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Featured Application: Sentinel-2 images were sensitive to change in the vegetation contained in
the pixel. The reduction in the NDVI values was proportional to the reduction in the vegetation,
following a linear relationship. The quantitative relationship obtained in this study is valuable
since a vineyard, once established, generally loses grapevines each year due to diseases, abiotic
stress, etc., so it is important to consider the effect of the missing vines in order to have a correct
estimation of the vineyard vigour.

Abstract: Remote Sensing (RS) allows the estimation of some important vineyard parameters.
There are several platforms for obtaining RS information. In this context, Sentinel satellites are a
valuable tool for RS since they provide free and regular images of the earth’s surface. However,
several problems regarding the low-resolution of the imagery arise when using this technology,
such as handling mixed pixels that include vegetation, soil and shadows. Under this condition, the
Normalized Difference Vegetation Index (NDVI) value in a particular pixel is an indicator of the
amount of vegetation (canopy area) rather than the NDVI from the canopy (as a vigour expression),
but its reliability varies depending on several factors, such as the presence of mixed pixels or the
effect of missing vines (a vineyard, once established, generally loses grapevines each year due to
diseases, abiotic stress, etc.). In this study, a vine removal simulation (greenhouse experiment) and
an actual vine removal (field experiment) were carried out. In the field experiment, the position
of the Sentinel-2 pixels was marked using high-precision GPS. Controlled removal of vines from a
block of cv. Cabernet Sauvignon was done in four steps. The removal of the vines was done during
the summer of 2019, matching with the start of the maximum vegetative growth. The Total Leaf
Area (TLA) of each pixel was calculated using destructive field measurements. The operations were
planned to have two satellite images available between each removal step. As a result, a strong
linear relationship (R2 = 0.986 and R2 = 0.72) was obtained between the TLA and NDVI reductions,
which quantitatively indicates the effect of the missing vines on the NDVI values.

Keywords: total leaf area; mixed pixels; Cabernet Sauvignon; NDVI; Normalized Difference
Vegetation Index; precision viticulture

1. Introduction

Remote sensing (RS) is a tool that allows information on distant objects to be obtained quickly and
accurately [1]. A practical way to use remote sensing in viticulture is by using vegetation indices (VIs)
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and its potential relies on their ability to estimate grape quality and yield using spectral information [2].
The VIs are algebraic combinations designed to highlight the contrast of plant vigour and its properties
(e.g., canopy biomass, absorbed radiation, chlorophyll content). These indices are based on the fact
that healthy plants show a high Near-InfraRed (NIR) reflectance and very low red reflectance [3,4].
The Normalized Difference Vegetation Index (NDVI) [5] has proved to be a useful indicator of the status
of the vineyard with several applications, such as for sub-block management [6–12] and estimating the
leaf area index, (LAI and can correlate with certain parameters such as total anthocyanins, total phenols,
soil moisture, clay and sand content, berry pH, soluble solids, vine size and yield components [13–15].
NDVI has also been useful for establishing a correlation between Photosynthetically Active Biomass
(PAB) and total phenolics and colour [16], assessing the water status spatial variability within the
vineyard [17] and monitoring quality characteristics in table grapes [18]. Furthermore, within-field
NDVI patterns are quite stable between seasons [19].

