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Abstract. Groundwater recharge is one of the important fac-
tors determining the groundwater development potential of
an area. Even though recharge plays a key role in controlling
groundwater system dynamics, much uncertainty remains re-
garding the relationships between groundwater recharge and
its governing factors at a large scale. Therefore, this study
aims to identify the most influential factors of groundwa-
ter recharge, and to develop an empirical model to estimate
diffuse rainfall recharge at a global scale. Recharge esti-
mates reported in the literature from various parts of the
world (715 sites) were compiled and used in model building
and testing exercises. Unlike conventional recharge estimates
from water balance, this study used a multimodel inference
approach and information theory to explain the relationship
between groundwater recharge and influential factors, and
to predict groundwater recharge at 0.5◦ resolution. The re-
sults show that meteorological factors (precipitation and po-
tential evapotranspiration) and vegetation factors (land use
and land cover) had the most predictive power for recharge.
According to the model, long-term global average annual
recharge (1981–2014) was 134 mm yr−1 with a prediction
error ranging from −8 to 10 mm yr−1 for 97.2 % of cases.
The recharge estimates presented in this study are unique and
more reliable than the existing global groundwater recharge
estimates because of the extensive validation carried out us-
ing both independent local estimates collated from the lit-
erature and national statistics from the Food and Agricul-
ture Organization (FAO). In a water-scarce future driven by
increased anthropogenic development, the results from this
study will aid in making informed decisions about ground-
water potential at a large scale.

1 Introduction

Human intervention has dramatically transformed the
planet’s surface by altering land use and land cover and
consequently the hydrology associated with it. In the last
100 years the world population has quadrupled, from
1.7 billion (in 1900) to more than 7.3 billion (in 2014), and
is expected to continue to grow significantly in the future
(Gerland et al., 2014). During the last century, rapid popu-
lation growth and the associated shift to a greater proportion
of irrigated food production led to an increase in water ex-
traction by a factor of ∼ 6. This eventually resulted in the
overexploitation of both surface and groundwater resources,
including the depletion of 21 of the world’s 37 major aquifers
(Richey et al., 2015). This depletion threatened human lives
in many ways, ranging from critical reductions in water avail-
ability to natural disasters such as land subsidence (Chaus-
sard et al., 2014; Ortiz-Zamora and Ortega-Guerrero, 2010;
Phien-Wej et al., 2006; Sreng et al., 2009). Therefore, there is
a need to closely examine approaches for sustainably manag-
ing this resource by controlling withdrawal from the system.

Groundwater recharge is one of the most important limit-
ing factors for groundwater withdrawal and determines the
groundwater development potential of an area (Döll and
Flörke, 2005) Groundwater recharge connects atmospheric,
surface and subsurface components of the water balance
and is sensitive to both climatic and anthropogenic factors
(Gurdak, 2008; Herrera-Pantoja and Hiscock, 2008; Hol-
man et al., 2009; Jyrkama and Sykes, 2007). Various stud-
ies have employed different methods to estimate groundwa-
ter recharge including tracer methods, water table fluctua-
tion methods, lysimeter methods and simple water balance
techniques. Some of these studies input recharge to numeri-
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cal groundwater models or dynamically link it to hydrologi-
cal models to estimate variations under different climate and
land cover conditions (Aguilera and Murillo, 2009; Ali et al.,
2012; Herrera-Pantoja and Hiscock, 2008; Sanford, 2002).

In the last few decades, interest in global-scale recharge
analysis has increased for various scientific and political rea-
sons (Tögl, 2010). L’vovich (1979) made the first attempt at
a global-scale analysis by creating a global recharge map us-
ing baseflow derived from river discharge hydrographs. The
next large-scale groundwater recharge estimate was done by
Döll (2002) who modelled global groundwater recharge at a
spatial resolution of 0.50 using the WaterGAP Global Hydro-
logical model (WGHM; Alcamo et al., 2003; Döll, 2002). In
this study, the runoff was divided into fast surface runoff,
slow subsurface runoff and recharge using a heuristic ap-
proach. This approach considered relief, soil texture, hydro-
geology and occurrence of permafrost and glaciers for the
runoff partitioning. However, WGHM failed to reliably es-
timate recharge in semi-arid regions (Döll, 2002). Impor-
tantly, in that study, there was no consideration of the influ-
ence of vegetation which has been reported to be the second
most important determinant of recharge by many researchers
(Jackson et al., 2001; Kim and Jackson, 2012; Scanlon et
al., 2005). In subsequent years, several researchers have at-
tempted to model global groundwater recharge using differ-
ent global hydrological models and global-scale land surface
models (Koirala et al., 2012; Scanlon et al., 2006; Wada et
al., 2010).

