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Present-day populations from England and Wales harbour more ancestry derived from 1 

Early European Farmers (EEF) than did people of the Early Bronze Age. To study how 2 

this occurred, we generated genome-wide data from 803 individuals, almost all from the 3 

Middle to Late Bronze Age and the Iron Age, increasing data in this period from Britain 4 

by 12-fold, and from Western and Central Europe by more than two-fold. Between 1000-5 

875 BCE, EEF ancestry increased in southern Britain (England and Wales) but not in 6 

northern Britain (Scotland), due to incorporation into the population of a stream of 7 

migrants who arrived at this time and in previous centuries and who were genetically most 8 

similar to ancient individuals from France. These migrants cumulatively contributed 9 

about half the ancestry of Iron Age people of England and Wales, thereby documenting a 10 

previously unknown demographic process that is a plausible vector for the spread of early 11 

Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry 12 

proportions becoming more similar across Central and Western Europe in the Middle to 13 

Late Bronze Age, coincident with intensification of cultural exchange and highlighting this 14 

period as a peak of interaction and mobility. We find no evidence of a comparable rate of 15 

migration into Britain in the Iron Age.  The distinct genetic trajectories of Britain and 16 

continental Europe in the Iron Age are also exemplified by the fact that the allele 17 

conferring lactase persistence rose to ~50% frequency in Britain by this time whereas it 18 

was only ~7% in Central Europe and underwent a comparable rise in frequency only a 19 

millennium later, a pattern that could only occur if there were qualitative differences in 20 

how dairy products were used in Britain and in Central Europe. 21 
 

“Migration” is a central concept in both population genetics and archaeology, but its meaning 22 

has evolved in divergent ways in the course of the development of these disciplines1. Population 23 

geneticists use “migration” to refer to any movement of genetic material from one region to 24 

another, but from an archaeological perspective this can be too broad, since this definition 25 

would see even low-level symmetrical exchanges of mates between adjacent communities as 26 

representing migration. Archaeologists generally use “migration” to refer to processes that 27 

result in significant demographic change due to directed and permanent translocation of people 28 

from one region to another2,3. In European archaeology, discussions of prehistoric migrations 29 

have become fraught due to the ways in which theories of migration were exploited for political 30 

purposes in the early-mid twentieth century—when movement of large numbers of people over 31 

a short period of time was sometimes argued to be a primary mechanism for the spread of ethnic 32 

groups4 and archaeological reconstructions of such events were used to justify claims on 33 

territory5. Setting a high bar for theorizing migration, however—for example by only using it 34 
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when there is clear evidence for organized movements of people over a short period of time—35 

minimizes the important effects that cumulatively large-scale movements are likely to have had 36 

in shaping prehistory2, such as the westward migration of people from the Steppe beginning in 37 

the third millennium BCE that genetic data have unambiguously shown contributed much of the 38 

ancestry of later Europeans including eventually people from Britain6,7,8,9. We emphasize that 39 

the large-scale Middle to Late Bronze Age migrations we document here unfolded over 40 

hundreds of years as attested by our radiocarbon dating data and so cannot all be explained by 41 

movement over a short time. 42 
 

Whole genome ancient DNA studies have shown that the first Neolithic farmers of the island of 43 

Great Britain (hereafter Britain) who lived 3950-2450 BCE derived roughly 80% of their 44 

ancestry from Early European Farmers (EEF) who originated in Anatolia more than two 45 

millennia earlier, and 20% from Mesolithic hunter-gatherers (Western European Hunter-46 

Gatherers: WHG)8-10. The WHG ancestry in the first British farmers was almost entirely due to 47 

admixture in continental Europe, indicating that migrants in the Neolithic brought this WHG 48 

ancestry with them and local WHG contributed negligibly to the ancestry of later people in 49 

Britain. The Neolithic population of Britain was genetically similar to, and almost certainly 50 

derived from, contemporaneous populations from continental Europe, especially Iberia and 51 

France. This ancestry profile remained stable for about a millennium and a half. From around 52 

2450 BCE, the onset of the Chalcolithic period, there was another substantial movement of 53 

people into Britain (minimum 90% of ancestry from the new migrants) coinciding with the 54 

spread of Bell Beaker traditions from continental Europe which brought a third major 55 

component: ‘Steppe ancestry’ derived originally from people living on the Pontic-Caspian 56 

Steppe ~3000 BCE8. In the original study8 reporting this ancestry shift in Britain, no significant 57 

average change in the proportion of EEF ancestry was detected from the Chalcolithic/Early 58 

Bronze Age (C/EBA; 2450-1550 BCE), through the Middle Bronze Age (MBA; 1550-1150 59 

BCE) and Late Bronze Age (LBA; 1150-750 BCE), to the pre-Roman Iron Age (IA; 750 BCE-60 

43 CE). However, that study contained little data after 1300 BCE (Figure 1). Today, however, 61 

EEF ancestry is significantly higher on average in southern Britain (defined here as England and 62 

Wales although we recognize modern boundaries are arbitrary) than in northern Britain 63 

(Scotland), raising the question of when this increase in EEF ancestry occurred8,11. The rise in 64 

EEF ancestry in England and Wales cannot be explained by migration from northern continental 65 

Europe in the early medieval period12,13, as early medieval migrant groups harboured less EEF 66 

ancestry than was present in Bronze Age Britain and hence would have decreased EEF ancestry 67 

instead of increasing it as we observe8. 68 
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Figure 1: Ancient DNA Dataset. Geographic distribution of sites and temporal distribution of individuals in the period 4000 BCE-43 CE. Newly reported data are in black; published data are in orange. 
In the map of Britain we label sites that harbour individuals who are ancestry outliers relative to others of the same period. In the timeline we denote the archaeological periods according to the British 
chronology: Neolithic (3950-2450 BCE), Chalcolithic and Early Bronze Age (C/EBA, 2450-1550 BCE), Middle Bronze Age (MBA, 1550-1150 BCE), Late Bronze Age (LBA, 1150-750 BCE), and pre-
Roman Iron Age (IA, 750 BCE-43 CE). To aid visualisation, we add jitter on the Y axis and randomly sample dates from their probability distributions given in Online Table 1. 
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We generated new ancient DNA data from 426 previously unanalysed individuals from Britain, 69 

increasing the number of pre-Roman individuals to 608 and multiplying by 28-fold the number 70 

from the combined period of the LBA and IA (from 13 to 365) (Fig. 1, Supplementary 71 

Information section 1, Online Table 1). We also report data from previously unanalysed ancient 72 

individuals mostly dating to the LBA and IA from the Czech Republic (n=160), Hungary 73 

(n=54), France (n=52), the Netherlands (n=28), Slovakia (n=25), Croatia (n=21), Slovenia 74 

(n=14), Spain (n=10), Serbia (n=8) and Austria (n=3). We increased data quality on 33 75 

previously published individuals (Online Table 1). To generate these data, we prepared powder 76 

from bones and teeth, extracted DNA14-16, and generated 1033 sequencing libraries all 77 

pretreated with the enzyme uracil-DNA glycosylase to reduce characteristic cytosine-to-thymine 78 

errors of ancient DNA (Online Table 2)14,15,17. We enriched libraries in solution and sequenced 79 

them.18-20 We co-analysed with previously reported data for a total of 5928 ancient and present-80 

day individuals (Online Table 3). We clustered by time and geography aided by 126 newly 81 

reported radiocarbon dates (Online Table 4). We separately labelled individuals that were 82 

significantly different in ancestry from the majority cluster from each time period and region 83 

(Supplementary Information section 2, Online Table 5). Although we report data from all 84 

individuals, we removed a subset from the main analysis: those with evidence of contamination 85 

based on finding variation in parts of their genome where they are expected to have DNA from 86 

only one parent21,22, those with a rate of damage in the final nucleotide lower than is typical for 87 

authentic ancient DNA15, those that were first degree relatives of other higher coverage 88 

individuals in the dataset23, or those that had too little data for accurate ancestry inference 89 

(<30,000 single nucleotide polymorphisms (SNPs) covered at least once) (Online Table 5). 90 

