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Abstract
Adolescents with anxiety disorders exhibit excessive emotional and somatic arousal. Neuroimaging studies have shown
abnormal cerebral cortical activation and connectivity in this patient population. The specific role of cerebellar output
circuitry, specifically the dentate nuclei (DN), in adolescent anxiety disorders remains largely unexplored. Resting-state
functional connectivity analyses have parcellated the DN, the major output nuclei of the cerebellum, into three functional
territories (FTs) that include default-mode, salience-motor, and visual networks. The objective of this study was to
understand whether FTs of the DN are implicated in adolescent anxiety disorders. Forty-one adolescents (mean age
15.19 ± 0.82, 26 females) with one or more anxiety disorders and 55 age- and gender-matched healthy controls com-
pleted resting-state fMRI scans and a self-report survey on anxiety symptoms. Seed-to-voxel functional connectivity
analyses were performed using the FTs from DN parcellation. Brain connectivity metrics were then correlated with
State-Trait Anxiety Inventory (STAI) measures within each group. Adolescents with an anxiety disorder showed sig-
nificant hyperconnectivity between salience-motor DN FT and cerebral cortical salience-motor regions compared to
controls. Salience-motor FT connectivity with cerebral cortical sensorimotor regions was significantly correlated with
STAI-trait scores in HC (R2 = 0.41). Here, we report DN functional connectivity differences in adolescents diagnosed
with anxiety, as well as in HC with variable degrees of anxiety traits. These observations highlight the relevance of DN
as a potential clinical and sub-clinical marker of anxiety.
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Introduction

Anxiety disorders are the most common mental illnesses
among adolescents, with the median age of onset at 11 years
and a lifetime prevalence rate of 31.9% during adolescence [1,
2]. Adolescence is a unique developmental period during
which sensitivity to affective information peaks and emotional
responses to stimuli are particularly intense [3]. Adolescent
anxiety disorders may thus lead to prolonged psychosocial
problems and be a precursor to other psychiatric disorders
such asmajor depressive disorders [4]. Neurocognitive studies
on adolescent anxiety have mostly focused on amygdala and
prefrontal cortex due to their roles in emotion- and cognitive
control-related behaviors [5–7]. However, anxiety disorders
are associated with widespread network disruption [8].

Anxiety disorders are characterized by the exaggerated
aversive response to actual or perceived threatening
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stimuli, often accompanied by emotional, cognitive, and
somatic arousal [9]. One region implicated in motor, cog-
nitive, and emotional processes involved in anxiety disor-
ders is the cerebellum. Neuroimaging studies have
highlighted cerebellar changes associated with anxiety
disorders. Specifically, increased cerebellar gray matter
volume has been reported in social anxiety disorder [10]
and specific phobia [11]. Relative to healthy participants,
patients with anxiety disorders have shown enhanced cer-
ebellar activity when presented with angry faces [12], so-
cial tasks [13], and at rest [14]. Patients with anxiety
disorders also display changes in cerebellar functional
connectivity with anxiety-related regions in the cerebral
cortex, such as the limbic system and prefrontal cortical
areas. For example, enhanced connectivity between cere-
bellum and amygdala, a core structure implicated in emo-
tion processing, has been reported in multiple studies of
generalized anxiety disorder [5, 7, 15]. Furthermore, in
patients with anxiety disorders, the cerebellum has shown
aberrant intrinsic connectivity with the salience network
[16, 17], default-mode network (DMN) [18], and central-
executive networks (Hilber et al.) [19] during resting-state
functional magnetic resonance imaging (fMRI). Such al-
terations in cerebellar connectivity are also evident in
non-clinical populations with high state or trait anxiety
[20, 21], suggesting that the cerebellum has a role in anx-
iety susceptibility.

