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a b s t r a c t 

Many recent developments surrounding the functional network organization of the human brain have focused 

on data that have been averaged across groups of individuals. While such group-level approaches have shed 

considerable light on the brain’s large-scale distributed systems, they conceal individual differences in network 

organization, which recent work has demonstrated to be common and widespread. This individual variability 

produces noise in group analyses, which may average together regions that are part of different functional systems 

across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for 

individual-level mapping within studies. Here our goal was to leverage information about individual-level brain 

organization to probabilistically map common functional systems and identify locations of high inter-subject 

consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets 

with relatively high amounts of data. All networks show “core ” (high-probability) regions, but differ from one 

another in the extent of their higher-variability components. These patterns replicate well across four datasets 

with different participants and scanning parameters. We produced a set of high-probability regions of interest 

(ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together 

with a tool for querying the network membership probabilities associated with any given cortical location. These 

quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus 

to their own fMRI studies, improving inferences about systems and their functional specializations. 

1. Introduction 

A key objective of functional magnetic resonance imaging (fMRI) 

studies has been to gain insight into how brain regions respond during 

tasks and how they interact with one another in distributed large-scale 

systems. To do so, analyses have typically been performed on averages 

across groups of subjects, to counteract noisy data from individuals. 

Studies using a group-average approach to examine human functional 

brain networks have produced robust and well-validated descriptions 

of, for example, typical functional network architecture ( Power et al., 

2011 ; Yeo et al., 2011 ). 

Although the group-average approach has been useful in reveal- 

ing fundamental qualities of functional network organization, recent 

∗ Corresponding author. 

data have suggested that averaging across subjects ignores distinct 

individual-specific features of cortical organization ( Braga and Buck- 

ner, 2017 ; Finn et al., 2015 ; Gordon et al., 2017a ; Kong et al., 2019 ; 

Miranda-Dominguez et al., 2014 ; Mueller et al., 2013 ). Historically, a 

major barrier to producing reliable connectivity estimates at the individ- 

ual level using resting-state functional connectivity (RSFC) techniques 

has been acquiring a sufficient quantity of data to counteract sampling 

variability ( Gordon et al., 2017c ; Laumann et al., 2015 ). Previous work 

has demonstrated that the reproducibility of connectivity estimates and 

individual-specific features of functional brain networks is drastically 

improved with greater quantities of data per subject ( Anderson et al., 

2011 ; Elliott et al., 2019 ; Laumann et al., 2015 ; Noble et al., 2017 ) 

Accordingly, RSFC studies acquiring a typical 5–10 min. of data per 
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subject may not be sufficient to accurately reflect connectivity patterns 

in a given individual, or to examine individual differences in network 

organization. Several recent works have used higherreliability datasets 

to illuminate regions of high individual differences in functional net- 

work topography ( Braga and Buckner, 2017 ; Gordon et al., 2017a ; 

Seitzman et al., 2019 ), outlining a geography of brain locations that 

show substantial variability across individuals. 

Given known individual differences in functional networks, experi- 

menters are posed with the dilemma of how to continue with analyses of 

these systems in their own work. One possibility is to acquire sufficient 

“precision ” fMRI data to overcome sampling variability and produce 

accurate measures of individual brain networks. However, this may be 

expensive, difficult in certain participant groups, and not possible in 

previously acquired datasets. An alternative is to quantify the degree 

of consensus in network profiles across individuals and focus analyses 

on locations with known commonalities. Despite individual differences, 

past data have suggested that commonalities in network organization 

are also large and widespread, with many regions of the cortex showing 

substantial similarity to the typical group-average brain ( Gratton et al., 

2018 ; Kong et al., 2019 ; Seitzman et al., 2019 ). The locations of con- 

sensus in functional networks can be derived by probabilistically map- 

ping networks across individuals where sufficient fMRI data is available 

to achieve good individualized network estimates. Consensus locations 

from these probabilistic maps can then be used to enhance group anal- 

yses by (1) reducing heterogeneity (due to averaging different systems 

across participants), (2) limiting confounds from mixing diverse systems 

across individuals (e.g., allowing researchers to better understand func- 

tional specialization of different brain systems), and (3) determining the 

extent to which group data can be extrapolated to single subjects. For 

instance, one could use these maps to determine if an elicited activity 

pattern maps on to the frontoparietal network or a combination of net- 

works across subjects. 

In the present work, we aimed to address this need by probabilisti- 

cally mapping functional networks across participants in four different 

datasets. With this information, we can quantify areas of high group 

consensus: regions where the greatest group convergence in functional 

network organization is observed across individuals. We provide tools 

that can be directly applied in various experimental contexts to quantify 

the degree of consistency in network assignments across a group. The 

quantitative probabilistic description of functional networks as well as 

the tools for implementing high-consensus group analyses are likely to 

be useful to many in the field with insufficient data to map individual- 

ized brain networks. 

To create high quality estimates of group consensus, we focused our 

analyses on datasets with relatively high amounts of resting-state data 

per person ( “highly sampled datasets ” > 20 min. of low-motion resting- 

state data), where individual network maps achieve higher reliability. 

We used a template-matching procedure to identify cortical brain net- 

works in these highly sampled individuals and combined the resulting 

maps to produce a cortex-wide probabilistic estimate for each network. 

