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Abstract
The MHD peristaltic motion of Bingham fluid through a uniform channel is examined under the
influence of long wavelength and small Reynolds number. The impact of variable thermal
conductivity, convective heat transfer, porous boundaries, and wall properties are considered.
The semi-analytical technique is utilized to solve the governing nonlinear temperature equation.
The effects of different parameters on the physiological quantities of interest are captured with
the assistance of MATLAB programming. The assessment reveals that an ascent in a magnetic
parameter reduces the velocity field. Further, an increment in the estimation of variable thermal
conductivity upgrades the temperature profiles. Besides, the trapped bolus is a function of a
porous parameter, and an increase in porous parameter will have the proportional increment in
the other parameter.

Keywords: Darcy number, concentration slip, wall rigidity, magnetic parameter, viscous
damping force parameter

(Some figures may appear in colour only in the online journal)

Nomenclature

x y, axial and radial co-ordinates

u v, axial and radial velocities

Bi Biot number

Br Brinkman number

Dm coefficient of mass diffusivity

n2 coefficient of wall damping force

Da Darcy number (porous parameter)

Ec Eckert number

t t t, ,xx xy yy extra stress components

B0 magnetic field strength

M magnetic parameter (Hartmann number)

E2 mass characterization parameter

n1 mass per unit area

Tm mean fluid temperature

Pr Prandtl number

p pressure

P pressure gradient
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a radius of the channel

Re Reynolds number

n3 rigidity of the plate

E4 rigidity parameter

Sc Schmidt number

Sr Soret number

cp specific heat at constant volume

H spring stiffness

k thermal conductivity

KT thermal diffusion ration

t time

E3 wall damping parameter

E5 wall elastic parameter

E1 wall tension parameter

b wave amplitude

c wave speed

Greek Letters

e amplitude ratio

f coefficient of thermal conductivity

s concentration

g concentration slip parameter

r density

s1 electric conductivity

y streamline

q temperature

a velocity slip parameter

m viscosity

l wavelength

1. Introduction

The mechanism of peristaltic motion is well known to the
research community from the last few decades because of its
significant application in the fields of medicine and industry.
This mechanism plays an essential role in understanding the
mechanisms involved in food transport through the esopha-
gus, chyme movement in the gastrointestinal tract, urine flow
through the ureter, and the flow of blood in vessels. Apart
from the biological applications, the peristaltic mechanism is
used in designing heart-lung and dialysis machines. The
peristaltic mechanism was initiated by Latham [1] for ana-
lyzing the flow of urine through ureter. Since then, several
scientists have examined peristaltic flow through multiple
geometric forms with distinct non-Newtonian fluids [2–5]. In
recent decade research has become humble among many
scientists in the areas of the building, oil, forestry, mechan-
ical, and chemical engineering in peristalsis, which flow
through porous structures. Some of these applications include

transport of contaminants in aquifers, heat and mass transport
in chemical engineering, filtration and biomechanical invest-
igation of biological fluids flowing through lungs, blood
vessels, and other organs. El-Shehawey et al [6] launched the
study on the peristaltic system passing through a porous
medium. The peristaltic stream of non-Newtonian fluid in the
inclined channel was evaluated later by Khan et al [7].
Examinations on peristaltic transport through porous media
have recently been recorded in the literature [8–10].

In the lack of heat transfer, most of the above examina-
tions on peristaltic flow were performed. However, because of
their extensive implementation in the sector of medicine, heat
transfer in biological systems is of utmost significance. Three
distinct methods, such as convection, conduction, and radia-
tion, can be used for heat transfer in bio-systems. The con-
vective technique plays an essential role in understanding
blood oxygenation and hemodialysis among the three modes
of heat transfer. Besides, human lungs, gallbladder stones,
small-radius blood vessels, etc function as usual porous
media, making it essential to offer owing significance to
porous media. Also, liquids showing variable thermal con-
ductivity can best approximate the blood passing through
arteries. Several scientists [11, 12] conducted the inquiries on
this front. Mass transfer is another significant event in
knowing the spread of nutrients from the blood to its sur-
rounding tissues. Mass transition performs an essential part in
recognizing the procedures engaged in inverse osmosis, cell
segregation, chemical impurity propagation, and distillation
method in most manufacturing applications. Driven by heat
and mass transfer applications, several scientists have
researched the impact of these parameters in various geo-
metrical configurations [13–22].

