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ABSTRACT As in many fields of wildlife research and management, camera devices and photogrammetry
have become an integral part of the toolkit for exploring otherwise-unseen aspects of the biology, behavior,
and control of the invasive brown treesnake (Boiga irregularis) on Guam. Because brown treesnakes
are cryptic and nocturnal, and nearly all aspects of their ecology are influenced by snake size, methods
are needed to estimate snake size from images captured by infrared wildlife cameras. Unfortunately,
it is difficult to capture images of an entire snake’s length at a controlled distance from a simple camera
setup. Here, I describe the allometric relationships between brown treesnake body length and potential
predictors: head measurements, sex, and body condition. Head length (HL) was the most important
predictor of body length, alone accounting for 95.9% of the variation in brown treesnake snout-vent
length (SVL). We provide simple regression equations for predicting brown treesnake length from head
measurements, an example of how to extract measurements from images, and a convenient lookup table for
predicting SVL and 80% prediction intervals from HL alone. Coupled with a simple camera setup that
controls subject distance and includes size standards in the image, we can estimate brown treesnake body
size from images that include only the head when photographed from above. These methods have been
developed to enable ongoing assessments of brown treesnake predation risk following landscape-scale
suppression efforts that could enable the reintroduction of extirpated native wildlife. Published 2021. This
article is a U.S. Government work and is in the public domain in the USA. Wildlife Society Bulletin
published by Wiley Periodicals LLC on behalf of The Wildlife Society.

KEY WORDS allometric regression, Boiga irregularis, brown treesnake, Guam, invasive species, model selection,

photogrammetry, predation threat, trail camera.

Allometry, or mathematical relationships among anatomical
measurements (Schmidt-Nielsen 1984), can be used to
predict physiological states of individuals from isolated
measures when direct measurement is difficult or impos-
sible. Allometric equations have been used to predict body
measurements in a broad range of taxa (Mollet and
Cailliet 1996, Hile et al. 1997, Verdade 2000, McKinney
et al. 2004, Morris and Mead 2016). Inference on animal
size, as opposed to direct measurements, is often needed for
wildlife that cannot be captured or handled due to crypsis,
inaccessibility, potential behavioral effects, or safety of the
animals or observers. Photogrammetry, or indirect meas-
urements taken from camera images, has been coupled with
allometric relationships to predict various morphometrics
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from animal images without making direct contact (e.g.,
Breuer et al. 2007, Krause et al. 2017, Ortega-Ortiz
et al. 2018, Gray et al. 2019). The proliferation of the use
of inexpensive wildlife cameras (i.e., game cameras, trail
cameras, or camera traps) has greatly benefitted wildlife
research and management by providing an affordable, safe,
and non-invasive means of detecting and sampling wildlife.
Photogrammetry using wildlife camera images has been
employed to collect body measurements from disparate taxa,
from large ungulates to reptiles and invertebrates (e.g.,
Collett and Fisher 2017, Muneza et al. 2019, Moore
et al. 2020).

Since the accidental introduction of brown treesnakes
(Boiga irregularis) to the formerly snake-free island of Guam
in the western Pacific, they have invaded all terrestrial
habitats and have reached extraordinarily high densities (up
to 100 per ha at the height of the irruption; Rodda
et al. 19994). Brown treesnakes have caused millions of
dollars of damage to the island’s power infrastructure, in-
flicted painful bites to humans, preyed on domestic animals,
and caused the extinction or extirpation of nearly the entire
forest avifauna, with cascading ecological consequences such
as loss of seed dispersal (Savidge 1987, Atkinson 1996,
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Rodda and Savidge 2007, Caves et al. 2013). The brown
treesnake has become a textbook example of the potential
harm of an invasive predatory species and is considered one
of the world’s 100 worst invasive species (Lowe et al. 2000,
Sodhi and Ehrlich 2010, Lockwood et al. 2013,
Simberloff 2013). To mitigate damages, enormous invest-
ment has been made in research on the behavior, biology
and ecology of the species, development, testing and im-
plementation of control tools, and inspections of outbound
cargo to prevent the spread of brown treesnakes to other
snake-free islands in the Pacific (Rodda et al. 19994, Rodda
and Savidge 2007, Clark et al. 2018, Engeman et al. 2018).