Although a fair amount of research has been carried out to
model groundwater recharge at a global scale, most studies
compared results to country-level groundwater information
from the FAO (FAO, 2005). FAO statistics were based on
estimates compiled from national institutions. The data es-
timation and reporting capacities of national agencies vary
significantly and raise concerns about the accuracy of the
data (Kohli and Frenken, 2015). In addition, according to
FAO AQUASTAT reports, most national institutions in de-
veloping countries prioritise subnational-level statistics over
national-level statistics, and in most cases data are not avail-
able for all subnational entities. This decreases the accuracy
of country-wide averages and raises concerns about the relia-
bility of using them as standard comparison measures. Only a
few studies have validated modelled estimates against small-
scale recharge measurements. Döll and Fiedler (2008) used
51 recharge observations from arid and semi-arid regions to
correct model outputs. This study develops a recharge model
and undertakes a more extensive validation of it using 715 lo-
cal recharge measurements. Moreover, previous research has
mostly been restricted to studying meteorological influences
on recharge, few studies have systematically explored global-
scale factors governing recharge. Much uncertainty still ex-
ists about the relationship between groundwater recharge and
topographical, lithological and vegetation factors. Without
adequate knowledge of these controlling factors, our capacity

to sustainably manage groundwater globally will be seriously
compromised.

The major objectives of this study are to identify the most
influential factors of groundwater recharge and to develop an
empirical model to estimate diffuse rainfall recharge. Specif-
ically, to quantify regional effects of meteorological, topo-
graphical, lithological and vegetation factors on groundwa-
ter recharge using data from 715 globally distributed sites.
These relationships are used to build an empirical groundwa-
ter recharge model and then the global groundwater recharge
is modelled at a spatial resolution of 0.5◦× 0.5◦ for the time
period 1981–2014.

2 Methods

2.1 Dataset

This study is based on a compilation of recharge estimates
reported in the literature from various parts of the world.
This dataset is an expansion of previously collated sets of
recharge studies along with the addition of new recharge es-
timates (Döll and Flörke, 2005; Edmunds et al., 1991; Scan-
lon et al., 2006; Tögl, 2010; Wang et al., 2010). The lit-
erature search was carried out using Google Scholar, Sco-
pus and Web of Science with related keywords “ground-
water recharge”, “deep percolation”, “diffuse recharge” and
“vertical groundwater flux”. Several criteria were consid-
ered in including each study. To ensure that the data reflects
all seasons, recharge estimates for time periods less than 1
year were excluded. The sites with significant contribution
to groundwater from streams or by any artificial means were
also eliminated as the scope of this research was to model
naturally occurring recharge. In order to maximise the re-
alistic nature of the dataset, all studies using some kind of
recharge modelling were removed from the dataset. After all
exclusions, 715 data points spread across the globe remained
(Fig. 1) and were used for further analysis. Of these studies,
345 were estimated using the tracer method, 123 using the
water balance method and the remaining studies used base-
flow method, lysimeter or water table fluctuation method.
This diversity in recharge estimation has enabled us to eval-
uate systematic differences in various measurement tech-
niques. The year of measurement or estimation of recharge
estimates in the final dataset differed (provided as supple-
mentary material), and ranged from 1981 to 2014 (Fig. 2a).
This inconsistency in the data raised a challenge when choos-
ing the time frame for factors in the modelling exercise, par-
ticularly those showing inter-annual variation. Moreover, the
compiled dataset does not represent all climate zones well
(Fig. 2c), as most of the studies used were done either in arid,
semi-arid or temperate zones. Pasture and cropland were the
dominant land uses in the dataset (Fig. 2b).

The next step was to identify potential explanatory fac-
tors that could influence recharge (henceforth referred to as
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Figure 1. Locations of the 715 selected recharge estimation sites and the corresponding recharge estimation method, used for model building.

Figure 2. Histograms showing frequency of (a) study year, (b) land use and (c) Köppen–Geiger climate zones for the recharge estimates
used.

predictors). Potential predictors that were reported in the lit-
erature as having some influence on recharge were identi-
fied (Athavale et al., 1980; Bredenkamp, 1988; Edmunds et
al., 1991; Kurylyk et al., 2014; Nulsen and Baxter, 1987;
O’Connell et al., 1995; Pangle et al., 2014). The choice of
predictors was made based on the availability of global grid-
ded datasets and their relative importance in a physical sense,
as informed by the literature. According to the literature,
the water availability on the surface for infiltration and the
potential of the subsurface system to intake water are the
two major controls on recharge. Different variables that can

potentially represent these two factors were chosen as pre-
dictors in this study. The water availability is represented
mainly by using meteorological predictors including precip-
itation, potential evapotranspiration, aridity index and num-
ber of days with rainfall and vegetation characteristics (land
use and land cover), whereas the intake potential is repre-
sented using various quantifiable characteristics of the va-
dose zone. We employed 12 predictors comprising meteo-
rological factors, soil/vadose zone factors, vegetation factors
and topographic factors. However, other factors which could
have a sizable influence on recharge were not included in this
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Table 1. Description of predictors used for recharge model building.

