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Summary

The insulin signalling cascade is one of the most important regulatory and signalling

pathways in humans. Dysregulation or dysfunction of the insulin signalling path-

ways often underlies the molecular ætiology of diseases such as diabetes, obesity, and

Alzheimer’s. In turn, these diseases are the harbingers of various co-morbidities such

as cardio-vascular disease, chronic inflammation, and dementia. The healthcare, eco-

nomic, personal, and mortality burden of these diseases cannot be overstated.

Mathematical modelling of insulin signalling is indispensable in the effort to un-

derstand the dynamics of the insulin signalling cascade and how malfunctions therein

lead to disease. However, despite the availability and complexity of existing models,

few have explicitly connected the signalling cascade, glucose transporter activity, and

metabolism with one another. In order to study these interactions, a ‘three-module’

approach was adopted that defined the signalling cascade, glucose transporter activ-

ity, and metabolism as core, ‘input-output’ modules. The present work is limited to

the signalling cascade and glucose transporter activity modules whereas work by Dr.

Cobus van Dyk is concerned with the metabolic module.

With this in mind, this thesis sets forth three aims. Firstly, to establish standard-

ised culturing conditions which can be used to determine the basal state of insulin

signalling and glucose transporter activity. Secondly, to develop a core, mathemati-

cal model based on Western blotting and radio-labelled glucose -assay data which is

able to describe the concentration- and time-dependence of the signalling cascade and

glucose transporter activity in response to insulin. Thirdly, to determine the clustering

behaviour of GFP-tagged GLUT4 molecules in response to insulin.

The first goal was to standardise culturing conditions. Herein, the ability of high

xii
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(25mM), medium (15mM), and low (5mM) glucose culturing conditions were evalu-

ated with regards to their ability to sensitise or desensitise the insulin signalling cascade

as well as the degree to which they are able to induce the differentiation of C2C12 my-

oblasts into myocytes. The glucose and lactate concentrations in the external media

were used to determine the glucose-lactate flux of the C2C12 cells. This served as

a proxy for the induction of insulin-dependent glucose transport and metabolism. A

modified Ladd staining protocol was used to assess the degree to which C2C12 cells

could differentiate under the culturing protocols.

The second goal was to construct a core, mathematical model of insulin signalling

and glucose transporter activity. The time-dependent phosphorylation and dephos-

phorylation of the insulin receptor and the serine 473 and threonine 308 sites of Akt

in response to varying insulin concentrations was investigated using Western blotting

techniques. The glucose transporter (GLUT4) activity was assayed using radio-carbon

glucose. The data were used to optimise parameters for a core, ODE-based model of

the signalling and glucose transporter modules.

The third goal, to investigate the clustering behaviour of GLUT4 in response to

insulin, was investigated by using confocal microscopy to image GFP-tagged GLUT4

molecules before and after being stimulated with insulin. A hierarchical clustering

algorithm as well as further geometric and statistical analyses were used to determine

the number, size, density, and distribution of GLUT4 clusters pre and post insulin

exposure.

Of the remaining chapters, Chapter 1 discusses the background, context, scope,

and aims of this study as well as further elaborating on the ‘three module’ approach.

The literature review in Chapter 2 provides an overview of the relevant literature as

delineated by the scope and aims of this study. The materials and methods are provided

in Chapter 3, with specific alterations or methodologies being further discussed in the

relevant experimental chapters. The final chapter, Chapter 7, provides the reader with

general discussions, limitations, and final thoughts concerning this work.

xiii

Stellenbosch University  https://scholar.sun.ac.za



Opsomming

Die insulien seinkaskade is een van die belangrikste regulerings- en sein padweë in

mense. Disregulering of disfunksie van die insulien sinweë is dikwels onderliggend

aan die molekulêre etiologie van siektes soos diabetes, vetsug en Alzheimers. Verder is

hierdie siektes die draers van verskillende ko-morbiditeite soos hartvatsiektes, chroniese

ontsteking, demensie en ander. Die gesondheids, ekonomiese, persoonlike en sterftes-

las van hierdie siektes kan nie oorskat word nie.

Wiskundige modellering van insulien seinweë is onontbeerlik in die poging om

die dinamika van die insulien seinkaskade te verstaan en hoe wanfunksies daarin tot

siektes lei. Ondanks die beskikbaarheid en ingewikkeldheid van die bestaande mod-

elle, het min die seinkaskade, glukose-vervoerderaktiwiteit en metabolisme egter ek-

splisiet met mekaar verbind. Ten einde hierdie interaksies te bestudeer, is ‘n ‘drie-

module’-benadering aangewend wat die seinkaskade, glukose-vervoerderaktiwiteit en

metabolisme as kernmodules as ‘n ’inset-uitset’ model gedefinieer het. Die huidige

werk is beperk tot die seinkaskade en glukose-vervoerdersaktiwiteitsmodules, terwyl

werk deur dr. Cobus van Dyk gemoeid is met die metaboliese module.

Met die oog hierop stel hierdie proefskrif drie doelstellings. Eerstens, om ges-

tandaardiseerde kweektoestande vas te stel wat gebruik kan word om die basale toe-

stand van insulien seine en glukose-vervoerderaktiwiteit te bepaal. Tweedens, om

‘nkern, wiskundige model te ontwikkel gebaseer op Westerse klad-tegnieke en radio-

toetsdata, wat die konsentrasie en tydafhanklikheid van die seinkaskade en glukosever-

voerder kan beskryf as ‘n gevolg van insulien blootstelling. Derdens, om die groeper-

ingsgedrag van GFP-gemerkte GLUT4-molekules in reaksie op insulien te bepaal.

Die eerste doelwit, met betrekking tot gestandaardiseerde kweektoestande, word

xiv
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aangebied in hoofstuk 4. Hierin is die vermoë van hoë (25mM), medium (15mM)

en lae (5mM) kweektoestande geëvalueer met betrekking tot hul kapasiteit om die

insulien seinkaskade te sensitiseer of te desensitiseer, asook die mate waarin hulle

die differensiasie van C2C12-myoblaste in miosiete kan veroorsaak. Die skynbare

glukose-laktaatvloei in die eksterne media dien as ‘n gevolmagtigde maatstaf vir die

induksie van insulienafhanklike glukosevervoer en metabolisme. ‘n Gemodifiseerde

LADD-kleuringprotokol is gebruik om die mate waarin C2C12-selle kan onderskei te

bepaal.

Die tweede doelwit, om ‘n kern, wiskundige model van insulien seinweë en die

glukosevervoerder aktiwiteit te konstrueer, word in hoofstuk 5 nagestreef. Die fos-

forilering en ontfosforylering van die insulienreseptor en die serien 473 en treonien

308-posisies van die intermediêre seinmolekule (Akt) in reaksie op wisselende in-

sulienkonsentrasies, sowel as tyd, is met behulp van Westerse klad-tegnieke onder-

soek. Die glukose-vervoerder (GLUT4) -aktiwiteit is met behulp van radio-koolstof

glukose ondersoek. Die data is gebruik om parameters te optimaliseer vir ‘n kern-

GDV-gebaseerde model van die sein en glukose-vervoermodules.

Die derde doelwit, wat die groeperingsgedrag van GLUT4 in reaksie op insulien

ondersoek het, word in hoofstuk 6 aangebied. Konfokale mikroskopie is gebruik

om GFP-gemerkte GLUT4-molekules wat sonder en met insulien gestimuleer is te

analiseer. ‘n Hiërargiese groeperingsalgoritme sowel as verdere meetkundige en statistiese

ontledings is gebruik om die aantal, grootte, digtheid en verspreiding van GLUT4-

groepe voor en na insulienblootstelling te bepaal.

Van die hoofstukke wat nog nie hier bespreek is nie, bied hoofstuk 1 die agter-

grond, konteks, omvang en doelstellings van hierdie studie, asook die uitwerking van

die ‘drie module’-benadering. Terwyl die literatuuroorsig in hoofstuk 2 bied ‘n onder-

soek van die relevante literatuur soos uiteengesit in die omvang en doelstellings van

hierdie studie. Die materiaale en metodes word in hoofstuk 3 verskaf, met spesifieke

wysigings of metodologieë wat in die betrokke eksperimentele hoofstukke verder be-

spreek word. Die finale hoofstuk, hoofstuk 7, sal die leser voorsien met algemene

besprekings, beperkings en afsluitende gedagtes rakende hierdie werk.
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Terminology

Akt: AKR Mouse thymoma / Protein Kinase B

A: Ampere

ATP: Adenosine Triphosphate

BSA: Bovine Serum Albumin

Ci: Curie

DMEM: Dulbecco’s Modified Eagle Medium

DMSO: Dimethyl Sulfoxide

DNA: Deoxyribonucleic Acid

DTT: 1 4 Dithiothreitol

EDTA: Ethylenediaminetetraacetic acid

ES: Equine Serum

FBA: Flux Balance Analysis

FBS: Foetal Bovine Serum

g: gram

G6PDH: Glucose-6-Phosphate Dehydrogenase

GSV: Glucose Storage Vesicles

GTT: Glucose Tolerance Test

HXK: Hexokinase (EC 2.7.1.1)

IR: Insulin Receptor

IRS: Insulin Receptor Substrate

L: Liter

LDH: L-Lactate Dehydrogenase (EC 1.1.1.27)

LG: Low Glucose
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LN2: Liquid Nitrogen

m: milli: 10−3

MCA: Metabolic Control Analysis

mTORC1: Mammalian Target of Rapamycin Complex 1

NAD+: β-Nicotinamide Dinucleotide (oxidised)

NADP+: β-Nicotinamide Dinucleotide Phosphate (oxidised)

PBS: Phosphate Buffered Saline

PET: Polyethylene

RIPA: Radio-immunoprecipitation Assay

RNA: Ribonucleic Acid

RT: Room Temperature (25◦C)

RTK: Receptor Tyrosine Kinase

SDS: Sodium Dodecyl Sulfate

SkMC: skeletal muscle cell

T2D: Type 2 Diabetes

TCE: Trichloroethylene

µ: micro: 10−6

V: Volt
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Chapter 1

Introduction

Conditions resembling diabetes are described at various points in history - spanning al-

most 3000 years [1]. Serious academic study of these conditions began in the 16th cen-

tury when the Swiss physician Paracelsus first discovered crystalline glucose residue

upon evaporating the urine of patients with ‘irritated kidneys’ [2]. The distinction be-

tween Type 1 and Type 2 diabetes was formally clarified in the latter half of the 1700s

by Matthew Dobson [2]. Type 1 diabetes is an auto-immune disease that destroys the

insulin producing β-cells in the pancreas [3]. Type 2 diabetes (T2D) is a lifestyle dis-

ease. Persistent exposure to insulin steadily desensitises the cellular response to insulin

until the organism becomes insulin resistant [4, 5]. Insulin was discovered in the first

quarter of the 20th century and first used to treat type 1 diabetes in the early 1920s [6].

The successful treatment of comatose diabetics by insulin formally cemented its role

as one of the crucial elements in the ætiology of type 1 and 2 diabetes [7].

Despite centuries of study, diabetes - specifically type 2 diabetes - remains one of

the fastest growing lifestyle diseases globally [8]. It is estimated that nearly 10% of

the global population will be affected by type 2 diabetes by 2045 [9]. However, since

the burden of this disease is increasingly shifting to lower- and middle-income regions

of the world, the true number may be greater as nearly half of the diabetics in these

countries remain undiagnosed [10].

The most-common preventatives or curatives for type 2 diabetes (henceforth T2D)

involve changes in lifestyle. However, three of the greatest risk-factors for T2D -

1
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1.1. Insulin Signalling: A Three-Module Approach

excessive sugar consumption [11], sedentary lifestyles [12], and stress [13, 14] - have

become ingrained in a plurality of modern lifestyles. Changing them is often a task that

many are unwilling or unable to tackle. Moreover, the rate at which these factors are

affecting people, predominantly in modernising economies, is on the rise [8]. These

data, combined with a near-global inertia to change, are especially concerning in the

light of the healthcare [15], economic [16], and mortality [17, 18] burdens imposed by

the increasing prevalence of T2D.

The failures of ‘top-down’ interventions which focus on better nutrition, more exer-

cise, and less stress have increased interest in ‘bottom-up’ solutions that rely on a keen

understanding of the molecular mechanisms that lead to T2D. Skeletal musculature

accounts for 70 - 90% of mammalian post-prandial glucose clearance [19]. Further,

skeletal muscle is predominant in regulating glucose homeostasis [20]. It therefore

seemed a prudent point of initiation for this study.

1.1 Insulin Signalling: A Three-Module Approach

The canonical insulin signalling cascade is initiated when insulin binds the insulin

receptor (IRS) [21]. This instantiates a phosphorylation cascade among multiple in-

termediate proteins which reaches Akt (previously known as protein kinase B) [22].

Once Akt has been phosphorylated, along with AS160, it sets in motion the trans-

port and eventual fusion of the GLUT4 glucose transporter to the plasma membrane

[23, 24]. Consequently, exposure to insulin increases the concentration of GLUT4 at

the plasma membrane which in turn increases the glucose influx into the cell [25, 26].

The insulin signalling pathway consists of several dozen proteins [21], each of

which interacts with various downstream and upstream proteins. Additional complex-

ity is layered onto this by one of the primary regulatory mechanisms of this pathway

- differential phosphorylation on specific amino acids (primarily serine, threonine, or

tyrosine) of several proteins within the cascade [21]. Lastly, certain proteins - such as

the insulin receptor - can be phosphorylated at multiple amino acid residues simulta-

neously [27].

2
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1.1. Insulin Signalling: A Three-Module Approach

The present work shall attempt to model insulin signalling, glucose transporter

(GLUT4) activity, and glucose metabolism pathways as three distinct modules in an

effort to manage the complexity of these pathways. The goal is not to create a highly-

detailed model or one which can explain the specific dynamics of all the individual

elements in the insulin signalling pathway. Rather, the minimal modelling approach

in this work seeks to link three modules in the insulin signalling cascade; an insulin

signalling module, a glucose transporter module, and a glucose metabolism module.

These modules will be simplified into an ‘input-output’ ODE-based model which links

the main components - the insulin receptor, Akt, and GLUT4 - at the subcellular level.

Smaller, albeit more limited, models such as this one can be more easily parameterised

with a limited data set. Consequently, this model will be parameterised using direct

experimental evidence. This focus on a smaller model and experimental scope signifi-

cantly simplifies experimental and modelling considerations. This work would provide

a platform which future models could expand on a similar basis as one could develop

purpose-built minimal models for each module that could conceivably be integrated

into a single, larger model.

Consequently, the decision was made to focus on ‘nodes’ (components) in insulin

signalling which represent the signalling pathway, the glucose transporter, and glucose

metabolism. A representation of the components that are involved in transmitting the

insulinic signal from the insulin receptor to GLUT4 can be seen in Fig. 1.1. Here, the

insulin signalling cascade has been carved into five distinct clusters centred around the

insulin receptor (IR, green), insulin receptor substrate (IRS, yellow), phosphoinosi-

tide 3-kinase (PI3K, purple), protein kinase B (Akt, red), and the glucose transporter

(GLUT4, orange). This was further pared down to include only the IR and Akt proteins

since these represent the input and output nodes of the ‘insulin signalling’ module and

were therefore considered sufficient for the construction of a minimal model. Sim-

ilarly, GLUT4 was isolated to represent the ‘glucose transporter’ module. In other

words, the diagram in Fig. 1.1 was simplified into three modules - insulin signalling,

glucose transport, and glucose metabolism (Fig. 1.2). Each of these modules could be

assessed by measuring their input and output components. In the case of the insulin

3
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1.1. Insulin Signalling: A Three-Module Approach

Figure 1.2: The simplified three module representation of insulin signalling. The
signalling module encompasses the insulin receptor (IR) and Akt as inputs and outputs
respectively. External and internal glucose (black spheres) are the respective inputs
and outputs for the glucose transporter module. This module is assessed by measuring
the activity of the GLUT4 transporter. The metabolism module uses glucose as input
and yields lactate (red spheres) as output.

.

signalling module this would be the degree to which the insulin receptor and Akt are

phosphorylated. The glucose transporter module would be assayed according to how

much glucose is imported from the external media and the glucose metabolism module

would be assessed by measuring glucose and lactate as input and output respectively.

The insulin signalling module represents the transduction of the signal from in-

sulin through to GLUT4. This means that one can build a representative model of

the dynamics of the signalling cascade without needing to take glucose transport into

account. While a large part of the insulin signalling pathway is already known, the

precise interactions between the components is not fully konwn. Additionally, the in-

5
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1.2. Motivation

sulin signalling pathway interacts with components from other metabolic or signalling

pathways. This significant complexity meant that the modelling approach explored

in this thesis would not attempt to incorporate every known quantity in the insulin

signalling pathway. The goal was not to create the most-detailed model, rather to de-

termine whether a minimal model which focused on a smaller selection of well-studied

components could generate novel insights into insulin signalling.

The GLUT4 cluster was relegated to the glucose transport module. Unlike the

insulin signalling cluster which was investigated using Western blotting, the glucose

transport module was investigated by using radiolabelled glucose transporter assays.

Using these assays, one can gain an accurate picture of the fraction of GLUT4 in the

plasma membrane under basal conditions, insulin stimulated conditions, and dysregu-

lated conditions. Therefore, should dysfunction occur at any point throughout insulin

signalling, it will immediately be apparent in the behaviour of the glucose transporter.

This can indicate dysregulation upstream - with Akt or the IR - or in the absence of

such dysregulation, the transporter itself could be at fault.

Finally, the metabolic module is composed of two studies. Firstly, the study con-

tained in this thesis which provides a bird’s eye view of metabolism by tying the overall

glucose consumption and lactate production rates to increases in insulin stimulation.

Should the insulin signalling or glucose transport modules fall prey to dysfunction, this

should be immediately apparent in the initial rates at which glucose is metabolised to

lactate. The second study is a sister-project to the present work which was completed

by Dr. Cobus van Dyk and focuses on the internal glucose metabolism of C2C12 cells.

1.2 Motivation

While a variety of studies exist that independently investigate the behaviour of the

signalling cascade [28, 29], the behaviour of the glucose transporters [30, 31], or the

effects of insulin exposure on metabolism [32, 33], few models link each of these

‘modules’ together in a single kinetic model. The present study will attempt to resolve

this shortcoming, as will the work by Van Dyk et al [34].

6
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1.3. Problem Statement

Deepening the understanding of how the various modules within a cell act with and

upon each other may lead to benefits beyond the purely academic. If a disease state is

caused by dysregulation of the insulin cascade, knowing whether this lies with the sig-

nalling network, the GLUT4 protein, or with glycolysis may yield insights into which

pharmaceutical or therapeutic interventions could alleviate the disease state. Further,

such an understanding may assist with the development or targeting of treatments.

1.3 Problem Statement

The ‘Three-Module’ approach outlined in Section 1.1 can be approached, analytically,

from a mathematical, modelling perspective. Such a construct, albeit simplified, can

compare the ‘normal’ state of insulin signalling with a dysregulated state across all

three modules: signalling, glucose transport, and glucose flux. The current lack of

such a model therefore is the overall problem the present work shall address.

1.4 Aims and Objectives

The overall aim of this study was as follows: to characterise and determine, by way

of a simplified, mathematical model, which of the modules outlined in Section 1.1 are

dysfunctional in a hyperglycaemic, hyperinsulinemic insulin-resistant state. In order

to achieve these aims, the following objectives were developed:

Firstly, to establish the correct physiological conditions wherein the cells are to be

grown. This stems from the hypothesis that ‘standard’ culturing protocols, which often

contain up to five times the glucose content (25 mM)than what is physiological (5.5 -

7 mM in humans), might be inducing pseudo insulin-resistant states. Therefore, as a

proxy-measure of insulin functioning, the glucose-lactate flux will be measured across

a variety of culturing and experimental conditions until an insulin induction of glucose-

lactate flux is determined. Similarly, the degree to which cells under these ‘new’ cul-

turing conditions differentiate will be quantified since the phenotype of myoblasts and

myotubes differs substantially, a factor which could influence any experimental results.

7

Stellenbosch University  https://scholar.sun.ac.za



1.5. Scope and Focus

Secondly, the ‘normal’ or basal kinetic state of insulin signalling will be investi-

gated with respect to the IR and Akt protein phosphorylation as well as the glucose

transport activity. Western Blot analysis will be used to determine the insulin dose and

time dependent phosphorylation and dephosphorylation of the IR and Akt proteins.

The glucose transport will be characterised in terms of the increase or decrease of its

transport capacity (assayed via C14 uptake) in response to the time- and dose-dependent

addition or removal of insulin. The Western blotting and glucose transport data shall

be included in a minimal, ODE-based kinetic model of the insulin signalling cascade.

Thirdly, the behaviour of GFP-tagged GLUT4 proteins in response to insulin will

be determined with regards to their propensity to cluster as well as their distribution

throughout the cell. This investigation necessitates the replicable transfection of my-

oblasts with the GFP-tagged GLUT4 plasmid as well as a method to visualise the

GLUT4 distribution via confocal microscopy. Thereafter a computational workflow

with which to eliminate background noise, deconvolve the images, and isolate the rel-

evant pixel positions will be developed. Lastly, this will lead to the development of a

clustering algorithm that uses the pixel positions as input, divides them into clusters,

has some exclusion criteria, and is able to output the size and density of each cluster.

This will provide insight into the distribution and movement of the GLUT4 module in

a post-insulinic state.

1.5 Scope and Focus

The data gathered during this study apply exclusively to in vitro observations in cul-

tured mouse skeletal muscle (C2C12) cells. The adoption of a core modelling approach

which characterises the insulin signalling cascade as an ‘input-output’ relation is suffi-

ciently broad to encourage similar approaches for insulin resistant states or additional

cell lines. However, such a model is limited with regards to the level of mechanistic

detail it contains. Therefore, while it cannot point to the precise molecular mechanism

which causes insulin insensitivity, it can point to the module chiefly responsible there-

for. This should allow future studies to direct their efforts towards the modules most

8
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1.5. Scope and Focus

relevant for their aims.
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Chapter 2

On Insulin Signalling, Metabolism,

and Modelling

2.1 Insulin Signalling

The insulin signalling pathway is an important regulator of cellular homeostasis [35].

It regulates many processes such as: glucose metabolism [36], protein synthesis [37],

lipid synthesis [38], exercise metabolism [39], and stress responses [40]. Primarily,

the insulin responsive tissues are skeletal and cardiac muscle as well as adipose tissues

[41]. However, without insulin mediated metabolic and stress responses, cells, tissues,

and organisms would quickly suffer from a host of dysfunctions - not the least of which

are the diabetic conditions.

When pancreatic β-cells detect an increase in blood glucose, they release insulin

into the bloodstream [42]. Circulating insulin will then bind to free insulin receptors

on any of the target tissues (Fig. 2.1). Subsequently, this will trigger the activation of

the insulin signalling cascade (Fig. 2.2) which results in the upregulation of glycogen

synthesis, glycolysis, and fatty acid and lipid synthesis [37, 38, 43]. Similarly, this

will also trigger the downregulation of various catabolic processes such as proteolysis,

fatty-acid breakdown, and glycogenolysis. Since nearly 70% of post-prandial, insulin-

mediated glucose consumption occurs in the skeletal muscle, the present review and

study shall focus thereon.

10
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2.1. Insulin Signalling

Figure 2.1: Glucose (black spheres) is sensed by β-cells on the pancreas which then
release insulin. Increases in insulin concentrations are primarily sensed by skeletal
muscle, cardiac muscle, and adipose tissue. In return, these tissues respond by either
up- or down-regulating anabolic and catabolic processes as necessary.

11
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2.1. Insulin Signalling
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2.1. Insulin Signalling

2.1.1 Insulin

Insulin initiates and regulates a signalling cascade that is responsible for a host of

metabolic activities: glucose, lipid, and protein metabolism [38, 44–46], cell growth

and differentiation [47, 48], inflammation and the immune response [49, 50], and neu-

ral signalling [51]. Insulin is a small, 5.8 kDa peptide hormone. Its 51 amino acid

structure is strongly conserved and insulin derived from disparate species is often

cross-reactive [52].

The average circulating concentration of insulin in humans is between 10 and

100pM [53]. This is maintained by the release of insulin from the β-cells every 3

to 15 minutes [54, 55]. Once the blood glucose levels rise above resting physiological

levels, greater quantities of glucose diffuse into the β-cells via the GLUT2 transporter

[56]. Consequently, insulin is released more frequently [57] insulin levels can rise to

between 6 nM and 42 nM [58, 59].

2.1.2 Insulin Receptor

The insulin receptor (IR) is embedded in the plasma membrane of a cell. The number

of IR proteins found on a cell can range from a few hundred (for example, in ery-

throcytes), to a few hundred thousand in target cells such as adipose or muscle cells

[60–62]. There are two isoforms of the IR: IR-A and IR-B. IR-A appears to primar-

ily regulate growth, development, and IGF signalling whereas IR-B is responsible for

metabolic regulation [63]. After binding to insulin, the IR-A isoform is phosphorylated

at its intracellular tyrosine sites and internalises [64, 65]. In addition to mediating mito-

gensis, this results in the degradation of the IR-A and the subsequent attenuation of the

Akt-dependent signalling cascade [66]. IR-B, however, remains at the cell membrane

after insulin exposure, conducting the insulinic signal into the Akt-dependent pathway

[67]. It is therefore conceivable that myoblasts primarily express IR-A whereas my-

ocytes would express IR-B. The IR-A:IR-B ratio is a predictor of dysregulation in the

insulin signalling pathway. Diabetic patients were found to have elevated IR-A:IR-B

ratios [63]. Considering the mitogenic activity associated with IR-A [65], this could

also be a predictor for dysregulation in the cell cycle, if not tumorigenesis.

13

Stellenbosch University  https://scholar.sun.ac.za



2.1. Insulin Signalling

Figure 2.3: Insulin (yellow), binds to the α-subunit of the (red) IR. This initiates the
dimerisation of the β-subunits which activates the IR tyrosine kinase domain. The
activated IR tyrosine kinase uses ATP as a substrate to autophosphorylate each β-
subunit which thereby becomes active.

Structurally, the IR isoforms consist of two homodimers: an α2 juxtamembrane

homodimer and a β2 transmembrane homodimer [68]. An α subunit binds insulin.

The β homodimer anchors the IR in the membrane and transmits the signal by phos-

phorylation of its Receptor Tyrosine Kinase (RTK) domains which are located in the

cytoplasmic compartment [69].

After insulin binds to the IR (Fig. 2.3), the two α subunits crosslink with one

another [21]. This leads to conformational changes in the IR which induces further

crosslinking along the β subunits [70]. Consequently, the RTK domain of the IR is

activated. The RTK domain sequesters ATP from the intracellular environment and

begins autophosphorylating. There are seven, key tyrosine residues on the IR that can

be autophosphorylated [71], all of them along the β domain. Phosphorylation of ty-

rosine residues 1158, 1162, and 1163 in the active loop leads to the stabilisation of

the active site. This allows ATP and IRS1/2 to bind and undergo phosphorylation by

the IR. Phosphorylation of the remaining residues: 965 and 972 in the juxtamembrane

domain and of 1328 and 1334 in the C-terminus are thought to assist with the confor-

mational changes necessary to open the active site of the IR [71].
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2.1.3 Insulin Receptor Substrates

Immediately downstream from the IR is a family of four Insulin Receptor Substrate

Proteins (IRS-1 to IRS-4) [72]. IRS-1 through IRS-4 are important for the transmis-

sion of signals from not only insulin, but also from immune, inflammation, and stress

responses as well as growth and metabolism [73]. More specifically, IRS-1 and IRS-

2 have been shown to be the important mediators in insulin and growth signalling.

Knockouts of either gene resulted in insulin resistance and growth retardation in mice

whereas knockouts of IRS-3 and IRS-4 appear to, at most, have mild defects in growth

and neural development [38, 74]. Therefore, for the duration of this review, the use of

IRS will be limited to mean IRS-1/2.