Although a cerebellar role in anxiety disorders has
been evidenced in the literature, prior investigation has
rarely examined abnormalities in the cortico-cerebellar
functional networks of adolescents with anxiety disorders.
The cerebellum communicates with cortical regions by
projecting to the deep cerebellar nuclei, the largest of
which is the dentate nuclei (DN). DN projects first syn-
apse in the thalamus, and then projects to frontal, motor,

and parietal cortices, allowing the cerebellum to contrib-
ute to virtually all streams of information processing in
the cerebral cortex [22, 23]. As the cerebellum serves a
wide range of functions and is suggested to be composed
of discrete regions dedicated to unique functions [24, 25],
we aimed to identify whether alterations in cerebellar
functional connectivity in adolescent anxiety are predom-
inantly located within a specific functional territory within
the DN or whether these alterations are present in all
aspects of the DN. Here, we employed the functional
parcellations of DN, the major cerebellar output nuclei,
from Guell et al.’s [26] research, which parcellated the
DN into three territories with specific functional connec-
tions to default-mode, salience-motor, and visual net-
works in the cerebral cortex using resting-state fMRI
scans in a healthy population. We used these three DN
functional territories (FTs) as seed regions of interest
(Fig. 1) to newly examine the intrinsic functional connec-
tivity of cortico-cerebellar network in adolescent anxiety
disorders and investigate its relationship with individual
differences in anxious symptoms.

Methods

Study Participants and Procedure

Adolescents aged 14–17 diagnosed with anxiety disorders
(Anx = 41; mean age = 15.19) and matched healthy controls
(HC = 55, mean age = 15.31) were enrolled in the Boston
Adolescent Neuroimaging of Depression and Anxiety
(BANDA) project. Clinical characteristics, diagnostic criteria,
and demographics information have been previously reported
(see [27, 28]). Sample clinical characteristics are summarized
in Table 1.

Fig. 1 Structural location and FTs
of the dentate nuclei as reported in
[26]). Red, FT1 = default-mode
network FT. Blue, FT2 =
salience-motor FT. Green, FT3 =
visual FT
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Informed consent was obtained from legal guardians and
assent was obtained from the adolescent. Adolescent-parent
dyads were administered the KSADS to assess adolescent
lifetime mental disorders, and the State-Trait Anxiety
Inventory (STAI; [29]) was used to assess continuous anxiety.
The STAI is a commonly used self-report questionnaire that
measures both anxiety levels rooted in the personality (STAI-
trait) and anxiety as a transitional emotional state (STAI-
state); each subscale ranges from 20 to 80, and higher scores
indicate a greater level of anxiety [30].

Structural and Resting-State Functional MRI
Acquisition Parameters

Imaging data were collected on a Siemens 3T Prisma whole-
body scanner with vendor-provided 64-channel head coil
(Siemens Healthcare, Erlangen, Germany). High-resolution
structural data (0.8-mm isotropic voxels) were acquired using
a T1-weighted MPRAGE sequence with a duration of 7 min
50 s (in-plane acceleration factor of 2). Scan parameters for
TR, TE, TI, and flip angle were 2.4 s, 2.18 ms, 1.04 s, and 8°.

Table 1 Demographics
Anx HC p value

Demographics

Total participants 41 55

Mean age (years) 15.19 ± 0.82 15.31 ± 0.86 p = 0.51

Sex: female 26 (63) 31 (56)

Handedness: right-handed 39 (95) 46 (83)