We replicated these findings across four datasets (a Dartmouth dataset 

with N = 69 with > 20 min. of data per person as the primary dataset, 

and secondary replications in the Midnight Scan Club: N = 9 with > 

154 min., the Human Connectome Project: N = 384, with > 43 min., 

and a Yale dataset: N = 65, with > 22 min.). Notably, each of these 

datasets were collected both on different individuals and with varied 

scanning parameters. Probabilistic maps are presented and quantified 

at various thresholds and are validated by contrasting to past results 

of high variability regions. Finally, we provide two tools for research 

use: (1) a set of network-specific, high-probability ROIs for use in seed- 

ing group analyses and (2) a point-and-click tool allowing researchers 

to explore voxel-by-voxel probabilistic network estimates for regions of 

activation in their own data. The use of high-consensus regions may pro- 

vide greater confidence in ROIs selected as priors in network-informed 

resting-state studies, with the potential for use in task-based studies as 

well. 

2. Methods 

2.1. Datasets and overview 

Five independent datasets focused on young neurotypical popula- 

tions were utilized in this paper ( Table 1 ): a Washington University 

dataset (a subset of the participants reported in Power et al., 2012 ), 

a Dartmouth dataset ( Gordon et al., 2016 ), the Midnight Scan Club 

(MSC) dataset ( Gordon et al., 2017c ), the Human Connectome Project 

(HCP) dataset ( Van Essen et al., 2012b ), and the Yale Low-res dataset 

( Scheinost et al., 2016 ; note this dataset extended to middle age). Each 

dataset we use here consists of highly sampled subjects with a relatively 

large amount of low-motion data, ranging from a minimum of 20 min. 

(for N = 69 in the Dartmouth primary mapping dataset) to upwards of 

154 min. (for N = 9 in the MSC replication dataset). This large amount 

of data dramatically increases the reliability of functional connectivity 

measurements relative to more typical 5–10 min. scans ( Gordon et al., 

2017c ; Laumann et al., 2015 ). 

The WashU datasets were used to generate network templates: first, 

the WashU-120 (60 female, average age 24.7 years) was used to create 

a data-driven group-average cortical network classification, and then 

a subject “subset ” of the WashU-120 consisting of 24 highly sampled 

subjects (the “WashU-24 ″ ) was used to create a set of high-quality tem- 

plates based on these group-average networks. Subjects in this subset 

had at least 35 min. of low-motion data when combining across addi- 

tional resting-state scan sessions previously obtained from our group 

(see Template Generation in the supplement for more details). 

These group-average templates were then applied to subjects in the 

Dartmouth dataset to identify brain networks in single individuals. The 

Dartmouth dataset ( N = 69 subjects [56 female; average age 20.2 years]) 

included subjects with over 20 min. of low-motion data. Given its rela- 

tively large sample size and its standard, single-band scanning param- 

eters, this dataset was the primary dataset used to determine network 

probabilities across individuals and generate network-specific regions 

of high inter-subject consensus. 

Three additional datasets were used to replicate these probabilistic 

maps: the MSC dataset ( N = 9 subjects [4 female; average age 29.3 years] 

with over 154 min. of low-motion rest data), subjects from the HCP 

dataset ( N = 384 subjects [210 female; average age 28.4 years] with at 

least 52 min. of data), and subjects from the Yale dataset ( N = 65 subjects 

[32 female; average age 32.2 years; subject ages in this dataset ranged 

higher] with over 22 min. of data). Notably, the MSC dataset includes 

very highly sampled individuals whose functional connectivity maps 

have been demonstrated to have high reliability and validated with func- 

tional activation studies. The HCP dataset replicates the current findings 

in a large dataset at high spatial and temporal resolution, and the Yale 

data set replicates the findings in a relatively “low-resolution ” dataset 

(voxel size 3.4 × 3.4 × 6 mm). See Supp. Table 1 for acquisition param- 

eters for functional data across all datasets; details on all preprocessing 

and functional connectivity (FC) processing procedures are outlined be- 

low. 

2.2. Preprocessing and FC processing of BOLD data 

2.2.1. WashU, Dartmouth, MSC, Yale datasets 

All structural and functional data were preprocessed to remove noise 

and artifacts, following Miezin et al. (2000) . 

Structural and functional preprocessing: In the WashU, Dartmouth, 

MSC, and Yale datasets, slice timing correction was performed using 

sinc interpolation to account for temporal misalignment in slice acqui- 

sition time. Next, whole-brain intensity values across each BOLD run 

were normalized to achieve a mode value of 1000. Motion correction 

was performed within and across BOLD runs via a rigid body transforma- 

tion. Functional BOLD data was then registered either directly to a high 

resolution T1-weighted structural image from each participant (WashU, 

Dartmouth, Yale, and HCP datasets) or first to a T2-weighted image and 
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Table 1 

Datasets and data details. Low-motion data quantities were measured after correction for movements using framewise displacement (see Functional connectivity 

processing ). 

Dataset N Usage 

Amount of data collected 

per subject (minimum –

maximum) 

Amount of low-motion data 

retained per subject 

(minimum – maximum) 

WashU-120 120 Group-average, data-driven network discovery 7.6 – 30.2 min. 6.3 – 29.7 min. 

WashU-24 (higher-data subset of WashU- 120) 24 Network template creation 44 – 133 min. 35 – 124 min. 

Dartmouth 69 Template-matching, probabilistic maps 21 – 60 min. 20 – 49 min. 

MSC 9 Replication of probabilistic maps 300 min. 154 – 281 min. 

HCP 384 Replication of probabilistic maps 60 min. 43 – 58 min. 

