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ABSTRACT

Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical
reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum
compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the
viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed
of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the
picosecond time scale.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000051

INTRODUCTION

Ultrafast photochemical reactions in the condensed phase are
important for biological and chemical processes ranging from the first
steps of vision to photocatalysis. Direct structural probes that allow us
to identify atomic positions in real-time are critical to understanding
the mechanisms of these photochemical reactions. Such observations
of transient molecular structures have been achieved using time-
resolved x-ray and electron scattering.1–3 Recognizing the importance
of the solution environment in dictating the mechanism and dynamics
of many photochemical reactions, x-ray solution scattering (XSS) at
XFEL and synchrotron sources has been used to identify changes in
solute geometry, bonding, and solvation, as well as molecular vibra-
tions, on ultrafast time scales.4–7 Ultrafast electron diffraction (UED)
presents a complementary approach to probing molecular structure in
real time. Electrons are sensitive to the total Coulomb potential of the
sample, making the total scattering cross section scale less strongly
with the core charge than it does for x rays and allowing electron

diffraction to be more sensitive to lighter elements (including hydro-
gen). Electron scattering in solution environments, however, has been
historically challenging due to the sub-micron penetration depth of
electrons in liquids, the complications multiple scattering introduces
to data analysis, and the need for high vacuum. Recently, the develop-
ment of mega-electron-volt (MeV) UED and gas-accelerated liquid
sheet jets8 that produce sub-micron, in-vacuum liquid samples made
possible the development of a liquid phase UED (LUED) instrument9

with sub-200 femtosecond time resolution. Here, we pioneer the use of
LUED to study the reaction dynamics of a molecule in solution.

The ability of LUED to directly observe solute structural dynam-
ics is demonstrated on a well-characterized reaction, the photodissoci-
ation of tri-iodide (I�3 ) in water by 400nm excitation. I�3
photodissociation has been extensively studied over several decades in
both the gas and solution phase via a variety of methods. Gas-phase
photofragment mass spectrometry experiments determined photon
energy-dependent branching ratios between three-body dissociation
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(I�3 ! I� þ 2I) and two types of two-body dissociation, I�3 ! I�2 þ I
and I�3 ! I2 þ I�.10 In solution, the latter type of two-body dissocia-
tion is not observed,10–12 suggesting a strong effect of the solvent on
the escaping fragments. Solution-phase photon energy-dependent
studies determined that for excitation at 400nm in ethanol, only the
I�2 þ I two-body dissociation occurs, while higher photon energy exci-
tation results in both two- and three-body dissociation.13 The single
dissociation channel at 400 nm was also confirmed in water via pico-
second time-resolved XSS measurements of the I�2 product formed fol-
lowing dissociation.14 XSS was also used to establish the ground-state
structure of the I�3 anion in polar solvents.15 This structural study of
Kim et al.15 provides further support that I�3 adopts an asymmetric
structure in H-bonding solvents, with charge concentrated on one
terminal I atom which is further apart from the central I than the
opposite terminal atom.16–19 In water, the structure of I�3 was mea-
sured via XSS measurements to be substantially bent as well as
asymmetric.15

Many ultrafast optical spectroscopy studies have focused on the
vibrational and rotational dynamics of the product species, as the
nascent I�2 can be tracked spectroscopically.11–13,20 Femtosecond-
resolution scattering measurements such as LUED have the potential
to offer complementary information about the bond breaking process
in real time, since electron scattering directly encodes interatomic dis-
tances, in contrast to optical measurements, where electronic and
nuclear dynamics can prove difficult to distinguish.

Here, we present LUED measurements of I�3 in water excited
with 400nm light on two time scales. First, the population of product
species I�2 þ I is tracked over a range of 10 ps via comparison to
Molecular Dynamics (MD)-simulated difference scattering, and a sig-
nature attributable to geminate recombination is observed on the time
scale of �1 ps. Then, with femtosecond time resolution in the sub-
picosecond regime, the effect of the increasing I–I distance during
photodissociation is directly observed in the difference scattering, and
an estimated average dissociation speed is extracted.