Figure 1 shows a map of analysed individuals. We identified 127 individuals from 50 families 91 

as related (within the third degree) to at least one other newly reported individual in the dataset 92 

(Online Table 6). 93 

 

We computed symmetry-f4 statistics24,25 between all pairs of temporal groupings of individuals 94 

in Britain, testing for differences in the rate of allele sharing (genetic drift) with the two major 95 

source populations (Steppe and EEF); we computed standard errors using a Block Jackknife. 96 

We document a significant increase in the degree of allele sharing with EEF populations in 97 

England and Wales over the Middle to Late Bronze Age (M-LBA) and into the IA (Extended 98 

Data Table 1). To estimate the proportions of EEF, Steppe, and WHG ancestry in any “Target” 99 

population26, we leveraged the fact that the magnitudes of f4-statistics can be interpreted in 100 

terms of mixture fractions. Specifically, qpAdm models the f4-statistics in each “Target” 101 
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population as a linear combination of the f4-statistics in populations we use as proxies for the 102 

mixing “Sources.” qpAdm computes statistics of the form f4(Target, Sourcei; Outgroupj, 103 

Outgroupk) that compare Target and Sources to a set of four “Outgroups” that we optimized to 104 

provide more precise estimates of ancestry proportions than previous qpAdm setups 105 

(Supplementary Information section 2). Here, our proxies for the “Sources” are 22 early Balkan 106 

Neolithic farmers with minimal hunter-gatherer admixture (EEF); 20 Yamnaya and Poltavka 107 

pastoralists (Steppe); and 18 Mesolithic hunter-gatherers from across Western Europe (WHG).  108 

 
A                
 
 

    
B                

  
 

Applying qpAdm to our data, we find that EEF-related ancestry increased in England and Wales 109 

from 31.0±0.5% in the C/EBA (n=69), to 34.7±0.6% in the MBA (n=26), to 36.1±0.6% in the 110 

LBA (n=23), and stabilized in the IA at 37.9±0.4% (n=273) (here and below, we quote one 111 

Figure 2: Demographic change in Britain. (A) EEF 
ancestry increased in the south (England and Wales) 
beginning with the Margetts Pit MBA outliers but hardly 
in the north (Scotland). Estimates from qpAdm with one 
standard error in four periods. (B) Detecting runs of 
homozygosity (ROH), we find that close kin unions were 
rare at all periods as reflected in the paucity of 
individuals harbouring >50 centimorgans (cM) of their 
genome in ROH segments of >12 cM (red dots in top 
panel). The number of ROH of size 4-8 cM per individual 
(bottom panel) reflects the rate at which distant relatives 
have children, providing information about the sizes of 
mate pools (Ne) averaged over the hundreds of years 
prior to when individuals lived; thus, the broad trend of 
an approximately four-fold drop in Ne from the Neolithic 
to the IA is robust, but we may miss fluctuations on a time 
scale of centuries. The thick black line is Ne from a 
Gaussian process with a 600-year smoothing kernel 
(gray area 95% confidence interval); horizontal lines 
show period averages from maximum likelihood; and we 
interrupt the fitted line for periods with too little data for 
accurate inference (<10 individuals in a 400-year 
interval centered on the point).  
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standard error). There is no statistically significant change in Scotland (Figure 2 and Extended 112 

Data Table 1). EEF ancestry was widespread in southern Britain by the IA, averaging 36.0-113 

38.8% in eight regions of England (Table 1, Extended Data Table 2) (IA Wales sample sizes are 114 

too small to provide accurate inference). Within England, EEF ancestry proportions inferred 115 

over the mostly later IA individuals do not correlate to latitude (Table 1). We considered the 116 

possibility that the rise in EEF ancestry in southern Britain was due to a resurgence of 117 

archaeologically less visible populations with more ancestry from people living in Britain 118 

during the Neolithic. However, our attempts to model IA populations of England and Wales as a 119 

mixture of groups who lived in Neolithic and C/EBA Britain failed at high significance 120 

(Extended Data Figure 1). This is due to LBA and IA populations in Britain sharing excess 121 

alleles with Neolithic populations from continental Europe not seen in earlier groups from 122 

Britain (Supplementary Information section 3). The most plausible explanation is migration 123 

from outside Britain into southern Britain in the M-LBA. 124 

 

We modelled each individual from Britain using qpAdm, labelling significant ancestry outliers 125 

relative to most individuals of their period as candidates for migrants or their recent descendants 126 

(Figure 3, Extended Data Figure 2). We discuss each group of outliers from earliest to latest.  127 
 

Table 1: Regional variation in ancestry in Iron Age Britain 
  Lat-

it-
ude 

Modeling Ancestry With  
Pre-Bronze Age Sources 

Modeling Ancestry with Middle 
to Late Bronze Age Sources  

Region N P-
value WHG EEF Steppe P-

value 
Margetts Pit and Cliffs 
End Farm-like ancestry 

Scotland Orkney 2 59 0.22 14.2 ± 1.1% 34.1 ± 1.2% 51.6 ± 1.6% 0.10 20 ± 9% 
Scotland West 4 58 0.12 13.0 ± .8% 32.3 ± 1.0% 54.7 ± 1.2% 0.19 8 ± 7% 
Scotland Southeast 12 56 0.67 12.1 ± .6% 33.9 ± .7% 54.0 ± .9% 0.39 16 ± 5% 
England North 10 54 0.35 13.4 ± .6% 36.3 ± .8% 50.3 ± 1.0% 0.76 35 ± 5% 
England East Yorkshire 47 54 0.61 13.2 ± .4% 37.0 ± .5% 49.8 ± .6% 0.86 44 ± 4% 
England Midlands 18 53 0.66 12.6 ± .5% 36.0 ± .6% 51.4 ± .8% 0.77 36 ± 4% 
England Southwest 84 53 0.30 13.7 ± .4% 38.7 ± .4% 47.6 ± .6% 0.56 55 ± 5% 
England East Anglia 21 52 0.44 13.5 ± .5% 37.0 ± .5% 49.5 ± .7% 0.52 44 ± 4% 
England Southcentral 38 52 0.32 13.9 ± .4% 38.8 ± .5% 47.2 ± .6% 0.35 56 ± 5% 
England Southeast 3 51 0.13 13.9 ± .5% 38.3 ± .5% 47.8 ± .6% 0.40 52 ± 5% 
England Cornwall 16 50 0.40 13.5 ± .5% 36.4 ± .7% 50.1 ± .8% 0.64 39 ± 5% 
Wales North 1 53 0.20 12.1 ± 1.6% 34.7 ± 2.0% 53.2 ± 2.5% 0.53 22 ± 14% 
Wales South 2 51 0.66 14.2 ± 1.2% 38.6 ± 1.5% 47.2 ± 1.8% 0.57 53 ± 11% 
Notes: Regions are ordered first by large grouping (Scotland-England-Wales), then reverse order of latitude. For modeling 
ancestry with pre-Bronze Age sources the right set is (OldAfrica, WHGA, Balkan_N, OldSteppe); for modeling of ancestry with 
M-LBA sources it is OldAfrica, OldSteppe, Turkey_N, Netherlands_C.EBA, Poland_Globular_Amphora, 
Spain.Portugal_4425.to.3800BP, CzechRepublic.Slovakia.Germany_3800.to.2700BP, Sardinia_8100.to.4100BP, 
CzechRepublic.Slovakia.Germany_4465.to.3800.BP, Sardinia_4100.to.2700BP, Spain.Portugal_6500.to.4425BP. We separate 
“England East Yorkshire” from “England North” because of East Yorkshire’s distinctive cultural context (Arras).  
 