The most notable recent technological innovation in
brown treesnake control has been the development of an
automated system for aerial distribution of toxic bait car-
tridges containing a dead neonatal mouse treated with
acetaminophen (paracetamol). The cartridges are designed
to hang in the forest canopy where the baits can be con-
sumed by arboreally-foraging snakes (Siers et al. 2019). The
automated delivery system has been demonstrated to sig-
nificantly reduce brown treesnake activity in large, ex-
perimental treatment plots (Siers et al. 20204,5), opening
the possibility that some native birds and lizards may be
reintroduced to Guam’s forests if snake numbers can be
sufficiently suppressed.

However, accurate assessment of the suppressive effects of
the automated aerial delivery system (ADS) is hampered by
difficulties in estimating densities of brown treesnakes.
Brown treesnakes have very low detection probability
(probability of finding an individual known to be in a
sampling area) and violate many of the assumptions of
mark-recapture or distance sampling density estimation
models, making reliable density estimates impractically ex-
pensive and potentially biased and imprecise (Rodda
et al. 19994, Rodda and Campbell 2002, Rodda et al. 2007,
Tyrrell et al. 2009, Christy et al. 2010). Simpler and more
economical indices of brown treesnake activity or abun-
dance, such as nontoxic bait disappearance rates (Siers
et al. 20204), are useful but potentially biased and do not
provide any demographic data.

Lacking reliable estimators, evaluations of the effective-
ness of snake suppression and ability to make management
decisions may be limited to assessing the rates at which
brown treesnakes come into contact with live lures, as an
index of residual predation risk. Yackel Adams et al. (2019)
used wildlife cameras framed on brown treesnake traps that
contained live bird lures in protective chambers as surro-
gates for nesting birds to evaluate contact rates. Image
captures of snakes at traps were a far more sensitive metric
of snake activity and predation threat than trap captures
of snakes, as camera-recorded contact rates were almost
15 times higher than trap capture rates.

Live-lure contact rates may be the best practical metric of
the frequency of brown treesnake predation attempts.
However, not all snake encounters carry the same risk of
predation. Through the course of a brown treesnake’s life-
time, a 5-g, 350-mm snout-vent length (SVL) hatchling
may grow by orders of magnitude to a 700-g, 1,500-mm

female or 2,000-g, 2,000-mm male (Savidge 1991,
Siers 2015, Siers et al. 20172). Brown treesnakes under
750mm SVL feed almost exclusively on small lizards,
transitioning to primarily bird and rodent prey as they grow
larger (Savidge 1988, Lardner et al. 2009, Siers 2015), and
nearly all other aspects of brown treesnake biology, be-
havior, invasion risk, and susceptibility to control tools also
vary with size (Siers et al. 20174, Clark et al. 2018, Nafus
et al. 2020). In essence, predation threat scales up with
snake size. A monitoring method that provides not only an
index of abundance but also a size distribution can help
managers to optimize tool selection, such as using larger
acetaminophen doses or alternative trap designs when very
large snakes are present (Siers et al. 2021). Data indicating
the absence of snakes of mature size classes could increase
confidence that management techniques are effectively in-
terrupting reproduction, informing management decisions.

The camera system employed by Yackel Adams et al.
(2019) reliably recorded live-lure contact rates but was not
optimized for measuring snake size. Snake length can be
measured from photographs when the entire length of the
snake is in the same frame along with a size standard
(Penning et al. 2013). However, in the field, it is extremely
difficult to get reliable images of a snake’s entire body on a
controlled plane at a fixed or known distance from the
camera or with adequate size standards, particularly for an
arboreal snake. The U.S. Department of Agriculture
Wildlife Services National Wildlife Research Center
(WS-NWRC) is currently beginning to employ a simple
system of commercial wildlife cameras mounted overhead of
live lures in protective chambers on small platforms marked
with size standards (Fig. 1) that can be elevated into the
forest canopy in order to take measurable images of a snake’s
head as it investigates and attempts to prey on the lure (e.g.,
live mouse or bird). My objective was to describe the allo-
metric relationships between snake head measurements and
body length and extraction of measurements from head
images to estimate snake sizes, enabling better character-
ization of contact rates and the size distributions of brown
treesnakes posing predation threat.

