete set.

Algorithm 4 summarizes the implementation of the RRT-based sampling procedure,

producing the forward sampling tree G. The algorithm takes as input any tree with width

M̃ and adds nodes at each depth until the width is M , the parameter indicating the desired

width. In the first iteration there are no value function estimate parameters available to

exploit, so we set εrrt = 1 to maximize exploration using the RRT sampling.

5.4.2 Path-Integral Dynamic Programming Heuristic

We now propose a heuristic design choice for the backward pass weighting variables ρi+1,

and justify their choice with theoretical analysis. A good heuristic will give high weights to
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Algorithm 4 RRT Branched-Sampling

1: procedure FORWARDPASS(G, (α1, . . . , αN))
2: for k = M̃ + 1, · · · ,M do . Add node each loop
3: for i = 0, · · · , N − 1 do . For each time step
4: {xji}j ← G.nodesAtTime(i)
5: if εrrt > κrrt ∼ Uniform([0, 1]) then
6: xrand

i ∼ Uniform(X roi)
7: (xnear

i , jnear)← Nearest({xji}j, xrand
i )

8: else
9: (xnear

i , jnear) ∼ Uniform({xji}j)
10: end if . jnear is index of selected node
11: if εopt > κopt ∼ Uniform([0, 1]) then
12: ui ← µi(x

near
i ;αi+1)

13: else
14: ui ∼ U rand

15: end if
16: ki ← Fi(x

near
i , ui)

17: wi ∼ N (0, In)
18: xnext

i+1 ← xnear
i + ki + Σi(x

near
i )wi

19: jnext ← G.addEdge(i, jnear, (xnear
i , ki, x

next
i+1))

20:
−→
L 0:i−1 ← G.getRunCost(i− 1, jnear)

21:
−→
L 0:i ←

−→
L 0:i−1 + Li(x

near
i , ui)

22: G.setRunCost(i, jnext,
−→
L 0:i)

23: end for
24: end for
25: return G
26: end procedure
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paths likely to have low value over the whole interval. Thus, in the middle of the interval we

care both about the current running cost and the expected cost. A dynamic programming

principle result4 indicates that

V ∗0 (x0) = min
{uj}

EPui+1
[
i∑

j=0

Lj(Xj, uj) + V ∗i+1(Xi+1)],

where {uj} is any control process in U on the interval j = 0, . . . , i and Pui+1 is the measure

produced by the drift {Kj = Fj(Xj, uj)}.

Optimal Trajectory Distribution Heuristic

Following this minimization, we choose the heuristic to be

ρi+1 =
i∑

j=0

Li(Xi, ui) + Ṽ µ
i+1(Xi+1), (5.15)

where {uj} is chosen identically to how the control for the drift is produced.

The running cost is computed in the forward sampling in line 21 of Algorithm 4.

Algorithm 5 details the implementation of the backward pass with local entropy weight-

ing. Line 18 does not, theoretically, have an effect on the optimization, since it will come

out of the exponential as a constant multiplier, but it has the potential to improve the numer-

ical conditioning of the exponential function computation as discussed in [49, Chapter 5,

equation (6.33)]. The λ value is, in general, a parameter which must be selected by the user.

For some problems we choose to search over a series of possible λ parameters, evaluating

each one with a backward pass and using the one that produces the smallest expected cost

over a batch of trajectory rollouts executing the computed policy.

4In continuous-time, this is following directly from [6, Chapter 4, Corollary 7.2].
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Algorithm 5 Local Entropy Weighted LSMC Backward Pass
1: procedure BACKWARDPASS(G)
2: {ξjN}j ← G.pathsAtTime(N)
3: {xjN}j ← {ξ

j
N}j

4: yN ← [g(x1
N) · · · g(xMN )]>

5: αN ← arg minα
∑

j θN(ŷjN − Φ(xjN)α)2

6: for i = N − 1, · · · , 1 do . For each time step
7: {ξji+1}j ← G.pathsAtTime(i+ 1)
8: for j = 1, · · · ,M do . For each path
9: (xji , k

j
i , x

j
i+1)← ξji+1 . xji = xji,i+1, etc.

10: yji+1 ← Φ(xji+1)αi+1 . (3.26)
11: zji+1 ← Σ>i (xji )∂xΦ(xji+1)αi+1

12: µji ← µi(x
j
i ;αi+1) . Hamiltonian-based Policy (4.61)

13: dji ← Σ−1
i (xji )(Fi(x

j
i , µ

j
i )− k

j
i )

14: ŷji ← yji+1 + (Li(x
j
i , µ

j
i ) + zj>i+1d

j
i ) . EM Noiseless Estimator

15:
−→
L 0:i ← G.getRunCost(i, j)

16: ρji+1 ← yji+1 +
−→
L 0:i . (5.15)

17: end for
18: ρi+1 ← ρi+1 −minj{ρji+1} . exp conditioning
19: θi+1 ← exp(−1/λρi+1) . (5.10)
20: αi ← arg minα

∑
j θ

j
i+1(ŷji − Φ(xji )α)2 . (3.11)

21: end for
22: return (α1, . . . , αN)
23: end procedure
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5.4.3 Path Integral Erode

After the backward pass of the algorithm, we have updated approximations of the value

function {Ṽ ∗i (·) = φ(·;αi)} along with the tree G which represents the forward sampling

path measures {
−→
P i+1}. To improve our approximation, we can use our value function

estimates to create a new tree G ′ with new forward sampling measures {
−→
P
′
i+1} via the

heuristic ρi+1.

We have found experimentally that sampling a new tree from scratch is both wasteful

and shows signs of catastrophic forgetting. That is, the following backward pass performs

worse, since it has lost data samples which were important for forming good function

estimates. On the other hand, simply adding more samples to the current tree can prove to

be unsustainable in the long run. To keep the time complexity constant between iterations,

we propose bounding the number of samples at each time step. After each backward pass

we remove as many samples as added in the forward pass, “eroding” the tree before the

forward pass “expands” it.

We begin at the end of the trajectory i = N and remove the nodes {xjN}Mj=1 with

highest ρjN value until there are only M̃ nodes left at depth N . We proceed in a similar

fashion backwards down the tree, removing nodes with with high ρji value. However, due

to the tree structure of the path measures, if we remove nodes which have children we

disconnect the paths and ruin the assumed structure. Thus, we only remove nodes which

have no children. The implementation of this algorithm is detailed in Algorithm 6.

5.4.4 Function Approximation

In our implementation of the FBRRT algorithm, the value function is represented by 2nd

order multivariate Chebyshev polynomials. Specifically, we use all products of the basis

functions
⋃n
j=1{1, xj, 2x2

j − 1} with polynomial degree 2 or lower, namely,

Φ(x) := (1, x1, · · · , xn, 2x2
1 − 1, · · · , 2x2

n − 1, x1x2, · · · , x1xn, x2x3, · · · , x2xn, · · · , xn−1xn).
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Algorithm 6 Path Integral Erode

1: procedure ERODE(G, (αi)i)
2: for i = N, · · · , 1 do . For each time step
3: {ρji}j ← G.getHeuristics(ti)
4: for all j′ ∈ sortDescending({ρji}j) do
5: if G.hasNoChildren(xj

′

i ) then
6: G.removeParentEdge(xj

′

i )

7: G.removeNode(xj
′

i )
8: end if
9: if G.numNodes(ti) = M̃ then

10: break
11: end if
12: end for
13: end for
14: return G
15: end procedure

For better conditioning, points are first normalized to the interval [−1, 1]n based on a

parameterized region of interest, so the basis functions are Φ(. . . , (xj − aoffset
j )/ascale

j , . . .).