Yale 65 Replication of probabilistic maps 48 min. 22 – 48 min. 

then to the T1 (MSC) using an affine transformation. This T1-weighted 

image was aligned to a template atlas ( Lancaster et al., 1995 ) conform- 

ing to Talairach stereotactic atlas space ( Talairach and Tournoux, 1988 ) 

using an affine transformation. All computed transformations and re- 

sampling to 3 mm isotropic voxels were simultaneously applied at the 

end of these steps. For some supplemental analyses to test the effects 

of structural alignment procedures, cortical surfaces were also gener- 

ated by FreeSurfer ( Dale et al., 1999 ), registered to fs_LR surface space 

( Van Essen et al., 2012a ), and aligned with each individual’s functional 

data using the processing stream described in Gordon et al. (2016) . 

Functional connectivity processing: Following Power et al. (2014) , ad- 

ditional denoising was applied to the resting-state data for FC analy- 

sis. Temporal masks for each subject’s timeseries were created in the 

WashU, MSC, and Yale datasets by censoring all frames with a frame- 

wise displacement (FD; Power et al., 2012 ) greater than 0.2 mm, and 

in the Dartmouth dataset by censoring frames with FD greater than 

0.25 mm. This frame-censoring approach was implemented to remove 

timepoints associated with motion, as even small movements can in- 

duce distance-dependent biases in functional connectivity ( Power et al., 

2014 , 2018 ; Satterthwaite et al., 2019 ), and censoring of high-motion 

frames has been shown to be effective in reducing distance-dependent 

artifacts ( Ciric et al., 2017 , 2018 ). Across all datasets, segments with 

fewer than 5 contiguous frames were censored. FreeSurfer 5.0 segmenta- 

tion using each subject’s T1 image generated a white matter and a cere- 

brospinal fluid nuisance mask per individual. After BOLD data were de- 

meaned and detrended, regression of nuisance signals was implemented, 

regressing out global signal, cerebrospinal fluid, and white matter, as 

well as the six rigid-body motion regressors and their expansion terms 

( Friston et al., 1996 ). Data from high-motion frames were interpolated 

over via a spectra-matching interpolation technique. Data were then 

bandpass temporally filtered between 0.009 Hz to 0.08 Hz. Finally, the 

data were spatially smoothed at FWHM (6 mm). 

2.2.2. HCP dataset 

Preprocessing and FC processing of HCP subjects were carried out 

similarly to the other datasets with a few differences. First, slice-timing 

correction was not performed, following the recommendations of the 

minimal preprocessing pipeline guidelines ( Glasser et al., 2013 ). Sec- 

ond, prior to censoring high-motion frames, motion parameters were 

low-pass filtered at 0.1 Hz to mitigate effects of respiratory artifacts on 

motion estimates attributable largely to the multi-band, fast-TR data ac- 

quisition ( Fair et al., 2020 ; Siegel et al., 2017 ). Following this, a filtered 

FD threshold of 0.1 mm was applied to censor frames. Data were origi- 

nally processed in MNI atlas space with 2 mm isotropic voxels and were 

transformed into Talairach space with 3 mm isotropic voxels in a single 

step prior to spatial smoothing as described above. 

2.3. Template-matching and generation of high-probability ROIs 

In this work, we created network maps for highly sampled individual 

subjects using a template-matching approach. These network maps were 

then overlaid to generate a probabilistic estimate of network distribu- 

tions across subjects. High-consensus ROIs were generated for research 

use from regions of high cross-subject agreement of network assignment. 

Procedures for template-matching in individuals and probabilistic net- 

work map generation are illustrated in Fig. 1 and described in more 

detail below. All analyses were performed in volume (Talairach) space 

with 3 mm isotropic voxels (figures in this manuscript show data pro- 

jected to the cortical surface for visualization purposes only). 

2.3.1. Template-matching 

Brain networks were identified in individual subjects by a winner- 

take-all procedure (similar to that employed in Gordon et al. (2017b) ) 

which assigned each cortical gray matter voxel in a particular subject 

to one of 14 network templates. The generation of volumetric network 

templates is described in the Supplemental Methods . Networks include 

the default mode (DMN), visual, fronto-parietal (FP), dorsal attention 

(DAN), language (Lang.; this corresponds with the network labeled as 

“ventral attention ” in previous work from our group), salience, cingulo- 

opercular (CO), somatomotor dorsal (SMd), somatomotor lateral (SMl), 

auditory, temporal pole (Tpole), medial temporal lobe (MTL), parietal 

medial (PMN), and parieto-occipital (PON; sometimes called the ret- 

rosplenial, contextual association, or parahippocampal systems). Note 

that the functional/anatomical nomenclature associated with network 

labels is a matter of ongoing debate ( Uddin et al., 2019 ; here we selected 

names generally consistent with previous iterations from Laumann et al., 

2015 and Power et al., 2011 ). 

Networks were matched in each individual by assigning each voxel 

to one of the 14 canonical networks based on the voxel seedmap’s “fit ”

with each network template (similar to the approach implemented in 

past work; e.g., Gordon et al., 2017b ). Specifically, a seedmap was cre- 

ated for each location and binarized to the top 5% of connectivity val- 

ues across voxels (this threshold was set based on previous work, but 

Gordon et al. (2017a) demonstrated consistent network assignments 

within a subject across a range of individual-level connectivity thresh- 

olds). Each voxel’s binarized map was iteratively compared with the 

14 network templates (also binarized, see Supp. Fig. 1) and matched 

to its “best fit. ” Fit was measured using the Dice coefficient of over- 

lap between the binarized voxel connectivity map and each binarized 

template map ( Fig. 1 A). This procedure was repeated across all corti- 

cal voxels, resulting in a cortex-wide individual-specific network map 

( Fig. 1 B). Same-network clusters of less than 108 mm 

3 (4 contiguous 

voxels) were removed from each individual’s network map. 

