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Resumen. We sketch the calculation of the pion structure functions within the DSE
framework, following two alternative albeit consistent approaches, and . discuss then their QCD
evolution, the running driven by an effective charge, from a hadronic scale up to any larger one
accessible to experiment.

1. Introduction
Pions, the Nature’s simplest hadrons, are simultaneously Nambu-Goldstone modes generated

by dynamical chiral symmetry breaking in the Standard Model (SM) and bound states of first-
generation light quarks and anti-quarks. This key feature explains why symmetries and their
breaking play a crucial role in accounting for pions’ properties. More importantly, it is also
why charting and understanding pions’ structure and mass distribution in terms of SM strong
interactions is a cumbersome, central problem in modern physics, demanding a coherent effort
both in QCD continuum and lattice calculations and in experiments shedding a light on this
understanding [1].

A basic quantity revealing the pion’s structure is its parton distribution function, qπ(x; ζ),
expressing the probability that a q -flavour valence quark carries a light-front momentum fraction
x in the pion. In particular, this density has been the object of a long controversy, since that
leading-order perturbative QCD analysis of πN Drell-Yan data (E615 experiment [2]) drew as a
conclusion that, at the relevant energy scale for the experiment, ζ5=5.2 GeV, qπ(x; ζ5) ∼ (1−x)
when x → 1; in clear contradiction with the result early predicted from parton model and
perturbative QCD [3–5]: qπ(x; ζH) ∼ (1 − x)2, where ζH is an energy scale characteristic of
nonperturbative dynamics; while QCD evolution is expected to make the exponent increase by
the effect of the logarithmic running and thus become effectively 2 + γ, with γ & 0, for any
scale ζ > ζH . Subsequent continuum QCD calculations [6–10] and further careful re-analyses of
E615 data [11, 12], including soft-gluon resummation, have recently reported results consistent
with an exponent equal to 2+γ; while new data analysis not yet including relevant threshold
resummation effects [13] and other calculations [14, 15] still claim to agree with the original
leading-order analysis of E615 data [2].
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As discussed in Ref. [8], two key issues in determining the pion’s parton distribution function,
qπ(x; ζ), are: (i) accounting, beyond the impulse approximation, for a class of corrections to
the handbag-diagram representation of the virtual-photon-pion forward Compton scattering
amplitude, restoring basic symmetries in the calculation of parton distributions [7, 16]; and
(ii) dealing adequately with the QCD evolution of these parton distributions, from the
nonperturbative scale at which they have been obtained up to one accessible to experiment.
In the following, we will sketch about (i) and elaborate further on the issue (ii), particularly in
connection with a recently proposed process-independent effective charge [17,18].

2. The pion parton distribution function
The pion’s parton distribution function can be obtained on the ground of the knowledge

of the dressed light-quark propagator and pion Bethe-Salpeter amplitude (BSA), computed by
solving the appropriate Dyson-Schwinger and Bethe-Salpeter equations (BSE). In order to keep
a natural connection for the renormalisation scale and the reference one for QCD evolution,
the Dyson-Schwinger equations (DSE) should be renormalised at a typical hadronic scale, ζH ,
where the dressed quasiparticles become the correct degrees-of-freedom [19,20]. Within this DSE
and BSE approach but employing algebraic ansätze, a first study in Ref. [7] yielded some new
insight to the calculation by identifying the above-mentioned symmetry-preserving corrections,
eventually leading to

qπ(x; ζH) = Nctr

∫
dk
δxn(kη) n · ∂kη [Γπ(kη,−P )S(kη)] Γπ(kη̄, P )S(kη̄) , (1)

after implementing the appropriate truncation; where
∫
dk :=

∫
d4

(2π)4
is a Poincaré-invariant

regularisation of the integral, δxn(kη) := δ(n · kη − xn · P ); n is a light-like four-vector, n2 = 0,
n · P = −mπ; and kη = k + ηP , kη̄ = k − (1 − η)P , η ∈ [0, 1]; Γπ is the pion BSA, S(k) is
the dressed light-quark propagator, the trace is taken over spinor indices with Nc=3, such that,
if the BSA is canonically normalised, then

∫ 1
0 dxqπ(x; ζH)=1. Owing to Poincaré covariance,

no observable can be expected to depend on η, i.e. the definition of the relative momentum,
and this can be algebraically proved from Eq. (1). Another important property of Eq. (1), that
can be made apparent after straightforward algebra, is: qπ(x; ζH) = qπ(1− x; ζH); which is the
consequence of the bound system being described in terms of two identical dressed quasiparticles,
in the isospin-symmetric limit.