Figure 1. Camera platform comprised of a pattern of circular size
standards printed on lightweight sign material, with an inexpensive wide-
angle wildlife camera mounted overhead of a live mouse lure chamber, used
in a study of brown treesnakes in Guam, USA, 2019-2021.

Siers * Snake Head and Body Length Allometry
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METHODS

Specimen Collection and Measurement

‘We obtained measurements from brown treesnakes collected
during various research and management activities by
WS-NWRC and the U.S. Geological Survey, primarily in
northern Guam over the span of approximately 2 years
(4 September 2018-14 September 2020). We measured head
length (HL) with calipers from the tip of the snout to the
rear of the jaw, and head width (HW) at the broadest part of
the rigid portion of the skull, approximately halfway between
the eyes and the rear of the jaws; measurement further back
on the head would be inconsistent due to lateral flaring of the
jaws. We recorded head dimensions to the nearest 0.1 mm.
We measured snout-vent length (SVL, mm) by gently
stretching the body of the snake along a flexible tape as
muscle contractions relaxed; this has been the standard
method for brown treesnake body length measurements,
having been conducted tens of thousands of times including
on individuals that are repeatedly measured with no
apparent ill effect. Although length measurements from un-
anesthetized snakes are less precise than those from anes-
thetized or preserved specimens (Cundall et al. 2016),
stretching along a tape without anesthesia is typically the only
practical method for field studies using free-ranging snakes.
We measured body mass (g) with hanging spring scales
(Pesola Prizisionswaagen AG, Schindellegi, Switzerland) or
electronic balances, in increments of 1 to 10 g, depending on
the range and precision of the scale and mass of the snake.
We determined sex (SEX) by probing for inverted hemipenes
as per Reed and Tucker (2012); 24 snakes that were too small
to be reliably probed were classified as juvenile. Although
many of the snakes in the data set were captured and
measured multiple times, we used only the first measurement
for each individual to preclude concerns of pseudoreplication.

All animal use was approved by the USDA National Wildlife
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Research Center Animal Care and Use Committee under
Protocol #QA-2830.

We derived relative head width (RHW) as HL/HW, or
head width controlling for head length, for a noncorrelated
additional measure of head geometry. We calculated a body
condition index (CI), as the ratio of observed to expected
snake mass. Therefore, a snake of average body condition
would have a CI of 1.0, and higher or lower values indicate
snakes in better or poorer body condition, respectively. Ex-
pected mass was predicted from a linear regression based on a
quadratic transformation of In(length) as a predictor of In
(mass) for all snakes in the data set, to better fit the curvilinear
relationship between these measures. During preliminary data
exploration, the CI model containing a quadratic trans-
formation of length outperformed the model containing only
the untransformed length data by 391.52 AIC, units and
improved the R? of the relationship from 94.2 to 97.2%.

Obtaining Measurements from Images
Lure platforms were 50.8 X 76.2 cm custom images printed
on a lightweight outdoor sign product (poly foam material
sandwiched between 2 layers of aluminum laminate) with a
commercial infrared trail camera mounted overhead (Apeman
H68, Apeman International Co., Ltd, Shenzhen, Guang-
dong, CN). Because of the barrel distortion in images
resulting from use of a wide-angle lens at close distance
(Fig. 1), we elected to use circular size standards (as opposed
to a right-angle grid) so that standard measurements can be
taken on the same angle as the head measurement to correct
for this distortion. We arranged 20-mm circular size standards
in a concentric ring pattern around the center of the image
(where the lure chamber would be situated; Fig. 2), allowing
us to consider the distance of the head from the center of the
image in judging the quality of the image captured.