Rather than using a data-driven community detection approach to 

map individualized networks, this template-matching approach was 

chosen based on our goal of investigating known, previously described 

brain networks to allow for a reliable comparison of network struc- 

ture across individuals. However, supplemental analyses in the Midnight 

Scan Club dataset show comparisons between probabilistic maps de- 

rived from data-driven vs. template-based assignments (e.g., see Supp. 

Fig. 5). 

2.3.2. Creating probabilistic maps 

After individual-specific network maps from the Dartmouth dataset 

had been generated with the template mapping procedure, these maps 
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Fig. 1. Template-matching procedure ( A) and 

creation of probabilistic network maps ( B-D ). 

A set of group-average network templates were 

created from the WashU dataset. These group- 

average templates were binarized at the top 

5% of connectivity values. Next, for each sin- 

gle individual in the Dartmouth and replication 

datasets, a voxelwise seedmap was created for 

all gray matter voxels. Seedmaps were thresh- 

olded at the top 5% of values across voxels. The 

individual’s voxel-level binarized map was then 

iteratively compared (by Dice overlap) with 

each group-average network template, and the 

network with the highest Dice coefficient was 

assigned to the voxel ( A ). Once all voxels were 

assigned in all subjects ( B ), the number of 

network assignments at each voxel were tal- 

lied across subjects ( C ) to generate probabilis- 

tic maps of networks. These probabilistic maps 

were then thresholded ( D ) to represent loca- 

tions with network consensus in a large major- 

ity of subjects. Note that while all steps were 

performed in volume (Talairach) space, results 

are mapped onto a template surface for visual- 

ization purposes only. 

were overlapped to produce a cross-subject probabilistic map for each 

network ( Fig. 1 C). To generate this cross-subject probabilistic map, in- 

dividual network assignments at each brain location were tallied to cal- 

culate the total occurrence (in number of subjects, with a given net- 

work assignment out of the total N = 69). This produced a continuous 

probabilistic map for each network which specified the probability of 

a given network assignment at every voxel within the cortical mask. 

Frequency values of network assignments were divided by the number 

of subjects within the primary dataset and were converted to percent- 

ages to illustrate the probability of network membership at each voxel. 

Probabilistic maps were created in the same manner from the MSC, 

Yale, and HCP datasets based on the number of subjects included (9, 

65, and 384, respectively), and were compared to the results from the 

primary dataset. Thresholded versions of the network-specific proba- 

bilistic maps were also produced ( Fig. 1 D), allowing for visualization of 

the network assignment frequencies at various probability thresholds 

(e.g., in 50, 60, 70, 80, or 90 percent of subjects). Network-specific 

probabilistic maps for the Dartmouth and HCP datasets are available 

a https://github.com/GrattonLab/Dworetsky _ etal _ ConsensusNetworks . 

Two approaches were taken to quantify the similarity of probabilis- 

tic network maps between the primary and replication datasets. First, 

we calculated the spatial correlation between the unthresholded prob- 

ability maps across each dataset for each network. Second, we con- 

ducted a network-wise random rotation analysis on the thresholded 

high-consensus locations similar to Gordon et al. (2016) . Each network 

in the (volume-to-surface-mapped) 70% probability map from the Dart- 

mouth dataset was randomly rotated around the 32k_fs_LR cortical sur- 

face such that it maintained its size and shape. This rotation was re- 

peated 1000 times for each network in each hemisphere. For each of 

rotation, we calculated the Dice coefficient between the randomly ro- 

tated network in the Dartmouth dataset and the thresholded 70% prob- 

ability map in each of the replication datasets (MSC, Yale, and HCP). 

Iterations where a network rotated into the medial wall were ignored 

and these Dice values were assigned with the average coefficient across 

all random rotations for that network ( Gordon et al., 2016 ). The sim- 

ilarity between the original (true) Dartmouth consensus map and the 

replication maps was also assessed via a Dice coefficient. Finally, a p - 

value was calculated based on the proportion of rotations in which the 

rotated Dice value exceeded the true Dice value. 

2.3.3. Creating ROIs of high group consistency for studies in other 

modalities 

Once probabilistic maps were defined, we next set out to create a 

set of regions of interest (ROIs) with high group consensus for use in 

future (and retrospective) studies. These ROIs were created by con- 

trasting the probabilistic maps generated above from the Dartmouth 

dataset with 248 (of 264) ROIs of the larger set previously proposed 

in Power et al. (2011) found in the cerebral cortex. 

Specifically, high group consensus regions were derived from the 

probabilistic maps of the Dartmouth dataset by identifying locations that 

showed consistent network assignments across a large majority (i.e., > 

75%) of subjects. A spherical 7 mm diameter region was placed on each 

of the center coordinates reported in Power et al. (2011) . ROIs were 

identified as “high-probability ” if their average probability (across vox- 

els) was ≥ 75%. If a region failed to meet the 75% criteria to be identified 

as “high-probability, ” it was shifted one voxel in space (i.e., 3 mm in the 

x, y, or z direction) and was retained if this shift produced an average 

ROI probability that met the threshold, as the intention was to keep the 

original ROI set relatively intact but optimized for probabilistic map- 

ping. As a result of this procedure, a total of 44 ROIs were shifted from 

their original position. ROIs that failed to meet the high consensus def- 

inition with a single voxel shift were dropped from the final group. The 

full probabilistic maps are also provided to the public, allowing authors 
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the possibility to generate additional ROIs with more varied character- 

istics if desired. 

