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a b s t r a c t 

In cognitive psychology and psycholinguistics, lexical characteristics can drive large effects, which can create 

confounds when word stimuli are intended to be unrelated to the effect of interest. Thus, it is critical to 

control for these potential confounds. As an alternative to randomly assigning word bank items to stimulus 

lists, we present LIBRA (Lexical Item Balancing & Resampling Algorithm), a MATLAB-based toolbox for quickly 

generating stimulus lists of user-determined length and number that can be closely equated on any number of 

lexical properties. The toolbox comprises two scripts: a genetic algorithm that performs the inter-list balancing, 

and a tool for filtering/trimming long omnibus word lists based on simple criteria, prior to balancing. Relying 

on randomized procedures often results in substantially unbalanced experimental conditions, but our method 

guarantees that the lists used for each experimental condition contain no meaningful differences. Thus, the lexical 

characteristics of the specific words used will add an absolute minimum of bias/noise to the experiment in which 

they are applied. 

• Our toolbox balances word lists for arbitrary lexical properties to control confounds in cognitive psychology 

research. 
• Our toolbox performs more efficiently than pure randomization or balancing manually. 
• A graphical user interface is provided for ease of use. 
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Specifications table 

Subject area Psychology 

More specific subject area Cognitive Psychology 

Method name Lexical Item Balancing & Resampling Algorithm (LIBRA) 

Name and reference of original 

method 

N/A. This method improves upon the standard practice of using random assignment of 

stimuli to experimental conditions, thus there is no reference for the use of random 

assignment as it is traditionally employed. 

Resource availability The software necessary to implement this method is open-source and can be 

downloaded from: https://www.mathworks.com/matlabcentral/fileexchange/ 

79628- lexical- item- balancing- resampling- algorithm- libra 

Introduction 

In this section, we discuss how imbalances in lexical properties can create potential confounds in 

cognitive psychology and psycholinguistics studies, and detail some situations in which this may occur. 

We briefly describe several programs developed to address this issue, including our own presented in this 

paper (LIBRA: Lexical Item Balancing & Resampling Algorithm), in the hope that it will help researchers 

select the tool(s) best suited to their needs. 

Concerns 

An extensive amount of work in experimental psychology has been devoted to language, and while 

lexical stimuli are an integral part of psycholinguistics, their application extends broadly across the 

field of psychology. For example, in working memory (WM) paradigms, the lexicon is a natural corpus 

of varied, distinctive stimuli that affords straightf orward item-level testing of memory. Similarly, when 

probing long-term memory (LTM), words are an especially useful and flexible stimulus category. For 

areas of psychology, especially cognitive psychology, that employ lexical stimuli, the specific words 

used are often not the subject of study, but rather a means to an end. In order to investigate 

phenomena that are, in principle, independent of the specific word stimuli used, we must consider 

how to properly control for item-level effects. 

Extensive work in cognitive psychology and psycholinguistics has demonstrated that lexical 

characteristics are capable of driving large effects. Word length [2] , usage frequency [ 13 , 15 , 16 ], and 

emotional valence [7] are just a few of the properties known to influence dependent measures in a 

variety of tasks and contexts. In psycholinguistic studies, the lexical properties themselves are often 

the independent variable, manipulated to demonstrate the effect of that property. However, when 

word lists serve a utility function and are intended to be unrelated to the effect of interest, such 

as in most WM or LTM paradigms, it is critical to control for these potentially confounding lexical 

effects, particularly because they can be considerably larger than the effect of actual interest. This 

was demonstrated by Balota and colleagues [4] using a lexical decision task (LDT), who reported that 

a relatively small set of lexical properties accounted for a considerable portion of response time (RT) 

variation ( R 2 = .42). 

Considerations 

In a typical experiment scenario, different conditions require separate, disjoint lists of word stimuli. 

Consider a verbal WM experiment in which the RT of a button press to a lexical memory probe is 

the main dependent measure of a within-subjects manipulation with two levels. In this case, we do 

not wish to reuse words due to potential carryover effects, and so two lists of unique words are 

required. However, the time it takes to read each word will have a direct impact on RT. Therefore, if 

one stimulus list has a higher mean reading time than another’s, that difference would carry over to 

RT analyses of the experimental manipulation. If not carefully controlled, this lexical property effect 

may manifest in a number of ways. For example, it could introduce systematic bias if each subject 

receives the same stimulus list, or, if word lists are randomized separately for each participant, the 

variance introduced by the lexical effects can represent a considerable source of noise compared to 

the size of the effect(s) of interest. 

https://www.mathworks.com/matlabcentral/fileexchange/79628-lexical-item-balancing-resampling-algorithm-libra


E.N. Lintz, P.C. Lim and M.R. Johnson / MethodsX 8 (2021) 101545 3 

Some lexical properties are intrinsic, such as a word’s length or number of syllables; however, 

other properties must be measured from human behavior. One of the latter properties is frequency 

of use, a property whose influence on performance is self-evident (frequently accessed words are 

recognized and produced more easily than rare ones; [3] ) but which is elusive to measure definitively. 

This is partly due to difficulties in operationalizing the concept (e.g., do we consider written language, 

spoken, or both? How variable is word frequency between individuals or demographic/geographic 

groups?) and partly due to the ever-shifting nature of language use over time. Clearly, it is impractical 

for individual research teams to re-measure frequency and other behavior-derived properties with 

each new experiment, so we must rely on previously published values from large-scale lexicon studies. 