The IRS is a 1242 amino acid protein with a mass of 131 kDa [75]. IRS con-

tains a Pleckstrin Homology (PH) domain and a Phospho-Tyrosine Binding (PTB)

domain [76]. The PTB domain facilitates binding between the IRS-1 and the tyrosine-

phosphorylated IR therefore bringing IRS proteins into near contact with the PM [73].

The PH domain recruits various molecules such as PIP2 to the IRS and consequently

the PM [77]. The IRS-1 is unique in that the PH and PTB domains are arranged ‘back

to back’ which could indicate that the successful binding of the PTB may lead to the

activation of the PH domain [78]. Phosphorylation of C-terminal tyrosine sites recruits

Src 2 Homology (SH2) domain proteins such as PI3K to the IRS and, consequently,

to the PM [38]. IRS functions as a mediator of cell-signalling rather than an instigator

thereof. This review will be limited to the interactions between IR, IRS, PI3K, and

PIP2/3.

Once the IR has autophosphorylated and its active site has opened to IRS and ATP

(Fig. 2.4), the IRS protein will bind and undergo rapid phosphorylation of various

serine, threonine, and tyrosine residues [79, 80]. Canon has it that phosphorylation

of tyrosine residues is associated with an increase in insulin-related metabolic activity

[81] whereas Ser/Thr phosphorylation results in attenuation of the insulinic signal [82].

Evidence for the latter stems from studies which showed the following: constitutively

high levels of serine phosphorylation under basal conditions [83]; most likely due to

GSK-3 activity [84], elevated levels of serine phosphorylation in insulin resistant pa-
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Figure 2.4: The active IR recruits the insulin receptor substrate (IRS) to the PM. The
membrane-associated IRS is now a target for the IR kinase domain which uses ATP as
a substrate in order to phosphorylate IRS which in turn is activated thereby.

tients [85], and the degradation of IRS in response to greater Ser/Thr phosphorylation

[86].

This ‘on/off’ dichotomy between tyrosine and serine/threonine phosphorylation

does not reflect the entirety of signalling through IRS. However, the broader interplay

of phosphorylation states and phosphorylation sites is beyond the scope of this review.

2.1.4 PI3K

Phosphoinositide 3-kinases (PI3Ks) are a family of inositol phosphorylases that pri-

marily act on phosphatidylinositol (PtdIns) in response to upstream signalling [87].

There are currently, four classes (I - IV) of PI3Ks [87, 88]. Each class of PI3K has

differing specificities for PtdIns substrates and, consequently, is involved in separate

cell functions (see Table 2.1). Class IV PI3Ks consist of a group of kinases that are

mechanistically related to PI3Ks such as mTOR or DNAPK [89, 90]. However, their

recognition as bona fide PI3Ks remains controversial. Class I PI3Ks are the most

thoroughly studied molecules due to their direct involvement in or implication for the

PI3K/Akt-dependent pathway of insulin signalling [91].

Class I PI3Ks - hereafter referred to as PI3K - are heterodimeric proteins that con-

sist of an 85kDa regulatory subunit (p85) and a 110kDa catalytic subunit (p110) [92].

The unphosphorylated p85 subunit inhibits the p110 subunit [96]. Upon insulin
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Table 2.1: An overview of the substrates and consequent metabolic processes that are
affected by activation of each class of PI3K

Class of PI3K Substrate Function Reference

I PtdIns, PIP, PIP2 Signal propagation
in the IRS-PI3K-AKt
pathway

[92]

II PtdIns Angiogenesis, cilium
function

[93, 94]

III PtdIns Initiator/Regulator of
autophagy

[95]

IV PtdIns Oxygen sensing, DNA
repair, nutrient home-
ostasis

[89, 90]

stimulation, the C-terminal tail of IRS becomes tyrosine phosphorylated. This pro-

vides a binding site for proteins with SH2 domains such as PI3K [97]. The binding

between IRS and PI3K occurs at the p85 subunit of PI3K. This brings PI3K into close

proximity with the tyrosine kinase domain of the IR [98]. Thereafter, PI3K undergoes

phosphorylation on tyrosine 688 [99]. Consequently the inhibition of PI3Kp110 by

the p85 subunit is relieved. This implies that under basal, unstimulated conditions, the

ratio of active to inactive PI3K skews towards the latter.

The activation of the catalytic p110 subunit of PI3K opens the kinase domain to

binding by PI(4, 5)P2 and ATP [100]. This facilitates the phosphorylation of PI(4, 5)P2

into PI(3, 4, 5)P3 [101]. This is a crucial step in furthering the insulin signal from the

IR/IRS complex to downstream actors such as PDK1 and Akt [91, 102]. The PIP

molecules, PDK1, and Akt will be discussed in detail in the following sections.

2.1.5 The Phosphatidyl Inositide Phosphates (PIPs)

Phosphatidylinositides are membrane-associated phospholipid molecules implicated

in a variety of cellular processes necessary for growth, division, and survival [103].

The production of PtdIns and their phosphorylated forms is upregulated during insulin

stimulation - owing in part to the increased activity of PI3K [104, 105]. Phosphatidyli-

nositol can be phosphorylated on the D3, D4, or D5 positions of its inositol ring. This
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Figure 2.5: The binding of PtdIns to the PH domains of active IRS and PI3K results in
the conversion of PtdIns to PI3P, PI3P to PI(4,5)P2, or PI(4,5)P2 PI(3,4,5)P3. In each
case the phosphate donor is ATP. The PIPs act as ‘targeting’ molecules in this instance
whereby they are essential in recruiting other proteins (e.g. PDK1, Akt) to the PM.

generates a phosphatidylinositol mono-, di-, or tri-phosphate (PI3P, PIP2, or PIP3 re-

spectively) [106]. While these PIPs are implicated in several signalling pathways, of

present interest remains their interactions with PDK-1 and Akt. Crucially, PIPs pro-

vide the link between the IR-PI3K (Fig. 2.5) and the PDK1-Akt (Fig. 2.6) arms of the

signalling cascade. Activating PI3K in the absence of the PtdIns substrate does not

induce increase in glucose transport [107, 108]

The PtdIns molecules mediate the induction of glucose transport by binding to PH

domains on phosphoinositide-dependent kinase and Akt proteins [109, 110]. After the

phosphorylation of PtdIns into a PIP by PI3K, the PIP acts as ‘anchor’ proteins to

which PDK1 and Akt proteins bind. These anchor-points for allow for free-floating,

cytosolic PDK1 and Akt to attach to via their PH domain [111]. This process is ac-

celerated during insulin stimulation [112]. However, as will be discussed further, the

functions of PDK1 and Akt are different in nature. While both attach to the PM-PIP

complex, PDK1 is a necessary regulator of Akt function whereas the binding of PIP3

to Akt induces the recruitment of GSV-bound AS160 to the PM. All three molecules

- PIP3, PDK1, and Akt - are essential in GLUT4 translocation and eventual fusion

[112]. Finally, the presence of a phospholipid binding site on AS160 which prefer-

entially binds PI3P implicates a PI3P-AS160 interaction in the activation of GLUT4
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[105]. However, the precise mechanism by which this occurs is still unknown.

2.1.6 PDK1

Phosphoinositide-dependent kinase 1 (PDK1) is the downstream effector of PI3K and

the PIPs. It is a 63 kDa, membrane-associating serine/threonine kinase protein and it

consists of an N-terminal kinase domain and a C-terminal PH domain [102]. While

PDK1 retains greater binding affinity for PI(3,4)P2 and PI(3,4,5)P3, it is nonetheless

able to bind all forms of PIPs [113]. Further, PDK1 interacts with a host of downstream

signalling molecules such as S6-kinase 1 (S6K), protein kinase C (PKC), and protein

kinase A (PKA). Amongst these is Akt - the next direct link to GLUT4 translocation

[113–115].

Upon stimulation by insulin, the PI3K will rapidly convert PIP and PIP2 to PIP3.

These phospholipids remain membrane-associated until they are recognised by the PH

domain of PDK1 [116, 117]. Since PDK1 is constitutively active - only being recruited

to the PM in greater numbers on insulin stimulation - it needs no further modulation

until it binds with Akt, which has been recruited to the PM via a PH-PIP3 interaction

[118, 119]. The close proximity of Akt and PDK1 will result in Akt being phosphory-

lated at serine 473 and threonine 308 [102]. This makes PDK1 a necessary intermedi-

ate in proper insulin signalling.

The necessity of PDK1 is further underscored by studies that seek to disrupt the

normal functioning of PDK1. Bayascas et al (2008) disrupted the PH domain on PDK1

in mice, eliminating the interaction between PDK1 and PIP3 [120]. The mice grew

to be insulin resistant, underweight, and stunted. Similarly, the disruption of PDK1

functioning by inhibiting PI3K - therefore starving PDK1 of substrate - lead to dysreg-

ulation of the insulin signalling cascade [121]. In this study, the β cells, being unable

to upregulate glucose transport in the presence of glucose and insulin, steadily released

ever-increasing levels of insulin to compensate. Further studies have shown that dis-

rupting PDK1 will lead to liver failure [122] or a diabetic state due to β-cell death

[123].
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Figure 2.6: PI(3,4,5)P3 is a target molecule for PDK1 which consequently translocates
to the membrane. Similarly, PI(3,4,5)P3 and PDK1 now act as recruiters for Akt.
Once Akt has translocated to the membrane, it is phosphorylated by PDK1 on several
residues, but most notably Ser473. This, in addition to Thr308 phosphorylation by
mTORC2, results in the ‘active’ form of Akt.

2.1.7 Akt

The family of Akt kinase proteins consists of three isoforms - Akt1, Akt2, and Akt3

(previously Protein Kinase Bα, β, and γ) [124]. All Akt isoforms share a simi-

lar domain structure: an N-terminal PH domain, a central kinase domain, and a C-

terminal, hydrophobic regulatory domain [125]. The PH domain binds PIPs (specifi-

cally PI(3,4)P2 and PI(3,4,5)P3) associated with the membrane-bound PDK1 protein

(Fig. 2.6) [116, 126, 127]. The kinase domain contains a conserved threonine residue

(Thr308) which is responsible for the activation thereof [128]. Similarly, the hydropho-

bic motif contains a conserved serine (Ser473) which acts as a regulatory site for Akt

activity [129].

The functionality of Akt is defined by dual phosphorylation on Thr308 and Ser473

[98]. It has been suggested that phosphorylation of the Thr308 residue by itself is

necessary and sufficient for the induction of Akt kinase activity [91]. However, full

induction of Akt activity appears to require the phosphorylation of Ser473 as well

[98, 120].
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Figure 2.7: Phosphorylated Akt targets AS160 which contains a GTP-ase activating
domain (GAP). The AS160-GAP constitutively hydrolyses the GTP on the Rab-GTP
complex - an action which prevents the translocation of GLUT4 storage vesicles to the
PM. The phosphorylation of AS160 by active Akt inhibits the AS160-GAP activity,
preventing the hydrolysis of Rab-GTP, and ultimately encouraging the translocation of
GLUT4 to the PM.

Upon insulin induction and the subsequent generation of PI(3,4)P2 and PI(3,4,5)P3,

Akt co-localises to the PM with PDK1 [77, 130]. Both proteins attach to PIPs by their

PH domains. In Akt this is thought to engender a conformational change that exposes

the central, active site of the kinase domain [91]. This gives PDK1 access to Thr308

which is subsequently phosphorylated, leading to the recruitment and activation of

downstream effectors [91, 129, 131].

The Ser473 residue of Akt is phosphorylated by mTORC2 which is activated when

binding with PI3P [132, 133]. While less able to induce GLUT4 translocation by

itself, the Ser473 residue nonetheless appears responsible for the modulation of Akt

kinase activity [134]. More specifically, it has been suggested that phosphorylation

of Ser473 ‘stabilises’ the phospho-Thr308 site by preventing dephosphorylation and

thereby extending its half-life [127].

The next - and final - downstream target of Akt is AS160 (Fig. 2.7) [135]. The

Ser/Thr kinase domain of Akt targets as many as six potential phosphorylation sites on

AS160 [136]. However, most commonly the AS160 residues Ser588 and Thr642 are

targeted [137, 138]. AS160 phosphorylation responds strongly to increases in insulin
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concentration and has been shown to be significantly reduced in diabetic patients [135].

AS160 is considered to be a crucial component of the insulin signalling cascade as it

links the IRS-PI3K-Akt axis to the induction of glucose transport [139, 140].

The 160kDa AS160 protein contains a constitutively active Rab-GAP (GTP-ase

Activating Protein) domain [141]. The Rab-GAP domain activates innate GTP-ase do-

mains on small G-proteins known as Rabs [142]. In the context of insulin signalling,

Rabs are often found on the surface of GLUT4-storage vesicles (GSVs) [143, 144].

Evidence points to Rab4, Rab8, Rab10, Rab11, and Rab14 mediating functions such

as GLUT4 recycling, internalisation, trafficking, and membrane fusion [143, 145, 146].

This suggests that the Rab-GTP complex is the ‘active’ form of Rab which is responsi-

ble for GLUT4 regulation. Unphosphorylated AS160 would therefore perpetually re-

sult in active GAP domains which hydrolyze GTP, thereby inactivating Rab-mediated

GLUT4 activity [147]. Phosphorylation of AS160 by Akt inhibits the activity of the

Rab-GAPs which, in turn, preserves the Rab-GTP complex [30, 148]. Therefore, Akt

relieves the persistent inhibition of Rab-mediated GLUT4 trafficking by downregulat-

ing AS160-Rab-GAP activity.

Lastly, owing to the variety of signals that impinge on Akt, it can be viewed as a

molecular ‘switchboard’ which directs incoming signals to their appropriate termini.

On closer analysis, two broad categories of Akt pathways emerge: first, a set of re-

active, stress-related pathways that activate based on factors such as oxidative stress

[149], inflammation [150], psychological stress [151, 152], nutrient stress [153], or

temperature stress [154]. Secondly, and more germane to the present study, a set of

pathways which maintain homeostatic features such as the cell-cycle [155], cellular

energetics [156], and protein synthesis [157]. A non-exhaustive summary of these

pathways can be found in Table 2.2.

2.1.8 Glucose Transporters: Focus on GLUT4

The dynamics of glucose transport, glycolysis, as well as the induction thereof differs

from tissue to tissue. However, there is one common thread - glucose must be imported

into the cell. Glucose import is accomplished by a family of 14 Solute Carrier proteins
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Table 2.2: A brief summary of Akt and its downstream effectors.

Pathway Mediator Function Reference

Reactive

Hsp90 Protein folding, cell
signalling, regulation of
apoptosis

[158–160]

IKK Modulates anti-
tumorigenic behaviour
of NF-κB

[161, 162]

JNK Pro-apoptotic signal [163]
PP2A Tumor-suppressor, cell-

cycle regulation
[164]

PHLPP Tumor-suppressor, ab-
rogates aberrant Akt
activity

[165]

TBK1 Induces pro-survival Akt
pathways in response to
immune signalling

[166, 167]

Homeostatic

GSK3 Activates synthesis of
glycogen

[168, 169]

AS160 Regulates GLUT4 traf-
ficking to PM

[141, 170]

mTORC1 Regulates protein synthe-
sis and mRNA transcrip-
tion

[171]

mTORC2 Activation and feedback
regulation of Akt

[172, 173]

FOXO Cell-cycle regulation and
DNA repair

[174]

PFK Regulation of glycolysis
and glycogenolysis

[175, 176]

(SLC2), more commonly known as glucose transporters or the GLUT family [177].

These proteins facilitate the unidirectional diffusion of (primarily) glucose across the

plasma membrane and into the cell. However, they are also responsible for the import

of polyols, small carbon compounds, and other monosaccharides into the cell.

The GLUTs are divided into three classes (I,II, and III) depending on their sequence

homology [178]. However, the structure and sequence of the glucose transporters re-

main highly conserved among species [179]. Generally, a glucose transporter is ± 500
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amino acids large, has 12 trans-membrane domains, and conserved N and C termini.

A brief summary of all 14 glucose transporters is provided in Table 2.3.

Table 2.3: A short overview of the 14 GLUT proteins (including HMIT) as well as
their predominant functions.

Class Name Function Reference

I

GLUT1 Basal glucose uptake in various tissues [180]
GLUT2 Import of glucose into β cells [56]
GLUT3 Low-affinity, inducible transporter in

neurons
[181]

GLUT4 Insulin stimulated glucose uptake in
muscle and adipose tissue

[182]

GLUT14 GLUT3 duplicate, primarily active in
testes

[183]

II

GLUT5 Fructose transporter in the intestine [184]
GLUT7 Intestinal hexose transporter with low

affinity for glucose and fructose
[185]

GLUT9 Urate transporter in kidneys and liver
with low glucose affinity

[186]

GLUT11 High affinity fructose transporter in
muscle and heart

[187]

III

GLUT6 Inflammation-responsive lysosomal
monosaccharide transporter

[188]

GLUT8 Intracellular hexose transporter found
on endosomes and lysosomes

[189]

GLUT10 Low activity, non specific transporter
found in almost all tissues

[177]

GLUT12 Insulin insensitive glucose transporter
found mainly in the heart

[190]

HMIT H+/myo-inonsitol symporter found in
the brain

[191]

GLUT4 The GLUT4 glucose transporter is crucial for glucose homeostasis and is in

fact the canonically ‘main’ glucose transporter in insulin sensitive tissues [182, 192].

Under basal conditions, GLUT4 is distributed among the plasma membrane and the

perinuclear space with the balance favouring the latter [193]. Nearly 75% of GLUT4
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is thought to reside in the perinuclear space under basal conditions [194]. At the per-

inuclear space, GLUT4s are stored in specialised ‘storage veiscles’ - GLUT4 Storage

Vesicles or GSVs [31]. GLUT4 storage vesicles are between 50 and 100 nm in di-

ameter and can contain up to 25 GLUT4 molecules [195]. The formation of GSVs is

most-likely preceded by the budding off from an as yet unidentified donor membrane

[196]. Li et al (2009) suggested that the membrane donor for the GSVs may be found

near the perinuclear compartment which suggests that it may be another vesicle or

endosome [197].

The GSVs are clustered around a structure known as the ‘Mictrotubule Organisa-

tional Center’ or MTOC [198]. This structure, located close to the nucleus, is respon-

sible for the tethering of the microtubules (MTs) as well as various endosomes and

smaller organelles that rely on the network of MTs to travel throughout the cell. Once

the insulin signal terminates with the GSVs, these dissociate from the MTOC and,

aided by MyoVa and KIF5B kinesin motor proteins, travel along the MTs to reach the

peri-membrane space [196, 199].

Stimulation by insulin initiates several events simultaneously. The rate at which

GLUT4 undergoes endocytosis is reduced significantly [200]. Under basal conditions,

GLUT4 experiences a steady ‘recycling’ to and from the PM. The insulin signal tilts

the balance of this cycling in favour of the non-excretory exocytotic mechanisms that

deposit GLUT4 in the PM [201]. Simultaneously, the reservoir of GLUT4 present in

GSVs near the MTOC attach to MTs and begin their journey towards the PM. The re-

liance on MTs for translocation results in the GSVs translocating, tethering, and fusing

in distinct clusters. This results in ‘punctate’ clusters of GLUT4 near the membrane

termini of MTs [202].

Once the GSVs have reached the PM, GLUT4 is activated in three distinct stages:

tethering, fusion, and GLUT4 activation [192, 203]. Tethering, the first of these stages,

occurs once the GSV has reached the PM and halted. Here, Myo1c, a membrane-

associated motor protein and the exocyst subunits Exo6 and Exo84 tether the GSVs

to the plasma membrane. The precise mechanism by which this occurs is not yet

known, however considering that the exocyst contains a GAP domain, it is likely that
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it interacts with the Rab-GTPs on the surface of the GSV membrane.

The second step, fusion, requires a large assembly of membrane associated pro-

teins: SNARE, Syntaxin-4, Sec1/Munc18-like (SM) proteins, VAMP2, VAMP3, and

VAMP8 as well as SNAP23 [201, 204–208]. While the precise nature of their interac-

tions would go beyond the scope of this thesis, one can briefly summarise it as follows

(Fig. 2.8). The SNARE proteins are a family of receptor proteins which associate with

Soluble NSF Attachment Proteins (SNAPs). The SNAPs are directly involved in the

tethering and fusion of vesicle with the PM. Once the GSV and associated SNARE

complexes are between 4 and 8 nm from each other and the PM, what follows is a pro-

gressive ‘unzipping’ of the GSV and the PM. Once sufficiently unzipped, the SNARE

complexes will join the loose ends of the GSVs with those of the PM, completing this

cycle of non-excretory exocytosis [209, 210].

Now that GLUT4 is located within the PM, all that remains is for it to be activated.

The precise nature of GLUT4 activation is yet to be uncovered, however it is certain

that membrane-associated products of PI3K (PI3P and PI(4,5)P2) are involved [108,

203]. Specifically, it appears as if both PI3P and PI(4,5)P2 assist with the unmasking

of the C-terminus of GLUT4. While both products play a role in the insulin-mediated

translocation and activation of GLUT4, it seems as if PI3P alone has the power to

induce GLUT4 into an active conformation. It has been suggested that this is due to

F-actin remodelling of the PM in response to PI3P [211, 212].
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2.1.9 Insulin Signalling: Summary

This signalling cascade is subject to regulation by feedback mechanisms that depend

on the activity of various phosphatase proteins [213]. As to not exceed the scope of

this review, focus is directed on the following three phosphatases by way of illustration:

SHIP2, PTEN, and PHLPP. The Src2 Homology Inositol polyphosphate 5-Phosphatase

(SHIP2), is an important regulator of PI(3,4,5)P3 availability [214]. When it is ac-

tivated by PI(3,4)P2, it hydrolyses the 5-phosphate of PI(3,4,5)P3 [215]. This has

important downstream implications as it prevents the recruitment of Akt to the PM.

This abrogates insulin signalling through Akt and results in fewer GLUT4 molecules

translocating to the PM.

Similarly, PTEN (Phosphatase and TENsin homologue) is a PI(3,4,5)P3 phos-

phatase [216]. However, unlike SHIP2, this enzyme hydrolyses the 3-phosphate of

its target substrate. This inhibits the ability of PDK1 to recruit Akt to the PM and

results in the downregulation of insulin-stimulated glucose update.

Lastly, PH domain Leucine-rich Protein Phosphatase (PHLPP) directly inactivates

Akt by hydrolysing the phosphate on serine 473 [165]. This severely impacts (although

not completely abolishes) the ability of Akt to phosphorylate the AS160-GAP domain.

Consequently, this prevents GLUT4 from being translocated to and integrated with the

PM.

This process is broadly summarised in Fig. 2.9. This presentation shows the insulin

signalling cascade as an ‘input-output’ mechanism which represents only the direct

interactions between the signalling molecules. Herein, the ‘main’ insulin signalling

is highlighted in green while other, secondary pathways that activate (or are activated

by) the insulin signalling cascade are highlighted as blue, dashed lines. Similarly,

pathways which attenuate the Akt-dependent GLUT4 activation are indicated by the

red, dashed lines.

28

Stellenbosch University  https://scholar.sun.ac.za



2.1. Insulin Signalling

GSK3

IRSP

JNK

PTP1B

IRPSHP2

Insulin

TNFα JAK1/2 AMPK

PI3KP

PI3P

PIP2

PIP3

PTEN

PDK1P

AktP

mTORC2

AS160P

RabGTP

GSV

GLUT4M

GSK3P JNKP

HSP90 PHLPP

PFKP

mTORC1

Figure 2.9: A more simplified schematic of the insulin signalling pathway(s). This
graph highlights the interactions between the activated and inactivated agents in the
signalling cascade. The main, IR-IRS-PI3K-Akt pathway is highlighted with the solid,
green lines. Whereas secondary interactions are indicated with dashed lines. The blue
dashed lines indicate pathways which are not directly activated by or related to the
insulinic state of the organism. The red dashed lines indicate pathways which either
inhibit or downregulate signalling intermediates and therefore attenuate the activation
of GLUT4 via the Akt-dependent pathway.
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2.2 Metabolism and Physiology

Type 2 diabetes manifests on a tissue, organ, and whole-body level. In moving away

from the cellular level, the question arises: how does the human organism respond to

an induction of insulin signalling?

The brain contains insulin, IGF1, and IGF2 receptors [217]. How insulin reaches

the brain is still a matter of debate, however the leading theories include transport via

the cerebrospinal fluid or through the vascular system, or via the hypothalamus which

lacks a selective barrier. In addition to mediating increased glucose uptake through

GLUT1 and GLUT3, it appears as if insulin directly affects neural signalling and brain

chemistry [218].

In the liver, the effects of insulin signalling are far more significant to metabolic

homeostasis than in the brain. Specifically, the activity of the insulin signalling cascade

has profound implications for the metabolism of lipids, proteins, and glucose. Lipoge-

nesis is stimulated when Akt activates mTORC1 [219]. Protein synthesis in the liver is

stimulated by insulin through the Akt-GSK3 and Akt-mTORC1 pathways [220].

Upon insulin stimulation, the liver regulates glucose metabolism as follows: in-

hibiting glycogenolysis, stimulating glycogenesis, stimulating glycolysis, and inhibit-

ing gluconeogenesis. Insulin mediates the activation of protein phosphatase 1 (PP1)

via Akt [221]. This results in the dephosphorylation and subsequent inactivation of

glycogen phosphorylase - thus inhibiting glycogenolysis [222]. Simultaneously, in-

sulin mediates the deactivation of glycogen synthase kinase 3 (GSK3) by Akt. As

a result, glycogen synthase remains active and able to further polymerise glycogen

molecules. Further, by effecting the Akt-mediated phosphorylation and inhibition of

FoxO, insulin relieves the inhibition of glucokinase by FoxO [223]. Simultaneously,

this prevents the stimulation of Phosphoenolpyruvate carboxykinase 1 (Pck1) and glu-

cose 6-phosphatase (G6PC) - two regulation points for gluconeogenesis [224]. Con-

sequently, in the insulinic liver, net glycolysis to pyruvate is upregulated while gluco-

neogenesis is downregulated.
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2.2.1 Muscle Physiology

Skeletal muscle primarily subsists on fatty acids at rest, it can account for between

70 and 90% of glucose consumption in the postprandial and exercising states [225].

This is further reflected by skeletal muscle being the primary reservoir for insulin-

responsive GLUT4 transporters [31, 182]. The translocation of GLUT4 can be achieved

either through dietary means, which result in the release of insulin, or through exercise.

Exercise induces insulin-independent translocation of GLUT4 to the PM [226].

These effects can persist as long as 16 hours after the bout of exercise [227]. Woj-

taszewski et al (2000) showed that exercise reduced the half-activation time (t0.5) of

glucose uptake from ± 34 minutes to ± 11 minutes [228].

This ligand-independent activation of insulin signalling appears to be mediated pri-

marily through AMPK. It appears as though this molecule is responsible at turns for the

direct activation of insulin signalling through IR, IRS, and AS160-GAP phosphoryla-

tion as well as indirect activation by ‘priming’ skeletal muscle for insulin signalling.

This latter mechanism likely plays a role in the anti-inflammatory effects of exercise

and AMPK signalling.

Insulin and AMPK signalling are important for the proper growth and development

of skeletal muscle tissues [229]. Both ir- and igfr-knockout mice experience extremely

low birthweight, developmental retardation, and ultimately death within days of be-

ing born [230]. Similarly, AMPKα1−/− mice are unable to regain insulin sensitivity,

whereas knocking out both forms of AMPK is lethal for the embryo [231].

Further, the differentiation of myoblasts to myotubes is associated with a five to

ten-fold increase in surface IR [232]. This is accompanied by an increase in GLUT4

expression [233]. Myoblasts which have been induced to exhibit the diabetic phe-

notype (abrogated insulin signalling) by using excess (25mM) glucose in the growth

medium differentiate into adipose tissue instead of myotubes [234].