Full-scale WASI score 115.80 ± 16.40 118.13 ± 14.11 p = 0.47

STAI: trait score 43.98 ± 9.67 30.45 ± 7.44 p < 0.001

STAI: state score 39.4 ± 10.49 29.18 ± 8.04 p < 0.001

Psychotropic medication treatment 18 (44) 0

Quality assurance

No. of invalid scans 123.88 109.11 p = 0.45

Max motion 0.69 0.53 p = 0.37

Mean motion 0.06 0.06 p = 0.98

Anxiety disorders

Generalized anxiety disorder 23 (56) 0

Social anxiety disorder 18 (44) 0

Overanxious disorder 17 (41) 0

ADHD 11 (27) 0

Specific phobia 9 (22) 0

Oppositional defiant disorder 5 (12) 0

OCD/excoriation disorder 5 (12) 0

Separation anxiety 4 (10) 0

Avoidant personality disorder 4 (10) 0

Panic disorder 4 (10) 0

Substance use disorder 1 (2.4) 0

PTSD 1 (2.4) 0

Others 4 (10) 0

Types of medication treatment

Serotonin reuptake inhibitor (SSRI) 14 (78) 0

Stimulant 4 (22) 0

Antipsychotic drug 1 (6) 0

Benzodiazepine 1 (6) 0

Tricyclic antidepressant 1 (6) 0

Anxiolytic agent 1 (6) 0

Alpha-agonist agent 1 (6) 0

Anticonvulsant 1 (6) 0

Values expressed as n (%) or mean ± standard deviation; WASI, Wechsler Abbreviated Scale of Intelligence;
ADHD, attention-deficit/hyperactivity disorder; OCD, obsessive-compulsive disorder; PTSD, post-traumatic
stress disorder; Others include Tourette syndrome, enuresis, misophonia, and unspecified anxiety disorder
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Anatomical scans were immediately followed by resting-state
scans, during which subjects were asked to stay awake and
keep their eyes fixated on a crosshair. Four resting-state ses-
sions per participant were acquired, with two scans of diffu-
sion MRI in AP-PA directions in the middle. Scan parameters
(T2*-weighted EPI sequence) for TR, TE, flip angle, echo
spacing, and bandwidth were 800 ms, 37 ms, 85°, 0.58 ms,
and 2290 Hz per pixel. Seventy-two interleaved (ascending/
foot-head) slices were collected in the AC-PC plane using an
auto-align procedure to minimize inter-subject variability in
data acquisition. Combination of 64ch array coil and simulta-
neous multi-slice (SMS) acquisition (multiband factor of 8)
provided high temporal sampling (420 time points during an
acquisition window of 5 min and 46 s; four runs) and spatial
resolution (2 mm isotropic) while maintaining whole-brain
coverage (including the entire cerebellum).

Data Processing: Seed-to-Voxel Functional
Connectivity Analysis

Resting-state data were realigned and spatially normalized
to the MNI template using SPM12 (Wellcome Department
of Imaging Neuroscience; www.fil.ion.ucl.ac.uk/spm).
Structural images were segmented into white matter
(WM), gray matter, and cerebrospinal fluid (CSF) using
SPM12. The CONN Toolbox [31] was used to compute
whole-brain correlation maps from the seed regions of
interest (ROIs). ROIs included the whole DN (as defined
using the SUIT DN mask [32]), and three functional sub-
territories of DN that were defined in a previous study by
our group [26], including default-mode network, motor-
salience, and visual functional regions (see Fig. 1). The
CONN Toolbox uses an anatomical component-based cor-
rection method (aCompCor [33]) for denoising BOLD
time series and integrates quality assurance (QA) methods
to address the deleterious effects of motion artifacts
(Artifact Detection Tools, www.nitrc.org/projects/
artifact_detect). There was no between-group difference
in the number of motion outliers and maximum and mean
head motion. Band-pass filtering was carried out at 0.
008–0.09 Hz. Time points with a mean signal intensity
beyond three standard deviations from the global mean
signal and 0.4-mm scan-to-scan motion (about one-fifth
the acquisition voxel size) were flagged as problematic
scans and were regressed out along with six realignment
parameters (along with derivatives) and physiological
sources of noise (three principal components of WM,
and three principal components of CSF segments, using
aCompCor [33]). WM and CSF segments were derived
from the structural images using the segmentation routine
in SPM12. Because of the small size of the DN, un-
smoothed data were used for data analysis to minimize
partial volume effects from structures close to DN [34].

Whole-brain Pearson’s correlation maps derived from
denoised time series from whole DN and the three DN
functional territories were converted to z-scores using
Fisher’s r to z transformation to carry out second-level
general linear model (GLM) analyses.

