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We present a detailed study of the dynamics associated with the ghost sector of quenched QCD in the
Landau gauge, where the relevant dynamical equations are supplemented with key inputs originating from
large-volume lattice simulations. In particular, we solve the coupled system of Schwinger-Dyson equations
that governs the evolution of the ghost dressing function and the ghost-gluon vertex, using as input for the
gluon propagator lattice data that have been cured from volume and discretization artifacts. In addition, we
explore the soft gluon limit of the same system, employing recent lattice data for the three-gluon vertex that
enters in one of the diagrams defining the Schwinger-Dyson equation of the ghost-gluon vertex. The results
obtained from the numerical treatment of these equations are in excellent agreement with lattice data for
the ghost dressing function, once the latter have undergone the appropriate scale-setting and artifact
elimination refinements. Moreover, the coincidence observed between the ghost-gluon vertex in general
kinematics and in the soft gluon limit reveals an outstanding consistency of physical concepts and
computational schemes.
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I. INTRODUCTION

In the ongoing quest for unraveling the nonperturbative
structure of QCD, considerable effort has been dedicated to
the study of Green’s (correlation) functions by means of
both continuous methods [1–30] and large-volume lattice
simulations [31–46]. In this pursuit, the detailed scrutiny of
the ghost sector of the theory is particularly important, both
because of its direct connection with specific scenarios of
color confinement [47,48] but also due to its impact on the
nonperturbative behavior of other key Green’s functions,
such as the gluon propagator and the three-gluon vertex
[49–65]. In particular, the nonperturbative masslessness
of the ghost is responsible for the vanishing of the gluon
spectral density at the origin [66–69] and for the infrared
suppression of the three-gluon vertex [52,53,61–63]. In that
sense, the ghost dynamics leave their imprint on a variety of
fundamental phenomena, such as chiral symmetry breaking
and the generation of quark constituent masses [1,70–74],

the emergence of a mass gap in the gauge sector of the
theory [9,65,75,76], and the dynamical formation of
hadronic bound states [3,20,77–79] and glueballs [80–83].
In the framework of the Schwinger-Dyson equations

(SDEs), the momentum evolution of the ghost dressing
function is governed by a relatively simple integral equa-
tion, whose main ingredients are the gluon propagator and
the fully dressed ghost-gluon vertex. If one treats the gluon
propagator as external input obtained from lattice simu-
lations (see, e.g., [84]), then the main technical challenge
of this approach is the determination of the ghost-gluon
vertex. In the Landau gauge, the ghost-gluon vertex is
rather special because, by virtue of Taylor’s theorem, its
renormalization constant is finite [85]. Of the two possible
tensorial structures allowed by Lorentz invariance, only that
corresponding to the classical (tree-level) tensor survives in
the calculations. The form factor associated with it will be
denoted by B1ðr; p; qÞ, where r, p, and q are the momenta
of the antighost, ghost, and gluon, respectively.
The most complicated aspect of the SDE that determines

B1ðr; p; qÞ is that, in addition to B1ðr; p; qÞ itself, the
resulting integral equation, derived in the so-called one-
loop dressed approximation, depends also on the fully
dressed three-gluon vertex. This latter vertex has a rich
tensorial structure [86], and a complicated description at the
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level of the SDEs [52,55–57,84,87–92]; therefore, it is
often approximated by resorting to gauge-technique con-
structions [93–96], based on the Slavnov-Taylor identities
(STIs) that it satisfies.
The comprehensive treatment of the relevant SDEs

presented in [97] gives rise to a B1ðr; p; qÞ with a mild
momentum dependence and a modest deviation from
its tree-level value (see also [84]), and a ghost dressing
function, Fðq2Þ, that is in good (but not perfect, see,
e.g., right panel on Fig. 16 of [97]) agreement with the
lattice data [39].
In the present work, we take a fresh look at the system of

coupled SDEs that determines the ghost dynamics, taking
advantage of two recent advances in the area of lattice QCD
[98–100]. First, the simulation of the three-gluon vertex
in the “soft gluon limit” (q → 0) [98] furnishes accurate
data for a special form factor, denoted by Lsgðr2Þ, which
constitutes a central ingredient of the SDE for B1ðr; p; qÞ,
when computed in the same kinematic limit, namely
B1ðr;−r; 0Þ. Second, the lattice two-point functions
employed in our study have been cured from volume
and discretization artifacts, once the scale-setting and
continuum-limit extrapolation put forth in [99,100] have
been implemented.
The way the aforementioned elements are incorporated

into the present analysis is as follows. The starting point is
the computation of Fðq2Þ and B1ðr; p; qÞ from the coupled
system of SDEs they satisfy. In the SDE for B1ðr; p; qÞ, an
approximate form of the three-gluon vertex is employed:
only the tree-level tensorial structures are retained, and the
associated form factors are taken from the STI-based
derivation of [63]. In addition, the gluon propagator of
[100] combined with that of [39], subjected to the refine-
ments mentioned above, is used in the SDEs as external
input. The solution of the system yields a Fðq2Þ which is in
outstanding agreement with the ghost dressing function
of [100]. The corresponding solution for B1ðr; p; qÞ, in
general kinematics, displays the salient features known
from previous studies [29,59,63,84,87,88,97,101,102]. In
fact, one may extract from it various kinematic limits as
special cases, and, in particular, the two-dimensional
“slice” that corresponds to the soft gluon limit, thus
obtaining B1ðr;−r; 0Þ.
The next step is to implement the soft gluon limit (q → 0)

directly at the level of the SDE for B1ðr; p; qÞ, which is thus
converted to a dynamical equation forB1ðr;−r; 0Þ. By virtue
of this operation, the three-gluon vertex nested in one of the
defining Feynman diagrams is projected naturally to its soft
gluon limit, thus allowing us to replace it precisely by the
function Lsgðr2Þ obtained from the lattice analysis of [98],
without having to resort to any Ansätze or simplifying
assumptions. The resulting B1ðr;−r; 0Þ is then compared
with the corresponding “slice” obtained from the full
kinematic analysis of B1ðr; p; qÞ mentioned above,
revealing excellent coincidence. This coincidence, in turn,

is indicative of an underlying consonance between elements
originating from inherently distinct computational frame-
works, such as the lattice and the SDEs.
The article is organized as follows. In Sec. II we present

the notation and theoretical ingredients that are relevant for
our analysis. In Sec. III we set up and solve the coupled
system of SDEs for the ghost dressing function and the
ghost-gluon vertex in general kinematics. Next, in Sec. IV
we derive and analyze the SDE for the ghost-gluon vertex
in the soft gluon configuration, comparing our results with
those obtained in the previous section. In addition, we
compare the strong running coupling obtained from the
three-gluon vertex with the one constructed from the ghost-
gluon vertex, both in the soft gluon configuration. In Sec. V
we discuss our results and present our conclusions. Finally,
in the Appendix Awe present useful relations between the
Taylor and soft gluon renormalization schemes, while in
Appendix B we discuss the treatment of finite cutoff effects
and lattice scale setting.