5.5 Numerical Results

We evaluated the FBRRT algorithm by applying it to four nonlinear stochastic optimal

control problems: (a) L1 double integrator (n = 2), (b) L1 inverted pendulum (n = 2), (c),

L1 double inverted pendulum (n = 4), and (d) intersection reachability problem (n = 5).

For the L1/min fuel problems we used a running cost of ` = a|u|, a > 0, and for the

reachability problem we used ` = 0. The number of particles per time step is M =

1, 024 for the two-dimensional problem up to M = 4 × 1024 for the five-dimensional

intersection reachability problem. and M = 3 × 1, 024 for the four-dimensional double

inverted pendulum problem. The number of time steps was set to N = 80 for the double

inverted pendulum problem and N = 64 for the other problems. For all problems the

control input was restricted in the set U = [−1, 1]. The erode particle number M̃ was

set to (3/4)M for the double inverted pendulum and (1/2)M for all other problems. We

implemented the FBRRT algorithm and all examples in Matlab 2019b and ran them on a
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computer with an Intel G4560 3.50GHz processor and 8GB RAM.

5.5.1 L1 Double Integrator

In order to compare the proposed FBRRT algorithm to the parallel sampled techniques in

[17], which we denote below as parallel-sampled FBSDE, considered the double integrator

system with

dXs ≡


dX

(1)
s

dX
(2)
s



=


X

(2)
s

u

 ds+


0.01 0

0 0.1




dW
(1)
s

dW
(2)
s

 , (5.16)

with L1 running cost, i.e.,

V ∗(t, x) = inf
u[t,T ]

Et,x
Q

[ ∫ T

t

c0|us|ds+
n∑
j=1

cj(X
(j)
T )2

]
, (5.17)

where c0, c1, c2 are scalar parameters. When the system starts with positive position and

velocity, the optimal policy is to decelerate to a negative velocity, coast for a period of time

so that fuel is not used, then accelerate to reach the origin.

As shown in Figs. 5.4(c)-(d), the parallel-sampled FBSDE takes a significant number

of iterations to begin converging to the near optimal policy, while the proposed method

produces a near-optimal policy at the first iteration. The algorithm converges to the optimal

policy.

We also compared the convergence speed and robustness of the two methods by ran-

domly sampling different starting states and evaluated their relative performance over a

number of trials. For each of 30 random initial states x0 we ran 20 trials of each method for
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(a) Parallel-sampled FBSDE [17] (b) FBRRT
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(c) Trajectory samples for parallel-sampled FBSDE
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(d) Trajectory samples for FBRRT

Figure 5.4: (a-b) Comparison of parallel-sampled FBSDE [17] and FBRRT for the L1 dou-
ble integrator problem for random initial states. Expected trajectory costs for the computed
policies are normalized across different initial conditions. (c-d) Trajectory samples from
policies generated after the first 6 iterations. The first iteration is colored red, followed by
yellow, green, cyan, dark blue, and magenta. Thick lines are mean trajectories.
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a number of iterations, each iteration producing an expected cost for the computed policy.

We normalized the final costs across the initial states by dividing all costs for a particular

initial state by the largest cost obtained across both methods. For each iteration, we assign

the value of the accumulated minimum value across previous iterations for that trial, i.e.,

the value is the current best cost after running that many iterations, regardless of the cur-

rent cost. We aggregated these values across initial states and trials into the box plots in

Figure 5.4. Since the FBRRT is significantly slower than the FBSDE per iteration due to

the nearest neighbors calculation, we scale each iteration by the runtime. Note that every

iteration of FBRRT after the first one requires approximately half the runtime, since only

half of the eroded tree needs resampling. In summary, the FBRRT converges faster and in

fewer iterations than FBSDE, and does so with half as many particle samples.

5.5.2 L1 Inverted Pendulum

The L1 inverted pendulum problem attempts to rotate a bar to balance upright using torque

control, but do so with minimal effort. The L1 inverted pendulum problem is also a two-

dimensional problem, but with nonlinear dynamics, as follows

f =


x2

a1x2 + a2 sinx1 + a3u

 ,

where a1, a2 and a3 are constants and σt ≡ diag(0.04, 0.4). This problem is further com-

plicated by the fact that the goal is an unstable equilibrium. Despite this, the algorithm is

still able to produce a decent policy after only one iteration, converging within 6 iterations

(Figure 5.5). In [17], it was proposed for the parallel-sampled FBSDE algorithm to only

resample a small number of paths at each iteration. Although this modification helped the

algorithm from experiencing divergence, convergence was significantly slow (55 iterations)

and such a technique is likely to be sensitive to entrapment in local minima. Since FBRRT
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samples broadly from the beginning, it is unlikely to be affected by such problems.

Of significant interest is the fact that although the final leg of the trajectory has rel-

atively small particle density from the first iteration of the forward sampling, it appears

that particles following paths mostly different in the first half were able to help inform the

policy which ended up following an entirely separate path. Specifically, note that the blue

line begins by swinging backwards, then switching back to swing all the way around to

the goal. However, looking more closely, note that all of the particles sampled near the

origin come from paths which did not swing backwards much, if at all. Despite this, those

particles have green hue, indicating that they significantly helped contribute to the shape

of the policy in this region. This result demonstrates a significant benefit of our algorithm,

namely, that it can incorporate into the policy information sampled from highly dissimilar

paths in the tree.

5.5.3 L1 Double Inverted Pendulum

In order to study the proposed FBRRT algorithm on a highly nonlinear system in higher

dimensions, consider the double inverted pendulum with the state space dimension n = 4

presented in [68], but with added damping friction to the joints. Thus, the dynamics are in

the form of

dXs = f(Xs, us) ds+



0.03 0 0 0

0 0.03 0 0

0 0 0.18 0

0 0 0 0.18





dW
(1)
s

dW
(2)
s

dW
(3)
s

dW
(4)
s


, (5.18)
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Figure 5.5: Forward sampling tree for the first iteration of the L1 inverted pendulum prob-
lem. Hue corresponds to the path-integral heuristic ρi used for weighing particles in the
backward pass and for pruning the tree (green values are smaller). The blue and black
dashed lines are the mean of trajectory rollouts, following the policies computed at the end
of the 1st and 6th iterations, respectively. Control counts are based on trajectory rollouts
of the 6th iteration policy computed by FBRRT. The hue of each rectangle indicates the
relative frequency of each control signal in {−1, 0, 1} for each time step.
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Figure 5.6: Path integral erosion method for L1 inverted pendulum at end of first iteration.
Nodes of green hue in Figure 5.5 are largely included and nodes of red hue are largely
excluded. Hue in this figure corresponds to particle time t, green values are later.
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f (x, u) ≡ f
([

α β ω ψ
]>

, u

)

=



ω

ψ

d3

(
d2ψ

2 sin β+2d2ωψ sin β−f3ω+f2 sin(α+β)−f1 sinα
)
+d2 cos β

(
d2ω

2 sin β+f4ψ−f2 sin(α+β)
)
+d0d3 u

d1d3+2d2d3 cos β−d22 cos2 β

−(d1+2d2 cos β)
(
d2ω

2 sin β+f4ψ−f2 sin(α+β)
)
−d2 cos β

(
d2ψ

2 sin β+2d2ωψ sin β−f3ω+f2 sin(α+β)−f1 sinα
)
−d0d2 cos β u

d1d3+2d2d3 cos β−d22 cos2 β


.