RESULTS AND DISCUSSION

We have tracked the structural dynamics of I�3 during photodis-
sociation using optical pump-MeV electron probe experiments which
are fully described in the Methods section. Briefly, a sub-200nm sheet
jet of aqueous I�3 solution (prepared from 130mM I2 and excess KI)
was pumped with a 400nm optical laser pulse to initiate photodissoci-
ation, and the scattered 3.7MeV electron beam probe was detected
downstream. Azimuthally integrated scattering patterns from negative
pump-probe time delays were subtracted from the entire dataset to
construct difference scattering curves with magnitudes less than 0.5%
of the total scattering (supplementary material Fig. S1). All analysis is
done on difference scattering curves, as the concentration of solute is
not sufficient to extract static structures, consistent with x-ray
studies.15

While the LUED measurements remain the focus of this work,
optical transient absorption in the UV-Visible regime was also con-
ducted to investigate if other photochemical pathways beyond the
two-body dissociation observed previously13,14 are possible under the
high laser power conditions used for the LUED experiments (40 and
60 lJ with a laser spot size of 160 � 270lm). To quantify the
expected yield of other pathways, optical transient absorption mea-
surements were conducted with the same maximum optical intensity

(supplementary material Sec. II). These show that approximately 85%
of the photoproducts are consistent with I�2 þ I, with the remainder
resulting from photoionization of I�3 (supplementary material Fig. S3).
The secondary ionization pathway does not create sufficiently large
changes in the pair distribution function to be detected with the
achieved signal to noise of our LUED measurements (supplementary
material Fig. S4). Therefore, the LUED data were analyzed only
with respect to the dominant two-body dissociation pathway, I�3 ! I�2
þ I.

In the following, we present LUED data collected in two modes:
a high electron bunch charge mode with�750 fs (FWHM) time reso-
lution, used to probe dynamics up to 10 ps after the laser pulse, and a
low electron bunch charge mode with 180 fs (FWHM) time resolution,
used to probe sub-picosecond dynamics. We first show that the popu-
lation of I�2 þ I product fragments can be tracked on the longer time
scale by comparison with MD simulations, revealing a picosecond
decay of product population which is assigned to geminate recombina-
tion. Then, we show that dissociation can be observed with ultrafast
time resolution within the first 750 fs.

Picosecond population dynamics of I�2 and I product
fragments through comparison of LUED data and MD
simulations

Picosecond-resolution difference scattering patterns obtained
over a 10 ps range using the high electron bunch charge mode of the
UED instrument are shown in Fig. 1. The azimuthally averaged differ-
ence scattering DS, multiplied by the momentum transfer Q to make
signal at higher momentum transfer more visible, is shown in
Fig. 1(a). The low signal-to-noise in the data above Q¼ 6 Å–1, com-
bined with the strong overlap between the difference scattering from
the changes in I–I bond length and changes in the water structure fac-
tor due to solvent thermalization, preclude the robust sine transform
of the difference signal into real space. Instead, we focus our analysis
on dissociation-associated features in the Q-space difference scattering
DS � Q.

As established for the analysis of time-resolved XSS,21–28 DS � Q
comprises a solute-associated signal, arising from photoinduced
changes of solute–solute and solute–solvent atom pair distances, and a
bulk solvent signal, arising from heat deposition following solute relax-
ation. Therefore, to characterize the behavior of the dissociation prod-
ucts, we model the experimental DS � Q as a linear combination of
solute-associated [DSsoluteðQÞ] and bulk solvent [DSsolventðQÞ] signals.
DSsolute comprises the difference scattering due to changes in both the
intramolecular structure (solute–solute) and the solvation cage struc-
ture (solute–solvent), and was derived from classical MD simulations
as described below. DSsolvent , which arises from heating of the bulk sol-
vent as energy is deposited in the system, was extracted from LUED
data of vibrationally excited pure water. Extensive characterization of
laser-induced solvent heating using time-resolved XSS has previously
demonstrated that its shape is independent of the heating mechanism
and does not appreciably evolve in time, even on ultrafast time
scales.24–27 DSsolvent was extracted from LUED data of pure water
heated via excitation with 3lm light, averaged for pump-probe delays
between 5 and 10 ps [Fig. 1(d), red line]. The independently measured
DSsolvent is consistent with XSS measurements of water heating24,29 as
well as molecular dynamics simulations,9 as shown in supplementary
material Fig. S6.