In RS, a key parameter to choose is the platform on which the sensor is mounted. At present,
unmanned aerial vehicle (UAV) platforms have been extensively used for studying and exploring
vineyards [20–25]. In general, UAV offers the possibility to obtain high-resolution multispectral imagery,
however, the benefit of the high resolution is restricted by some UAV limitations, such as stability
on windy days/areas, as well as piloting capabilities and global navigation satellite system/inertial
navigation system (GNNS/INA) quality [26,27]. Also, regulations established in most countries might
be a problem for properly developing the capabilities of UAVs [28]. Another issue is the cost of each
operation, and above a certain scale size, an image taken by satellite may be more convenient than
others [29]. In this context, satellites can be used for several applications, for example, mapping
vineyard plant and soil water status [30], harvest prediction [31] and to analyse the spatial heterogeneity
in the evapotranspiration [32]. Modern image satellite analysis allows the combining of information
from different sensors mounted on different satellites in order to improve spatial resolution [33,34],
even in the presence of clouds [35], although it should be noted that not all sensors provide the same
information. There are several satellites which are used to obtain spatial information and they can be
divided into two main groups depending on the cost of the images: free-to-use satellites and paid
satellites. Regarding free-to-use satellites, Landsat and Sentinel satellites can be very useful and they
have been used for applications as disparate as detecting motions before a landslide [36], ice flow
measurements and the quantification of seasonal ice velocities [37], to assess the bloom dynamics of
almond orchards [38] and to classify vineyards according to their vigour [39,40]. Some authors [41]
have discussed the differences in the information collected from the Sentinel-2A MSI sensor and the
Landsat-8 OLI sensor. They found that the MSI surface reflectance was greater than the OLI surface
reflectance in almost all bands and that the MSI surface NDVI was greater than the OLI surface
NDVI. In this sense, Sentinel-2 satellites (Copernicus Project of the European Space Agency) can
be particularly useful due to their free status and the relative ease of access to their web platform
(https://scihub.copernicus.eu/). In addition, Sentinel-2 imagery has a spatial resolution of 10 m on
the pixel side and a temporal resolution of 10 days; 5 days if we combine the images from the two
existing satellites currently in the constellation. Sentinel-2 provides multiple bands from which to
obtain information, including the Near-InfraRed (NIR) and the Red, which allow the calculation of the
NDVI [42].

Remotely sensed images can be classified into two groups [43] according to their spatial resolution:
(i) low-spatial-resolution imagery, in which the majority of pixels contain reflectance information
from the grapevines and the inter-row space, and (ii) high-spatial-resolution imagery, in which the
majority of pixels contain information only from grapevines or only from inter-row space. Therefore,
when using low-resolution imagery, the NDVI value of the pixel is an indicator of the amount of
vegetation (canopy area) rather than the NDVI from the canopy of the vines (pure value without
the influence of the background). In this context, the main limitation of Sentinel-2 is that the spatial
resolution and within-block information could not be accurate in the case of small blocks or blocks with
complex borders [44]. This is a widespread problem in satellite imagery because within a vineyard
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pixel there are plants, soil and shadows, which influence the correct calculation of the coefficients
of the crop [45]. More precisely, the NDVI obtained by the satellite and the LAI measured with a
photographic ground-truth method can be related [46] and the images from the Worldview-2 satellite,
with a resolution of 0.5 to 2 m2, can be used to indicate that the amount of vegetation contained
in a pixel varies according to its size. Therefore, with 0.5 m2 it will be possible to find pixels with
100% vegetation, however, with 2m2 there will only be mixed pixels of vegetation and soil. Instead
of Worldview-2, Sentinel-2 can be used, but this will lead to a much greater problem, since, instead
of a 2m2 resolution, Sentinel-2 will have a resolution of 100m2, so all the pixels will be mixed and
will contain several plants as well as soil and shadows. It is important to note that soils have a great
influence on the calculation of the NDVI [47] and that the average NDVI values for vines can be up to
3 times larger than the average NDVI values for pure soil [48]. Some authors [49] have established that
pixels with an NDVI lower than 0.6 should be removed because they are not vegetation. Shadows
are mainly influenced by the distance between plants and rows, but also by the characteristics of the
plants [50]. Thus, in the same lighting, more vegetation will imply more shadow, an important factor
since shaded pixels have low reflectance and modify the values we would expect if there were only
vegetation and soil. Several authors have tried to solve this problem, trying to correct the shading in
UAV and satellite images [51–55]. Additionally, NDVI can be greatly influenced by viticulture practices
(e.g., canopy management and irrigation), so these practices should be considered [56].

Considering the inherent mixed-pixel characteristic of Sentinel-2 imagery in vineyards and the
effect of missing vines (a vineyard, once established, generally loses grapevines each year due to
diseases, abiotic stress, etc.), the objective of the present study was to analyse the effect of missing vines
on mixed pixels using the NDVI as a reference index (NDVI = (NIR − Red)/(NIR + Red)). Our approach
was to work with real measurements of vegetation reductions at pixel level evaluated by Sentinel-2
satellites, in order to understand the relationship between the vegetation contained in a pixel and
the information captured by the satellite. To this end, two related experiments were performed: (i) a
simulation under control conditions (greenhouse experiment) and (ii) a field experiment implementing
a progressive vine removal protocol in four steps to check the sensitivity of the satellite images to the
loss of vegetative mass within the study area.