The peristaltic movement of physiological liquids by
taking the MHD effect is crucial for physiology and biology.
Due to the development of conducting fluid over the magnetic
field, electrical flow is prompted. Due to mechanical forces
emerging as a result of the magnetic field on these currents,
the fluid stream is altered. The operation of MHD blowers,
blood siphon machines, heat exchanger structure, stream
meters, control generators, radar frameworks, and so on
depends on MHD principles. These principles have been used
for target drug transport in the medical science, blood flow
controls during surgery, cells separation magnetic gadgets,
magnetic tracer advances, hyperthermia, and so forth. The
therapy of Magneto primarily involves non-Newtonian MHD.
The motion of the urine stream through the ureter, the
changes in cells and the tissues and blood flow in the arteries
is particularly crucial with peristaltic MHD conditions.
Motivated by the applications of MHD flows, various
researchers have analyzed the impact of MHD peristaltic flow
through different geometries [23–28].

Due to their application in the field of health sciences,
various specialists have noted the effects of wall properties,
such as wall rigidity, viscous damping force, wall stiffness,
wall tension, and elastic parameters attracted attention from
early on. Hayat et al [29] studied the impact of MHD Jeffery
fluid through a porous channel. Srinivas et al [30] analyzed
the effect of wall properties along with slip conditions on the
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peristaltic flow. Subsequently, the impact of wall properties
on peristalsis by using Burgers fluid was researched by Javed
et al [31]. The effects of wall properties on peristaltic trans-
port of Rabinowitsch fluid by porous channels were investi-
gated by Vaidya et al [32]. Recently, Manjunatha et al [33]
analyzed the impact of variable viscosity and variable thermal
conductivity on the MHD peristaltic flow of Jeffrey fluid.
Most biofluids have non-Newtonian behavior. According to
the area of its flow, the blood has a dual nature. Generally, it
behaves Newtonian when it is flowing through the large
arteries where there exists a linear relationship between stress
and strain. However, non-Newtonian behavior is noticed
when the flow is associated with micro arteries. Due to the
complex action of blood, it is difficult to describe the various
rheological effects such as hematocrit, shear rate, variable
viscosity, etc. Thus, many approaches exist to define these
equations, some of them as a result of fitting a curve to an
experimental data and others based on some rheological
models. Among the multiple non-Newtonian models, the
Bingham model has lately been used in literature to study the
peristaltic system through various geometries [34–36].

This study aims to build on the work of the researchers,
as previously mentioned, in the presence of heat and mass
transfer of the MHD peristaltic mechanism for Bingham fluid.
Moreover, the effects of convective and wall properties are
considered. Since very few papers have considered the vari-
able thermal conductivity in their formulation, this article
seeks, by examining the fluid to exhibit these properties, to

bridge the gap in its formulation. The writers attempted to
create a mathematical model that would provide realistic
demonstrations of blood flow.

2. Mathematical formulation of the problem

Consider a viscous fluid that flows through a uniform channel
of radius a (see figure 1). The fluid is controlled by non-
Newtonian Bingham liquid caused by sinusoidal wave trains
of wavelength l. For simplicity, the channel is assumed to be
axisymmetric. The channel is horizontal, with its walls being
flexible because of wall properties. Further, the flow is
exposed to an external magnetic field of strength B ,0 which is
applied in the direction perpendicular to the fluid flow. The
electric field is taken to be zero. Also, the magnetic Reynolds
number is assumed to be very small so that the induced
magnetic field is negligible in comparison to the external
magnetic field. The variable thermal conductivity of the non-
Newtonian Bingham model is considered in the analysis. The
porous conditions, convective conditions, and concentration
slip are considered. The sinusoidal wave that travels along the

Figure 1. Geometry of the problem.

Figure 2. Validation of the model.

Figure 3. ( ) ( )u y M Daversus for varying a and b .
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walls of the channel is given by [2]
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2
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where c is the wave speed and t is the time.

The equations that govern the flow can be written as
follows [14]:
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The above equations represent the continuity, momentum in
x yand coordinates, temperature, and concentration equations,
respectively.

The flexible wall motions equation is governed by
[29, 30]
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Figure 4. ( ) ( )a -u y E Eversus for varying a and b .1 5
Figure 5. ( ) ( )q fy Mversus for varying a and b .
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By using the x component of momentum, the continuity
of stress at = y H is given by
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The non-dimensional quantities of interest are given
below
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Using equation (9) in the equations (2)–(6) with the
assumption of long wavelength and small Reynolds number,
the resulting non-dimensional governing equations result in
the following form [14]
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where txy is the constitutive equation of Bingham fluid and it
is given by [32]
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where t0 is the yield stress. The corresponding non-dimen-
sional boundary conditions are given by [32]

Figure 6. ( ) ( )q y Da Brversus for varying a and b . Figure 7. ( ) ( )q -y Bi E Eversus for varying a and b .1 5
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The thermal conductivity varies with respect to temper-
ature and is defined as below [32]

( ) ( )q f q f= + < <k 1 , for 1, 17

where f is the coefficient of thermal conductivity.