While older work relied on frequency measures derived from various books and texts (e.g., [ 13 , 16 ]), 

modern technology has allowed frequency measures to consider online sources (e.g., [6] ) and has 

facilitated the compilation of large databases of word properties. A number of megastudies have now 

been published that provide ratings and behavioral norms for tens of thousands of words ([ 5 , 8 ]; for 

a review, see [12] ). These are powerful tools for researchers using lexical stimuli, as one can easily 

select subsets of these databases based on the needs of a particular experiment. For example, an 

experimenter interested in the influence of a word’s valence on its recall might require one list of 

positively valenced words and another of negatively valenced words. 

While obtaining an initial word bank from such a database is an excellent starting point for 

selecting experimental stimuli based on a set of desired lexical properties, one must also consider 

the converse problem: eliminating the potential influence of undesired properties. Often, words from 

this initial bank must then be allocated to sub-lists for use with different conditions or experimental 

blocks, which is commonly done via randomization. As we demonstrate later, this use of random 

assignment, while common, is not guaranteed to equate lexical properties across lists; in fact, 

depending on the size and number of sub-lists that are created, it can lead to significantly unbalanced 

lists. 

Software solutions 

Balancing the word lists to ensure they are equated on key lexical properties can be done by 

hand if the number of lexical properties and sub-lists is very small, but this can be tedious and 

time-consuming. Because the number of possible permutations to check increases dramatically with 

the number of lexical properties, it becomes increasingly unworkable to do this for more than two 

properties or sub-lists. Certainly, we are not the first to apply an algorithmic approach to balancing 

stimulus lists; however, the tools commonly available may not be well suited to all applications. 

Furthermore, available tools do not achieve the goal of fully automating the process; some require 

manual item selection or trimming during the balancing process, and none that we are aware of 

are able to automatically trim omnibus word lists of potential confounds such as homophones or 

compound words. While most software tools can be applied to a variety of use cases, they are often 

tailored specifically to psycholinguistic applications (i.e., experiments wherein the lexical properties of 

the word stimuli are an independent variable to be manipulated). For experiments that treat words as 

simply another category of stimuli, not meant to be related to the effects of interest (e.g., memoranda 

in a working memory task), the available tools may prove to be, in many cases, either insufficient 

or overly complex. We will briefly review a few extant methods for list balancing and describe how 

they could be improved upon for meeting the needs of a typical cognitive psychology experiment (see 

below, Methods/Application, for an example of one such use case). 

“Match” [17] applies a relatively simple pairwise matching algorithm that attempts to balance any 

number of lists, with list members having an optimal match with another member of all other lists, on 

all the relevant dimensions. For example, three lists of words might be generated in which items 1a, 

2a, and 3a are matched for number of letters, number of syllables, and number of phonemes; pairwise 

matching continues among items 1b, 2b, 3b, etc. The match quality is quantified with a Euclidean 

distance metric that considers all the matched items’ values for each dimension to be balanced. 

While this approach may lead to satisfactorily balanced lists, it is difficult for a user to tell how 

close the current best result is to a theoretically optimal solution, and the Euclidean distance metric 

becomes decreasingly interpretable the more dimensions the researcher attempts to balance. For 
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those who require lists to be balanced overall (as opposed to just pairwise), the matching approach 

may even introduce confounds. For example, the closest matches identified pairwise may lead to 

small differences between items (e.g., six letter words matched with seven letter words); however, 

if the one-letter differences become systematic, and one list contains shorter words on average, the 

overall list differences may be significant. Note that Match users must be minimally proficient with 

command-line scripting, as the software lacks a graphical user interface (GUI). 

Rather than develop a new software tool, Guasch and colleagues [9] describe a method by which 

one can apply cluster analyses within the commercial statistical software SPSS to inform list balancing 

procedures. Cluster analysis seeks to divide an overall pool of items into k groups that are as similar 

to other group members as possible on the relevant lexical dimensions, while also maximizing inter- 

group differences. The authors describe a heuristic to estimate a value for k that should generate 

clusters of sufficient size to populate lists of items such that each cluster contributes items to each 

experimental condition’s list equally, thus in principle balancing the lists. Functionally, this approach is 

similar to the pairwise matching described above and also uses a Euclidean distance metric; as such, it 

suffers the same drawbacks when applied to our typical use case. The k -means approach also requires 

a fair amount of researcher involvement with the clustering choices, analysis, and other aspects of the 

method, and as such may consume more of the researcher’s time than a more automated process. 

Armstrong and colleagues [1] developed a comprehensive software package built upon MATLAB 

(MathWorks, Natick, MA) to address a wide variety of list balancing needs. Their method, Stochastic 

Optimization of Stimuli (SOS), applies an algorithm to search for potential balancing solutions that 

satisfy any number of researcher-imposed constraints (e.g., minimizing differences between lists on 

some dimensions while maximizing differences between them on other dimensions). SOS provides 

a variety of ways to quantify cost (e.g., Euclidean distance, which is used in the previous two 

examples; entropy; correlation), allowing researchers to tailor balancing procedures to the needs 

of a specific experiment. The large amount of customization available gives SOS an advantage over 

Match and k -means clustering in terms of achieving near-optimal solutions and fitting a wide variety 

of experimenters’ needs; however, the cost of such flexibility and power is dramatically increased 

complexity, which may be daunting for a typical user. While there is GUI functionality, setting up 

a balancing task with even a handful of constraints requires considerable work within the GUI; 

scripting the steps with MATLAB code can streamline the process, but of course this requires relatively 

advanced knowledge of the MATLAB programming language and potentially a fairly close reading of 

the SOS source code. Thus, as mentioned, SOS is easily the most flexible and powerful tool on this list, 

and would be well suited for users with specific and complex sets of constraints, but it also requires 

a great deal of MATLAB proficiency and an intensive workflow, and thus may not be an ideal choice 

for users with more modest needs and/or more limited technical expertise. 

