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Abstract 
The tectonic history of the Gulf of Mexico (GOM) is a subject for ongoing debate. The nature of the 
crust in the northwestern and central parts of the basin remains poorly understood. Joined interpre-
tation of two 2D seismic cross sections—GUMBO1 and GUMBO2—with potential fields (gravity and 
magnetics) constrained with available well data allows testing various hypotheses about the subsur-
face structures and crustal architecture in the study area. In the northwestern GOM, two contradict-
ing hypotheses about the nature of the crust were tested—exhumed mantle versus a thinned and 
intruded continental crust resulted from magma-rich rifting. The nature of the crust was also inves-
tigated in the central GOM, where the disagreement in the location of the ocean-continent boundary 
(OCB) from various published tectonic models reaches 140 km (87 mi). The results suggest that the 
crust in the study area is stretched continental with multiple magmatic additions represented by 
dense and highly magnetic bodies with fast seismic velocities, presumably introduced during the 
magma-assisted rifting of the GOM. The contact between oceanic and continental domains, i.e., the 
OCB, is interpreted to be near the Sigsbee Escarpment for both modeled lines. The analysis does not 
support the presence of thick presalt sediments in the study area. This result questions the currently 
accepted tectonic reconstructions of the GOM as thick presalt deposits are imaged confidently by 
various seismic surveys along the western Yucatan margin, which is believed to be a conjugate for 
the study area. This apparent mismatch in distribution of the presalt sediments requires further in-
vestigation. 
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Introduction 
 
Many tectonic models have been developed that describe the opening of the Gulf of Mexico 
(GOM) basin, e.g., Pindell and Kennan (2001), Bird et al. (2005), Mickus et al. (2009), Kneller 
and Johnson (2011), Hudec et al. (2013), Van Avendonk et al. (2015), Nguyen and Mann 
(2016), and Lundin (2017). The present-day consensus implies that the GOM initiated as a 
continental rift in the Triassic, followed by a Late Jurassic–Early Cretaceous seafloor 
spreading event, during which the Yucatan crustal block moved away in a counterclock-
wise manner from North America. This study focuses on the northwestern and central 
parts of the GOM (Fig. 1), where two seismic refraction lines—GUMBO1 (Van Avendonk 
et al., 2015) and GUMBO2 (Eddy et al., 2018)—revealed the complexity and heterogeneity 
of the crust (Fig. 2). 

The first of two models presented here follows profile GUMBO1 in the northwestern 
GOM; it crosses the region where two opposing models for the nature of the crust were 
proposed. The analysis of Mickus et al. (2009) was based on a potential field model con-
strained by a few old refraction data (Ewing et al., 1960; Hales et al., 1970) and concluded 
the necessity of extensive volcanism associated with the rifting stage based on the highly 
variable observed magnetic field. In contrast, the model of Van Avendonk et al. (2015) was 
based on the new refraction profile denoted as GUMBO1 (Fig. 2a). The study concluded 
that the rifting resulted in mantle exhumation (Fig. 2b); the presence of significant mag-
netic anomalies was explained by preexisting crustal fabric. This study addresses the ob-
vious contradiction between these two end-member models via integrative geophysical 
analysis. Both hypotheses were modeled to test how they correspond or oppose the avail-
able geologic and geophysical data. 

The second model presented here is aligned with the line GUMBO 2 in the central 
GOM; it crosses the region where the published ocean-continent boundaries (OCBs) differ 
the most—up to 140 km (87 mi) as shown in Figure 1. The integrative approach allowed 
testing two different OCB locations to see which one correlates better with the multitude 
of geophysical data sets used for the study. 

The following data sets from the public domain were used for the analysis: (1) seismic 
data (Radovich et al., 2011; Van Avendonk et al., 2015; Eddy et al., 2018), (2) the free-air 
gravity data from Sandwell et al. (2014), (3) the total magnetic intensity grid from the 
United States Geological Survey (USGS) airborne and marine magnetic data compilation 
(Bankey et al., 2002), (4) the topography/bathymetry grid from Smith and Sandwell (1997), 
(5) density-velocity well logs (Hilterman, 1998) to constrain the physical properties of the 
sedimentary section, (6) observations from the deep ocean drilling expedition (Buffler and 
Shipboard Scientific Party, 1984) to constrain the physical properties of the upper conti-
nental crust, and (7) a published salt thickness map in the study area (Filina et al., 2015). 
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Figure 1. Google Maps screenshot of the GOM. The study area is the northwestern and 
central parts of the basin. The OCB locations from several recent tectonic models are 
shown (green, Pindell et al., 2016; light blue, Hudec et al., 2013; white, Christeson et al., 
2014; red, Nguyen and Mann, 2016). The white circle shows the DSDP well from Leg 77 
(Buffer and Shipboard Scientific Party, 1984) that penetrated the basement and confirmed 
the presence of intruded continental crust. The orange profiles are four refraction lines 
from the GUMBO experiment; the lines GUMBO1 (Van Avendonk et al., 2015) and 
GUMBO2 (Eddy et al., 2018) were used in this study. The gray-shaded polygon is a 3D 
seismic survey from Filina et al. (2015). The black line shows the seismic reflection profile 
GulfSPAN2000 from Radovich et al. (2011). The southern edge of the salt is marked by 
the Sigsbee Escarpment. The yellow circles show the locations of the OCB: from this study 
for GUMBO1 and GUMBO2, the interpreted OCB from a similar integrated analysis of 
Liu et al. (2019) for GUMBO3, from Liu (2018) for GUMBO4, and from Filina and Hartford 
(2019) for three profiles in the Yucatan margin (the yellow lines). 