In addition to mediating glucose uptake, skeletal muscle is also known for its flex-

ibility in selection. The ability of skeletal muscle to subsist on glucose, fatty acids,

or the products of proteolysis allows the muscle, along with the liver, to regulate the

availability and utilisation of fuel by the organism [235]. Consequently, the skeletal
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muscle tissue is an appropriate target for studies wishing to further examine the role of

insulin or the insulin signalling network in metabolism or disease.

2.2.2 Obesity, Inflammation, and Type 2 Diabetes

One of the metabolic states most-closely associated with dysfunctional insulin sig-

nalling is obesity [236]. Obesity is primarily caused by the interplay of sedentary

lifestyles and overfeeding [237]. However, the contribution of genetic or inflammatory

factors should not be dismissed [238, 239]. Obesity is a physiological state charac-

terised by severe overweight, inflammation, and excess fatty tissue [238, 240, 241].

People who are diagnosed with obesity tend to have a Body Mass Index (BMI) greater

than 30 as well as more than 25 - 33% body fat. Of particular interest is the excess body

fat as it likely contributes to the necessary dysregulation of whole-body metabolism,

inflammation responses, and insulin signalling that lead to type 2 diabetes [242, 243].

A primary symptom of obesity is dyslipidemia; elevated levels of free fatty-acids

(FFAs) and triglycerides (TGs) [244]. Dyslipidemia and the associated FFAs and TGs

eventually lead to inflammation [245]. The swelling of the adipocytes constricts the

capillaries and blood flow into adipose tissue [243, 246]. The restriction of blood flow

likely creates hypoxic conditions in the fatty tissue. Hypoxia alters the redox balance

and raises the oxidative stress in affected tissues [247]. The greater oxidative stress

likely leads to the production of free radicals [248, 249]. This rise in free radical levels

induces pro-inflammatory mechanisms [250]. This is the first point of inflammatory

burden.

The second pro-inflammatory mechanism is associated with the increased burden

of free fatty-acids. Fatty acids are well-known inducers of pro-inflammatory signals

[244, 251, 252]. It is likely that this mechanism involves FFAs binding to G protein-

coupled receptors (GPCRs) which then activate the release pro-inflammatory cytokines

TNFα and IL-6 [253]. Additionally, FFAs induce the release of IKKβ, IL-1, and JNK

[252]. This places an immense burden of inflammation on any physiology and has

been implicated in various diseases such as: hypertension [254], depression [255],

cardiovascular disease [256], and arthritis [257].

32

Stellenbosch University  https://scholar.sun.ac.za



2.2. Metabolism and Physiology

Triglycerides present the third arm of the pro-inflammatory cascade. While the ef-

fects of elevated levels of triglycerides are seemingly less severe than elevated levels

of FFAs, their effects nonetheless remain contributory to the overall inflammatory re-

sponse in obese individuals [258]. Triglycerides activate the NF-κB and VCAM-1 pro-

inflammatory signalling pathways - most likely through GPCR signalling [258]. Ad-

ditionally, TGs have been associated with vascular inflammation [259] and increased

FFA release [260].

The effects of obesity however do not remain limited to adipose tissue. The release

of pro-inflammatory cytokines from the adipose tissue profoundly affects skeletal mus-

cle cells. Prolonged sedentary periods decrease the mitochondrial content of skeletal

muscle [261, 262]. This in turn depletes the capacity of skeletal muscle to oxidise FFAs

effectively [263]. Under resting conditions, FFAs satisfy the majority of the Gibbs

energy demand in skeletal muscle. A reduction of this capacity, especially in already

obese individuals is likely to further accumulate inflammatory damage. A further effect

on skeletal muscle is found in the consequences of elevated pro-inflammatory cytokine

levels. Inflammatory markers such as TNFα, IL-1, or IKKβ are able to induce insulin

resistance [264–266]. The persistent, supranormal concentrations of pro-inflammatory

cytokines, the depletion of skeletal muscle FFA-oxidative capacity, and the abrogation

of insulin signalling should ultimately result in the development of type 2 diabetes.

2.2.3 Mouse Skeletal Muscle (C2C12) Cells

The C2C12 mouse SkMC, like most SkMCs begin their lifecycle as precursor my-

oblasts. When given sufficient nutrients, time, and growth factors whether in vivo or in

vitro these cells begin aligning parallel to one another [267]. Thereafter, they begin fus-

ing into multi-nucleated fibres - undergoing further differentiation - until they achieve

morphological parity with muscle fibres or myotubes [268]. The differentiation of

muscle cells is aided by factors such as HsP90 [269], Vitamin D [270], calcium [271],

and insulin [272, 273]. Considering the importance of skeletal muscle in metabolic

homeostasis and its dependence on insulin signalling the choice of an SkMC line for

this study was von selbstsprechend.
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Indeed, the documented use of C2C12 as a model cell line for insulin signalling

[268, 269, 274, 275] as well as the ease with which these cells differentiate [268]

cemented their use for the present study. However, despite the widespread use of

C2C12 cells as a model for insulin signalling and glucose uptake, there remained the

issue of C2C12 cells not having an insulin responsive GLUT4 mechanism [276, 277].

It is likely for this reason that studies choose to use transgenic cell lines [274], glucose

analogues [278, 279], or non-insulinic inducers of the signalling pathway instead [269,

280]. Glucose analogues such as 2-Deoxy Glucose, 2-NBDG, or Fluorodeoxyglucose

accumulate in the cytosol, and inhibit hexokinase, and inhibit glucose transport due to

the accumulation of intracellular glucose [281, 282]. Consequently, these metabolites

are unlikely to provide a bona fide account of glucose transporter activity.

A final aspect to consider is the glucose concentration at which C2C12 cells are

cultured. Work by Luo et al (2019) which suggests that high glucose concentrations

down-regulate Akt signalling [279]. Further, considering that the observed expres-

sion ratio of GLUT1:GLUT4 shifts towards the latter as the cells differentiate [283],

a greater degree of differentiation is desirable when investigating GLUT4. However,

considering negative effects of high glucose concentrations on C2C12 differentiation

[279] as well as the scarcity of reports which mention the degree of SkMC differen-

tiation, it is difficult to draw exact conclusions regarding the functioning of glucose

uptake in these cells. Therefore, determining the basal state of insulin signalling under

conditions that are as physiologically relevant as possible is a priority.

2.3 Systems Biology and Mathematical Modelling

Biological data are being collected at ever more rapid paces, aided by high throughput

methods from fields such as proteomics [284], NMR [285], and bioinformatics [286].

The need for tools which consolidate the available knowledge while providing inter-

active, predictive mechanisms one can use to generate knowledge and meaning from a

dataset is therefore paramount. Systems biology relies on the development of compu-

tational representations - models - of das Ding an sich. While there are innumerable
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models in existence, broadly, there are two approaches: ‘top down’ or ‘bottom up’

models [287]. The modelling approach depends on the available dataset as well as the

research questions one wishes to answer.

The top down approach attempts to find models from large (such as whole genome

or organismal) datasets rather than uncovering it by studying lower-level interactions

[288]. These models often rely on data generated by -omics fields and seek to provide

‘macro-level’ explanations that may ignore details on lower rungs of the hierarchy - es-

pecially if they do not contribute meaningfully to larger scale phenomena [288, 289].

Top down models develop hypotheses based on higher order phenomena which then

seek to be validated through experimentation [290]. For example, the top down ap-

proach may predict protein expression levels or enzyme kinetics based on transcrip-

tomic or metabolomic data respectively. These predictions would then require valida-

tion by directed experimentation. The top down approach therefore seeks to steadily

reduce the data until the most parsimonious explanation of a phenomenon is reached.

Bottom up modelling by contrast attempts to successively integrate low complex-

ity phenomena into more complex systems [291]. Bottom up models rely on detailed

information regarding the parts of a system. The behaviour of the system is then de-

duced based on the functional characteristics and interactions of an artificial subset

of constitutive factors. Whereas top down relies on directed experimentation for hy-

pothesis testing, bottom up models require exploratory experimentation for hypothesis

formulation.

Bottom up modelling often begins with a known molecular mechanism and then

attempts to computationally predict how the system to which the mechanism belongs

might behave. These preliminary predictions would then be used to develop hypothe-

ses which may be tested experimentally or through further computation. Due to the

smaller scale of bottom up modelling, hypotheses can be tested by perturbing the fac-

tors within a system in order to observe how the system reacts. This, fundamentally,

makes bottom up models mechanistic in nature [290].

Top down and bottom up modelling have both been successfully used to decode

the fundamental, functional machinery of cells and organisms. This includes signal
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transduction networks such as insulin signalling [292] and metabolic pathways such as

glycolysis [293]. While the more applied outcomes of systems biology include drug

development [294] or process optimisation [295], fundamentally systems biology is a

tool which is used to uncover and explain natural phenomena from metabolic pathways

to global economies and pandemics [296].

Constructing a model of biological processes is not a trivial task and several ap-

proaches can be considered, each of which depend on the nature of the data, experi-

mental design, and questions the researcher wishes to answer. One such approach is

FBA of large, genome-scale metabolic models. This approach relies on reconstruc-

tions of metabolic networks from genomic data. Based on the stoichiometries of these

metabolic networks, the FBA approach will calculate the fluxes of metabolites through

each reaction and often seeks to answer questions of optimisation; i.e. how to optimise

growth rate or metabolite production [297]. Such an approach was used to tease apart

the metabolism of glucose and glutamine in cancer cells which exhibit the Warburg

effect [298].

Another paradigm is MCA which is based on ODEs much like the approach used

in this thesis. Metabolic control analysis uses a step-wise reconstruction of metabolic

pathways in order to determine how the control of flux is distributed in the network

[299]. This approach is smaller in scale than those which rely on -omics data (such

as FBA), but is probably able to answer more directed questions regarding which en-

zymes or steps in a pathway can be inhibited or activated in order to modulate the flux

of metabolites. Such an approach can be used for signal transduction networks [300].

Other approaches such as domino systems biology [301], supply and demand analysis

[302], and a method by which models are determined from inaccurate or incomplete

data [303] also exist. However, the examination of these and other approaches is be-

yond the scope of this review.

2.3.1 Models of the Insulin Response: An Overview

Possibly the earliest computational model of insulin action dates to the work by Sher-

win et al in 1974 [304]. This work sought to determine the delivery and clearance

36

Stellenbosch University  https://scholar.sun.ac.za



2.3. Systems Biology and Mathematical Modelling

kinetics of insulin in humans. The model divides the insulin delivery and clearance

mechanisms into three distinct compartments: the blood plasma, a small, rapidly equi-

librating compartment, and a larger, more slowly equilibrating compartment. It is

likely that the latter two compartments refer to the peripheral and hepatic vascular

systems respectively [305]. The use of radioionidated insulin, as a tracer molecule,

and an early iteration of Simulation, Analysis, And Modelling software (SAAM), to

derive the deliver and clearance parameters, presented a novel approach to understand-

ing insulin signalling [304].

In the intervening years, the modelling of insulin has advanced significantly and

followed the usual divide between top-down and bottom-up models. An example of

the top-down approach is the model by Dalla-Man et al [33]. Unlike earlier models

which administered GTTs (GTTs), this model used stable isotope tracers in subjects’

meals to gather data regarding the insulin and glucose fluxes in an individual. Herein,

the molecular mechanisms which govern insulin signalling or glucose metabolism are

shunted into so-called ‘black boxes’ as they are neither investigated, simulated, nor

germane to the objectives of the study. The authors set out to measure the glucose and

insulin fluxes in humans in response to a meal [33]. Using these data, the authors con-

structed a limited model which was able to simulate the appearance and disappearance

of glucose and insulin from plasma samples [33, 306]. Similar top-down approaches

are used to simulate insulin and glucose fluxes in response to GTTs where glucose is

administered orally or intravenously and the subjects’ blood plasma is analysed peri-

odically for insulin or glucose levels [307, 308].

In 2002, Sedaghat, Sherman, and Quon published one of the most-comprehensive

bottom-up accounts of the insulin signalling cascade [292]. This model includes nearly

all known effectors downstream of the IR, as well as a preliminary investigation into

the induction of glucose transport. Additionally, the ‘Sedaghat’ model includes various

feedback mechanisms through phosphorylases such as PTEN or SHIP1 [292]. Much

like the work of Sherwin et al in 1974, the Sedaghat model presents an important

milestone in the application of systems biology to insulin signalling. However, it is

necessary to note that their over-reliance on second-hand data as well as paucity of pa-
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rameter analysis and lack of rigour when deciding on parameter values compromised

the strength of the model in the prediction of details. Nonetheless, it provided a good

mechanistic overview of the signalling cascade and in the intervening years, certain

predicted behaviours such as the ‘overshoot’ behaviour of autophosphorylation [309],

cell-surface mobilisation of GLUT4 [310], as well as the general mechanism under-

lying this model have been validated [311, 312]. The pioneering work by Sedaghat,

Sherman, and Quon was further used as a baseline in the development of several other

mathematical models of insulin signalling [149, 311, 313, 314].

The molecular models continued being developed, leading to the inclusion of glyco-

gen breakdown and glucose transporter dynamics [310]. The model developed by Liu

et al built on previous work by Sedaghat et al [292]. The novel inclusion of glycogen

phosphorylase, glucose transporters, and insulin secretion enabled the model to accu-

rately reproduce experimental data. However, it too lacked direct validation through

experimental data. Additionally, the underlying assumption that the behaviour of the

signalling cascade was independent of tissue type is not reflected by the physiologies

of skeletal muscle or adipose tissue.

The work of Brännmark et al in 2013 presents the first detailed modelling account

of insulin signalling in the diabetic state [315]. Herein adipose tissue from diabetic

and non-diabetic people are subjected to immunoblotting as well as glucose (2-deoxy)

uptake assays. The results were used to build a mechanistic model of normal and

diabetic-state insulin signalling in human adipocytes. In order to simulate the dia-

betic state, the authors artificially reduced the IR concentration to 55% [315]. Absent

any salient feedback mechanism this was sufficient to explain the altered phosphory-

lation profile of IRS1. However, available evidence does not support a reduction of IR

concentrations in diabetic individuals [316–318]. This suggests, in line with the con-

clusions of Brännmark et al, that some as yet unknown mechanism might regulate IRS

phosphorylation. Similarly, the authors reduced the available concentration of GLUT4

by 50%. However, it is not clear from their modelling whether this reflects a reduc-

tion of cytosolic GLUT4, GLUT4 at the PM, or inducible GLUT4. Lastly, the authors

attenuated the positive feedback from mTORC1 on to IRS1 by 85%. While this was

38

Stellenbosch University  https://scholar.sun.ac.za



2.3. Systems Biology and Mathematical Modelling

sufficient to account for the majority of defects seen in the diabetic state, it is unknown

whether the model incorporated feedback inhibition of Akt by mTORC1.

Other models sought to reduce the complexity of the entire cascade by instead fo-

cussing on sub-compartments. An example of such an approach which ignores some

of the complexity in favour of a more focussed scientific question and research design

can be found in the work of Sonntag et al [319]. This model sought to describe the

regulation of AMPK by IRS in response to insulin. AMPK was found to be sensitive

to nutrient levels and insulin in HeLa cells and C2C12 myocytes. The latter being an

important distinction from certain studies which establish findings in immature my-

oblasts. Similarly the work by Dalle Pezze et al [320] in the same group explored the

regulation of mTORC2, another sub-compartment of the insulin signalling pathway.

These models are both notable for their combination of specific research questions,

models, and experimental data with which the model predictions are tested and the

questions answered.

Work by Kubota et al [321] explored the impact of the insulin-Akt pathway in

response to differences in pulsatile or sustained insulin addition. Sustained, pulsatile,

or combined secretion of insulin contributed to distinct signalling outcomes (in terms

of glucose transport or the phosphorylation of signalling intermediates) in the Akt-

dependent insulin signalling pathway. The authors define these outcomes as ‘temporal

codes’ which feature differences in network structure, EC50 values, and time constants.

These temporal codes were present in various regulatory aspects such as feedforward

or feedback behaviour and they allowed Akt greater flexibility with regards to which

signalling intermediates it interacts with and when [321].

Temporal coding and a reduced-complexity insulin signalling model and a gly-

colytic model were used by Noguchi et al [322]. The authors used metabolomic and

immunoblotting techniques as well as a unique approach of stimulating rat hepatoma

cells with insulin in a pulsatile manner. With these approaches, the authors assessed

the glycolytic, gluconeogenic, and glycogenic activity of cells in response to changes

in Akt phosphorylation. However, the use of hepatoma cells may provide results that

are not typically seen in healthy cells.
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The modelling strategy employed in this thesis is that of a ‘minimal model’ (see

Chapter 5). This approach is similar to the ‘domino’ approach discussed in [301] in

that the model consists of several ‘input-output’ modules which describe certain as-

pects of the network. However, in contrast to the domino strategy, the modules used

in the minimal strategy are determined a priori by aligning the research questions,

experimental strategy, and available data with one another. Further, the domino strat-

egy allows for the model to be expanded if necessary - ‘adding more dominoes’ - to

account for shortcomings or blindspots.

A minimal model, was used by Bergman [323] to simulate insulin and glucose

fluxes based on data gathered through a GTT. It relied on creating several metabolic

‘black boxes’ or compartments of each of the organs involved in insulin-glucose metabolism.

Similarly, the minimal model will recreate an ODE-based description of the modules

in Section 1.1. The goal is not to create the best-possible model or the model which

described the insulin signalling cascade in the most detail. The goal is to determine

whether: a) a minimal description of the insulin signalling pathway is possible, b) such

a strategy can provide insights into the normal functioning of the insulin signalling

pathway, and c) if such a model can be used to trace dysregulation to a single module

which would then require more detailed investigation.
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Materials and Methods

3.1 Media and Buffer Formulations

Growth Media Standard C2C12 growth media primarily consisted of LG DMEM

(Sigma: D6046) which contained the following: 1 g/L glucose, 4 mM L-Glutamine,

phenol red, and a variety of vitamins, amino acids, and inorganic salts. The precise

composition may be found on the manufacturer’s website. The DMEM was supple-

mented with a further 1 % v/v 200 g/L glucose solution (Gibco: A2494001) to yield

± 15 mM of glucose. The media was also supplemented with 10 % v/v of undialysed

FBS (Gibco: 10493106). The final pH of the growth media was pH 7.4 (± 0.2).

Differentiation Media Standard C2C12 differentiation media consisted of LG DMEM

(Sigma: D6046) supplemented with 1 % v/v 200g/L glucose solution (Gibco A2494001)

and 2 % ES (Sigma: H1270). The final pH of the differentiation media was pH 7.4 (±

0.2).

Cryo-Storage Media Storage media consisted of LG DMEM supplemented with 20

% FBS and 5 % DMSO (Sigma: D2650). The final pH of the storage media was pH

7.4 (± 0.2).

Phosphate Buffered Saline Two PBS tablets (Gibco : 18912014) were added to 1

L MilliQ water, pH-adjusted to ±7.4, and then autoclaved. This yielded a 1× PBS
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buffer.

Tris-Buffered Saline A 10× stock is prepared which contains 200 mM Tris and 1.5

M NaCl in MilliQ water. The pH is adjusted to 7.6 with HCl.

Lysis Buffer This modified version of a RIPA buffer consisted of 50 mM Tris-HCl,

150 mM NaCl, 1 % v/v Triton X-100, in MilliQ and pH-adjusted to ±7.4.

RIPA Buffer Every 10 mL of RIPA buffer contained the following: 25 mM Tris-

HCl, 150 mM NaCl, 0.1 % m/v SDS, 1 % v/v Triton X-100, 0.5 % m/v Na.Deoxycholate,

1 cOmplete™ EDTA-Free Protease Inibitor Cocktail tablet (Sigma: 4693132001), and

1 PhosSTOP™ tablet (Sigma: 4906845001) in MilliQ and pH-adjusted to ±7.4.

Quenching Buffer This buffer consisted of 1× PBS buffer and 500 mM D-Glucose

at a pH of 7.6.

Sample Buffer Sample buffer refers to an 8:2 mixture of 4× Laemmli concentrate

which contains: 0.25 M Tris base, 0.28 M SDS, 40 % v/v glycerol, and 20 % v/v

2-mercapto-ethanol. This was then supplemented with 500 mM DTT.

Stacking Buffer Stacking buffer is a 0.5 M Tris-HCl and 4 % v/v from a 10 % m/v

SDS solution made up in MilliQ water. Thereafter, pH is adjusted to 6.8.

Resolving Buffer Resolving buffer is a 1.5 M Tris-HCl and 4 % v/v from a 10 %

m/v SDS solution made up in MilliQ water. Thereafter, pH is adjusted to 8.8.

Running Buffer The composition of the running buffer is as follows: 190 mM

glycine, 25 mM Tris-HCl, and 1 % m/v SDS, in MilliQ water.

Transfer Buffer The transfer buffer consists of 50 mM Tris-HCl, 380 mM glycine,

0.1 % m/v SDS, and 20 % v/v methanol in MilliQ water.
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Resolving Gel The 8% resolving gels were created by mixing 3.2 mL of acrylamide

with 3 mL resolving buffer and 5.8 mL dH2O. A further 90 µL trichloroethylene (TCE),

84 µL 10% APS, and 6 µL Temed were added for a total volume of 12 mL. The

resolving gel was poured and allowed to polymerise for 40 minutes with 1 mL of pure

isopropanol to cover the top.

Stacking Gel The stacking gel (4%) consisted of 400 µL acrylamide, 750 µL stack-

ing buffer, 1.85 mL dH2O, 14 µL TCE, and 3 µL Temed. Once mixed, the isopropanol

was poured off the resolving gel and the stacking gel was poured on top. The comb

was inserted and the gel was allowed to polymerise for another 40 minutes.

3.2 Methodologies

3.2.1 Replicates and Statistical Analyses

Unless otherwise mentioned, all experiments were performed as biological triplicates.

In other words, three independent cell culture flasks or dishes were grown and sub-

jected to the same experimental protocols for each data point. Similarly, unless oth-

erwise stated, these samples were also evaluated as technical duplicates. This meant

that, for example, a single 14C glucose uptake assay data point would have three inde-

pendent samples each of which would be evaluated twice in the scintillation counter.

The average the technical repeats would be viewed as the result of a single biological

sample. The biological samples would then be averaged and used to calculate the SEM

values and n would be set as n = 3.

All data were gathered and transferred into Microsoft Excel spreadsheets which

would be imported into Wolfram™ Mathematica™ for further analyses. Where data

were non-normal (i.e. Chapter 6), Mann-Whitney U tests were performed to compare

the means of the data. Further, in Chapter 6, Spearman’s Rank correlation testing

was used for these data since they were non-parametric. When comparing two sample

populations (e.g. Chapter 4), a Student’s T-test was performed.
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3.2.2 Cell Culturing

The materials, reagents, and media necessary for the cell culturing in this study may

be found in Tables 3.6, 3.1, and 3.2.

Cell Thawing, Growth, Maintenance, and Differentiation

Mouse skeletal myoblasts (C2C12) were thawed from LN2-stored cryovials and seeded

in T75 (NEST: 708003) vented flasks which contained 10 mL growth medium. The

incubation parameters were: 37◦C, 5% CO2, and >85% relative humidity (Nuaire: NU-

5800). Medium was replaced every second day until a confluence between 70% and

80% was obtained. Cells were then sub-cultured in ratios of 1:6 or 1:10 depending on

the needs of the experiment or size of the dish or flask (100 mm or T175; NEST:704001

and 709003). Thereafter the cells were allowed to reach 80% confluence whereupon

the growth media was replaced with differentiation media. The cells were allowed to

differentiate for five days and the media was replaced every second day. On the fifth

day, the cells were prepared for the coming experiments by (unless otherwise stated)

an overnight starvation in serum-free LG DMEM. On the day of the experiment, the

cells were between 80% and 90% differentiated and had covered nearly 100 % of the

surface of the culture flask.

Sub-Culturing and Storage of Cells

Cells were subcultured at 70% confluence by aspirating the growth medium and wash-

ing with 1 mL (100 mm dish, T75) or 2 mL (T175) Trypsin-EDTA (0.025%: 0.01%;

Gibco: R001100) which were subsequently discarded. After washing, a further 4 mL

(100 mm dish, T75) or 8 mL (T175) of trypsin solution were added to the dishes and

incubated at 37◦C and 5% CO2 for 5 - 8 min and periodically examined under a mi-

croscope. Once sufficient (approx. 90%) numbers of cells had detached, the trypsin

solution was quenched with twice the corresponding volume of growth medium. Sub-

sequently, cells were either sub-cultured as mentioned above or prepared for storage

at -80◦C. Cells to be frozen were centrifuged at 750 × g for 5 min. The remaining

media was aspirated and the pellet was dissolved in 3 mL cryo-storage media. From
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this solution, 100 µL were aliquoted for cell counting. Using a haemocytometer, cells

were counted and appropriately diluted (with growth media) or concentrated (via cen-

trifugation) until a final concentration of 3× 105 cells/mL was achieved. Thereafter, 1

mL was added to each cryovial and these were immediately stored in liquid nitrogen

(LN2).

3.2.3 Glycolytic Flux and Spectrophotometry

The equipment, reagents, media, and materials for these experiments may be found in

Tables 3.6, 3.1, 3.2, and 3.3. For these and subsequent sections, ‘room temperature’ is

approximately 25 ◦C.

Sample Collection

Cells were sub-cultured into T175 flasks as per Section 3.2.2. Each flask was seeded

with roughly 400,000 cells. On the morning of the experiment, cells were starved

of serum and glucose in 37◦C PBS which was supplemented to 1 mM MgCl2 and

1 mM CaCl2 for four hours. The cells were then exposed to various concentrations

of insulin; these ranged from 10 pM to 1 µM. Cells were returned to the incubator

and allowed to incubate for 30 minutes. The PBS was removed and each triplicate

of flasks was then given 20 mL of 37◦C LG DMEM which was supplemented to the

respective concentration of insulin. Samples were extracted at 100 µL volumes at

various timepoints thereafter (see chapter Chapter 5) and frozen at -20◦C for further

use in glucose and lactate determination assays. Once all of the necessary samples had

been collected, the DMEM was removed and the cells were thrice-washed with 37◦C

PBS. Thereafter, excess PBS was removed and each flask was given 1 mL of lysis

buffer and scraped until the growth surface was clear. Finally, 1 mL of the scraped

cells was removed and stored at -20 ◦C for protein determination.

Protein Determination

Relative protein concentrations were determined via the linearised Bradford protocol

as described by [324]. Each sample was diluted 100-, 40-, and 20-fold whereupon 20
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µL of sample were added, in triplicate, to a 96-well Greiner F-bottom microtiter plate

and Bradford solution was added for a 300 µL final volume. Standards were performed

for each instance of protein determination and ranged from 0.5 mg/mL BSA to approx.

0.0039 mg/mL over a series of seven two-fold dilutions with dH2O. The ratio of OD590

to OD450 yielded, upon blanking, a linear standard curve in the form of y = mx + c.

Sample protein concentrations were calculated at each dilution and averaged.

Glucose Determination

End-point glucose determination assays were prepared as follows: for each 96-well

plate, 10 mL of 0.1 M Tris-HCl buffer (pH ±8): 2 mM Mg.ATP (Sigma: A9187),

4 mM NADP+ (Sigma: N3139), 4 mM MgCl2 , 100 U hexokinase (HXK) (Sigma:

H6380), and 40 U glucose-6-phosphate dehydrogenase G6PDH (S. cerevisiae; Sigma:

G7877) were prepared. A series of glucose dilutions which ranged from 1 g/L to

0.0078 g/L was established using LG DMEM and MilliQ water. Respectively, 10

µL sample (or standard) and 90 µL of the assay cocktail were added (in triplicate)

to a Greiner F-bottom 96-well plate and reactions were allowed to proceed at room

temperature for 30 minutes. Plates were then read in a spectrophotometer at 340 nm

(BMG Labtech SPECTROstar Nano).