Data Processing: Second-Level GLM Analysis

Seed-to-voxel analysis was carried out using the whole DN as
a seed, as well as using the unique effect of each of the three
functional territories (DMN, salience-motor, and visual). The
unique effect of each functional territory [35] was calculated
using a previously described method [26]. Specifically, the
DMN unique effect (FT1) was calculated as DMN > (sa-
lience-motor and visual), salience-motor unique effect (FT2)
was calculated as salience-motor > (DMN and visual), and
visual unique effect (FT3) was calculated as visual > (DMN
and salience-motor). Statistical significance thresholding for
between-group effects included p < 0.001 (two-sided) at the
voxel level and p < 0.05 false discovery rate (FDR) correction
at the cluster level.

Symptom Correlation Analyses

For all three functional territories, correlations between
resting-state fMRI correlations and STAI scores were calcu-
lated in both HC and Anx groups, with a voxel threshold of
p < 0.001 and a cluster-forming threshold of p < 0.05 (FDR
corrected).

Results

Second-Level GLM Analysis

Within functional sub-regions of DN (see Fig. 1), statistically
significant differences were detected only for the salience-
motor territory (FT2), revealing increased functional connec-
tivity with pre- and postcentral cerebral cortices (peak coordi-
nate at (− 34, − 28, 70)) (Fig. 2). For both HC and Anx groups,
within-group seed-to-voxel functional connectivity analyses
for FT2 (Fig. 1, top panel) showed functional connectivity to
cerebral cortical salience-motor regions including the primary
motor cortex and supplementary motor area, as well as the
bilateral insula, dorsal anterior cingulate cortex, anterior
supramarginal gyrus, and rostral middle frontal gyrus. The
results were significant after covarying for medication use.
Using the whole DN as a seed did not reveal any statistically
significant differences between HC and Anx, highlighting the
relevance for investigating the functional parcellations of DN.
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Symptom Correlation Analyses

To examine individual differences within each group, corre-
lation analyses between functional connectivity and STAI
scores were conducted separately for HC and Anx groups.
Within HC, STAI-trait scores and functional connectivity be-
tween the salience-motor DN FC and cerebral motor/
somatosensory cortex (20, − 8, 70) showed a significant cor-
relation, linking higher trait anxiety level to stronger connec-
tivity between salience-motor DN FT and cerebral cortical
motor areas (Fig. 3). There was no significant cluster with

STAI-trait scores within the Anx group. STAI-state scores
did not reveal any significant difference in either group.

Discussion

We show for the first time that functional connectivity alter-
ations between cerebellar output structures and cerebral corti-
cal areas are associated with adolescent anxiety. Specifically,
hyperconnectivity was detected between DN salience-motor
FT and primary motor and somatosensory cortices in

Fig. 2 Top: Within-group results
(overlaid on surface maps in
CONN) using functional connec-
tivity calculated from the
salience-motor FT of the DN
(FT2), at voxel-level height
threshold of p < 0.001 (two-sided)
and cluster size FDR correction of
p < 0.05. Bottom: Between-group
results after controlling for medi-
cation use (Anx > HC) at voxel-
level height threshold of p < 0.001
(two-sided) and cluster size FDR
correction of p < 0.05, T = 5.15.
Bar plots provide data for the
significant cluster (precentral and
postcentral cerebral cortex) in
Anx and HC

Fig. 3 Whole-brain correlation
between STAI-trait scores in
healthy controls and salience-
motor DN FT-motor/somatosen-
sory cortex functional connectiv-
ity, thresholded at a height
threshold of p < 0.001, cluster-
corrected at p < 0.05 FDR. R2 =
0.41

396 Cerebellum  (2021) 20:392–401



adolescents with anxiety disorders compared to HC. No
anxiety-related differences were observed with default mode
or visual territories or all combined territories of the DN.
Within HC, stronger functional connectivity of salience-
motor DN to motor/somatosensory cortex correlated with
higher trait anxiety. Taken together, this new evidence illus-
trates the use of DN functional sub-divisions as a relevant
structure to detect functional differences in psychiatric disease
and highlights the role of the DN as a potential target for
disease prediction or prevention of affective disorders.