Predictors Symbol Unit Resolution Temporal Source Description Reference
span

Precipitation P mm yr−1 0.5◦× 0.5◦ 1981–2014 Climatic Research Mean annual Harris et al. (2014)
Unit, University precipitation
of East Anglia,
United Kingdom

Mean T ◦C 0.5◦× 0.5◦ 1981–2014 Climatic Research Mean annual Harris et al. (2014)
temperature Unit, University temperature

of East Anglia,
United Kingdom

Potential PET mm yr−1 0.5◦× 0.5◦ 1981–2014 Climatic Research Penman–Monteith Harris et al. (2014)
evapotranspiration Unit, University reference crop

of East Anglia, evapotranspiration
United Kingdom

No. of rainy Rd 5 arcmin 1981–2014 AQUAMAPS, FAO Average number of New et al. (2002)
days wet days per year

defined as having
≥ 0.1 mm of
precipitation

Slope S fraction 0.5◦× 0.5◦ – Earthdata, NASA Mean surface slope Verdin (2011)

Saturated ksat cm day−1 1◦× 1◦ – Earthdata, NASA Saturated hydraulic Webb et al. (2000)
hydraulic conductivity at
conductivity 0–150 cm depth

Soil water SWSC mm 1◦× 1◦ – Earthdata, NASA Texture-derived soil Webb et al. (2000)
storage water storage capacity
capacity in soil profile (up to

15 m depth)

Excess water EW mm – 1981–2014 –
12∑
i=1
(Pi −PETi )

(without where Pi >PETi
irrigation)

Aridity index AI – – 1981–2014 – AI=P/PET

Clay content Clay % 1◦× 1◦ – Earthdata, NASA 0–150 cm profile DAAC (2016)

Bulk density ρb gm cm−3 1◦× 1◦ – Earthdata, NASA 0–150 cm profile DAAC (2016)

Land use LU – 15 arcsec – USGS/Literature Forest, pasture, cropland, Kim and Jackson (2012),
land cover urban/built up, barren Broxton et al. (2014)

study because of insufficient data. Thus, we did not consider
the effects of irrigation on recharge, limiting the scope of
the study to rainfall-induced recharge. Subsurface lithology
which could be another important recharge factor, was also
eliminated from the study, due to a lack of suitable litholog-
ical and geological datasets at a larger scale. Better quality
information about various predictors would have been desir-
able to enhance the accuracy of prediction. Details of predic-
tors are given in Table 1.

Data for the chosen predictors corresponding to
715 recharge study sites were extracted from global
datasets. Meteorological datasets (P , T and PET) were ob-
tained from the Climatic Research Unit, University of East
Anglia, United Kingdom. Even though daily data were avail-
able from 1901 to 2014 at a resolution of 0.5◦× 0.5◦, in this

study the mean annual average of the latest 34 years (1981
to 2014) was used to reduce the inconsistency in year of
recharge measurements in the final dataset. Topographic and
soil data were acquired from the NASA Earth observation
dataset. Both datasets were of 0.5◦× 0.5◦ spatial resolution.
A few of the predictors, including number of rainfall days
(Rd) and land use/land cover (LU) data were obtained from
AquaMaps (by FAO) and USGS (United States Geological
Survey) at a spatial resolution of 0.5◦× 0.5◦ and 15 arcmin
respectively. Thus-obtained LU data were compared with
land cover reported in literature and corrected for any dis-
crepancies. The spatial resolution of the different data used
was diverse. This was dealt with by extracting the values for
each recharge site from the original grids using the nearest
neighbour interpolation method. As a result, predictor data
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extracted for each recharge site will differ from the actual
value due to scaling and interpolation errors. Out of the
12 predictors LU was not a quantitative predictor and was
transformed into a categorical variable in the modelling
exercise.

2.2 Recharge model development

With empirical studies, the science world is always scepti-
cal about whether to use a single best-fit model or to infer
results from several better-predicting and plausible models.
The former option is feasible only if there exists a model
which clearly surpasses other models, which is rare in the
case of complex systems like groundwater. Usually cross cor-
relation and multiple controlling influences on the system
lead to more than one model having similarly good fits to
the observations. Thus choosing explanatory variables and
model structure is a significant challenge. In the past this
challenge was often addressed using various step-wise model
construction methods, with the final model being selected
based on some model fit criteria that penalise model com-
plexity (Fenicia et al., 2008; Gaganis and Smith, 2001; Joth-
ityangkoon et al., 2001; Sivapalan et al., 2003). These ap-
proaches were pragmatic responses to the large computa-
tional load involved in trying all possible models. The dis-
advantage of this method is that the final model will be de-
pendent on the step-wise selection process used (Sivapalan et
al., 2003). An alternative approach for addressing this high
level of uncertainty in model structure is to adopt a multi-
model inference approach that compares many models (Duan
et al., 2007; Poeter and Anderson, 2005). It typically results
in multiple final models and an assessment of the importance
of each explanatory variable. Therefore, this approach was
used to develop an understanding of the role of different con-
trolling factors on recharge in a data-limited condition.