Additionally, all of the software solutions described above still leave one rather large task to 

manual processes. When compiling lists of word stimuli, one common approach can be to obtain 

an initial pool of words from a massive database, and then cut those lists down according to the 

needs of the project. While these databases may allow some degree of initial selection constraints 

to be imposed (e.g., word length, word frequency), the lists obtained may still contain confounds 

and undesirable items. Researchers must then manually trim items such as homophones, proper 

nouns, compound words, or variants of a word (e.g., abandon/abandoned/abandoning; apple/apples); 

a potentially time-consuming task, when word pools may contain tens of thousands of items. 

As an additional alternative to the previously existing software options, we present here LIBRA 

(Lexical Item Balancing & Resampling Algorithm), a software tool for quickly filtering word pools (e.g., 

removal of homophones) and generating stimulus word lists of user-determined length and number, 

which can be closely equated on an arbitrary number of lexical properties. Compared to the above 

options, LIBRA offers similar balancing functionality to the Match and k -means approaches, but with 

a GUI that requires no programming or command-line proficiency, and a significantly simpler and 

more user-friendly interface than SOS (at the expense of some flexibility), while also adding the 

aforementioned filtering functionality that is not, to our knowledge, currently offered by any similar 

software tools. 
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Method 

In this section, we describe our approach to generating stimulus lists using a genetic algorithm 

(Approach), provide a step-by-step explanation of how to use LIBRA and its graphical user interface 

(Graphical user interface and usage), and demonstrate that LIBRA both runs quickly and generates well- 

balanced stimulus lists (Validation). Those interested in the logic behind the algorithm should start from the 

“Approach” section; those who want to skip straight to using the tool should read the “Genetic Algorithm 

Implementation” section if they wish to understand the tool’s mechanics, and then focus on the three 

sections “Graphical user interface (GUI) and usage,” “Balancing script,” and “Filtering script.” Note that 

LIBRA consists of two MATLAB scripts, one for balancing and one for filtering word banks; filtering should 

be run before balancing, although researchers with curated word banks may wish to skip this step. 

Approach: Optimizing with a genetic algorithm 

Our approach to equating word lists uses a basic genetic algorithm (GA) to ensure that the 

final stimulus lists for each experimental condition are balanced as closely as possible across lexical 

properties that could spuriously influence our dependent measure. This method has been successfully 

applied in several previous studies [ 10 , 11 , 14 ] and additional functionality has been incorporated for 

the software toolbox described in this paper. The GA is a class of optimization algorithm loosely 

based on evolutionary theory, and thus it is often described with terms rooted in this analogy. The 

parameters or values we are attempting to optimize act as “genes” that collectively make up individual 

members of a population of “organisms” where each organism is a potential solution. Some of these 

individuals (sets of values) will be more fit (optimal) than others. GAs are useful for problems: (1) 

that have many possible configurations of parameters (too many for an exhaustive search), (2) that 

do not require the absolute maximum fit to be found (merely a very good one), and (3) in which 

small changes to the “genome” typically produce similarly small changes in fitness. In principle, one 

could achieve the same goal more simply by generating a large number of randomized solutions 

until an adequate one is found. However, this process would be too inefficient in many cases, since 

adequate solutions might represent a vanishingly small percentage of the distribution of possible 

solutions. Furthermore, we may frequently come across a solution that is nearly optimal but gets 

discarded since it does not meet our requirements. GAs allow us to capitalize on the near-misses by 

making subsequent candidate solutions that are slight “mutations” of the best candidates of previous 

rounds, rather than full re-randomizations. Such “child” solutions are more likely to outperform their 

“parents” than a totally randomized genome would be. The process is repeated, iteratively producing 

new child solutions until one is found that meets our target fitness score. Thus, as in nature, the most 

fit individuals are selected to pass on their traits, thereby ensuring an incremental improvement in 

fitness with each future generation. Notably, a solution found in this manner might also have been 

found using a pure random-sampling approach; however, in problem domains well-suited to GAs, we 

are likely to find it much faster using evolutionary methods than by continually re-rolling the dice 

hoping to stumble on a suitable solution. 

For optimizing word lists specifically, the lexical properties that we wish to balance represent the 

“genes” of the words used, that in turn are the “organisms” of our population (word lists). Population 

mutations are achieved by swapping individual words out of the parent word lists until a child is 

created whose individuals are more closely equated (optimal fitness). There are numerous variations 

of the basic GA, with alternative methods of addressing factors such as population size or the rate 

and method of mutation, to name a few. Here we have implemented a fairly simple version of a GA, 

as these more complex versions are unnecessary to achieve our target fitness goals. 

Application 

In Lintz and Johnson [14] , we sought to explore the putative WM processes of refreshing and 

removal. Participants were asked to perform a lexical decision task (LDT) as well as a surprise LTM 

test. Thus, we were concerned with controlling the lexical properties that might be expected to 

influence our main dependent measures; LDT reaction time in the first task, and confidence ratings 
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of memory strength in the second. We identified five such properties: number of letters, number of 

phonemes, number of syllables, frequency of use, and the average time to read aloud. As an accuracy 

check in the LTM test, foil words (not previously seen) were interspersed with the words that had 

previously been seen in the LDT. Thus, it was important to not only ensure balancing between the 

three lists of words presented in the LDT, but also to equate the foil words presented in the LTM task 

with each other list. 