(5.20)

where the nonlinear function f is displayed in (5.20), within which d0, d1, d2, d3, f1, f2, f3

are scalar parameters of the system. The associated optimal control problem is taken to be

V ∗(t, x) = inf
u[t,T ]

Et,x
Q

[ ∫ T

t

c0|us|ds+
n∑
j=1

cj(X
(j)
T )2

]
, (5.19)

where c0, c1, c2, c3, c4 are scalar parameters.

Two initial conditions are evaluated, xvert
0 = [0, 0, 0, 0]>, where the bars are vertically

down and motionless, and xoff
0 = [π/10, π/10, 0, 0]>, where the angles of both bars are

slightly perturbed from xvert
0 by 18◦. The number of time steps is taken to be N = 80 and

the erode particle number is selected as M̃ = (3/4)M . The evaluation of these conditions

over 30 trials with differing numbers of particles M is provided in Figure 5.7.

Since the initial conditions of the two experiments are close, their optimal values should

also be close. Despite having comparable optimal values, the xoff
0 condition converges far

more rapidly than the xvert
0 condition. Slightly perturbing the initial condition vastly im-

proved the performance of the algorithm for this problem. The reason the xvert
0 condition

performs poorly is likely because the system is very sensitive in that region and a localized

policy results in a bifurcation of trajectory densities. If the differing groups of trajecto-

ries have similar heuristic values, the value function approximation tries to fit a function

to groups of particles in different sides of the state space, resulting in poor accuracy for

either group. When the xoff
0 condition is used, there is less ambiguity in which trajectory

distributions are near-optimal resulting in better performance.
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Figure 5.7: Mean policy cost statistics forL1 double inverted pendulum problem. The mean
bars and standard deviation whiskers characterize the distribution over 30 trials, where
the value for each iteration is the accumulated minimum of the values over all previous
iterations in that trial up to and including that iteration. M particles are used per time step
in each condition.
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(a) Double Inverted Pendulum Simulation
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Figure 5.8: (a) Simulation of L1 double inverted pendulum policy execution with x0 =
(1.1π, 0.1π, 0, 0), guided by the best policy of 30 trials with M = 3 × 1024 particles.
The simulation begins in cyan, then moves to green, yellow, then red. (b) Control count
distribution of sampled trajectories following the policy.
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5.5.4 Intersection Collision Reachability

We also applied the algorithm to a reachability problem involving two vehicles in an in-

tersection, visualized in Figure 5.9. We assume that the red vehicle in Figure 5.9 is au-

tonomous and follows a hard-coded collision avoidance policy with respect to the yellow

vehicle, which is driven by a human driver. The collision avoidance policy continuously

accelerates or decelerates the red vehicle, governed by double integrator dynamics, de-

pending on the course trajectory of the human’s vehicle, governed by bicycle dynamics

[69] with constant velocity and controlled by the rate of change of steering. The combined

system has five dimensions and has the nonlinear dynamics

f =



a1 cos(x3 + x4)

a1 sin(x3 + x4)− x5

a1
a2

sin(x4)

clip(a3u,−a4, a4)

γ(x)



,

γ(x) = clip(γ1, a5, a6),

γ1 =


min(a7(γ2 − a8), 0) γ2 ≥ 0

max(a7(γ2 + a8), 0) o.w.
,

γ2 = x2 +−x1 tan(x3)− γ3x5,

γ3 =
−x1

v1 cos(x3)
,

where ai are constants, (x1, x2) is the relative position of the two cars, x3 is the orientation

of yellow, x4 is the steering angle of yellow, and x5 is the velocity of red, driven by the

feedback collision avoidance policy γ.
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Figure 5.9: Simulation of intersection reachability policy execution.

When the human vehicle’s trajectory is predictable, the autonomous vehicle’s collision

avoidance policy easily avoids the human vehicle, even if they begin on a collision course.

However, the reachability problem seeks the worst-case human driver policy, given the

autonomous vehicle’s collision avoidance policy and the initial system state. That is, it

seeks the optimal policy the human can execute which brings the two vehicles as close as

possible at the end of the time horizon, on average. Solving problems such as these can

aid in the verification of autonomous vehicle controllers or to evaluate whether the current

controller should be switched for something more cautious.

The nature of the problem guarantees a bifurcation in trajectory rollouts, since the hu-

man vehicle either passes in front of the autonomous vehicle or behind it. This bifurcation

can be easily seen in Figure 5.10. The FBRRT algorithm discovers that the optimal pol-

icy for causing a near-collision is to begin by swerving left in order to encourage the au-

tonomous vehicle to begin braking, then to swerve back to the right to approach the slowed

down autonomous vehicle.
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Figure 5.10: Forward sampling tree for the intersection reachability problem for the first
iteration. Hue corresponds to the path integral heuristic ρi (green values are smaller) used
for weighing particles in the backward pass and for pruning the tree. The blue line is the
mean of sample trajectories, following the policies computed at the end of the 1st iteration.
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5.6 FBRRT Conclusion

In this chapter, we have proposed a novel generalization of the FBSDE approach to solve

stochastic optimal control problems, combining branched sampling techniques with weighted

least squares function approximation to greatly expand the flexibility of these methods.

Leveraging the efficient space-filling properties of RRT methods, we have demonstrated

that our method significantly improves the convergence properties of previous FBSDE nu-

merical methods. We have shown how the proposed method works hand-in-hand with a lo-

cal entropy-weighted LSMC method, concentrating function approximation in the regions

where optimal trajectories are most likely to be dense. Finally, we have demonstrated that

FBRRT can generate feedback control policies for high-dimensional nonlinear stochastic

optimal control problems.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we have presented a novel methodology for approaching SOC problems using

Feynman-Kac FBSDE theory, and have contributed techniques which significantly increase

the accuracy and rate of convergence of numerical algorithms for obtaining the solution.

The proposed methodology is generalized in such a way as to expose four primary design

choices for every iteration of the method:

• Choose the target policy µ associated with the on-policy value function V µ and on-

policy measure Q.

• Construct the branch-sampled tree G, which represents the set of sampling measures

{Pi+1}.

• Design the local-entropy heuristic ρi+1 to be minimized for the purposes of concen-

trating approximation accuracy in regions likely to have optimal trajectories, associ-

ated with the weighted measures {Ri+1}.

• Establish the value function model ϕ(x;α) used to approximate V µ.

A fifth design choice, not explored in this work, would involve establishing and updating

a policy model µ(x; β). By using the Taylor-noiseless estimator, we can obtain accuracy

improvements shown to work well on problems like the LQR problem. Once convergence

of the iterative method is achieved and a near-optimal policy is obtained, dense sampling

of the policy and application of the Taylor-noisy estimator can produce a refined, more

accurate value function.