Structural Dynamics ARTICLE scitation.org/journal/sdy

Struct. Dyn. 7, 064901 (2020); doi: 10.1063/4.0000051 7, 064901-2

VC Author(s) 2020

https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://scitation.org/journal/sdy


We simulated DSsolute using classical MD (the details of which are
given in the Methods). DSsolute contains information about the struc-
tural changes of the solute and the relative reorganization of the sol-
vent shells surrounding the solute fragments. The system before
dissociation was modeled as one I�3 anion, one Kþ cation, and 1350
water molecules. The system after dissociation consisted of one I�2
anion, one neutral I atom, one Kþ cation, and 1350 water molecules.
The fixed geometries (bond lengths and angles) and partial charges of
the anions were taken from Ref. 15 and are shown in supplementary
material Table S1. A simulated difference scattering curve DSsolute, con-
structed as the difference between the before- and after-dissociation
trajectories, was obtained following the method of Ref. 30 with atomic
form factors from the ELSEPA program31 and is shown in blue in

Fig. 1(d). This curve models the expected signal after fragment separa-
tion. By separating the MD simulation into solute–solute and solute–
solvent components [Fig. 1(d) inset], we find that DSsolute is dominated
by the change in iodine–iodine atom pair distances, with the lighter
elements of the solvent cage contributing only slightly to the total sig-
nal. Coherent structural vibrations of I�3 or of the I�2 fragment20 are
not included in our MD simulation, as the time resolution of this data-
set is not sufficient to observe these vibrations.

In the first picosecond, as reported in the high time-resolution
dataset below, bond breakage is directly visible as a change in the
shape of DS � Q. After this point, however, collisions with solvent begin
to broaden the distribution of distances between the I and I�2 frag-
ments. Previous MD simulations of I�3 dissociation dynamics32 suggest

FIG. 1. Picosecond time scale difference scattering data, modeled as a linear combination of solvent heating and solute-associated contributions. (a) Difference scattering data
DS � Q. (b) Modeled DS � Q, obtained by multiplying the curves in (d) and (e). (c) Residuals of the fit. (d) The two components of the model in Q-space: the measured
DSsolvent (red) and the simulated DSsolute (blue). Inset: DSsolute (blue) consists of contributions from solute–solute atom pairs (DSI�I , black) and solute–solvent pairs (DScage,
gray). (e) Time traces for the two components obtained from fitting data at each time delay to a weighted sum of the components.

Structural Dynamics ARTICLE scitation.org/journal/sdy

Struct. Dyn. 7, 064901 (2020); doi: 10.1063/4.0000051 7, 064901-3

VC Author(s) 2020

https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://scitation.org/journal/sdy


that by the first picosecond following excitation, the distance between
product fragments is broadly distributed, with a width of � 5 Å.
Therefore, we expect the picosecond-scale difference scattering data
reported in Fig. 1(a) to reflect the average of many discrete product
distances even at the earliest time points available at this resolution.
Although our MD simulations allow the fragment separation to ran-
domly diffuse over the full simulation box, we find that the simulated
difference signal is still a valid measure of the expected sub-10 Å prod-
uct distributions in the first few picoseconds. This is demonstrated in
supplementary material Fig. S7, which compares the MD result to the
average of simulations with discrete fragment separation distances of
1–6 Å and 5–10 Å (these simulations only include the iodine atoms;
difference scattering curves were obtained via the Debye equation).
The difference scattering signal for products that remain in close range
(1–6 Å), as well as that for products that are further separated
(5–10 Å), both match sufficiently with the MD simulation. The MD-
derived signal is therefore used as a measure of the population of dis-
sociated molecules, regardless of the exact I–I�2 distance, for the time
delays considered in Fig. 1.

Each pump-probe delay in the experimental DS � Q was fit to a
linear combination of the MD-simulated DSsolute and the experimen-
tally measured DSsolvent in the rangeQ¼ 1.15–6.60 Å– 1 (full data range
shown in supplementary material Fig. S8). The results of this fit are
shown in Fig. 1(e). The coefficients of the two components are plotted
as a function of time delay in panel (e), with error bars from the square
root of diagonal covariance matrix elements of the least squares fit.
DSsolventðQ; tÞ rises to a plateau in the first 4 ps, consistent with the
rapid growth of heat-associated signal observed in XSS experiments in
aqueous solution.26,27 DSsoluteðQ; tÞ, on the other hand, rises to a peak
within 1 ps, and then rapidly decays to a lower plateau. This decay in
DSsoluteðQ; tÞ indicates the decreasing population of the dissociated
product fragments and is interpreted as a signature of geminate
recombination.

