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ARTICLE

Quantum state tomography of molecules by
ultrafast diffraction
Ming Zhang1,8, Shuqiao Zhang1,8, Yanwei Xiong 2, Hankai Zhang1, Anatoly A. Ischenko 3, Oriol Vendrell4,

Xiaolong Dong1, Xiangxu Mu1, Martin Centurion 2, Haitan Xu5,6✉, R. J. Dwayne Miller7✉ & Zheng Li 1✉

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the

ongoing revolution in capturing at the atomic level of detail the structural dynamics of

molecules. However, most experiments capture only the probability density of the nuclear

wavepackets to determine the time-dependent molecular structures, while the full quantum

state has not been accessed. Here, we introduce a framework for the preparation and

ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a

new variant of quantum state tomography for ultrafast electron diffraction to characterize the

molecular quantum states. The ability to reconstruct the density matrix, which encodes the

amplitude and phase of the wavepacket, for molecules of arbitrary degrees of freedom, will

enable the reconstruction of a quantum molecular movie from experimental x-ray or electron

diffraction data.
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W ith the ability to directly obtain the Wigner function
and density matrix of photon states, quantum tomo-
graphy (QT) has made a significant impact on

quantum optics1–3, quantum computing4,5 and quantum
information6,7. By an appropriate sequence of measurements on
the evolution of each degree of freedom (DOF), the full quantum
state of the observed photonic system can be determined. The
first proposal to extend the application of QT to reconstruction of
complete quantum states of matter wavepackets8 had generated
enormous interest in ultrafast diffraction imaging9–20 and pump-
probe spectroscopy of molecules21. This interest was elevated
with the advent of ultrafast electron and X-ray diffraction tech-
niques using electron accelerators and X-ray free electron lasers to
add temporal resolution to the observed nuclear and electron
distributions22,23. In this respect, quantum tomography holds
great promise to enable imaging of molecular wavefunctions
beyond classical description. This concept could become a natural
area for quantum tomography of quantum states of matter24–28.
However, the great interest in this area has been tempered by the
illustration of an “impossibility theorem”, known as the dimen-
sion problem29,30. To obtain the density matrix of a system, the
previoiusly established QT procedure relies on integral trans-
forms (e.g. the tomographic Radon transform), which preserves
dimensionality1. Unlike its quantum optics sibling, only a single
evolutionary parameter, time, is available for the molecular
wavepacket. This dimension problem prevents the use of existing
QT algorithms to study quantum molecular dynamics because all
rotational and most vibrational wavepackets cannot be retrieved.

Here we present an approach to resolve the notorious
dimension problem. Solving this challenging problem is impor-
tant to push imaging molecular dynamics to the quantum regime.
Our approach makes quantum tomography a truly useful method
in ultrafast physics which enables the making of quantum version
of a “molecular movie”12,17,27,28,31–34, without being limited in
one dimension. As a proof-of-principle, we apply our QT
retrieval approach to an ultrafast electron diffraction dataset to
retrieve a quantum rotational wavepacket. We first demonstrate
this approach using a numerical simulation of ultrafast diffraction
imaging of laser-aligned nitrogen molecules26. The analysis with
this QT approach correctly recovers the density matrix of the
rotational wavepacket (schematically shown in Fig. 1), which is
otherwise impossible to obtain with previously established QT
procedures. We then apply this approach to ultrafast diffraction
experiments to obtain the quantum density matrix from experi-
mental data.