2.3.4. Creating point and click voxel-wise network tool 

Finally, we created a tool for displaying the probability of network 

membership at each cortical voxel for research use. Specifically, a scene 

file was created using the Connectome Workbench software that con- 

tains each network’s probabilistic map in volume space and allows for 

point-and-click usability to identify the probability (across subjects) that 

a given voxel is associated with each network. 

High consensus ROIs and full probabilistic maps are pro- 

vided at https://github.com/GrattonLab (ROIs are provided as 

center coordinates so they can be shaped to a preferred size; 

coordinates are provided in both Talairach and MNI space for 

convenience). Data from the Midnight Scan Club is available at 

https://openneuro.org/datasets/ds000224 ; data from the Human Con- 

nectome Project can be accessed at https://db.humanconnectome.org/ ; 

data associated with the WashU-120 is available at 

https://openneuro.org/datasets/ds000243/versions/00001 . 

3. Results 

3.1. Overview of results 

In this work, we sought to characterize high-consensus network lo- 

cations for use in analysis and interpretation of group research stud- 

ies. To this end, we compiled individualized network assignments in 

several datasets of highly sampled subjects to create a reliable cross- 

subject probabilistic map of network definitions. We show these results 

first for the Dartmouth dataset (primary) and then replicate these find- 

ings in three additional datasets to demonstrate their stability. Using 

these datasets, we explored the degree of consensus for networks across 

different probability thresholds. Finally, we created two tools for use 

in future research studies: (1) a set of “high-probability ” regions of in- 

terest, and (2) a publicly available point-and-click tool for determining 

network probabilities in researcher-specified locations. 

3.2. Estimated probabilistic maps of 14 canonical networks 

As described in the Methods, we used a template-matching approach 

to determine a voxel-based network assignment for each individual 

( N = 69) in our primary Dartmouth dataset, based on templates created 

from the WashU cohort. We then overlapped the individuals’ network 

maps within the Dartmouth dataset for each canonical network. This 

overlap was used to generate a cross-subject probabilistic map ( Fig. 2 ; 

see Supp. Fig. 2 for maps for the remaining 8 canonical networks we 

examined). As can be seen, all networks demonstrated some regions 

with high-group consensus (warm colors), but also a spread of lower- 

consensus locations. While this analysis was conducted in volume space, 

analyses performed with surface-based alignment produced similar re- 

sults in the primary dataset (Supp. Fig. 3). 

3.3. Consensus locations replicate across multiple datasets 

Next, we implemented the probabilistic map procedure in three sup- 

plemental datasets (consisting of 9 MSC subjects, 384 HCP subjects, and 

65 Yale subjects; Fig. 3 ). Despite differences in participant populations, 

scanners, and acquisition parameters (most notably in the HCP dataset), 

probabilistic network assignments generally replicate, with results from 

the three test datasets visually appearing similar at the 50 percent proba- 

bility threshold and experiencing similar patterns of network “dropout ”

as the probability of assignment increases at 70 and 90 percent. We note 

that more dropout is observed in the HCP dataset, perhaps due to the 

lower SNR associated with these scans (e.g., see Seitzman et al., 2020 , 

SI Fig. 4). 

Fig. 2. A probabilistic representation of 6 association networks. Cooler col- 

ors represent regions with the least confidence in network assignment across 

subjects, while warmer colors represent brain regions with the highest group 

consistency– in bright red regions, up to 100% of subjects converged on a given 

network assignment. (See Supp. Fig. 2 for probabilistic maps produced for both 

hemispheres and for all 14 networks.). 

This observation was supported by quantitative comparisons as well. 

All three supplemental datasets showed a high spatial correlation with 

the Dartmouth dataset: on average, the network-specific probabilistic 

maps were correlated at r = 0.90 for Dartmouth:MSC, r = 0.90 for Dart- 

mouth:Yale, and r = 0.70 for Dartmouth:HCP (see Supp. Fig. 4A for 

full breakdown by network). Furthermore, the high consensus locations 

( > 70%) also replicated, as shown by network-wise rotation-based per- 

mutation analysis ( p < 0.001 relative to random null for all networks be- 

tween Dartmouth and MSC and between Dartmouth and Yale; in the 

Dartmouth–HCP comparison, 10 of the 14 networks showed a Dice co- 

efficient significantly higher than the null; see Supp. Fig. 4B for full 

breakdown by network). 

Finally, in the highly sampled MSC dataset, we also demonstrate that 

probabilistic maps based on data-driven network assignments show high 

correspondence to the template-based assignments used here (Supp. Fig. 

5). This suggests that template-matching and data-driven procedures 

converge with sufficient high-quality data, at least in neurotypical pop- 

ulations. 

3.4. Individual networks vary in the size of their core and the span of 

surrounding components 

While core regions of high consensus exist in all of the canonical net- 

works investigated here, the networks vary in the extent of their more 

peripheral (i.e., low consensus) regions. As shown in Fig. 4 , networks re- 

tain cortical territory at varying rates as the probability threshold (i.e., 

consensus across subjects) increases. For example, while the visual net- 

work consistently remains the most highly represented network across 

the highest probability thresholds, the inverse is true for FP: it is the 

third-most highly represented network across at least 50% of individu- 

als, but when group consensus is examined at 80% or 90% of individuals, 

cortical representation of FP diminishes significantly. 