Although it is impossible to exactly equate four lists on five lexical properties each down to the 

last decimal point, we want them to be as closely equated as possible, to minimize their chances 

of spuriously influencing our results. It is not uncommon for studies like this to report that their 

lists were not significantly different from each other (i.e., p > .05 for all of a series of two-sample 

t-tests). However, “non-significantly” different does not mean “no difference”; even if the differences 

are not large enough to meet the conventional (and arbitrary) threshold of statistical significance, their 

magnitude may still be sufficient to add a fair bit of noise or bias to the results. This is especially true 

if the differences go in directions that may reinforce each other; for example, if List A has fewer mean 

syllables than List B ( p = .07) and higher mean frequency ( p = .06), both differences that would be 

associated with faster RTs to List A, this may present more of a problem for bias than if List A had 

fewer syllables ( p = .04) and lower frequency ( p = .03), as the latter pair of differences would tend to 

cancel each other’s RT effects out. So, ideally we would want to go beyond mere non-significance 

when equating lists; but in order to apply a GA to this balancing problem, we require a fitness 

function by which to evaluate the equality of lists, and for this purpose the p -values of these lexical 

property t-tests can be used as a reasonable proxy for similarity. Optimal solutions are those with the 

highest minimum p -value among the set of all pairwise t-tests for that solution; in other words, after 

t-testing every word list against every other list for each lexical property. Strictly speaking, p -values 

are not statistically defined or intended as a similarity measure; however, for practical purposes, they 

work well enough, and they have the useful property of having a clearly defined range (0–1) that is 

the same across different data types and scale factors. Using our GA, we were able to balance the 

words in all of our lists in such a way that a t-test between any two lists, and of any of the 5 relevant 

parameters, returned at minimum a test statistic of p = .98. 

The GA-based balancing is implemented within our MATLAB toolbox LIBRA, which can be obtained 

via the MATLAB Central File Exchange ( https://www.mathworks.com/matlabcentral/fileexchange/ 

79628- lexical- item- balancing- resampling- algorithm- libra ). Our starting word bank was obtained via 

the English Lexicon Project (ELP; [5] ), an open repository of over 64,0 0 0 words that provides lexical 

property (e.g., number of syllables, number of phonemes) information, subjective norming data (e.g., 

valence), and behavioral measures such as speeded naming and LDT response times. An optional step 

in the LIBRA toolbox can be used to filter word banks obtained from the ELP, selecting subsets of 

the overall word bank that fit user-defined parameters. For example, one may wish to find only root 

words and filter out any homophones or compound words that also include the root. This filtering 

step offers versatility in constraint options beyond that of the ELP interface and automates many 

of the processes that researchers use to manually curate word lists. In order to make the toolbox 

functions more widely accessible, we have added a graphical user interface (GUI). 

We will first examine the mechanics of how the GA approaches the balancing task, followed by 

detailed instructions for using the GUI. The toolbox has been tested to work with MATLAB 2015b 

through 2020a, but may work in other versions as well. The LIBRA toolbox does not require any 

additional add-on MATLAB toolboxes, only the base MATLAB installation. 

Genetic algorithm implementation 

The main GA script is fed an omnibus word bank along with the lexical parameters to be balanced 

(e.g., word length) and their associated values. A vector of list lengths specifies the number and size 

of each of the sub-lists to be generated. A target p -threshold is specified as the stopping point; this 

is the minimum p -value that will be allowed among all tests when evaluating whether a potential 

solution is good enough to be returned to the user. The GA will continue to run until either the p - 

threshold is attained, or a user-defined maximum number of iterations is reached. The GA first draws 

a potential solution, the first parent, at random from the omnibus word bank. A second solution, the 

https://www.mathworks.com/matlabcentral/fileexchange/79628-lexical-item-balancing-resampling-algorithm-libra
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child, is created by cloning the parent and swapping one of the words from one of its sub-lists at 

random for one of the unused words in the omnibus bank. The fitness of both possible solutions is 

then independently evaluated. Each of the possible pairwise comparisons between sub-lists, for each 

parameter to be balanced, is then t-tested with an independent-samples t-test, resulting in a vector of 

p -values for each solution that describes its fitness. If the lowest p -value of the child solution is higher 

than the lowest p -value in the parent solution, the child is deemed to have better fitness and becomes 

the new parent; its genes (word lists) will become the starting point for the next generation (iteration 

of the GA). If the child solution fails to outperform the parent, it is discarded, and the parent will be 

re-used on the next generation. This process repeats until the lowest p -value of a solution has met 

the user-specified target p -threshold. Thus, over time the retained solutions are only allowed to stay 

the same or improve, but never become worse. Every 10 0 0 iterations (about every 20 s in our test 

case, although timing can vary widely depending on the complexity of the problem and the hardware 

used), information about the fitness of the current solutions is printed to the command line to update 

the user. 

Note that the GA applied here is relatively simple, and thus it has certain limitations that a more 

elaborate GA might not. For example, the GA could become trapped in a local minimum wherein 

swapping any single word will not result in an improved fitness score. However, given that most users 

will have a fairly large word bank relative to the desired number of stimulus words, this situation 

would be relatively rare. As such we have elected not to implement a more complex GA, which keeps 

the code simpler and limits the potential for bugs. Instead, if the GA performs a user-defined number 

of successive iterations with no fitness improvement, it is assumed that the algorithm has become 

stuck in a local minimum, and it will be forced to restart from the beginning. If a user-defined number 

of these restarts occurs, the script will terminate entirely, under the assumption that this means a 

valid solution is impossible (or impractically improbable) for the current set of parameters. If this 

occurs, users can modify the iterations or restarts variables, lower the p- threshold, modify their word 

bank, and/or discard one of their lexical parameters, and then try again. They also have the option 

to save the best solution found prior to termination, at which point they may deem the solution 

acceptable and choose to use it after all or use that information to guide them in adjusting their 

parameters. Note that failed attempts to reach the specified threshold are especially likely when the 

number of words used in a solution is high relative to the size of the unused word pool available for 

swapping. 