The peaked behavior of DSsoluteðQ; tÞ is consistent with rapid
separation of the I�2 and I fragments (as also reported in the high
time-resolution dataset below), until they collide with the solvent
cage. The nature of these collisions dictates the branching between
fragments that recombine and those that remain dissociated. The
final plateau of the solute component represents those fragments
which escape the solvent cage and remain dissociated. Thus, the
time-dependence of DSsoluteðQ; tÞ contains information about the
time scale of geminate recombination and the probability of sol-
vent cage escape.

In Fig. 2, the time trace of the solute contribution was fit to the
following function, where Arec represents the population that recom-
bines and Aesc represents the population that escapes:

f ðtÞ ¼ exp
�t2
2r2

� �
�

0 t � t0

Arec exp
�ðt � t0Þ

srec

� �
þ Aesc t > t0

8><
>:

9>=
>;:

(1)

This function represents an instantaneous (within the picosecond res-
olution of the dataset) jump of signal at t ¼ t0 to a value of ArecþAesc,
which subsequently decays to a value Aesc with a time constant srec.
The signal is convolved with a Gaussian instrument response function
(IRF) with a full width at half-maximum (FWHM) of 0.75 ps (FWHM

¼ 2:355r). The escape probability is given by the ratio of final to initial
signal level: Pesc ¼ Aesc=ðArec þ AescÞ, while the time scale of geminate
recombination is given by srec. This fitting function does not consider
secondary recombination time scales reported previously, on the order
of 40 ps,33 which fall outside of our measurement window. The fit
results are shown in Fig. 2, yielding a recombination time scale srec of
0.66 0.3 ps and an escape probability Pesc of 0.266 0.1. These fit
results are similar to the transient absorption measurements of
Gershgoren et al.,33 which found a partial recovery of the I�3 spectrum
on a time scale of 1.3 ps in water, corresponding to fast recombination,
with Pesc < 33%. Overall, our picosecond-time scale LUED measure-
ments provide a quantitative measure of the dissociated population
dynamics through comparison with MD-simulated difference
scattering.

Ultrafast photodissociation of I�3 : Sensitivity of LUED
to bond distance

High time resolution difference scattering patterns were obtained
over a 2 ps range using the low electron bunch charge mode of the
UED instrument. Due to the weaker signal of the small electron
bunch, long data acquisition times are required, and fine time delay
steps were only acquired for the first 750 fs following excitation. DS �
Q from this measurement is shown in Fig. 3(a). In this difference sig-
nal, the positive feature at Q¼ 1–2 Å–1, which starts at higher Q and
moves to lower Q values as a function of time, provides a clear signa-
ture of solute dissociation in agreement with previously published XSS
signals.34–36 As atoms move apart, higher frequency modulations
appear in the scattering pattern, leading to characteristic “stripes” in
the difference scattering as peaks and nodes of the new frequencies

FIG. 2. Time dependence of the magnitude of the product signal component
DSsolute (blue) and fit to Eq. (1) (black), modeling geminate recombination, with
instrument time resolution set to 750 fs FWHM.
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pass through those present in the initial state. In the higher Q
range> 1.5 Å–1, contributions of the characteristic signal arising from
a temperature increase in bulk water (DSsolvent) are also observed.

Figure 3(b) shows that a simulated signal constructed from a
linear combination of a solute dissociation signal [DSdiss, shown in
Fig. 3(c)] and the measured bulk solvent heating signal DSsolvent
[Fig. 3(d)] capture the main features of the data. The simulated
DSdissðQ; tÞ in panel (c) is derived from a simple three-atom model
in which the scattering is calculated as one iodine atom is moved
away from the other two. Calculated scattering curves are obtained
under the independent atom model (IAM), using the Debye equa-
tion with atomic form factors from the ELSEPA program.31 The
changing I–I distance is put into the relevant frame of delay time
by assuming a fixed average dissociation speed of 5.86 0.3 Å/ps.
This approximation of the dissociation speed was extracted from
the experimental data as described below. DSsolventðQ; tÞ in panel
(d) is derived from least squares fitting of the measured DS � Q at
each time-point to cðtÞ � DSsolventðQÞ to obtain the contribution
of the heating component to the data (described below and in
supplementary material Fig. S10). The combination of the two
model components, shown in panel (b), yields a good qualitative
match to the experimental DS � Q, demonstrating the direct obser-
vation of bond dissociation of a solvated molecule using LUED.
The limited signal-to-noise and time window of this proof of prin-
ciple experiment do not warrant the inclusion of additional photo-
chemical phenomena, such as the coherent motion of the nascent
I�2 fragment observed in optical studies.20 It also justifies the use of