Differences in the rate of network “dropout ” seem not to be driven 

purely by a distinction of sensorimotor vs. association networks. While 

sensorimotor networks tend to have higher consensus, some association 

networks also maintain a relatively high group consensus across thresh- 

olds, including DMN and CO. It appears unlikely that network size alone 

is driving the effect (i.e., that smaller networks taper off more quickly 

across probability thresholds); while some smaller networks experience 

relatively fast dropout (e.g., Lang.), others (e.g., PON and MTL) remain 

consistent across a high percentage of subjects. Regardless, all networks 
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Fig. 3. Thresholded probabilistic maps across 4 datasets. 

Probabilistic maps were generated for the primary Dartmouth 

datasets and from three additional datasets (MSC, HCP, and 

Yale). For each dataset, network assignments consistent across 

50%, 70%, and 90% of subjects are displayed. 

Fig. 4. Representation of the proportion of cortical territory covered by each 

network at each probability threshold. Each line represents the total percent- 

age of the cortex covered at a given threshold. Inset shows percent of cortical 

territory for the smaller networks at 80–90% consensus. 

have some core regions of high inter-subject consensus, and networks 

vary in the cross-subject variability observed in locations surrounding 

these core regions. 

3.5. Non-core areas overlap with previously described locations of network 

variants 

Next, we sought to provide support for our approach by examining 

how consensus regions from this template-matching probabilistic proce- 

dure compared with previously identified locations of individual vari- 

ability in functional network organization. Transparent white regions in 

Fig. 5 show “network variant ” locations across 752 HCP subjects from 

Seitzman et al. (2019) where a given individual’s correlation pattern dif- 

fers significantly from the group-average (this was computed using con- 

tinuous measures, without reference to a discrete network assignment). 

Despite differences in methodological approaches used for identifying 

consensus probabilistic assignments (via template-matching) and indi- 

vidual variants (via low spatial correlations), we find that there is a good 

contrasting correspondence between these two methods. As would be 

expected, regions of high consensus lie mostly outside of the boundaries 

of network variants, and appear to fill in gaps where there is the great- 

est inter-subject variability in network assignment (e.g., temporoparietal 

junction, lateral frontal cortex). 

3.6. Generation of a high-probability set of ROIs and 

point-and-click tool 

A major goal of the current work was to improve group studies by 

allowing researchers to evaluate network probabilities across partici- 

pants and focus on locations of consensus. To this end, we sought to 

refine previous group-average ROI definitions based on these proba- 

bilistic network assignments to generate a set of high-consensus ROIs 

for future research. We began with the 248 cortical ROIs from the com- 

monly used 264 regions from Power et al. (2011) . We then restricted 

this set to regions where the average network assignment probability 

was ≥ 75% within the 7 mm diameter ROI. This resulted in 153 cortical 

ROIs. Thirteen of the 14 canonical networks were represented (no ROIs 

were retained for the temporal pole network), although the quantity of 

high-probability ROIs varied by network (see Fig. 6 A for locations and 

network descriptions of ROIs). While the regions cover much of the cor- 

tex, some higher-variability areas such as the temporo-parietal junction 

and the lateral frontal cortex are more sparsely represented, as expected 

(e.g., see Gordon et al., 2017b ; Laumann et al., 2015 ; Mueller et al., 

2013 ; Seitzman et al., 2019 ). ROIs with the highest peak probabili- 

ties were identified largely in dorsal somatomotor and visual regions, 

with relatively lower peaks in lateral frontal and orbitofrontal regions 

( Fig. 6 B) 

We provide each network’s probabilistic maps as a series of down- 

loadable volume images, along with the 153 ROIs at https://github. 

com/GrattonLab/Dworetsky _ etal _ ConsensusNetworks (given the added 

differences seen with the HCP analyses, HCP-specific probabilistic maps 

are also provided). For researchers using Connectome Workbench, a 

scene file was created to allow researchers to explore network proba- 

bilities at every cortical voxel. Fig. 7 displays an example of this tool’s 

utility by exploring the DMN map, including an “Information ” window 

with probabilities listed across all networks. 
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Fig. 5. The spatial distribution of network variants across 752 

HCP subjects (as identified in Seitzman et al., 2019 ) is dis- 

played in transparent white, overlaid on the network map at 

75% probability. The distribution displayed here is thresh- 

olded to show variant locations exhibited by at least 11% of 

subjects. Notably, the variants distribution appears to fill in 

gaps where there is the most inter-subject variability in net- 

work assignment, including temporoparietal junction and the 

left and right lateral frontal cortex. 

Fig. 6. (A) 153 high-probability ROIs colored 

by their network assignment. (B) ROIs colored 

by peak probability across voxels within the 

ROI. (C) Histograms of peak probability values 

across all 153 ROIs (top) and mean probability 

values (bottom). 

4. Discussion 

Here, we probabilistically mapped functional networks across a 

group of highly sampled individuals. We found that there are “core ” lo- 

cations of high group consensus within each network. Networks vary in 

the extent and peak probability of their core regions, suggesting that net- 

works with a higher group consensus may be more amenable to group- 

level analyses. The ability to identify locations with high group con- 

sensus allows for better-informed group studies of functional network 

properties, using either task or functional connectivity approaches. To 

facilitate this process, we provide a set of voxelwise probability maps 

for each of 14 canonical networks. In addition, we provide two tools for 

research use: (1) a set of network-specific, high-probability ROIs for use 

in task- and functional connectivity-based analyses and (2) a point-and- 

click tool allowing researchers to explore voxel-by-voxel probabilistic 

network estimates of regions in their own data. 