  



F I L I N A ,  I N T E R P R E T A T I O N  7  ( 2 0 1 9 )  

4 

 
 

Figure 2. Seismic data used for the study. (a and b) The results of the seismic refraction 
experiment along line GUMBO1 from Van Avendonk et al. (2015) and (c) the results of 
the seismic refraction experiment for GUMBO2 from Eddy et al. (2018). See the locations 
of both lines in Figure 1. Sections (a and c) show compressional seismic velocities VP (in 
km∕s); the same scale bar applies to both lines shown at the bottom of section (c). Section (b) 
illustrates the geologic interpretation for GUMBO1 corresponding to the seismic velocities 
shown in (a). The dashed black line in (a) is the interpreted base of the salt. The zone of 
slow crustal velocities in the range between 210 and 255 km of GUMBO1 is interpreted as 
Jurassic sediments overlying exhumed mantle. Because the interpreted seismic velocity 
of these Jurassic sediments is in the order of 5–5.5 km∕s, the thick layer of sediments (up 
to 4 km) with the same velocity range was interpreted to overly the hyperextended 
(≈7 km) continental crust. The red bar in (a) shows the extent of the seismic raytracing test 
(Fig. 5) performed for the instrument denoted by a red triangle. 
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Geologic settings 
 
Seismic cross sections shown in Figure 2 image multiple subsurface layers: the thick sedi-
mentary cover overlying the crust of various thickness with some pronounced heteroge-
neities and the top of the mantle. All of these should be included in the integrated 
subsurface models, and the corresponding physical properties (densities and magnetic 
susceptibilities) must be properly constrained during the analysis using either well data 
(sediments, upper crust) or the published values for the rocks of the deeper layers. 

The sedimentary section in the GOM exceeds 15 km (~49,212 ft), and it includes a sig-
nificant volume of salt that resides at two levels: the deeper salt layer (autochthonous, also 
called the Louann salt) and the shallower one (allochthonous salt, mobilized Louann salt 
as clastic sediments filled the basin). It is well known that the presence of salt bodies within 
the sedimentary section obscures seismic reflection imaging, making it difficult to interpret 
the base of the salt as well as distorting the subsalt structures. The rock salt has a much 
higher seismic velocity (4.5 km∕s; Telford et al., 1990) with respect to most of the sedimen-
tary rocks (1.6–5 km∕s as shown in Fig. 2a and 2c). Thus, including proper salt structures in 
seismic data is crucial for accurate ray tracing (in refraction interpretation) and for migra-
tion and depth conversion (in reflection surveying). Moreover, salt also has a significantly 
lower density than most of the sedimentary section (Telford et al., 1990); thus, it has a neg-
ative density contrast with most of the sediments and generally results in a negative grav-
ity anomaly (such as the one seen in Fig. 3a). That is why the joint interpretation of seismic 
and gravity data can be used to derive a more confident salt model. 

The integrated analysis of 3D seismic data and the gravity field in the northwestern 
GOM (Filina et al., 2015) resulted in a salt-thickness map (Fig. 3b). The salt thickness ex-
ceeds 13 km (~42,650 ft) in the study area—the region known as a “salt wall,” which can 
be clearly seen as a strong negative anomaly in gravity data (Fig. 3a). The southeastern end 
of the line GUMBO1 crosses this salt wall. However, this thick salt is missing in the seismic 
refraction model (Fig. 2a and 2b) causing the errors in the velocity values of the structures 
beneath the salt. This study aims to test if the lack of the salt wall with the high seismic 
velocities in the seismic refraction model (Fig. 2a) could result in the slow velocity zone in 
the crustal layer, leading to the overall conclusion about mantle exhumation (Fig. 2b). 
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Figure 3. Figure from Filina et al. (2015) illustrating the correlation between 
(a) the gravity field and (b) the salt thickness from 3D seismic survey. The south-
eastern end of profile GUMBO1 goes over the salt wall—the region with salt 
thickness over 13 km (∼42,650 ft) that corresponds to a strong negative gravity 
anomaly. This salt is missing in the seismic model of GUMBO1 (Figs. 2a and 2b, 
Van Avendonk et al., 2015) leading to inaccurate velocities for the crustal layers 
and resulting in exhumed mantle interpretation; see Figs. 4–6). 