the overly simplistic three-atom dissociation model that neglects
solute–solvent contributions to the difference scattering signal
(this is further justified in supplementary material Sec. IV, Fig. S9).

The speed of dissociation is encoded in the rate at which the posi-
tive peak in the area between 1 and 2 Å–1 shifts to lower Q values. Due
to the low signal-to-noise of the data, solute structural parameters can-
not be robustly extracted by fitting a model comprising both solute
and solvent signals to the full DS � Q. To extract the speed, the data are
instead treated in two steps: first DSsolventðQ; tÞ is subtracted from the
data, then the remaining signal is fit and compared to the three-atom
dissociation model.

Heat transfer to the bulk solvent is found to occur rapidly, and is
visible even within the first 750 fs, consistent with XSS measurements
of aqueous systems.28 This signal [red trace, Fig. 1(d)] overlaps with
the low-Q “stripe” feature of interest and must be removed prior to
comparing the data to the DSdiss. Therefore, the difference scattering at
each time delay is fit to cðtÞ � DSsolventðQÞ in the region
Q¼ 2.5–4.25 Å–1. The bounds of the fit region were chosen to include
the area of the largest magnitude of the heating signal, while avoiding
overlap with the low-Q solute signal of interest. Varying the lower
bound of the fit region influences the magnitude of the heating signal
fit (c(t)), but the dissociation speed extracted from this analysis is
affected by less than the reported 1r error (see supplementary material
Fig. S10). c(t) is plotted in supplementary material Fig. S10 and can be
described by an exponential growth. The 2-dimensional DSsolvent in
Fig. 3(d) is constructed by multiplying DSsolventðQÞ by the exponential
growth describing c(t).

FIG. 3. Experimental (a) and simulated (b) difference scattering patterns. The model in (b) is the sum of a three-atom model of the solute dissociation (c) as described in the
text with optimum parameters v¼ 5.8 Å/ps (optimum t0 set to t¼ 0), and a water heat component DSsolventðQ; tÞ (d) obtained by multiplying DSsolvent by a smooth fit to the
measured solvent heating background, as described in the text.
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Figure 4(a) shows the difference scattering data in the region of
interest after subtraction of cðtÞ � DSsolventðQÞ. This experimental data
were compared to the simple three-atom model DSdiss to assign the
average dissociation speed. In DSdiss, the ground state I�3 geometry of

Ref. 15 was altered by moving one of the terminal iodine atoms away
from the other two at a constant speed along its bond axis, while the
other terminal iodine moved at the same speed to adjust the remaining
bond length to 3.43 Å (the ground-state bond length of the final I�2
fragment). Due to the asymmetric structure of the I�3 ion in water
solution,15–18 there are two nonequivalent bonds that could be broken.
Ab initio calculations37 suggest that the final products observed in
solution, I�2 and I, are the most stable products only along the reaction
coordinate which breaks the shorter I–I bond. We therefore only show
models of short bond breakage, though a model breaking the longer
bond is shown in supplementary material Fig. S11 for comparison,
and the best-fit dissociation speed is unchanged.

Simulated scattering patterns as a function of time delay (as
opposed to I–I distance) were developed using average dissociation
speed v and time zero t0 as freely varying fit parameters. The use of a
constant average speed is an approximation, as the atoms are acceler-
ating and decelerating within the time window of the measurement.
However, time resolution and signal levels are insufficient to map
acceleration. Simulated trajectories of the I atoms were converted to
difference scattering via the Debye equation. The resulting simulated
DSdissðQ; tÞ was broadened by the temporal resolution of 180 fs
FWHM, and the peak position of the simulated low-Q positive “stripe”
feature was obtained and compared to the experiment. The peak posi-
tions were fit to a Gaussian function in the range Q¼ 1.30–2.15 Å–1

(for both the simulated DSdiss and measured DS � Q); fits to the experi-
mental data are shown by the red lines in Fig. 4(a). These peak posi-
tions as a function of time are shown in panel (b) and display an initial
decrease toward lower Q, followed by an increase, consistent with the
three-atom model; as higher spatial frequencies appear in the scatter-
ing pattern as a function of time, the result in a narrow Q range is a
peak moving toward lower values, until the next peak of the pattern
appears and moves through the same region. A maximum likelihood
estimate (MLE) framework was used to assess the quality of the fit for
a range of (v, t0) pairs as shown in supplementary material Fig. S11.