Although we have offered design choices for all of these in our FBRRT implementation,

we acknowledge that there is plenty of room for improvement. Employing more recently
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developed RRT methods may improve the forward sampling method. In addition, in this

work we did not discuss state constraints or obstacles. Since RRT methods are naturally

designed to accommodate obstacles, the methods proposed here should be extendable to

those problems as well. The challenge here will be how to properly characterize obstacles

in a stochastic control framework, though for application in real-world problems one might

opt to ignore a formal interpretation.

The erode procedure could use additional care to improve robustness. One of the pri-

mary sources of instability is removing important support for representing the value func-

tion. Part of the problem is that RRT tree exploration will frequently contain long, single-

path branches which are hard to erode since it must be kept in the tree as long as just one

of its descendants is marked for keeping. Although continuity in the {Xi} process distri-

butions is clearly important for accurate backward integration, requiring that each node be

fully connected back to the root might not be strictly necessary, as long as there are nearby

nodes which sufficiently represent the distribution continuity. This problem might also be

mitigated with rewiring strategies used in RRT* and many of its derivatives [52, 53].

Another problem, as discussed in Section 5.5.3, has largely to do with the heuristic and

systems which might be multi-modal. If we are using a localized approximation method for

the value function, like polynomial basis functions, these methods are unlikely to perform

well as the regression tries unsuccessfully to fit a single function to multiple modes. En-

coding into the heuristic some commitment to a single mode might improve these methods,

but how to achieve this remains an open research question.

Robustly evaluating the value function in extrapolative regions remains a difficult prob-

lem. When the sampled trajectory distribution is well-behaved, the blending method dis-

cussed in Section 4.6 works well, but this method has not been tested on the FBRRT imple-

mentation, and might suffer from the multi-modal problems described previously. One po-

tential solution to this problem is to constrain the drift sampling to regions not far from the

regions where the approximation is accurate, that is, the weighted distributions Ri+1,Xi+1
.
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One of the primary questions moving forward is whether these methods are better suited

for local value function approximation with models like polynomial basis functions, or for

global approximation with models like deep neural nets. Regardless of the model used,

we can, instead of using full linear regression applied to the LSMC optimization problem,

use a gradual optimization technique such as stochastic gradient descent (SGD) to refine

the value function and policy approximation. The arguments in the minimizations (5.12)

and (4.67) need not be fully minimized, but can be differentiated with respect to the value

function and policy parameters to produce a step of SGD. Such techniques are central to

deep RL techniques such as deep deterministic policy gradient (DDPG) [70], but when

combined with the proposed estimators might improve robustness of convergence and, if

deep neural nets are used for representation, produce broader approximations.

One of the key problems with using more complicated models for the value function

is the necessity to compute gradients and Hessians. This is especially concerning in high-

dimensional spaces where the number of partial derivatives scales with O(n2). A potential

solution to the problem may come from modifying the vanishing viscosity method dis-

cussed in Chapter 3 to regularize the problem. If there are only a few dimensions of noise

with significant diffusion, we can choose to use the nominal, sparse version of diffusion σ̂

in the computation of Zi+1 and M i+1. Such a choice will reduce the number of partials

which need evaluation to O(m2), where m is the number of dimensions with significant

noise.

One of the insights to consider in any adaptation to deep RL techniques is that the replay

buffer can be potentially interpreted as a joint distribution over (Xi, Ki, Xi+1). Approaches

like DDPG are considered off-policy in the RL community because the controls leading

to these tuples come from a previous version of the policy. The difference between our

estimators and the updates performed in DDPG is that DDPG chooses to incur the bias

without directly addressing it, while FBSDE estimators attempt to reduce the bias of the

update using a motion model. For this reason, any application of this theory to deep RL will
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be considered a model-based RL method (a survey of leading methods is found in [71]).

Another avenue of exploration is combining these methods with MPPI. The MPPI

method maintains a distribution of forward trajectories which can be very easily be in-

terpreted as the forward pass of an FBSDE method. In fact, the local-entropy weighing

theory used in weighing the function approximation is also used in MPPI to weigh its tra-

jectories, though the heuristics are different. If we take any set of trajectories generated

by MPPI, potentially along with the weights computed by its algorithm, we can perform

a backwards pass and locally approximate the value function. The open question in this

line of research is how, or if, the value function approximation should inform the MPPI

algorithm. One potential application is to use the nominal MPPI policy as the target policy

and use a different cost function in the FBSDE method, taking the MPPI-generated trajec-

tories as the sampling distribution, as a means to gather broader information about the state

space without the need to sample more trajectories. For example, we may be able to answer

questions about stochastic reachability under a nominal policy, which could then be used

to bias the MPPI cost function away from regions likely to be unsafe.
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Appendices



APPENDIX A

PROOFS OF STATED THEOREMS

A.1 Proof of Lemma 4.1

Lemma A.1 (Discrete Girsanov 1-Step). Let W P be a normal random vector in Rn, let

D be an independent, bounded random vector, and let P be the product measure which

represents their joint distribution. Then the measure Q defined as

dQ = exp

(
− 1

2
‖D‖2 +D>W P

)
dP, (A.1)

is a probability measure and the variable

WQ := W P −D, (A.2)

is a normal random vector in Q.

Proof. Let W P : (Ω1,B1) 7→ (Rn,B(Rn)) be a normal random vector in the probability

space (Ω1,B1,P1), and let D : (Ω2,B2) 7→ (Rn,B(Rn)) be a bounded random vector in

(Ω2,B2,P2), where B(Rn) is the Borel σ-field over open sets in the metric space (Rn, ‖·‖2)

and B1,B2 are the σ-algebras generated by their maps. Define the product measure space

(Ω1 × Ω2,B1 × B2,P) where B1 × B2 is the σ-field over measurable rectangles A1 × A2,

such that A1 ∈ B1, A2 ∈ B2, and P(A1 × A2) = P1(A1)P2(A2) for each rectangle [57,

p. 148]. The random variable Θ := ϕ(D,W P) where

ϕ(d, w) := exp

(
− 1

2
‖d‖2 + d>w

)

is B1 × B2-measurable, due to the continuity of the function ϕ, and strictly positive. We
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have by Fubini’s Theorem that

∫
Ω1×Ω2

Θ dP =

∫
Ω2

∫
Ω1

Θω2(ω1) dP1(ω1) dP2(ω2)

=

∫
Ω2

∫
Ω1

ϕ(Dω2 ,W
P(ω1)) dP1(ω1) dP2(ω2)

where Θω2 is the section of Θ with respect to ω2 [57, p. 152]. It is a property of log-normal

distributions [64] that for any d ∈ Rn,

∫
Ω1

ϕ(d,WP(ω1)) dP1(ω1) = 1,

so we immediately obtain that

∫
Ω1×Ω2

Θ dP = 1.

Since Θ is strictly positive and has a mean of 1 in P, we can use the Radon-Nikodym

theorem to define an equivalent probability measure Q as

dQ = Θ dP.