First, replicating previous results8,10, we infer a cluster of Neolithic individuals from western 128 

Scotland with high WHG admixture, likely reflecting unions between recent migrants from 129 

Europe and descendants of local Mesolithic groups in Britain (Extended Data Figure 2). 130 
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Second, we infer high variability in EEF ancestry in the C/EBA, before EEF ancestry became 131 

relatively homogeneous after ~2000 BCE8 (Figure 3). This is apparent at Amesbury Down 132 

where EEF ancestry in some burials is significantly below the average of 29.9±0.4% (e.g. I2417 133 

at 22.2±1.8%), and in others above the group average (e.g. I2416 at 47.7±2.2% and I14200 at 134 

45.3±2.2%). The low EEF group are plausibly Beaker-period migrants who mixed with local 135 

Neolithic farmers to produce the intermediate EEF ancestry that prevailed by the end of the 136 

EBA. Within the Beaker-associated burials, individual I14200 with elevated EEF ancestry is 137 

known as the “Amesbury Archer”. He was buried in the most well-furnished grave recovered 138 

from the Stonehenge mortuary landscape, and his isotopic profile indicates he spent parts of his 139 

childhood outside Britain, possibly in the Alps27. The fact that the Archer was a migrant but had 140 

too little Steppe ancestry to be from the population that drove Steppe ancestry to the high level 141 

observed in C/EBA Britain, shows that Bell Beaker-associated migrants to Britain were not 142 

from a homogeneous population. The ‘Companion’ (I2565), a burial found next to the Archer 143 

whose isotopic profile like most others at the site is consistent with a local upbringing, was not 144 

an ancestry outlier for C/EBA Britain (32.7±3.0% EEF; P=0.47 for consistency with the period 145 

average; Figure 3). The Archer and the Companion shared a rare tarsal morphology and similar 146 

grave goods that have been hypothesized to reflect a close genetic relationship (Supplementary 147 

Information section 4)28, but our results rule out first- or second-degree genetic relatedness. 148 

 

Third, we observe four outliers with high EEF ancestry in the late MBA and LBA who are 149 

candidates for being first generation migrants or the offspring of recent migrants from 150 

continental Europe, all of whom were buried in Kent in the southeasternmost part of Britain. 151 

The earlier two are from the site of Margetts Pit: 47.8±1.8% in individual I13716 (1391-1129 152 

calBCE) and 43.6±1.8% ancestry in I13617 (1214-1052 calBCE). The latter two are from Cliffs 153 

End Farm: 43.2±2.0% in individual I14865 (967-811 calBCE) and 43.4±1.8% in individual 154 

I14861 (912-808 calBCE). We considered the possibility that we are observing the effect of a 155 

short burst of migration in the MBA, explaining the Margetts Pit outliers, followed by co-156 

existence of separate communities with different proportions of EEF ancestry for at least a 157 

couple of hundred years, thereby explaining the Cliffs End Farm outliers. However, strontium 158 

and oxygen isotope analyses identify multiple individuals of non-local origin at Cliffs End 159 

Farm29 including the genetic outlier I14861, suggesting that the stream of migrants continued 160 

into the second half of the LBA (Supplementary Information section 5). 161 
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Figure 3: By-individual analysis of the England and Wales time transect. (A) Estimates of EEF ancestry and one standard error for all individuals that fit a three-way admixture model (EEF + 
WHG + Yamnaya) at p>0.01 using qpAdm and date to 2450 BCE-43 CE (we plot the mean of the posterior interval of the 14C date or the mean of the archaeological context range). Most 
individuals are shown in blue while significant outliers at the ancestry tails are in red with a horizontal error bar to show one standard error for the date (outliers are identified either as p<0.005 
based on a qpWave test from the main cluster from their period and |Z|>3 for a difference in EEF proportion, or p<0.1 and |Z|>3.5) (Online Table 5). Outliers like the four MBA and LBA 
individuals at Margetts Pit and Cliffs End Farm fit as the source for the increase in EEF ancestry in the IA. The black line shows an estimate of population-wide EEF ancestry proportion at each 
time obtained by weighting each individual’s EEF estimate by the inverse square of their standard error as well as the probability that their date falls at each point in time (based on the date mean 
and error given in Online Table 5; we filter out individuals with date errors >120 years). The incorporation of increased EEF ancestry into the majority of samples occurred ~1000-875 BCE. (B) 
Proportion of outliers measured over 300-year sliding windows centered on each point; to estimate this we randomly sample dates of all individuals 100 times assuming normality and their mean 
and standard deviation in Online Table 5 (we remove individuals with EEF errors >0.022 and date standard errors >120 years). Major periods of migration into Britain are evident as periods 
when elevated proportions of individuals are outliers: between 2450-1800 BCE (17% outliers) and 1300-750 BCE (17% outliers again). Our ability to temporally resolve the period of outliers is 
poorer than our ability to resolve the period of incorporation of increased EEF ancestry into the broader population; thus, for example, the earliest outlier with elevated EEF ancestry in the M-
LBA at Margetts Pit I13716 could have died as late as 1129 BCE based on the uncertainty of her 14C date.
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Fourth, the fraction of individuals whose ancestry is significantly different from the main group 162 

is 17% over the first part of the C/EBA (2450-1800 BCE), much lower at 4% from the end of 163 

the EBA through the beginning of the MBA (1800-1300 BCE), high again at 17% between the 164 

end of the MBA through the LBA (1300-750 BCE), and low again at 3% through the IA (Figure 165 

3). This is consistent with two major periods of migration into southern Britain in the 166 

Chalcolithic and then again in the M-LBA. We considered the possibility that our failure to 167 

observe a high rate of outliers in the IA compared with the immediately preceding period was 168 

because ancestry had homogenized to an extent between northern and southern Europe by this 169 

time, which could make outliers more difficult to detect. However, the average EEF ancestry in 170 

Britain in the IA was 37.9±0.4%, which is substantially different from much of contemporary 171 

Western and Central Europe—52.6±0.6% in Iberia, 49.8±0.4% in Austria, Hungary, and 172 

Slovenia, 45.4±0.5% in the Czech Republic, Slovakia and Germany, 45.6±0.5% in France and 173 

Switzerland, and 34.4±1.2% in the Netherlands (Figure 4A)—which would have made the 174 

majority of migrants from these regions detectable given the small standard errors in most 175 

individual ancestry estimates of <2% (Online Table 5). Our sampling from western France and 176 

Belgium is poor, and it is possible that EEF ancestry proportions there were similar to Britain, 177 

so we cannot rule out migration from this region in the IA. Nevertheless, the lack of a change in 178 

EEF ancestry proportion in the IA is consistent with reduced migration from continental Europe 179 

and suggests relatively closed and self-sustaining social communities in Britain during the IA30. 180 

 

Demographic change in Britain over our period of study is also evident from another aspect of 181 

the data: the rate of observations of runs of homozygosity (ROH), which can occur when a 182 

person’s parents are relatively closely related. The larger the pool of people from which 183 

individuals draw their mates, the less likely it is for parents to be closely related, and thus we 184 

can average the number of 4-8 centimorgan (cM) ROH segments to estimate the effective size 185 

of the pool of people within which people were mating in the ~600 year period prior to the time 186 

when the analysed individuals lived31. We find that the size of the mating pool increased by 187 

roughly four-fold from the Neolithic to the IA, but we caution that this inference should not be 188 

interpreted as an estimate of population size changes over this period as mating pool sizes are 189 

also affected by changing social customs. First, if the distance over which people ranged to find 190 

their mates was higher in some cultural contexts than in others it would cause the mating pool 191 

sizes to be different even if there was no difference in actual population size; for example, 192 

mating pool size may be less than the island-wide population size if members of communities 193 

mixed little with their neighbours as is plausible in the British IA where there was high regional 194 
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variation in material culture30, or larger if individuals mated not only with people outside their 195 

local communities but also outside Britain. Second, we have a major gap in sampling at the end 196 

of the Neolithic (roughly 3000-2450 BCE) and thin sampling at the beginning of the IA, which 197 

means that demographic processes in these periods may be missed. Third, due to the method 198 

effectively averaging over centuries, this analysis may also fail to detect major population 199 

declines over the space of a few decades, if these were followed by rapid population recovery. 200 

Future work that complements measurement of changing degree of parental relatedness over 201 

time with estimates of changing degree of relatedness of individuals across communities32 202 

should make it possible to examine how much of this signal of increasing size over time was 203 

driven by true growth in population size, and how much by increasing rates of gene exchange 204 

across geographically dispersed communities. 205 

 
We co-analysed our ancient DNA time transect in Britain alongside European transects (Figure 206 