II. THEORETICAL BACKGROUND

In this section we summarize the main properties of the
two and three-point functions that enter in the nonpertur-
bative determination of the ghost-gluon vertex, paying
particular attention to the soft gluon limit of the three-
gluon vertex. Note that in the present study we restrict
ourselves to a quenched version of QCD, i.e., a pure Yang-
Mills theory with no dynamical quarks.
Throughout this article we work in the Landau gauge,

where the gluon propagator Δab
μνðqÞ ¼ −iδabΔμνðq2Þ

assumes the fully transverse form

ΔμνðqÞ ¼ Δðq2ÞPμνðqÞ; PμνðqÞ ¼ gμν − qμqν=q2;

Δðq2Þ ¼ Zðq2Þ=q2: ð2:1Þ

As has been firmly established by a variety of large-
volume simulations and continuous studies, Δðq2Þ satu-
rates at a finite nonvanishing value, a feature which is
widely attributed to the emergence of a gluonic mass scale
[9,75]. For later convenience, the gluon dressing function,
Zðq2Þ, has also been defined in Eq. (2.1).
In addition, we introduce the ghost propagator,

Dabðq2Þ ¼ iδabDðq2Þ, whose dressing function, Fðq2Þ, is
given by

Dðq2Þ ¼ Fðq2Þ=q2; ð2:2Þ

and is known to saturate at a finite value in the deep
infrared [9–11,103].
Turning to the three-point sector of the theory,

we introduce the ghost-gluon vertex, Γmna
μ ðr;p;qÞ¼

−gfmnaΓμðr;p;qÞ, and the three-gluon vertex, Γabc
αμνðq;r;pÞ¼

gfabcΓαμνðq;r;pÞ, depicted diagrammatically in Figs. 1(a)
and 1(b), respectively.
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In a series of works [16,104–107], the emergence of
an infrared finite gluon propagator from the correspond-
ing SDE has been connected with certain outstanding
nonperturbative features of the fundamental vertices
Γμðr; p; qÞ and Γαμνðq; r; pÞ. Specifically, both vertices
are composed by two distinct types of terms, according to

Γμðr; p; qÞ ¼ Γμðr; p; qÞ þ Vμðr; p; qÞ;
Γαμνðq; r; pÞ ¼ Γαμνðq; r; pÞ þ Vαμνðq; r; pÞ: ð2:3Þ

The terms Vμðr; p; qÞ and Vαμνðq; r; pÞ are purely non-
perturbative and contain longitudinally coupled massless
poles; when inserted into the SDE of the gluon propagator,
they trigger the Schwinger mechanism [108–111], inducing
the infrared finiteness of the gluon propagator. It is
important to emphasize that these terms drop out from
transversely projected Green’s functions, or lattice “observ-
ables,” due to the property1

Pμ
μ0 ðqÞVμðr; p; qÞ ¼ 0;

Pα
α0 ðqÞPμ

μ0 ðrÞPν
ν0 ðpÞVαμνðq; r; pÞ ¼ 0: ð2:4Þ

On the other hand, the terms Γμðr; p; qÞ and Γαμνðq; r; pÞ
denote the pole-free components of the two vertices. For
large momenta, they capture the standard perturbative
contributions, while in the deep infrared they may be finite
or diverge logarithmically, depending on whether or not
they are regulated by the nonperturbative gluon mass
scale [53].
The most general tensorial decomposition of Γμðr; p; qÞ

can be written as

Γμðr; p; qÞ ¼ B1ðr; p; qÞrμ þ B2ðr; p; qÞqμ; ð2:5Þ

where Biðr; p; qÞ are the corresponding form factors. At

tree level, Γð0Þ
μ ¼ rμ, and so Bð0Þ

1 ¼ 1 and Bð0Þ
2 ¼ 0. In

addition, by virtue of Taylor’s theorem [85], the renorm-
alization constant associated with Γμðr; p; qÞ is finite.
The vertex Γαμνðq; r; pÞ is composed by 14 linearly

independent tensors. A standard basis, which manifestly
reflects the Bose symmetry of Γαμνðq; r; pÞ, is the one
introduced in [86]; see also Eqs. (3.4) and (3.6) of [63].
Note, however, that the explicit form of the basis will not be
required in what follows.
At tree level, Γαμνðq; r; pÞ reduces to the standard

expression

Γαμν
0 ðq; r; pÞ ¼ ðq − rÞνgαμ þ ðr − pÞαgμν þ ðp − qÞμgνα:

ð2:6Þ

We next turn to the quantity studied in the lattice
simulation of [98],

Lsgðr2Þ

¼ Γαμν
0 ðq; r; pÞPαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞΓα0μ0ν0 ðq; r; pÞ

Γαμν
0 ðq; r; pÞPαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞΓα0μ0ν0

0 ðq; r; pÞ

�����
q→0
p→−r

;

ð2:7Þ

where the external legs have been appropriately ampu-
tated.2 Note that the starting expression involves the full
vertex Γα0μ0ν0 ðq; r; pÞ, which, by virtue of Eq. (2.4), is
reduced to Γα0μ0ν0 ðq; r; pÞ, i.e., the term Vα0μ0ν0 ðq; r; pÞ
associated with the poles drops out in its entirety.
Now, in the limit of interest, namely q → 0, the tensorial

structure of the three-gluon vertex is considerably simpli-
fied, given by

Γαμνð0; r;−rÞ ¼ 2A1ðr2Þrαgμν þA2ðr2Þðrμgαν þ rνgαμÞ
þA3ðr2Þrαrμrν: ð2:8Þ

At tree level,

Γαμν
0 ð0; r;−rÞ ¼ 2rαgμν − ðrμgαν þ rνgαμÞ; ð2:9Þ

which, in the notation of Eq. (2.8), means that

Að0Þ
1 ðr2Þ ¼ 1, Að0Þ

2 ðr2Þ ¼ −1, and Að0Þ
3 ðr2Þ ¼ 0.

Then, the numerator and denominator of the fraction on
the rhs of Eq. (2.7), to be denoted byN andD, respectively,
become

(a) (b)

FIG. 1. Diagrammatic representation of (a) the ghost-gluon
vertex and (b) the three-gluon vertex, with their respective
momenta conventions. All momenta are incoming, qþ pþ r ¼ 0.

1Equivalently, the general tensorial structure of the pole
vertices is given by Vμðr;p;qÞ¼ qμ

q2
Aðr;p;qÞ and Vαμνðq; r; pÞ ¼

qα
q2 Bμνðq; r; pÞ þ rμ

r2 Cανðq; r; pÞ þ pν

p2 Dαμðq; r; pÞ.

2In [98] and other related lattice works, this quantity has been
denominated as the asymmetric kinematic limit. Here we find it
more appropriate to employ the term “soft gluon limit.”
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N ¼ 4ðd − 1Þ½r2 − ðq · rÞ2=q2�A1ðr2Þ;
D ¼ 4ðd − 1Þ½r2 − ðq · rÞ2=q2�: ð2:10Þ

Thus, the path-dependent contribution contained in the
square bracket drops out when forming the ratioN =D, and
Eq. (2.7) yields simply

Lsgðr2Þ ¼ A1ðr2Þ: ð2:11Þ

Combining Eqs. (2.9) and (2.11), it is immediate to derive
one of the key relations of this work, namely

Pμμ0 ðrÞPνν0 ðrÞΓαμνð0; r;−rÞ ¼ 2Lsgðr2ÞrαPμ0ν0 ðrÞ: ð2:12Þ

III. THE SYSTEM OF COUPLED SDES

In this section, we set up and solve the system of coupled
SDEs that governs the ghost dressing function and the
ghost-gluon vertex for general spacelike momenta. The
external ingredients employed are a fit of the lattice data for
the gluon propagator, and certain form factors of the three-
gluon vertex (in general kinematics), obtained from the
nonperturbative Ball-Chiu construction of [63].

A. The ghost gap equation and ghost-gluon SDE

Our starting point is the SDE for the ghost propagator,
whose diagrammatic representation is shown in the upper
panel of Fig. 2. When expressed in terms of the ghost
dressing function, this SDE acquires the standard form
known in the literature, namely

F−1ðp2Þ ¼ Zc þ Σðp2Þ; ð3:1Þ

with

Σðp2Þ ¼ ig2CAZ1

Z
k
fðk; pÞB1ð−p; kþ p;−kÞΔðkÞ

×Dðkþ pÞ;

fðk; pÞ ≔ 1 −
ðk · pÞ2
k2p2

: ð3:2Þ

In the above equation, CA is the Casimir eigenvalue of the
adjoint representation [N for SUðNÞ], while Zc and Z1 are
the renormalization constants of Dðp2Þ and Γμðr; p; qÞ,
respectively [see Eq. (A1)]. In addition, we have introduced
the integral measure

Z
k
≔

1

ð2πÞ4
Z

d4k; ð3:3Þ

where the presence of a symmetry-preserving regulariza-
tion scheme is implicitly understood.
In this analysis, the renormalization is implemented

within the well-known variant of the momentum subtraction
(MOM) scheme known as “Taylor scheme” [112,113],3

which fixes the (finite) vertex renormalization constant at
the special value Z1 ¼ 1. As for Zc, its value is fixed by the
standard MOM requirement F−1ðμ2Þ ¼ 1, where μ is the
renormalization scale.
Implementing this condition at the level of Eq. (3.1)

yields

Zc ¼ 1 − Σðμ2Þ; ð3:4Þ

and Eq. (3.1) may be cast in the form

FIG. 2. The SDEs for the ghost propagator and the ghost-gluon vertex (upper and lower panels, respectively). The white circles
represent the full gluon and ghost propagators, while the blue ones denote the full ghost-gluon vertex. The gray ellipse indicates the
“one-particle reducible” four-point ghost-gluon kernel.