Choosing predictors that are capable of representing the
system and selecting the right models for prediction are the
key steps in the multi-model inference approach. Here, mod-
els were chosen by ranking the fitted models based on perfor-
mance, and comparing this to the best-performing model in
the set (Anderson and Burnham, 2004). This model ranking
also provided a basis for selecting individual predictors. The
analysis progressed through three key stages: exploratory
analysis, model building and model testing.

2.2.1 Multi-model analysis

A multi-model selection process aims to explore a wide
range of model structures and to assess the predictive power
of different models in comparison with others. Essentially,
models with all possible combinations of selected predic-
tors are developed and assessed via traditional model per-
formance metrics (discussed later). By conducting such an
exhaustive search, multi-model analysis avoids the problems
associated with selection methods in step-wise regression

approaches (Burnham and Anderson, 2003). Importantly, it
reduces the chance of missing combinations of predictors
with good predictive performance. However, a disadvantage
of this approach is that the number of predictor combina-
tions grows rapidly with the number of factors considered.
To make the analysis computationally efficient, we set an up-
per limit for the number of predictors used. Another problem
with this approach is that it can result in overfitting. To ad-
dress this issue we evaluated model performance with met-
rics that penalise complexity and tested the model robust-
ness with a cross-validation analysis. The model develop-
ment procedure using multi-model analysis is described in
detail below.

(a) Exploratory analysis

Firstly, all the chosen predictors were individually regressed
against the compiled recharge dataset. This was carried out
with the main objective of finding the predictors with sig-
nificant control over recharge and to gain an initial appre-
ciation of how influential each predictor is compared to the
others. This understanding will aid in eliminating the least
influential predictors from further analysis. Then assump-
tions involved in regression analysis, such as linearity, low
multicollinearity (important for later multivariate fitting) and
independent identically distributed residuals were analysed
using residual analysis. Following the residual analysis, var-
ious data transformations (square root, logarithmic and re-
ciprocal) were carried out to reduce heteroscedasticity and
improve linearity of the variables. The square root trans-
formed recharge along with non-transformed predictors gave
the most homoscedastic relationships (results not shown).
Therefore, these transformed values were used in further
model-building exercises. Predictors were selected and elim-
inated based on statistical indicators such as adjusted coef-
ficient of determination (R2

adj) value and root mean square
error (RMSE).

(b) Model building

Multiple linear regression was employed for building the
models as the transformed dataset did not exhibit any nonlin-
earity. Furthermore, the presence of both negative and posi-
tive values in the dataset restricted the applicability of other
forms of regression analysis like log-linear and exponential
(Saft et al., 2016). Linear regression is known for its sim-
ple and robust nature in comparison to higher-order analysis.
The robustness of linear regression helped to maintain parsi-
mony together with reasonable prediction accuracy. A rigor-
ous model-building approach was adopted in order to capture
the interplay between predictors with combined/interactive
effects on groundwater recharge. This is an exhaustive search
in which all candidate models are fitted and inter-compared
using performance criteria. In a way, this modelling exer-
cise used a top-down approach, starting with a simple model
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which is expanded as shortcomings were identified (Fenicia
et al., 2008).

(c) Model testing

The analysis above provided insight into the relative perfor-
mance of the models. However, it is also important to assess
the dependence of the results on the particular sample. There-
fore, we conducted a subsample analysis in which the same
method was re-applied to subsamples of the data. Finally,
predictive uncertainty was estimated through leave-one-out
cross validation. In the first case, the whole model develop-
ment process was redone multiple times using subsamples
of the data. To achieve this, the entire dataset was randomly
divided into 80 and 20 % subsets and 80 % of the data were
used for building the model. The predictive performance of
the developed model was tested against the omitted 20 % of
data. This was repeated 200 times in order to eliminate ran-
dom sampling error. The leave-one-out cross validation was
applied to the best few individual model structures and pro-
vided an estimate of predictive performance for those partic-
ular models. It also gave an indication of data quality at each
point.

In summary the key steps in the multi-model analysis were

1. selecting predictors;

2. fitting all possible models consisting different combina-
tions of predictors;

3. calculating model performance metrics for each model;

4. calculating the “weight of evidence” for each predictor
based on the performance metric of all models contain-
ing that predictor;

5. testing the predictive performance of the models.