 
According to Galloway (2009), the Louann salt was deposited in the northern GOM 

very early in the history of the basin. This implies that a thin sedimentary section (if any) 
would be expected between the deeper salt and the top of the crust (basement). However, 
a few-kilometer-thick sedimentary section below the autochthonous (deep) salt, referred 
to as “presalt” sediments, is known from seismic reflection data along the Yucatan margin 
and in the northeastern GOM (Williams-Rojas et al., 2012; Saunders et al., 2016; Horn et al., 
2017; O’Reilly et al., 2017). In the study of Filina et al. (2015), shown as a shaded gray poly-
gon in Figure 1, allochthonous and autochthonous salt structures as well as the basement 
boundary were mapped, concluding no presalt sediments in the study area. In contrast, 
the study of Van Avendonk et al. (2015) along a seismic refraction line GUMBO1 that 
crosses the 3D survey coverage from Filina et al. (2015) suggests that an approximately 
4-km-thick layer of subautochthonous salt sediments is present beneath the salt (Fig. 2b). 
This conclusion is based on the presence of a zone of slow seismic velocities (5.0–5.5 km∕s) 
in the range between 210 and 255 km that was interpreted by Van Avendonk et al. (2015) 
as the presence of “Jurassic sediments” over an exhumed mantle. This interpretation, in 
turn, implied that for the first 200 km of the line, the rocks below the Louann salt with 
velocities up to 5.5 km∕s should also be attributed to the presalt sedimentary section (Fig. 
2b). Consequently, the thickness of the continental crust varies from approximately 14 km 
at the beginning of the line to approximately 6 km in the center, whereas the crust pinches 
out at the range of approximately 210 km (Fig. 2a and 2b). This exhumed mantle concluded 
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by Van Avendonk et al. (2015) in the northwestern GOM resembles the overall crustal ar-
chitecture of hyperextended magma-poor rifted margins of West Iberia–Newfoundland 
(Pérez-Gussinyé, 2012). The observed strong magnetic variations that cannot be attributed 
to magmatic addition in this scenario are explained by the presence of preexisting crustal 
fabric. In addition, the zones of fast seismic velocities in the lower continental crust (i.e., at 
the distance of 120 km, Fig. 2a) are explained by Van Avendonk et al. (2015) as possible 
gabbroic intrusions, resulting from adiabatic decompression of the rising asthenospheric 
mantle during rifting stage. This study aims to test if the thick presalt sediments over hyper-
extended crust and exhumed mantle, interpreted by Van Avendonk et al. (2015), are sup-
ported by observed potential fields. 

Both profiles start in the continental domain in the north, and they end over the oceanic 
crust in the south. The location of the OCB that defines the contact between two domains 
is still being debated in the study area as is illustrated in Figure 1. In the northwestern 
GOM, Van Avendonk et al. (2015) put it inbound of the salt wall region (approximately at 
the distance of 255 km along the line, Fig. 2b), whereas Filina et al. (2015) suggest the out-
bound location, closer to the Sigsbee Escarpment. In this study, two different OCB loca-
tions—the one proposed by Van Avendonk et al. (2015) and the one near the Sigsbee 
Escarpment (consistent with Filina et al., 2015) were tested. 

In the central GOM, the location of the OCB varies dramatically between published 
models (Fig. 1). The three models (Christeson et al., 2014; Nguyen and Mann, 2016; Pindell 
et al., 2016) suggest the OCB location based on the tectonic reconstructions to ensure the 
tight fit between the Yucatan crustal block and Texas and Louisiana margin. On the other 
hand, the OCB of Hudec et al. (2013) is based on the interpretation of industry seismic data, 
suggesting locations up to 140 km (87 mi) to the south with respect to other models. The 
seismic lines GUMBO2 and GulfSPAN2000 cross the region under debate. The OCB inter-
pretation of Eddy et al. (2018) supports the Hudec et al.’s (2013) model suggesting that the 
tectonic reconstructions may need to be revised. In this study, two alternative OCB loca-
tions were modeled to see which one agrees better with potential fields. 
 
Integrated geophysical analysis 
 
The integrated geophysical analysis consists of the following steps: at first, the subsurface 
model composed of various rock layers (several sedimentary units, upper and lower crusts, 
and the upper mantle) is built based on seismic data, and the physical properties (densities 
and magnetic susceptibilities) of each layer are then assigned from the best available 
sources (discussed below). Once the model is ready, the gravity and magnetic effects due 
to this model are computed and compared with the measured values (Bankey et al., 2002; 
Sandwell et al., 2014). As the mismatches between computed and measured potential fields 
are analyzed, the model is adjusted and the process repeats again until a reasonable fit 
between the fields is reached. The following criteria are expected for the final model: It 
should agree with all of the data (seismic, gravity, and magnetics), it should obey all of the 
known geologic constraints (such as reasonable physical properties), and it should remain 
geologically valid. 
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The physical properties (densities and magnetic susceptibilities) were assigned to the 
following geologic layers outlined by seismic interpretation: 

(1) Water with a density of 1030 kg∕m3 and zero magnetic susceptibility. This is the 
best-known boundary in the model (constrained by the data of Smith and Sand-
well, 1997), and it was kept unchanged during the analysis. 

(2) The nonmagnetic sedimentary section was divided into several layers with density 
values varying from 2250 to 2550 kg∕m3. The density assignment was based on the 
velocity-density pairs published by Hilterman (1998) and used in Filina et al. 
(2015) to derive the seismic velocity-density relationship for 3D analysis. 

(3) Salt was assigned the density of 2150 kg∕m3 and zero magnetic susceptibility to be 
consistent with previous models (Filina et al., 2015). 