3In the literature this scheme is also known as minimal
momentum subtraction scheme [114], and has been employed
for a recent determination of αMS from unquenched lattice
simulations [115], consistent with the experimental world average.
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F−1ðp2Þ ¼ 1þ Σðp2Þ − Σðμ2Þ: ð3:5Þ

We next turn to the SDE for the ghost-gluon vertex,
shown diagrammatically in the lower panel of Fig. 2. In the
present work, we will consider the so-called one-loop
dressed approximation of this SDE, which corresponds
to keeping only the first two terms in the skeleton
expansion of the SDE kernel, shown in Fig. 3. Note that
the omitted set of contributions is captured by the one-
particle irreducible four-point function, represented by the
yellow ellipse, whose dynamics has been studied in detail
in [29,116]. As was shown there, this subset of corrections
is clearly subleading, affecting the ghost-gluon vertex by a
mere 2%. It is therefore expected that the above truncation
should provide a quantitatively accurate description of the
infrared behavior of the ghost-gluon vertex (see also the
corresponding discussion in Sec. V).
Thus, the expression for the SDE for the ghost-gluon

vertex in the Taylor scheme can be schematically written as

Γμðr;p;qÞ¼ rμ−
i
2
g2CA½aμðr;p;qÞ−bμðr;p;qÞ�; ð3:6Þ

with

aμðr; p; qÞ ¼ rρ

Z
k
ΔρσðkÞΓμσαðq; k;−tÞΔαβðtÞ

× Γβð−l; p; tÞDðlÞ;

bμðr; p; qÞ ¼ rα

Z
k
ΔαβðlÞΓβðt; p;−lÞDðtÞ

× Γμðk;−t; qÞDðkÞ; ð3:7Þ

where l ≔ k − r and t ≔ kþ q. Note that we have
employed the first of the two relations in Eq. (2.4) in
order to eliminate the terms Vμðr; p; qÞ from the ghost-
gluon vertices that are contracted by a transverse gluon
propagator (Landau gauge).
In order to isolate the contribution of the form factor

B1ðr; p; qÞ, defined in Eq. (2.5), we contract Eq. (3.6) by
the projector [84]

εμðr; qÞ ¼ q2rμ − qμðq · rÞ
hðr; qÞ ; hðq; rÞ ¼ q2r2 − ðq · rÞ2:

ð3:8Þ

An immediate consequence of this contraction and the
property Eq. (2.4) is that

Γμσαðq; k;−tÞPρσðkÞPαβðtÞ → Γμσαðq; k;−tÞPρσðkÞPαβðtÞ;
Γμðk;−t; qÞ → Γμðk;−t; qÞ; ð3:9Þ

i.e., the terms associated with the nonperturbative poles
are annihilated, and we are only left with the pole-free
components of the two vertices.
The next step is to carry out in the expressions of

Eq. (3.7) the substitution

B1ð−l; p; tÞ →
1

2
½B1ð−l; p; tÞ þ B1ðr;l;−kÞ�;

B1ðt; p;−lÞ →
1

2
½B1ðt; p;−lÞ þ B1ðr;−k;lÞ�; ð3:10Þ

in order to restore the symmetry of B1ðr; p; qÞ with respect
to the interchange of the ghost and antighost momenta,
which has been compromised by the truncation of the
SDE [97].
In addition, the structure of the three-gluon vertex

entering in aμðr; p; qÞ is approximated by retaining only
the tensorial structures with a nonvanishing tree-level limit.
Specifically, in the notation of [63], we set

Γαμνðq; r; pÞ ≈ ðq − rÞνgαμX1ðq; r; pÞ
þ ðr − pÞαgμνX4ðq; r; pÞ
þ ðp − qÞμgναX7ðq; r; pÞ; ð3:11Þ

where, due to the Bose symmetry of Γαμνðq; r; pÞ, we
have X1ðq; r; pÞ ¼ X4ðp; q; rÞ ¼ X7ðr; p; qÞ.
Thus, we arrive at (Minkowski space)

B1ðr; p; qÞ ¼ 1 −
i
2
g2CA½aðr; p; qÞ − bðr; p; qÞ�; ð3:12Þ

FIG. 3. The skeleton expansion of the “one particle reducible” four-point ghost-gluon kernel. Only the first two terms will be
considered in our analysis.
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with

aðr; p; qÞ ¼
Z
k
K1ðk; r; qÞN 1ðk; r; qÞ; bðr; p; qÞ ¼

Z
k
K2ðk; r; qÞN 2ðk; r; qÞ; ð3:13Þ

where

K1ðk; r; qÞ ¼
Δðk2ÞΔðt2ÞFðl2Þ
k2l2t2hðq; rÞ ½B1ð−l; p; tÞ þ B1ðr;l;−kÞ�;

K2ðk; r; qÞ ¼
Fðk2ÞΔðl2ÞFðt2Þ
2k2l2t2hðq; rÞ ½B1ðt; p;−lÞ þ B1ðr;−k;lÞ�B1ðk;−t; qÞ; ð3:14Þ

and

N 1 ¼ a1X1ðk; t; qÞ þ a4X4ðk; t; qÞ þ a7X7ðk; t; qÞ;
N 2 ¼ ½q2ðk · rÞ − ðk · qÞðq · rÞ�½ðk · rÞðq · rÞ þ ðk · qÞðk · rÞ − r2ðk · qÞ − k2ðq · rÞ − hðk; rÞ�: ð3:15Þ

The coefficients ai are given by

a1 ¼ ½q2ðk · rÞ − ðk · qÞðq · rÞ�fk2½ðk · qÞðk · rÞ − ðk · qÞðq · rÞ − 2r2ðk · qÞ
þ ðk · rÞðq · rÞ þ ðk · rÞ2 − hðq; rÞ� − k4½ðq · rÞ þ r2� þ ðk · rÞ½q2ðk · rÞ þ ðk · qÞðk · rÞ−ðk · qÞðq · rÞ þ ðk · qÞ2�g;

a4 ¼ ½k2ðq · rÞ − ðk · qÞðk · rÞ�fðk2 þ q2Þhðq; rÞ − q2ðk · rÞ½q2 þ ðq · rÞ� þ ðk · qÞ2ðq · rÞ
þ ðk · qÞ½ðk · rÞðq · rÞ − q2ðk · rÞ þ q2ðq · rÞ þ 2q2r2 − ðq · rÞ2� − q2ðk · rÞ2g;

a7 ¼ fq2ðk · rÞ − k2½q2 þ ðq · rÞ� þ ðk · qÞ½ðk · rÞ − ðq · rÞ� þ ðk · qÞ2g
× ½k2hðq; rÞ − q2ðk · rÞ2 þ ðk · qÞðk · rÞðq · rÞ�: ð3:16Þ

B. Numerical analysis

In order to proceed with the numerical solution, the
system of integral equations formed by Eqs. (3.5) and
(3.12) must be passed to Euclidean space, following
standard conventions [see, e.g., Eq. (5.1) of [97] ] and
employing spherical coordinates for the final treatment.
Then, appropriate inputs for the gluon propagator,