2.2.2 Ranking models and predictors

This part of the analysis has closely followed the approach
developed in Saft et al. (2016). Model performance was
evaluated using several information criteria. These informa-
tion criteria include a goodness-of-fit term and an overfit-
ting penalty based on the number of predictors in the model.
In this study we used R2

adj, the consistent Akaike infor-
mation criterion (AICc) and the complete Akaike informa-
tion criterion (CAIC) as the performance evaluation crite-
ria. These criteria differ in terms of penalising overfitting.
R2

adj penalises overfitting the least, AICc moderately and
CAIC heavily. However, when we are unsure of the true
model and whether it overfits or not, there is some advan-
tage in employing several criteria as it gives insight into how
the results depend on the criteria used. Suitability of the in-
formation criteria also varies with the sample size. CAIC acts
as an unbiased estimator for large sample size with relatively
small candidate models, but produces large negative bias in

other cases. Conversely, AICc is well suited for small-sample
applications (Cavanaugh and Shumway, 1997; Hurvich and
Tsai, 1989). The formulas for the above criteria are as fol-
lows:

AIC=−2× llf+ 2× k (Akaike, 1974), (1)

AICc = AIC+ (2× (k− 1)×
k+ 2

n− k− 2
) (Hurvich and

Tsai, 1989), (2)

CAIC=−2× llf+ k× (ln(n)+ 1) (Bozdogan, 1987), (3)

R2
= 1−

[
n− 1

n− k− 1

]
×

[
1−R2

]
(Ezekiel, 1929;

Wang and Thompson, 2007), (4)

where “llf” is the log-likelihood function, k is the dimension
of the model and n is the number of observations.

When assessing candidate models there are two questions
which are of particular interest. (1) Which models are better?
(2) How much evidence exists for each predictor in predict-
ing recharge? Analysis of the AICc and CAIC was used to an-
swer both these questions. Models were ranked using infor-
mation criteria, with smaller values indicating better perfor-
mance. Information criteria are more meaningful when they
are used to evaluate the relative performance of the models
(Poeter and Anderson, 2005). Models were ranked from best
to worst by calculating model delta values (1) and model
weights (W ) as follows:

1i = AICi −AICmin, (5)
Wi = exp(−0.5×1i)/6 exp(−0.5×1m, ) (6)

where AICmin is the information criteria value of the best
model. 1i and Wi represent the performance of ith model
in comparison with the best-performing model in the set of
M models.

Evidence ratios were then calculated as the ratio of the
ith model weight to the best model weight. They can be used
as a measure of the evidence for the ith model compared to
the other models. They also provide means to estimate the
importance of each predictor. This involves transformation
of evidence ratios into a proportion of evidence (PoE) for
each predictor. PoE for a predictor is defined as the sum of
weights of all the models containing that particular predictor.
PoE ranges from 0 to 1. The closer the PoE of a predictor is
to 1, the more influential that predictor is.

2.3 Global groundwater recharge estimation

The best model (model 1, Table 3) from the above analysis
was used to build a global recharge map at a spatial resolu-
tion of 0.5◦× 0.5◦. Recharge estimation was done annually
for a study period of 34 years (1981–2014), and the estimated
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Table 2. Summary statistics of potential predictors from the dataset used in this study.

Parameters Minimum Maximum Range Mean Standard
deviation

P (mm yr−1) 1.30 2627.00 2625.70 572.82 305.65
T (◦C) 1.60 30.62 29.02 17.73 6.04
PET (mm yr−1) 6.60 2600.00 2593.40 1356.17 401.77
Rd (day yr−1) 2.00 270.00 268.00 85.89 42.78
S 0.00 10.16 10.15 0.84 1.17
ksat (cm day−1) 0.00 265.75 265.75 60.61 59.50
SWSC (mm) 2.00 1121.00 1119.00 517.38 240.81
AI 0.00 68.18 68.18 0.70 3.74
EW (mm yr−1) 0.01 1467.87 1467.86 125.41 188.07
ρb (gm cm−3) 0.15 1.67 1.51 1.44 0.20
Clay (%) 1.87 52.51 50.64 23.77 7.66
LU 1.00 5.00 4.00 2.58 0.81
Recharge (mm yr−1) 0.00 1375.00 1375.00 73.22 125.94

groundwater recharge was then averaged over the 34-year
period to produce a global map. In addition to this, maps
showing percentage of rainfall becoming recharge and the
standard deviation of annual recharge over the 34 years were
also generated. As recharge data from regions with frozen
soil were scarce in the model-building dataset, the model
predictions in those regions particularly for regions with
Köppen–Geiger classification Dfc, Dfd, ET and EF were
not highly reliable. EF regions of Greenland and Antarc-
tica were excluded from the final recharge map due to lack
of both recharge and predictor data. However, the modelled
recharge for Dfc, Dfd and ET regions were included because
of the availability of predictor data. In addition, the modelled
recharge values were compared against country-level statis-
tics from FAO (2005) for 153 countries.