3. Solution methodology

The velocity expression is obtained by solving equation (10)
with the help of boundary conditions (15) and (16)
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the plug flow region is given by
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Figure 8. ( ) ( )s y M Brversus for varying a and b .
Figure 9. ( ) ( )s gy Daversus for varying a and b .
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Noting here that the ‐x component of the pressure gra-
dient P appearing in equation (18) and defined by
equation (8) is simplified as follows

( )
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The stream function can be found by integrating
equation (18) with the condition y = =y0 at 0.

Because of the nonlinearity in the equation (12), we cannot
find an exact solution to the problem. We therefore embrace the
perturbation technique to extend the temperature range q to tiny
amount of variable thermal conductivity f as follows

( ) ( )q q fq f= + + O . 210 1
2

Substitute the equation (21) to the equation (12) and by
applying the boundary conditions (15) and (16), we acquire
the temperature expression. Further, the expression for con-
centration is achieved by making use of the temperature
equation.

4. Validation of the model

In comparison, it can be noticed that the inclusion of a porous
parameter enhances the velocity profile (see figure 2). In the
absence of porous parameter and yield stress, the velocity
expression obtained in equation (18) reduces to the special

Figure 10. ( ) ( )s y Sc Srversus for varying a and b .

Figure 11. s -y E Eversus for varying .1 5

Figure 12. Streamlines for varying magnetic parameter when (a)
=M 1 and (b) =M 2 (with x-axis horizontal, y-axis vertical).
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case (a a l= = =0, 0 and 01 1 ) of Manjunatha et al [33].
Further, the behavior of velocity, temperature, and con-
centration profiles are in concurrence with the results of Hayat
et al [35].

5. Results and discussions

In this section, the impacts of f a gM Da Br Bi Sc Sr, , , , , , , , ,
E E E E E, , , and1 2 3 4 5 on velocity ( )u , temperature ( )q , con-
centration ( )s and streamlines ( )y are analyzed and discussed
through graphs 3–15. Further, the MATLAB software has been
utilized for the pictorial representations of relevant parameters of
interest on physiological quantities with the fixed values of

= = = = = =E E E E E t0.1, 0.04, 0.4, 0.002, 0.01,1 2 3 4 5

=x0.1, 0.2, e a b= = = = =M Sr0.6, 1, 0.2, 0.3, 0.2,
g = = =Br Sc0.2, 2, 0.2, t a f= = =0.002, 0.02 and0 1

0.02.
Figures 3 and 4 depict the variation of aM Da E, , , ,1

E E E E, , and2 3 4 5 on velocity profiles. It is apparent from
these figures that maximum velocity happens in the center
region arising in a parabolic trajectory. Figure 3(a) shows the

impact of the magnetic parameter on the velocity profiles. The
figure shows that an increase in the value of magnetic para-
meter decreases the velocity profile. This conduct is undeni-
able as the transverse magnetic field resists the flow.
Particularly in blood flow, the transverse magnetic field
results in the formation of rouleaux leading to a decrease in
the velocity profiles. In the study of blood flow through
vessels, consideration of a porous wall is essential. As wall
porosity rises, the flow resistance diminishes and thus, fluid
velocity near the walls increases (figure 3(b)). Further, the
velocity slip parameter is a decreasing function of velocity
(figure 4(a)). Figure 4(b) portrays the variation of wall
properties on the velocity filed. Here, fluid flows rapidly with
E Eand1 2 and the flow is retarded for an increment in the
values of E E E, and .3 4 5

The variations of fM Da Br Bi E E E E, , , , , , , , and1 2 3 4

E5 on temperature are scrutinized in figures 5–7. The temp-
erature of fluid rises in the core region resulting in a parabolic
trajectory. The effect of viscous dissipation on heat models
can contemplate this nature of the graph. Due to the con-
version of kinetic energy into inner thermal energy using fluid
viscosity, viscous dissipation happens. The effects of magn-
etic parameter and variable thermal conductivity on the
temperature models is shown in figure 5. Figure 5(a) shows

Figure 13. Streamlines for varying porous parameter when (a)
=Da 0.01 and (b) =Da 0.02 (with x-axis horizontal, y-axis

vertical).