Δðq2Þ, and the form factors X1;4;7ðq; r; pÞ of the three-
gluon vertex must be furnished.
For the gluon propagator we employ a fit for the results

obtained after a reanalysis of the lattice data of [39],
following the procedure put forth in [99,100], in order
to cure volume and discretization artifacts, see Appendix B
for details. Specifically, the resulting Δðq2Þ is shown in the
left panel of Fig. 4, together with the numerical fit given
by Eq. (B5).
For the determination of the form factors X1;4;7ðq; r; pÞ,

we follow the nonperturbative version of the Ball-Chiu
construction developed in [63]. The general idea of the
method is based on reconstructing the longitudinal form
factors of the three-gluon vertex, such as X1;4;7ðq; r; pÞ,
from the set of STIs that Γαμνðq; r; pÞ satisfies. This

procedures allows us to express X1;4;7ðq; r; pÞ in terms
of the ghost dressing function, the “kinetic” part of the
gluon propagator, and three of the form factors of the ghost-
gluon kernel.
In particular, the most general tensorial decomposition of

the ghost-gluon kernel Hνμðq; p; rÞ is given by [97]

Hνμðq; p; rÞ ¼ gμνA1 þ qμqνA2 þ rμrνA3

þ qμrνA4 þ rμqνA5; ð3:17Þ

where the argument ðq; p; rÞ of the form factors Ai has been

suppressed for compactness. At tree level, Að0Þ
1 ¼ 1 and

Að0Þ
i ¼ 0, for i ¼ 2;…; 5. In addition, it is convenient to

introduce the short-hand notation

Adðq; p; rÞ ≔ A3ðq; p; rÞ − A4ðq; p; rÞ: ð3:18Þ

Then, the Ball-Chiu construction yields for X1ðq; r; pÞ
(Euclidean space) [63]
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X1ðq; r; pÞ ¼ ðr2 − q2 − p2ÞFðr2ÞJðq2ÞAdðq; r; pÞ þ ðq2 − r2 − p2ÞFðq2ÞJðr2ÞAdðr; q; pÞ

þ 1

2
½Fðq2ÞJðr2ÞA1ðr; q; pÞ þ Fðr2ÞJðq2ÞA1ðq; r; pÞ� −

1

4
p2Jðp2ÞFðq2ÞA3ðp; q; rÞ

þ 1

4
ðr2 − q2Þ½Fðp2ÞJðq2ÞA3ðq; p; rÞ − Fðp2ÞJðr2ÞA3ðr; p; qÞ� −

1

4
p2Jðp2ÞFðr2ÞA3ðp; r; qÞ

þ 1

4
ðr2 − q2Þ½Fðq2ÞJðr2ÞA3ðr; q; pÞ − Fðr2ÞJðq2ÞA3ðq; r; pÞ�: ð3:19Þ

In the above formula, the function Jðq2Þ corresponds to the
“kinetic” part of the gluon propagator, defined as

Δ−1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ; ð3:20Þ

where m2ðq2Þ represents a momentum-dependent mass
scale. To determine Jðq2Þ, we first computem2ðq2Þ from its
own dynamical equation (see, e.g., [65]), and then subtract
it from the lattice data for the inverse gluon propagator.
Due to the Bose symmetry of the three-gluon vertex, the

form factors X1;4;7ðq; r; pÞ are related to each other by [63]

X4ðq; r; pÞ ¼ X1ðr; p; qÞ; X7ðq; r; pÞ ¼ X1ðp; q; rÞ:
ð3:21Þ

Therefore, only X1 needs to be evaluated, and the
X4;7ðq; r; pÞ are obtained by permuting its arguments.
For the numerical evaluation of X1, we use the fit of

Eq. (B7) for FðqÞ and the general kinematics results for
the A1;3;4 of Ref. [97]. As for JðqÞ, we employ the form
presented in Fig. 2 of [98].
A representative case of X1ðq2; r2;ϕ ¼ 0Þ is shown in the

right panel of Fig. 4, where ϕ is the angle formed between

the momenta q and r. Note that the form factor deviates
markedly from unity, displaying clearly what is known in the
literature as “infrared suppression” [26,53,58,61–63].
With the inputs introduced above, the coupled system is

solved numerically by an iterative process. The external
momenta r2 and p2 are distributed on a logarithmic grid,
with 96 points in the interval ½5 × 10−5; 104� GeV2,
whereas the angle between them, θ1, is uniformly distrib-
uted in ½0; π� with 19 points. The interpolations in three
variables, needed for evaluating the Xi and the B1, are
performed with B splines [117], and the triple integrals are
computed with a Gauss-Kronrod method [118].
In Fig. 5, we show the numerical results for Fðp2Þ and

B1ðr2; p2; θ1Þ obtained from the solution of the coupled
system. We emphasize that the renormalization point has
been fixed at μ ¼ 4.3 GeV, which coincides with the highest
value of the momentum accessible by the lattice simulation
of [39]. In particular, one can observe that when the gauge
coupling assumes the value αsðμÞ≔g2ðμÞ=4π¼0.244, the
solution of the system yields a Fðp2Þ that is in outstanding
agreement with the ghost dressing data of [100] (left panel),
which were properly extrapolated to the physical continuum
limit, as explained in Appendix B.
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FIG. 4. Left panel: lattice data for the gluon propagator,Δðq2Þ, after performing the continuum extrapolation of [100] to the data set of
[39], together with the corresponding fit given by Eq. (B5). The gluon propagator is renormalized at μ ¼ 4.3 GeV. Right panel: a
representative case of the three-gluon form factor X1ðq2; r2;ϕÞ for a fixed value of the angle, ϕ ¼ 0.
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Moreover, in the right panel of Fig. 6, one can see that
the solution for B1ðr2; p2; θ1Þ is symmetric with respect to
the diagonal plane defined by the condition r ¼ p. This is a
direct consequence of the ghost-antighost symmetry, and it
becomes manifest only when B1 is plotted as a function of
the momenta r and p.
We next explore certain special kinematic limits of B1.

To that end, we choose r and q as our reference momenta
(antighost and gluon, respectively), denoting by θ2 the
angle between them. In the left panel of Fig. 6 we plot the
corresponding 3D plot, for the special value θ2 ¼ 2π=3;
this choice for the angle is particularly convenient, because

one can identify on a unique 3D surface the following three
kinematic limits:

(i) The soft gluon limit, obtained by setting q ¼ 0: then,
the momenta r and p have the same magnitude,
jpj ¼ jrj ¼ jQj, and are antiparallel, i.e., θ1 ¼ π.
This kinematic configuration is represented by the
red dot-dashed curve on the 3D plot of Fig. 6.

(ii) The soft (anti)ghost limit, in which r ¼ 0 and the
momenta jqj¼ jpj¼ jQj: evidently, jrjjqjcosθ2¼0,
and any dependence on the angle θ2 is washed out.
This kinematic limit is represented by the orange
continuous curve on the 3D plot of Fig. 6.
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FIG. 6. Left panel: the form factor B1ðr2; q2; θ2Þ plotted as function of the momenta of antighost, r, and gluon, q, for a fixed value of
the angle, θ2 ¼ 2π=3. On the 3D surface, three curves are highlighted, representing the soft gluon (red dot dashed), soft ghost (orange
continuous), and symmetric (green dashed) kinematic limits. Right panel: direct comparison of the three special configurations (2D
projections) identified in the left panel.