From this analysis, the average dissociation speed is estimated to
be 5.86 0.3 Å/ps, and this best-fit simulated curve is plotted in gray in
Fig. 4(b); the time axes in Fig. 4 have been shifted to place the fitted t0
at t¼ 0. The model of the total DS � Q based on this dissociation speed
is shown in Fig. 3(c).

The agreement between the simple dissociation model and
the data strongly suggests that I�3 ! I�2 þ I is being directly
observed. However, as discussed above, the high laser power of the
experiment (180mJ/cm2) enables secondary photochemical pathways.
Photoionization is the dominant secondary pathway based on Uv-Vis
transient absorption results (supplementary material Sec. II); this gen-
erates the I3 radical species, which has been observed in the gas phase
to be marginally stable.38 The quantum chemistry predicted difference
in bond length between I�3 and I3 would appear to be too small to gen-
erate an appreciable difference signal for this minority channel (supple-
mentary material Fig. S4), though secondary dissociation of I3 could
also be occurring in the experiment. Even in the presence of this sec-
ondary source of dissociation dynamics, the speed extracted from the
dissociation signature can be qualitatively compared to simulations
and previous measurements, and can be used as a proof of principle for
the type of information available in LUED.

The speed of dissociation in I�3 in ethanol has been estimated by
the MD simulations of Benjamin et al.,32 which suggest motion on the

FIG. 4. (a) Difference scattering data (black) at various time delays after solvent
heat signal subtraction, as described in the text. The Q¼ 1.30–2.15 Å–1 region is fit
to a Gaussian function (red) at each time delay, and the peak position (red squares)
is plotted in panel (b) as a function of time. These peak positions are fit to a three-
atom dissociation model, as described in the text. The result of this model with
best-fit dissociation speed v¼ 5.8 Å/ps is plotted in panel (b) (gray). The time axes
have been shifted to place the best-fit t0 at t¼ 0; the time resolution is fixed to 180
fs FWHM.
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order of 2–4 Å/ps for the first 2 ps. Due to the complexity of quantum
dynamics studies in solution, calculated estimates of dissociation
speeds from quantum mechanical models are more readily available in
the gas phase and are several times higher, in the 15–25 Å/ps
range.35,39 The fact that the speed extracted from our LUED measure-
ment is so much lower than gas-phase estimates points to a strong
effect of the solvent on the potential governing the dissociative motion.
Studies comparing the bond fission time scales of small organic mole-
cules in gas and cyclohexane via UV/Vis and IR transient absorption
have determined that the potentials involved in the initial bond break-
ing are not strongly perturbed by the solvent.40 However, this result is
not necessarily transferable to polar solvents like water,40,41 and indeed
our measurement implies that in this case, there is substantial interac-
tion with and transfer of energy to the solvent which would preclude
using gas-phase potentials to model the system, even at early times.
The interatomic distances probed by LUED are not readily available
from optical measurements, making the measurement complementary
to more established methods. Direct observation of dissociation speeds
by scattering experiments has also previously been demonstrated with
both x rays and electrons in the gas phase36,42,43 and with x rays in
solution.44 As LUED develops, direct comparisons between gas- and
liquid-phase experiments could shed light on the effect of solvent on
the potentials governing dissociative motion.

CLOSING REMARKS

We have demonstrated the use of liquid-phase ultrafast electron
diffraction to observe photochemical reaction dynamics of a solvated
molecule, aqueous I�3 , for the first time. Difference scattering directly
encodes photo-dissociative motion, and comparison of difference scat-
tering to MD simulations suggests rapid geminate recombination in
the first picosecond after dissociation. While previously the high level
of structural sensitivity and time resolution available to MeV-UED
had been restricted to solid and gaseous samples, our results demon-
strate that UED can also be used to capture structural changes of sol-
vated molecules. The direct access to interatomic distances shows that
LUED can be used characterize the speed of dissociation, which could
in the future be compared to gas-phase measurements and calculations
to offer insight into how the solvent affects the potential energy surfa-
ces governing dissociation.