Figure 14. Streamlines for varying velocity slip parameter when (a)
a = 0.1 and (b) a = 0.2 (with x-axis horizontal, y-axis vertical).
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the magnetic parameter’s declining impact on temperature
models. In addition, the higher thermal conductivity increases
the temperature of the liquid (see figure 5(b)). This is because
the fluids thermal conductivity provides the measurement of
the liquid’s capacity to maintain or release the heat in its
environment. Thus, when the fluids thermal conductivity
within the channel is higher than the temperature of the wall,
the thermal value of the liquid increases. Figure 6 displays the
variation in the temperature profiles for an increment in the
value of a porous parameter and Brinkmann number. The
declining effect on temperature profiles is noticed for an
increase in the value of porous parameter figure 6(a). For an

increase in the Brinkmann number, the reverse conduct is
observed (figure 6(b)). This is ascribed to fluid strength
intensification owing to an increase in the Brinkmann number
significance, which triggers the impacts of viscous dissipation
to inflate the inner thermal energy. The impacts of Biot
number and wall properties on the temperature profiles have
been shown in figure 7. Here, a drop in the temperature is
observed for an increase in the value of the Biot number. This
is because an increase in the magnitude of Biot number leads
to a decrease in thermal conductivity of the fluid, which in
turn reduces the temperature (figure 7(a)). From figure 7(b),
the temperature profiles enhance for increasing values of

Figure 15. Streamlines with x-axis horizontal and y-axis vertical for varying elastic parameters ( )-E E1 5 when (a) E1=0.09, E2=0.04,
E3=0.4, E4=0.002, E5=0.01 (b) E1=0.1, E2=0.04, E3=0.4, E4=0.002, E5=0.01 (c) E1=0.1, E2=0.042, E3=0.4,
E4=0.002, E5=0.01 (d) E1=0.1, E2=0.042, E3=0.45, E4=0.002, E5=0.01 (e) E1=0.1, E2=0.042, E3=0.45, E4=0.0022,
E5=0.01 (f) E1=0.1, E2=0.042, E3=0.45, E4=0.0022, E5=0.4.
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E Eand ,1 2 whereas an opposite tendency is noticed for
E E E, and .3 4 5

In comparison with the temperature profiles, the con-
centration profiles show the opposite behavior. This is phy-
sically logical because heat and mass are recognized to be
reverse. Besides, the patterns indicate that the fluid particles
are more concentrated near the walls of the channel. This
conduct is biologically evident as the main sugar components
and other liquids spread into the neighboring neurons and
organs. Figure 8 is graphed to highlight the effects of the
magnetic parameter and Brinkmann number on the con-
centration profiles. From the figure, it observed that larger
values of magnetic parameter enhance the concentration
profiles (figure 8(a)), whereas the concentration profiles
diminish with an increase in the amount of Brinkmann
number (figure 8(b)). Figure 9 is graphed to show the effects
of concentration slip and porous parameter on the con-
centration profiles. From the figure, an increase in the value of
a slip and porous parameter enhances the concentration pro-
files. Further, the impact of Schmidt and Soret numbers show
the opposite behavior as that of concentration slip parameter
(see figure 10). Figure 11 shows the variation of wall prop-
erties on the concentration profiles. It is clearly seen that the
flow is retarded for increasing values of E Eand1 2 and the
opposite behavior is noticed for E E E, and .3 4 5

Trapping is an extraordinary phenomenon in under-
standing the biological liquid flux characteristics such as
thrombus movement in blood vessels and the motion of
chyme through the gastrointestinal tract. The peristaltic sys-
tem in these schemes enables us to understand the develop-
ment of the bolus. It is discovered that the quantity of the
trapped bolus is a decreasing function of the magnetic para-
meter (see figure 12).

The impact of the porous parameter enhances the size of
the trapped bolus (figure 13). Further, velocity slip parameter
shows the reverse trend as that of variable viscosity
(figure 14). Figure 15 shows the impact of wall properties on
the trapped bolus. Here, a rise in the values of E E E, and1 2 3

enhances the size of a trapped bolus, whereas the contrary
behavior is noticed for E Eand .4 5

6. Conclusions

This paper inspects the impact of variable thermal con-
ductivity on the MHD peristaltic flow. The heat and mass
transfer characteristics are explored under the effects of
convective and wall properties through a uniform porous
channel. The essential results of this paper can be summar-
ized as:

• Magnetic parameter decreases velocity and temperature
profiles.

• Wall tension and mass characterization parameter
enhances the velocity and temperature distribution.

• The temperature profile is a decreasing function of the
Biot number.

• The temperature profile increases with an increase in the
value of variable thermal conductivity.

• The Soret and Schmidt numbers cause a drop in the
concentration profiles.

• The number of bolus formation decreases with an
increase in the value of magnetic and velocity slip
parameters.
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