Results
The modern formulation of quantum tomography based on inte-
gral transform1,8,21 originates from the retrieval of wavefunction
phases lost in the measurement. Dating back to 1933, Pauli and
Feenberg proposed that a wavefunction ψ(x, t)= ∣ψ(x, t)∣eiϕ(x, t) can
be obtained by measuring the evolution of 1D position probability
distribution Pr(x, t)= ∣ψ(x, t)∣2 and its time derivative ∂Pr(x, t)/∂t
for a series of time points35. Equivalently, a pure quantum state can
also be recovered by measuring Pr(x, t) at time t and monitoring its
evolution over short time intervals, i.e., Pr(x, t+NΔt)= ∣ψ(x, t+
NΔt)∣2 for (N= 0, 1, 2,⋯ ). Reconstructing the phase of wave-
function can be considered as the origin of quantum tomography.
For a system with Hamiltonian Ĥ ¼ Ĥ0 þ Ĥint, the established 1D
QT method makes use of knowledge of the non-interacting part of
the Hamiltonian Ĥ0, so that its eigenfunctions can be pre-
calculated and used in the tomographic reconstruction of density
matrix through integral inversion transform. However, the
dimension problem as demonstrated in the pioneering works29,30

mathematically leads to singularity in the inversion from the

evolving probability distribution to the density matrix and makes it
challenging for higher dimensional QT.

We solve the QT dimension problem by exploiting the inter-
action Hamiltonian Ĥint and the analogy between QT and crys-
tallographic phase retrieval (CPR)36 in a seemingly distant field,
crystallography. Further exploiting the interaction Hamiltonian
Ĥint provides us a set of physical conditions, such as the selection
rules of transitions subject to Ĥint and symmetry of the system.
These physical conditions can be imposed as constraints in our
QT approach, which is not feasible in the established QT methods
based on integral transform. By compensating with the additional
physical conditions as constraints in the iterative QT procedure,
the converged solution can be obtained as the admissible density
matrix that complies with all the intrinsic properties of the
investigated physical system.

We start by presenting the correspondence between QT and
CPR. The research on CPR has been the focus of crystallography
for decades9,24,34,36–38. In crystallography, the scattered X-ray or
electron wave encodes the structural information of molecules.
The measured X-ray diffraction intensity is I(s) ~ ∣f(s)∣2, where
s= kf− kin is momentum transfer between incident and diffracted
X-ray photon or electron, f(s) is the electronically elastic molecular
form factor. For X-ray diffraction, the form factor is connected to
the electron density by a Fourier transform f XðsÞ � F½Pr ðxÞ�,
Pr(x) is the probability density of electrons in a molecule, and x is
the electron coordinate. The form factor of electron diffraction has
a similar expression f eðsÞ ¼ ½ΣαNα expðis � RαÞ � f XðsÞ�=s2, where
Nα, Rα are the charge and position of αth nucleus. However, the
phase of the form factor, which is essential for reconstructing the
molecular structure, is unknown in the diffraction experiment,
only the modulus ∣f(s)∣ can be obtained from measured diffraction
intensity.

Phase retrieval is a powerful method that prevails in crystal-
lography and single particle coherent diffraction imaging24,37,38.
Its basic idea is illustrated in Fig. 2. Employing projective itera-
tions between real space and Fourier space and imposing physical

Fig. 1 Schematic drawing of quantum tomography by ultrafast diffraction,
illustrated with a rotational wavepacket of N2 molecule. A rotational
wavepacket is prepared by an impulsive alignment laser pulse42, and
probed by diffraction of an incident electron/X-ray pulses for a series of
time intervals. The mixed rotational quantum state represented by its
density operator ρ̂ is determined from the diffraction patterns.
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Fig. 2 Analogy between crystallographic phase retrieval (CPR) and quantum tomography (QT) based on their common nature35. The CPR iteratively
transforms between real space electron density Pr(x) and Fourier space form factor f(s) and impose constraints for both spaces, where Fourier space
constraints comes from the measured diffraction intensity that provides the modulus of form factor ∣f(s)∣. Analogously, QT iteratively transforms between
blockwise probability distribution Prm1 ;m2

ðθ; tÞ in real space and elements in density matrix space, and the probability density evolution Pr(θ, ϕ, t) is used to
constraint the sum of blockwise probability distribution Prm1 ;m2

ðθ; tÞ.