(4) The continental crust was composed of two layers: the upper and the lower crustal 
units. The final models for the GUMBO1 and GUMBO2 lines have the following 
density values: 2780 kg∕m3 (upper) and 2900 kg∕m3 (lower). These values agree 
with the findings from DSDP Leg 77 (Buffer and Shipboard Scientific Party, 1984) 
for the upper crust (averaged density 2780 kg∕m3) and with the published esti-
mates of Christensen (1996) for the lower crust. Magnetic susceptibilities were as-
signed as 500 μcgs for the upper crust and 1000 μcgs for the lower one (Hunt et 
al., 1995). 

(5) The oceanic crust was also split in two layers: the top oceanic layer (basalts) and 
the bottom oceanic layer composed of gabbro. Because the oceanic crust in the 
GOM has not been drilled, the physical properties were assigned based on the 
published values and validated throughout the modeling. The density values of 
2650 and 2950 kg∕m3 (Carlson and Herrick, 1990) were given for the top and bot-
tom oceanic layers, respectively, and the corresponding magnetic susceptibilities 
were 4000 and 8000 μcgs (Hunt et al., 1995). 

(6) The magmatic intrusions necessary to match the observed magnetic field were as-
signed the same physical properties as the base layer (gabbro) of the oceanic crust, 
i.e., density of 2950 kg∕m3 and a magnetic susceptibility of 8000 μcgs. 

(7) The mantle was given a density of 3300 kg∕m3 and zero magnetic susceptibility. 
 

The depths to the model boundaries, i.e., the contacts between individual layers, were 
constrained during the modeling. The data of Smith and Sandwell (1997) were used for the 
topmost model boundary (bathymetry); the agreement of this boundary with the seismic 
image further validates proper spatial location of each subsurface model. The top and base 
of the crust (i.e., basement and Moho boundaries, respectively) were constrained by the 
seismic refraction data shown in Figure 2 (with the exception of the “exhumed mantle” 
region of GUMBO1). The sedimentary layers were developed based on the model of Van 
Avendonk et al. (2015) for GUMBO1 (Fig. 2b), whereas for GUMBO2, they were guided by 
seismic reflection data along a coincident profile GulfSPAN 2000 from Radovich et al. 
(2011). 
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Two 2D integrated geophysical models were developed along seismic refraction lines 
(Fig. 2a and 2c) to study the crustal architecture and the tectonic structures of the north-
western and central GOM. Because these targets represent relatively deep regional fea-
tures, the 2D assumption adopted for modeling remains valid. In contrast, if the focus of 
the study was on the shallower salt bodies, as shown in Filina et al. (2015), the 3D modeling 
would be mandatory to properly take into account the effects of the highly variable salt 
structures. 
 
GUMBO1 
 
The initial reference model is presented in Figure 4; it was developed based on the inter-
pretation from Van Avendonk et al. (2015) shown in Figure 2b. The overall regional fit was 
achieved in gravity and magnetic fields with the exception of several key mismatches de-
scribed below. 

The calculated magnetic field shows a distinct magnetic anomaly associated with a 
transition between the section of nonmagnetic sediments to the highly magnetic oceanic 
crust at the model range of 255 km (it is marked as model’s OCB in the top panel of Fig. 4). 
This calculated magnetic anomaly is inboard of a similar signal in the measured field, sug-
gesting the shift in the OCB location to the southeast. This illustrates the lateral sensitivity 
of the model to the location of the OCB. It requires the OCB to be shifted to the range of 
305 km to obtain a good fit between observed and modeled magnetic fields. The observed 
magnetic signature also demands the existence of highly magnetic bodies in the lower 
crust, some of which are coincident with the zones of high seismic velocities (Fig. 2a). At 
least one of these magnetic intrusive bodies is reversely magnetized (it is colored in a 
lighter shade of gray in Fig. 4). 

In gravity, the overall regional fit between observed and measured fields was achieved 
for the continental domain (the first 200 km along GUMBO1, Fig. 4). However, this fit re-
quires anomalously high density values for the continental crust layers (2850 kg∕m3 for the 
upper crust and 3000 kg∕m3 for the lower one). If the more realistic values of 2780 and 2900 
kg∕m3 were assumed for the continental crust layers, the computed gravity response for 
the first 200 km of the model would be approximately 20 mGal lower that the one shown 
in Figure 4, causing a dramatic regional misfit. Because the gravity signature depends pri-
marily on two factors—the density contrasts between the layers in the model and the ge-
ometries/thicknesses of these layers—in theory, they can both be adjusted during modeling. 
In practice, the depths and thicknesses of the individual rock units are constrained from 
refraction data, so the density remains the only parameter available for modification to 
obtain a reasonable regional match between observed and computed gravity data. In the 
case of the reference model (Fig. 4), the densities of both crustal units have to be anoma-
lously high as reported above. 
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Figure 4. The initial reference potential fields analysis for GUMBO1 based on the inter-
pretation of Van Avendonk et al. (2015) (the image beneath the model panel at the bot-
tom). The top two panels show the fit in magnetic and gravity fields, the observed data 
are solid lines, and the calculated responses due to the model in the bottom panel are 
dashed black lines. UCC and LCC indicate the upper and lower continental crustal layers. 
The intrusive bodies in the lower crust are required to explain the observed magnetic sig-
nature. The intrusive body with reversed magnetic polarity is colored in a lighter shade 
of gray. Please refer to the text about the physical properties of each layer in the model. 
The mismatches between the observed and calculated potential fields indicate that this 
model requires some adjustments (see the text for details). Vertical exaggeration of the 
cross section is nine. 
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Because the basement was not ever drilled in the study area, no hard constraints can be 
posted on the physical properties of the upper crust. However, there is the DSDP well in 
the southeastern part of the basin (DSDP Leg 77, site 538A; Buffer and Shipboard Scientific 
Party [1984], shown as a white circle in Fig. 1) that penetrated early Paleozoic metamorphic 
rocks intruded with Early Jurassic diabase dikes with normal and reverse magnetic polar-
ities. The average density value of the upper crustal rocks from that well is 2780 kg∕m3. 
With the lack of better constraints in the study area, the measurements from that well were 
used to validate the density of the upper crust derived during the modeling as well as to ex-
plain the presence of the reversely magnetized intrusive body revealed by magnetic modeling. 