Image measurements can be obtained by opening the
photograph file in any image editing software that includes
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Figure 2. Image from camera platforms printed on lightweight outdoor sign material, used in a study of brown treesnakes in Guam, USA, 2019-2021. Size
standards are 20-mm circles arranged in concentric rings around the center of the image where the lure chamber would be positioned. Numbers on the center
row of standards depict the distance (cm) from the center of the image for all standards in that ring.
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Figure 3. Cropped example of a brown treesnake head image from an
overhead infrared camera in Guam, USA, 2020. Head length (HL) or head
width (HW) can be calculated from image measurements by scaling
standard length (SL) or standard width (SW) with known dimensions size
standards (dark circles) in the image. Taking head and size standard
measurements from the nearest size standard and along the same axes helps
to correct for lens distortion.

a measurement tool (e.g., Adobe® Photoshop®, GIMP,
Image]). Using the measurement tool, head length, head
width, standard length, and standard width are measured,
with head and standard measurements taken on the same
angles (Fig. 3). Conversion from image dimensions to true
dimensions is achieved by the simple equation:

Body measurement

image body measurement X known standard measurement

. )
image standard measurement

where image units (pixels, mm, etc.) are irrelevant as they
cancel out leaving the estimated body dimension in the
same units as the known standard dimension (see the
worked example in Results). Snake size estimation will
occur after completion of field trials so results are not re-
ported here; this section of the article is presented to
demonstrate how others might apply similar methods.

Statistical Methods

We performed all statistical tests and data visualization in
the R environment for statistical computing, Version 3.5.3
(R Core Team 2019). We evaluated the effects of candi-
date predictor variables on the response variable (SVL)
with linear regression models. We compared candidate
models based on Akaike’s information criterion corrected
for small sample size (AIC,) using the R package MuMIn
for multimodel inference (Bartoi 2020). We considered
models within AAIC < 2 of the top model to be plausible
alternative models, and we assessed relative variable im-
portance (RVI) as the sum of weights (w) of all models
that contained the term of interest (Anderson 2008). All
models with interaction or polynomial terms also included
the primary effects (e.g., the model reported as HL*SEX
also included HL + SEX). During exploratory modeling,
we confirmed that head length and head width are highly
correlated (R? = 84.7%). We determined that HL was a
more precise predictor of snake length than HW when
modeled as sole predictors (R*>=91.5 vs. 80.3% and
AAIC, of 455 between models) so elected to focus on HL

as the primary predictor in model comparisons. Head
width added value to the model through the derived and
uncorrelated RHW term.

We first evaluated a biological model considering effects of
all candidate predictor variables. This included a quadratic
transformation of head length (HL?), allowing for a curvilinear
relationship between HL and SVL as observed during data
exploration, and an interaction between HL and sex
(HL*SEX) to allow for sexual dimorphism in allometry. The
biological model included only records for which snake sex
could be determined, eschewing 24 data points for juvenile
snakes, and model selection was only performed on this subset
of data. Although sex and body condition cannot be observed
from head images, they were included in the biological model
as potential additional sources of variation in the allometric
relationship between head measurements and body length.

We then evaluated a photographic model using only the
predictors that could be measured from camera images (HL,
HL?, and RHW) including the 24 juvenile snakes. Finally,
we revised the data set to drop outliers that are likely to
represent measurement error (residuals >3 times the
standard deviation) and generated predicted SVL values
based on HL alone, with 80% prediction intervals. This
provided a convenient reference to quickly estimate brown
treesnake SVL from HL measured in camera images.
Data are available from the USDA WS-NWRC Quality

Assurance Unit archives upon request.

RESULTS

Throughout the course of the study, we collected head and
body measurements on 543 unique snakes (223 females, 296
males, and 24 juveniles). For the biological model, all can-
didate terms were significant predictors of SVL. The top
model included all terms and carried 100% of the model
weights (Table 1). Relative variable importance was 1.00 for
HL and HL? (i.e., included in models that carried 100% of
the model weights), 0.99 for CI, RHW, and SEX, and 0.98
for the HL*SEX interaction. The top model outperformed
the next top model (HL + HL?+ CI+ RHW) by 9.14
AIC, units and carried 96.6% of the model weight, clearly
indicating a robust top model. The HL-only model out-
performed the highest-ranking model without a HL term by
1120 AIC, units. SEX and HL*SEX effects were sig-
nificant, though the effect size was minor (Fig. 4), with
females exhibiting a slightly steeper slope in the relationship
than males. The coefficient for RHW (—64.3 +19.0 SE)
was negative, indicating that snakes with a narrower head in
relation to body length tended to be shorter. The coeflicient
for CI (—68.23 +19.3 SE) was negative in the top models,
indicating that head lengths for heavier, more robust snakes
were slightly shorter when controlling for other terms in the
model; this pattern is consistent with differences in head
length for captive juvenile vipers fed a relatively high-intake
diet (Bonnet et al. 2001). Although all terms have predictive
significance in the model selection process, their inclusion
only improved R? from 90.9 to 91.8% over the HL-only
model. The top biological model outperformed the