Fig. 3 Quantum tomography of rotational wavepacket of nitrogen molecule. The a moduli and b phases of density matrix elements. Within each m-block
J ¼ jmj; jmj þ 1; � � � ; Jmax (phases are at t= 0). The density matrix elements of opposite magnetic quantum numbers m and −m are identical (see
Supplementary Eq. 21). Density matrix elements of higher m-blocks are not plotted due to their small moduli. c The wavepacket probability distribution
Pr(θ, t), which is cylindrically symmetric in azimuthal direction of ϕ. The convergence of the procedure is illustrated in d, where the error of density matrix
ϵðρ̂Þ and the error of probability density ϵ(Pr) are defined in Supplementary Eq. 33 and 34.
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constraints in both spaces, the lost phases of the form factor f(s)
can be reconstructed with high fidelity. Fourier space constraint
utilizes measured diffraction intensity data, and real space con-
straints comes from a priori knowledge, e.g. the positivity of
electron density. We present the new method of quantum
tomography based on this conceptual approach by applying it to
rotational wavepackets of nitrogen molecules prepared by
impulsive laser alignment, using the ultrafast electron diffraction
(UED). Quantum tomography of rotational wavepackets is
impossible in the previously established QT theory, because the
full quantum state of a rotating linear molecule is a 4D object
hθ; ϕjρ̂jθ0; ϕ0i, while the probability density evolution Pr(θ, ϕ, t)
extracted from measured diffraction patterns is only 3D. It is
obvious that the inversion problem to obtain the density matrix is
not solvable by dimensionality-preserving transform.

We first demonstrate the capability of our approach to cor-
rectly recover the density matrix despite the dimension problem,

using numerical simulation of ultrafast diffraction of impulsively
aligned nitrogen molecule with an arbitrarily chosen temperature
of 30 K. The order of recovered density matrix sets the require-
ment on the resolution. From Eq. (3), the characteristic time scale
of rotation is 1

Δω ¼ 2I
jΔJjðJþ1Þ, where I is the moment of inertia of

nitrogen molecule, ΔJ= J1− J2 and J= J1+ J2 for any two
eigenstates with J1, J2. Using the Nyquist-Shannon sampling
theorem, the required temporal resolution δt should be δt ≤ 1

2Δω.
The spatial resolution δθ and δϕ can be determined with the
argument that the nodal structure of spherical harmonic basis in
Eq. (2) must be resolved, i.e. δθ < π

2Jmax
. To recover density matrix

up to the order Jmax ¼ 8, it demands time resolution δt ~ 102 fs
and spatial resolution δθ ~ 10−1 rad. Quantum tomography of the
rotational wavepacket gives the result shown in Fig. 3. After 50
iterations, both density matrix and probability distribution are
precisely recovered. The error of density matrix is ϵ50ðρ̂Þ ¼
2:9´ 10�2 and error of probability achieves ϵ50(Pr)= 3.8 × 10−5

Fig. 4 Experimental ultrafast electron diffraction data for N2 rotational wavepacket. Difference-diffraction pattern and the angular probability
distribution Pr(θ, ϕ, t) at various delay times marked in e: a t= 1.9 ps, b t= 3.8 ps, c t= 4.2 ps, d t= 6.1 ps. The dark circle corresponds to the regions
where scattered electrons are blocked by the beam stop. e Temporal evolution of the experimental and simulated anisotropy of the rotational wavepacket.
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(see Supplementary Eqs. 33 and 34 for the definition of ϵðρ̂Þ and
ϵ(Pr)).