In addition to the high crustal densities required to fit gravity in the continental domain 
of the initial model (Fig. 4), two large mismatches of opposite sign were observed. The 
smaller negative one reflects the missing salt in the sedimentary section. The larger positive 
misfit coincides with the region of exhumed mantle, and it indicates that higher densities 
(i.e., crustal units instead of Jurassic sedimentary layer) are required in the subsurface to 
better correspond with the measured gravity. 

As mentioned above, a reasonable regional fit in gravity data requires anomalously 
high density values for the hyperextended crust (up to 7 km thin). This crust is overlain by 
a thick presalt sedimentary section that was interpreted by Van Avendonk et al. (2015) 
based on seismic velocities of 0.5–5.5 km∕s (Fig. 2a and 2b) derived from the raytracing, i.e., 
propagation of seismic energy through the model. As an alternative interpretation, the 
subautochthonous sedimentary section with seismic velocities from 5.0 to 5.5 km∕s may be 
attributed to the upper crust. This will increase the thickness of the stretched continental 
crust to approximately 17 km at the northwestern end of the line and to approximately 10 
km in the center and near the OCB as well as decrease the densities to more realistic values 
(2780 and 2900 kg∕m3, respectively). 

I hypothesize that the zone of the slow seismic velocities at the crustal level (Fig. 2a, the 
distances between 210 and 255 km) resulted from the raytracing through the sedimentary 
section that lacked the large salt volume (i.e., missed “salt wall”). To test this hypothesis, 
seismic raytracing was performed using software from Burger et al. (2006) for two models 
shown in Figure 5. The data for one instrument deployed at the model distance of 240 km 
(shown as the red triangle in Fig. 2a) were digitized from Figure 2 of Van Avendonk et al. 
(2015) for the range of sources shown by a red bar in Figure 2a. The first model did not 
have thick salt in the sedimentary section, but it had slower deep layers, i.e., similar to 
“sediments over exhumed mantle” from Van Avendonk et al. (2015), and the second model 
included the large salt body in the sediments overlying the 10-km-thick stretched conti-
nental crust (as suggested by an alternative interpretation—no presalt sediments and thus 
thicker crust). Figure 5 shows that the computed seismic traveltimes for both models match 
the observed data, supporting the statement that the missing salt wall in the sedimentary 
section may result in an artificial exhumed mantle underneath. Although this test uses 
somewhat oversimplified models (i.e., layers with constant velocities), it illustrates the 
nonuniqueness of the interpretation of seismic refraction data alone. 
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Figure 5. The seismic traveltimes through the disputed region along line GMBO1. The 
location of the instrument (the red triangle) and extent of the models are shown in Figure 
2a. The thick curves are observed data digitized from Figure 2 of Van Avendonk et al. 
(2015); Ps and Pg are the refractions within sediments and from the basement, respec-
tively, and PmP is the reflection from the Moho boundary. The dashed curves are com-
puted traveltimes (with the software from Burger et al., 2006) for two models shown on 
the right; the numbers are the VP velocities in km∕s. The top model (model 1) does not 
include the salt wall, but it has the exhumed mantle, and the bottom model (model 2) 
includes the salt wall over the 10 km thick stretched continental crust (as suggested by an 
alternative interpretation without presalt sediments). The top portions of both models are 
identical. 

 
The final model (Fig. 6) has the following changes with respect to the initial reference 

model: the missing “salt wall” is added per constraints from 3D seismic (Filina et al., 2015; 
Fig. 3), exhumed mantle is removed as suggested by gravity mismatch (Fig. 4), and con-
sistent with the seismic refraction test (Fig. 5) the OCB is shifted to the southeast closer to 
the Sigsbee Escarpment to acknowledge magnetic signal in Figure 4, and the continental 
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crust is thickened by removing the layer of presalt sediments yielding more realistic crustal 
density values (2780 and 2900 kg∕m3 for the upper and the lower crustal layers, respec-
tively). As the final model (Fig. 6) agrees with all the data sets used in the study, it repre-
sents the preferred solution for the cross section GUMBO1. It is worth mentioning that this 
final model includes some sediments beneath the Louann salt at the range of 300 km near 
the OCB (Fig. 6). These do not represent presalt sediments; instead, these are younger than 
the salt deposits that were overridden by a deep salt (Hudec et al., 2013). 
 