4A, Online Tables 5 and 7). Average EEF ancestry increased in this period in North-Central 207 

Europe and the Netherlands, just as in Britain. The first individuals from North-Central Europe 208 

(Czech Republic/Slovakia/Germany) with greatly increased EEF ancestry are associated with 209 

artefacts traditionally classified as part of the LBA Knoviz culture, a component of the broader 210 

Urnfield cultural complex (1300-800 BCE) that spread across much of Central Europe. This is 211 

especially striking as the Knoviz individuals are genetically consistent with being from a very 212 

similar population as the Margetts Pit and Cliffs End Farm outliers (Supplementary Information 213 

section 6). Later individuals in North-Central Europe have similar EEF proportions, consistent 214 

with continuity through the LBA-IA with earlier Urnfield-associated groups. By contrast, in 215 

MBA and LBA France/Switzerland and South-Central Europe (Austria/Hungary/Slovenia) there 216 

was little change in average EEF ancestry, while EEF ancestry decreased in MBA and LBA 217 

Iberia (Spain/Portugal). There are also two exceptions to this broad European pattern of 218 

ancestry convergence in Europe—Scotland in the far north, and Sardinia in the far south33,34—219 

both of which have extreme proportions of EEF ancestry (Scotland low and Sardinia high) 220 

relative to the European average across this period (Online Table 7).  221 

 

Placing Britain within the broader context of Europe is also illuminating with respect to the 222 

frequency trajectories of genetic variants of phenotypic importance. This study multiplies by 223 

almost eight-fold the number of IA individuals with genome-wide data from Western and 224 

Central Europe (from 80 to 624; Online Table 5), making it possible for the first time to 225 

accurately track the frequency change of genetic variants into the IA (Online Table 8). In 226 
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addition to showing how variants associated with light skin pigmentation, such as SLC45A2, 227 

became more common in the IA throughout Europe19, we obtain an unexpected result for the 228 

derived allele at the polymorphism MCM6-LCT rs4988235 correlated with lactase persistence 229 

into adulthood19 (Extended Data Figure 3). Previous work showed that the frequency of this 230 

allele in IA Iberia was only a small fraction of its present-day incidence35, which we confirm by 231 

showing that its frequency was ~9% in the IA compared to ~40% today. Similarly, in a pool of 232 

individuals from Central Europe (Austria, Hungary, Slovenia, Czech Republic, Slovakia and 233 

Germany) its frequency was ~7% in the IA compared to ~48% today. However, in Britain, most 234 

of the rise in frequency had occurred by the IA (50% compared to the current 73%), suggesting 235 

that intense selection acted earlier and the main rise in frequency occurred about a millennium 236 

earlier than in Central Europe (Figure 4B, Extended Data Figure 3). We find no evidence that 237 

the main rise in frequency of the lactase persistence allele occurred in continental Europe and 238 

that its frequency rise in Britain was due to M-LBA migration. Thus, the Margetts Pit and Cliffs 239 

End Farm outliers who are plausible members (or recent offspring) of the migrating population 240 

did not carry the allele, and most of its frequency rise in Britain occurred after the M-LBA 241 

(Figure 4B, Online Table 8). This raises questions about whether dairy products were consumed 242 

in a qualitatively different way or were economically more important in LBA-IA Britain than in 243 

Central Europe. 244 

 

The ancestry change in Britain we document during the M-LBA was more subtle than the one 245 

that occurred during the Neolithic and Beaker-period migrations. In England and Wales, fpr 246 

example, allele frequency differentiation between the Neolithic and C/EBA was FST~0.02, but 247 

between the C/EBA and the IA it was an order of magnitude smaller at FST~0.002 (Extended 248 

Data Table 1). The pre-LBA population in Britain also made a substantial genetic contribution 249 

to the IA population—its genetic signature was not even close to being completely replaced—250 

which contrasts with the two earlier major Holocene ancestry shifts8,10. Direct evidence for a 251 

substantial contribution from the earlier population specifically on the male line comes from Y 252 

chromosome haplogroup R1b-P312 L21/M529 (R1b1a1a2a1a2c1), which was present at 89±5% 253 

in sampled individuals from C/EBA Britain and has always been nearly absent on the continent 254 

(Online Table  9), and today occurs much more frequently in Britain and Ireland (frequency of 255 

14-71% depending on region36) than in continental Europe (Extended Data Figure 4).  256 
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A                   B  

  
Figure 4: Genetic change in Britain in the context of Europe-wide trends. (A) North-south ancestry convergence. We show eight ancient DNA time transects for up to four periods, using the 
average of dates of individuals in periods defined for each region as in Online Table 5 (we use the N/C/EBA/MBA/LBA/IA division into archaeological periods for Britain, but avoid using it for 
most of the rest of Europe because chronological boundaries differ). Dotted lines show which points are regionally grouped and should not be interpreted as implying a smooth change over time. 
(B) The allele conferring lactase persistence made its major rise about a millennium earlier in Britain than in Central Europe suggesting different selection regimes and possibly cultural 
differences in the use of dairy products in the two regions in the IA. We visualise the frequency trajectory of the lactase persistence allele at SNP rs4988235 by using the 
GaussianProcessRegressor function from the Scikit-learn library in Python with parameter alpha=0.1 and 1*RationalQuadratic kernel with parameter length_scale_bounds=(1, 1000). We use the 
GLIMPSE37 software to impute diploid genotype posterior probabilities (GP), restricting to samples with max(GP)>0.9 for this SNP. The analysis includes 459 ancient individuals from Britain and 
468 from Central Europe (Czech Republic, Slovakia, Croatia, Hungary, Austria, Germany and Slovenia); to represent modern Britain we use a pool of 190 CEU and GBR individuals from the 
1000 Genomes Project38, and to represent modern Central Europe we use 288 individuals from the modern Czech Republic39. Each vertical bar represents the derived allele frequency for each 
individual with values [0, 0.5, 1]; we use jitter on the x-axis for each vertical bar, and we show in shading the inferred 95% confidence interval for the allele frequency at each time point.  
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To gain insight into the possible sources of the ancestry that spread across southern Britain by 257 

the end of the LBA, we fit the pooled IA individuals from England and Wales in qpAdm as a 258 

mixture of a group related to the main C/EBA cluster, and a second source. We tested 65 second 259 

sources—63 from continental Europe and 2 from Britain (the Margetts Pit outlier pool, and the 260 

Cliffs End Farm outlier pool)—and found that 20 fit at p>0.05; we then pooled the genetically 261 

similar Margetts Pit and Cliffs End Farm individuals and performed further qpAdm testing with 262 

more stringent qpAdm setups, leaving eight second sources that consistently fit well with 263 

modest standard errors (Table 2, Supplementary Information section 6). The Margetts Pit and 264 

Cliffs End Farm pool fit as contributing 49.4±3.0% of the ancestry of IA southern Britons, 265 

providing our best estimate of the degree of genetic turnover. The seven continental populations 266 

that fit as sources are estimated to contribute 24-69%; thus, even without results from 267 

representatives of the putative source population living in Britain itself, we infer large genetic 268 

turnovers. Although only 20% of the continental candidate populations we tested are from 269 

France, 86% of the fitting populations are: the fitting populations are four from Occitanie in 270 

southern France (600-200 BCE), two from Grand Est in northeastern France (800-200 BCE), 271 

and one from Spain (a ~600 BCE group). These fitting second sources all post-date the ancestry 272 

change in Britain by hundreds of years and hence they cannot be the true sources; however, they 273 

are plausibly descended from earlier local populations. An origin in France is also suggested by 274 

the fact that all of the high EEF outliers in Britain in the M-LBA, and all of the 1000-875 BCE 275 

individuals that track the ramp-up of EEF ancestry from MBA to IA levels, are from Kent in far 276 

southeastern Britain (Extended Data Figure 5). Southwestern individual I12624 from 277 