Lactate Determination

End-point lactate determination assays were prepared as follows: for each 96-well

plate, 10 mL of 1x PBS buffer (pH ±7.4): 5 mM NAD+ (Sigma: N7004), 2.5 %

v/v Hydrazine, and 40 U LDH (Sigma: L2625) were prepared. A series of lactate

dilutions ranging from 0.0039 g/L to 0.5 g/L was established using pure L-Lactate

(Sigma: L7022) and MilliQ water. Respectively, 10 µL sample (or standard) and 90

µL of the assay cocktail were added (in triplicate) to a Greiner F-bottom 96-well plate

and allowed to react at room temperature for 30 minutes. The samples were then read

in a spectrophotometer at OD340 (BMG Labtech SPECTROstar Nano).
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3.2.4 Radiolabelled Glucose Uptake Determination

These experiments were conducted in order to determine the basal and induced activi-

ties of the GLUT1 and GLUT4 glucose transporters. The premise is that, when starved

of glucose and serum, these cells will exhibit a pronounced increase in glucose up-

take in response to insulin stimulation. Exposure to radiolabeled - 14C - glucose as an

admixture of unlabeled glucose in serum-free DMEM should result in a proportional

uptake of either. Further, washing the cells with ice-cold quenching buffer (containing

500 mM unlabeled glucose), would wash any remaining labeled glucose from the cell

surface and transporters by outcompeting the labeled glucose. Comparing the scin-

tillation counts of each sample to its respective reference sample will therefore yield

the proportion of labeled glucose that entered the cells. Lastly, comparing the samples

from each time, or concentration series would provide information about the time-,

and concentration-dependent activity of the GLUT1 and GLUT4 transporters. Since

GLUT1 does not respond to insulin with an increased transport activity, GLUT4 is as-

sumed to be transporter responsible for the any increase in glucose transport activity.

The relevant materials may be found in Tables 3.6, 3.1, 3.2, and 3.3.

Preparation

Cells were cultured in 100 mm dishes as described in Section 3.2.2. One the day of

the experiment, cells were glucose- and serum-starved for four hours in 37 ◦C PBS

which had been supplemented to 1 mM MgCl2 and 1 mM CaCl2. While the cells were

starving, the glucose solution was prepared by adding 10 µCi of radiolabeled glucose

to 9.99 mL of LG DMEM. This yielded a final concentration of 1 µCi/mL which was

then heated to 37 ◦C. The quenching buffer was aliquoted into an appropriate number

of 15 mL tubes which were promptly placed on ice until needed. Once the four-hour

starving period had expired, the cells were either exposed to a constant concentra-

tion of insulin over a set of timepoints or they were incubated with a range of insulin

concentrations over 30 minutes, at 37 ◦C. It must be noted that each concentration or

time-point represents an independent, biological triplicate.

47

Stellenbosch University  https://scholar.sun.ac.za



3.2. Methodologies

Methodology

Once the respective incubation period was over, the PBS-insulin buffer was quickly

and as completely as possible removed. The radiolabeled glucose-DMEM mixture

was added to the cells for two seconds before being quenched with the ice-cold quench-

ing buffer. The cells were washed by swirling the quenching buffer in each dish and

then disposing of it as completely as possible. Thereafter, the cells were harvested by

adding 500 µL of lysis buffer to each dish and scraping until the growth area was clear.

The cells were then either immediately prepared for scintillation counting or frozen

overnight at -20 ◦C.

Scintillation counting occurred within 24 hours of each sampling by removing 100

µL of the cell mixture and depositing them into a PET scintillation vial – the remainder

would be used for protein determination or repeat scintillations. The cell mixture was

then further supplemented with five mL of scintillation fluid. Scintillation vials were

then placed in a Perkin Elmer Tri-Carb 2810TR scintillation counter. Each sample was

analysed for 10 minutes and returned an average total count which was representative

of the total amount of radiolabeled glucose present. Lastly, included in each cycle of

the scintillation counter was a blank sample which contained only 5 mL scintillation

fluid and one reference vial for each sample that contained 100 µL of the radiolabeled

glucose-DMEM mixture before it was added to the cells.

3.2.5 Western Blotting

Western blotting was kindly performed by Dr. T. Kouril of Stellenbosch University,

South Africa. The relevant materials may be found in Tables 3.6, 3.2, 3.4, 3.5, and 3.7.

Sample Collection

Cells were cultured in 100 mm culture dishes as per section Section 3.2.2. On the

day of the assay, cells were serum and glucose starved for four hours in 37 ◦C PBS

which had been supplemented to 1 mM CaCl2 and 1 mM MgCl2. Thereafter, the

cells were either exposed to varying insulin concentrations for 30 minutes, or exposed

to a constant insulin concentration for a set of time points. After each time point,
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the PBS was removed, 500 µL of RIPA buffer was added to each dish, and the cells

were harvested by scraping until the growth area was clear. Finally, 500 µL of the

cell suspension was collected, deposited in a sterile Eppendorf tube, and immediately

submersed in LN2 before transfer to long-term storage at -80 ◦C.

Method

Samples were thawed at room temperature, briefly agitated in a vortex mixer, and then

centrifuged for 5000 × g for 15 minutes. Then, 100 µL of the supernatant is removed

and mixed with 20 µL sample buffer. From this, 50 µL was removed and diluted with

a further 40 µL of sample buffer and the requisite volume of TBS until the desired

dilution was achieved. The rest was stored at -20 ◦C.

Each well was loaded with 10 µg of sample. Further, each gel contained marker

proteins as well as a control sample (cells exposed to 100 nM insulin for 30 minutes

concurrent to the experiment). The outer chamber was filled with with 1× running

buffer and electrophoresis ocurred at 25 mA per gel. A Gel Doc was used to evaluate

the success and quality of electrophoresis.

After electrophoresis, gels were equilibrated in transfer buffer for 15 minutes. Dur-

ing this time, the PVDF membrane was activated in absolute methanol for five minutes

after which it was equilibrated in transfer buffer until use. The sandwich was prepared

as follows: sponge - blotting paper - PVDF membrane - gel - blotting paper - sponge,

oriented from anode to cathode respectively. This sandwich was then placed in the

chamber of the transfer system and underwent overnight electrophoresis at 15 - 20 V

and 4 ◦C.

Once the proteins had transferred onto the membrane, the latter was washed in 1×

TBS buffer supplemented with 0.1 % v/v Tween®20 (TBS-T), for one, five, and 15

minutes respectively - the spent TBS-T was discarded and new TBS-T was added after

each wash. Gels and membranes were visualised using a Gel-Doc imaging system

to ensure the majority of protein had indeed transferred onto the membrane. Once

confirmed, the membrane was blocked using 5 % v/v skim milk in TBS-T. The specific

regions of interest on each membrane were excised and placed into their corresponding
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antibody solutions overnight at 4 ◦C. The following day, each membrane strip was

individually washed in TBS-T as previously described. Subsequently, each strip was

incubated in its respective secondary antibody for one hour at RT and washed in TBS-

T as previously described. Lastly, each membrane was incubated with Clarity Western

ECL Substrate (Bio-Rad: 170-5061) for five minutes and then visualised using the

MyECL imager.

The data were then analysed in the ImageLab software suite to determine the nor-

malisation factors for each band. Similarly, ImageJ was used to generate intensity

profiles for each band. The peaks were then manually selected for each band and the

area under each peak was determined. These values were normalised with the factors

determined from the ImageLab software.

3.2.6 GLUT4-GFP Transfections

pB-GLUT4-7myc-GFP was a gift from Jonathan Bogan (Addgene plasmid # 52872)

[325]. The relevant materials may be found in Tables 3.6, 3.1, and 3.2.

Plasmid Amplification

Transformed E.coli (DH5α) cells were purchased from Addgene (52872), innoculated

to: 50 mL LB medium supplemented to 2 µg/mL Ampicillin (Sigma: A9518), and

incubated overnight at 37◦C and 180 rpm. Bacterial cultures were then prepared either

for expansion or storage in -80◦C as 1:1 glycerol stocks.

Plasmid Isolation

Plasmid DNA was isolated using the GeneJET™Plasmid Midiprep Kit (ThermoFisher:

K0481) according to the manufacturer’s instructions. Briefly: overnight E.coli cultures

were transferred to sterile 50 mL Falcon tubes and centrifuged for at 4◦C and 4500× g

for 10 min. The supernatant was discarded and the pellet was resuspended in 2 mL

proprietary resuspension buffer (containing 4% v/v RNAse) by vortexing. A further 2

mL of proprietary lysis buffer was added and the cells were left to incubate at RT for 3

min before inverting 6 times. This mixture was neutralised with 2 mL of the provided
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neutralisation buffer by inverting 6 times. In order to neutralise endotoxins, 0.5 mL of

endotoxin binding buffer was added, inverted a further six times, and left to incubate

at RT for 5 min. The mixture was washed with 3 mL EtOH (absolute) and centrifuged

for 40 min at 4500× g. The supernatant was transferred to a fresh 15 mL Falcon tube,

washed with 3 mL EtOH (absolute), and inverted 6 times. The resulting mixture was

transferred to a provided filtration column and centrifuged for 3 min at 3000×g. After

the flow-through had been discarded, the column was re-filled with 4 mL of Wash

Solution 1 and centrifuged for 2 min at 3000 × g. Once again the flow-through was

discarded and the column was re-filled with Wash Solution 2 and centrifuged for 2 min

at 3000× g. This step was once. Thereafter, the column was dry-centrifuged for 5 min

at 3000× g. Finally, the filter was aseptically removed and placed into a fresh, sterile

15 mL Falcon tube. To this, 0.35 mL of Elution buffer were added, incubated for 2

min at RT, and centrifuged for 5 min at 3000 × g. The filter was discarded and the

remaining dsDNA was aliquoted for quantification or storage at -20◦C.

DNA Quantification

Double-stranded DNA was diluted 1:9 in 200 µL sterile MilliQ water before being

transferred to a quartz cuvette (Hellma: 105-201-15-40). After blanking with MilliQ

water, the sample was read in a spectrophotometer (Agilent: Cary 60), and the A260/A280

was determined. Values lower than 1.8 or greater than 2.0 indicated RNA or phenol

contamination respectively. Samples within the acceptable range had their dsDNA

concentration calculated by multiplying the A260 value by 50 µg/mL and the dilution

factor.

Transfection

Cells (C2C12) were seeded into a 100 mm dish and given 24 hours to acclimate in

complete growth media. The following day, the spent culturing media was aspirated

and replaced with 1 mL of unsupplemented, 37◦C Opti-MEM (Gibco: 31985070).

Thereafter, 1mL of unsupplemented, 37◦C Opti-MEM, 10 µg plasmid, and 15 µL

X-tremeGENE™ transfection reagent (Sigma: 6366236001) were added to a sterile,
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RNAse-free Eppendorf tube and briefly agitated in a vortex mixer. The plasmid mix-

ture was then allowed to incubate for 15 min at room temperature.

The Opti-MEM was aspirated from the cells and replaced, dropwise, by the plas-

mid mixture. The transfection was allowed to proceed overnight before the medium

was replaced. The transfection was confirmed using the EVOS-FL microscope system

(Invitrogen). Subsequently the cells were subcultured into Nunc 8-well glass cover slip

dishes or MaTTek 35 mm glass cover slip dishes at 5× 103 cells per cm2 and given 24

hours to recover.

GLUT4 Translocation Study

The transfected C2C12 myoblasts were starved in 37◦C PBS (supplemented with 1

mM MgCl2 and 1 mM CaCl2 ) for 30 minutes. Subsequently, the cells were exposed to

1 µL CellMask™ Orange and 10 µL Hoechst stains for a further 10 minutes. The cells

were then washed twice with the 37◦CPBS mixture before being imaged in the basal,

unstimulated state. Once imaged, the cells were exposed to 100 nM of insulin for 30

minutes, before undergoing further imaging.

3.2.7 Imaging

The materials, equipment, reagents, and software which were used during these exper-

iments may be found in Tables 3.6, 3.1, 3.2, and 3.7.

LADD Staining

The staining protocol was adapted from [326].

Cells were seeded in several six-well dishes at an initial density of 5× 104 cells/cm2

and then grown and differentiated as described in Section 3.2.2. Each six-well dish rep-

resented a single day along the differentiation time line and was split into three wells

each representing standard and updated culturing conditions respectively.

On the day of the experiment, the cells were twice-washed with 37◦C PBS and then

fixed in 1 mL of 100% EtOH for 10 minutes. The EtOH was aspirated and replaced

with 1 mL of the LADD stain (0.27 % m/v tolouidine blue and 0.73 % m/v fuchsin
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dissolved in a 30 % v/v EtOH solution). The stain proceeded for one minute before

being aspirated. The cells were washed with distilled water until the water was clear -

in this instance, three times - and allowed to dry overnight.

Cells were visualised with an Olympus CKX 41 inverted microscope set to phase-

contrast at 200× magnification. Each well was randomly photographed in six separate

areas. The images were imported into the ImageJ software suite and each image was

further divided into nine quadrants. A random number generator was used to select

three quadrants from each image. These quadrants were further analysed using the

‘Cell Counter’ plugin. Using this plugin, nuclei were assigned to myofibers (three or

more nuclei per cell) or myocytes (a single nucleus per cell). Cells and nuclei near

the edge of each image were ignored. Using these separate nuclei counts, a ratio of

‘differentiated’ nuclei (those in fibers) to ‘undifferentiated’ nuclei (those in myocytes)

was calculated.

Confocal Microscopy

Since C2C12 myoblasts adhere to the material of the cell culture dishes, no chemical

fixing was used in the preparation of the images. The cells were imaged with a Zeiss

LSM 780 confocal microscope. Additionally, the stage temperature, CO2 levels, and

humidity were kept constant at 37◦C, 5%, and approx. 80% resppectively. Cells were

selected on a ‘first-found’ basis - in other words the first cell that exhibited GFP activity

during a random scan of the dish. Each cell was imaged with a 63× oil-immersion

objective along the Z-axis - beginning and ending slightly out of focus. Resolution

was set at 1024×1024 pixels with a step-size of 700 nm and an overlap of 10 nm with

each vertical slice. The following wavelenghts: 350 nm, 395 nm, and 567 nm were

used to excite the Hoechst stain, GFP, and CellMask™ Orange stain respectively. Cells

were not imaged for longer than 60 minutes to ensure minimal photobleaching and dye

cross-reactivity or internalisation. Similarly, laser intensity was kept to a minimum.

The ZEN Lite software output a .lsm file which, when read into FiJi, separated each

colour channel into a separate Z-stack.
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3.3 Reagents, Apparatus, and Software

The reagents, apparatus, and software used for this project are summarised in the fol-

lowing tables.

Table 3.1: General Reagents

Reagent Supplier Catalogue #

Triton X-100 BDH Chemical 30632
Tris Hydroxy
Aminomethane

Sigma-Merck 1.08382

PBS Tablets Gibco 18912014
PhosSTOP Tablets Sigma-Merck 4906845001
Na.Deoxycholate Sigma-Merck D6750
cOmplete™ Protease
Inhibitor

Sigma-Merck 4693132001

NaCl Sigma-Merck 1.02406
MgCl.6H2O Sigma-Merck 1.05833
CaCl.2H2O Sigma-Merck 1.02382
1x DPBS Sigma-Merck D8537
Fuchsin Sigma-Merck 47860
Tolouidine Blue Sigma-Merck 89640
Coomassie Brilliant
Blue G250

Sigma-Merck 27815

SDS Sigma-Merck 75746
Na.Ampicillin Sigma-Merck A9518
LB Broth Sigma-Merck L3022
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Table 3.2: Cell Culture Reagents

Reagent Supplier Catalogue #

DMEM Sigma-Merck D6406
Glucose Solution Gibco A2494001
Equine Serum Sigma-Merck H1270
Foetal Bovine Serum Gibco 10500-064
DMSO Sigma-Merck D2650
Insulin Sigma-Merck I9278
x-Treme GeneHP™ Sigma-Merck 6366236001
opti-MEM Gibco 31985070
10x Trypsin-EDTA Sigma-Merck L2153
CellMask™ Orange ThermoFisher C10045
Hoechst 33258 abcam ab228550

Table 3.3: Assay Reagents

Reagent Supplier Catalogue #

Hydrazine.H2O Sigma-Merck 207942
G6PDH Sigma-Merck G7877(S. Cerevisiae),

G8404(L. Mesen-
teroides)

C14-glucose AEC Amersham ARC 0122G
LDH Sigma-Merck L2625
ATP Sigma-Merck A9187
NADP+ Sigma-Merck N3139
NAD+ Sigma-Merck N7004
Na.L-Lactate Sigma-Merck L7022
BSA Sigma-Merck A7906
HXK Sigma-Merck H6380
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Table 3.4: Western Blotting Components:

Component Manufacturer Catalogue #

Temed Sigma-Merck T9281
Acrylamide Sigma-Merck A3699
TCE Sigma-Merck T54801
DTT Sigma-Merck 11583786001
4× Laemmli concen-
trate

Bio-Rad Laboratories 161-0747

Na.Arzide Sigma-Merck S2002
Tween®20 Sigma-Merck P9416
Methanol (absolute) Sigma-Merck 1.06007.2500
Immun-Blot® PVDF
membrane

Bio-Rad Laboratories 162-0177

Sponge Bio-Rad Laboratories 170-3932
Blotting Paper Bio-Rad Laboratories 162-0118
Precision Plus Protein™ Bio-Rad Laboratories 161-0373
30% Acrylamide/Bis-
Acrylamide Solution

Sigma-Merck A3699

Clarity Western ECL
Substrate

Bio-Rad Laboratories 170-5061

Table 3.5: Antibodies: all primary antibodies were diluted 1:999 in their respective
diluents and 3mM sodium arzide. Secondary antibodies were freshly diluted 1:10 000
for each Western blot.

Antibody Diluent Manufacturer Catalogue #

Akttotal 5% BSA Cell Signaling
Technology®

9272

Anti-Akt1S473 5% skim milk Abcam 81283
Anti-Akt123T308 5% skim milk Cell Signaling

Technology®
13038

IRtotal 5% skim milk Abcam 69508
Anti-Phospho Ty-
rosine

5% BSA Cell Signaling
Technology®

9411

(Goat) Anti-
mouse secondary

5% skim milk Abcam ab97051

(Goat) Anti-
rabbit secondary

5% skim milk Abcam ab97023
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Table 3.6: List of Equipment

Apparatus Manufacturer Model #

Incubator NuAire NU-5800
Spectrophotometer BMG Labtech SPECTROstar Nano
Scintillation Counter Perkin Elmer Tri-Carb 2810TR
Benchtop Centrifuge Eppendorf 5804
Autoclave Steridium SD660
Confocal Miscroscope Carl Zeiss LSM 780
Haemocytometer Marienfield Neubauer-Improved

0.1 mm (0640010)
Spectrophotometer Agilent Technologies Cary 60
Swing-bucket rotor Eppendorf A-4-44
Fixed angle rotor Eppendorf F 45-30-11
Culture Dishes Nest 708003(T75),

709003(T175),
704001(100 mm)

35 mm glass bottom
dishes

MaTTek P35G-1.5-14-C

GeneJET™ kit ThermoFischer K0481
EVOS™-FL Micro-
scope

Invitrogen AMF4300

MilliQ system MerckMilliPore C79625
dH2O system PurePro EC105
F-bottom Microtitre
96-Well Plates

Greiner P1PLA024C-000096

Rotary Shaker Already Enterprise Inc. LM-575D
Scale Mettler Toledo ME204
pH Meter Crison GLP 21
10 mm Quartz Cuvette Hellma 105-201-15-40
Gel-Doc™ XR+ Bio-Rad
Mini-PROTEAN®

Tetra Cell Casting
Module

Bio-Rad Laboratories 165-8016

Mini-PROTEAN®

Tetra Vertical Elec-
trophoresis Cell

Bio-Rad Laboratories 165-8004

Mini Trans-Blot® Cell Bio-Rad Laboratories
myECL™ Imager Thermo Scientific™ 13375071
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Table 3.7: The varieties of software used and their purpose(s)

Purpose Software Developer

Initial data analysis and
formatting

Excel 365 Microsoft Corporation

Detailed data analysis
as well as the develop-
ment and simulation of
an ODE-based model

Wolfram Mathematica
v. 11.x

Wolfram Research

Analysis of phase-
contrast microscope
images as well as
Western blots

Fiji (ImageJ) v.1.52 GPL v.2

Further analysis of
Western blots

Image Lab Bio-Rad Laboratories

Capturing and initial
analysis of confocal mi-
croscope images

ZEN Lite v.2.1 Carl Zeiss AG

Capturing of phase-
contrast images

ScopeTek Devices v.1.2 Hangzhou Scopetek
Opto-Electric Co.
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Chapter 4

Optimisation of Growth Conditions

4.1 Introduction

The use of C2C12 cells in studying insulin signalling or glucose metabolism is well-

documented [268, 271, 327]. These cells are widely used as a model for signal trans-

duction pathways as well as muscle metabolism. C2C12 cells can be used in the un-

differentiated stage as myoblasts, or once they have differentiated, as myotubes. Since

myotubes are the dominant form of these cells in adult animals, the cells are often

used in differentiated form. However, few studies attempt to quantify the degree to

which their cells are differentiated. Studies that do track the degree to which cells are

differentiated report values of between 10% [328] and 45% [326].

Although some consensus on medium composition exists (e.g. 25 mM glucose and

10% FBS), studies often neglect to mention the DMEM formulation that is used or

the final glucose concentration of the media being used. Under these hyperglycaemic

conditions, increases in glucose import upon the addition of insulin of up to 10-fold

were reported [329, 330] as well as increases in glycolytic flux that ranged between

1.3- and 2-fold [331, 332]. In this study, evaluating the culturing conditions of C2C12

cells was motivated by the fact that high blood glucose concentrations are indicative,

if not causative, of insulin resistance in vivo [333].

In vivo glucose concentrations in mice vary depending on lineage. However, con-

centrations of 120 - 300 mg/dL (6.6 - 16.7 mM) have been reported [334, 335]. In
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diabetic (db/db) mice the fasting glucose concentrations can be as high as 470 mg/dL

or 26 mM [336]. Similarly, the circulating concentrations of insulin range between 0.5

ng/mL and 1.7 ng/mL (80 - 300 pM) [334, 336]. The standard glucose concentration in

most culture media of 4.5 g/L more closely resembles those found in the diabetic mice.

Insulin concentrations in sera are generally not evaluated. However, in rat adipocytes

(3T3-L1 cells), Foetal Bovine Serum (FBS) exhibits insulin-like effects on the translo-

cation of GLUT4 to the plasma membrane while also stimulating glucose (2-Deoxy

glucose) uptake [337].

Variations in culturing conditions may affect the insulin sensitivity of the cells.

Firstly, high glucose concentrations are associated with increases in reactive oxygen

species (ROS) [338, 339]. Secondly, the greater levels of glucose and ROS lead to

decreases in cell differentiation in neural cells [340], cardiomyocytes [341], and mes-

enchymal stem cells [342]. Thirdly, in differentiated myotubes GLUT4 is expressed in

greater quantities when compared with myoblasts [233]. Lastly, GLUT4 is the main

insulin-responsive glucose transporter in skeletal muscle cells [343, 344]. Therefore,

how cells are cultured may well affect their responsiveness to insulin. A recent review

of C2C12 cells suggests that hyperglycaemia may indeed affect the insulin sensitivity

of these cells [345].

Common culturing practices - high (>25 mM) glucose concentrations and a mini-

mum of 10% v/v FBS - may therefore induce insulin desensitisation of in vitro C2C12

cells. Therefore, in order to more accurately determine the basal state of insulin sig-

nalling and glucose transport, it was necessary to determine the culturing conditions

which best balanced the physiological state of in situ muscle cells, cells which would

remain insulin sensitive, and a realistic culturing and experimental schedule. Further,

the data from this study would be used to inform studies in Chapter 5 which sought

to offer a proof-of-concept for the induction of insulin resistance in C2C12 cells. In

pursuance of these objectives, the cells were grown at various glucose concentration

and induced with insulin, FBS, or a combination of both and their glucose-lactate flux

was evaluated as a proxy-measure for insulin sensitivity.
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4.2 Materials and Methods

4.2.1 Cell Culture Protocol

Mouse skeletal myoblasts (C2C12, ± 500,000 cells) were thawed from liquid nitrogen

storage and seeded in vented T75 culturing flasks which contained 10 mL of complete

culturing media. Growth media was replaced every two days until a confluence of ±

80% was achieved - by the fifth day. Thereafter, the cells were either split or differ-

entiated. The latter saw culture media supplemented with 2% v/v horse serum instead

of FBS, whereas the former occurred according to protocols discussed in Chapter 3.

Once again, differentiation media was replaced every second day until the cells were

judged to be mostly differentiated - by the fifth day. The media formulations used are

summarised as follows: ‘standard’ media contained 25 mM glucose DMEM and 10%

FBS whereas the ‘updated’ media had the 25 mM glucose reduced to 15 mM. During

differentiation, the 10% FBS was replaced with 2% horse serum (HS).

Differentiated cells were prepared for experimentation by transferring them into

media containing no serum for an overnight (12 to 14 hours) serum-starvation period.

Subsequently the cells were starved of glucose and serum for a further four hours in

PBS which was supplemented to 1 mM MgCl2 and 1 mM CaCl2. This last step was

undertaken to put the cells into a ‘zero-glucose’ state which meant that their internal

stores of glucose were mostly depleted. This step was taken in order to ensure that

the glucose flux or 14C glucose-uptake that was observed was due to the ‘actual’ up-

take of the glucose and minimally influenced by feedback inhibition or the internal

concentration of glucose.

Half an hour before each experiment, the cells were stimulated with 100 nM of

insulin, 10 % v/v FBS, or a combination of insulin and FBS for the induction of the

signalling cascade. The cells were induced with FBS in order to determine whether

this (often) undefined mixture of growth factors and proteins has an insulin-like effect

on the glycolytic flux in C2C12 cells. Lastly, details regarding equipment, reagents, as

well as the procedures for the enzymatic determination of lactate and glucose concen-

trations can be found in Chapter 3. While initially, half an hour was chosen based on
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literature [346, 347], subsequent experiments (Chapter 5) will show that 15 minutes

are sufficient.

4.2.2 LADD-staining and Image Analysis

The staining protocol was adapted from [326]. The LADD multiple stain contains a

combination of fuchsin and toluidine blue. This stain is able to differentially stain

the cytoplasm and nuclei of cells, thereby enhancing contrast and identification of

organelles [348].

Cells were seeded in several six-well dishes at an initial density of 5× 104 cells/cm2

and then grown and differentiated as previously described. The cells were split into

seven, six-well dishes. Each six-well dish was divided into three wells which repre-

sented the 25 mM glucose (standard) culturing condition and three wells which rep-

resented the 15 mM glucose (updated) culturing condition. Beginning with the day

before differentiation, each six-well dish was stained (vide infra) and photographed

under a microscope.

Before staining, the cells were twice-washed with warm PBS and then fixed in 1

mL of 100% EtOH for 10 minutes. The EtOH was aspirated and replaced with 1 mL

of the LADD stain (0.27 % m/v tolouidine blue and 0.73 % m/v of fuchsin dissolved

in a 30 % v/v EtOH solution) for one minute, aspirated, and then washed with distilled

water until the water was clear. In this instance, three washes were required. The cells

were then allowed to dry overnight.

Cells were visualised with an Olympus CKX 41 inverted microscope set to phase-

contrast at 200× magnification. Each well was photographed in six, randomly chosen,

areas. The images were imported into the ImageJ software suite and each image was

further divided into nine quadrants. A random number generator was used to select

three quadrants from each image. These quadrants were further analysed using the

‘Cell Counter’ plugin. Using this plugin, nuclei were assigned to the fiber category

(three or more nuclei per cell) or to the myocyte category (a single nucleus per cell).

Cells and nuclei near the edge of each image were ignored. Using these separate nuclei

counts, a ratio of ‘differentiated’ nuclei (those in fibers) to ‘undifferentiated’ nuclei
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(those in myocytes) was calculated.