0 0.5 1.0 1.5 2.0 2.5
1.0

1.5

2.0

2.5

3.0

FIG. 5. Left panel: the numerical solution for the ghost dressing function, Fðp2Þ (red continuous line), compared with the lattice data
of [100]. Right panel: the form factor B1ðr2; p2; θ1Þ for a fixed value of the angle θ1 ¼ π, obtained as solution of the coupled system of
Eqs. (3.1) and (3.12) when αsðμÞ ¼ 0.244.
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(iii) The totally symmetric limit, defined by q2 ¼ p2 ¼
r2 ¼ Q2: with the scalar products given by ðq · pÞ ¼
ðq · rÞ ¼ ðp · rÞ ¼ − 1

2
Q2, and the angles crp ¼brq ¼ cqp ¼ 2π=3, represented by the green dashed

curve on the 3D plot of Fig. 6.
The three 2D projections described above are plotted

together in the right panel of Fig. 6, with all their
corresponding momenta denoted by Q. As we can see,
all cases display a peak around the same region of
momenta, i.e., ð0.8–1.2Þ GeV, with moderate differences
in their heights. In addition, in the deep infrared, all curves
recover the result B1ð0; 0; 0Þ ¼ 1.

IV. GHOST-GLUON VERTEX IN THE SOFT
GLUON CONFIGURATION

In this section we implement the soft gluon limit, i.e.,
(q → 0), directly at the level of the SDE for the ghost-gluon
vertex, which permits us to use the lattice data for Lsgðq2Þ
[98]4 in the treatment of the resulting integral equation.
The basic observation is that, in the soft gluon limit,

the term PρσðkÞΓμσαðq; k;−tÞPαβðtÞ appearing inside the
aμðr; p; qÞ of Eq. (3.7) becomes simply

PρσðkÞPαβðtÞΓμσαðq; k;−tÞ→
q→0

PρσðkÞPαβðkÞΓμσαð0; k;−kÞ
¼ 2Lsgðk2ÞkμPρβðkÞ; ð4:1Þ

where in the last step Eq. (2.12) was used.
Note, however, that a final subtlety prevents the imme-

diate use of the lattice results for Lsgðk2Þ into Eq. (3.7).
Specifically, the renormalization employed in the lattice
analysis of [98] is the “soft gluon scheme,” which differs
from the Taylor scheme used in the derivation of the system
of coupled SDEs. As a result, the lattice data must undergo
a finite renormalization, z̃3, which will convert them from
one scheme to the other, according to Eq. (A4).
Then, it is straightforward to implement the soft gluon

limit at the level of Eq. (3.7). Using the short-hand notation
B1ðk2Þ ≔ B1ðk;−k; 0Þ, we arrive at

B1ðr2Þ ¼ 1 −
ig2CA

z̃3

Z
k
Fðl2ÞΔ2ðk2Þfðk; rÞ ðk · rÞ

l2

× B1ð−l;−r; kÞLsgðk2Þ

þ i
2
g2CA

Z
k
F2ðk2ÞΔðl2Þfðk; rÞ ðk · rÞ

k2l2

× B1ðk;−r;−lÞB1ðk2Þ; ð4:2Þ

where the function fðk; rÞ has been defined in Eq. (3.2).

As a final step, Eq. (4.2) will be converted to Euclidean
space (spherical coordinates), using standard transforma-
tion rules. Defining

k2 ≔ y; r2 ≔ x; l2 ≔ z;

k · r≡ ffiffiffiffiffi
xy

p
cos θ; l · r≡ ffiffiffiffiffi

xz
p

cosφ; ð4:3Þ

and setting

B1ðl;−r; kÞ → B1ðz; x;φÞ;
B1ðk;−r;−lÞ → B1ðy; x; π − θÞ; ð4:4Þ

we arrive at

B1ðxÞ ¼ 1þ CAαs
2π2z̃3

Z
∞

0

dyy
ffiffiffiffiffi
xy

p
LsgðyÞΔ2ðyÞ

×
Z

π

0

dθsin4θ cos θB1ðz; x;φÞz−1FðzÞ

þ CAαs
4π2

Z
∞

0

dy
ffiffiffiffiffi
xy

p
F2ðyÞB1ðyÞ

×
Z

π

0

dθsin4θ cos θB1ðy; x; π − θÞz−1ΔðzÞ; ð4:5Þ

where we have that cosφ ¼ ffiffiffiffiffiffiffi
y=z

p
cos θ −

ffiffiffiffiffiffiffi
x=z

p
.

Equation (4.5) will be solved numerically, through an
iterative procedure, using the following external inputs.

(i) Throughout the analysis we use μ ¼ 4.3 GeV and
αsðμÞ ¼ 0.244, as was determined in our numerical
study of the SDE system discussed in Sec. III B.

(ii) For both Δðq2Þ and Fðq2Þ, renormalized at the
aforementioned μ, we employ the fits given by
Eqs. (B5) and (B7), respectively.

(iii) For Lsgðq2Þ we employ two quite distinct functional
forms, which fit rather well the lattice data of [98], as
shown in Fig. 7.

The first one is a physically motivated fit, whose
functional form is given by

Lsgðq2Þ ¼ Fðq2ÞTðq2Þ

þ ν1

�
1

1þ ðq2=ν2Þ2
−

1

1þ ðμ2=ν2Þ2
�
;

ð4:6Þ

with

Tðq2Þ ¼ 1þ 3λS
4π

�
1þ τ1

q2 þ τ2

�
½2 ln

�
q2 þ η2ðq2Þ
μ2 þ η2ðμ2Þ

�
þ 1

6
ln

�
q2

μ2

��
; ð4:7Þ

and

4In [98], the lattice result for Lsgðq2Þ has been reproduced
particularly well by means of the STI-based construction of [63].
Nonetheless, in the present analysis we employ directly the best
fit to the lattice data for achieving the highest possible accuracy.
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η2ðq2Þ ¼ η21
1þ q2=η22

; ð4:8Þ

where the fitting parameters are given by λS ¼ 0.27,
ν1 ¼ 0.179, ν2 ¼ 0.830 GeV2, τ1 ¼ 2.67 GeV2,
τ2 ¼ 1.05 GeV2, η21 ¼ 3.10 GeV2, and η22 ¼
0.729 GeV2.
Note that the above fit incorporates, by construc-

tion, the renormalization condition Lsgðμ2Þ ¼ 1,
corresponding to the soft gluon MOM scheme
employed in the lattice simulation of [98]. In
addition, the zero crossing of Lsgðq2Þ is located at
about 170 MeV.
Observe that the above functional form captures

the expected infrared and ultraviolet asymptotic
behavior of Lsgðq2Þ [64,64,98]. In particular, by
expanding Eq. (4.6) around q2 → 0, one obtains an
infrared divergent behavior of the type

lim
q2→0

Lsgðq2Þ ¼ a lnðq2=μ2Þ þ b; ð4:9Þ

where a and b are constants, comprised by combi-
nations of the fitting parameters entering in the
Eq. (4.6).
Another much simpler functional form, which fits

rather well the lattice data of [98], is given by

Lsgðq2Þ ¼
ðq2=σ1Þγ

1þ ðq2=σ2Þγ
; ð4:10Þ

with the adjustable parameters fixed at σ1 ¼
1.23 GeV2, σ2 ¼ 1.74 GeV2, and γ ¼ 0.626. Note
that above fit vanishes at the origin, instead of

diverging logarithmically, as happens with the fit
of Eq. (4.6).
Although the fits of Eqs. (4.6) and (4.10) differ

considerably when q < 300 MeV, their use into
Eq. (4.5) yields practically identical results for
B1ðxÞ, indicating that the details of the deep infrared
region are largely washed out in this particular
calculation. In fact, our numerical analysis confirms
the predominant impact of the region between
ð1–2Þ GeV, where the suppression of Lsgðq2Þ af-
fects decisively the behavior of B1ðxÞ.

(iv) The value of z̃3 is determined from the basic relation
given by Eq. (A6), which yields the numerical value
z̃3 ≈ 0.95, quoted in Eq. (A7).

(v) For the form factorsB1ðl2;r2;φÞ andB1ðk2;r2;π−θÞ
we interpolate the results forB1ðr2; p2; θ1Þ obtained in
Sec. III B [see Fig. 5].