3 Results

The results address three important questions. (1) What are
the most influential predictors of groundwater recharge?
(2) What are better models for predicting recharge? (3) How
does groundwater recharge vary over space and time? The
first question was answered by carrying out an exploratory
data analysis and also by estimating the PoE for each pre-
dictor, the second using information criteria and the third by
mapping recharge at 0.5◦× 0.5◦ using the best model.

3.1 Exploratory data analysis

Table 2 gives the statistical summary of predictors and
groundwater recharge at 715 data sites. It is apparent from
the table that predictors varied considerably between sites,
consistent with inter-site variability in regional physical char-
acteristics. This variability provided an opportunity to ex-
plore recharge mechanisms in a range of different physical
environments. As we used linear regression to study the one-

Figure 3. Model fit performance criteria for single predictor regres-
sions.

to-one relationship of recharge with each of the predictors,
RMSE and bias of fitting were used to identify the predictors
with the most explanatory power. In this case, RMSE val-
ues ranged between 23.2 mm yr−1 for P and 30.21 mm yr−1

for S. Predictive potential of meteorological predictors was
greater than for other classes of predictor (Fig. 3). P , AI,
EW and ρb had a negative bias, whereas all other predictors
had a positive bias.

3.2 Multi-model analysis

3.2.1 Proportion of evidence (PoE) for individual
predictors

Figure 4 shows the PoE of the 12 predictors used in this
study. According to this analysis, 3 of the 12 predictors stood
out as having the greatest explanatory power (Fig. 4). Pre-
cipitation (P ), potential evapotranspiration (PET) and land
use and land cover (LU) had the highest proportions of ev-
idence (∼ 1). Subsurface percentage of clay (clay) and sat-
urated hydraulic conductivity (ksat) also had an important
influence on recharge with PoE∼ 0.4. Aridity index (AI),
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Table 3. Coefficient of predictors used in the top 10 models, ranked based on CAIC.

P T PET Rd S ksat SWSC AI EW ρb Clay LU Constant R2
adj

0.0081 −0.0043 0.9567 5.3543 0.35
0.0086 −0.0044 −0.0606 1.0335 6.3781 0.25
0.0078 −0.0041 −1.9083 0.9667 7.8822 0.25
0.0076 −0.0055 −0.0247 0.0089 0.0040 −2.5857 1.0131 11.8652 0.34
0.0084 −0.0053 −0.0195 0.0036 −0.0758 1.0189 9.4112 0.33
0.0092 −0.0052 −0.0128 −0.0631 1.0409 8.2317 0.33
0.0075 −0.0050 −0.0194 0.0034 −2.3410 0.9370 11.2147 0.35
0.0084 −0.0049 −0.0130 −2.0104 0.9716 9.8549 0.35
0.0086 −0.0050 −0.0122 0.9607 7.0692 0.33
0.0086 −0.0053 −0.0166 0.0075 −2.1688 1.0402 10.2082 0.33

Figure 4. Proportion of evidence according to AICc and CAIC for
12 predictors (sorted in descending order of PoE).

rainfall days (Rd), mean temperature (T ), bulk density (ρd),
slope (S), excess water (EW) and soil water storage capacity
at root zone (SWSC) were in the lower PoE range (< 0.1 ac-
cording to both the criteria). There was some variation in the
PoE value of the predictors depending on the performance
metric, due to the diversity in overfitting penalty. However,
ranking of the variables was identical irrespective of the per-
formance metric used. The “best” and “worst” predictors
ranked according to R2

adj were also in agreement with the
PoE analysis (not shown). In addition, results of the subsam-
ple analysis gave similar results (not shown).

3.2.2 Better-performing models

According to information criteria, the performance of mod-
els can only be evaluated relative to the best-performing
model in the set. In this study, as per the model weights,
no model exhibited apparent dominance. The evidence ratio
(ratio between the weights of the best model and nth model)
suggested that the best model according to CAIC was only
1.04 times better than the second best model. However,
the evidence ratio increased exponentially with increase in
model rank and there was a clear distinction between bet-
ter models and worse models. Similar results were reported

by Saft et al. (2016) in her work for modelling rainfall–
runoff relationship shift. The choice of better models was
made by considering the PoE of individual predictors (refer
Sect. 3.2.1) and the number of predictors in the model (V ).
Figure 5 shows the performance criteria for the top three
models for different V values. The model performance in-
creased with V up to 6 to 7 depending on the different crite-
ria. After that, AICc, CAIC, RMSE and R2

adj values remained
almost constant, indicating that further addition of predictors
did not improve the model performance. In particular CAIC
shows reaches a minimum at V = 7 and it penalises model
complexity more rigorously. Table 3 illustrates the predic-
tors in the top 10 models selected based on CAIC. All the
top 10 models had V <= 7. P , PET and LU repeatedly ap-
peared in the predictor list of the top 10 models substantiat-
ing their high predictive capacity, and the top ranked model
includes these three predictors only. In this particular case,
top-performing models according to both information cri-
teria were the same; therefore results from only one crite-
ria (CAIC) will be discussed.