 
 

Figure 6. The final potential fields model for the GUMBO1 line. This model incorporates 
the missing salt wall and ignores exhumed mantle and “presalt sediments” interpreted 
by Van Avendonk et al. (2015). The error in the initial model (Fig. 4) is attributed to miss-
ing thick salt in salt wall region. This model is consistent with GUMBO2 in terms of total 
crustal thickness (approximately 10 km thick continental crust near OCB, approximately 
6.5 km thick oceanic crust) and the overall OCB location (near the Sigsbee Escarpment). 
The same intrusive bodies in the lower crust are included into this model, as in the one 
shown in Figure 4. The physical properties of each layer are described in the text. Vertical 
exaggeration is nine (the same as shown in Fig. 4). 
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GUMBO2 
 
A 2D model aligned with refraction line GUMBO2 was developed with the objective to test 
different OCB locations proposed in the central GOM (Figure 1). The preferred potential 
fields model is shown in Figure 7. In this model, the OCB was placed at the range 340 km 
near the Sigsbee Escarpment, where the crustal thickness changes from approximately 10 
km in the continental domain to approximately 7 km (the thickness of normal oceanic 
crust). Eddy et al. (2018) define the OCB for GUMBO2 line in the range of 310 km. 

The magnetic signal along GUMBO2 includes several significant anomalies (Fig. 7) that 
are coincident with the regions of high seismic velocities in refraction data (Fig. 2c). Similar 
to GUMBO1, these were interpreted as magmatic intrusive bodies that were emplaced in 
the lower continental crust presumably during the rifting stage, which is consistent with 
the interpretation of Eddy et al. (2018). The similar high-velocity regions were also outlined 
at the base of the lower continental crust of the profile GUMBO3 (Eddy et al., 2014) and 
were modeled by Liu et al. (2019) as highly magnetic and dense intrusive bodies. To match 
the observed magnetic anomalies, the magnetic susceptibility of these intrusive bodies 
should be 8000 μcgs, which is the same as the magnetic property of the lower oceanic crust 
in the model and is within the possible range for mafic igneous rocks according to Hunt et 
al. (1995). 
 

Figure 7 on next page 
Figure 7. The preferred potential fields model for line GUMBO2 through the central GOM. 
See Figure 4 for description. The sedimentary layers in the model constrained by the re-
flection seismic (Radovich et al., 2011), whereas the crustal structures are from GUMBO2 
(Eddy et al., 2018, Fig. 2c). The physical properties (densities and magnetic susceptibili-
ties) assigned to the layers are the same as for the preferred model for GUMBO1 (Fig. 6) 
and are described in the text. OC denotes oceanic crust. The OCB for this model is at the 
range of 340 km; interpreted OCB from Eddy et al. (2018) is at approximately 310 km. Two 
alternative OCB locations from published models are shown; one of them at the range of 
190 km (as in Christeson et al., 2014; Nguyen and Mann, 2016) was also tested (see the text 
for details). The vertical exaggeration is 8.5. 
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Caption for Figure 7 on previous page 
 
Discussion 
 
It is well known that the solution of the inverse problem of potential fields is not unique. 
In my models, the depths to the layers are constrained by seismic data, and they are fixed 
during the modeling process. Thus, the physical properties and the locations of the sub-
surface structures (i.e., OCB or intrusive bodies) are the only two “knobs” that can be used 
to obtain a desirable fit between the observed and calculated potential fields. The densities 
of sedimentary section are constrained based on the multiple well data from Hilterman 
(1998). The density of the upper crust was validated from the only sample of the extended 
continental crust in the GOM (basement penetration in DSDP Leg77, although it is far away 
of the study area), and it is also within the expected range according to Christensen and 
Mooney (1995). The physical properties for the rest of the model were derived through the 
modeling, and they are also within the published ranges (Carlson and Herrick, 1990; Chris-
tensen and Mooney, 1995; Hunt et al., 1995). 
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Overall, the integrative analysis of multiple geophysical data sets presented here, 
namely, seismic reflections and refraction data and potential fields, allows testing various 
geologic scenarios. For the line GUMBO1, it shows that the hypothesis about mantle exhu-
mation in the northwestern GOM is not supported by gravity and magnetics (Fig. 4). In 
contrast, the modeling is more consistent with the magma—assisted rifting hypothesis, 
resulted in thinned and intruded continental crust without significant presalt sediments 
(Fig. 6). The inferred zones of dense and highly magnetic rocks with fast VP values may be 
interpreted as either “rifted volcanic margin” (consistent with Mickus et al., 2009) or as 
possible gabbroic intrusions, resulting from adiabatic decompression of the rising asthen-
ospheric mantle during the rifting stage (as suggested by Van Avendonk et al., 2015). Po-
tential field data are inadequate to discriminate between these two possibilities. However, 
the former is in agreement with the results from the DSDP basement well mentioned 
above, which encountered the upper continental crust intruded by Early Jurassic diabase 
dikes with various magnetic polarities (Buffer and Shipboard Scientific Party, 1984). That 
is why the stretched and thinned continental crust with multiple magmatic additions pre-
sumably emplaced during magma-assisted rifting is concluded in the northwestern GOM 
based on the preferred model for the line GUMBO1 (Fig. 6). The present study does not 
intend to refute the results of Van Avendonk et al. (2015) from the analysis of refraction 
data only. Instead, this study offers an alternative interpretation and aims to illustrate the 
benefits of integrative approach to analysis of geophysical data. 