Using the inputs described above, the B1ðr2Þ that
emerges as a solution of Eq. (4.5) is given by the blue
continuous curve in the left panel of Fig. 8, where it is
compared with the SUð3Þ lattice data of [32,119]. Although
the error bars are rather sizable, we clearly see that our
solution follows the general trend of the data. In particular,
notice that both peaks occur in the same intermediate
region of momenta.
The B1ðr2Þ may be accurately fitted with the functional

form

B1ðr2Þ ¼ 1þ r2ðaþ br2Þ
1þ cr2 þ dr4 ln ½ðr2 þ r20Þ=ρ2�

; ð4:11Þ

where the parameters are given by a ¼ 2.07 GeV−2,
b ¼ 9.85 GeV−4, c ¼ 22.3 GeV−2, d ¼ 56.4 GeV−4, r20 ¼
1.48 GeV2, and ρ2 ¼ 1.0 GeV2, and the χ2=d:o:f: ¼
1.0 × 10−6.
We next study the impact that the amount of “dressing”

carried by the various vertices has on B1ðr2Þ. To that end,
we solve Eq. (4.5) considering the three-gluon and ghost-
gluon vertices to be either at their tree-level values or
fully dressed. The results of the four cases considered are
displayed in the right panel of Fig. 8. The hierarchy
observed in this plot is completely consistent with the
known infrared properties of these two fundamental ver-
tices: at low momenta, the ghost-gluon vertex displays a
mild enhancement with respect to its tree-level value,
whereas the three-gluon vertex is considerably suppressed.
Based on this particular combination of facts, one would

expect that the solution with the maximal support will be
obtained from Eq. (4.5) when the ghost-gluon vertices are
dressed while the three-gluon vertex is kept bare (Lsg ¼ 1);
this is indeed what happens, as may be seen from the dot-
dashed green curve, which displays the most pronounced
peak. By the same logic, the reverse combination, namely
bare ghost-gluon vertices and dressed three-gluon vertex,
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FIG. 7. The lattice data for Lsgðq2Þ (circles) from [98], together
with the fits given by Eq. (4.6) (blue continuous curve) and
Eq. (4.10) (red dashed curve).
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should furnish the most suppressed B1ðr2Þ; evidently, this
is what we find, as shown by the purple dashed curve. The
remaining cases, where both vertices are bare, or fully
dressed, must lie between the two prior cases; this expect-
ation is clearly realized within the detailed numerical
analysis, as can be seen by the corresponding curves,
indicated by dotted red and continuous blue, respectively.
We conclude our numerical analysis with an instructive

self-consistency check. Specifically, as explained in item
(v) above, in order to solve Eq. (4.5) we have used as
external input the result for the ghost-gluon vertex for
general kinematics, derived in Sec. III B. But, as is clear
from Fig. 6, the input used to obtain the soft gluon limit
contains already a prediction of what that limit should be,
namely the red dot-dashed curve of B1ðr2; q2; 2π=3Þ,
shown in Fig. 6. Therefore, a reasonable indication of
the self-consistency of the entire procedure would be the
degree of coincidence between the latter 2D projection and
the result for B1ðr2Þ obtained from Eq. (4.5), namely the
blue continuous curve in either panel of Fig. 8.
The direct comparison between these two curves is

shown in Fig. 9, where an excellent coincidence may be
observed. Specifically, the maximum discrepancy, located
at about 2 GeV, is of the order of 2%. The proximity
between these results suggests an underlying consistency
between the various ingredients entering in the correspond-
ing calculations. Note, in particular, that the insertion of
lattice ingredients, such as the gluon propagator and the
Lsgðq2Þ, into the SDEs appears to be a completely con-
gruous operation.
Finally, it is rather instructive to compare the effective

strengths associated with the ghost-gluon and the three-
gluon interactions in the soft gluon configuration by means
of renormalization-group invariant quantities. To that
end, we consider the corresponding effective couplings,

to be denoted by αcgðq2Þ and α3gðq2Þ, defined as (see,
e.g., [61,72,120])

αcgðq2Þ ¼ αsðμ2ÞB2
1ðq2ÞF2ðq2ÞZðq2Þ;

α3gðq2Þ ¼ αsðμ2Þ½LT
sgðq2Þ�2Z3ðq2Þ; ð4:12Þ

where Zðq2Þ is the dressing of the gluon propagator,
defined in Eq. (2.1), while LT

sgðq2Þ is the lattice result of
[98] adjusted to the Taylor scheme, according to Eqs. (A4)
and (A7). Note that, by means of this latter adjustment,
all ingredients entering in the definitions of both effective
couplings are computed in the same renormalization
scheme, namely the Taylor scheme. In addition, according
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FIG. 9. Comparison of the soft gluon result obtained as solution
of Eq. (4.5) (blue continuous curve) with the one extracted from
the 3D plot shown in Fig. 6 (red dashed curve).
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FIG. 8. Left panel: the B1ðr2Þ obtained as solution of Eq. (4.5) (blue continuous) together with the lattice data (circles) from
[32,119]. Right panel: the numerical impact of dressing the vertices Lsgðq2Þ and B1ðl2; r2;φÞ½B1ðk2; r2; π − θÞ� on B1ðr2Þ,
determined from Eq. (4.5).
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to our SDE estimate (see Sec. III B), we have that
αsðμÞ ¼ 0.244, at μ ¼ 4.3 GeV.
The result of the evaluation of the two effective cou-

plings is shown in Fig. 10. The main feature, consistent
with a variety of previous studies [27,55,59,88,121,122], is
the considerable suppression displayed by α3gðq2Þ in the
region below 2 GeV.

V. CONCLUSIONS

In this work we have carried out a thorough study of the
dynamics related with the ghost sector of pure Yang-Mills
theories, incorporating into the standard SDEs pivotal
elements stemming from recent lattice studies. In fact,
these lattice results serve both as external inputs for some of
the quantities that are difficult to determine accurately
within the SDE framework, such as the gluon propagator
and certain components of the three-gluon vertex, as well as
refined benchmarks for testing the reliability of our
numerical solutions, such as the ghost dressing function.
Specifically, the lattice gluon propagator has been used as a
global input in all SDEs considered in the present study,
while, in the “soft gluon” SDE, the lattice data for the three-
gluon vertex in the same limit have been employed.
The main results of our analysis are succinctly captured

in Figs. 5 and 9. In particular, in the left panel of Fig. 5,
the ghost dressing function obtained as a solution of the
coupled SDE system is compared to the results of the lattice
simulation of [100]. It is important to appreciate that the
success of this comparison hinges on the optimization for
the cure of discretization artifacts, in connection to the
scale-setting and continuum extrapolation, imposed on this
set of lattice data. Indeed, the difference between the
latter lattice data and the (nonextrapolated) results of
[39], displayed in Fig. 12, is rather substantial, affecting
a phenomenologically important region of momenta.

This difference accounts almost entirely for the discrep-
ancies found in earlier studies [84,97,123], where the SDE
results were compared with the data of [39].
We next turn to Fig. 9, where the curves for B1ðr2Þ,

obtained following two distinct procedures, are compared.
The excellent agreement between both results suggests an
underlying self-consistency among the several elements
participating nontrivially in the computation of these
results. Particularly interesting in this context is the pivotal
role played by the three-gluon vertex, which appears in
both computations leading to the results of Fig. 9, albeit in
rather dissimilar kinematic arrangements. Specifically, to
obtain the result marked by the blue continuous curve, the
vertex was approximated by its classical tensor structure,
accompanied by the corresponding form factors in general
kinematics, as explained in Sec. III. Instead, the red dashed
curve is obtained through the direct use of the lattice results
in the soft gluon limit, according to the discussion in
Sec. IV. The coincidence between the results indicates that
the STI-based construction of [63], which gave rise to the
form factors used for the computation of the blue continu-
ous curve, is quite reliable. In that sense, it is rather
gratifying to see how well the dynamical equations respond
in this particular set of circumstances; in fact, the use
of lattice data as SDE inputs appears to be completely
consistent.
Note that the present study is fully compatible with the