Cerebellar-Cortical Salience-Motor Network in Anxiety

Evidence from both human and animal studies has established
that the cerebellum is connected with various parts of anxiety
circuitry, including the insula, basal ganglia, and ventral teg-
mental area (VTA) (see [8]) for review). Cerebellar connec-
tions with cortical and subcortical areas relevant in sensorimo-
tor perception and anticipation of stimulus underpin the non-
motor role of the cerebellum in anxiety. The cerebellar vermis,
which contains the fastigial and dentate nuclei, is referred to as
the “limbic cerebellum” for its connections to the mesolimbic
dopaminergic pathway that originate from the VTA to the
nucleus accumbens [36]. The dentate nucleus forms direct
monosynaptic excitatory connections with neurons in the
VTA [37], which is one of the key subcortical structures that
is activated as part of the salience network [38]. Then, the
dopaminergic fibers of the meso-cortico-limbic system project
to motor cortical fields, mainly to the pre- and postcentral
gyrus [39]. Hypoactivations in the cerebellar vermis and sub-
cortical regions in the dopaminergic pathways have been as-
sociated with disturbed predictive motor timing paradigm
[36].

Also, the insula sends efferent projections to the sensori-
motor cortex from which it receives reciprocal afferent pro-
jections, forming the salience-motor network [40, 41].
Neuroimaging and invasive stimulation studies in humans
support a physiological coupling between sensorimotor sys-
tems and stimulus-driven attentional processes [38, 40–44].

The cerebellum also receives inputs from the subthalamic
nucleus of the basal ganglia, indicating that the cerebellum
may be a key substrate for reward-related signals during learn-
ing [45]. Reward-based communication of the basal ganglia
and the cerebellum has been highlighted during predictive
motor timing tasks [46]. The salience-motor network plays
an important role in detecting behaviorally relevant stimuli
by mediating the switch between the DMN and task-positive
central-executive network and permitting response to the stim-
uli [47]. The hyperconnectivity that we report in the DN
salience-motor FT points to the possibility that there is a mal-
adaptive attribution of salience to internal and environmental
stimuli in anxious individuals [48]. It can also be interpreted as
the discrepancy in the “internal model” of the cerebellar

system that false internal representation of external stimuli
would generate unsuited sensorimotor response, which leads
to physiological stress and anxiety state [49].

Besides anatomical investigations, other studies of cerebel-
lar function also support a role of the cerebellum in fear and
anxiety in animals and humans. In rodent models, manipula-
tions on cerebellar functioning impaired anxiety-related be-
haviors [50, 51]. Others have shown a cerebellar role in sa-
lience attribution to avoid harmful stimuli [14, 16, 52].
Patients with anxiety disorders also show changes in cerebel-
lar activity and connectivity with anxiety-related brain areas.
A few studies observed increased cerebellar activation in so-
cial anxiety disorder [12, 13] and specific phobia [53, 54].
Enhanced connectivity between the cerebellum and amygdala
has been replicated several times across age range and symp-
tom severity [5, 7, 15].

Functional connectivity differences between adolescents
with anxiety disorders and HC were observed specifically in
the salience-motor territory of the DN; the salience network
has clear associations with fear and anxiety processing and is
connected to sensorimotor processing systems in the brain as
discussed earlier. The salience network is implicated in detect-
ing emotional salience and triggering cognitive regulation
[38]. Individuals with high trait anxiety or anxiety disorders
have shown aberrance in the salience network. Weaker
within-network salience connectivity has been associated with
adolescents with higher trait anxiety and patients with social
anxiety disorder, suggesting impaired ability in emotion reg-
ulation and overreaction to threatening stimuli [20, 55, 56].
One study on healthy young adults suggested that differential
resting-state connectivity between the cerebellum and execu-
tive and salience cortical regions correlated with behavioral
inhibition, which may have a mediating role in anxiety vul-
nerability [19].