2. Materials and Methods

2.1. Greenhouse Experiment

To test the concept of the NDVI reduction, a vine removal simulation was done under control
conditions in a greenhouse using pot-grown cv. Cabernet Sauvignon grapevines (Department of
Viticulture and Oenology, Stellenbosch University, South Africa). In order to carry out the progressive
removal simulation, 12 one-year-old vines were selected and maintained in a greenhouse under natural
light at 26 ◦C and 65% humidity.

The vines were located in two rows to simulate a Vertical Shoot Positioned (VSP) trellis system
with a distance between rows of 55 cm and a distance between vines of 27.5 cm. Three random vines
were removed each time until all vines in the simulated pixel area were removed.

A multispectral camera (Sequoia, Parrot SA, Paris, France) was used to capture images in each
step of the removal simulation. The Sequoia camera has four 1.2-megapixel monochrome sensors
which collect global shutter imagery along four discrete spectral bands: Green (550 nm), Red (660 nm),
Red-Edge (735 nm) and Near-Infrared (NIR) (790 nm); a standard RGB camera and a sunshine sensor
that continuously captures the light conditions in the same spectral bands as the multispectral sensor.
The pipeline of the image analysis is shown in Figure 1. Since the satellite images are mixed pixels, a
single pixel was simulated to encompass both the soil and plants.
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Figure 1. Pipeline of (a) greenhouse image analysis (b) field experiment image analysis. NDVI:
Normalized Difference Vegetation Index. TLA: Total Leaf Area.

2.2. Field Experiment

Subsequently, a large-scale field experiment was carried out on a vineyard (cv. Cabernet
Sauvignon), located in Zamadueñas Estate (coordinates: 41.7013◦ N, 4.7088◦ W, Valladolid, Spain),
belonging to the Agricultural Technology Institute of Castilla y León (ITACyL). The vineyard was
trellis-trained, with a bilateral Royat cordon pruning system, with eight spurs per plant and two buds
per thumb, with 2.2 × 1.2 m row and plant-spacing, respectively, and NE-SO orientation. The soil
was kept free of weeds and any other element that could affect the NDVI [56]. The vineyard was not
irrigated, although in previous years it had been irrigated. The accumulated rainfall from 1 January to
31 July 2019 was 133.12 mm.

During the months of June and July 2019, a progressive vine removal experiment was developed
in four phases (Figure 2). Three Sentinel-2 pixels (10 × 10 m) were selected within the vineyard, with
38 grapevines inside each pixel. In each phase, a quarter of the vegetative mass of each pixel was
eliminated and the last to be removed equated to the elimination of the remnant vegetation. Each
grapevine was cut in the lower-middle part of the trunk (Figure 3a,b) and all the material was extracted
from the vineyard. A GPS Triumph-2 JAVAD GNSS model with centimetre accuracy was used to mark
the pixels in the field to ensure that the grapevines within the studied area (Figure 3c) were removed.
The GPS TRIUMPH-2 (JAVAD GNSS INC, San Jose, CA, USA) has 216 channels of dual-frequency GPS
and GLONASS and can connect via Bluetooth and WiFi to a mobile phone to access the local GNSS
Reference Station Network. A work schedule was established in order to obtain two Sentinel-2 images
between each removal, one for each satellite.
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Figure 2. Schematic representation of the four-step vine removal implemented in the field experiment.

The dates of the removal of the vines were 28 June, 8 July, 19 July and 29 July 2019. The experiment
was carried out at this specific time due to the proximity of veraison, since at this phenological stage
the relationship between leaf area and NDVI is greater [41]. To calculate the Total Leaf Area (TLA), the
area of each leaf of the removed plants was measured in the laboratory (Figure 3d) using Easy Leaf
Area application [57]. Easy Leaf Area measures leaf area non-destructively, calculated automatically
from green leaf and red scale areas. This procedure was performed each time the vines were removed.

Regarding the spatial information, free-cloud atmospherically corrected images were downloaded
(between 11 June 2019 and 20 August 2019) from the European Space Agency (ESA) Copernicus
Project website. NDVI was calculated for each step using a customized code in R v.3.6.2. (Figure 1b)
from the Sentinel-2 satellite images corresponding to the T30TUM tile. Sentinel 2A and 2B were
used in combination to minimize variations in sensors, satellite orbit, pixel misregistration, clouds
and radiometry. Images corresponding to the two satellites were downloaded and the values of the
available free-cloud images were averaged between each vine removal.