assertion of [29,116] that the four-point function repre-
sented by the yellow ellipse in Fig. 3 is numerically rather
negligible. Evidently, the excellent agreement with the
lattice found in the left panel of Fig. 5 indicates that the
omission of the corresponding term from the skeleton
expansion of the SDE kernel does not introduce any
appreciable error. In fact, it is interesting to observe that
an entirely different conclusion about the importance of this
four-point function would have been drawn if the nonex-
trapolated lattice results of [39] had been used for the
comparison in Fig. 5. Specifically, any attempt to interpret
the difference alternatively as a consequence of the kernel
truncation would force this four-point function to acquire
considerably higher values than those found in the detailed
analysis of [29,116].
Finally, it would be interesting to extend the consid-

erations of Sec. IV to the case of the quark-gluon vertex,
whose SDE and corresponding skeleton expansion are
given by replacing in Figs. 2 and 3, respectively, all ghost
lines by quark lines. In particular, the soft gluon limit
of the quark-gluon vertex involves three form factors,
whose determination has attracted particular attention
over the years. In fact, up until very recently [124],
notable discrepancies existed between the continuous
predictions [6,74,125–131] and the results of lattice
simulations [132–138]. It is likely that the inclusion of
Lsg in the SDE treatment might shed further light on this
intricate problem.
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FIG. 10. The comparison of the effective couplings, αcgðq2Þ
(red continuous line) and α3gðq2Þ (blue dashed).
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APPENDIX A: TAYLOR AND SOFT GLUON
RENORMALIZATION SCHEMES

In this Appendix we review certain basic relations that are
necessary for the meaningful comparison of results obtained
within two special renormalization schemes, namely the
Taylor scheme [113] and the soft gluon scheme [98].
The general relations connecting bare and renormalized

quantities are given by

ΔRðq2Þ ¼ Z−1
A Δðq2Þ; Γν

Rðr; p; qÞ ¼ Z1Γνðr; p; qÞ;
FRðq2Þ ¼ Z−1

c Fðq2Þ; Γαμν
R ðq; r; pÞ ¼ Z3Γαμνðq; r; pÞ;

gR ¼ Z−1
g g; Z−1

g ¼ Z−1
1 Z1=2

A Zc ¼ Z−1
3 Z3=2

A ;

ðA1Þ

where ZA, Zc, Z1, Z3, and Zg are the corresponding
renormalization constants. In what follows we will reserve
this notation for the renormalization constants in the Taylor
scheme, while the corresponding constants in the soft gluon
scheme will carry a “tilde.”
Clearly, both schemes impose on propagators the typical

MOM condition, i.e.,

Δ−1
R ðμ2Þ ¼ μ2; FRðμ2Þ ¼ 1: ðA2Þ

The difference between the two schemes manifests itself
at the level of the renormalization conditions applied on
vertex form factors. The Taylor scheme is motivated by the
corresponding theorem [85], which states that the bare
ghost-gluon vertex reduces to tree level in the soft ghost
limit, p ¼ 0, i.e., Γνðr; 0;−rÞ ¼ rν. Since the bare
Γνðr; 0;−rÞ is finite, so is the corresponding renormaliza-
tion constant, Z1. Then, the Taylor scheme is defined by
imposing that the renormalized vertex also reduces to tree
level at p ¼ 0, i.e., Γν

Rðr; 0;−rÞ ¼ rν, implying through
Eq. (A1) that Z1 ¼ 1. At the level of the tensor decom-
position introduced in Eq. (2.5), this implies

Γν
Rðr; 0;−rÞ ¼ ½B1ðr; 0;−rÞ − B2ðr; 0;−rÞ�rν; ðA3Þ

from which follows that, in the Taylor scheme,
B1ðr; 0;−rÞ − B2ðr; 0;−rÞ ¼ 1. Note that this scheme does
not impose any condition on the individual B1 and B2; in
particular, B1ðμ2Þ ≠ 1, as may be clearly appreciated in
Fig. 8. Instead, by definition of the soft gluon scheme, the
Lsgðq2Þ determined on the lattice satisfies Lsgðμ2Þ ¼ 1 [98].
Thus, in order to self-consistently incorporate the lattice

results of [98] into the computation of B1ðr2Þ through
Eq. (4.5), we must relate the Lsgðq2Þ determined in the soft
gluon scheme with the corresponding quantity in the Taylor
scheme, to be denoted by LT

sgðq2Þ.
In general, the transition between two renormalization

schemes is implemented by means of finite renormalization
constants, which relate both the renormalized quantities as
well as the renormalization constants. In particular, Lsgðq2Þ
and LT

sgðq2Þ, as well as the renormalization constants Z3

and Z̃3, are related by a finite renormalization constant, z̃3,
according to [122]

Lsgðq2Þ ¼ z̃3LT
sgðq2Þ; z̃3 ¼

Z̃3

Z3

: ðA4Þ

Given that the unrenormalized (bare) gauge coupling is
identical in both schemes, and that ZA ¼ Z̃A, the relations
on the last line of Eq. (A1) yield

gR
g̃R

¼ Z̃g

Zg
¼ Z̃3

Z3

¼ z̃3; ðA5Þ

or, equivalently, in terms of the corresponding charges
one has

z̃3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
αsðμÞ
α̃sðμÞ

s
: ðA6Þ

Equation (A6) permits a nonperturbative estimate of z̃3,
given that reliable information on the values of both αsðμÞ
and α̃sðμÞ, at μ ¼ 4.3 GeV, is available. Specifically, the
value of αsðμÞ obtained from the analysis of Sec. III is
αsðμÞ ¼ 0.244, while in the lattice simulation that produced
the Lsgðq2Þ the value of the charge was determined to be
α̃sðμÞ ¼ 0.27. Consequently, from Eq. (A6) we obtain

z̃3 ≈ 0.95: ðA7Þ

APPENDIX B: LATTICE ARTIFACTS AND
SCALE SETTING

In this Appendix we discuss in detail the method
employed for curing the lattice data of the gluon and ghost
propagator from lattice artifacts, and elaborate on the
procedure leading to the appropriate setting of the scale.
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One of the relevant improvements in our current analysis
stems from the high quality of the quenched data we used
here for the gluon propagator. This relies on the following
three implementations: (i) a careful and efficacious treat-
ment removing discretization artifacts from our data (con-
tinuum extrapolation) [100], (ii) a cure from finite-size
effects (infinite volume extrapolation) which capitalizes on
the use of seven different volumes in physical units, and

(iii) a sensible combination of our data with those of [39]
for a better control of the systematic effects and increase of
statistics.

(i) The issue of the continuum extrapolation is handled
as in [100]. There, through an analysis of lattice
simulations with five different bare couplings
[β ¼ 6=g2ðaÞ ¼ 5.6, 5.7, 5.8, 5.9, and 6.0], it was
demonstrated that, for any two of them (say, β and β0),

ZLðq2; μ2; aðβÞÞ
ZLðq2; μ2; aðβ0ÞÞ

¼ 1þ a2ðβÞ
�
1 −

a2ðβ0Þ
a2ðβÞ

��
cðq2 − μ2Þ þ d

�
q½4�

q2
−
μ½4�

μ2

��
þ…; ðB1Þ

where ZL represents the MOM-scheme gluon dressing
function at fixed cutoff,

ZLðq2; μ2; aÞ ¼
Zðq2; aÞ
Zðμ2; aÞ ¼ ZRðq2; μ2Þ þOða2Þ: ðB2Þ

Zðq2; aÞ ¼ q2Δðq2; aÞ is the bare dressing introduced in
Eq. (2.1), q represents the gluon momentum, μ is the
subtraction point, and a denotes the lattice spacing. ZR in
Eq. (B2) stands for the renormalized dressing function after
removing the cutoff by extrapolation to the continuum
limit, a → 0. Note that the subtraction procedure alone,
without taking this limit, cannot prevent the answer from
exhibiting a residual dependence on a, captured by the
Oða2Þ in Eq. (B2). In addition, q½4� ≔