When the algorithm achieves its threshold target, it will automatically save out a number of 

files. The first of these will be a MATLAB data file (.mat extension) containing each of the sub-lists 

generated, the p -value fitness metrics for each, and the original word bank along with an added 

column denoting which sub-list (if any) each word was assigned to; the final values for all of the other 

variables in the script are also retained for record-keeping purposes. A series of comma-separated 

value (CSV) files will also be generated, one for each wordlist, and the filenames will be appended 

with the list length and a unique number to allow differentiation (e.g., “my_wordlist_1_200.csv”, 

“my_wordlist_2_200.csv”). 

The following instructions for use and validation are based on the application in Lintz and Johnson 

[14] , a fairly typical usage example. To obtain an omnibus work bank, we requested a list of words 

from the ELP with the following constraints: between 3 and 10 letters, 1 to 2 syllables, 2 to 10 

phonemes, a log HAL (Hyperspace Analogue to Language; [15] ) frequency range of 2 to 11, and an 

average time to read aloud of between 500 and 1000 ms. 

Graphical user interface (GUI) and usage 

The toolbox comprises two scripts; one is the main GA that performs the list balancing, and the 

other provides functionality for filtering/trimming long omnibus word lists based on several simple 

criteria, prior to feeding the omnibus word list into the main GA script. The filtering script is optional; 

however, many users of ELP-based lists will find it useful for pruning unwanted words. The main GA 

script will accept a word bank from any source, as long as it is formatted properly. We will describe 

the usage of the main balancing script first (although if the optional filtering script is used, it would 

be run prior to the balancing script). 
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Fig. 1. Word list balancer, Step 1: Select input file. 

Fig. 2. Word list balancer, Step 2: Name output file. 

Balancing script 

Upon running the main GA script (libra_balance.m), a series of interactive MATLAB figure windows 

will appear, which we will describe individually. 

Word list balancer, Step 1: Select input file ( Fig. 1 ). First, the user selects a file to load for balancing 

( Fig. 1 A); this is the omnibus word bank. Within the file selection window, users can choose between 

two file types, either CSV (default) or MAT (available after enabling that file type within the file 

selection window). If a MAT file is chosen, it is assumed to be the output of the optional filtering 

script (see next section), though any MAT file may be passed in as long as the wordlists contained 

therein are formatted the same and stored in the variable “list_to_balance”. Word banks in CSV 

files are expected to conform to the following format: header information in the first row of each 

column, words in the first column, and each remaining column containing a lexical parameter to 

balance, which must consist of only numeric data. Although including too many parameters may limit 

performance, the script typically runs fairly quickly, and thus it is recommended to start with all of 

the desired parameters for balancing and a high p -threshold target, and only to reduce the threshold 

or cut back on the number of parameters if balancing fails. 

Word list balancer, Step 2: Name output file ( Fig. 2 ). Next, the user will specify a save location and 

filename stem for the output wordlists ( Fig. 2 A). Clicking in the dialog box will launch a standard file 

management window. Filename stems supplied by the user will be appended with a list number and 

list length for each wordlist that is output. Next, the user indicates via checkbox ( Fig. 2 B) whether to 

include column header descriptors in the output files (default is ‘yes’). 

Word list balancer, Step 3: All other options ( Fig. 3 ). Finally, the user will specify balancing 

parameters. First, the user enters the number of lists to generate and the length of each list. Lists 

need not be all the same size, though there are implications for finding an optimal solution if the 

lists differ greatly in length. Within the ‘Wordlist sizes to create’ text entry field ( Fig. 3 A), a list length 

is entered in a new row for each list desired (i.e., the default entry, [20 0; 20 0; 50], would create 2 

lists of 200 words and one list of 50). In the next text field, the user enters the minimum p -value 
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Fig. 3. Word list balancer, Step 3: All other options. 
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Fig. 4. Filter ELP word list, Step 1: Select input file. 

desired ( Fig. 3 B); the default is 0.80, but for many applications, higher thresholds should be easily 

attainable, and it is recommended to first try a more optimistic value of 0.95 or higher. 

The theoretically optimal solution will have an unknown p -value ceiling that depends on the 

number of lists, their lengths, the size of the available word pool, and the variance in the parameters 

being balanced. It is difficult to calculate or guess this ceiling a priori (tantamount to finding the 

optimal solution itself; hence the need for a randomization-based optimization technique in the first 

place), so a small amount of trial and error may be required to find a reasonable target threshold for 

each new study. In our validation tests (see ‘Validation’ section below), p > .98 was achievable for 

every permutation of 2–5 lists at 100, 200, 300, and 400 words per list. 

Next, the user will enter the maximum number of GA iterations without progress before initiating 

a restart ( Fig. 3 C). A range of 40 0 0–80 0 0 is suggested based on our testing, and the default value 

for this setting is 60 0 0. As p -values increase with successive iterations, it is increasingly likely that 

individual list swaps will not improve fitness and thus, if the number of iterations without forward 

progress reaches this value, it is assumed that a local minimum has been encountered and the GA 

will restart. Users will then enter the maximum number of such restarts to attempt ( Fig. 3 D) before 

the GA terminates. 

Finally, an optional exclusion wordlist may be loaded ( Fig. 3 E). If an exclusion list is supplied, the 

stimulus sets generated and balanced will not include any of those words. This may be desired if, for 

example, the user wishes to conduct follow-up experiments or add conditions at a later point that 

are derived from the same initial word bank but should not re-use any of the words previously used 

in a solution. The exclusion list can either be the CSV file that was output from a previous balancing 

operation, or any other CSV file formatted similarly. 