All image and data analyses were carried out using customized codes written in an R statistical
program (version 3.6X, R Foundation for Statistical Computing (R Core Team 2019), https://www.
R-project.org/, Vienna, Austria) and MATLAB (Version R2019b, The MathWorks Inc., http://www.
mathworks.com, Natick, MA, USA). A t-test for independent samples was performed in R for the
statistical comparison of each removal step.
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0.3104x), showing that for each 20% of reduction in the TLA, the NDVI is reduced by around 7%, 
similar to the greenhouse experiment result. Moreover, if the dataset is disaggregated by pixel (Figure 
6b), the determination coefficients are 0.92, 0.68 and 0.99 for pixels 1, 2 and 3, respectively. 

Figure 3. (a) Removal of the vines; (b) Detail of the removed vines; (c) Marked pixels in the vineyard
and (d) Example of the leaf area measurements using the Easy Leaf Area application.

3. Results

3.1. Greenhouse Experiment

The greenhouse simulation (Figure 4) showed a clear relationship (R2 = 0.986) between the
reduction of NDVI and TLA. The NDVI values are the simulated mixed pixel values. When the vines
were removed from the simulated mixed pixel (around 2 m2), the NDVI values decreased linearly until
reaching the base soil values (defined in this case as NDVI = 0.20). The slope of the linear equation is
0.3 (y = 0.3x), so for each 20% of reduction in the TLA, the reduction in NDVI is around 6%.
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Figure 4. (a) Example of the mask used to isolate the vines; (b) The relationship between them.
Normalized Difference Vegetation Index (NDVI) reduction (%) and Total Leaf Area (TLA) reduction
(%) as pixel-based.

3.2. Field Experiment

A reduction in the NDVI value is observed after each vine removal until it reaches the base soil
values (NDVI values between 0.17 to 0.19), except in pixel 1 (Figure 5). The starting NDVI values, which
correspond to the maximum vine cover, were 0.251, 0.321 and 0.306, for pixels 1, 2 and 3, respectively.
In Figure 6a all values from all of the pixels from the dataset were used and a linear relationship was
found between the reduction in NDVI and TLA (R2 = 0.72) with a slope of 0.32 (y = 0.3104x), showing
that for each 20% of reduction in the TLA, the NDVI is reduced by around 7%, similar to the greenhouse
experiment result. Moreover, if the dataset is disaggregated by pixel (Figure 6b), the determination
coefficients are 0.92, 0.68 and 0.99 for pixels 1, 2 and 3, respectively.
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Figure 6. Relationship between NDVI (%) and TLA reduction (%) (a) in all pixels (b) per pixel.

The p-values for the comparison of each pair of removal steps are shown in Table 1. As expected,
all removal steps had significant differences in TLA. However, concerning NDVI, only a few pairs of
treatments had significant differences and in no case between two consecutive steps, which indicate a
low sensitivity of the index to small changes in the vegetation amount.

Table 1. p-values from the t-test comparison of Normalized Difference Vegetation Index (NDVI) and
total leaf area (TLA) in the field experiment.

TLA

Step0 Step1 Step2 Step3 Step4

NDVI

Step0 0.018 0.003 0.001 0.001
Step1 0.396 0.002 0.001 0.001
Step2 0.120 0.148 0.001 0.001
Step3 0.039 0.045 0.113 0.002
Step4 0.013 0.011 0.005 0.079

Grey colour denotes p-values 0.05. Diagonal values were excluded and marked in black.
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4. Discussion

This study has approached the mixed pixel effect in two different ways: a laboratory approach
(greenhouse) and a full-scale approach with a field experiment. Two experiments presented consistent
results, showing the same pattern of NDVI reduction. The gradual reduction in NDVI showed in
Figure 5b is expected because the leaf area within the pixel is reduced and NDVI is sensitive to changes
in the vegetation [15]. There is an inconsistency in the pixel 1 trend, probably because the vegetation of
the adjacent vines was moved and therefore the horizontal leaf area exposed to the satellite increased,
although it could also be due to a variation in the reflectivity collected by the Sentinel in that specific
image, since, if an analysis is performed using the image of 6/7/2019 corresponding to the Sentinel-2B
satellite, an increase in NDVI can be observed in all the pixels of the tile. The influence of humidity in
the soil is disregarded [58] since there was no significant rainfall in the period.