Blackberry Field, Potterne in Wiltshire (950-750 BCE) had a typical EEF proportion for the IA 278 

of southern Britain, suggesting the spread of descendants of the migrant stream throughout 279 

southern Britain may have already begun by this time, although we caution that this is the only 280 

datapoint we have in the second half of the LBA from outside Kent, and so more sampling is 281 

needed to understand the geographic and temporal course of the spread of this ancestry. Our 282 

data point to the new ancestry being ubiquitous in southern Britain by the beginning of the IA. 283 

 

Table 2: Populations fitting as proxies for the new ancestry in IA southern Britain 
Surrogate for source of the new ancestry N Mean 

date 
p-value Ancestry 

Margetts Pit and Cliffs End Farm MLBA 4 1036 BCE 0.07 49.4 ± 3.0% 
Spain IA Tartessian 2 629 BCE 0.16 23.7 ± 1.2% 
France GrandEst IA1 (shotgun data) 5 620 BCE 1.00 48.9 ± 3.7% 
France Occitanie IA2 (high EEF subgroup, shotgun data) 1 450 BCE 0.85 25.8 ± 1.7% 
France Occitanie IA2 (high WHG subgroup, shotgun data) 1 450 BCE 0.39 33.5 ± 4.1% 
France Occitanie IA2 (shotgun data) 2 400 BCE 0.25 53.3 ± 5.4% 
France Occitanie IA2 (low Steppe subgroup, shotgun data) 2 363 BCE 0.33 36.5 ± 2.6% 
France GrandEst IA2 12 250 BCE 0.09 68.5 ± 3.3% 
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We can fully explain the significant regional variation in ancestry in IA England and Wales 284 

(Table 1 and Extended Data Table 2) as driven by different proportions of ancestry from the 285 

population to which the Margetts Pit and Cliffs End Farm individuals belonged, obtaining 286 

estimates ranging from 35±5% in northern England to 56±5% in south-central England (Table 287 

1). Archaeological data show that the IA was a period when material culture was increasingly 288 

regional in character30; as we show here, this was accompanied by subtle genetic structure. We 289 

highlight the case of East Yorkshire, where most individuals we analysed are associated with 290 

‘Arras Culture’ contexts comprising square-ditched barrows and occasional chariot burials40,41; 291 

similarities between Arras funerary traditions and those of IA societies in the Paris Basin and 292 

the Ardennes/Champagne regions of France and Belgium have led to suggestions that East 293 

Yorkshire was influenced by direct migration from continental Europe in the IA42. Our estimate 294 

of the Margetts Pit/Cliffs End Farm ancestry source for East Yorkshire burials is 44±4% (Table 295 

1) which is typical for middle latitudes of Britain at this time (East Anglia is similar). However, 296 

the East Yorkshire burials are distinctive in another way: regional differentiation in IA Britain, 297 

as measured by FST, is higher between East Yorkshire and other groups than between any other 298 

pairs of IA populations in England and Wales (Extended Data Table 2). Without ancient DNA 299 

from the putative IA sources for the Arras culture in continental Europe, we cannot determine if 300 

the genetic differentiation we observe of people in Arras burial contexts is attributable to the 301 

subsequent isolation in the IA of the population from the rest of southern Britain, or later 302 

streams of migration specifically affecting East Yorkshire that we have limited power to detect. 303 

 

The period from 1500-1150 BCE has long been recognized as a time when cultural connections 304 

between Britain and regions of continental Europe intensified, and when societies on both sides 305 

of the Channel shared cultural features including domestic pottery, metalwork and ritual 306 

depositional practices43-47. From around 750 BCE there is more limited archaeological evidence 307 

of contact between Britain and the continent, with little that would suggest the significant 308 

movement of people43. Both the genetic and archaeological data concur in showing that, by the 309 

beginning of the IA, there is little evidence of demographically significant migration into 310 

Britain. Our findings do not establish whether the population movements we infer were a cause 311 

or consequence of M-LBA exchange networks, but they do suggest that interactions between 312 

local populations of Britain and new migrants bringing ideas from continental Europe could 313 

have been a vector for some of the cultural change we see in M-LBA England and Wales. Much 314 

of northern and central France is currently almost entirely unsampled, and thus we cannot at 315 

present test if the gene flow between the two regions in this period was largely unidirectional. 316 
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Population movements are often a significant driver of cultural change, including in the 317 

languages people speak. While periods of intense migration such as the one we infer here do not 318 

always result in language shifts35, genetic evidence of significant migration is important because 319 

it documents demographic processes that are plausible conduits for language spread48,49. Several 320 

researchers have interpreted linguistic data as providing evidence for early Celtic languages 321 

spreading into Britain from France at the end of the Bronze Age or in the Early Iron Age50,51. 322 

Our identification of substantial migration into Britain from sources that best fit populations in 323 

France provides an independent line of evidence in support of this, and points to the M-LBA as 324 

a prime candidate for the period of this language spread. While the lack of evidence for M-LBA 325 

EEF ancestry change in Scotland (Figure 2A) could be interpreted as a concern for the case that 326 

Celtic language spread into Britain at this time, in fact a later arrival of Celtic languages in 327 

Scotland is entirely consistent with evidence that non-Celtic and Celtic languages coexisted 328 

there into the first millennium CE52. Our finding of a decrease of EEF ancestry in Iberia, where 329 

the proportion was relatively high in the EBA, and a roughly simultaneous increase in Britain 330 

where the proportion was relatively low in the EBA (Figure 4a), could, in theory, reflect a 331 

Celtic-speaking group of people with intermediate EEF ancestry spreading into both regions, 332 

although such a simple model cannot explain all the north-south ancestry convergence in 333 

Europe (Supplementary Information section 7); the true gene flows were more complex. 334 

Nevertheless, the fact that the Margetts Pit and Cliffs End Farm outliers are genetically very 335 

similar to our Knoviz culture sample (Supplementary Information section 6) is striking in light 336 

of the fact that some scholars have hypothesized Central European Urnfield groups to have links 337 

to Celtic language spread53. In contrast, our failure to find evidence of large-scale migration into 338 

Britain from continental Europe in the IA suggests that, if Celtic language spread was driven by 339 

large-scale movement of people, it is unlikely to have occurred at this time. The adoption in IA 340 

Britain of cultural practices originating in continental Europe—particularly those linked to the 341 

La Tène tradition54—were also evidently independent of large-scale population movements, 342 

although there certainly were smaller movements of people, attested by individual IA outliers 343 

with high EEF ancestry such as those at Thame or Winnall Down (Figure 3). 344 

 

An important direction for future work is to generate new ancient DNA data from continental 345 

contexts especially in central and western France—and also Ireland—to test the alternative 346 

scenarios of population history consistent with the finding in this study, and to develop theories 347 

integrating the genetic findings within archaeological frameworks.  348 
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Methods 349 

 350 

Ancient DNA laboratory work 351 

All ancient human skeletons analysed in this study were sampled with written permission of 352 

the stewards of the samples and every sample is represented by at least one co-author. 353 

Researchers who wish to obtain further information about specific samples should write to 354 

the corresponding authors and/or the authors who provided the archaeological 355 

contextualization for those samples in Supplementary Material section 1. In dedicated clean 356 

rooms at Harvard Medical School, the University of Vienna, the Natural History Museum in 357 

London, and the University of Huddersfield, as well as during sampling trips, we obtained 358 

powder from ancient bones and teeth using methods including fine sandblasting, drilling and 359 

milling55,56. We extracted DNA using a variety of methods57-59, and prepared double- or 360 

single-stranded libraries treated with the enzyme Uracil DNA Glycosylase (UDG) to reduce 361 

characteristic errors associated with ancient DNA degradation15-17,60. We enriched these 362 

sequences manually or in multiplex using automated liquid handlers for sequences 363 

overlapping the mitochondrial genome20,61 as well as about 1.24 million single nucleotide 364 

polymorphisms (“1240K capture”)18. We pooled enriched libraries which we had marked 365 

with unique 7-base pair internal barcodes and/or 7- to 8-base pair indices and sequenced on 366 