4.1. Probabilistic approaches in imaging 

In the imaging literature, probabilistic atlases have been utilized 

as a way to quantify spatial distributions of anatomical structures or 

functional areas to pinpoint locations of high consensus across a group. 

Many popular probabilistic atlases of the brain are based on anatomical 

data – e.g., the cerebellum ( Diedrichsen et al., 2009 ), subcortical nuclei 

( Pauli et al., 2018 ), the basal ganglia ( Keuken and Forstmann, 2015 ), 

tissue type, lobes, and sulci ( Mazziotta et al., 1995 ) – to provide ref- 

erences for cross-subject comparisons. However, functional areas (at 

least in the cortex) do not necessarily conform well to anatomical def- 

initions ( Eickhoff et al., 2018 ; Gordon et al., 2016 ), suggesting that 

anatomical atlases are less well-suited for definition of functional ROIs 

in task-based or resting-state fMRI. The current cortical probabilistic 

atlas based on functional network mapping fills this gap. Future work 

in other age groups (e.g., youth, older adults) and clinical populations 

(e.g., schizophrenia, depression) may use a probabilistic approach to 

build additional probabilistic maps of functional networks and further 

enhance group studies in these domains. 

4.2. Utility of a probabilistic mapping approach to functional networks 

We have adopted a probabilistic approach in this study given past 

evidence for both individual differences and group consensus in func- 

tional neuroanatomy ( Gordon et al., 2017a , Gordon et al., 2017b ; 

Gratton et al., 2018 ; Power et al., 2011 ; Yeo et al., 2011 ). It became in- 

creasingly apparent in our own work that, rather than qualitative state- 

ments about the magnitude of variability or the extent of similarity of 

networks across individuals, it would be useful to have a quantitative 

probabilistic view of the variability associated with each cortical loca- 

tion and each network to evaluate the consistency of our findings. Iden- 

tifying regions of group consensus provides a wealth of opportunity for 

more well-informed research on brain networks. 

The probabilistic network maps that we have produced can be used 

by researchers in a number of ways. First, these maps can be thresh- 

olded to create regions of interest for future (or retrospective) group 

analyses. For example, these maps may be thresholded to select regions 

of the frontoparietal and cingulo-opercular systems where we have high 

confidence in group consensus. This would allow for a re-analysis of 

past task dissociations between these two systems ( Dubis et al., 2016 ; 

Gratton et al., 2017 ; Neta et al., 2015 ; Power and Petersen, 2013 ), but 

now accounting for potential individual variability in network assign- 

ments. To facilitate this application, we have provided a set of 153 ROIs 

that identify high-consensus regions within 13 of the 14 networks ex- 

amined. Should a researcher wish to perform task-based or rest-based 
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Fig. 7. Schematic of publicly available research tool for ex- 

ploring network probabilities. The DMN map is displayed, and 

probabilities of network membership to all 14 networks for 

the given voxel are listed in the “Information ” window with 

non-zero probabilities outlined in red. 

analyses at the group level, high-probability ROIs would be crucial in 

ensuring that the brain regions being analyzed are those which are most 

consistent across individuals; researchers can be more assured that a ma- 

jority of individuals are providing information from the same network. 

Secondly, these regions may be used to help interpret ambiguous 

results in group studies. For instance, a region which is assigned to the 

CO network in 70% of subjects and the salience network in the other 

30% of subjects may serve as a meaningful distinction from a region 

which is assigned to CO in 70% of subjects but FP in the other 30%. Thus, 

while the high-probability ROIs focus on regions of group similarity, 

useful information on the locations and forms of individual variability 

can also be gleaned from the point-and-click probabilistic tool. In the 

future, researchers may use the probabilities associated with this paper 

to provide quantitative estimates for the typical (and atypical) network 

assignments associated with findings of interest. 

Third, probabilistic network mapping may deepen our understand- 

ing of the clinical utility of mapping functional brain networks by pro- 

viding reliable quantitative priors about the network assignments of 

each region. This probabilistic approach may provide a basis for more 

precisely identifying network deviations in individuals with specific di- 

agnoses, as well as network changes across development. For example, 

one possible future investigation may be to examine whether individu- 

als with a given clinical diagnosis vary predictably from the probability 

map of any network of interest; perhaps in clinical groups there will be 

more variability in higher-probability regions. 

4.3. Group consensus in core regions within large-scale networks 

Our probabilistic maps demonstrated that each network was com- 

prised of a set of “core ” regions exhibiting very little or, in some cases, 

no variability ( note that our use of “core ” is based on anatomical location, 

separate from the graph theoretical connotation of the word ). This suggests 

that the core areas of each network are relatively fixed across individ- 

uals, with little possibility for variation, and these regions complement 

previously described locations of high individual variability (see Fig. 5 ). 