4.3 Results and Discussion

In tissue culture literature it is not often made explicit at which glucose (or metabolites

such as pyruvate or glutamate) concentration the cells were cultured [349]. The gen-

eral assumption is that, unless otherwise specified, cells are usually cultured at higher

glucose concentrations. While this may be a good approach for the majority of cell

lines, as the present chapter will illustrate, this may not be the best approach for all

cell lines, or for all research questions.

4.3.1 Glycolytic Flux Measurement

Glucose concentrations during cell culturing were evaluated for their potential to gen-

erate cells that were responsive to insulin. This responsiveness was assayed by deter-

mining the glucose consumption and lactate production rates as well as their respective

fold induction by insulin. Cells grown under standard, high glucose conditions were

stimulated with 100 nM insulin, 10% FBS, or a combination of 100 nM insulin and

10% FBS. Water, as the carrier condition, was used for the control experiments. The

glucose consumption and lactate production results are shown in Fig. 4.1. Glucose

consumption remained linear throughout the experiment for all culturing conditions

and no significant differences were observed between cells cultured with high glucose

concentrations (Table 4.1).

However, cells grown under medium or low glucose conditions showed an induc-

tion of glucose consumption in response to insulin, FBS, or a combination thereof.

In other words, these cells retained their insulin sensitivity and were able to upregu-

late glucose transport or glycolysis in response. For example, while the control glu-

cose consumption was 0.025 µmol.min−1.mg−1 (±0.002) for all culturing conditions,

adding 100 nM insulin to the medium and low glucose cells increased their glucose

consumption rate to 0.044 µmol.min−1.mg−1 (±0.003) and 0.038 µmol.min−1.mg−1

(±0.001) respectively. The difference between these two rates was not significant (p
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= 0.55). In contrast, the glucose consumption rate of insulin stimulated cells grown at

high glucose was essentially the same as the control value at 0.024 µmol.min−1.mg−1

(±0.0005), a difference which was not significant either (p = 0.24). Similarly, insulin

stimulated the production of lactate, which remained linear in time for all culturing

conditions. The induction of lactate production by insulin and FBS is evident under

the medium and low glucose conditions. The rates were normalised to the total protein

concentration in each experimental vessel and are presented in Table 4.1. The results

indicate that in these C2C12 cells grown under standard, high glucose conditions, their

responsiveness to insulin had been greatly diminished. When normalised to the control

condition (high glucose), both glucose consumption and lactate production showed no

induction by the addition of insulin, FBS, or the combination thereof (Table 4.1).

Comparing the glucose consumption and lactate production rates (0.0246 and 0.0514

µmol.min−1.mg−1respectively) of the medium glucose control (i.e. cells not induced

with insulin) (Fig. 4.1) yielded no significant difference to the high glucose control

(Table 4.1). However, the insulin-, FBS-, and insulin and FBS-stimulated consump-

tion and production rates showed significant inductions. The insulin-stimulated cells

showed a 1.7-fold induction of glucose consumption and a similar induction of lactate

production. The FBS-only stimulated cells showed a more modest, 1.1-fold induction

of both glucose consumption and lactate production. Lastly, stimulating the cells with

both FBS and insulin had little advantage over stimulating with insulin exclusively,

yielding a 1.61- and 1.55-fold induction of glucose consumption and lactate produc-

tion respectively.

In addition to high and medium glucose culturing conditions, these experiments

were repeated using cells cultured under low, but physiological, glucose (5.5 mM or

1 g/L) conditions. The glucose consumption and lactate production rates (Table 4.1,±

0.025 and ±0.047 µmol.min−1.mg−1respectively), without insulin induction, did not

differ from cells grown under high or medium glucose conditions. Insulin did stim-

ulate glycolytic flux in these cells; consumption and production rates achieved 1.5-

and 1.44-fold induction when compared to the control (Table 4.1). These rates, how-

ever, did not achieve as strong an induction of flux as was seen in cells grown under
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medium-level glucose conditions. A modest induction was seen with FBS-stimulated

cells - approximately 1.2-fold for both glucose consumption and lactate production.

The combination of insulin and FBS showed the greatest induction of glycolytic flux

in these cells.

HGMG LG
Control

HGMG LG
100 nM Insulin

HGMG LG
FBS

HGMG LG
FBS+Ins
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Normalised Glucose Consumption Rates

Figure 4.2: Glycolysis in terms of glucose consumption as induced by 100 nM insulin,
10 % v/v FBS, or both. Cells cultured in 25 mM (HG), 15 mM (MG), or 5 mM (LG),
glucose are indicated as grey, green, or blue bars respectively. Error bars indicate SEM,
and each bar represents a biological triplicate (n = 3).

The results further indicated discrepancies between the final glucose and lactate

concentrations as well as their respective consumption and production rates Table 4.1.

Glycolysis degrades one molecule of glucose into two molecules of lactate. Therefore,

one would expect the steady-state rate of lactate production to be approximately twice

that of glucose consumption. While the high glucose and medium glucose control

conditions did achieve this two-fold conversion, the rest of the cells experienced a

conversion of 1.5- to 1.7-fold. Since the rate of glycogen synthesis remains fairly low

in in vitro cells [350], it is unlikely that this discrepancy in glucose-lactate conversion

can be explained by glycogen synthesis. Assuming the ±5pmol.min−1.mg−1 glycogen

synthesis rate for C2C12 cells as per Abdelmoez et al (2020) [351], this would yield

approximately 24 nmol or 16 µgof glycogen over the course of a 10 hour experiment.
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Figure 4.3: Lactate production as induced by 100 nM insulin, 10 % v/v, or both.
Lactate production rates normalised to those observed in the high glucose control.
Cells cultured in 25 mM (HG, 15 mM (MG), or 5 mM (LG) glucose are indicated
as grey, orange, or pink bars respectively. Error bars indicate SEM, and each bar
represents a biological triplicate (n = 3).

Reducing glucose concentrations during culturing therefore appears to improve the

ability of cells to respond to insulin with an induction in glycolytic flux. The strongest

induction of glycolytic flux was seen when cells were grown in medium-level glucose

(Fig. 4.2, green) as opposed to more modest induction at low, but physiological, glu-

cose conditions (Fig. 4.2, blue), or none at all under high glucose growth conditions

(Fig. 4.3, grey). The combination of FBS and insulin appeared to have no significant

advantage over only using insulin to induce glycolytic flux. However, it does appear

that the prolonged exposure to the combination of high glucose and FBS attenuates the

ability of C2C12 myotubes to upregulate glycolytic flux in response to insulin. Consid-

ering that, under medium and low glucose conditions FBS has a modest pro-insulinic

effect, it is possible that prolonged exposure to hyperglycaemic conditions and FBS

induces an insulin resistant-like state in these cells.

The glucose-lactate flux was a reliable measure by which the insulin response of

cells could be evaluated. Therefore, insulin dose-dependent induction of glucose con-

sumption and lactate production were subsequently tested in cells grown at medium

glucose concentrations.

68

Stellenbosch University  https://scholar.sun.ac.za



4.3. Results and Discussion

Control

1 nM Insulin

1 μM Insulin

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

Time (min)

[g
lu
co
se

]
(m
M
)

(a)

1 μM insulin

1 nM insulin

Control

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

Time (min)
[la
ct
at
e]

(m
M
)

(b)

Figure 4.4: Glucose consumption (A) for control (black) cells and cells treated with 1
nM (blue) and 1 µM (green) insulin and lactate production (B) for control (red), 1nM
insulin (purple), and 1 µM insulin (orange). The biomass yield was similar (8.6 mg
± 0.1) for all experiments. Error bars indicate SEM, and each data point represents a
biological triplicate (n = 3).

Glucose consumption is shown in Fig. 4.4 for three insulin concentrations - 0 nM,

1 nM, and 1000 nM. These concentrations were chosen as 1000 nM of insulin would

ensure full-stimulation of the insulin signalling pathway. On the other hand 1 nM of

insulin would ensure a significant insulin response while still within the physiological

range reported in mice [352], albeit at the upper end of the spectrum. A dose-dependent

stimulation was observed with an overall induction of glucose consumption between

control and 1000 nM insulin by a factor of approximately 2.2.

While not conclusive evidence for insulin resistance or type two diabetes, these

results do indicate that, under standard culturing conditionsm, C2C12 cells appear

unable to upregulate glycolytic flux in response to insulin. Taking into consideration

the role of high glucose concentrations in the ætiology of insulin resistance and type

two diabetes, it was decided that further efforts would not evaluate cells grown at 25

mM glucose concentrations. Rather, a concentration of 15 mM glucose was chosen

as is still within the physiological range reported in mice [334, 335] and would not
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deplete as rapidly as a concentration of 5 mM of glucose would.

4.3.2 Quantifying C2C12 Differentiation

In addition to testing the insulin sensitivity as a function of media glucose concentra-

tion, further experiments were necessary to determine the effect of glucose concentra-

tion on cell differentiation. The method developed by McColl et al (2016) was adapted

for this purpose [326].

The modified LADD-staining method, discussed in Section 4.2, resulted in the

images shown in Fig. 4.5. What is apparent prima facie is the greater coverage by

myotubes in cells cultured at 15 mM glucose (Fig. 4.5b) as opposed to cells cultured at

25 mM glucose (Fig. 4.5a). Myotubes cultured at 15 mM are thicker, longer, and more

numerous. Conversely, cells cultured at 25 mM glucose seem less differentiated as

indicated by the numerous, unaligned cells present as single clusters rather than fibres.

Additionally, the LADD stain was present in greater amounts in myotubes as these

had more nuclei and cytoplasmic volume to stain. Since Fig. 4.5b appears to exhibit

stronger pink and purple hues than Fig. 4.5a it seems likely that greater quantities of the

LADD stain have been retained, which in turn implies the presence of more myotubes.

However, for the purposes of this investigation, it is sufficient to enumerate the nuclei

present within distinct myotubes and those that remained as myoblasts.

The images were analysed in the FiJi distribution of ImageJ. The optional ‘Cell-

Counter’ plug-in was used to manually count the nuclei present in single cells (black

arrows in Fig. 4.5a and 4.5b) or the nuclei present in myotubes (yellow arrows). Cells

that were too close to the edge of the image as well as multi-nucleated cells with fewer

than two discernible nuclei were discounted.

Since, during differentiation, myotubes result from the fusion of several myoblasts,

it stands to reason that the greater the extent of differentiation one sees in these cells,

the more nuclei would be included within myotubes. Similarly, one would expect to

see fewer individual nuclei in individual myoblasts. As seen in Fig. 4.6 cells grown

under high glucose conditions showed a mean of 58% (± 2%) of nuclei that were in-

cluded in myotubes. Greater inclusion of nuclei in myotubes was seen in cell cultured
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(a)

(b)

Figure 4.5: Phase constrast images of C2C12 cells grown under high glucose con-
ditions (A) and under medium glucose conditions (B). Cells were fixed with 100%
ethanol and stained with fuchsin and toluidine blue to differentiate between the cell
membrane and the nucleus (as described in Section 4.2). Thereafter ImageJ was used
to analyse the images and assign nuclei as belonging either to myoblasts or myotubes.
Yellow arrows indicate nuclei that were assigned to a single myotube whereas black
arrows indicate nuclei in single myoblasts. These images were used to generate the
data found in Fig. 4.6 and Table 4.2.
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Figure 4.6: A box-whisker plot which shows the differences in the fraction of differen-
tiated nuclei among high glucose culturing protocols (green) and the updated, medium
glucose protocol (orange) after six days of culturing. Error bars indicate SEM, n = 9.

under medium glucose conditions. Further, a mean of 82% of nuclei (± 1.5%) were

included in myotubes in these cells - with one sample showing as many as 93% of nu-

clei included in myotubes (Table 4.2). This accords a significant (p < 0.05) difference

in the degree to which the cells are differentiated. These data therefore indicate that

reducing the glucose concentration in culturing media has a discernible effect on the

degree to which C2C12 skeletal muscle differentiate.

Table 4.2: A comparison of the fraction of nuclei present in differentiated cells cul-
tured according to the high glucose or medium glucose culturing conditions. Values
represent three images taken from each of three biological samples for each culturing
condition (error bars indicate SEM, n = 9).

Media Mean Median 25% 75% Min Max

High
glucose

0.575 ±0.017 0.56 0.54 0.60 0.51 0.73

Medium
glucose

0.816±0.015 0.82 0.80 0.84 0.68 0.93
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4.4 Conclusion

Reducing the glucose concentration from 25 mM to 15 mM in the culturing medium

has marked effects on C2C12 cells. Firstly, cells cultured at the reduced glucose con-

centration appear to regain their insulin sensitivity, or not lose it in the first place.

This is indicated by the increased glucose consumption and lactate production when

these cells are stimulated by insulin. Conversely, cells which were cultured at 25 mM

glucose showed no significant induction of glucose consumption upon stimulation by

insulin, FBS, or both.

Secondly, C2C12 cells cultured at 15 mM glucose differentiate to a greater degree.

Cells which were cultured at 15 mM glucose were 26 % more differentiated than cells

grown in 25 mM glucose. Since the amount of insulin-sensitive GLUT4 correlated

with the degree of differentiation [353], cells which exhibit greater differentiation will

show greater glucose uptake than their hyperglycaemic counterparts.

Inducing a diabetic state in cultured cells often relies on a combination of hy-

perinsulinemia and hyperglycaemia. Current, ‘standard’ cell culture methodology for

C2C12 cells relies on 25 mM glucose in the media which satisfies the hyperglycaemic

condition. Supplementing these cells with 50 to 500 nM insulin before experimen-

tation often leads to perceived insulin insensitivity in C2C12 cells. However, under

in situ conditions, insulin insensitivity is a progressive disease [354, 355]. Therefore,

prolonged exposure to lower, but above normal, concentrations of insulin may result in

an insulin insensitive state. In support of this, data presented in this chapter indicates

that the 10 % v/v FBS supplementation appears to have a mild pro-insulinic effect on

cells. Cells which were cultured either at 15 mM or 5 mM glucose and then induced

with FBS showed above-normal glucose consumption and lactate production. This

indicates that FBS contains either insulin or an insulin-like factor which stimulates

glucose consumption. Since this increase in glucose consumption and lactate produc-

tion was absent in cells cultured at 25 mM glucose and then stimulated with FBS, it

is possible that the combination of persistent FBS and high glucose concentrations in

most standard media may reduce the sensitivity of C2C12 cells to insulin.

One of the challenges in molecular biology is reproducibility [356, 357]. Studies
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often do not make explicit the metabolite concentrations or specific formulations of

DMEM that are being used for cell culture. As this data in this chapter demonstrate,

minor changes such as reducing the glucose concentration in cell culture media, can

drastically affect the outcomes of an experiment. If there is no clarity or uniformity

in how cells are cultured, then there can be no reproducibility in the results which

are obtained. It is therefore imperative that glucose and metabolite concentrations are

made explicit in ongoing and future molecular biological research.
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Chapter 5

Integrating Insulin Signalling and

Glucose Transporter Data:

Constructing a Minimal Model

This chapter presents the results on the insulin concentration and time responses of the

IR and Akt protein phosphorylation as well as the GLUT4 glucose transporter activ-

ity to insulin. Further, this chapter will attempt to construct a minimal model which

integrates these data in order to describe the first and second modules as presented in

Section 1.1.

5.1 The Minimal Modelling Strategy

The minimal modelling strategy is based on the ‘three modules’ approach outlined in

Section 1.1. The model described in this section attempts to describe the dynamics

of the signal transduction and glucose transporter modules. A second project by Dr.

Cobus van Dyk and colleagues will describe the glucose metabolism module.

A minimal, ODE-based modelling approach was best suited to the type of data

which could be gathered given the experimental constraints. The insulin signalling

pathway consists of dozens of proteins each of which interact with components from

other pathways as well which makes studying them in detail prohibitive for a single
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project. Therefore, in order to align the modelling strategy, experimental approaches,

and complexity with one another, several choices were made.

The first choice was made to limit the insulin signalling pathway to those compo-

nents which lead from the IR to GLUT4 by the shortest path (see: Section 2.1.9. This

is not to negate the effect of the various other components which act upon the insulin

signalling pathway or as a result of its activation. Rather this would focus on those

components, leading up to GLUT4, which are most likely to be affected as a result of

insulin stimulation.

The second choice was to further limit the components which were measured in

accordance with the ‘three module’ approach which defined each module as an input-

output relationship between two components. The insulin receptor and Akt proteins

were the respective inputs and outputs for the insulin signalling module as these com-

ponents could be measured through Western blotting, they are crucial to the normal

induction of the glucose transporter in response to insulin [27, 358], they are known

to be defective in insulin resistant states [359, 360], and they are sensitive to insulin

concentrations [361, 362]. The glucose transporter module was defined by the phos-

phorylated Akt as its input and the glucose transporter activity as output. The glucose

transporter activity was assayed by measuring how much 14C was internalised by the

cell in response to the given experimental conditions.

Thirdly, the dose response data were used for a steady-state analysis of the model

(Section 5.2)in order to constrain model parameters such as the forward and reverse

reaction constants. These constraints were incorporated into the model which was

then used to fit simulations to the time dynamic experimental data (Section 5.3). This

step was used to validate the steady-state parameter estimations.

This modelling approach may not lead to the best possible fits since the model pa-

rameters were constrained to their steady-state estimations which were in turn based on

mass-action kinetics and a limited data set. This approach does not require large sets

of parameters as one would need for a more detailed model. However, the goal was

not to create a detailed model. The goal with the three-module and minimal modelling

approach was to characterise the ‘normal’ - non insulin-resistant state of the insulin
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signalling and glucose transporter modules. Understanding how these modules react

under normal conditions will help understanding where in the insulin signalling cas-

cade dysregulation occurs, should it occur. In other words, aberrant behaviour could

be traced to the signalling, glucose transporter, or metabolism modules with a small

set of experimental perturbations. This will allow more detailed investigations at the

appropriate module instead of needing to investigate the entire insulin signalling sys-

tem.

5.2 Insulin Response Characteristics of the Insulin

Signalling Pathway

AktS473concThe effect of varying the insulin concentration on the authosphorylation

of the IR as well as the phosphorylation of both Akt serine 473 and threonine 308

was analysed. For this, the cells were grown under the updated, 15 mM glucose,

conditions, starved, and then exposed to different insulin concentrations ranging from

0 nM to 1000 nM (for further details on all methods, see Chapter 3. After 30 minutes

the cells were harvested, lysed, and stored for Western blot analysis. The degree of

phosphorylation of cells exposed to 100 nM insulin after 30 minutes was used as the

reference state and all samples were normalised to this value.

Physiological, basal insulin concentrations in mice can be as low as ± 40 pM or as

high as 1.7 nM [334, 336, 352]. Insulin concentrations were chosen to represent the

control at 0 nM of insulin, a minimum at 10 pM of insulin, and a maximum at 1000

nM of insulin. Intermediate ranges were used to determine the insulin dose-dependent

phosphorylation of the insulin signalling intermediates. While some concentrations are

indeed supraphysiological, they were nonetheless useful in parameterising the model.

The 30 minutes, 100 nM state was used as a reference state since it is commonly used

in literature [363–365] as well as reportedly eliciting a maximal response in signalling

[366].
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5.2.1 The Dose-Response Characteristics of the Insulin Signalling

Module

The response of the insulin signalling module (Section 1.1) in response to varying

insulin concentrations is investigated in this section. The insulin receptor is phos-

phorylated in a dose-dependent manner in response to insulin (Fig. 5.1). It achieved

maximal phosphorylation at 100 nM insulin and no increase in phosphorylation was

observed when the insulin concentration was increased to 1000 nM. The decrease in

IR phosphorylation observed at the 1000 nM insulin concentration is likely due to a

combination of insulin and stress induced cytotoxicity [278, 367]. However, this would

need to be tested in future studies. The total level of IR was independent of the insulin

concentration (Fig. 5.1 - black points).

The levels of the phosphorylated proteins, AktSP
and AktTP

, also depended on

insulin over a wide concentration range (Figs. 5.2 and 5.3 respectively). The phos-

phorylation of AktS showed a linear increase with Log[insulin] up to 1 µM (Fig. 5.2).

AktTP
was not detectable at insulin concentrations below 20 nM, but showed a strong

dependence on insulin at concentrations greater than 100 nM - for example, a nearly

4-fold increase in phosphorylation at 1 µM (Fig. 5.3). However, this is likely due to

the artificial constraint of setting the phosphorylation of the 100 nM condition as ‘1’

for the purposes of constructing the model. As observed for the IR, the total Akt levels

were similar across all samples for the different insulin doses.

After the initial observations, a set of rate equations were developed for the for-

ward (phosphorylation) and reverse (dephosphorylation) reactions of the minimal sig-

nalling. The rate equations are based on simple mass-action kinetics which described

the change in concentrations of the IR and Akt proteins as a function of their respec-

tive phosphorylation and dephosphorylation reactions. Afterwards, the rate equations

were rewritten as a single, balanced ordinary differential equation (ODE). Experimen-

tally, the data were gathered in two stages, a dose-response and a time-response. The

dose-response data were assumed to be in steady-state to fit for the ratio of the phos-

phorylation constant (kp) over the dephosphorylation constant (kdp).
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Insulin Dose-Dependent IR Phosphorylation

(a)

(b) The phosphorylation of the IR at selected insulin concentrations in nM.

Figure 5.1: A semi-log graph of the concentration of total IR (black) and phosphory-
lated IR (blue) as a function of insulin concentration after a 30 minute incubation. The
C2C12 cells were exposed to varying insulin concentrations for 30 minutes, harvested,
and then they underwent Western blotting to determine the relative induction of phos-
phorylation. Error bars indicate SEMs and each data point represents the average of a
biological triplicate (n = 3).

dIR

dt
= −insulin× kpIR × IR(t) + kdpIR × (IRtotal − IR(t)) (5.1)

dAKTS

dt
= −kpAKTS × (IRtotal − IR(t))× AKTS(t)

+ kdpAKTS × (AKT total − AKTS(t))

(5.2)
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(b) The phosphorylation of Akt at serine 473 at selected insulin concentrations in nM.

Figure 5.2: The phosphorylation of AKT serine 473 due to increases in insulin con-
centration. The total level of AKT is shown in black while AktSP

is indicated in red.
The C2C12 cells were exposed to varying insulin concentrations for 30 minutes, har-
vested, and then they underwent Western blotting to determine the relative induction of
phosphorylation. Error bars indicate SEMs and each data point represents the average
of a biological triplicate (n = 3).

dAKTT

dt
= −kpAKTT × (IRtotal − IR(t))× AKTT (t)

+ kdpAKTT × (AKT total − AKTT (t))

(5.3)

The Western blotting data allowed for the estimation of the steady-state parame-

ters of the insulin-IR interaction. The steady-state levels of the IR were derived from

Eq. (5.1) as follows:
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(b) The phosphorylation of Akt at threonine 308 at selected insulin concentrations in nM.

Figure 5.3: The levels of AktTP
(purple) in relation to the total levels of Akt (black).

At lower concentrations of insulin, AktTP
could not be detected. However, at insulin

levels in excess of 100 nM, AktTP
appears to still have capacity to phosphorylate. The

C2C12 cells were exposed to varying insulin concentrations for 30 minutes, harvested,
and then they underwent Western blotting to determine the relative induction of phos-
phorylation. Error bars indicate SEMs and each data point represents the average of a
biological triplicate (n = 3).

0 = −insulin× kpIR × IR + kdpIR × (IRtotal − IR) (5.4)

IR =
kdpIR × IRtotal

insulin× kpIR + kdpIR
=

IRtotal

insulin×
kpIR

kdpIR
+ 1

(5.5)
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Further, IR = IRtotal when insulin = 0 and, when insulin = 100, IR = 1. This

leads to the following equations for IRtotal:

1 = IRtotal − IR = IRtotal −
IRtotal

100×
kpIR

kdpIR
+ 1

(5.6)

Therefore, solving for IRtotal yields:

IRtotal = 1 +
1

100
×
kdpIR

kpIR
(5.7)

Lastly, the phosphorylation of IR in response to insulin can be described as:

IR = 1 +
1

100
×
kdpIR

kpIR
−

1 +
1

100
×
kdpIR

kpIR

kpIR

kdpIR
× insulin+ 1

(5.8)

In Fig. 5.4 the dose-reponse fits for the phosphorylation of IR and AktS are shown.

The fit is not particularly good; two data points for the IR, and one data point for the

AktS fit have significantly lower experimental levels of phosphorylation than obtained

for the fit. The simplicity of the model, (for this curve only one parameter was fit to

the data), restricts the shape of the response curve strongly, however the advantage

of the small number mean that the fit was considered good enough to allow further

analysis. TheAktS responds stronger to insulin at lower concentrations, for example at

insulin concentrations that elicit 35% of maximal IR phosphorylation, theAktS is 65%

phosphorylated. This might appear counter-intuitive since AktS phosphorylation is

dependent on IR phosphoryation. However, it should be noted that Fig. 5.4 represents

a steady-state response and not a temporal response (for which one would expect the IR

to phosphorylate more rapidly than Akt). Additionally, the phosphorylation levels are

all relative which means that AktS and IR responses cannot be compared in absolute

sense. Lastly, it is not unusual to see amplification in signal transduction pathways

[368, 369].

Therefore, the phosphorylation of both Akt sites was expressed as a function of the

phosphorylation of IR (Fig. 5.5). It may seem counter-intuitive to express one variable

as a function of another variable. However, this method of visualising the data allows
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Figure 5.4: Model fits of the insulin concentration-dependent phosphorylation of the
IR (blue) andAktS (red) data as seen in Figs. 5.1 and 5.2. These curves are predictions
of the phosphorylation of AktS as determined by the ODEs. AktS phosphorylation
appears more sensitive to insulin than IR. Error bars indicate SEMs and each data
point represents the average of a biological triplicate (n = 3).

one to directly relate one module (or part thereof) of the insulin signalling cascade to

the preceding module, and in their co-response analysis Hofmeyr and Cornish-Bowden

[370] have shown that this contains much information about control and regulation

and in the absence of a feedback loop, a co-response relation equals a cause effect

relation [369]. When comparing normal cells to insulin resistant cells, it would then

become apparent where in the cascade dysfunctions occur instead of merely showing

the response of each module to insulin.

AKTSP = 1 +
kdpAKTS

kpAKTS
−

1 +
kdpAKTS

kpAKTS

kpAKTS

kdpAKTS
× (IRtotal − IR(t)) + 1

(5.9)
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AKTT P = 1 +
kdpAKTT

kpAKTT
−

1 +
kdpAKTT

kpAKTT

kpAKTT

kdpAKTT
× (IRtotal − IR(t)) + 1

(5.10)

The steady-state equations (Eqs. 5.8, 5.9, and 5.10) and the Western blotting data

were used to parameterise the model in a single optimised fitting step. This yielded

values for the
kp
kdp

ratios of the IRP , AKTSP , and AKTTP steady-state equations.

These values (Table 5.1) were those that best fit the dose-response data for the whole

model.

Table 5.1: Fitted parameters. kendo refers to the rate constant of GLUT4 endocytosis
from the PM into the cell. kexo is the rate constant for GLUT4 exocytosis from the cell

into the PM. The value for the
kdpAKTT

kpAKTT
ratio was constrained to be equal to or less than

10 since it was unable to determine a value for this ratio without such a constraint. The
kendo

kexo
ratio was fit to data which took into account the effect of both theAktS andAktT

phosphorylation sites.

Parameter Value
kdpIR

kpIR
7.62

IRtotal 1.08
kdpAKTS

kpAKTS
0.18

kdpAKTT

kpAKTT
10.0

AKTtotal 1.18
kendo

kexo
1.01

The AktS (red) and AktT (purple) phosphorylation responses as a function of IR

phosphorylation are shown in Fig. 5.5. The AktS site responds more strongly to IR

phosphorylation and achieves maximum phosphorylation once the IR is fully phos-

phorylated. The AktT , however appears to not to be maximally phosphorylated. It re-

sponds linearly to an increase in IR phosphorylation. However, given the data in Figs.