For profile GUMBO2, the preferred potential field model (Fig. 7) has the OCB located 
at the range 340 km near the Sigsbee Escarpment. This deviates dramatically from several 
tectonic models shown in Figure 1. The alternative OCB location is suggested by the mod-
els of Christeson et al. (2014) and Nguyen and Mann (2016) at the range of 190 km. Because 
the depths to the layers in the model are constrained by refraction data, this alternative 
OCB location makes the assumed oceanic crust in the middle of the line to be 10–11 km 
thick, which is thicker than normal oceanic crust. Despite that this crustal thickness makes 
the hypothesis of continental affiliation in the disputed region to be preferable, this alter-
native OCB location was also modeled. For the alternative model (i.e., OCB location at the 
range of 190 km), the gravity fit remains reasonable because the decrease in density be-
tween the upper continental crust (2780 kg∕m3) to oceanic layer 2 (basalts, 2650 kg∕m3) is 
somewhat compensated by the density increase from the lower continental crust (2900 
kg∕m3) to oceanic layer 3 (gabbro, 2950 kg∕m3). In magnetics, to maintain the fit between 
the observed and calculated anomalies, the magnetic susceptibility of the oceanic crust 
must decrease from 8000 μcgs for the preferred model (Fig. 7) to zero for the alternative one. 

The seismic velocities of the crust in the disputed region along GUMBO2—in the range 
of 190 to 340 km—vary from 5 to 6.5 km∕s for the upper layer and 6.5 to 7 km∕s for the lower 
one (Fig. 2c). These seismic velocities may be assigned to oceanic and continental crustal 
units, and it is not possible to discriminate between these domains just on the seismic ve-
locities alone. Eddy et al. (2018) compare the velocity versus depth profile of the crustal 
layer of GUMBO2 with the other rifted continental margins and conclude that the nature 
of the crust in the center of the GUMBO2 line is continental and is consistent with an inter-
mediate volcanic rifted margin. Despite that the continental affiliation also appears to be 
more likely from the integrated analysis (Fig. 7); the potential fields, however, do not offer 
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a unique distinction. As described earlier, the alternative model with the OCB at the range 
of 190 km would suggest thicker than normal and nonmagnetic oceanic crust. The thicker 
oceanic crust has been recorded in the northeastern GOM for the GUMBO3 (Eddy et al., 
2014), although the seismic velocities for the oceanic domain of that line are much higher 
(6–7 km∕s for the upper crust, and exceeding 7 km/s for the lower one). In addition, a similar 
integrated analysis along GUMBO3 (Liu et al., 2019) suggests that the oceanic crust re-
quires high magnetic susceptibility values to explain observed magnetic signals, which 
contradicts the nonmagnetic oceanic crust required for an alternative GUMBO2 model. 
Another argument toward the continental nature of the crust in the central GOM is the 
presence of the well-known prolific petroleum system over that region (Whaley, 2006; 
Dribus et al., 2008) indicating warm enough conditions for the sedimentary section within 
the basin to mature the source rock and generate hydrocarbons. The felsic upper continen-
tal crust has higher radioactive heat production than either of mafic lower continental crust 
or even more mafic oceanic crust (Furlong and Chapman, 2013). Therefore, the appreciable 
thickness of the upper crustal unit is usually inferred to explain the presence of the ex-
tended hydrocarbon system. If the hyperextended regime was assumed with the upper 
crust being rifted away, resulting in exhumation of the lower continental crust, the radio-
genic heat production would be dramatically less than for the felsic upper crust, making 
the presence of a prolific petroleum system less likely. Therefore, the existence of an ex-
tended hydrocarbon system in the central GOM would also lean toward the continental 
hypothesis. However, the working petroleum system can be developed over the oceanic 
crust (Rajmon and Egorov, 2015), although to date only a few examples of such settings 
are known. Thus, the presence of a petroleum system also does not allow a unique distinc-
tion between the two crustal domains. Another way to discriminate between continental 
and oceanic domains is to examine the VP∕VS ratio for the crustal units (Christensen and 
Mooney, 1995). This analysis was performed for GUMBO lines 3 and 4 (Duncan, 2013). 
Unfortunately, no VS values are reported for GUMBO2 line by Eddy et al. (2018), so the 
lithology of the disputed region in the central GOM cannot be determined based on the 
VP∕VS ratio. 

The preferred model for line GUMBO2 suggests the OCB at the range of 340 km that 
contradicts several tectonic models shown in Figure 1. These models assume that the 
northwestern and central GOM are conjugate margins for the western Yucatan. An exam-
ple of such prebreakup reconstruction from Eddy et al. (2014) is shown in Figure 8 (note 
that the tectonic model of Eddy et al. [2014] is the same as the one described by Christeson 
et al. [2014], so the corresponding OCB is shown in Fig. 1 in white). The OCB for all of the 
models in Figure 1 with the exception of the model of Hudec et al. (2013) is forced to be 
much landward than the one concluded here to ensure a tight fit with the Texas-Louisiana 
margin similar to the one shown in Figure 8. 
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Figure 8. Tectonic reconstruction from Eddy et al. (2014). Superimposed are the profiles’ 
four GUMBO lines (red, denoted G1–G4) and the lines from Williams-Rojas et al. (2012) 
(shown in blue). All lines from Williams-Rojas et al. (2012) clearly show the presence of a 
thick presalt section, whereas no presalt section is reported for profile GUMBO2, denoted 
as G2 (Eddy et al., 2018), which agrees with the results of this study. The presence of the 
presalt sediments is disputed for the line GUMBO1 (denoted as G1) by this study (Figs. 4–6). 