We then apply this iterative QT method to the ultrafast elec-
tron diffraction (UED) experiment to extract the quantum den-
sity matrix of N2 rotational wavepacket, prepared at a
temperature of 45 K. The experimental parameters are described
in detail in a previous publication39. We use a tabletop kilo-
electron-volt (keV) gas-phase UED setup to record the diffraction
patterns of nitrogen molecules that are impulsively aligned by a
femtosecond laser pulse. The details of the keV UED setup has
been introduced in39,40, which is schematically shown in Fig. 1.
Briefly, an 800 nm pump laser pulse with a pulse duration of 60 fs
(FWHM) and pulse energy of 1 mJ is used to align the molecules.
A probe electron pulse with kinetic energy of 90 keV and 10,000
electrons per pulse is used and the diffraction pattern of the
electrons scattered from the molecules is recorded. The nitrogen
molecules are introduced in a gas jet using a de Laval nozzle. The
laser pulse has a tilted pulse front to compensate the group
velocity mismatch between the laser and electron pulses, and an
optical stage is used to control the time delay between the pump
and probe pulse with a time step of 100 fs. The pump laser
launches a rotational wave packet, which exhibits dephasing and
subsequent revivals of alignment in picosecond time scale. The
experimental diffraction patterns at several time delays are shown
in Fig. 4a–d. The temporal evolution of diffraction patterns can be
characterized by the anisotropy, defined as (SH− SV)/(SH+ SV),
where SH and SV are the sum of the counts in horizontal and
vertical cones in the diffraction patterns at 3.0 < s < 4.5 Å−1, with
an opening angle of 60 degrees. The temporal evolution of
angular probability distribution Pr(θ, ϕ, t) can be retrieved using
the method described in39, followed by a deconvolution using a
point spread function with FWHM width of 280 fs to remove the

blurring effect due to the limited temporal resolution of the setup.
Data is recorded from before excitation of the laser up to 6.1 ps
after excitation. In order to complete the data up to a full cycle,
which is needed for the quantum tomography, the angular
probability distribution evolution is extended to obtain the data
from 6.1 ps to 11 ps using a reflection of the data from 6.1 ps to
1.2 ps based on the symmetry of the evolution of the rotational
wavepacket. The diffraction patterns and corresponding angular
distributions at various time delays are shown in Fig. 4. Using our
QT method, we obtain the complex density matrix in Fig. 5,
which completely determines the rotational quantum state of the
system. The error of recovered probability distribution converges
to ϵ(Pr)= 6.4 × 10−2. The difference between recovered angular
probability distribution and the experimental result comes from
the restriction of order of recovered density matrix due to limited
temporal and angular resolution in the experiment.

Discussion
In summary, we have demonstrated an iterative quantum
tomography approach that is capable of extracting the density
matrix of high-dimensional wavepacket of molecules from its
evolutionary probability distribution in time. The notorious
dimension problem, which has prohibited for almost two decades
the quantum tomographic reconstruction of molecular quantum
state from ultrafast diffraction, has thus been resolved. This
quantum tomography approach can be straightforwardly exten-
ded to obtain other quantum states, such as vibrational states (see
Supplementary Note 8) or electronic states. The retrieval of the
full density matrix can be used to study important new infor-
mation about the quantum dynamics. For example, the passage of
a nuclear wavepacket through a conical intersection, a region in
the potential energy surface where the ground excited states

Fig. 5 Experimental quantum tomography of rotational wavepacket of nitrogen molecule. a The moduli and phases of QT retrieved density matrix
elements. Within each m-block J ¼ jmj; jmj þ 1; � � � ; Jmax (phases are plotted at t= 1.95 ps after the alignment pulse). The density matrix elements of
opposite magnetic quantum numbers m and−m are identical (see Supplementary Eq. 21). Density matrix elements of higher m-blocks are not plotted due
to their small moduli. b The wavepacket probability distribution Pr(θ, t) (cylindrically symmetric in azimuthal direction of ϕ) of experimental data, initial
guess and final result of QT.
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intersect, has been widely studied41 because it is crucial for the
relaxation of photoexcited molecules. A conical intersection
produces a coherent superposition of two states which can be
directly observed in the off-diagonal terms of the density matrix.
Thus, a full quantum retrieval would provide direct evidence of
the presence of a conical intersection and the moment at which
the wavepacket reaches it. We expect this advance to have a broad
impact in many areas of science and technology, not only for
making the quantum version of molecular movies, but also for
QT of other systems when quantum state information is
tainted by insufcient evolutionary dimensions or incomplete
measurements.