5.1 and 5.3, AktT phosphorylates quite strongly in response to insulin concentrations

beyond 100 nM - which is already several times the physiological concentration. Sim-
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ilarly, since the IR seemingly dephosphorylates at such high insulin concentrations,

it might be that the phosphorylation of AktT at such high concentrations of insulin

is due to an IR-independent mechanism. It is possible that the spare phosphorylation

capacity of AktT at high insulin concentrations is an adaptive mechanism which could

ameliorate the consequences of insulin resistance.
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Figure 5.5: The phosphorylation of AktS (red) and AktT (purple), in response to
increases in IR phosphorylation. The fitted equations (Eq. (5.9) and 5.10) are shown
with dashed lines. The C2C12 cells were exposed to varying insulin concentrations
for 30 minutes, harvested, and then they underwent Western blotting to determine the
relative induction of phosphorylation (as seen in Figs. 5.1, 5.2, and 5.3). Error bars
indicate SEMs and each data point represents the average of a biological triplicate (n
= 3)
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5.2.2 The Dose-Reponse Characteristics of the Glucose

Transporter Module

The first set of C14 glucose-uptake experiments sought to establish the relationship be-

tween glucose transporter activity and insulin concentration. The cells were grown

under the previously established conditions and starved as indicated in Chapter 3.

The cells were then exposed to insulin at concentrations which ranged from 0 nM

to 1000 nM for 30 minutes. Thereafter a 2 second 14C glucose-uptake assay was per-

formed. When no insulin has been added to the cells, basal glucose uptake of 0.81

µmol.min−1.mg−1 was measured. An almost linear relationship between insulin con-

centration and glucose uptake was observed on a semi-log scale (see Fig. 5.6). The

maximum glucose transport rate was 1.91 µmol.min−1.mg−1
protein at 1000 nM insulin.

Induction of GLUT4 activity was modelled using mass-action kinetics which de-

pended on the Akt phosphorylation. In this case, ‘Akt phosphorylation’ was described

by combining the AktS and AktT phosphorylation states. Since the precise role of

either phosphorylation site is not known in detail, the assumption was that they both

contribute to the induction of glucose transport activity.

Mass-action kinetics is the simplest form with which to model the induction of

GLUT4 activity by insulin and follows the same principles that were used in mod-

elling the signal transduction pathway. When insulin, and therefore AKT phosphory-

lation are set to 0, there will still be basal glucose uptake owing to insulin-independent

transporter activity such as that of GLUT1. The maximum induction level of glucose

transporter was assumed equal to the maximum activity of 1.91 µmol.min−1.mg−1.

Consequently, if ‘1’ is the maximum normalised glucose transport, then 0.42 is the

basal normalised glucose transport. This then leads to the fraction of inducible glu-

cose transporter being 1−0.42 = 0.58. In order to describe glucose transporter activity,

kexo is the rate constant for the exocytosis of GLUT4 from the intracellular space to the

PM whereas kendo is used to describe the endocytosis of the GLUT4 from the PM into

the cell. Since the mass action kinetics apply to the inducible or ‘responsive’ elements

in the insulin signalling cascade, they were adapted as follows to take into account the

different dynamics of glucose transport:
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Figure 5.6: Glucose transport activity (in µmol.min−1.mg−1) as a function of in-
sulin concentration.The C2C12 cells were exposed to varying insulin concentrations
for 30 minutes and then subjected to a 14C glucose uptake assay to determine the dose-
dependent induction of glucose uptake by insulin-stimulated glucose transporters. Er-
ror bars indicate SEMs and each data point represents the average of a biological trip-
licate (n = 3)

dGLUTM

dt
= −kendo ×GLUTM(t) + kexo × (AKT total − AKT [t])

× (GLUTmax−GLUTM [t])

(5.11)

Where GLUTM represents the portion of glucose transporter at the membrane.

Solving for the steady-state levels of GLUTM yields the following:

GLUTM = (1 +
kexo

kendo
−

1 +
kexo

kendo
kendo

kexo
+ AKTp

)× 0.5759 + 0.4241 (5.12)

Where AKT p represents the sum of AKT serine and Akt threonine phosphoryla-

tion and the numbers refer to the basal and inducible activities as determined previ-
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ously. Fitting the
kexo

kendo
ratio yields a value of 1.01 (Table 5.1). This was used to sim-

ulate the glucose transporter activity as a function of Akt phosphorylation as shown in

Fig. 5.7.

In Fig. 5.7, the fraction of total glucose transporter in the plasma membrane is

given as a function of various Akt phosphorylation states. Insulin does not directly

affect the glucose transporter, rather it leads to the activation of a phosphorylation cas-

cade which culminates in the phosphorylation of Akt residues. Therefore, the activity

of the glucose transporter is shown as a function of Akt phosphorylation. Figure 5.7

shows the effect that AktS (red), AktT (purple), or the combination of AktS and AktT

(black) would have on the glucose transporter. Since the response of the glucose trans-

porter under the influence of both Akt sites was sensitive to the AktT site, the glucose

transporter would be fit to the data which incorporates both Akt phosphorylation sites.

The AktS site should not be ignored since at lower levels of IR phosphorylation (i.e.

lower insulin concentrations), AktS is phosphorylated whereas AktT is not (Fig. 5.5).

After
kexo

kendo
was fit to the data, the complete model was used to predict glucose

transporter activity in response to insulin concentration by varying kpIR and kpAKTS.

The sigmoidal graph in Fig. 5.8 constituted the best fit of the complete model of IR and

AktS phosphorylation as well as glucose transport to the glucose transport data. The

GLUT4 transporter may not conform strictly to mass-action kinetics, however given

the available data and the modelling strategy, this represents the best approximation of

the GLUT4 transport activity.
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Figure 5.7: The fitted functions for AktSP
(red, dashed), AktTP

(purple, dashed), and
the combined effect of the phosphorylation sites (black, dashed) and their effect on
glucose transporter activity. Error bars indicate SEMs and each data point represents
the average of a biological triplicate (n = 3).
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Figure 5.8: The simulated induction of glucose transport (dashed line) overlaid with
the data used to generate this fit (circles). The C2C12 cells were exposed to varying
insulin concentrations for 30 minutes and then subjected to a 14C glucose uptake assay
to determine the dose-dependent induction of glucose uptake by insulin-stimulated
glucose transporters. Error bars indicate SEMs and each data point represents the
average of a biological triplicate (n = 3).
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5.3 Time Dynamics of the Insulin Signalling Pathway

5.3.1 Investigating Time-Dependent Phosphorylation of the

Insulin Signalling Module

The time-dependent behaviours of IR phosphorylation, Akt serine phosphorylation,

and glucose transport under 100 nM insulinic conditions were investigated. The first

phase of experiments established the ‘on’ behaviour of the insulin signalling cascade.

Cells were cultured as before, starved, and stimulated with 100 nM insulin for a given

period. Thereafter cells were harvested, frozen in liquid nitrogen, and stored until

Western blot analysis. These experiments were repeated with 1 nM insulin for the IR

and Akt proteins. The datapoints in Figs. 5.9a and 5.10a were scaled according to the

dose-response dose-response experiments discussed in Section 5.2 which showed that

when IR and AktSP
were exposed to 1 nM of insulin, they only achieved 12% and

57% of their maximal phosphorylation (i.e. when compared to the 100 nM condition).

Therefore, the IR and AktSP
data for the timecourse experiments in Figs. 5.9a and

5.10a were scaled by 12% and 57% respectively. Neither IRtotal nor AktTotal showed

an increase in their concentrations for the duration of these experiments (Figs. 5.9a

and 5.10a, solid, black circles).

There is a marked difference in the speed with which the IR and Akt serine phos-

phorylate. The IR achieves near-maximal phosphorylation by the earliest measured

time point (1 minute). It is likely therefore, that the IR achieves 50% of its maximum

phosphorylation in under a minute. The Akt serine achieves its half-maximum phos-

phorylation at the two-minute mark. The levels of IRtotal and AKTtotal remain constant

for the duration of either experiment. As a result, it is unlikely that observed increases

in IR or Akt phosphorylation are due to increases in the expression of total IR or Akt.
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(b) The Western blot of the total amount of
IR for the duration of the experiment.

(c) The Western blot for the amount of
IRYP

for the duration of the experiment.

Figure 5.9: The time-dependent phosphorylation of the IR under 100 nM (blue) and
1 nM (green) insulinic conditions. The IRtotal is shown in black and appears to remain
relatively constant throughout the experiment. The data for the 1 nM insulinic condi-
tion (green) are scaled to 12% of their observed values. This was done since directly
comparing ‘full’ induction of IR phosphorylation exposed to 100 nM or 1 nM insulin
after 30 minutes showed that the 1 nM condition only achieved 12% of the phospho-
rylation of the 100 nM condition. The C2C12 cells were exposed to 100 nM insulin
varying time points, harvested, and then they underwent Western blotting to determine
the relative induction of phosphorylation. The IRtotal values were obtained at 100 nM
insulin exposure. Error bars indicate SEMs and each data point represents a biological
triplicate (n = 3).

5.3.2 Determining the Time-Dependent Activity of Glucose

Transporter Module

A set of time course experiments were performed for glucose transport. Once starved,

the cells were exposed to 100 nM insulin for time points ranging from 1 to 45 minutes.

The cells then underwent a 2 second 14C glucose-uptake assay as described in Chap-

ter 3. These samples were then analysed in a scintillation counter and the data were

used to calculate the glucose uptake rate in µmol.min−1.mg−1. At time-point 0 min -

much in during the absence of insulin - the cells exhibited some level of basal glucose

transport activity (Fig. 5.11). However, the longer incubations with insulin elucidated
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(b) The Western blot of the amount of
AktTotal for the duration of the experi-
ment.

(c) The Western blot results of the amount
of AktSP
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ment.

Figure 5.10: Akt serine 473 phosphorylation over 90 minutes in response to 100 nM
(red) and 1 nM (orange) insulin. The reponses by Akt serine vis a vis 1 nM insulin
has been scaled to 57% of the maximal response at 100 nM insulin as per Fig. 5.2.
The C2C12 cells were exposed to 100 nM insulin varying time points, harvested, and
then they underwent Western blotting to determine the relative induction of phospho-
rylation. The Akttotal values were obtained at 100 nM insulin exposure. Error bars
indicate SEMs and each data point represents a biological triplicate (n = 3).

the temporal behaviour of glucose transport activity. The induction of glucose trans-

port closely mirrored that of Akt serine phosphorylation in that both increase more

slowly when compared to the phosphorylation of the IR and both glucose import and

Akt serine phosphorylation achieve their relative maxima after 15 minutes at 100 nM

insulin and then remain constant.

The most-commonly investigated aspect of insulin signalling is the ‘on’ behaviour.

In other words, the effect that insulin has on the phosphorylation of signalling interme-

diates or on the induction of glucose transport or other molecular activity. However,

considering the pulsatile nature of insulin release in vivo, the ‘off’ behaviour - de-

phosphorylation of signalling molecules or reduction of glucose transport - must be

investigated as well. If dysregulation of the insulin signalling cascade can occur dur-
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ing phosphorylation or transport induction, then it is possible that such dysregulation

would present itself during dephosphorylation or transport reduction.

Therefore, the second phase of experiments was set up as follows: the cells were

grown and exposed to 100 nM insulin as previously detailed. Once the 30 minute in-

sulin stimulation was over, the cells were carefully washed, thrice, with warm PBS,

supplemented with 1 mM of CaCl2 and 1 mM of MgCl2 . The cells were then left

to incubate in warm, supplemented PBS for time points ranging from 0 to 60 min-

utes whereafter they were either subjected to a 2 second 14Cglucose-uptake assay or

harvested for Western blotting.

As one can see in Fig. 5.12, the phosphorylation of the IR dropped by approxi-

mately 90% (0.08 ± 0.05 of maximum) in the first sample, taken two minutes, after

washing off the insulin. It maintained this low level for the remainder of the experi-

ment. The dephosphorylation of AktSP
occured somewhat more slowly; after 2 min-

utes it had only reduced by approximately 40% (0.6 ± 0.1 of maximum). It reached

its minimum by the 135 minute mark (0.06 ± 0.028 of maximum) which it then main-

tained for the duration of the experiment (Fig. 5.12, red). The IR therefore dephospho-

rylates faster than it phosphorylates.

The changes in glucose transporter activity in response to the removal of insulin

were also assayed. Upon removing insulin from the cells, the glucose import activity

decreased rapidly from its maximum steadily until it returned to basal levels 60 minutes

after the insulin was removed (Fig. 5.11). The glucose transport dynamics, particularly

the endocytosis of GLUT4, are thereby slower than the IR and Akt phosphorylation

dynamics.

The steady-state analysis in Section 5.2 yielded the ratios of the phosphorylation

and dephosphorylation constants for the IR and Akt molecules as well for as the endo-

and exocytosis constants for glucose transporters (shown in Table 5.1). The dynamic

data for the 100 nM insulin exposure were used to fit the individual rate constants. The

values were constrained so as to be consistent with the ratios that had been determined

during the dose-response experiments. Owing to the rapid phosphorylation of the IR

(Fig. 5.9a), it was not possible to estimate an upper bound for kpIR, which was therefore
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Figure 5.11: After the removal of insulin at 45 minutes, glucose transporter activity
steadily decreases over time until it reaches basal levels at 60 minutes. The increase
in glucose transporter activity in response to insulin stimulation occurs within the first
15 minutes of the experiment. However, the reduction in transporter activity requires
nearly 60 minutes after insulin has been removed in order to return to basal levels. The
C2C12 cells were exposed to 100 nM insulin varying time points and after 45 minutes,
the insulin was removed. At each timepoint, the cells underwent a 14C glucose assay
to determine their insulin-stimulated glucose transport rate. Error bars indicate SEMs
and each data point represents a biological triplicate (n = 3).

fixed at an arbitrary value of 10.

Equations 5.1, 5.2, and 5.11 were fit to the available data. These fits determined the

‘off’/‘on’ ratios shown in Table 5.1. The ratio forAktT was constrained to a value of 10

since this was the lowest value at which no change in the fit of the curve was observed.

These ratios were used to parameterise the model and obtain steady state solutions for

the phosphorylation and dephosphorylation of the IR and AktS (Fig. 5.12). The same

ratio values were used for the 100 nM and 1 nM simulations (Fig. 5.12 red and orange

respectively). The model was also able to adequately simulate the behaviour of the

glucose transporter in response to the addition or removal of insulin.
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5.4. Inducing Insulin Resistance in vitro: A Proof of Concept

This model integrates data from modules one and two of the ‘three module’ ap-

proach which is described in Section 1.1. It is therefore possible use this model to

simulate the phosphorylation of the insulin signalling cascade (module one) and the

activation of glucose transporter activity (module two) in response to both insulin con-

centration and time.

5.4 Inducing Insulin Resistance in vitro: A Proof of

Concept

The idea that persistent insulinemia and hyperglycemia might lead to insulin-resistant

states was first explored in Chapter 4 where such culturing conditions led to an abbro-

gation of insulin induction of glucose flux. The link between over-exposure to insulin

and high circulating glucose concentrations on the one hand and insulin resistance on

the other is further supported by literature [371, 372]. This section therefore presents

a preliminary exploration of insulin signalling and glucose transport behaviour under

culturing conditions that were designed to mimic insulin resistance.

In order to examine a pseudo insulin resistant state to compare against the refer-

ence state of insulin signalling, the cells were grown and differentiated in either ‘high’

glucose (25 mM) or ‘medium’ glucose (15 mM) conditions with perpetual exposure to

1 nM insulin. The cells were grown under these two glycaemic conditions in order to

assess whether the media glucose concentration had any effect on the insulin sensitiv-

ity of the cells. Similarly, the addition of 1 nM of insulin to the growth medium was to

simulate perpetual hyperinsulinaemia and consequently to examine whether this would

induce an insulin resistant state.

Subsequently, the cells were starved as before (see Chapter 3) and then stimulated

with 100 nM insulin and either 5 mM (reference condition) or 25 mM (experimental

condition) glucose in order to assess the phosphorylation behaviour of the IR and Akt.

Cells that had been grown at 15 mM glucose and without perpetual insulin were used

as controls - in other words, these cells yield the reference state of insulin signalling.

The phosphorylation levels of the IR or the Akt serine site after 30 minutes of exposure
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Figure 5.13: The kinetic behaviour of IR phosphorylation in response to 100 nM in-
sulin, under 5 mM glucose and insulin resistant conditions (squares), 25 mM glucose
and insulin resistant conditions (diamonds), and under control conditions (circles).
Control cells (circles) were grown and differentiated as described in Section 3.2.2.
Cells that were challenged with 5 mM glucose and 100 nM insulin (squares) were
grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM insulin. Cells
that were challenged with 25 mM glucose and 100 nM insulin (diamonds) were grown
and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin. At each time
point, the cells were harvested and subjected to Western blotting in order to determine
their relative phosphorylation state. The experimental conditions reflect data from a
single experiment.

of these cells to 100 nM insulin were set to 1 (see Fig. 5.13, Fig. 5.14, and Fig. 5.15).

This value was used to normalise all other results and will serve as the reference value

for IR and Akt phosphorylation. The dynamic phosphorylation results of the insulin-

resistant cells were normalised to and expressed as a fraction of the reference value. In

order to control experimental error, the samples for each were loaded on the same gel

and at the same total protein concentration.

The first set of experiments assessed the phosphorylation of the IR and Akt in

pseudo insulin resistant cells by stimulating the cells with 100 nM of insulin and either

5 mM or 25 mM of glucose. Under both glucose conditions, the IR phosphorylated

in a similar manner to the control cells. The cells cultured under low-glucose insulin-

resistant conditions (Fig. 5.13, squares) perhaps even hyperphosphorylating (to 1.5-

fold of control) within the first 10 minutes. Under hyperglycaemic conditions, the IR

in pseudo-insulin resistant cells exhibited phosphorylation dynamics similar to those
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Figure 5.14: The phosphorylation of AktSP
in pseudo insulin-resistant cells after 100

nM insulin exposure. Control cells (circles) were grown and differentiated as described
in Section 3.2.2. Cells that were challenged with 5 mM glucose and 100 nM insulin
(squares) were grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM in-
sulin. Cells that were challenged with 25 mM glucose and 100 nM insulin (diamonds)
were grown and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin.
Both insulin resistant states showed altered dynamic behaviour of AktSP

phosphory-
lation with a peak occurring at 30 minutes, and a final phosphorylation state between
60 and 70% of control. At each time point, the cells were harvested and subjected to
Western blotting in order to determine their relative phosphorylation state. The exper-
imental conditions reflect data from a single experiment.

of the reference state (Fig. 5.13, diamonds).

Similarly, in cells grown with low glucose and 1nM insulin, AktSP
appears to hy-

perphosphorylate after 30 minutes to nearly 1.5-fold of normal induction (Fig. 5.14,

squares), after which it returned to consistent below-reference ranges of phosphoryla-

tion (0.66 to 0.72-fold of reference) for the duration of the experiment. However, given

the trend of the remaining data as well as the data from those cells cultured under high

glucose insulin-resistant conditions, it is likely that this is an outlier.

The phosphorylation of AktSP
in cells that had been exposed to 25 mM glucose

and persistent 1nM insulin (Fig. 5.14, diamonds), also achieved its maximum phospho-

rylation after 30 minutes, however the peak was substantially subdued when compared

to the dynamic behaviour of control cells (Fig. 5.14, circles) and low glucose, insulin

resistant cells (Fig. 5.14, squares).

The phosphorylation ofAktTP
was significantly diminished in cells which had been
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Figure 5.15: The phosphorylation dynamics of AktTP
under control (circles), low

glucose pseudo insulin-resistant (squares), and high glucose pseudo insulin-resistant
(diamonds), states. Control cells (circles) were grown and differentiated as described
in Section 3.2.2. Cells that were challenged with 5 mM glucose and 100 nM insulin
(squares) were grown and differentiated at 15 mM glucose, 10% v/v FBS, and 1 nM in-
sulin. Cells that were challenged with 25 mM glucose and 100 nM insulin (diamonds)
were grown and differentiated at 25 mM glucose, 10% v/v FBS, and 1 nM insulin. At
each time point, the cells were harvested and subjected to Western blotting in order
to determine their relative phosphorylation state. The experimental conditions reflect
data from a single experiment.

incubated in the presence of insulin. Hyper- and normo-glycaemic states showed a

marked reduction in phosphorylation (Fig. 5.15, squares and diamonds respectively).

After 60 minutes, neither insulin-resistant condition were able to maintain much of

a phosphorylated state. This is in stark contrast with the normal AktTP
signalling

which was able to maintain maximal posphorylation for at least 60 minutes (Fig. 5.15,

circles). However, given that these experiments which explore the signalling cascade

have yet to be repeated, it is not possible to draw any strong inferences from these data.

The behaviour of the glucose transporter under insulin resistant states was deter-

mined. First, the cells were grown under insulin resistant and 15 mM or 25 mM glucose

states and then they were exposed to 100 nM insulin and low (5 mM) or high (25 mM)

glucose for 30 minutes before undergoing a 14C glucose-uptake assay. These results

are shown in Fig. 5.16. Both the high and low glucose experiments showed some in-

duction in glucose transporter activity, however neither achieved the 2-fold induction
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Figure 5.16: The fraction of total glucose transport rate in high (red) and low (grey)
glucose insulin resistant cells. After the cells were exposed to 100 nM insulin for 30
minutes, they were subjected to a 14C glucose uptake assay in order to determine their
glucose transporter activity. The initial glucose transporter activity (before the addition
of insulin) are elevated above normal (0.4) for both glycemic conditions. However,
their induction response of glucose transport is severely impaired, with only minor
increases in glucose transport being recorded in response to insulin induction. Error
bars indicate SEMs and each experiment represents a biological triplicate (n = 3).

thereof as one sees with control cells.

Based on the results in Fig. 5.16, the next experiments explored the time dynamics

of the glucose transporter activity when exposed to 100 nM insulin and either 5 mM

or 25 mM of glucose. The cells for the ‘low glucose’ experiments were cultured at

15 mM of glucose, 10% v/v FBS, and 1 nM of insulin until fully differentiated upon

which they were washed with 37◦CPBS (inclusive of 1 mM of both CaCl2 and MgCl2

). Thereafter the cells were challenged with 5 mM of glucose and 100 nM of insulin.

Conversely, the cells for the ‘high glucose’ experiments were cultured at 25 mM of

glucose, 10% v/v FBS, and 1 nM of insulin until fully differentiated whereupon they

were washed with 37◦CPBS (inclusive of 1 mM of both CaCl2 and MgCl2 ). The cells

were then challenged with 25 mM of glucose and 100 nM of insulin.
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Figure 5.17: The glucose transport dynamics in pseudo insulin resistant cells which
were challenged with 100 nM of insulin and either 5 mM of glucose (blue) or 25 mM
of glucose (red) after which they underwent a 14C glucose uptake assay to determine
their glucose transporter activity. The cells in blue were grown and differentiated at 15
mM of glucose, 10% v/v/ FBS, and 1 nM of insulin whereas the cells in red had their
glucose concentration increased to 25 mM. Control cells are shown in black. Error
bars indicate SEMs and all data points represent three biological repeats (n = 3).
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Figure 5.18: The ratios of the 60 minute changes in AktS (blue) and AktT (red) phos-
phorlation to IR phosphorylation, in control, low glucose (LG) diabetic, and high glu-
cose (HG) diabetic cells. The change across 0 and 60 minutes was chosen as it spans
a period before insulin was added to after the glucose transporter activity and Akt
phosphorylation had stabilised.

The initial glucose transporter activity (before the addition of 100 nM insulin), for

both the high and low glucose insulin resistant cells was elevated when compared to

the control cells (Fig. 5.17 red, blue, and black, respectively). However, unlike the

control cells, the insulin resistant cells are unable to respond to insulin by upregulating

glucose import to the degree (± 2-fold) that was established in Section 5.3). The

glucose transporter induction in insulin resistant cells is also more temporary than that

of control cells. Glucose transporter activity remains induced for at least two hours in

control cells whereas insulin resistant cells appear to lose their glucose induction after

20 to 30 minutes.
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Once the preliminary data were collected, the next was to determine with which

module the error lay. In order to to this, the ratios of the changes (from 0 to 60 minutes)

in Akt phosphorylation to IR phosphorylation and glucose transporter activity to Akt

phosphorylation were graphed as seen in Figs. 5.18 and 5.19. This does bear the

risk that incredibly small changes in the independent variable (i.e. the denominator)

can bias the ratios. However, in Figs. 5.14, 5.15, and 5.17 one can see that Akt

phosphorylation and the induction of glucose transporter activity changes from the 0

to 60 minute point are both low. Therefore, since both Akt and glucose transporter

activity are significantly diminished and display similarly small changes, such ratios

can be useful when determining which of these modules respond differently to the

control values.

Larger ratios indicate that the independent variable is more sensitive to the depen-

dent variable whereas smaller values indicate a loss of sensitivity to the independent

variable. In other words, in Fig. 5.18 one can see that the ratio of IRP to AktSP
is

1.7. This indicates that AktSP
increases at disproportionately higher levels in response

to IR phosphorylation. Similarly, in the pseudo insulin-resistant condition, the phos-

phorylation of AktS is seemingly nearly entirely diminished. The levels of AktTP
are

reduced as well, although not as strongly as the AktSP
levels.

In Fig. 5.19 one can see that glucose transporter activity is moderately sensitive to

AktSP
and AktTP

. However, in the pseudo insulin-resistant cells, there is a marked

reduction in glucose transporter sensitivity to AktSP
whereas the sensitivity to AktTP

remains unchanged, with perhaps a slightly reduced sensitivity to AktTP
in pseudo

insulin-resistant cells cultured under high glucose conditions.

This does not mean that glucose transporter activity has become uncoupled from

Akt phosphorylation. Rather, taking the data in Figures 5.14, 5.15, and 5.17 into ac-

count, one can see that under pseudo insulin-resistant conditions, glucose transporter

activity is significantly diminished. Akt phosphorylation at the 60 minute mark is sim-

ilarly reduced whereas there appears to be no significant change in IR phosphorylation

at the same timepoint (Fig. 5.13).

Additionally, with Fig. 5.18 these data implicate the signalling module as the com-
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Figure 5.19: The ratios of the 60 minute changes in glucose transporter activity to
AktSP

(red) and AktTP
(purple) in control, low glucose (LG) diabetic, and high glu-

cose (HG) diabetic cells. The change across 0 and 60 minutes was chosen as it spans
a period before insulin was added to after the glucose transporter activity and Akt
phosphorylation had stabilised.

ponent responsible for reduced glucose transporter activity in pseudo insulin-resistant

cells. More specifically, the fault could be within one of the intermediates between

IR and Akt since the signal from IR to Akt is already diminished. This would lead

to a lower output of the signalling module - in other words, lower Akt phosphoryla-

tion which in turn impacts glucose transporter activity as seen in Fig. 5.19. However,

despite these initial results, more conclusive data is required before these data can be

used for reliable model simulations.
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5.5 Discussion

The insulin receptor and Akt proteins both phosphorylate in response to stimulation by

insulin (Section 5.2). The AktS site responds more strongly at lower concentrations of

insulin than the insulin receptor does. At an insulin concentration of 10 pM, the Akt

serine site is already phosphorylated to 25% of its maximum value (Fig. 5.2) whereas

the insulin receptor only achieves approximately 5% of its maximum phosphorylation

(Fig. 5.1). Similarly, at insulin concentrations of 1 nM, 10 nM, 20 nM, and 50 nM,

AktS is consistently phosphorylated to a greater degree of its maximum than the IR is.