Then, in a further recent work [20], realistic numerical solutions of both DSE and BSE have
been applied to compute the first six Mellin moments of the valence-quark parton distribution,
derived from Eq. (1) as follows

〈xm〉πζH =

∫ 1

0
dxxmqπ(x; ζH) =

Nc

n · P
tr

∫
dk

[
n · kη
n · P

]m
Γπ(kη̄, P )S(kη̄)n · ∂kη [Γπ(kη,−P )S(kη)] ;

(2)
the Schlessinger point method (SPM) has been then used to extend this set of moments and thus
get a reliable approximant for any moment; and, finally, the SPM-approximant has been applied
for the reconstruction of the valence-quark distribution, qπ(x; ζH) [20]. The parton distribution
is therefore fully determined, within this approach, by the kernel interaction specified for both
the quark-gap and Bethe-Salpeter equations.

An alternative approach results from the so-called overlap representation, in which the
forward limit of the generalised parton distribution gives [21,22]

qπ(x; ζH) =

∫
d2k⊥
16π3

|ψ(x,k2
⊥; ζH)|2 (3)
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Figura 1. Predicted parton distribution function

from Eq. (2) (brown) [8] and from Eq. (3) here

(red) and in Ref. [25] (blue dashed) with an

algebraic model, both at the hadronic scale ζH ;

evolved then up to ζ5 (red dashed), as explained in

the text, and successfully compared to reanalysed

E615 data [11,12] (blue circles).
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Figura 2. Predicted PI effective charge

as obtained in Ref [17] (dot-dashed blue)

and improved in Ref. [18], compared to the

world’s data of the Bjorken sum-rule charge

and to the light-front holographic model (red

dotted) canvassed in Ref. [26].

for the valence-quark parton distribution in terms of the lowest Fock-space light-front wave
function (LFWF) at the hadronic scale, ψ(x,k2

⊥; ζH); its leading-twist contribution resulting
from the Bethe-Salpeter wave function, χµ(k + q, k) = S(k + q)Γπ(k + q, k)S(k), as

fπψ(x,k2
⊥) = trCD

∫
dk‖

π
δxn(k)γ5γ · n χµ(k − P

2
, P ) , (4)

where fπ is the pion’s leptonic decay constant and the trace is here applied over color and
spinor indices. As both the quark propagator and the BSA are in hand, basic ingredients for the
realistic computation made in Ref. [20], Eqs. (3,4) can be also implemented to get a realistic
estimate for the parton distribution within the DSE approach. Alternatively, one can follow the
approach of Ref. [23] and use an appropriate Nakanishi representation of the BSA, such that
the LFWF eventually results from a closed expression only involving compact integrals of the
so-called Nakanishi weight, a distribution defined on a support [−1, 1]. Then, this distribution
can be adjusted to reproduce the same SPM-approximant Mellin moments of Ref. [20] and, as
can be seen in Fig. 1, almost pointwise identical parton distributions at the hadronic scale result
from both approaches. One is thus left with a realistic estimate of the LFWF which can be
subsequently applied to computing the generalised parton distribution function [24].