Define the random elementWQ : (Ω1×Ω2,B1×B2) 7→ (Rn,B(Rn)) asWQ(ω1, ω2) =

W P(ω1) − D(ω2), which is measurable because the subtraction map is continuous. We

now show that WQ is a normal distribution by proving that its density is pN (wQ) where the

function is

pN (w) = (2π)−n/2 exp

(
− 1

2
‖w‖2

)
.
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We will prove this is the density by showing the equality

∫
(WQ)−1(B)

dQ =

∫
B

pN (wQ) dwQ,

for any B ∈ B(Rn), where dwQ is the Lebesgue measure. By a change of measure and

Fubini’s Theorem we have

∫
(WQ)−1(B)

dQ =

∫
Ω1×Ω2

1(WQ)−1(B) dQ

=

∫
Ω1×Ω2

1(WQ)−1(B)Θ dP

=

∫
Ω2

∫
Ω1

(1(WQ)−1(B))ω2(ω1)ϕ(Dω2 ,W
P(ω1)) dP1(ω1) dP2(ω2),

where 1 is the indicator function. The section of the indicator function can be reworked as

=

∫
Ω2

∫
Ω1

1B(W P(ω1)−Dω2)ϕ(Dω2 ,W
P(ω1)) dP1(ω1) dP2(ω2),

then we evaluate the normal density in P1 [57, Proposition 5.5.2]

=

∫
Ω2

∫
Rn

1B(wP −Dω2)ϕ(Dω2 , w
P)pN (wP) dwP dP2(ω2).

The following reduction is due to the relation ϕ(d, w)pN (w) = pN (w − d),

=

∫
Ω2

∫
Rn

1B(wP −Dω2)pN (wP −Dω2) dwP dP2(ω2).

We can now use a change of variables in Rn, wQ
ω2

= wP −Dω2 , 1

=

∫
Ω2

∫
Rn

1B(wQ
ω2

)pN (wQ
ω2

) dwQ
ω2

dP2(ω2),

[72, Theorem 3.7.1]. Note that for each ω2 the measure dwQ
ω2

is translation invariant and

1The mapping Fω2
(wP) 7→ wP −Dω2

is injective on Rn because Dω2
is a.s. bounded.
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that the integrand no longer varies with ω2. Thus we can reduce to the desired result,

=

∫
Rn

1B(wQ)pN (wQ) dwQ

=

∫
B

pN (wQ) dwQ.

A.2 Proof of Lemma 4.2

Lemma A.2 (Discrete-Time Girsanov Theorem). Let (Ω, {Fi}Ni=0,P) be a filtered probabil-

ity space and let {ξi}Ni=0 be an adapted process where ξ0 := (0n, 0n) and ξi+1 := (Di,W
P
i )

for i = 0, . . . , N−1, such that, in P,Di is a bounded random vector,W P
i is normal random

vector, and Di is independent of W P
i . If Q is the measure defined by

dQ =
N−1∏
i=0

exp

(
− 1

2
‖Di‖2 +D>i W

P
i

)
dP, (A.3)

then Q is a probability measure and

WQ
i := W P

i −Di, (A.4)

are Fi+1-measurable, independent normal random vectors in Q.

Proof. We assume that Ω := Ω0:N where Ω0:i := Ω0 × · · · × Ωi, with A0:i ⊆ Ω0:i, ∀A0:i ∈

Fi. We also assume that there exists a series of transition kernels Pi+1|i(ω0:i, dωi+1) which

defines Pi+1 as

Pi+1(A0:i+1) =

∫
A0:i

Pi+1|i(ω0:i, (A0:i+1)ω0:i
)Pi(dω0:i),

for A0:i ∈ Fi, A0:i+1 ∈ Fi+1, such that PN = P. We use an inductive argument to prove
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the result. Define the variable

Θi+1 =
i∏

j=0

exp

(
− 1

2
‖Dj‖2 +D>j W

P
j

)
, (A.5)

and define the measures Qi+1 as

dQi+1 = Θi+1dPi+1,

for i = 0, . . . , N − 1 and Q0 ≡ P0. We have Q1 is a probability measure and WQ
0 is

a normal random vector in Q1 by Lemma 4.1. Assume Qi is a probability measure and

WQ
i−1, . . . ,W

Q
0 are independent normal random vectors in Qi.

For B0:i ∈ B((Rn)i) and C0:i+1 = (WQ
0:i)
−1(B0:i), we have

∫
C0:i+1

dQi+1 =

∫
C0:i+1

Θi+1dPi+1

=

∫
Ω0:i+1

1C0:i+1
Θi+1dPi+1

=

∫
Ω0:i

[ ∫
Ωi+1

1(C0:i+1)ω0:i
(Θi+1)ω0:i

Pi+1|i(ω0:i, dωi+1)

]
Pi(dω0:i)

=

∫
Ω0:i

[ ∫
Ωi+1

1(C0:i+1)ω0:i
exp

(
− 1

2
‖Di‖2 +D>i W

P
i

)
Pi+1|i(ω0:i, dωi+1)

]
ΘiPi(dω0:i),

Similarly to Lemma 4.1, the inside integral reduces to an integral over Bi,

=

∫
Ω0:i

1C0:i

[ ∫
Bi

pN (wQ
i ) dwQ

i

]
ΘiPi(dω0:i),
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and change of measure yields

=

∫
Ω0:i

1C0:i

[ ∫
Bi

pN (wQ
i ) dwQ

i

]
Qi(dω0:i)

=

[ ∫
Bi

pN (wQ
i ) dwQ

i

] ∫
Ω0:i

1C0:i
Qi(dω0:i).

By our inductive assumption, we arrive at the result

=

[ ∫
Bi

pN (wQ
i ) dwQ

i

] i−1∏
j=0

∫
Bj

pN (wQ
j ) dwQ

j

=
i∏

j=0

∫
Bj

pN (wQ
j ) dwQ

j .

A.3 Proof of Proposition 4.4

Proof. In the following, the variable

α := (α1, . . . , αn) ∈ Nn,

is used as multi-index notation,

|α| := α1 + · · ·+ αn, α! := α1! · · ·αn!,

xα := xα1
1 · · ·xαnn , ∂xα :=

∂|α|

∂xα1
1 · · · ∂xαnn

.

Let j ≥ 3 be an odd number and suppose Ṽ µ
i+1 ∈ Ck(Rn) for some k ≥ j. The j-th order

term of the Taylor expansion residual is given by Taylor’s theorem as

∑
|α|=j

1

α!
∂xαṼ

µ
i+1(X

Q

i+1)(ΣiW
Q
i )α. (A.6)
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It can be shown with algebra and the multinomial theorem that there exists functions γα

such that the WQ
i terms can be linearly separated from the others,

∑
|α|=j

γα(∂xαṼ
µ
i+1(X

Q

i+1),Σi)(W
Q
i )α. (A.7)

Since both ∂xαṼ
µ
i+1(X

Q

i+1) and Σi are Xi-measurable, when taking the conditional expec-

tation the operator passes inside

∑
|α|=j

γα(∂xαṼ
µ
i+1(X

Q

i+1),Σi)EQ̃[(WQ
i )α|Xi]. (A.8)

Due to the independence of the different dimensions of WQ
i , the conditional expectation

inside (A.8) can be expanded into the product

EQ̃[(WQ
i )α1

1 |Xi] · · ·EQ̃[(WQ
i )αnn |Xi]. (A.9)

Since |α| is odd, there exists an l such that αl is odd. The properties of the standard normal

distribution guarantee

EQ̃[(WQ
i )αll |Xi] = 0, (A.10)

and thus, (A.8) is zero as well, so we arrive at the result

EQ̃[
∑
|α|=j

γα(∂xαṼ
µ
i+1(X

Q

i+1),Σi)(W
Q
i )α|Xi] = 0. (A.11)
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A.4 Proof of Theorem 4.6 & Theorem 4.8

Proof. Using the result (4.48) of Lemma 4.7 we have

Ŷi := Ŷi+1 −∆Ŷi

= Ŷi+1 −∆Yi + (δ∆Ŷ
i+1 − EQ̃[δ∆Ŷ

i+1 |Xi, Ki]),

and so the expression for the bias is

EP̃[Yi − Ŷi|Xi, Ki] = EP̃[Yi+1 − Ŷi+1|Xi, Ki]− εP|Qi+1.