Symptom Correlation

Within the group of HC, STAI-trait scores correlated with
functional connectivity between the premotor cortex and
the salience-motor FT of the DN (Fig. 2). The somatosen-
sory cortex is involved in emotional processing through
its connection to the amygdala through the insula [57, 58].
After early evaluations of emotional significance are con-
ducted through amygdala interaction with thalamus and
limbic regions, somatosensory and related cerebral corti-
cal areas take in for higher order re-evaluation of emo-
tional perception to establish emotional salience [59] and
generate fear memory [60]. Thus, people with higher
alertness and sensitivity to stress stimuli may bring in
more involvement of the somatosensory cortex displayed
as heightened activity. It has also been reported that peo-
ple with specific phobia show higher activation in the
somatosensory cortex [61], and heightened activity in this
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area may contribute to difficulties in emotion regulation
and lower self-control [62, 63]. Trait anxiety does not
necessarily predict conversion to anxiety disorders but is
an index of vulnerability to anxiety disorders. Individuals
with high trait anxiety and those diagnosed with anxiety
disorders share common disruptions in brain activation
and connectivity [64, 65]. Individual differences in state
anxiety, although not detected in this study, have also
been correlated with increased fluctuations of activation
in the right postcentral gyrus and right precentral gyrus
and with connectivity between the postcentral gyrus and
left cerebellum gyrus [21, 66]. The relationship between
DN salience-motor FT connectivity and anxious symp-
toms may be shown in other populations with anxious
symptoms [67].

Limitations and Future Directions

First, our findings are based on exploratory analyses of
cerebellar output structure that suggest overarching alter-
ations in the cortical-cerebellar salience-motor network
but do not specify the direction of connectivity. While
DN functional connectivity may not uniquely correspond
to unidirectional communication between the cerebellar
cortex and extracerebellar structures, DN is the largest
location of synapses for anatomical connections linking
the cerebellar cortex to the thalamus and ultimately to
the cerebral cortex. It is therefore reasonable to consider
that DN functional connectivity is predominantly a mea-
sure of cerebellar functional output. Since we have under-
standing of anatomical connections between the cerebel-
lum and cortical and subcortical regions of the salience-
motor network, future studies can use causal modeling to
characterize the effective connectivity between those re-
gions and examine the directionality of the communica-
tion within the cortical-subcortical-cerebellar network.

Second, 44% of our Anx group were taking psychotropic
medications. To overcome this limitation, we covaried for
medication use in the between-group analyses. The number
of adolescents not on medication use was small (n = 18), and
STAI score correlation calculations within this subsample
would have resulted in a substantial loss of statistical power
making false-negative findings very likely; STAI score corre-
lation analyses were thus performed on the full sample of the
Anx group. We did not have information on behavioral ther-
apy and thus could not control for this variable. The impact of
behavioral therapy on the brain’s functional connectivity
could have blurred individual differences in correlation be-
tween brain networks and anxiety symptoms within Anx as
well. More generally, our findings provide only correlational
evidence to support altered DN functional connectivity in anx-
iety disorders. Interventional studies such as non-invasive
stimulation experiments or lesion-based analyses may

establish a causal link between anxiety and alterations in DN
functional connectivity.

Conclusion

These findings advance our understanding of the
cerebellar-cortical salience-motor network in anxiety dis-
orders by identifying abnormal functional connectivity of
salience-motor territories within DN, a major cerebellar
output to the cerebral cortex, in adolescents with anxiety
disorders. In addition, our study identified a relationship
between trait anxiety level and DN salience-motor FT
functional connectivity in adolescents without a diagnosis
of anxiety disorder, suggesting DN salience-motor FT as a
potential biomarker for abnormal emotional and attentional
processing in sub-clinical anxiety. With recent advances in
the field of neuromodulation and neurostimulation, these
findings also illustrate the idea that the salience-motor ter-
ritories in DN may be used as an experimental target region
for non-invasive neuromodulation for treatment or preven-
tion of anxiety disorders in the near future.
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