The ability to directly resolve structural changes of a solute on
femtosecond and few-picosecond time scales establishes LUED as a
promising tool for characterizing chemical reaction dynamics in
liquids. The large Q range available, and the small scale of the LUED
instrument relative to x-ray free electron lasers, place LUED in a com-
plementary position to existing XSS techniques. However, the high
concentration and laser power necessary to obtain a signal even for the
strongly scattering I�3 system point to limitations in the current appli-
cability of the LUED technique to lighter and more complex systems
in solution. The maximum difference signal magnitude relative to the
liquid peak in this experiment was only 0.4% in the Q range that could
be interpreted by independent atom model calculations; in addition,
more than 50% of this signal arises from solvent heating. Although the
difference scattering approach automatically subtracts out the solvent
background, any fluctuation due to sample or beam instabilities can
make observing the desired per-mil signals challenging. Studies of neat
solvent, with percent-level difference signals, have already proved pos-
sible (Ref. 45, submitted). Planned improvements to the LUED setup

will help address these issues, including a near-term upgrade of the
repetition rate by a factor of three, from 360 to 1080Hz, that will
decrease data collection times.9 Additionally, replacement of the
integrating-mode detector with a direct electron detector with single-
electron and shot-by-shot capabilities46 will allow for more sophisti-
cated data treatment, including shot-to-shot differencing, a technique
which has been shown to improve signal-to-noise in transmission-
mode x-ray studies.47,48 Further development of the liquid jet system,
including more stable gas flow and improved nozzles, could improve
jet stability and therefore data quality. The combination of these
improvements should deliver significant improvement in signal-to-
noise in the next few years.

METHODS
Experimental setup

Optical laser pump/MeV electron probe experiments were car-
ried out at the SLAC MeV-UED instrument in the liquid phase end-
station described in Ref. 9. The sample was prepared by combining
130mM I2 and excess KI salt (500mM) in aqueous solution, with pH
adjusted to 4 with perchloric acid. The equilibrium constant for the
formation of I�3 from I2 and I� strongly favors I�3

49 and the absorptiv-
ity of I�3 at 400 nm is 25 times greater than that of I2,

50 so any photoex-
citation of I2 would be negligible.

The sample was introduced into the vacuum chamber via a gas-
accelerated liquid sheet jet with thickness below 200nm.8 The sample
flow rate was 0.25ml/minute. The second harmonic (400nm) of a
Ti:sapphire laser with 360Hz repetition rate was used to pump the
sample, while the 3.7MeV probe electrons were created from its third
harmonic in an electron gun. Probe electrons scattered from the sam-
ple were collected on a phosphor screen 3.2 meters downstream. A
delay stage was used to vary the arrival time of the optical pump rela-
tive to the electron probe. The overall time resolution of the experi-
ment is determined by the temporal bunch length of the electrons. In
a low electron bunch charge mode (�2 fC/pulse), ultrafast temporal
resolution is achieved and is estimated to be 180 fs full width half max-
imum (FWHM).9 In a high bunch charge mode (�100 fC/pulse),
picosecond temporal resolution is achieved and is typically
between 0.5 and 1 ps FWHM. The pump laser spot size was 160 �
270lm FWHM; pulse energy for high bunch charge data was 40 lJ
(120 mJ/cm2), while for low bunch charge data, the laser pulse energy
was 60 lJ (180 mJ/cm2). Optical transient absorption measurements
at 180 mJ/cm2 were carried out to quantify the effect of this high laser
fluence, as described in supplementary material Sec. II.

Scattering patterns were integrated for 5 s (1800 shots) per image.
In a single scan of pump-probe time delay, 5 images were taken at
each delay, with the order of the delays randomized during each scan
to decrease systematic errors. The high bunch charge dataset consists
of 135 scans while the low bunch charge dataset consists of 118 scans.
The images were background-subtracted and filtered as described
below. The processed images were averaged and the pixels radially
binned by distance from the beam center, resulting in a one-
dimensional curve as a function of momentum transfer
Q ¼ ð4p=kÞ sin ðh=2Þ, where k is the de Brogie wavelength of the
3.7MeV electrons (0.3 pm) and h is the scattering angle. Difference
scattering was calculated by subtracting an average curve measured at
negative time delays (electrons arrived first) from the entire dataset.