The variance of the estimator is

VarP̃[Ŷi|Xi, Ki] = VarP̃[Ŷi+1 −∆Yi

+ (δ∆Ŷ
i+1 − EQ̃[δ∆Ŷ

i+1 |Xi, Ki])|Xi, Ki]

= VarP̃[δ∆Ŷ
i+1 − (Yi+1 − Ŷi+1)|Xi, Ki],

noting that we can drop the terms Yi and EQ̃[δ∆Ŷ
i+1 |Xi, Ki] because they are (Xi, Ki)-

measurable.

For the re-estimate estimator we have

Yi+1 − Ŷ re-est
i+1 = V µ

i+1(Xi+1)− Ṽ µ
i+1(Xi+1)

= δṼi+1, (A.12)
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and for the noiseless estimator we have

Yi+1 − Ŷ noiseless
i+1 = V µ

i+1(Xi+1)− Ỹi+1

= V µ
i+1(Xi+1)− (Ṽ µ

i+1(Xi+1)− δh.o.t.
i+1 )

= δ∆Ŷ
i+1 , (A.13)

due to (4.17). Plugging these two equalities into the general expressions for the bias and

variance and doing simple reductions yields the theorem results. Note that Theorem 4.6 is

proved by setting P̃ ≡ Q̃, which entails εP|Qi+1 ≡ 0, and by excludingKi from the conditional

expectations.

A.5 Proof of Theorem 4.9

Proof. First note that the process {Θi} is a martingale in P̃ , that is, EP̃[Θj|Fi] = Θi for

j ≥ i. This can be shown by defining the measures

dQ̃ = ΘjdP̃j =
Θj

Θi

dR̃i,

and noting that, for all Bi ∈ Fi,

∫
Bi

ΘidP̃j =

∫
Bi

dR̃i =

∫
Bi

dQ̃ =

∫
Bi

ΘjdP̃j ,

where the inner equality is due to R̃i and Q̃ agreeing on Bi.
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From [59, Lemma 1] we have

EQ̃[δ∆Ŷ
i+1 |Fi] =

EP̃[ΘNδ
∆Ŷ
i+1 |Fi]

EP̃[ΘN |Fi]

=
ΘiEP̃[Θ−1

i ΘNδ
∆Ŷ
i+1 |Fi]

Θi

= EP̃[(ΘNΘ−1
i+1)ϕ(Di,W

P
i )δ∆Ŷ

i+1 |Fi]

= EP̃[ϕ(Di,W
P
i )δ∆Ŷ

i+1 |Fi],

where the final equality is due to the tower property of conditional expectation and the

Fi+1 measurability of the remaining terms. Again by the tower property of conditional

expectation we have

EQ̃[δ∆Ŷ
i+1 |Xi, Ki] = EP̃[ϕ(Di,W

P
i )δ∆Ŷ

i+1 |Xi, Ki].

By the Cauchy-Schwartz inequality, we have that

|EQ̃[δ∆Ŷ
i+1 |Xi, Ki]|

≤ EP̃[ϕ(Di,W
P
i )2|Xi, Ki]

1/2EP̃[(δ∆Ŷ
i+1)2|Xi, Ki]

1/2.

Using properties of log-normal distributions [64] we have

EP̃[ϕ(Di,W
P
i )2|Xi, Ki] = EP̃[exp(‖Di‖2)|Xi, Ki]

= exp(‖Di‖2),

which, upon substitution, yields the desired result.
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APPENDIX B

USER’S GUIDE TO IFBSDE METHODS AND FBRRT

The purpose of this chapter is twofold: (1) to provide a condensed and more accessible

summary of the methods proposed in this work for future research, and (2) to contextualize

these methods in real-world systems and control-design methods.

B.1 Problem Setup

We begin by discussing which continuous-time problems are suited to the methods of this

work. We first restate the SOC problem from (2.1), (C-V ∗),

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWQ
s ,

J(t, xt;u[t,T ]) := EQ

[ ∫ T

t

`(s,Xs, us) ds+ g(XT )

]
,

V ∗(t, xt) = inf
u[t,T ]

J(t, xt;u[t,T ]).

One of the primary requirements of the application of this theory is local smoothness of

the value function. This is generally guaranteed by assumption (A1), and by f , σ, `, and

g being Lipschitz continuous in x. Thus, discontinuous functions like relays, quantization

functions, and indicator functions might be poorly suited for inclusion in components of

these functions. Even if a smoothed version is used, FBSDE methods may breakdown if

the cost functions have zero-valued derivatives in most parts of the state space, similar to

the “sparse rewards” concept often investigated in the reinforcement-learning community.

An illustration of this issue is available in the “go right problem”.
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Go Right Problem

SOC Problem Definition:

dXs =

velocity
control︷︸︸︷
10us ds+

noise︷︸︸︷
dWs , us ∈ [−1, 1] x0 = −5,

V ∗(t, x) = inf
us

E[g(XT )︸ ︷︷ ︸
smooth

Heaviside

], T = 1,

g(x) =


1 x ≤ 0

1− 3x2 + 2x3 0 ≤ x ≤ 1

0 x ≥ 1

The optimal value function is V ∗(0,−5) ≈ 0 with optimal policy u∗s ≡ 1.

Feynman-Kac FBSDEs (from HJB equations):

dXs = dWs, x0 = −5,

dYs = −10 min
u∈[−1,1]

{Zsu} ds+ Zs dWs, YT = g(XT ),

Numerical samples (M = 4000) of g(XT ) simulated:
I
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Go Right Problem (cont)

According to numerical sampling, (Yt = V ∗(t,Xt) ≡ 1, Zt ≡ 0) is a solution of

the FBSDE system, but the optimal value function should be V ∗(0,−5) ≈ 0. Suppose

instead the forward SDE corresponds to the optimal policy distribution.

Feynman-Kac FBSDEs (from HJB equations, optimal forward SDE distribution):

dXs = 10 ds+ dWs, x0 = −5,

dYs = −10 min
u∈[−1,1]

{Zs(u− 1)} ds+ Zs dWs, YT = g(XT ),

Numerical samples (M = 4000) of g(XT ) simulated:

According to numerical sampling, (Yt = V ∗(t,Xt) ≡ 0, Zt ≡ 0) is a solution of
I
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Go Right Problem (cont)

the FBSDE system, but ∂xV ∗ ≡ 0 will result in a singular policy. That is, there is no

gradient to use for determining the optimal control associated with this value function.