 
The OCB from Hudec et al. (2013) is closest to the one shown in the preferred model 

(Fig. 7). The tectonic reconstruction of Hudec et al. (2013) also positions the western margin 
of the Yucatan crustal block against the Texas-Louisiana coast. However, the formation of 
the thinned and stretched continental crust all the way to the Sigsbee Escarpment in the 
central GOM is explained by the stretching during the final stages of the basin opening, 
after the deposition of the Louann salt. According to Hudec et al. (2013), the oceanic crust 
in the GOM is formed simultaneously in the western and eastern parts of the basin, 
whereas the central GOM (crossed by the line GUMBO 2) was the last one to break up; 
thus, it was the subject for the most extension. Consequently, the tectonic model of Hudec 
et al. (2013) developed based on the analysis of the industry seismic data throughout the 
GOM is the closest one to the OCB near the Sigsbee Escarpment concluded by this study. 

The analysis presented here suggests no presalt sediments in the study area (Figs. 6 and 
7). This lack of presalt deposits in the northwestern GOM (i.e., for the line GUMBO1) is 
consistent with the results of the 3D seismic reflection survey in that region (Filina et al., 
2015). No presalt deposits in the central GOM were also concluded by Eddy et al. (2018) 
for GUMBO2 based on the seismic velocities from seismic refractions (Fig. 2c) and by 
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Radovich et al. (2011) for seismic reflection line GulfSPAN2000. However, the lack of pre-
salt sediments in the northwestern and central GOM contradicts to the thick presalt depos-
its on the conjugate margin (Fig. 8). Williams-Rojas et al. (2012) report several kilometers 
thick presalt sedimentary section imaged along three lines (shown in the blue in Fig. 8). 
Moreover, several recent seismic surveys reported by Saunders et al. (2016), O’Reilly et al. 
(2017), and Horn et al. (2017) confirm the presence of the presalt deposits along the western 
Yucatan margin. This apparent mismatch in distribution of the presalt sediments among 
conjugate margins needs to be investigated further. 

The integrated approach in geophysical data analysis presented in this study implies 
joint interpretation of several independent geophysical data sets that are acquired during 
different surveys and at different times. The major objective of integrated analysis is to 
develop the best subsurface model that agrees not only with all of the data but also with 
all available geologic constraints (such as physical properties either from wells or from 
assumed rock types), as well as remains geologically reasonable. Because all of the data 
sets represent the geophysical signals over the same subsurface rocks, their combined anal-
ysis yields a more reliable and robust solution than the one resulted from a single method. 
 
Conclusion 
 
Integrated geophysical modeling was performed for two profiles in the northwestern and 
central parts of the GOM to reveal the nature of the crust and to constrain the overall ar-
chitecture of the passive continental margin. Based on these models, which combined seis-
mic, gravity, magnetic, and well data, the following conclusions were drawn: 

(1) The crust in the northwestern and central GOM is stretched and thinned continen-
tal; it has a total thickness up to 10 km and is intruded with abundant magmatic 
material. A series of dense and highly magnetic intrusive bodies is coincident with 
fast seismic velocity regions in the lower continental crust interpreted in both mod-
eled lines. One of these modeled magmatic intrusions requires a reversed magnetic 
polarity. The emplacement of the magmatic material is presumably related to the 
rifting stage of the basin formation, although the timing cannot be established con-
fidently with any of the remote sensing geophysical methods. Nevertheless, this 
conclusion is consistent with the basement samples from DSDP Leg 77 that en-
countered the presence of rift-related Early Jurassic diabase dikes with normal and 
reversed magnetic signatures. 

(2) The boundary between oceanic and continental domains is located near the Sigs-
bee Escarpment for GUMBO1 and GUMBO2. This is consistent with the results 
from published 3D seismic reflection survey in the northwestern GOM and with 
seismic refraction experiment in the central part of the basin. 

(3) The analysis presented here does not support the presence of thick presalt sedi-
ments, neither for GUMBO1 nor for GUMBO2. This conclusion is also consistent 
with previously published 2D and 3D seismic reflection surveys as well as with 
seismic refractions for GUMBO2. The presalt sediments appear to be forced in the 
initial interpretation of refraction data along GUMBO1 based on the presence of a 
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low-velocity section immediately above the mantle that is artificial because of the 
incorrect salt model (i.e., the missing “salt wall”). 

(4) The lack of presalt deposits in the study area appears to mismatch the thick section 
of presalt sediments along the western Yucatan margin that is believed to be the 
conjugate to the study area by many published tectonic models. This mismatch 
needs to be investigated further. 

 
This study also illustrates the overall importance of the integrative approach in geophysi-
cal data analysis that allows validation of the results derived from a single geophysical 
method (such as refraction or reflection seismic) with other available geologic and geo-
physical data sets (such as publicly available gravity and magnetic fields and well logs) to 
ensure agreement with all of the data. 
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