Output files from the balancing script include: Both CSV and MAT versions of each balanced list 

requested, a CSV of all words included in all balanced lists, a CSV of the initial wordlist with list 

assignments appended, a text file of the final fitness values, and a MAT file containing the end state 

of all of the variables in the balancing script. 

Filtering script 

This optional script (libra_filter.m) provides simple filtering of word banks obtained from the ELP. 

The restriction to ELP-sourced CSV files is due to reliance on the specific header names and the 

syntax used in certain ELP data columns, though in theory any CSV file can be filtered as long as 

the corresponding data columns adhere to the same syntax. If this script is used, it should be applied 

prior to the balancing script. A number of pruning options are available (e.g., removing proper nouns, 

removing homophones), which are typically faster and/or more reliable than doing the same by hand. 

It should be noted that while these options are helpful, some are based on simple heuristics that may 

not recognize certain edge cases, so manual review of the final filtered list is highly recommended. 

Running the filtering script will prompt a series of interactive windows, as in the balancing script. 

Filter ELP word list, Step 1: Select input file ( Fig. 4 ). First, the user will select the CSV file of words 

to filter. Clicking in the dialog box ( Fig. 4 A) will launch a standard file selection window. 

Filter ELP word list, Step 2: Name output file ( Fig. 5 ). Next, the user specifies the name and location 

of the output file with the dialog box ( Fig. 5 A), similarly to the balancing script. 
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Fig. 5. Filter ELP word list, Step 2: Name output file. 

Filter ELP word list, Step 3: Acceptable parts of speech ( Fig. 6 ). The first filtering option is to select 

the part(s) of speech (POS) for words retained in the final list. Users may choose from three filtering 

methods ( Fig. 6 A). The default option, “selections in boxes,” allows users to select for single POS or 

multiple combinations of POS. Alternatively, selecting “all possible combos” will apply all possible 

permutations of POS combinations. Users may also choose to not filter by POS. In most cases, this 

last option will behave the same as if filtering is performed with all possible combinations of POS; 

however, this option may be useful in the case of wordlists without POS data. Steps involving filtering 

for POS require that the POS column is present in the ELP file. If any individual words lack POS data, 

they will be removed from the list automatically. 

Filter ELP word list, Step 4: Types of words to remove/flag ( Fig. 7 ). The next set of options is to 

remove words based on specific criteria ( Fig. 7 A–7 D), flag them for manual review ( Fig. 7 E–7 H) rather 

than remove them automatically, or both remove them and flag those words as removed for future 

reference. As with the POS options, if these steps are selected, any words missing the relevant data 

will automatically be removed. 

One such option is to remove variants, defined as words that share a stem with other words in 

the list (e.g., abandon, abandoned , and abandoning ). It is often undesirable to have such closely related 

words in the final stimulus list. If variant removal is selected ( Fig. 7 A), the first occurrence of a variant 

will be retained while subsequent occurrences are removed. If users wish to manually select which 

of the variants to remove, they can choose ‘no’ for removal and instead flag them ( Fig. 7 E) for later 

manual review. The identification of variants requires the ELP’s ‘MorphSp’ (word spelling based on 

morphemes) column to be present in the CSV file. Note that variant identification uses a fairly simple 

heuristic that identifies matches among morphemes, and thus it may miss certain edge cases. This 

is deliberate, as tightening the algorithm would also considerably increase the number of flagged 

words based on small segments of those words that share the same spelling, but appear within words 

unrelated in meaning (e.g., cat alog and cat aract). 

Similar to the rationale for removing variants, homophones may also be problematic. Homophone 

removal ( Fig. 7 B) and flagging ( Fig. 7 F) are both optional and function similarly to variant removal. 

Identifying homophones requires the ‘Pron’ (pronunciation) column to be in the CSV file. The script 

is designed to retain the first occurrence of a word sharing the same pronunciation as another in the 

list and remove/flag all subsequent occurrences. The pronunciation data from the ELP is based on a 

standardized, computer-readable, phonetic alphabet for American English, and thus the homophone 

identification behavior tends to be quite reliable. 

Proper nouns such as the names of people and cities are fairly common in ELP-sourced lists and 

can be removed ( Fig. 7 C) and/or flagged ( Fig. 7 G) as in previous steps. Since identifying proper nouns 

(operationalized as any word that is capitalized) is straightforward, performance in this step is robust. 

Lastly, users may choose to remove ( Fig. 7 D) and/or flag ( Fig. 7 H) compound words. There may 

be no intrinsic reason to exclude a word simply because it is compound; however, some may find it 

advisable, as it prevents two or more words appearing in the same stimulus set that share a word 

stem (e.g., cat, walk, and catwalk). Like variant removal, identifying compound words requires the 

‘MorphSp’ column to be in the CSV file. In that column, word stems appear inside of curly braces, 

and thus, this step identifies words with multiple sets of braces. If compound words are acceptable 

and the user is only concerned about them appearing along with their constituent stems, selecting 
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Fig. 6. Filter ELP word list, Step 3: Acceptable parts of speech. 
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the ‘only if stems present’ option then evaluates the contents of each set of braces, comparing it to all 

others in the list. Note that many of the word stems may have already been excluded in the previous 

steps, and therefore choosing this option will only remove a compound word if one of its stems is 

actually present in the current pruned version of the list. 