Issues like those encountered in the “go right” problem can be overcome by changing

the cost functions or by choosing the drift process Ks appropriately enough for the value

function to have meaningful curvature in the forward process distribution.

For deterministic optimal control problems (σ ≡ 0) and SOC problems where σ is

sometimes singular, we can approximate the problem using the vanishing viscosity method

(A4). Often, this simply amounts to adding independent noise to each dimension in the

state space not represented in the rows of σ, and for deterministic problems can be achieved

by making σ a constant diagonal matrix with positive elements. As discussed in the text

surrounding (A4), there is always a method to produce a σ which is an ε-modification of a

nominal σ̂ which is also nonsingular.

Although all theoretical results utilize a diffusion term σ which depends on state x, all

numerical results involved constant additive noise σ(t, x) ≡ σ ∈ Rn×n. While multiplica-

tive noise (e.g. σ(t, x) =
∑

i x
iAi for Ai ∈ Rn×n) is theoretically consistent under the

proposed methods, the significant increase in variance introduced by such problems de-

serves extra care and consideration (see, e.g., [73]). Since the drift term Ks can be selected

arbitrarily, conditions can be placed on it to ensure the forward distribution’s variance does

not explode with time.

In general, the smoothness of the value function determines how well these meth-

ods will perform. The discrete-time analysis shows that off-policy estimators are Taylor-

expansions whose error grows with the higher order terms of the expansion. Adding noise

to the problem can smooth the value function, but sometimes this approximation is unac-

ceptable for representing the underlying problem. For example, the mountain-car problem,

often studied in reinforcement literature, has a significant discontinuity in its value function
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which, if smoothed over, might produce a poor solution [50].

B.2 Discretization

Although the Euler-Maruyama method can be used to discretize a continuous-time prob-

lem into a discrete-time problem, other methods could be used, including avoiding the

continuous-time representation altogether. While this work began by proposing a method

to solve continuous-time problems, the discrete-time formulation begins with a discrete-

time representation (4.10), (4.12)

Xi+1 = Xi + F µ
i + ΣiW

Q
i , X0 = x0,

V µ
i (Xi) = EQ̃[

N−1∑
j=i

Lµj + g(XN) |Xi],

and thus, we can start with this representation alone. If we choose to use the Euler-

Maruyama approximation, the functions can be obtained as

F µ
i := Fi(Xi, µi(Xi)), Lµi := Li(Xi, µi(Xi)),

where µi : Rn → U is a discrete-time policy and

Fi(x, u) = ∆t f(ti, x, u), Li(x, u) = ∆t `(ti, x, u), Σi(x) =
√

∆t σ(ti, x),

where ∆t is the discretization time interval.

For systems whose dynamics are highly nonlinear, F µ
i could be a multiple-step pro-

gression of deterministic dynamics over finer time-interval steps, i.e.,

Fi(x, u) = xM ,

xj+1 = Fi,j(xj, u), j = 0, . . . ,M − 1, x0 = x,
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and/or a deterministic Runge-Kutta scheme. Although the SDE might not be precisely rep-

resented, faithfulness to the deterministic dynamics in many applications is probably more

important than faithfulness to the SDE, especially in problems where noise is arbitrarily

added for the purposes of applying the method properly.

B.2.1 Control-Dependent Diffusion

As a brief note, the choice to make Σi a function dependent only on state and not control

is somewhat arbitrary and, with appropriate care, we could reintroduce this dependence on

the policy, substituting Σi with Σµ
i . The primary modification to the results of this work

would pertain to policy optimization schemes and related comparison theorems.

B.3 Forward Sampling

In this section we discuss selection of the off-policy forward sampling distributions, char-

acterized by the choice of drift process {Ki} in the off-policy FSDE

Xi+1 = Xi +Ki + ΣiW
P
i , X0 = x0.

In Chapter 5 we discussed two types of sampling schemes, parallel-sampled, where each

trajectory is sampled independently of the others, and branch-sampled, where the trajec-

tory samples arise from a tree structure. It is important to note that the branch-sampling

methodology is a generalization of the parallel-sampled methodology and so we can al-

ways use the former to represent the latter. In fact, it is sometimes useful to warm-start the

FBRRT sampling with parallel-sampled trajectories following constant input, then expand

the tree from these initial trajectories.

There are costs and benefits to using parallel-sampled or branch-sampled distributions.

Multi-processing frameworks like CUDA can sample large numbers of parallel-sampled

trajectories very quickly, whereas the nearest-neighbor methods, like KD-trees, relied upon

151



Figure B.1: Trajectory distributions following the approximated optimal policy for the L1-
inverted pendulum problem after different iterations of the FBRRT algorithm. The first
iteration is colored red, followed by yellow, green, cyan, dark blue, and magenta. Thick
lines are mean trajectories.

by algorithms like RRT are very challenging to parallelize and thus become a bottleneck.

Further, RRT sampling frequently encounters the problem of encountering nodes with poor

local support for function regression. On the other hand, as was demonstrated in the results

of Chapter 5, we can often produce a near-optimal policy after just a handful of iterations

by more broadly sampling the reachable space. Thus, the choice of parallel or branched-

sampling depends largely on how much initial knowledge can be incorporated into the

algorithm about the likely distribution of optimal trajectories.

In underactuated systems, especially for problems where costs are non-quadratic, it

might be challenging to provide a near-optimal policy because there might be several lo-

cally optimal policies. Consider, for example, the trajectory distributions illustrated in Fig-

ure B.1 for the underactuated L1-inverted pendulum problem. The expected cost of these

trajectory distributions are relatively similar across iterations, and thus the cyan distribu-

tion is in a locally optimum basin, separated from the globally optimal magenta basin. The

FBRRT algorithm maintains sampling distributions in different parts of the state space and

thus can potentially consider multiple optimal basins during its backward pass. A parallel-
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sampled distribution might get stuck near the cyan distribution, unable to explore broadly

enough to find the policy which begins with controls moving in the opposite direction.

If speed is of higher concern, locally optimal policies are sufficient, and a good ini-

tial guess is available, parallel-sampling is likely to be faster and more robust for those

purposes. Densely clustered collocation points are more likely to robustly produce qual-

ity function approximations in regression. Exploration can be better achieved by adding

Brownian noise to the current policy dynamics since all that is needed is local exploration.

B.3.1 Feedback Linearizable Systems

We say a system is feedback linearizable if we have a feedback policy π which can cancel

out the nonlinear dynamics, yielding a linear system. Feedback linearizable systems are

especially well suited for iFBSDE methods under the assumption that the optimal policy is

near some linearized version of the controller. To see this, suppose we have the feedback

policy πi(x, v) which feedback linearizes the dynamics,

Fi(x, πi(x, v)) = Aix+Biv,

where v is some alternative input. We can select the drift {Ki} by choosing v as a linear

feedback controller v = νi(x) = Gix + gi designed according to any linear control design

method, e.g., LQR. The driftKi = AiXi+Bi(GiXi+gi) = ÃiXi+b̃i is thus parameterized

by the gain matrices of the linearized controller (Gi, gi). The improvement of the forward

sampling after every iteration of iFBSDE is the selection of these linear gains (Gi, gi),

which is easy to choose so as to guarantee good behavior using basic linear control theory.