However, in reality, Akt does not directly phosphorylate in response to insulin since

these molecules do not interact. Rather, Akt is phosphorylated by upstream agents

such as MTORC1/2 or PDK1. In this study, the insulin receptor is used as a proxy

for these intermediates. While not entirely accurate, these data indicate that relatively

small increases in the degree of phosphorylation of the IR are amplified downstream

and ultimately lead to a stronger response from molecules such as Akt. This is further

evidenced by phosphorylation of the AktT site (Fig. 5.3). While this site does not

appear to detectably phosphorylate at insulin concentrations under 20 nM, it does seem

to have significant capacity for phosphorylation at insulin concentrations beyond 100

nM. While the IR and AktS sites both exhibit slight decreases in phosphorylation,

the AktT site phosphorylates to between two and three times its control value. This

possibly indicates that the phosphorylation of AktT could be a mechanism by which

the cell attempts to regulate extreme hyperinsulinemia and hyperglycaemia. It is also

likely that this could be a mechanism through which the cell seeks to compensate

for the apparent desensitising of the IR and AktS at extremely high concentrations of

insulin.

The glucose transporter reacts to concentration increases of insulin in a similar,

dose-dependent manner as the phosphorylation of the IR and Akt proteins (Fig. 5.6).

However, much like Akt does not react directly to insulin, neither does the glucose

transporter. The glucose transporter will react to increases in upstream intermediaries

(notably AS160) for which the Akt will serve as a proxy. With this in mind, the re-

sponse of the glucose transporter activity to Akt phosphorylation is shown in Fig. 5.7.
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Since AktS and AktT may be responsible for the activation of glucose transporter

translocation, the combined effect of these phosphorylated sites is shown in addition

to their singular effects. It appears that the combined impact of AktS and AktT phos-

phorylation closely resembles that of AktT on its own. This possibly indicates that

AktT is a stronger determinant of glucose transporter induction - especially at greater

insulin concentrations - than AktS phosphorylation.

The full phosphorylation and dephosphorylation of the IR occur rapidly - within

one minute of either adding or removing the insulin (Fig. 5.12). The Akt protein how-

ever phosphorylates and dephosphorylates much slower, requiring at least 15 minutes

to fully phosphorylate and nearly an hour to dephosphorylate. These dynamics are mir-

rored by the induction and reduction of glucose transporter activity (Fig. 5.11). This

may indicate that the IR is more sensitive to in situ oscillations in insulin concentration.

Should the IR be too strongly induced or induced for too long, this may over-activate

glucose transporter activity with respect to the metabolic demands or available glu-

cose at that time. Therefore, given the ‘amplification’ of the IR phosphorylation on

to the Akt phosphorylation, it is likely that the rapid ‘on-off’ dynamics of the IR are

a mechanism by which the Akt-dependent pathways and glucose transporter activities

are regulated.

The data from the insulin dose-dependent experiments were used to estimate the

stead-state parameters of the forward and reverse reactions which constituted the ODEs.

These steady-state parameters were used as model constraints in order to simulate the

time dynamic phosphorylation and dephosphorylation of the signalling module com-

ponents as well as the induction and reduction of glucose transporter activity. The

goal at the outset of this chapter (Section 5.1) was to develop a minimal mathematical

model which is able to simulate the phosphorylation and glucose transporter activity

dynamics of the insulin signalling and glucose transporter modules. This approach,

by its nature, is limited in that it does not account for the significant complexity and

numerous parameters that the entire insulin signalling system would contain.

However, the model was able to produce predictions for the ‘on-off’ behaviour of

the insulin signalling and glucose transporter modules. In contrast to the complex-
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ity of models such as those of Sedaghat [292] or Brännmark et al [315], this model

can provide insight into the signalling and glucose transporter modules by perturbing

one or two carefully selected molecules and examining the systemic behaviour of the

signalling cascade. The fits generated herein are not the best-possible fits for such a

system, but they offer an experimentally and computationally straightforward method

by which one can assess the functioning of each module.

The pseudo insulin-resistant cells the phosphorylation responses of the IR, AktS

and AktT upon insulin induction in pseudo insulin-resistant cells were compared with

those of control cells. For the IR there was no significant difference, or even a small

increase in the phosphorylation, while both theAktS and particularly theAktT seemed

to have a lower induction level then the control cells. However, it does appear as if

those cells grown with 25 mM have a consistently lower degree of phosphorylation

than cells grown with 15 mM glucose.

The effect of insulin resistance on glucose transporter activity is shown in Figs.

5.16 and 5.17. In Fig. 5.16, the pseudo insulin-resistant cells indicated an inability to

induce glucose transport activity in response to 100 nM insulin. Similarly, the dynamic

induction of glucose transporter activity in insulin resistant cells differed significantly

from control cells (Fig. 5.17). While glucose transporter activity can be induced with

100 nM insulin, it does not achieve the expected two-fold induction, nor are insulin

resistant cells able to maintain this induction of glucose transport activity for as long

as control cells.

108

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6

Insulin Induced GLUT4 Clustering

6.1 Introduction

In mature, insulin-sensitive tissues, GLUT4 is the primary insulin-responsive glucose

transporter [182]. The exposure of skeletal muscle or adipose tissue to insulin results

in the translocation of GLUT4-containing vesicles such as endosomes or, the more

specialised, GLUT4 storage vesicles (GSVs), from the perinuclear and perimembrane

spaces to the plasma membrane (PM) [31]. Exposure to insulin also alters the dynamics

of GLUT4 endo- and exocytosis. Typically, when the cells are at rest, there is a slow,

yet persistent recycling of GLUT4 between the endosomes and the plasma membrane

[201]. This ‘recycling’ - rate by which GLUT4 enters and exits the PM - increases by

as much as 60-fold whereas the retention of GLUT4 in the PM can increase by as much

as ten-fold in response to insulin [201, 373, 374]. However, since evidence suggests

that the translocation of GLUT4 and its activation are distinct processes, an increase in

GLUT4 at the PM does not imply an increase in glucose import [375]. In support of

this, experiments by Ishiki et al (2005) showed that while either PI(3,4,5)P3 and PI3P

are sufficient for the mobilisation of GLUT4 to the membrane, the former mediates

fusion without activation whereas the latter mediates activation, but not fusion with the

PM [108].

Under basal conditions, GSVs are localised to the apex of the perinuclear space

and are thereby found in relatively dense clusters [108, 376]. Due to the rapid decay
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or degradation of solitary GLUT4 molecules, it is mostly distributed among larger

endosomes, smaller GSVs, and the trans-Golgi network [377–379]. The balance of

this distribution shifts from a mostly-endosome to a mostly GSV distribution as the

cells mature and differentiate [380]. The location of these vesicles coincides with the

the microtubule organising center (MTOC) [374, 381]. This centrosomal structure

forms a hub where actin and tubulin filaments attach to and nucleate from [382].

The translocation of GSVs to the PM has been shown to co-localise with micro-

tubules in undifferentiated cells [374]. Here a problem is that many studies that rely on

fluorescent microscopy to reach these conclusions are unable to differentiate between

GSVs that are near the membrane and those that are within the membrane. While

the cytoskeleton may not be necessary for the translocation of GSVs, it may play an

important role in the direction or targeting of GSVs to specific sites on the PM [374].

This question - whether MTs aid in the directing of GSVs - was explored by

Stenkula et al (2010). They found that the distribution of GLUT4 in response to in-

sulin (70 nM, 30 min), was inhomogenous and organised in clusters along the plasma

membrane [373]. Later work by Dawicki-McKenna et al (2012) showed that such

clusters occur near the membrane-associated ends of microtubules [374]. Lastly, super-

resolution microscopy of 3T3-L1 adipocytes indicated that exposure to insulin results

in more, but smaller clusters distributed along the PM [202].

6.1.1 Clustering Methods: An Overview

While no strict definition of a ‘cluster’ has been agreed on, a cluster - or set thereof -

can be identified by at least three features [383]. Firstly, data within a cluster should be

as similar as possible. In practical terms, for this study, this similarity was determined

by calculating the euclidean distances between each point and every other point, the

distances between each point and the cell nucleus, and the variances across those dis-

tances. The second feature suggests that data in different clusters should be as different

as possible. For any cluster this was assured by excluding data that was displaced from

the centre of the emerging cluster by more than three times the mean euclidean distance

of the points already in the emerging cluster. The third feature requires that the simi-
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larity and dissimilarity measures are explicit and transparent and that these measures

can be quantified and implemented computationally [383].

Three clustering methods were considered for the analysis of the data: K-means

methods, density-based methods, and hierarchical methods. K-means clustering was

an initial candidate due to its lower computational intensity and time-dependence [384].

However, this type of clustering requires foreknowledge of the numbers of clusters one

wishes to find [385]. K-means methods are useful for partitioning data according to

a specific aim or design. Since the data in this study provided no indication as to the

number of clusters one expected to find and in an effort to avoid bias, K-means, and

partitioning methods in general, were put aside.

Density-based algorithms such as DBSCAN were considered as they rely on nearest-

neighbour density of data points [386]. The data generated in Section 6.3 appeared

sufficiently densely populated to warrant density-based clustering. However, density-

based methods suffer when presented with data of highly uneven densities [383].

This meant that data with punctate clusters dispersed across an arbitrary space might

compromise the algorithm. Additionally, such methods are computationally intensive

[387].

Hierarchical clustering methods were selected by relating the data back to a bio-

logical context. Current theory holds that GLUT4 not at the PM is primarily found

in GSVs and endosomes. These vesicles are, in turn, co-located around the MTOC

in the perinuclear region [388]. Therefore, GLUT4 is already present in a ‘cluster

of clusters’. Bottom up hierarchical clustering methods assume that each individual

data point is a cluster [389]. The algorithm then seeks to merge clusters based on the

distances between each cluster and the density within each cluster until a minimum

number of clusters has been achieved.

6.1.2 Motivation and Aim

The data generated by overexpressing a GLUT4-GFP construct in C2C12 cells, stain-

ing the nucleus and membrane, and confocal microscopy were kindly used by Prof.

J. L. Snoep of Stellenbosch University to generate the images in Fig. 6.1. In these
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images, one can see that in the pre-insulinic cells, the GFP signal is located in the

perinuclear region (Fig. 6.1a). More specifically, it is concentrated to one apex of the

nucleus. It is likely that this is where the MTOC is located, since GSVs are known to

concentrate here [374]. Conversely, in the post-insulinic cell, the GFP signal is more

distributed throughout the cell (Fig. 6.1b).

These observations led to the development of two aims: firstly, to investigate

whether clustering analyses can be applied to the types of images and data generated

from the imaging studies. Secondly, to examine whether such analyses could lead to

novel, meaningful insights into the clustering behaviour of GLUT4 between pre- and

post-insulinic C2C12 myoblasts.

In order to fulfil the demands of the first aim one would need to know whether there

are differences in the number of clusters between the pre- and post-insulinic cells and

whether the number of GFP signals (pixels) had an impact on the number of clusters

that were identified. Once these questions are answered, focus shall shift on to the

second aim where the following questions may be addressed:

1. Are the differences in cluster quantity between the different insulinic conditions

a real phenomenon or due to chance?

2. Do the post-insulinic clusters differ from the pre-insulinic clusters with regards

to the number of pixels they contain?

3. Is there a difference in the proportion of pixels that are assigned to clusters be-

tween the insulinic conditions? This would establish whether insulin has an

effect on the dispersion of pixels throughout a cell.

4. If insulin has a dispersive effect on the GFP-tagged GLUT4, can this be de-

termined both on a cluster and on an individual pixel level? In other words, are

clusters and pixels in post-insulinic cells more distant from the perinuclear space

than in post-insulinic cells?

5. What are the differences in cluster densities between pre- and post-insulinic

cells?
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(a)

(b)

Figure 6.1: Three-dimensional reconstructions of pre-insulinic (Fig. 6.1a) and post-
insulinic (Fig. 6.1b) cells from GLUT4-GFP, Hoechst stain, and membrane-staining
data. The GLUT4-GFP signal is shown in green whereas the nucleus and membrane
are shown in blue and yellow respectively. The pre-insulinic cell (Fig. 6.1a) has di-
mensions of 160 × 280 × 90 pixels which corresponds to a length of 21 µm, a breadth
of 37 µm, and a height of 12 µm. Similarly, the post-insulinic cell (Fig. 6.1b) has di-
mensions of 410 × 360 × 90 pixels which corresponds to a length of 54 µm, a breadth
of 47 µm, and a height of 12 µm.
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6.2 Methods

The C2C12 myoblasts were transfected as discussed in Chapter 3. Images were ac-

quired as described in Chapter 3. Myoblasts were used for these experiments since the

plasmid was rejected during differentiation and myofibers did not transform. Two sets

of images were acquired: those representing a pre-insulinic state, and those represent-

ing a post-insulinic state. The images were pre-processed in the FiJi implementation

of ImageJ. The .lsm files were separated into individual .tiff files according to colour

channel and Z-position. Further, the background for each image was subtracted with

the ‘Rolling Ball’ method. The images were then imported into Mathematica where

they were deconvoluted using Mathematica’s ‘ImageDeconvolve’ function. The im-

ages were then manually examined and a rectangular border was drawn around each

cell. All further analyses occurred within these pre-determined boundaries.

For the purposes of these analyses, the pixel intensity values were used. Mathe-

matica was tasked with finding the 2-dimensional coordinates of every green pixel in

every image for every cell. This was performed for various intensities of green. The

software categorised these intensities according to a ‘dissimilarity’ score where 1 is

the most dissimilar to green and a null value is the most similar. For the purpose of

this study, values from 0.5 to 0.99 - in other words 50% to 99% - were used.

The dimensions of each pixel were calculated to be 136 nm by 136 nm since each

1024 × 1024 image was 139.8 µm × 139.8 µm according to the instrumentation.

Similarly, since each Z-slice represented a depth of 690 nm, each slice was calculated

to be approximately 5 pixels deep. However, since each image is two-dimensional, the

three dimensional position of each pixel had to be estimated. In order to do this, the

highest and lowest possible position for a pixel in each Z-stack were estimated. For

example, the lowest point for the first slice was set to ’0’ whereas the highest point was

set to 5 pixels. Thereafter, within each pixel range for any z-slice, the position of each

pixel was assigned a random z value based on Mathematica’s ‘RandomReal’ function

and the depth constraint of 5 pixels since the z value was not known for the pixels.

After the 3-dimensional pixel positions were identified, they were fed into a custom

algorithm that calculated the number of clusters and defined certain exclusion criteria
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by which ‘true’ clusters were identified. The clustering made use of Mathematica’s

‘FindClusters’ function and it was specified to calculate the Euclidean distances be-

tween each pixel in each image. Based on the distances between each pixel in each

image, the function then made use of the ‘Agglomerate’ option which determined the

number of clusters based on a hierarchical algorithm.

Hierarchical clustering was appropriate for this problem from a biological view-

point. GLUT4 is already arranged into ‘mini’-clusters of up to 25 molecules per

GSV [31]. These GSVs are in turn clustered around the perinuclear space - more

specifically, the MTOC [390]. Further, once translocation of the GSVs occurs, they

move along the cytoskeleton. Since there are a limited number of cytoskeletal filaments

in a cell in relation to the number of GSVs, this will further contribute to clustering of

GSVs along the cytoskeleton. This has been observed in [202] who show that, not only

do GLUT4 molecules co-locate with the ends of microtubules, the density of GLUT4

decreases significantly with increasing distance from the MTs. This led to the decision

that, since GSVs appeared to be organised as clusters within clusters which translocate

as clusters, using hierarchical clustering function was appropriate (see Section 6.1.1).

The algorithm was further designed to exclude certain pixels or clusters from the

final results based on certain criteria. In both the pre-insulinic and post-insulinic cells,

clusters with fewer than the median number of members (3 and 11 respectively) were

excluded in order to control for skew in the data. Additionally, due to the inefficient

transformation, blebbing, or lysis of some cells it was possible for small quantities of

GFP-tagged GLUT4 to present beyond the boundaries of the cell under investigation.

In order to account for these outliers, the Euclidean distances between each pair of

pixels were calculated and pixels which were more than three times the mean distance

were excluded. Lastly, the logarithm of the total variance of the Euclidean distances

between the pixels within a cluster was calculated in order to account for skewed data.

This was then normalised to the total number of members of the cluster to serve as

a proxy measure for the density of a cluster. Clusters which had a density of three

standard deviations from the mean density of the clusters within a cell were excluded

from further analysis.
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Considering that, at this point, each experimental condition was defined by a set

of Z-stacks for each pixel intensity value, the question arose: at which pixel intensity

value was the data most significant? Since the data were non-normally distributed, a

Mann-Whitney U test was used to compare the numbers of clusters in the pre-insulinic

cells with those in post-insulinic cells in order to determine whether the differences

in cluster numbers were statistically significant. Similarly, Spearman Rank correlation

tests were applied to each set of 3-dimensional points to test whether the number of

clusters depended on the number of pixels in a set of images. This was important since

the numbers of pixels differed by as much as a factor of three between some images.

The final set of 3-D positions were selected according to p-values and the spread

of the Euclidean distances within each cluster. The latter was assessed using the vari-

ances, standard deviations, mean deviations, and numbers of outliers for each experi-

mental condition and pixel intensity values. Using these 3-dimensional pixel positions

as well as their clustering characteristics, Mathematica was asked to discretise these

into distinct regions with the ‘ConvexHullMesh’ function. Thereafter, the center point

of each cluster was determined using ‘RegionCentroid’. This served a two-fold pur-

pose. Firstly, the Euclidean distances between the centers of each combination of

clusters were determined and the total variance among these distances was used as

a proxy for the overall dispersion of the clusters. Secondly, the center point of each

nucleus was determined by manually defining the nuclear region and using ‘Convex-

HullMesh’ and ‘RegionCentroid’. These data were then used together with the center

points of each cluster in order to determine whether the Euclidean distances between

each cluster and the nucleus had increased in response to insulin.

6.3 Results

The following section discusses the results in two separate phases of analysis. First it

was necessary to determine which pixel intensities were suitable for further analysis

and then sort these into clusters. These intensities are inverse to how strongly the GFP

fluoresced and represent a threshold which excludes pixels above the designated value
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(as discussed in Section 6.2). Larger values would therefore include more pixels and

lower values would include fewer pixels. The number of pixel positions that are sub-

sequently analysed by the algorithm has an effect on the accuracy of the analyses that

are generated. Therefore, before delving into the analyses of the clusters themselves,

it is important to ensure that the data are appropriate for such analyses. Secondly, the

clusters themselves will be analysed with regards to their density and distribution in

order to determine whether there are differences between pre- and post-insulinic cells.

Mathematica was used to determine the clusters by using its integrated ‘FindClus-

ters’ function. This function made use of the ‘Agglomerate’ method and evaluated the

Euclidean distances between each pixel in order to determine the numbers of clusters.

Agglomerative methods are a subset of a hierarchical clustering method that make use

of a ‘bottom-up’ approach. Each cluster begins as a single observation and is then itera-

tively sorted into ever larger clusters [389]. This method allowed a blind determination

of clusters whereas methods based on K-means clustering requires foreknowledge of

the numbers of clusters one expected to find and was therefore not used.

6.3.1 Determining the Number of GFP Clusters in C2C12

Myoblasts

Images were captured from two sets of 12 cells that were equally divided among the

pre-insulinic and post-insulinic experimental groups. The data generated by the imag-

ing analyses and clustering algorithm were binned as follows: first they were cate-

gorised according to pre- or post-insulinic conditions. Thereafter, within each experi-

mental condition, the pixel positions were binned according to the pixel intensity that

was used to generate them. These data were then used to generate box plots of the pre-

and post-insulinic cells (Figs. 6.2 and 6.3 respectively) which indicate the spread of

data, the medians of each set of data, and the number of outliers (five number sum-

maries can be found in Table 6.1). The pre-insulinic cells showed greater variability

in the number of clusters as the pixel intensity increased above 75% (Fig. 6.2). The

variability in cluster numbers for the post-insulinic cells remained stable for pixel in-

tensities between 70% and 85% (Fig. 6.3). Including too many or too few pixels
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Figure 6.2: Box whisker plots of the clustering data in pre-insulinic cells which indi-
cate the five number summaries of the clustering data: smallest clusters, largest clus-
ters, median number of clusters, and the 25th and 75th quartiles. Pixel intensities above
75% resulted in greater variability in the data. Therefore values of 75% and lower were
considered for further analysis. Outliers are presented as gray dots. See Table 6.1 for
the relevant five number summaries of these data. These data were gathered from 12
individual cells (n = 12).

resulted in less reliable data. Therefore, taking the variability of all data into account,

this limited the range of acceptable pixel intensities to between 65% and 75%.

Barring a single outlier in the pre-insulinic condition at 100% pixel intensity, the

median number of clusters that was identified for each experiment and intensity value,

remained fairly constant (Figs. 6.2 and 6.3). This further mitigated any impact that

the choice of pixel intensity may have had on the number or the distribution shift of

the clusters in either experimental condition. Similarly, a disconnect between pixel
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Figure 6.3: The spread of clustering data in post-insulinic cells as visualised using
box whisker plots. These pots indicate the five number summaries of the clustering
data: smallest clusters, largest clusters, median number of clusters, and the 25th and
75th quartiles. Lower (50 and 60) as well as higher (95 and 100) percent pixel values
present with greater variability in the data. Despite this, however, the median values
remained relatively constant. Values between 65 and 90% were considered for further
analysis. Gray spots represent outliers in the data. The relevant five number summaries
of each percent pixel intensity can be found in Table 6.1. These data were gathered
from 12 individual cells (n = 12).

intensity and median numbers of clusters further reduced the impact of any bias that

could be present in the analysis. The final decision to use the 75% value was based

on the observation that this had the fewest outliers (2), compared to the 70% and 65%

values (4 and 8 respectively) as seen in Table 6.2.

Since the pixel intensities correlated positively with the number of pixels that were

ultimately analysed, the need arose to investigate whether pixel intensities correlated
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with the number of clusters. In other words, does a greater number of pixels to be

analysed, result in the identification of more clusters? In order to test whether the

number of points influenced the number of clusters, a Pearson’s correlation test was

used. The test showed very weak correlation among the post-insulinic cells. At a

correlation coefficient of 0.067, this indicated that approximately 7% of the increase

in the number of clusters could be attributed to the greater numbers of pixels. The pre-

insulinic cells however, showed greater - albeit weak - correlation between their pixel

numbers and the number of clusters. The correlation coefficient in this instance was

0.33. This indicates that the number of clusters somewhat dependent on the number of

pixels used for the analysis. The number of clusters in pre-insulinic cells may therefore

be slightly overestimated.

Insulin might stimulate the synthesis of new GLUT4 proteins. However, previous

studies have shown that exposure to insulin shows no significant increase in GLUT4

mRNA or protein levels [391, 392]. Additionally, the plasmid is constitutively ex-

pressed and the promotor is insensitive to insulin. Finally, no change in overall flu-

orescence was noticed throughout the experiment. It was therefore assumed that the

differences in the amount of GFP signal were due to either the greater dispersion of

GFP-tagged GLUT4 or due to inherent biological variation in the cells. A Mann-

Whitney U test was used to determine whether the differences in GFP signal between

pre- and post-insulinic cells could be due to chance or whether they represented a sta-

tistically significant difference. The results indicated that the differences in GFP signal

were a real - biological - phenomenon, and not due to chance (p < 0.01). The dif-

ferences in pixel number is thought to be due to the greater dispersion of GFP-tagged

GLUT4 as a consequence of insulin exposure. More dispersed GFP signal could give

the impression that more GFP-tagged GLUT4 is present in a cell since the diffraction

limit of the confocal microscope would obscure more densely clustered GFP-tagged

GLUT4.
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6.3.2 Analysing the Cluster Characteristics: Differences,

Dispersion, and Densities

The cluster data lead to the development of several questions. Firstly, are the differ-

ences between the number of clusters found in pre- and post-insulinic cells significant?

Secondly, do these clusters, on average, differ significantly with regards to the number

of pixels included within them? Thirdly, is there a difference between the proportion of

pixels that have been included and excluded from clusters among the different insulinic

conditions? Fourth, are the clusters and pixels more dispersed - distant from the nu-

cleus - in post-insulinic cells than in pre-insulinic cells? Finally, are there differences

with regard to the densities of the clusters in pre- and post-insulinic cells?

Table 6.2 shows the differences among the numbers of clusters between pre- and

post-insulinic cells. However, the question arose whether these differences were bio-

logical features, whether they were systematic artefacts of the imaging or data analysis,

or whether they were due to random error. In order to test whether these differences

were real or due to chance, a Mann-Whitney U test was used to compare the numbers

of clusters with one another. The Mann-Whitney U test compared the numbers of clus-

ters in the pre- and post-insulinic cells across the range of pixel intensities. The 75%

value displayed the lowest p-value at 9.73E-05 which further supported this as being

the appropriate pixel value to use. Therefore, the differences in the numbers of clusters

was due to the effect of insulin. The only instances where the differences in cluster

numbers between the insulinic states was not significant (p>0.05), was with the 95%

and 100% pixel intensities. This is most likely due to the large degree of ‘noise’ that is

included in the data when using these values.

Another question that emerged from comparing the two data-sets was whether the

differences in cluster numbers between the two insulinic states was due to the effect of

the insulin or due to random, biological variation in the cells.

The sizes of the clusters, in terms of the number of pixels included as members of

a cluster, did not differ significantly (p > 0.05) among the pre-insulinic (205 ± 448)

and post-insulinic (237 ± 375). These numbers may indicate that the cluster size is

not impacted by insulin. However, there are several caveats to consider. Firstly, both
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insulinic conditions showed correlation coefficients greater than 0.98 between the total

number of pixels and the number of pixels found within clusters. Secondly, the total

number of pixels identified in post-insulinic cells is nearly thrice that of those identi-

fied in pre-insulinic cells. Thirdly, it is very likely that the number of clusters in the

pre-insulinic cells has been overestimated by as much as 33%. Lastly, the diffraction

limited nature of confocal microscopy means that it is likely that a portion of the GFP

signals were not identified in the pre-insulinic cells due to the lower dispersion of the

signal. Therefore, it is quite likely that the numbers of pixels per cluster in pre-insulinic

cells has been underestimated in pre-insulinic cells. This would indicate that the real

number of pixels per cluster may in fact be greater than what the data indicates.

Whether the ratio of clustered to unclustered pixels differed significantly between

pre- and post-insulinic cells (Fig. 6.6) was tested by calculating the ratio of included vs.

Figure 6.4: An overlay of the accepted pixel data and confocal images in pre-insulinic
cells. Each set of 2-dimensional pixel positions was overlayed with its corresponding
z-slice of a sample set of confocal images for C2C12 myoblast. What is apparent is the
typical clustering of GLUT4 molecules in the perinuclear region in cells which have
not been insulin-stimulated. Each image is 600 × 400 pixels which corresponds to a
length of 79 µm and a height of 52 µm. For more images, please see Chapter A.
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Figure 6.5: An overlay of the accepted pixel data and confocal images in post-insulinic
cells. Similar to Fig. 6.2, the pixel positions were superimposed on each z-slice confo-
cal image of the corresponding post-insulinic C2C12 myoblast. In these cells, the GFP
signal (and thus the GLUT4) appears more dispersed within the internal volume of the
cell after insulin stimulation. Each image is 640 × 520 pixels which corresponds to a
length of 84 µm and a height of 68 µm. For more images, please see Chapter A.

excluded pixels for each cell and comparing these values by using a Mann-Whitney U

test. Pre-insulinic cells showed a significantly (p< 0.01) higher percentage of pixels in

clusters (74% ± 6%) when compared to post-insulinic cells (62% ± 7%). Therefore,

the dispersion of GFP signals in post-insulinic cells was significantly greater than pre-

insulinic cells. Together with the greater number of total signals and clusters in post-

insulinic cells this indicates that insulin may have a marked effect on the distribution

of GSVs within a cell. GSVs in pre-insulinic cells tend to be found mostly in clusters

as opposed to those in post-insulinic cells. This is likely due to the MTOC-associated

‘superclusters’ splintering into smaller, more distributed clusters throughout the cell.