Filter ELP word list, Step 5: Choose columns to include in output ( Fig. 8 ). Finally, the user selects 

the data columns for balancing. As the output of the filtering script is intended to be passed to the 

GA script, which then balances all of the columns present, this step retains all checked columns 

while stripping the unchecked columns from the list that is saved out. Across all of the filtering 

steps, the imported ELP CSV file is never modified; ‘removal’ only applies to the output that is 

created. Nearly all of the ELP columns in the input file with numeric data are potentially available 

for selection, although most experiments will only require a handful of parameters to be considered. 

If the input file includes any data columns that are not ELP-standard, users may select ‘Also include 

user-defined properties’ to balance by the numerical data in those columns. Of course, one should 

have a reasonable methodological justification for balancing by any parameter; while balancing by 

certain parameters might be theoretically possible, the result may not necessarily be meaningful in 

practice. Users should consult Balota et al. [5] for descriptions of each parameter to help them decide 

which are most relevant for their studies. It is also good to keep in mind that, as noted previously, 

including more columns will likely increase the time required to find an adequately balanced solution; 

in extreme cases, including too many columns could preclude finding a solution at all. 

Another factor to consider when including/excluding columns is the variance present for some 

parameters. Given that t-tests are employed as a fitness function, high variance may produce a low 

ceiling for the fitness of the optimal solution. For this reason, among others, though one could balance 

by the HAL frequency norms (denoted as Freq_HAL in the ELP), it makes more sense to use the log- 

transformed version (Log_Freq_HAL) instead; the same consideration should be given to similar cases. 

Once all of the desired options have been selected, clicking on ‘Continue’ will apply those filtering 

operations and save the results to a MAT file. Within that output file, all of the variables from the 

filtering script are retained for future reference. If users select any of the flagging options, those words 

that are flagged will be marked as ‘true’ in the corresponding variable names beginning with the 

word ‘flag’ (e.g., flag_capitalized). Once more, manual inspection of the final filtered word bank is 

highly recommended. As we have previously discussed, some filtering steps rely on simple heuristics 

to identify target words for filtering, and thus it may be possible for some edge cases to be missed. 

This is necessary in part due to the format of the data supplied in ELP spreadsheets, and in part 

to simplify the code. In addition, other undesirable outcomes are possible that even a complicated 

algorithm might miss despite being immediately apparent to a human reviewer (e.g., ‘catsup’ and 

‘ketchup’ appearing together). 

Validation 

To put LIBRA into practice, we ran two validation tests across a range of stimulus list lengths and 

number of lists that might be commonly used in cognitive psychology experiments. First, we requested a 

word bank from the ELP and ran it through the LIBRA filtering script. In Validation 1, we set the LIBRA 

balancing script to generate multiple combinations of stimulus lists that were balanced on five lexical 

properties, finding that five lists of 400 words each could be created in under 20 min. In Validation 2, we 

created lists by randomly selecting words from the word bank, and demonstrated that the vast majority of 

these randomized lists differed significantly on at least one lexical property. 

Word bank filtering 

A word bank was requested from the ELP (restricted set; ELP experiment norms rather than the 

HAL-derived norms) list with all options checked for inclusion. Additionally, constraints or ranges 

were specified for certain lexical properties as follows: Word length (3–10 letters), log HAL frequency 

(2–11), number of phonemes (2–10), number of syllables (1–2), and average time to read aloud 

(50 0–10 0 0ms). These criteria were similar to the stimulus set used by Lintz and Johnson [14] and 

chosen so that validation would be representative of an actual experiment. These selections returned 

an initial word bank of 20,509 words, which was subsequently filtered using libra_filter.m with the 
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Fig. 8. Filter ELP word lists, Step 5: Choose columns to include in output. 
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following options: Nouns only (‘NN’, single POS); proper nouns, variants, and compound words (if 

stems present) were removed. Words with multiple POSes were also removed. The resulting filtered 

list contained 3,987 words and retained for balancing purposes the columns corresponding to number 

of letters, log HAL frequency, number of phonemes, number of syllables, and time to read aloud. 

Validation 1: Generate LIBRA-balanced word lists and measure runtime 

The algorithm from the libra_balance.m script was then used to generate multiple combinations 

of stimulus lists that were balanced across the five lexical properties in the final filtered word bank 

described above. Four stimulus list lengths were used (10 0, 20 0, 30 0, and 40 0) and four stimulus 

list numbers were used (2, 3, 4, and 5), resulting in 16 different possible combinations (two, three, 

four, and five lists of 100 words each; two, three, four, and five lists of 200 words each, and so on) 

representing a range of what might be reasonably expected for a typical psychology experiment using 

word stimuli. The target minimum p -value was set to p > .98. Maximum allowable iterations and 

restarts were set at 6,0 0 0 and 10, respectively. Each of the 16 possible combinations was repeated 50 

times to obtain a reliable measure of mean running time for an average desktop computer. 

Validation 2: Baseline comparison technique – purely randomized stimulus selection 

To provide a comparison to the LIBRA-balanced lists, a Monte Carlo process was used to perform 

random draws from the same filtered word bank of 3,987 words used in the previous Validation 

1. This simulated the outcome of assigning words to condition lists for each of the same 16 

combinations of list length and number of lists, but instead of balancing lexical properties, purely 

random assignment (another common experimental technique) was used. These random draws were 

performed 10,0 0 0 times per combination in order to establish a reliable average. For each iteration, 

the degree of similarity between sub-lists was tested using the same criteria as in the balancing script: 

Every sub-list was t-tested against every other sub-list, for all five lexical properties. This resulted in 

as few as five t-tests (for sets containing two sub-lists) and as many as fifty (for sets containing five 

sub-lists) per iteration. 