The drift distribution selected in this way is realizable since it is sampled according to a

controller which could be executed under the feedback linearizable assumption.

Though the selection of drift can be constrained to the selection of linear gains, the value

function will still correspond to the nonlinear problem thanks to the off-policy estimator
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construction. That is, the optimal policy produced by iFBSDE methods will be optimal with

respect to the original nonlinear dynamics, not the transformed system. Further research

must be performed on how to update the gain matrices (Ãi, b̃i) with each iteration based on

the estimated value function Ṽ µ
i .

B.4 Estimators

The two proposed estimators for the value function are Taylor noiseless

Ŷ noiseless
i = Lµi + Y i+1 + Z

>
i+1Di +

1

2
tr(M i+1(I +DiD

>
i )),

and Taylor re-estimate

Ŷ re-est
i = Ṽ µ

i+1(Xi+1) + Lµi − Z
>
i+1W

P
i + Z

>
i+1Di +

1

2
tr(M i+1(I +DiD

>
i −W P

i W
P>
i )),

where

X
P

i+1 := EP̃[Xi+1|Xi, Ki] = Xi +Ki,

Y i+1 := Ṽ µ
i+1(X

P

i+1),

Zi+1 := Σ>i ∂xṼ
µ
i+1(X

P

i+1),

M i+1 := Σ>i ∂xxṼ
µ
i+1(X

P

i+1)Σi,

Di := Σ−1
i (F µ

i −Ki).

The noiseless estimator is preferable in general since its variance is low. When Di is small

or zero-valued and a large number of samples are included in the Monte Carlo sampling,

the re-estimate estimator provides lower bias.

When the dimension of the problem is high, one of the challenges with using estima-

tors like these is the computation of the Hessian ∂xxṼ
µ
i+1, since it is a matrix with O(n2)
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elements. When the value function representation is quadratic and Σi is constant this is not

a problem because M i+1 will be constant for all collocation points. However, for many

problems, diffusion is not large in every dimension, especially since it has been added ar-

bitrarily using the vanishing viscosity method. Thus a potential solution to this problem is

to set the small elements in Σi to zero in the computation of M i+1, and only evaluate the

relevant second derivatives.

B.5 Local-Entropy Weighted LSMC

The method proposed for approximating the value function is local-entropy weighted LSMC,

(5.12),

α∗i = arg min
α∈A

M∑
k=1

exp(−1

λ
ρki+1)(ŷki − φ(xki ;α))2,

where {(ρki+1, x
k
i , ŷ

k
i )}Mk=1 are the sample heuristic to be minimized, collocation points in

the state space, and estimator values, respectively, and λ > 0 is a tuning variable. Setting

the heuristic is an open research question, but the path-integrated heuristic, (5.15),

ρi+1 =
i∑

j=0

Li(Xi, ui) + Ṽ µ
i+1(Xi+1),

where {ui} is the control sampled by the drift, has the convenient interpretation as being the

equivalent to minimizing a dynamic programming problem resulting in the optimal value

at the initial time.

In practice, much care and attention must be afforded tuning λ. One strategy applied to

higher dimensional problems was to try different values in separate backward passes and

using the backward pass which results in the best performance. Finding more principled

methods of tuning this variable is a topic of future research, but structuring the weighted

LSMC in this way is likely to be crucial for branch-sampled distributions.
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B.6 Value Function Representation

Although not a primary focus of this work, how the value function is represented has a

significant impact on the efficacy of these methods. The only type of model studied in this

work are linear combinations of polynomial basis functions, namely Chebyshev functions.

For most cases we used a basis with polynomials up to degree 2. For the 1-dimensional

case, we demonstrated that using higher order polynomials can significantly improve ac-

curacy, up to a point of diminishing returns. When the dimension of the problem is high,

using higher order polynomials begins to become challenging since the number of basis

functions is O(nk) where n is the state space dimension and k is the order of polynomial

desired.

Especially for high-dimensional systems, another model which could be explored is

deep neural networks. The time required to train such large models changes the paradigm

from a method which might take on the order of seconds or minutes to hours or days.

As discussed in the conclusion, other parts of the algorithm can be modified to produce a

policy gradient algorithm.

B.7 Policy Improvement

Again, methods for improving the policy between iterations were not a primary focus for

this work and require problem-based attention. When dynamics are control-affine and run-

ning costs are L2 or L1 with respect to u (or independent of u), there is theoretically an

analytic solution for the optimal policy with respect to an optimal value function.

One of the biggest challenges iFBSDE faces is large jumps in policy, which results in

instability since the trajectories enter a part of the state space for which the value function

is poorly approximated. Although not explored in this work, methods which change the

policy by small amounts instead of trying to optimize the policy completely might perform

better, especially for parallel-sampled algorithms. Again, this motivates the reorienting of
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the methods in this work to a policy-gradient method from deep reinforcement learning.
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[41] V. Gómez, H. J. Kappen, J. Peters, and G. Neumann, “Policy search for path inte-
gral control,” Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8724 LNAI,
no. PART 1, pp. 482–497, 2014.

[42] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggres-
sive driving with model predictive path integral control,” Proceedings - IEEE Inter-
national Conference on Robotics and Automation, vol. 2016-June, pp. 1433–1440,
2016.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[44] N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, and T. Erez, “Learning contin-
uous control policies by stochastic value gradients,” Advances in Neural Information
Processing Systems, vol. 2015-Janua, pp. 2944–2952, 2015. arXiv: 1510.09142.

[45] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor,” 35th Interna-
tional Conference on Machine Learning (ICML), vol. 5, pp. 2976–2989, 2018. arXiv:
arXiv:1801.01290v2.

[46] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang,
P. Abbeel, and J. Ba, “Benchmarking model-based reinforcement learning,” arXiv
preprint arXiv:1907.02057, 2019.

[47] P. Morere, G. Francis, T. Blau, and F. Ramos, “Reinforcement Learning with Proba-
bilistically Complete Exploration,” 2020. arXiv: 2001.06940.

[48] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Advances in neural
information processing systems, 2000, pp. 1057–1063.

[49] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[50] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

161

http://arxiv.org/abs/1510.09142
http://arxiv.org/abs/arXiv:1801.01290v2
http://arxiv.org/abs/2001.06940


[51] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The Interna-
tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[52] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal
motion planning,” Robotics Science and Systems VI, vol. 104, no. 2, 2010.

[53] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using RRT* based ap-
proaches: a survey and future directions,” Int. J. Adv. Comput. Sci. Appl, vol. 7,
no. 11, pp. 97–107, 2016.

[54] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic stochastic op-
timal control via incremental sampling-based algorithms,” in IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning, Orlando, FL, 2014.

[55] I. Exarchos, E. A. Theodorou, and P. Tsiotras, “Stochastic L1-optimal control via
forward and backward sampling,” Systems and Control Letters, vol. 118, pp. 101–
108, 2018.

[56] S. Peng, “Probabilistic interpretation for systems of quasilinear parabolic partial dif-
ferential equations,” Stochastics Stochastics Rep, vol. 37, no. 1-2, pp. 61–74, 1991.

[57] S. Resnick, A Probability Path. Birkhäuser Verlag AG, 2003.
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