In order to test whether the dispersion of the clusters within a cell differed among

pre- and post-insulinic cells, the two-dimensional positions of the pixels were super-

imposed on their original images. Sample images can be seen in Fig. 6.4 and Fig. 6.5

which describe the pre-insulinic and post-insulinic cells respectively. Further images
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Figure 6.6: The differences between pre-insulinic (green) and post-insulinic (orange)
cells with regards to the fraction of GFP signal that could be assigned to a cluster.

may be found in Appendix A. However, what is apparent from these images already

is that the post-insulinic cell (Fig. 6.5) exhibits much greater dispersion of GFP when

compared to the pre-insulinic cell (Fig. 6.4). This suggests that GLUT4 itself has

moved from the perinuclear space to the perimembrane space, if not having fused with

the membrane itself.

Further, each cluster was defined as a three-dimensional region. Thereafter, the

central point of each cluster was determined and the Euclidean distances between the

centers of each cluster within each cell were then calculated. A greater mean distance

would indicate that, on average, the cluster centers are further apart from one another.

In turn this would suggest that clusters have moved from a localised formation, to

a more decentralised formation within a cell. In post-insulinic cells, clusters were a

mean distance 117 pixels (± 85) apart from one another. Pre-insulinic cells were, on
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average, 53 pixels (± 34) apart from one another. These differences were significant

(p < 0.05). Therefore, taking into account previous results that indicate the significant

biological action of insulin on these cells, these results suggest that insulin is the causal

agent for the greater dispersion of clusters within a cell.

However, these data suggest only that the center of a cluster has moved. This

does not mean that the cluster members themselves are more dispersed. In order to

test this, the Euclidean distances between each pixel and the center of their respective

nuclei (Section 6.2) were calculated. Greater mean distances between pixels and nuclei

would indicate that the GFP signal has dispersed more widely within the cell from its

initial, peri-nucleic location. The pixels in the pre-insulinic cells were closer to the

nuclear region (81 pixels, ± 31) when compared to those in post-insulinic cells (94

pixels ± 59). This further supports a significant (p < 0.05) effect of insulin on the

dispersion of GSVs within the cell.

Lastly, the cluster densities were evaluated across pre- and post-insulinic cells. The

same clustering score that was used in Section 6.3.1 was used in order to determine the

density of each cluster. The motivation for this was to determine whether the density

of clusters changed in response to insulin exposure. The results indicate that pre-

insulinic clusters were less dense (0.079 ± 0.0035). This represented an almost 1.5-

fold greater dispersion within a cluster than in post-insulinic clusters (0.053 ± 0.0024).

This supports previous analyses that indicate smaller clusters splitting off from larger

super clusters. Further, this is in line with previous observations in literature which

indicate that GSVs translocate to punctate clusters around the termini of MTs [202].

6.4 Conclusion

The aim of this chapter was two-fold. First, to determine whether clustering algorithms

could be applied to the types of confocal images generated herein. Secondly, to estab-

lish what types of questions could be answered by the resulting data and whether these

questions yielded novel, meaningful insights to the clustering behaviour of GLUT4

molecules in pre- and post-insulinic cells.
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In service of the first aim, Section 6.3.1 explored several aspects of the clustering

algorithm itself. The first finding was that there was a difference in the number of

clusters between cells which where stimulated with insulin and those which were not.

Further, considering that the post-insulinic cells appeared to present more GFP signal,

it was important to determine whether the quantity of GFP signal would affect the

number of clusters. The number of clusters weakly correlated with the amount of GFP

signal in pre-insulinic cells and could be overestimated by as much as 33%. However,

in post-insulinic cells, this overestimation dwindled to 6.7%.

Considering that there was a marked increase in the number of pixels identified in

post-insulinic cells over the pre-insulinic cells it was necessary to determine whether

this was due to chance or a real phenomenon. The results detailed in Section 6.3.1 in-

dicate that the difference in GFP signal was a real phenomenon and not due to chance.

However, there are several caveats to these findings. Firstly, despite the difference be-

ing real, it is unknown whether this represents a difference in the quantity of signal. In

other words, whether one cell expresses GFP-tagged GLUT4 over another is currently

unknown. It is unlikely that insulin induces greater expression of GFP-tagged GLUT4

since it does not induce GLUT4 expression. Secondly, the diffraction limited nature of

the confocal microscope makes isolating individual GLUT4 molecules unlikely in this

study. This means that when the GFP-tagged GLUT4 was densely clustered, it was not

possible to isolate individual signals. There may have been loss or overlap of signal

which would obscure the true number of GFP signals in pre-insulinic cells. Therefore,

if insulin induces greater dispersion among GLUT4 molecules, it is likely that this may

appear like a real difference in GFP signal among pre- and post-insulinic cells.

In order to fulfil the second aim, several aspects of the clusters identified in Sec-

tion 6.3.1 were analysed. It was determined that the amount of clusters was signif-

icantly different between pre-insulinic and post-insulinic cells. Where the previous

analysis dislocated the number of clusters from the number of pixel, this result sup-

ports the notion that insulin effects the splintering of a few clusters into more. Next,

the size of these clusters with regard to the number of pixels they contained was in-

vestigated. The results in Section 6.3.2 indicate that there is no significant difference
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among the sizes of the clusters. However, in light of the limitations of the confocal

microscope and the highly localised nature of pre-insulinic clusters, the reliability of

this result is not sure.

In light of this, the next step was to determine whether the proportions of pixels

included or excluded from clusters different between the insulinic cells. It was found

that post-insulinic cells had fewer pixels which could be assigned to a cluster. Based

on this, the next step was to determine whether this was due to the greater dispersion

of the clusters and pixels in post-insulinic cells. Considering the exclusion criteria

discussed in Section 6.2, greater dispersion of the pixels would mean that fewer pixels

would be included in clusters as they would be too distant to their nearest neighbours.

The results indicated that the clusters in post-insulinic cells more dispersed - in other

words more distant from the nucleus. Similarly, the pixels within the post-insulinic

cells are also more distant from the nucleus. This means that it is indeed likely that the

difference in the proportions of pixels assigned to clusters is likely due to the greater

dispersion of the GFP signal in post-insulinic cells.

Lastly, the densities of the clusters was examined. The post-insulinic clusters were

denser than the pre-insulinic clusters. As discussed in Section 6.3.2, this is likely due

to the nature of GSV translocation. Smaller clusters of GSVs break away from the

larger, perinuclear clusters and travel along the microtubule network to ultimately fuse

in denser, punctate clusters at the terminus of each microtubule [202]. However, once

again one cannot ignore that, due to the diffraction limit, it is likely that the true num-

ber of pixels within each cluster is not fully known. It could very well be that the

pre-insulinic clusters are denser, but since the true number of pixels is not known, this

remains speculation. It may be possible to overcome this hindrance through the use of

super-resolution microscopy such as a STORM (stochastic optical reconstruction mi-

croscopy) or a combined confocal and scanning electron microscopy based approach

which would provide the necessary resolution and more detailed 3-dimensional infor-

mation on the location of individual molecules [393–395].

In conclusion, this study demonstrated that cluster analysis is a viable method with

which to investigate certain aspects of biological imagery. Further, it determined that
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insulin has a notable effect on the number, dispersion, and density of GLUT4 clusters

in C2C12 myoblasts. This means that one can use clustering data to generate novel,

meaningful answers with respect to certain biological phenomena. This knowledge

could assist investigations which wish to determine how different states such as disease

or stress affect the behaviour of certain molecules.

Further work would investigate the time-dependent movement of GSVs in response

to insulin stimulation. It would also be important to investigate the clustering behaviour

of GSVs under conditions where the cytoskeleton has been disrupted. This would need

to be paired with glucose transport or flux data in order to elucidate the effect that GSV

clustering may have on glucose dynamics in cells. Additionally, repeating these experi-

ments in differentiated muscle tissue would provide insight into the behaviour of GSVs

in mature cells. Lastly, super-resolution microscopy would be necessary to better de-

fine the number of GLUT4 molecules within the membrane as well as determine their

clustering charactersistics.
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Chapter 7

Conclusion and Final Remarks

The present work examined insulin signalling from a variety of perspectives. Firstly,

the impact that so-called standard cell culturing practises has on the differentiation and

insulin sensitivity of C2C12 myotubes. Secondly, this work integrates the insulin sig-

nalling and glucose transport modules (Section 1.1) into a data-driven, minimal math-

ematical model. Thirdly, the impact that insulin has on the clustering and distribution

of GLUT4 in C2C12 myoblasts.

7.1 Concerning the Optimisation of Growth

Conditions

The first aim of this study was to re-establish, standard, physiologically relevant cul-

turing conditions upon which all further experiments would be based. High glucose

concentrations (25 mM) have been linked to the development of insulin resistance

[396, 397], metabolic dysfunction [398], or reduced differentiation [279]. Therefore,

it was necessary to determine to what degree these impacts were present in C2C12

cells and what steps could be taken to remedy this.

In Chapter 4, it was shown that standard, high glucose culturing protocols dysreg-

ulated the glucose metabolism and differentiation of C2C12 myoblasts. Cells cultured

with 25 mM glucose showed a consistently lower induction of glucose-lactate flux in

response to insulin stimulation than cells cultured with 15mM or 5 mM of glucose
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(Fig. 4.1). Cells that were cultured with 15 mM or 5 mM glucose in their media re-

sponded to insulin induction and showed a greater glucose-lactate flux when compared

to their respective controls. This indicates that persistent, high glucose culturing condi-

tions have an adverse effect on either the insulin signalling or the glycolytic machinery.

However, since these studies only evaluated the glucose-lactate flux, it is unclear from

these results with which of these aspects the dysregulation lies.

A clue may be found in the second aspect of this particular study. The degree to

which C2C12 myoblasts differentiate to myotubes in media which contained either

25 mM or 15 mM glucose was investigated. As seen in Fig. 4.6 and Table 4.2, cells

which were grown with 15 mM of glucose showed an approximately 1.4-fold increase

in differentiation when compared to those cultured in 25 mM of glucose. Considering

the greater expression of GLUT4 [233] in differentiated cells, a greater degree of dif-

ferentiation is desirable when investigating aspects of insulin signalling and glucose

transport. Despite this, the lack of direct evidence of GLUT4 expression in Chapter 4

remains its most obvious shortcoming. However, future studies such as the image and

cluster analyses presented in Chapter 6 could be used to elucidate this.

The standard culturing conditions were evaluated with the specific aim of ensuring

their suitability for the insulin signalling and glucose transport studies which followed.

In doing so it was discovered that lower glucose concentrations in the culturing and

differentiation media resulted in cells that exhibited a greater degree of differentiation

and were more sensitive to insulin induction of glucose transport and flux.

7.2 Concerning the Integration of Insulin Signalling

and Glucose Transporter Data: the Construction

of a Minimal Model

The second aim of this study was to develop a kinetic description of the phosphory-

lation of the IR and Akt proteins as well as the induction of GLUT4 activity. These

data, which represented the insulin signalling and glucose transporter modules (Sec-
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tion 1.1) respectively, were then included in a minimal model. Further, while not part

of the original aims, Chapter 5 included a preliminary investigation of the IR, Akt, and

GLUT4 activities under a pseudo insulin-resistant state.

7.2.1 Characterisation of the Insulin Signalling and Glucose

Transport Modules

The first two modules - signalling and glucose transport - in the ‘three module’ module

framework (outline in Section 1.1) were characterised. The signalling and glucose

transport responses of C2C12 cells were characterised according to their insulin dose

responses as well as their temporal dynamics.

How the IR and Akt phosphorylation dynamics and GLUT4 activity change in

response to insulin concentrations between 10 pM and 1 µM was tested (Chapter 5).

The phosphorylation of the IR and Akt achieved their maxima at 100 nM and 1 µM

respectively. The Thr308 site on Akt displayed greater responsiveness to insulin at

concentrations greater than 20 nM, and showed a remarkable 4-fold induction at 1 µM

insulin. This is in contrast with the IR and Akt Ser473 whose phosphorylation state

only increased two-fold in response to insulin concentrations of 100 nM and above.

Similarly, the activity of the GLUT4 transporter (as measured by the uptake of radio-

carbon glucose) increased linearly (on a logarithmic scale) with insulin concentration

until it achieved a maximal induction of approximately 2-fold at insulin concentrations

of 100 nM or greater. While no increase in total IR or Akt signal was observed, similar

data was lacking for the GLUT4 transporter.

Secondly, the dynamic behaviour of IR, Akt, and GLUT4 activity were examined

in response to a 100 nM insulin pulse (Chapter 5). The first component to achieve

its maximum of a 2-fold induction of phosphorylation is the IR after two minutes.

Thereafter, both the levels of AktSP
and GLUT4 activity reach their maxima after 15

minutes. In each case, these levels are maintained for the duration of the experiment.

This represents the ‘on’ dynamics of insulin signalling. The ‘off’ dynamics were deter-

mined by a series of experiments which evaluated the dephosphorylation and reduction

of GLUT4 activity as described in Chapter 5. With the exception of the IR, the ‘switch-
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ing off’ of AktSP
and GLUT4 activity was slightly slower than the switching on. The

konandkoff constants determine the insulin signalling dynamics and they need to be

balanced with similar values in the glucagon system since it is not likely that cells

would operate two antagonistic pathways at a maximum rate. Similarly, other possible

explanations for these ‘on - off’ dynamics could be that they are an emergent feature

or specific dynamics which are adapted to the pulsatile release of insulin as seen in situ

[305, 399]. Whether the ‘off’ dynamics are altered in pseudo insulin-resistant cells or

whether they are dependent on the culturing conditions will be the subject of future

work.

7.2.2 Integration of Insulin Signalling and Glucose Transport

Modules: A Minimal Mathematical Model

A minimal, ODE-based model was built which incorporated the two modules - insulin

signalling and the GLUT4. The insulin signalling module was represented by IR and

Akt phosphorylation dynamics as outputs and insulin as an input. The GLUT4 module

used phosphorylated Akt as an input and yielded the glucose transport activity as an

output which was measured by 14C uptake assays.

Each of these components was described with a set of reversible mass-action equa-

tions. The experimental data were used to determine the ratios of the ‘on’ and ‘off’

constants for each equation in a single optimisation step. The division of the insulin

signalling cascade into three distinct modules (as discussed in Section 1.1) meant that

one could portray this pathway as a series of input-output relationships which relegated

much of the complexity to so-called ‘black boxes’.

When one compares this approach to those discussed in Section 2.3 several as-

pects stand out. The model presented here is less complex than the approach favoured

by Sedaghat et al [292] or Brännmark et al [315]. However, despite this, the model

could successfully simulate the normal state of insulin signalling. Further, this ‘core’

modelling approach attempts to blend a top-down approach (as described in [33]) with

molecular data. In other words, insulin signalling and glucose transport modules were

defined as functions on their inputs and outputs. The model relied on two sets of exper-
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imental data: insulin dose-response data and the time dynamics in response to 100 nM

insulin exposure. The complete model fit the dose-response and time-dynamic data

of the IR and Akt phosphorylation as well as the glucose transporter activity to the

available data. The fits for the dose-response data were less precise than those for the

time-dynamic data.

7.2.3 Disruptions in Insulin Signalling, Which Module is

Responsible?

The final component in Chapter 5 was a preliminary investigation into a dysfunc-

tional insulin signalling pathway. Based on work in Chapter 4, the glucose-lactate

flux responses were used to determine which cell culturing conditions would lead to

an insulin resistant-like state. If neither glucose consumption nor lactate production

increased in response to insulin, the cells were considered insulin insensitive.

Once the cells were grown to mimic insulin resistant states their IR and Akt phos-

phorylation dynamics as well as their GLUT4 transporter activity were determined.

The response of the IR was counter-intuitive if one thinks that excess insulin would

down-regulate the expression or activity of the IR (Fig. 5.13). Those cells which were

grown with high-glucose, insulin resistant conditions showed a normal IR phosphory-

lation response to insulin. The insulin resistant cells grown at 15 mM glucose seem-

ingly phosphorylated to a greater degree than control cells. These experiments need

to be repeated in order to confirm these results. However, it does seem likely that the

insulin resistant state induced in these cells had little effect on the phosphorylation of

the IR.

A greater effect of insulin resistance on Akt phosphorylation is seen in Figs. 5.14

and 5.15 and more specifically in Fig. 5.18. This indicates that, while IR phosphory-

lation may proceed normally (Fig. 5.13), the signal from the phosphorylated IR does

not result in adequate Akt phosphorylation. This in turn has the knock-on effect of

abrogating glucose transporter activity (Fig. 5.19).

In pseudo insulin-resistant cells there is a clear reduction in Akt phosphorylation at

the 60 minute mark and the reduction in glucose transporter activity appears to coincide
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with the reduction in AktS phosphorylation. Conversely, AktTP
does appear to be

similarly impacted by the pseudo insulin resistance since, glucose transporter activity

does not appear to respond strongly to this decrease. However, both AktSP
and AktTP

levels are diminished by the ‘loss’ of signal coming from the phosphorylated IR.

While the data are incomplete, this analysis indicates that the reduced glucose

transporter activity seen in pseudo insulin-resistant cells may originate from a fault

in the signalling module, and more specifically one which occurs between IR and Akt.

While it may be tempting to consider AktSP
the culprit for the reduced glucose trans-

porter activity, it is not certain from these data whether the reduced AktSP
levels are

the cause for this diminished activity or whether they are the result of a fault which lies

further upstream.

The direct relationship between Akt phosphorylation and glucose transport activ-

ity induction discussed in Chapter 5 indicates that a reduction in Akt phosphorylation

should bring about a decrease in glucose transporter induction. This likely has a knock-

on effect which results in the reduced glucose-lactate flux as seen in Chapter 4. Since

the signalling module is the first to respond to insulin, the reduced Akt phosphory-

lation indicates that the observed reduction in activity of the glucose transport and

metabolism modules may originate with the apparent dysregulation of the signalling

module.

Future work should focus on further exploring the dynamics of insulin resistant

cells in order to strengthen the applications of the minimal model approach. Similarly,

work that examines faults or dysregulation in the insulin signalling pathway may make

use of this model to determine which module specifically was dysfunctional thereby

focussing further efforts on that module or components thereof. Further, it would be

worthwhile to expand the dataset used by the minimal model to incorporate one or

more of the ‘nodes’ as shown in Fig. 1.1. Lastly, determining the concentration of

GLUT4 as well as the expression levels of IR and Akt may shed further light on the

long-term consequences of insulin exposure in C2C12 cells.
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7.3 Concerning Insulin Induced GLUT4 Clustering

This aspect of the study investigated how GFP-tagged GLUT4 responded to insulin

exposure. Specifically, focus was drawn to the clustering and distribution of these

molecules within cells either before or after they were exposed to insulin.

Chapter 6 explored several questions with regard to the clustering of GLUT4 in

response to insulin in C2C12 myoblasts. Firstly, does insulin stimulation increase the

number of GLUT4 clusters? Cells that were exposed to 100 nM insulin for 30 minutes

had more than twice the number of clusters when compared to cells not stimulated with

insulin (Table 6.2). Secondly, are there differences among the pre- and post-insulinic

cells in regard to the size and density of their clusters? While differences in cluster size

- as determined by the number of members - were not evident, post-insulinic cells had

clusters which were more dense than their pre-insulinic counterparts. Thirdly, does

insulin stimulation results in the greater distribution of clusters? Cluster in insulin-

stimulated cells were more distant from the nucleus and from each other. Considering

that GSVs originate in the perinuclear space, this evidences that, not only are clusters

further away from each other, they are further away from their point of origin. This

indicates that insulin induces not only the translocation of GSVs and GLUT4, but

also the dispersion throughout the plasma membrane into greater numbers of denser

clusters. This chapter therefore highlights two aspects: the viability of an image and

cluster-based analysis of GLUT4 in living cells and the ability of this approach to

generate insights into the mechanisms by which insulin distributes GLUT4 throughout

the cell.

Future work would need to address several shortcomings of this approach, specif-

ically with regards to the scope of this project. Firstly, one would need to clarify

whether this clustering behaviour is tied to an increase in GLUT4 activity. Secondly, it

would be prudent to repeat this study in myocytes instead of myotubes. Lastly, videos

which capture the translocation of GLUT4 from the perinuclear to the perimembrane

space would further assist in correlating these results with those in Chapter 5.
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7.4 Limitations and Possibilities

In conclusion, the present work considered several key aspects:

The importance of evaluating standard experimental protocols for their applicabil-

ity to the research question(s) at hand. Investigating insulin signalling and GLUT4

activity in cells that are insulin resistant or sub-optimally differentiated may yield re-

sults that are not entirely accurate. Similarly, when doing such studies, it is important

to include, in the methodologies glucose concentration in the cell culturing medium

and degree of differentiation that was used for the ongoing experiments.

Throughout this thesis a core modelling technique was applied to describe the three

modules of the system under study: the insulin signalling pathway, glucose transporter

induction, and metabolism. An advantage of such a minimal modelling technique is

that only a few parameters must be determined, since very simple rate equations are

used. However these rate equations are not necessarily mechanistic and this can result

in non-optimal fits. In particular for the insulin dose response curves the description of

the model for the system was not very good. However, the functional relation between

Akt phosphorylation and insulin concentration, for example, is not described directly

by the model, but indirectly since the IR is the component which links the two. For

the model the direct input-output relations are more important, and these could be de-

scribed reasonably well by the core model, (with the exception of the insulin induced

phosphorylation of IR). In other words the IRP induced AktS and AktT phosphory-

lation, and the AktP induced glucose transport induction were described quite well.

Moreover the time response of insulin induction was well described by the model,

and it is noteworthy that these dynamic experiments obey the steady state constrained

parameter relations as determined for the dose response experiments. The good de-

scription is therefore a partial validation for the koff/kon rate constants. On the basis of

these considerations it was decided that the core model was good enough to use it for

further analysis of the system.

Such an approach can, in future, be rapidly adapted for other signalling path-

ways, other organisms, or it could be expanded into a more complex model. Fur-

ther, the data gathered in Chapter 5 suggests more modest increases in glucose uptake
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when compared to the rather large increases sometimes reported in literature. The

use of metabolisable glucose as well as the rapidity of the assay is likely to provide

a more accurate estimate of glucose transporter activity than methods which use non-

metabolisable glucose analogues such as 2-Deoxy-glucose. Glucose analogues such

as 2-Deoxy-glucose are metabolised by hexokinase only. This means that the product

is often not a substrate for phosphoglucose isomerase or phosphofructo-kinase. How-

ever, these molecules still act as inhibitors for hexokinase. Consequently, methods

which rely on glucose analogues likely measure a interplay of glucose transport, dwin-

dling hexokinase activity, and the eventual equilibration of analogue concentrations

across the membrane.

Lastly, this work further supports the use of imaging studies to investigate the

behaviour of specific elements in signalling pathways. Additionally, the clustering

and dispersion behaviour of GLUT4 molecules in response to insulin remains a little-

studied phenomenon. However, despite more work still being necessary, the study

presented in Chapter 6 was able to partially explain and quantify the degree to which

the clustering and motile behaviour of GLUT4 molecules is affected by insulin.
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Supplementary Figures: Imaging

Study
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Figure A.1: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 650 × 750 pixels which
corresponds to a length of 85 µm and a height of 98 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.2: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 400 × 750 pixels which
corresponds to a length of 52 µm and a height of 98 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.3: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 650 × 630 pixels which
corresponds to a length of 85 µm and a height of 83 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.4: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 710 × 400 pixels which
corresponds to a length of 93 µm and a height of 52 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.5: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 400 × 900 pixels which
corresponds to a length of 52 µm and a height of 118 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.6: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 480 × 750 pixels which
corresponds to a length of 63 µm and a height of 98 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.7: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 370 × 670 pixels which
corresponds to a length of 48 µm and a height of 88 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.8: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 490 × 824 pixels which
corresponds to a length of 64 µm and a height of 108 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.9: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 500 × 1024 pixels which
corresponds to a length of 66 µm and a height of 134 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.10: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 850 × 550 pixels which
corresponds to a length of 111 µm and a height of 72 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.11: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a post-insulinic cell. Each image is 850 × 450 pixels which
corresponds to a length of 111 µm and a height of 59 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.12: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 1400 × 10 pixels which
corresponds to a length of 183 µm and a height of 131 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.13: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 350 × 400 pixels which
corresponds to a length of 46 µm and a height of 52 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.14: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 250 × 500 pixels which
corresponds to a length of 33 µm and a height of 66 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.15: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 320 × 500 pixels which
corresponds to a length of 42 µm and a height of 66 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.16: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 520 × 300 pixels which
corresponds to a length of 68 µm and a height of 39 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.17: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 400 × 520 pixels which
corresponds to a length of 52 µm and a height of 68 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.18: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 750 × 450 pixels which
corresponds to a length of 98 µm and a height of 59 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.19: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 600 × 650 pixels which
corresponds to a length of 79 µm and a height of 85 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.20: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 700 × 550 pixels which
corresponds to a length of 92 µm and a height of 72 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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Figure A.21: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 500 × 750 pixels which
corresponds to a length of 66 µm and a height of µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.

161

Stellenbosch University  https://scholar.sun.ac.za



Figure A.22: Supplementary figure which depicts the overlay of accepted pixels and
the original image for a pre-insulinic cell. Each image is 650 × 600 pixels which
corresponds to a length of 85 µm and a height of 79 µm. The green pixels represent
positive GLUT4-GFP signal while the light blue points represent a subset of these
pixels that were subsequently assigned to clusters based on the methods described in
Chapter 6.
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[286] Vladimir A. Likić, Malcolm J. McConville, Trevor Lithgow, and Antony Bacic.

Systems biology: The next frontier for bioinformatics. Advances in Bioinfor-

matics, 2010:1–10, 2010.

[287] Frank J Bruggeman, Jorrit J Hornberg, Fred C Boogerd, and Hans V Wester-

hoff. Introduction to systems biology. In Plant Systems Biology, pages 1–19.

Springer, 2007.

[288] Giovanni Pezzulo and Michael Levin. Top-down models in biology: explanation

and control of complex living systems above the molecular level. Journal of The

Royal Society Interface, 13(124):20160555, 2016.

[289] Jacky L Snoep, Frank Bruggeman, Brett G Olivier, and Hans V Westerhoff. To-

wards building the silicon cell: a modular approach. Biosystems, 83(2-3):207–

216, 2006.

[290] Frank J Bruggeman and Hans V Westerhoff. The nature of systems biology.

TRENDS in Microbiology, 15(1):45–50, 2007.

[291] Andreas Mock, Sara Chiblak, and Christel Herold-Mende. Lessons we learned

from high-throughput and top-down systems biology analyses about glioma

stem cells. Current Pharmaceutical Design, 20(1):66–72, jan 2014.

198

Stellenbosch University  https://scholar.sun.ac.za



Bibliography

[292] Ahmad R Sedaghat, Arthur Sherman, and Michael J Quon. A mathematical

model of metabolic insulin signaling pathways. Am. J. Physiol. Endocrinol.

Metab., 283(5):E1084–E1101, 2002.

[293] Gerald Penkler, Francois du Toit, Waldo Adams, Marina Rautenbach, Daniel C.

Palm, David D. van Niekerk, and Jacky L. Snoep. Construction and validation of

a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS Journal,

282(8):1481–1511, mar 2015.

[294] Ellen L. Berg. Systems biology in drug discovery and development. Drug

Discovery Today, 19(2):113–125, feb 2014.

[295] Eric Young and Hal Alper. Synthetic biology: Tools to design, build, and opti-

mize cellular processes. Journal of Biomedicine and Biotechnology, 2010:1–12,

2010.

[296] Hans V. Westerhoff and Alexey N. Kolodkin. Advice from a systems-biology

model of the corona epidemics. npj Systems Biology and Applications, 6(1), jun

2020.

[297] Jeffrey D Orth, Ines Thiele, and Bernhard O Palsson. What is flux balance

analysis? Nature Biotechnology, 28(3):245–248, mar 2010.
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