Validation 1 results: Generate LIBRA-balanced word lists and measure runtime 

Good balancing among sub-lists was achieved in every case we examined. All combinations of list 

length and number of lists returned a minimum p -value of .98 among all tests performed when up 

to four wordlists were generated (with one exception among four-list tests, representing 2% of those 

tests). When five lists were generated, 26.5% of balancing attempts contained at least one t-test that 

did not return a minimum p -value of .98 before exceeding the specified allowable number of restarts, 

though all t-tests returned a minimum p -value of at least .85. 

Thus, balancing in even the most challenging (five-list) scenario was highly successful. First of all, 

even for iterations that “failed” to reach criterion, p > .85 for all tests still represents an eminently 

usable degree of similarity among sub-lists and, in our experience, far exceeds the balancing any 

human could achieve by hand. Second, the fact that a high percentage of attempts did reach the p 

> .98 target indicates that it is possible to achieve such balancing in a reasonable time frame, just 

not on every single iteration. So, in a real-life situation, a researcher could easily obtain near-perfectly 

balanced lists more often, merely by relaxing the timeout parameters or running more iterations. 

Fig. 9 illustrates the average time required to reach the target fitness p -value for the 16 combinations 

tested, which span a range of use cases that should encompass most cognitive experiments’ needs. 

Even for the most demanding scenarios of five wordlists, fitness targets were achieved in an 

average of 18.3 min; smaller set sizes were balanced considerably faster (within a matter of seconds 

for sets of 2 or 3 wordlists; under 4 min for sets of 4 wordlists). 

Validation 2 results: Baseline comparison technique – purely randomized stimulus selection 

In contrast to the LIBRA-balanced lists, in 46.7% of the generated list sets using purely random 

selection, there was at least one pair of wordlists that differed significantly (at the conventional 

threshold of p < .05) on one of the five lexical properties. As might be expected, we see more of 

these “significant” differences in sets containing more lists, and to a lesser extent, sets with longer 

lists. 

Table 1 gives the percentage of Monte Carlo simulations for each combination in which the 

minimum p -value obtained during testing was less than .05. It is important to note that the p -values 

here cannot be interpreted exactly in the usual way, as the probability of observing a given result 

under the null hypothesis. In these simulations, we know the null hypothesis is true, because we 
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Fig. 9. Time to generate each stimulus set for validation 1 using the libra_balance algorithm. Sixteen stimulus sets were 

generated, balanced across five lexical properties. Target minimum p-value was set to .98, which was achieved in the vast 

majority of cases; in all cases, a minimum p-value of at least .85 was achieved. 

Table 1 

Percentage of randomized lists with at least one 

“significant” inter-list difference ( p < .05). 

Number of wordlists 

List Length 2 3 4 5 Mean 

100 18.4 39.9 56.8 71.4 46.6 

200 19.1 38.5 57.6 71.7 46.7 

300 17.9 38.7 57.5 72.7 46.7 

400 18.1 39.7 57.1 72.4 46.8 

Mean 18.4 39.2 57.2 72.0 46.7 

intentionally drew the lists from the same underlying population. Here, we are using p -values as 

convenient proxies for how well-equated (or not) two lists are, so rather than using the conventional 

language of statistical “significance,” it might be more apt to say that list pairs with p < .05 are 

“substantially” unbalanced. These results suggest that randomly assigning words to conditions will 

result in substantially unbalanced stimulus lists between 17.9% and 72.7% of the time. As is evident 

in Table 1 , list length differences tend to produce similar results, with the number of word lists 

being generated driving most of the resulting variance in performance. Thus, we have collapsed across 

list length to present the results shown in Fig. 10 , which shows histograms of the smallest p -values 

obtained for each iteration of validation 2 at each set size. 

It is only fair to note that even if two lists differ substantially on one lexical property (e.g., 

length), it is certainly possible to have differences on other properties (e.g., frequency) that contribute 
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Fig. 10. Smallest p-value obtained across all randomly generated wordlists in validation 2. The dotted line and asterisk 

represent the worst performance achieved across all iterations of the genetic algorithm. Virtually none of the randomized Monte 

Carlo simulations achieved a level of performance equal to the worst LIBRA performance. 

bias in the opposite direction, such that the biases cancel each other out. Likewise, most well- 

designed experiments of this nature would not simply perform one such randomization; typically, 

word lists would be re-randomized (or at least re-assigned to other conditions in a counterbalanced 

fashion) across experimental subjects. Thus, with a large enough participant sample, the law of large 

numbers should ensure that there is no systematic bias in the stimuli. However, it is still vastly 

preferable to give each subject as well-balanced a set of lists as possible, for two reasons. First, 

failing to balance lists well within subjects will drastically inflate the variance between those subjects 

(with some having extreme bias in one direction, some having low bias, and still others having 

extreme bias in the other direction), and it will correspondingly lower statistical power. Second, 

sufficiently unbalanced lists could have secondary effects well beyond the low-level influences of the 

lexical properties on measures like response time. For instance, if a participant becomes consciously 

aware that one condition’s words are consistently longer than another’s, they might change their 

strategy, suspect deception, lose focus on the task, or behave in other unpredictable ways that could 

distort the results to a degree that violates the typical expectations underlying law-of-large-numbers 

logic. 

Conclusion 

Here we have introduced a method and toolbox for equating the lexical properties of word 

lists used in cognitive experiments. We have demonstrated and quantified how relying on purely 

randomized procedures to assign word bank items to lists often results in substantially unbalanced 

experimental conditions. In contrast, our method guarantees that the lists used for each experimental 

condition contain no meaningful differences, and thus that the lexical characteristics of the specific 

words used will add an absolute minimum of bias/noise to the experiment in which they are 

used. 
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