The consensus areas of each network were larger in sensorimotor than 

association systems, consistent with the idea that association systems 

are more variable across individuals, maturation, and evolution, which 

has been suggested to be due to a lack of genetically encoded tethering 

markers in these areas ( Buckner and Krienen, 2013 ). However, we found 

a consistent core in each of the association systems as well, which would 

appear to be at odds with a strong interpretation that association net- 

works lack fixed constraints ( Buckner and Krienen, 2013 ). Indeed, the 

consistency of association networks differed markedly between systems 

with, e.g., relatively robust consensus in the DMN and CO and high vari- 

ability in the FP, despite their similar overall sizes and complex “high- 

level ” natures. Exploring the basis for commonalities and plasticity in 

association networks will be an interesting avenue for future work. 

Importantly, while our results speak to areas of high and low vari- 

ability in network assignment across subjects, less light is shed on lo- 

cations that assign to multiple networks within a subject. The imple- 

mentation of a template-matching approach to map networks in indi- 

viduals, which necessarily forces a discrete network assignment, is not 

best suited to capture locations that may have network profiles inter- 

mediate to multiple networks. Some interpretations have characterized 

these regions as hubs ( Gordon et al., 2018 ; Gratton et al., 2012 , 2018 ; 

Power et al., 2013 ; Warren et al., 2014 ) while others describe them as 

multi-network integration zones reflective of a set of cortical gradients 

( Huntenburg et al., 2018 ). It will be interesting in future work to deter- 

mine the correspondence between these “hub ”-like intermediate regions 

that show inconsistent discrete network labels within a person and those 

that are variable across individuals. We note that the agreement between 

the current template-matching work and previous findings of individual 

differences based on continuous metrics ( Seitzman et al., 2019 ) provides 

tentative evidence that these intermediate zones are not large contribu- 

tors to the cross-person variability observed here. 

4.4. Limitations 

The findings presented here have several limitations that are worth 

noting. First, in an effort to optimize the tradeoff between data quan- 

tity and the number of subjects retained for our probabilistic estimates, 

the amount of data required per subject was set to a minimum of 

20 min. of low-motion data. While this represents relatively higher- 

data subjects than a majority of group studies (which collect 5–10 min. 

of data), most of these subjects did not reach the 30–45 min. thresh- 

old that is ideal to produce asymptotic individual-subject reliability 

( Laumann et al., 2015 ). However, we were able to repeat the proba- 
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bilistic analyses within the smaller but highly sampled Midnight Scan 

Club (MSC) dataset, which produced comparable results; in this dataset 

we were able to demonstrate that data-driven approaches show similar 

correspondence to the template-matching approaches used here (Supp. 

Fig. 5), further validating our findings. 

Second, while there was general agreement in the probabilistic maps 

from the 4 datasets examined here, there were some differences, which 

may be driven by differences in scan parameters or dataset size/quality. 

This was particularly the case in the probabilistic map generated from 

the Human Connectome Project (HCP) dataset relative to the other three 

datasets. The probabilistic maps displayed in Fig. 3 reveal that some 

high-consensus regions that are conserved across probability thresh- 

olds in the Dartmouth, MSC, and Yale datasets show a lower degree 

of consensus in the HCP dataset. Such differences might be driven by 

the smaller voxel size and higher spatial and temporal resolution of the 

HCP dataset, which may lead to a lower signal-to-noise ratio (SNR; as 

demonstrated in Fig. S4 in Seitzman et al., 2020 ). Thus, the extent to 

which the probabilistic assignments replicate in datasets using similar 

acquisitions as the HCP is less certain and may require further inves- 

tigation. Given this observation, we have also separately released the 

HCP-specific probabilistic network maps for use for those using the HCP 

dataset or others with similar acquisition parameters. 

Lastly, we note that probabilistic assignments were calculated at the 

level of 14 canonical functional networks. This set of networks was 

selected because they are among those that have been most consis- 

tently defined and investigated in studies of cortical functional systems 

( Power et al., 2011 ; Yeo et al., 2011 ) and are thus likely to be useful 

to a broad set of individuals. However, this selection necessarily lim- 

its the observation of probabilistic maps at other resolutions, including 

those of interesting sub-network structure such as the default mode sub- 

networks identified by Braga & Buckner (2017) , Gordon et al. (2020) , 

and Kong et al. (2019) . Moreover, the current approach is based on a 

probabilistic representation of the systems, not areal, level of brain or- 

ganization. A consistent network assignment across individuals is not a 

guarantee that a region belongs to the same brain area across those 

individuals. We know from past work based on functional localizers 

that there is variability across subjects at the areal level as well (e.g., 

Kanwisher et al., 1997 ; Wang et al., 2015 ); variation at the areal level 

may also carry information about individual differences, and will be im- 

portant in studies requiring area-level precision. An exciting avenue for 

future work is to expand on the techniques in this manuscript to proba- 

bilistically map sub-networks and areal level organization. 

5. Conclusions 

Here, we produce a probabilistic representation of distributions of 

functional network assignments across a group of highly sampled sub- 

jects. While individual networks vary in the span of their “core ” high- 

probability locations, all networks examined showed regions of high 

group consensus. These probabilistic maps and core regions replicated 

across four diverse datasets. The quantitative probabilistic maps, high- 

consensus ROIs, and point-and-click tool produced from these analyses 

will allow researchers to improve group studies by providing informa- 

tion about cross-subject consensus. 

Data & code availability 

Code associated with this manuscript will be made available upon 

publication at https://github.com/GrattonLab . Data from the Midnight 

Scan Club is available at https://openneuro.org/datasets/ds000224 . 

Data from the Human Connectome Project can be accessed at 

https://db.humanconnectome.org/ . Data associated with the WashU- 

120 is available at https://openneuro.org/datasets/ds000243/ 

versions/00001 . 
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