P
4
i¼1 q

4
i (the same

for μ) stands for the firstHð4Þ invariant of the extrapolation
that cures the hypercubic artifacts [139–142]; c and d
are dimensionless coefficients, and the ellipses indicate
corrections of order Oða4Þ, might they be Oð4Þ-invariant
contributions or those originating from higher Hð4Þ in-
variants (which can be properly neglected if a2q2 is
sufficiently small).
It is clear from Eq. (B1) that estimates from simulations

differing in their discretization deviate from each other by
corrections which depend on the differences of their lattice
spacings and, hence, can only coincide after continuum
extrapolation. This extrapolation is implemented in [100]
as follows: one first determines c and d by fitting the
results from all the simulations involved; next, one takes
aðβ0Þ → 0 ðβ0 → ∞Þ in Eq. (B1) and obtains from it
ZLðq2; μ2; 0Þ for each data from each simulation, identify-
ing the answer as the extrapolated value, ZRðq2; μ2Þ as

given in Eq. (B2). Following this procedure for all
simulations reported in Table I, we deliver the gluon
propagator data in the physical continuum limit, shown
in the left panel of Fig 4. The data clearly exhibit the
expected physical scaling over a wide range of momenta,
thus reinforcing the reliability of the entire method.
(ii) For the purpose of dealing with finite-size effects,

we have capitalized on the seven different volumes
(in physical units) obtained with the simulations
reported in Table I. Gluon propagators computed
from them, and extrapolated to the physical con-
tinuum limit, are seen to differ only at very low
momenta, where the data behave as

Δðq2; LÞ

¼ Δðq2;∞Þ
�
1þ

�
c1

LaðβÞ
�
expð−c2LaðβÞqÞ

�
:

ðB3Þ

In particular, specializing to zero momentum,
Eq. (B3) predicts a linear dependence of the finite
volume lattice results on 1=LaðβÞ, which, as shown
in the right panel of Fig. 11, is nicely displayed by
all our data. We can therefrom estimate for the
infinite volume zero-momentum gluon propagator:
Δð0;∞Þ ¼ 7.99ð5Þ GeV−2.

With this latter result in hand, we have applied
Eq. (B3) to our continuum limit and finite volume
datasets for all momenta q ≤ 0.5 GeV (above this
momentum, the impact of finite volume corrections
is plainly negligible). We have thus fitted the two
parameters, c1 ¼ 3.6 GeV−1, c2 ¼ 0.27, and com-
puted Δðq2;∞Þ for every lattice estimate of the
gluon propagator within the low momenta window.
In this way, we have produced the data depicted in
the left panel of Fig. 11 for q ≤ 0.5 GeV.

(iii) Finally, aiming at increased statistics and a better
control of the systematics, we would like to supple-
ment our results with those from large-volume

TABLE I. Seven setups employed in our analysis to deal with
finite volume artifacts (four of them were already exploited in
Ref. [100]). L stands for the lattice size in units of the lattice
spacing, aðβÞ.
β 5.6 5.6 5.7 5.8 5.8 5.9 5.9
L 48 52 40 32 48 30 64
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simulations (644, 724, and 804 lattice sites) at
β ¼ 5.7, taken from [39]. However, a complication
arises: we have used the scale-setting procedure, or
“calibration,” described in [100], which is different
from that applied in [39]; in addition, in [39] no
continuum extrapolation was carried out. This is an
important issue, because the calibration, imple-
mented by imposing that a given lattice observable
acquires its physical value, depends on the choice of
the observable. The latter was made abundantly clear
in [100] through the comparison of the ratios
aðβÞ=aðβ0Þ obtained by applying the scale-setting
methods based on Sommer’s parameter (heavy
quark potential) and on the Taylor coupling: they
differ from each other but converge when β → ∞
(continuum limit). In conclusion, results obtained
with different calibrations can coincide only after
taking the continuum extrapolation, and the devia-
tions between them (before this limit is taken) can be
thus interpreted as a discretization artifact.

All the above has been explicitly shown in [99,143,144],
where a simple but effective remedy for correcting these
deviations has been proposed: a scale resetting āðβÞ ¼
ð1þ δÞaðβÞ is to be applied to the nonextrapolated data
such that they match the extrapolated ones, thus recovering
the physical scaling. We therefore define [99]

ZRðq2; μ2Þ ¼ ZL

�
ā2ðβÞ
a2ðβÞ q

2;
ā2ðβÞ
a2ðβÞ μ

2; aðβÞ
�

¼ Zðð1þ δÞ2q2; aðβÞÞ
Zðð1þ δÞ2μ2; aðβÞÞ ; ðB4Þ

where a recalibration aðβÞ → āðβÞ is performed, such
that the scale setting for āðβÞ is assumed to rely on the
continuum gluon propagator, thereby implying that
c ¼ d ¼ 0. In practice, we adjust the parameter δ such
that the recalibrated gluon propagator data from [39] and
ours optimally agree in the entire range of available
momenta. We thus obtain δ ¼ 0.08 and are left with the
results displayed in the left panels of Figs. 4 and 11. The
agreement is excellent for all momenta roughly above
0.35 GeV, while below it is still acceptable. Importantly,
data obtained from applying both approaches exhibit the
same key feature: the derivative changes its sign around a
maximum located roughly at 0.15 GeV.
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FIG. 12. The lattice data for the ghost dressing function from
[100] (blue points and legend) compared with the corresponding
data of [39] (green points and black legend).
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FIG. 11. Left panel: lattice data for the gluon propagator, Δðq2Þ, obtained with the setups reported in Table I, after continuum and
infinite volume extrapolations, and subsequently combined with the data from [39] (blue legend) after implementing on them the scale
resetting procedure. The red continuous line represents the fit given by Eq. (B5). Right panel: zero-momentum lattice estimates of the
gluon propagator obtained from all the lattice simulations quoted in Table I. The solid line corresponds to a linear fit consistent with
Eq. (B3), specialized for q ¼ 0.
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These considerations allow us to exploit all data (includ-
ing those recalibrated from [39]) and show that they can be
fitted rather accurately over the entire range of momenta
(see left panel of Fig. 4) by the following functional form5

Δ−1ðq2Þ ¼ q2
�
1þ

�
κ1 −

κ2
1þ ðq2=κ24Þ2

�
ln

�
q2

μ2

��
þ Rðq2Þ − Rðμ2Þ; ðB5Þ

with

Rðq2Þ ¼ σ0 þ σ1q2

1þ ðq2=σ22Þ þ ðq2=σ24Þ2
; ðB6Þ

where the fitting parameters are κ1 ¼ 0.114, κ2 ¼ 0.0252,
κ24 ¼ 4.926 GeV2, σ0 ¼ −0.406 GeV2, σ1 ¼ −0.518,
σ22 ¼ 10.266 GeV2, and σ24 ¼ 4.631 GeV2.

For the ghost dressing function, which is not an input
but rather a benchmark for the numerical solution of the
corresponding SDE, we have considered the data of [100],
which have undergone the same extrapolation to the
physical continuum limit explained above. Their compari-
son with the data from [39] (without scale resetting),
shown by the green points in the Fig. 12, makes very
apparent the importance of the continuum limit. The
solution of the ghost SDE, while it misses the data at a
fixed cutoff, reproduces very well the behavior of extrapo-
lated ones, as shown in Fig. 5. The resulting dressing
function can be accurately fitted by the following func-
tional form

F−1ðp2Þ ¼ 1þ 9λF
16π

�
1þ ρ1

p2 þ ρ2

�
ln

�
p2 þ η2ðp2Þ
μ2 þ η2ðμ2Þ

�
;

ðB7Þ

with η2ðq2Þ given by Eq. (4.8) and the fitting parameters
fixed at the values λF ¼ 0.22, ρ1 ¼ 6.34 GeV2, ρ2 ¼
2.85 GeV2, η1 ¼ 0.107 GeV4, and η2 ¼ 11.2 GeV2.
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