Siers * Snake Head and Body Length Allometry
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Table 1. Subset of 12 of 32 possible models from the Akaike Information Criterion (AIC) model selection table for candidate predictors of brown treesnake
snout-vent length in Guam, USA, 2018-2020. Subset includes: 1) models carrying 100% of summed model weights (w); 2) highest-ranking models without
each of the candidate predictors; 3) models containing each predictor alone; 4) the photographic model only containing terms that can be measured from
camera images; and 5) the null model (intercept only). Predictors are head length (HL) and its quadratic term (HL?), relative head width (head length/head
width, RHW), body condition index (CI), sex (SEX), and a head length by sex interaction term (HL*SEX).

Model df* logLik® AICS AAICH w® R?

HL + HL? + RHW + CI + SEX + HL*SEX 8 —3057.52 6131.32 0.00 0.966 0.918
HL + HL? + RHW + CI 6 —3064.15 6140.47 9.14 0.010 0.916
HL + HL? + CI + SEX + HL*SEX 7 —3063.28 6140.77 9.45 0.009 0.917
HL + HL? + RHW + SEX + HL*SEX 7 —3063.76 6141.73 10.41 0.005 0.916
HL + HL? + RHW (photographic model) 5 —3073.26 6156.64 25.31 0.000 0.913
HL + HL? 4 —3077.38 6162.84 31.51 0.000 0.912
HL 3 —3085.52 6177.09 45.77 0.000 0.909
RHW + CI + SEX 5 —3643.61 7297.33 1166.00 0.000 0.219
SEX 3 —3679.34 7364.74 1233.41 0.000 0.104
RHW 3 —3682.16 7370.36 1239.04 0.000 0.094
CI 3 —3698.26 7402.57 1271.24 0.000 0.036
Null model (intercept only) 2 —3707.84 7419.71 1288.38 0.000 0.000

* Degrees of freedom;

b log-likelihood;

© Akaike information criteria corrected for small sample size;

4 Difference between top model and current model in AIC, units;
¢ Model weights.

photographic model by 25.31 AIC, units, but only improved
R? from 91.3 to 91.8%.

Several outliers were evident, likely due to measurement or
data entry errors (Fig. 4). When reducing the data set by
removing the outliers (28 observations >3 times the
standard deviation), the predictive power of the photo-
graphic model improved to R*=96.0% and HL +HIL?
alone accounted for 95.9% of the variation in SVL; in
comparison, HW accounted for only 83.8%. Predicted
snake lengths based on head length only, with 80% pre-
diction intervals, are tabulated in a convenient reference
(Table S1, available online in Supporting Information);
prediction intervals are roughly +85 mm from the predicted

SVL, regardless of length.

Regression Equations
The estimated regression equation for the photographic
model (R? = 96.0%) was:

SVL = —39.94 + (41.61 » HL) + (—0.1324 « HI?)

+ (—55.61 * HL )
HW

The equation for the simplified HL + HL? model
(R* = 95.9%) is:

SVL = —158.4 + (43.09 » HL) + (—0.1486 » HI?).

All measurements are in mm.
Using the image with head and size standard measurement

landmarks (Fig. 3):

472 pixels X 20 mm

Head length = -
229 pixels

= 41.2 mm.

Using the lookup table provided (Table S1), this specific
snake would be estimated at 1,368 mm SVL with an 80%
prediction interval of 1,284-1,453 mm.

DISCUSSION

Head length alone is a relatively precise predictor of brown
treesnake length, explaining 95.9% of the variation in SVL after
removing outlier measurements. Given the challenge of meas-
uring a prehensile and uncooperative snake over a flexible tape,
and interobserver differences in the force with which snakes are
stretched (Penning et al. 2013, Cundall et al. 2016), much of
the remaining 4.1% of unexplained variation could be due to
error in SVL measurement. It may be that brown treesnake
head length is a more precise predictor of body length than
direct measurement of SVL with a flexible tape, given the less
difficult task of measuring a relatively small, rigid, and easily
restrained part of the anatomy with calipers. Estimating snake
length from head length may also reduce the amount of animal
handling necessary, prevent possible snake injury from overly
forceful stretching, and reduce risk of venomous bites during
attempts to measure snakes at full stretched length.