3.2.3 Model testing

Models ranking from 1 to 10 according to CAIC (Table 3)
were tested using both model testing techniques discussed
in Sect. 2.2.1c. Figure 6 depicts model fit and model predic-
tion RMSE values of 200 subsample tests. It is clear from
the box plots that the difference between the RMSE of the
1st and the 10th model during both model fitting and predic-
tion is less than 1 mm yr−1. In subsample tests, R2

adj of the
best model ranged from 0.42 to 0.56 implying 42 to 56 %
of the variance was explained (please see Sect. 3.2.3 for de-
tails on sub-sample testing). The model errors at each data
point ranged from −8 to 28 mm yr−1. However, 97.2 % of
the points had errors between −8 and 10 mm yr−1. Figure 7
shows the relationship between precipitation and model er-
rors and it is evident from this scatter plot that model predic-
tions were not greatly influenced by low or high precipita-
tion. In other words, the model was unbiased by precipitation
trends. Similar checking was done for all other predictors
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Figure 5. (a) R2
adj, (b) CAIC and (c) RMSE for the top three models with 1 to 12 predictors and the green dotted lines representing the

number of predictors for the best performance criteria value.

Figure 6. RMSE of sub-sample (a) model fitting and (b) model prediction of top 10 models according to CAIC.

(not shown) which all showed a similar pattern to precipita-
tion. The dataset was classified based on recharge estimation
techniques and model performance was tested with results
showing no systematic difference (not shown).

3.3 Global groundwater recharge

The global long term (1981–2014) mean annual groundwater
recharge map at a spatial resolution of 0.5◦ was made by the
model developed in Sect. 3.2 (Fig. 8). In this study, the best
model as defined by CAIC (model 1 in Table 3) was used
to generate the recharge map. However, due to the similarity
in structure of the top 10 models (Table 3), all models were
equally good at predicting groundwater recharge and gave
similar results (not shown). Grid-scale recharge ranged from
0.02 to 996.55 mm yr−1 with an average of 133.76 mm yr−1.
The highest recharge was associated with very high rain-
fall (> 4000 mm yr−1). Humid regions such as Indonesia,
Philippines, Malaysia, Papua New Guinea, Amazon, west-
ern Africa, Chile, Japan and Norway had very high recharge

(> 450 mm yr−1), whereas arid regions of Australia, the Mid-
dle East and Sahara had very low recharge (< 0.1 mm yr−1).
In humid areas, percentage of rainfall becoming groundwater
recharge (> 40 %) was found to be very high in comparison
to other parts of the world. However, the mean percentage of
rainfall becoming recharge is only 22.06 % across the globe.
Among all the continents, Australia had the lowest annual
groundwater recharge rate.

Over the 34 years, global annual mean recharge followed
the same pattern as that of global annual mean precipita-
tion (Fig. 9). Least recharge was predicted in the year 1987
(groundwater recharge= 95 mm yr−1), where the annual av-
erage rainfall was< 180 mm yr−1. Variation in recharge over
the years was maximal in arid regions of Australia and
North Africa (Fig. 10a). However, the standard deviation
of recharge was higher in humid areas than in arid regions
(Fig. 10b). This indicates that standard deviation did not
clearly represent year-to-year variations in recharge. Poten-
tially, the advantage of using coefficient of variation over
standard deviation is that it can capture variations even when
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Figure 7. (a) Error at each data point along with the corresponding
rainfall obtained using the leave-one-out model testing procedure
and (b) Scatter plot between error at each data point and correspond-
ing precipitation.

mean values are very small. In this case precipitation and po-
tential evapotranspiration were the two major predictors of
recharge. Globally, variability in evapotranspiration is much
less than variability in rainfall (Peel et al., 2001; Trenberth
and Guillemot, 1995). Therefore, variability of groundwater
recharge both temporally and spatially is due to variability in
precipitation, which implies that arid regions are more sus-
ceptible to inter-annual variation in groundwater recharge.
A comparison of predicted recharge against country-level
recharge estimates from FAO (2005) shows that the model
tends to overpredict recharge, particularly for low recharge
areas. However, due to inaccuracies in the FAO estimates
this cannot be considered as a reliable comparison (Fig. 11a).
Recharge estimates from the best models in the present study
were compared to recharge estimates from the complex hy-
drological model (WaterGAP; Fig. 11b). Even though the
model in this study overestimates recharge for countries with
fewer data points, the scatter shows a smaller spread com-
pared to the FAO estimates. Figure 12 shows the country-
wide distribution of errors in model prediction in comparison
with FAO statistics. Very high errors were found in countries
with fewer model-building data points. The model consider-
ably overestimated recharge for Russia, Canada, Brazil, In-
donesia, Malaysia and Madagascar.