3. DGLAP evolution of hadron structure functions
Once the parton distribution obtained at the hadronic scale, qπ(x; ζH), one should employ

the QCD-evolution equations to make it evolve up to the relevant scale for E615 and thus obtain
qπ(x; ζ5). The equations describing the scale violations of the hadron structure functions readζ2 d

dζ2

∫ 1

0
dyδ(y − x) − α(ζ2)

4π

∫ 1

x

dy

y

 PNSqq

(
x

y

)
0

0 PS

(
x

y

)


 qNS(y; ζ)

qS(y; ζ)
GS(y; ζ)

 = 0 , (5)

written in terms of integral equations, with the 2×2 matrix PS = {(PSqq , 2nfPSqG) ; (PSGq , P
S
GG)},

where qNS stands for the non-singlet pure valence-quark and qS =
∑

q q + q and GS represent,
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respectively, the singlet quark and gluon distribution functions in the pion; the elements of the
matrix correspond to the so-called splitting functions as can be found, at the leading order, in
Ref. [27], and α(ζ) is the strong running coupling. Then, if the m-th order Mellin moment is
considered, one is left withζ2 d

dζ2
+
α(ζ2)

4π

 γ
NS,(m)
0,qq 0 0

0 γ
S,(m)
0,qq 2nfγ

S,(m)
qG

0 γ
S,(m)
0,Gq γ

S,(m)
0,GG



 〈xmq 〉NSζ〈xmq 〉Sζ
〈xmG 〉Sζ

 = 0 ; (6)

where the coefficients for the anomalous dimension of the Mellin moments, as defined in (2),

result from γ
k,(m)
0,ij = −

∫ 1
0 dx xmP k0,ij(x) with i, j=q,G and k=S,NS; and can be also found in

Ref. [27] (see Eqs. (71-74)). The first row in the matrix of equation (6) leaves us with the standard
one-loop DGLAP valence-quark evolution equation. The 2×2 non-diagonal matrix block in (6)
describes the evolution of the singlet components and makes also apparent how gluon and quarks
become coupled. Indeed, one only needs to deal with the eigenvalue’s problem for the matrix in
Eq. (6), and its solutions can be formally written as

(
1 0
0 Q−1

) 〈xmq 〉NSζ〈xmq 〉Sζ
〈xmG 〉Sζ

 = exp

(
−Γ

(m)
D

∫ ln ζ2

ln ζ20

dt
α(et)

4π

)(
1 0
0 Q−1

) 〈xmq 〉NSζ0〈xmq 〉Sζ0
〈xmG 〉Sζ0

 , (7)

where Γ
(m)
D = Diag(γ

NS,(m)
0,qq , λ

(m)
+ , λ

(m)
− ) is the matrix of eigenvalues for Eq. (6) and Q is the

matrix diagonalizing Eq. (6)’s 2×2 non-diagonal matrix block and, eventually, coupling singlet
quark and gluon distributions. At the leading order, α(ζ) is taken from the integration of the
1-loop β-function and (7) can be thus displayed in terms of simple analytic expressions featuring
the logaritmic running of the moments from ζ0 up to ζ, both scales lying in the perturbative
domain. However, our aim here (and so was in Ref. [8]) is evolving the valence-quark parton
distribution obtained at a naturally nonperturbative hadronic scale, where the pion is only a
bound sate of a dressed quark and a dressed antiquark, up to larger energy scales. To this
goal, one can go beyond the leading-order approximation by recognising that an effective charge
for the strong coupling in Eq. (5) can be defined such that the higher-order corrections become
therein optimally neglected and, in order to make predictions, assuming then a phenomenological
correspondence of this charge with a well-known effective coupling.

4. The interaction kernel and the process-independent effective strong coupling
The interaction kernel used to get realistic solutions of the DSE gap equation for the

quark propagator and for the BSA in Ref. [8], and to compute thus the valence-quark parton
distribution, is the one explained in Refs. [28,29]. This interaction has been found to coincide, in
the infrared domain and within the error uncertainties, with a renormalisation-group-invariant
(RGI) running-interaction resulting from contemporary studies of QCD’s gauge sector [30],

I(k2) = k2d̂(k2) =
αT(k2)