Methods
Iterative quantum tomography. From a dataset consisting of a series of time-
ordered snapshots of diffraction patterns

Iðs; tÞ ¼
Z 2π

0
dϕ

Z π

0
sin θdθ Pr ðθ;ϕ; tÞjf ðs; θ; ϕÞj2; ð1Þ

where the form factor f is related to the molecule orientation. The time-dependent
molecular probability distribution Pr(θ, ϕ, t) can be obtained by inverse Fourier and
Abel transform39 or by solving the Fredholm integral equation of the first kind (see
Supplementary Note 6 for details). The probability distribution of a rotational
wavepacket is

Pr ðθ; ϕ; tÞ ¼ ∑
J1m1

∑
J2m2

hJ1m1jρ̂jJ2m2iYJ1m1
ðθ; ϕÞY�

J2m2
ðθ;ϕÞe�iΔωt ; ð2Þ

where Δω ¼ ωJ1
� ωJ2

is the energy spacing of rotational levels. As shown in Fig. 2,
we devise an iterative procedure to connect the spaces of density matrix and
temporal wavepacket density. For the system of rotational molecules, the dimen-
sion problem limits the invertible mapping between density matrix and temporal
wavepacket density to the reduced density of fixed projection quantum numbers
m1, m2,

Prm1 ;m2
ðθ; tÞ ¼ ∑

J1 J2
hJ1m1jρ̂jJ2m2i~P

m1

J1
ðcos θÞ~Pm2

J2
ðcos θÞe�iΔωt ; ð3Þ

where ~P
m
J ðcos θÞ is the normalized associated Legendre polynomial defined in

Supplementary Eq. 2. The analytical solution of the inverse mapping from
Prm1 ;m2

ðθ; tÞ to density matrix hJ1m1jρ̂jJ2m2i is elaborated in Supplementary
Note 3. However, due to the dimension problem, there is no direct way to obtain
Prm1 ;m2

ðθ; tÞ from the measured wavepacket density, only their sum is traceable

through ∑m1 ;m2
δm1�m2 ;k

Prm1 ;m2
ðθ; tÞ ¼ R 2π

0 Pr ðθ; ϕ; tÞeikϕdϕ.
Our method starts from an initial guess of density matrix and an iterative

projection algorithm is used to impose constraints in the spaces of density matrix
and spatial probability density. The initial guess of quantum state,
ρ̂ini ¼ ∑J0m0

ωJ0
J0m0

�� �
J0m0

� ��, is assumed to be an incoherent state in the thermal
equilibrium of a given rotational temperature, which can be experimentally
determined26. ωJ0

¼ 1
Z gJ0 e

�βEJ0 is the Boltzmann weight, and gJ0 represents the
statistical weight of nuclear spin, for the bosonic 14N2 molecule, gJ0 is 6 for even J0
(spin singlet and quintet) and 3 for odd J0 (spin triplet).

In the probability density space, constraint is imposed by uniformly scaling each
reduced density Prm1 ;m2

ðθ; tÞ with the measured total density Pr(θ, ϕ, t). Constraints
in the density matrix space enable us to add all known properties of a physical state
to the QT procedure, which supply additional information to compensate the
missing evolutionary dimensions. The constraints contain general knowledge of the
density matrix, i.e. the density matrix is positive semidefinite, Hermitian and with a
unity trace. Besides, the selection rules of the alignment laser-molecule interaction
imply further constraints on physically nonzero m-blocks of the density matrix and
invariant partial traces of density matrix elements subject to projection quantum
number m (see Supplementary Note 5 for details of the algorithm).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.

Code availability
The codes for quantum tomography algorithm are available from the corresponding
authors upon reasonable request.
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