Illumina NextSeq500 or HiSeqX10 instruments using paired-end reads of either 76 base pairs 367 

or 101 base pairs in length (Online Table 2). 368 

 369 

Bioinformatic analysis 370 

After trimming barcodes and adapters6, we merged read pairs with at least 15 base pairs of 371 

overlap allowing no more than one mismatch if base quality was at least 20, or up to three 372 

mismatches if base qualities were <20; we chose the nucleotide of the higher quality in case 373 

of a conflict while setting the local base quality to the minimum of the two (for these steps we 374 

used a custom toolkit at https://github.com/DReichLab/ADNA-Tools). We aligned merged 375 

sequences to the mitochondrial genome RSRS62 or the human genome hg19 (GRCh37, 376 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/), and aligned these sequences 377 

using the samse command63 of BWA version 0.7.15-r1140 with parameters -n 0.01, -o 2, and -378 

l 16500. After identifying PCR duplicates by tagging all aligned sequences with the same 379 

start and stop positions and orientation and in some cases in-line barcodes using Picard 380 

MacDuplicates (http://broadinstitute.Github.io/picard/), and restricting to sequences that 381 

spanned at least 30 base pairs, we selected a single copy of each such sequence that had the 382 
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highest base quality score. For subsequent analysis, we trimmed the last 2 bases of each 383 

sequence for UDG-treated libraries and the last 5 for non-UDG-treated libraries to reduce the 384 

effects of characteristic errors associated with ancient DNA degradation. We built 385 

mitochondrial consensus sequences, determined haplogroups using HaploGrep264 and 386 

Phylotree version 17, and estimated the match rate to the consensus sequence using 387 

contamMix v.1.0-1221 when coverage was at least two-fold. To represent the nuclear data, we 388 

randomly sampled a single sequence covering each of the 1.24 million SNP targets, and 389 

estimated coverage based on the subset of these targeted SNPs on the autosomes. We used 390 

ANGSD to estimate contamination based on polymorphism on the X chromosome in males 391 

with at least 200 SNPs covered twice (males should be non-polymorphic if their data are 392 

uncontaminated)22. We automatically determined Y chromosome haplogroups using both 393 

targeted SNPs and off-target sequences aligning to the Y chromosome based on comparisons 394 

to the Y chromosome phylogenetic tree from Yfull version 8.09 (https://www.yfull.com/), 395 

providing two alternative notations for Y chromosome haplogroups: the first using a label 396 

based on the terminal mutation, and the second describing all the associated branches of the 397 

Y chromosome tree based on the notation of the International Society of Genetic Genealogy 398 

(ISOGG) database version 15.73. (http://www.isogg.org).  399 

 400 

Determination of ancient DNA authenticity 401 

We determined ancient DNA authenticity based on five criteria. First, we required that the 402 

lower bound of the 95% confidence interval for contamination from ANGSD (if we were able 403 

to compute it) was <1%. Second, we required that the upper bound of the 95% confidence 404 

interval for match rate to mitochondrial consensus sequence (if we were able to compute it) 405 

was >95%. Third, we required that the average rate of cytosine-to-thymine errors at the 406 

terminal nucleotide for all sequences passing filters was >3% for double-stranded partially 407 

UDG-treated libraries15 and >10% for single-stranded USER-treated libraries and double-408 

stranded non-UDG-treated libraries (the latter libraries are all from previously published data 409 

that we reanalysed here)65. Fourth, we required the ratio of sequences mapping to the Y 410 

chromosome to the sum of sequences mapping to the X and Y chromosome for the 1240K 411 

data to be less than 3% (consistent with a female) or >35% (consistent with a male). Fifth, to 412 

report an individual we required the number of SNPs covered at least once to be at least 5,000 413 

(for most actual population genetic analyses, we required at least 30,000). For some 414 

individuals with evidence of contamination, we analysed only sequences with terminal 415 

damage to enrich for genuine ancient DNA using pmdtools, allowing us to study more 416 
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individuals66. We do not include in our main analyses data from 71 individuals that failed our 417 

authenticity criteria (marked as “QUESTIONABLE” in Online Table 1); however, we 418 

publish the data as part of this study as a resource. 419 

 420 

Approach to chronological uncertainty 421 

We restricted individuals for which we newly report data to those whose date estimate (mean 422 

of the posterior distribution from radiocarbon carbon dating, or midpoint of the 423 

archaeological context date) is older than 43 CE based on information we had available as of 424 

July 1 2021. For the great majority of individuals, assignments to chronological periods did 425 

not change subsequently. However, there were 23 exceptions, and we study these as part of 426 

their original analysis groupings (Supplementary Information section 8). 427 

 428 

Population genetic analyses 429 

We used Principal Component Analysis as implemented in smartpca to visualise gradients of 430 

ancestry, using the option lsqproject to project ancient individuals onto the patterns of genetic 431 

variation learned from modern individuals67. We computed f4-statistics and FST and carried out 432 

qpWave and qpAdm analyses in ADMIXTOOLS25. We inferred relatives up to the third to fifth 433 

degree using a previously described method23.  434 

 435 

Allele frequency estimates of variants with functional importance 436 

We clustered individuals into the temporal groups specified in Online Table 5. To estimate 437 

the allele frequency of a given SNP in a particular group for Online Table 8, we used 438 

sequence counts at each SNP position in each individual and used a maximum likelihood 439 

approach19. We obtained confidence intervals using the Agresti-Coull method implemented 440 

in the binom.confint function of the R-package binom. The imputation-based methodology 441 

for studying the trajectory of the lactase persistence allele is described in the Figure 4 legend. 442 

 443 

Accelerator Mass Spectrometry (AMS) radiocarbon dating 444 

We carried out AMS dating at a variety of laboratories; we refer readers to the individual labs 445 

for the experimental procedures. We calibrated all dates using OxCal 4.4.268 and IntCal2069. 446 

 447 

Reporting summary  448 

Further information on research design is available in the Nature Research Reporting Summary 449 

linked to this paper. 450 
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Data availability 451 

The raw data are available as aligned sequences (bam files) through the European Nucleotide 452 

Archive under accession number [to be made available on publication]. Less processed versions 453 

of the data (fastq files) are available from the corresponding authors on request, whereas more 454 

processed versions of the data (the genotype data obtained by random allele sampling used in 455 

analysis) are available at https://reich.hms.harvard.edu/datasets. Any other relevant data are 456 

available from the corresponding authors upon reasonable request. 457 
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Extended Data Table 1: Ancestry change over time in Britain 