Structural Dynamics ARTICLE scitation.org/journal/sdy

Struct. Dyn. 7, 064901 (2020); doi: 10.1063/4.0000051 7, 064901-7

VC Author(s) 2020

https://www.scitation.org/doi/suppl/10.1063/4.0000051
https://scitation.org/journal/sdy


No anisotropy was observed in the difference scattering prior to radial
binning, likely due to an insufficient signal-to-noise ratio.

The temperature of the sample was estimated by comparison of
the total scattering pattern (which mostly encodes the structure
of water) to patterns obtained from molecular dynamics simulations
of water at various temperatures, as shown in Fig. S2. The temperature
is estimated to be 340K in the low bunch charge data and 330K in the
high bunch charge data. The temperature of the sample is significantly
above room temperature due to heating of the liquid delivery nozzle
by the closely positioned heated sample catcher.9 The variation in tem-
perature between datasets results from slight differences in the align-
ment of the nozzle.

Data treatment

Electron scattering patterns were collected via a phosphor screen
and mirror assembly projecting the image onto an Andor iXon Ultra
888 camera.9 A “dark” background was removed by subtracting the
mean value of pixels at the corner of the detector, outside of the circu-
lar image of the phosphor screen. Pixels inside or close to the central
hole in the phosphor screen (which allows the main electron beam to
pass through) were masked. The images were treated to remove satu-
rated pixels or rows of pixels due to stray x-ray photons on the detec-
tor. The position of the electron beam was fit by selecting all pixels
within a narrow range of signal values and fitting a circle to these
points. This was done for three signal levels on each image, and the
average center of the three circles used as the per-image beam center.
The center-finding algorithm was also performed on an average image
composed of all images in a given data run. Individual images where
the beam center was more than two standard deviations from the aver-
age in either x or y were removed from the analysis. Images were nor-
malized to the total counts within a donut-shaped mask excluding the
main beam and edges of the detector.

These normalized images were then binned by pump-probe time
delay and averaged. One-dimensional curves as a function of distance
from the center were formed by binning pixels by their distance from
the average-image center point. This distance was calibrated into Q-
space using the small angle approximation by multiplying by a scaling
constant determined by a reference experiment on a solid Au sample.
Difference scattering was then obtained by subtracting averaged nega-
tive pump-probe delays from the whole dataset. In the low bunch
charge data, a linear tilt of the difference scattering was also apparent,
possibly due to slight fluctuations in the thickness of the liquid jet.
Increased thickness would cause increased multiple scattering, moving
intensity from the elastic peaks to a broader distribution with more
intensity in high Q values. This would lead to a randomly directed tilt
in the difference data, which was observed. This tilt was removed by
subtracting a line fit to the difference data at each time point, forcing
the difference scattering to center around zero. This tilt removal
changed the position of the peaks shown in Fig. 4 by less than 0.5%.

MD simulations

MD simulations were carried out using the Desmond software
package developed at D. E. Shaw Research.51 Geometries and partial
charges on the iodines were taken from Ref. 15 (and shown in supple-
mentary material Table S1), while the Lennard–Jones parameters were
taken from the OPLS 2005 force field. The geometries of the bound

iodines were kept fixed by applying harmonic positional restraints
with a force constant of 500 kcal/mol, and solvated in a cubic box with
35 Å side length containing water molecules. The TIP4P-Ew force field
was used for water. The simulations were performed in the NVT
ensemble using a Nose–Hoover thermostat at 300K, with a time step
of 2 fs for 2 ns, collecting frames every 1 ps. Therefore, approximately
2000 frames were used for the calculation of the radial distribution
functions (RDFs), which were sampled in 0.01 Å. Example
solute–solvent RDFs are shown in supplementary material Fig. S5.
MD simulations were also performed at a temperature of 330K (the
temperature of the experiment). The difference scattering signals
obtained from these simulations differed from the 300K signals by less
than 0.5% and were not further considered.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures and details
of the experiment and analysis.
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