Head width was a comparatively poor predictor of SVL.
Measurement of HL is limited primarily to one rigid bone
assembly (lower mandible) and how it articulates with the
premaxillary (snout). In comparison, HW may be more prone
to observer error (Cundall et al. 2016), given the less precise
landmarks for measurement and the potential for improper
inclusion of both lower mandibles in measurements, as they
are laterally mobile. Head width has also been reported as a
poor predictor of other allometric relationships in snakes such
as gape size (Hampton 2014). Inclusion of relative head width
(controlling for head length) in models increased predictive
power; however, the highest-ranked model without RHW was
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Figure 4. Linear regression predictions of brown treesnake snout-vent length as a function of head length. The biological model (A) includes all recorded
predictor terms: head length and head length?, relative head width (head length/head width), body condition index, sex, and a head length * sex interaction
term. The prediction range for females is shorter because males grow much larger. The photographic model (B) includes only predictors that can be
measured in camera images: head length, head length?, and relative head width; data for this model include an additional 24 measurements of snakes too
small to be sexed for the biological model. Circles represent individual measurements in the data set. Shaded areas around regression lines are 95% confidence
intervals for the estimate (1.96*standard error), and dashed lines are 95% prediction intervals. Data were collected in Guam, USA, 2018-2020.

outperformed by the next higher-ranking model that included
RHW by only 0.16 AIC, units and R? was not improved.
With an R? of 83.8%, cautious estimation of body length from
head width could be made if a suitable image of head length is
not available. While the contributions of relative head width to
predictive models were statistically significant, the improve-
ment in R? by including RHW in the photographic model was
negligible at 0.1%; if seeking to reduce animal handling,
streamline data collection, and simplify predictive equations,
head width measurements could be eliminated from field
protocols.

Although all other potential predictors of body length were
included in the top biological model (CI, SEX, and SEX*HL),
their addition to the model reduced variance but did little to
explain variation in snake length in meaningful terms. The slope
of the regression line is slightly steeper for females than for

males, indicating that female body length does not grow as
quickly in relation to the head. This relationship could be in-
terpreted as supporting speculation that females make less
metabolic investment in increasing body length in favor of ac-
cumulating mass and-or energy stores for reproduction (Sa-
vidge 1991, Siers et al. 20174). However, addition of SEX and
HL*SEX increased R? by only 0.19%. Head images cannot be
used to determine sex of the snake.

For simplicity, we recommend that brown treesnake body
length predictions can be made from head length meas-
urements (HL + HL?) alone (Table S1). Although these
values are predicted to 1 mm precision, Cundall et al. (2016)
caution that the flexibility of anatomical elements of snakes
and inherent imprecision in measurements within and
among measurers and under varying specimen conditions
(preserved, anesthetized, unanesthetized) indicate that there
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may be no true length of snakes. Such measurements are not
repeatable with high precision, and Cundall et al. (2016)
advocate for rounding off values or accepting that accurate
length descriptions might require reporting means and
standard deviations from multiple repeated measurements
of the same individual. For most ecological inquiries, the
reduction in precision will have little consequence.

If a size standard is included in the image at the same
distance from the lens as the snake, brown treesnake size
can be estimated from head images captured with wildlife
cameras. Coupled with live lures, our methods can be used
to describe size distributions of brown treesnakes and fre-
quency of predation attempts, as estimated by contact rates,
to evaluate the remaining predation threat where brown
treesnake numbers have been suppressed through manage-
ment efforts. Such data may be the most practical and direct
information upon which to base decisions about whether
suppression efforts have been effective enough to re-
introduce native vertebrates that were extirpated by this
harmful invasive predator. Similar methods may be applied
for innumerable other study systems where direct physical
measurements of wildlife are impractical or impossible.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article at the publisher’s website.

Table S1 provides a convenient lookup table for estimating
brown treesnake length from head length, including 80%
prediction intervals.
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