 
Note: We pool all individuals from each period and region removing those failing qpAdm modeling at p<0.01 according to Online Table 5). In the left columns are qpAdm estimates of ancestry for 
each group. Below diagonal are Z-scores from f4(Row population, Column population; Turkey_N, OldSteppe) (highlighted in red if |Z|>3). Above diagonal are inbreeding-corrected FST values 
(highlighted in yellow if FST>0.005).  
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England.and.Wales_N 37 0.7597 20.8% 76.7% 2.6% 0.5% 0.5% 0.6% 0 0.02 0.0176 0.0171 0.0161 0.0219 0.0226 0.0013 0.0192 0.0188 0.0188 0.0197 0.0206 0.0239 0.0046 0.0275 0.0233 0.0225 0.0177 0.0073 0.0153
England.and.Wales_C.EBA 69 0.3840 12.6% 31.0% 56.4% 0.4% 0.5% 0.6% -65.7 0 0.0007 0.0012 0.0017 0.0084 0.0107 0.0204 0.0013 0.0002 0.0013 0.0019 0.006 0.0109 0.0259 0.0112 0.0091 0.0085 0.0357 0.0173 0.0055
England.and.Wales_MBA 26 0.0918 13.5% 34.7% 51.8% 0.5% 0.6% 0.7% -58.2 -7.3 0 0.0004 0.0008 0.0066 0.0088 0.0181 0.0011 0.0009 0.0013 0.0016 0.004 0.009 0.0227 0.0099 0.0064 0.0071 0.0333 0.0151 0.0043
England.and.Wales_LBA 23 0.4609 13.6% 36.1% 50.4% 0.5% 0.6% 0.7% -52.3 -9.9 2.9 0 0.0006 0.0056 0.007 0.0179 0.0028 0.0012 0.0017 0.0022 0.0037 0.0077 0.0209 0.0089 0.0065 0.0052 0.0319 0.0141 0.0037
England.and.Wales_IA 273 0.3637 13.6% 37.9% 48.5% 0.3% 0.4% 0.5% -63.9 -19.4 7 2.3 0 0.0053 0.0073 0.0175 0.0027 0.0011 0.0016 0.0018 0.0035 0.0076 0.0204 0.0099 0.0064 0.0049 0.0306 0.0136 0.0032
England.and.Wales_PostIA 38 0.0002 15.0% 36.6% 48.3% 0.4% 0.5% 0.6% 61 -11 -2.5 1 5.8 0 0.003 0.0239 0.0085 0.0051 0.0074 0.0076 0.0014 0.0037 0.0188 0.0069 4E-05 0.0024 0.0333 0.017 0.0049
England.and.Wales_Modern 62 0.6315 14.1% 40.0% 45.9% 0.4% 0.4% 0.6% -61.3 -19.5 -8.8 -4 -3.5 8.5 0 0.0243 0.0107 0.0071 0.0094 0.0097 0.0034 0.0016 0.0184 0.0083 0.0029 0.0021 0.034 0.0175 0.0072
Scotland_N 44 0.6642 23.1% 74.3% 2.5% 0.4% 0.5% 0.6% 2.7 -65.1 -55.5 -51.3 -64.4 -61.3 -61.6 0 0.0184 0.0186 0.0182 0.0197 0.0227 0.026 0.0079 0.0296 0.0243 0.0248 0.0196 0.0084 0.0164
Scotland_C.EBA 10 0.1517 13.5% 32.2% 54.3% 0.6% 0.7% 1.0% 52 -3 1.6 4.3 6.4 3.5 7.8 -50.6 0 0.0011 0.002 0.0022 0.0064 0.0107 0.0243 0.0099 0.0079 0.0098 0.0338 0.0194 0.0067
Scotland_MBA 5 0.5635 14.0% 32.3% 53.7% 0.8% 0.9% 1.1% 45.2 -1.7 2 4.1 6.2 3.9 7.4 -44.8 0.5 0 0.0009 0.0013 0.0032 0.0074 0.0216 0.0078 0.007 0.0061 0.032 0.0132 0.0036
Scotland_LBA 4 0.8346 12.4% 34.0% 53.7% 0.8% 1.0% 1.2% 39.8 -4 -0.1 1.3 3.2 1 4.2 -40.4 -1.1 1.7 0 0.0002 0.0047 0.0098 0.0239 0.0101 0.0084 0.0074 0.0357 0.0152 0.007
Scotland_IA 18 0.1850 12.7% 33.4% 54.0% 0.6% 0.6% 0.8% 56.1 -3.8 1.7 4.1 8.4 4.3 10.2 -56 0.2 1.1 -1.4 0 0.0047 0.0095 0.0251 0.0108 0.0083 0.0069 0.035 0.0178 0.0044
Scotland_PostIA 10 0.4713 12.9% 36.4% 50.7% 0.6% 0.7% 0.9% 50.4 -7.4 -1.5 1.2 3.7 0.3 5.1 48.3 -2.5 -3 -0.6 -2.9 0 0.0034 0.0189 0.0068 0.0021 0.0015 0.0331 0.0162 0.0037
Scotland_Modern 78 0.7341 14.3% 37.5% 48.2% 0.4% 0.4% 0.6% 62.1 -12.9 -3.5 0.2 5.1 -1.2 7.9 -62.4 -4.2 -4.5 -1.5 -5.5 1 0 0.0201 0.0089 0.0032 0.001 0.0352 0.0179 0.0078
Ireland_N 51 0.6505 21.6% 77.9% 0.5% 0.4% 0.5% 0.5% -0.5 -69.3 -59 -54.9 -69.3 -65.8 -65.9 3.3 51.4 45.4 40.9 57.2 52 67.2 0 0.0238 0.0189 0.019 0.0183 0.0081 0.0158
Ireland_C.EBA 3 0.4166 13.6% 30.5% 55.9% 0.9% 1.2% 1.5% 37.9 1.5 4.7 6.4 8 5.9 9 -38 -3.3 -2.8 -4.3 -3.9 -5.4 -6.6 -38.8 0 0.0056 0.0068 0.0408 0.0256 0.0094
Ireland_PostIA 3 0.0109 14.0% 34.9% 51.1% 0.9% 1.1% 1.3% 37.6 -3.8 -0.3 1.5 3.1 1.1 4.1 -37.5 1.4 1.8 0 1.3 -0.8 -1.5 38.6 -3.9 0 0.0027 0.0336 0.0166 0.0049
Ireland_Modern 30 0.6461 12.9% 36.8% 50.3% 0.4% 0.5% 0.7% 57.6 -8.7 0 3.2 7.3 1.3 10.6 -56.8 1.8 1.7 0.5 3.6 -1.2 -3.7 -61.1 -5.5 -0.5 0 0.0346 0.0161 0.005
Channel.Islands_8100.to.5700BP 3 0.7577 16.1% 82.3% 1.6% 1.3% 1.4% 1.6% 3.5 36.4 33.7 31.8 32.7 33.2 31.8 4.4 33.8 30.8 28.6 33.9 32 33 3.3 29.8 29.3 30.3 0 0.0126 0.0266
Channel.Islands_5700.to.4450BP 3 0.4611 31.0% 67.1% 1.9% 1.2% 1.3% 1.4% -7.9 28.1 24.7 23.7 23.8 24.4 22.7 -7 24.1 23.3 20.8 24.9 23.4 24.4 -8.3 23 20.5 21.1 -8.4 0 0.0099
Channel.Islands_IA 4 0.8603 15.4% 43.9% 40.7% 0.9% 1.2% 1.4% -28.3 11.3 7.5 6 5.3 6.7 4.2 -27.3 7.3 7.8 6.5 8.5 6.7 6.4 -29.3 9.3 5.9 5.9 22.4 13.8 0

qpAdm  results (3-way model) Tests for difference in ancestry between row & column (below diagonal f 4-statistic Z-score, above-diagonal F ST) 
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Extended Data Table 2: Fine structure in Iron Age Britain.  

 
Note: This is an expanded version of Table 1 including not just ancestry estimates for each group but also pairwise population comparisons. We pool all individuals from each period and region 
removing those failing qpAdm modeling at p<0.01 according to Online Table 5). In the left columns are qpAdm estimates of ancestry for each group. Below diagonal are Z-scores from f4(Row 
population, Column population; Turkey_N, OldSteppe) (highlighted in red if |Z|>3). Above diagonal are inbreeding-corrected FST values (highlighted in yellow if FST>0.0025).  
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Scotland West 4 0.12  13.0% 32.3% 54.7% 0.8% 1.0% 1.2% 0 0.0007 0.0006 0.0032 0.0035 0.0052 0.0035 0.0046 0.0034 0.004 0.0034 n/a 0.0038
Scotland Southeast 12 0.67  12.1% 33.9% 54.0% 0.6% 0.7% 0.9% 0.3 0.0 0.001 0.0012 0.0008 0.0028 0.0017 0.003 0.0014 0.0015 0.0019 n/a 0.0018
Scotland Orkney 2 0.22  14.2% 34.1% 51.6% 1.1% 1.2% 1.6% 0.7 1.1 0 0.0018 0.0013 0.0037 0.0007 0.0029 0.0014 0.0021 0.0021 n/a 0.0074
England Midlands 18 0.66  12.6% 36.0% 51.4% 0.5% 0.6% 0.8% 2.8 3.4 0.9 0.0 0.0001 0.0022 0.001 0.0028 0.0008 0.0009 0.0013 n/a 0.0016
England North 10 0.35  13.4% 36.3% 50.3% 0.6% 0.8% 1.0% 2.4 2.6 0.9 0.1 0 0.0027 0.0005 0.0016 0.0002 0.0007 0.0009 n/a 0.0019
England Cornwall 16 0.40  13.5% 36.4% 50.1% 0.5% 0.7% 0.8% 3.0 3.8 1.1 0.9 0.9 0.0 0.0025 0.0041 0.002 0.0021 0.0024 n/a 0.0024
England East Anglia 21 0.44  13.5% 37.0% 49.5% 0.5% 0.5% 0.7% 3.7 4.8 1.7 0.9 1.1 0.1 0 0.002 0.0007 0.0011 0.0013 n/a 0.0012
England East Yorkshire 47 0.61  13.2% 37.0% 49.8% 0.4% 0.5% 0.6% 4.1 5.4 2.1 1.5 1.7 -0.6 -0.5 0.0 0.0022 0.0026 0.0023 n/a 0.0028
England Southeast 36 0.13  13.9% 38.3% 47.8% 0.5% 0.5% 0.6% 5.4 7.2 2.8 -3.8 -3.2 -2.5 -3.4 -3.2 0 0.0008 0.0005 n/a 0.0008
England Southwest 84 0.30  13.7% 38.7% 47.6% 0.4% 0.4% 0.6% 5.6 8.4 3.3 -4.5 -4.3 -3.3 -3.7 -3.4 0.2 0.0 0.0009 n/a 0.0013
England Southcentral 38 0.32  13.9% 38.8% 47.2% 0.4% 0.5% 0.6% 5.6 7.5 3.3 -4.6 -3.6 -2.7 -3.0 -3.3 0.0 -0.2 0 n/a 0.0013
Wales North 1 0.20  12.1% 34.7% 53.2% 1.6% 2.0% 2.5% 0.8 1.1 2.0 1.9 2.0 2.5 2.9 3.1 3.6 3.6 3.5 0.0 n/a
Wales South 2 0.66  14.2% 38.6% 47.2% 1.2% 1.5% 1.8% -2.7 -3.1 -1.5 -1.6 -1.3 -1.2 -1.0 -0.9 0.0 0.4 0.3 -1.9 0