[1− L(k2; ζ2)F (k2; ζ2)]2
, (8)

with ζ still standing for the renormalisation scale; d̂(k2) is a RGI function, owing to a sensible
rearrangement of the diagramatic DSE expansion of the involved QCD Green’s functions, within
the approach given by the pinch technique and background field method (PTBFM) [31, 32], as
discussed in Ref. [33]; F is the dressing function for the ghost propagator; L is a longitudinal piece
of the gluon-ghost vacuum polarisation, playing a key role within the context of the PTBFM
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approach, and that vanishes at k2 = 0 [33]; and αT stands for the strong running coupling
derived from the ghost-gluon vertex [33–35], also called the “Taylor coupling” [36–38]. Further,
on the ground of this running-interaction as a basic ingredient, the process-independent (PI)
effective coupling,

α̂PI(k
2) = d̂(k2)/D(k2) (9)

has been introduced and discussed in Refs. [17, 18, 39]; where 1/D(k2) is a mass-dimension-two
RGI function defined from the gluon two-point Green’s function, as explained therein. As can
be seen in Fig. 2, this PI coupling is also found to describe well the world’s data for the process-
dependent Bjorken sum-rule effective charge (the roots of this striking coincidence, which opens
a window for a direct experimental measure of the PI charge defined on the QCD’s gauge sector,
are largely discussed in Ref. [17]).

Following Ref. [39], the coincidence of the PI effective coupling and the DSE interaction
kernel, within the infrared domain, supports the assumption that the parametrisation

α(ζ2) = 4π
[
β0 ln

((
m2
α + ζ2

)
/Λ2

QCD

)]−1
(10)

introduced in Ref. [8], is the best candidate for the effective charge from Eq. (5), where
ΛQCD=234 MeV and mα=300 MeV are defined to make it coincides with the PI effective
coupling, in the infrared, and smoothly connects with the pQCD tail of the kernel interaction in
the ultraviolet. Then, as discussed in Ref. [8], mα>∼ΛQCD is a nonperturbative scale screening the
soft gluon modes from interaction, which can be naturally identified with the hadronic scale ζH .
Therefore, plugging (10) into (7), the valence-quark parton distribution can be unambigously
evolved from ζH = mα up to ζ5, and then succesfully compared with the reanalysed E615
data [11, 12] (see Fig. 1). Furthermore, at the hadronic scale, the pion is a two-valence-body
bound-state with no explicit gluon or sea-quark contribution to the singlet distributions, only
from valence dressed-quarks. Thus, QCD evolution effectively driven by (10) applied into (7)
can be employed to estimate gluon and sea-quark distributions at any larger energy scale,
accessible to experiment. The case for the m = 1 Mellin moment (momentum fraction average)
is particularly simple and the singlet distributions from (7) can be recast as (Nf=4)

〈xq〉Sζ =
3

7
+

4

7
exp

(
− 14

9π

∫ ln ζ2

ln ζ2H

dt α(t)

)
, 〈xG〉Sζ =

4

7

1− exp

(
− 14

9π

∫ ln ζ2

ln ζ2H

dt α(t)

) ; (11)

which make apparent that, for Λ2
QCD/ζ

2 → 0, sea-quark and gluon momentum fractions tend

logarithmically to 3/4 and 4/7, respectively, while the valence-quark tends to 0 [40].

5. Conclusions
We conclude by shortly sumarising. Continuum predictions for the pointwise behaviour of the

pion’s distribution functions for valence-quarks, gluons and sea are now consistently available
for the first time, obtained within a Dyson-Schwinger-equations’ approach and owing to the
implementation of a symmetry-preserving interaction kernel. To this goal, we capitalised on a
QCD’s process-independent effective charge, driving the QCD evolution from a nonperturbative
scale, unambigously defined by the freeze-out of interacting gluons, below its dynamical mass,
up to any larger scale accessible to experiment. This leads to a parameter-free prediction of the
pion’s valence-quark distribution function that is in agreement with a modern analysis of the
E615 data. The approach herein sketched can be potentially applied to extend the calculations
to the spin-dependent structure functions and, beyond the kinematic forward limit, to the
generalised parton distributions.
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