In the field experiment, initial NDVI values were between 0.25 and 0.32 with final values between
0.17 and 0.19. The starting NDVI values correspond to the maximum vine cover and indicate a different
level of vigour in the selected pixels (Figure 5b). The final NDVI values correspond to bare soil and
are consistent with the results of other authors [47]. It has been observed that the reduction in the
NDVI value is proportional to the loss of TLA, finding that in the greenhouse experiment and the
field experiment the slopes of the regression line were very similar. Therefore, if the vegetation within
the pixel is reduced by 20%, the NDVI will be reduced proportionally by 6–7%. This also indicates
that, considering the components of a mixed pixel [46], the vegetation and the associated shade effect
30–35%, so the remaining value is being influenced by the soil. These results are similar to the values
reported by other authors [48], which indicate that the effect of the soil can be up to 3 times that of
the vegetation.

If the field dataset is disaggregated per pixel, the difference between pixels is clearly observed
(Figure 6b). This could be due to differences in vigour within the vineyard, since the vigour of the
vineyard is related to the NDVI values [39,40]. Another important aspect to consider is the orientation
of the row regarding the position of the Sentinel-2 pixels. The orientation combined with the space
between rows creates an irregular grid effect. Therefore, if the orientation is not perfectly aligned with
the pixel position, the number of vines per pixel is irregular. In our case, this effect was clear, with
values of 38, 37 and 39 vines for the pixels 1, 2 and 3, respectively.

The trend lines presented in the results have very high R2 values, however, these lines were just
made in order to observe the trend and to highlight the relationship that has been shown, not to
establish a model, since they are strongly influenced by the extreme values (0% and 100% of reduction),
and it would be desirable to have a greater amount of data to develop a model. It is also important
to note that there may be misregistration of pixels, which are improved regularly by updating the
Processing Baseline, so in future studies the algorithm might be ameliorated, allowing more accuracy
in the process [59].

Looking at the results of the t-test, although the TLA was significantly reduced between each
removal step, the differences in the NDVI were not significant until the amount of vegetation was
reduced with two removal steps. For example, there are differences between the first and the last
removal, and between the second and the last, but there is no difference between the third and the
fourth. This indicates that, although the NDVI is affected by the reduction of TLA, it is not overly
sensitive to small reductions in the vegetation amount.

5. Conclusions

In this study, a relationship between the Total Leaf Area (TLA) and the Normalized Difference
Vegetation Index (NDVI) was developed to analyse the effect of missing vines on NDVI values at
pixel level (10 × 10 m). This study has demonstrated that it is possible to estimate quantitatively the
impact that the decrease in vegetation in a vineyard has on the NDVI values. Our results show that it is
possible to use the NDVI calculated from the Sentinel-2 images to identify the change in the vegetation
in the pixel. Furthermore, it is worth noting that the reduction in the NDVI values is proportional to
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the reduction in the vegetation, following a linear relationship. The quantitative relationship obtained
in this study is valuable since a vineyard, once established, generally loses grapevines each year due to
diseases, abiotic stress, etc., so it is worth analysing the effect of the missing vines in order to have a
clear understanding of the vineyard vigour.

The field experiment was conducted in a vineyard with a vertical trellis and this system has
become a standard in today’s viticulture. Moreover, in this work, the results of the two experiments are
very similar, since the greenhouse experiment simulated the same row and plant distance as the field
experiment, so the results obtained in this study could be used as a reference for vineyards with similar
trellis characteristics (distance between rows and vines). However, it might be worthwhile to check
whether this result can be extrapolated to other trellis systems or vineyards with different canopy or
soil management practices, analysing the influence of the elimination of vegetation in vineyards with
different soils and different characteristics. Further research would be desirable in this direction.

In further studies, it might be interesting to explore the possibility of removing a specific area
of vines within a vineyard to calibrate the entire vineyard and use this technique to calibrate the
background adjustment factor (L) of vegetation indexes such as SAVI, or even develop new indexes
that take into account parameters related to the canopy, such as the influence of shadows or the linear
meters of vertical trellis contained in each pixel.

Although the results are clear and promising, the limitations of this study should be considered
due to the complexity and effort involved in an operation of this type in a vineyard. Operations on a
larger scale are desirable in order to cover a greater number of pixels and vines to obtain more robust
results covering different vineyard conditions.
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