qpAdm  results (3-way model) Tests for difference in ancestry between row & column (below diagonal f 4-statistic Z-score, above-diagonal F ST) 
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A                 B 
  Neolithic and C/EBA 

Groups Used in Modeling 

Modeled population N England/Wales Scotland 

England/Wales MBA 26 0.34 0.046 

England/Wales LBA 23 0.023 0.0074 

England/Wales IA 273 <10-6 <10-6 

Scotland MBA 5 0.88 0.028 

Scotland LBA 4 0.25 0.77 

Scotland IA 18 0.0091 0.0028 

 
Extended Data Figure 1: Post-MBA Britain was not a mix of earlier British populations. (A) qpAdm P-values for modeling British groups as a mix of Neolithic and Chalcolithic/EBA populations 
from England and Wales, Scotland, or Ireland (outgroups OldAfrica, OldSteppe, Turkey_N, CzechRepublic.Slovakia.Germany_3800.to.2700BP, Netherlands_C.EBA, Poland_Globular_Amphora, 
Spain.Portugal_4425.to.3800BP, CzechRepublic.Slovakia.Germany_4465.to.3800.BP, Sardinia_4100.to.2700BP, Sardinia_8100.to.4100BP, Spain.Portugal_6500.to.4425BP). We highlight 
p<0.05 (yellow) or p<0.005 (red). Both sources and target populations in this analysis remove outlier individuals (“Filter 2” in Online Table 5); we obtain qualitatively similar results when 
outlier individuals are not removed (not shown). In England and Wales, the main MBA group, and to a marginal extent the main LBA grouping, can be modelled as a mixture of the Neolithic and 
C/EBA populations; we can reject such a models for the IA (we can more weakly reject this model even for Scotland, whether using England/Wales or Scotland sources, suggesting some of the 
same stream of migration also affected Scotland albeit probably in a more subtle way). (B) To obtain insight into the source of the new ancestry in Britain in the IA, we computed 
f4(England.and.Wales_IA, a(England.and.Wales_N) + (1-a)(England.Wales_C.EBA); R1, R2) for several different (R1, R2) pairs. If England.and.Wales_IA is a simple mixture of 
England.and.Wales_N and England.and.Wales_C.EBA without additional ancestry, then for some mixture proportion the statistic will be consistent with zero for all (R1, R2 pairs). When (R1, R2) 
= (OldAfrica, OldSteppe) feasible Z-scores (Z1 in the plot) are observed when a~0.85, showing that ~85% ancestry from England.and.Wales_C.EBA ancestry is needed to contribute the 
proportion of Steppe ancestry in England.and.Wales_IA. However, when (R1, R2) is (Balkan_N, Sardinian_8100.to.4100BP), we get infeasible Z-scores (Z2) of <-6 across the range where the 
other Z-score (Z1) is remotely feasible. Thus, Iron Age people from England and Wales must have ancestry from an additional population deeply related to Sardinian Early Neolithic groups.  
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Extended Data Figure 2: By-individual analysis of the British time transect. Version of Figure 3 with the time transect extended into the Neolithic, and 
showing the individuals from Scotland. Estimates of EEF ancestry and one standard error are shown for all individuals in the British time transect that pass 
basic quality control, that fit to a three-way admixture model (EEF + WHG + Yamnaya) at p>0.01 using qpAdm, and for the Neolithic period that fit a two-way 
admixture model (EEF + WHG) at p>0.01. Blue and green show individuals from southern and northern Britain that fit the average for the main cluster of their 
time, while red and orange show outliers at the ancestry tails (identified either as p<0.005 based on a qpWave test from the main cluster of individuals from 
their period and |Z|>3 for a difference in their EEF ancestry proportion from the period, or alternatively p<0.1 and |Z|>3.5). The averages for the main clusters 
in both southern and northern Britain in each archaeological period (Neolithic, C/EBA, MBA, LBA and IA) are shown in dashed lines. 
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Extended Data Figure 3: Frequency change over time at two phenotypically important alleles. Present-day frequency is shown by the red line. (A-D/Top) Lactase persistence allele at rs4988235. 
(E-H/Bottom) Light skin pigmentation allele at rs16891982. In Britain the rise in frequency of the lactase persistence allele occurred earlier than in Central Europe. This analysis is based on 
direct observation of alleles; imputation results are consistent (Figure 4B). Online Table 8 gives full numerical results for 107 phenotypically important alleles. 



 31 

 
Extended Data Figure 4: Y chromosome haplogroup frequencies change over time. We show the estimated frequency of the 
characteristically British Y chromosome haplogroup R1b-P312 L21/M529 in all individuals for which we are able to make a 
determination and which are not first-degree relatives of a higher coverage individual in the dataset. The frequency increases 
significantly from ~0% in the whole island Neolithic, to 89±4% in the whole island C/EBA. It declines albeit non-significantly to 
79±9% in the MBA and LBA (from this time on restricting to England and Wales because of the autosomal evidence of a change 
in ancestry in the south but not the north). It further declines to 68±4% in the IA, a significant reduction relative to the C/EBA 
(P=0.014 by a two-sided chi-square contingency test). There is a further reduction from this time to the present, where the 
proportion is 43±3% in Wales and the west of England (P=5x10-6 for a reduction relative to the IA), and 14±2% in the center 
and east of England (P=3x10-32 for a reduction relative to the IA), potentially due to later migrations bearing a different 
distribution of Y chromosome haplogroup frequencies. 
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Extended Data Figure 5: Version of Figure 3A contrasting Kent to the rest of southern Britain. We show the period 2450-1 BCE. All the high EEF outliers at the M-LBA are from Kent—the part 
of the island closest to France—and in addition all the individuals from 1000-875 BCE from the group of samples showing the ramp-up from MBA to IA levels of EEF ancestry are from Kent (5 
from Cliffs End Farm and 3 from East Kent Access Road). This suggests the possibility that this small region was the gateway for migration to Britain at the M-LBA. Further sampling from the rest 
of Britain at the M-LBA is critical in order to understand the dynamics of how this ancestry spread more broadly, but the fact that only sample from the LBA that is not from Kent, I12624 from 
Blackberry Field in Potterne in Wiltshire at 950-750 BCE, already has IA levels of EEF ancestry, suggests that this ancestry began spreading more broadly by the date of this individual.
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