Figure 8. Long-term (1981–2014) average annual groundwater
recharge estimated using the developed model.

4 Discussion

The aims of this study were to identify the factors with the
most influence on groundwater recharge, and to develop a
global model for predicting groundwater recharge under lim-
ited data conditions, without extensive water balancing. In
this study, an empirical model-building exercise employing
linear regression analysis, multimodel inference techniques
and information criteria was used to identify the most in-
fluential predictors of groundwater recharge and use them
to build predictive models. Finally, a global groundwater
recharge map was created using the developed model. The
key findings from this study and their implications for fu-
ture research and practice with respect to global groundwater
recharge are discussed below.

One of the findings to emerge is that, out of numerous
models developed in this study there was no single best
model for groundwater recharge. Instead, there were clear
sets of better and worse models. However, there were pre-
dictors which stood out as having greater explanatory power.
Of the 12 predictors chosen for the analysis, meteorological
(P , PET) and vegetation predictors (LU) had the most ex-
planatory information followed by saturated hydraulic con-
ductivity and clay content. Thus models using these predic-
tors ranked higher according to information criteria. It is rea-
sonable that meteorological factors had the most explanatory
information. In most cases, especially dry regions, ground-
water recharge is controlled by the availability of water at the
surface, which is mainly controlled by precipitation, evapo-
transpiration and geomorphic features (Scanlon et al., 2002).
Numerous studies agree with this finding. For example, in
south-western USA, 80 % of recharge variation is explained
by mean annual precipitation (Keese et al., 2005). How-
ever, the influence of meteorological factors on groundwater
recharge is highly site specific (Döll and Flörke, 2005). The
effect of meteorological factors can also depend on whether
the season or year is wet or dry, type of aquifer and irrigation
intensity (Adegoke et al., 2003; Moore and Rojstaczer, 2002;
Niu et al., 2007).
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Figure 9. Temporal distribution of total global recharge along with total global precipitation of corresponding years for a period of 1981
to 2014.

Figure 10. Map showing (a) coefficient of variability and (b) stan-
dard deviation of annual groundwater recharge from 1981 to 2014.

Many studies have reported vegetation-related parame-
ters as the second most influential predictor of groundwa-
ter recharge. Vegetation has a high correlation with other
physical variables such as soil moisture, runoff capacity and
porosity, which adds to its recharge explanatory power (Kim
and Jackson, 2012; Scanlon et al., 2005). In this study land
use (LU) was used as a proxy for vegetation. According to
the results, LU was found to be one of the predictors hav-
ing the highest proportion of evidence (PoE; Fig. 4). In ad-
dition, all the better-performing models included LU as one
of the predictors, which clearly indicates that vegetation is
one of the most influential factors for groundwater recharge.
Results indicates that recharge rates were high where runoff

Figure 11. Comparison of predicted recharge against country-level
estimates from (a) FAO and (b) WaterGAP model.

water had greater retention time on the surface. This was
mainly observed in areas with shallow-rooted vegetation like
grasslands. In deep-rooted forest areas recharge was reduced
because of increased evapotranspiration (Kim and Jackson,
2012). However, not all studies reported are in agreement
with vegetation as an important predictor of recharge. For
example, Tögl (2010) failed to find a correlation between
vegetation/land cover and recharge. This may be the result
of some peculiarity in the study dataset. Apart from the
predictors discussed above, depth to groundwater and sur-
face drainage density were also identified as potential pre-
dictors of recharge from literature (Döll and Flörke, 2005;
Jankiewicz et al., 2005). Despite this they were excluded
from this study because of the lack of appropriate resolution
global datasets.

The total recharge estimated in this study is strongly con-
sistent with results from complex global hydrological mod-
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Table 4. Global estimates of groundwater recharge.

Model used Spatial Temporal Total Reference
resolution range global

recharge
(km3 yr−1)

Empirical model 0.5◦ 1981–2014 13 600 Current study
WaterGAP 2 0.5◦ 1961–1990 14 000 Döll (2002)
WaterGAP 0.5◦ 1961–1990 12 666 Döll and Flörke (2005)
PCR GlobWB 0.5◦ 1958–2001 15 200 Wada et al. (2010)
PCR GlobWB 0.5◦ 1960–2010 17 000 Wada et al. (2012)
MATSIRO 1◦ 1985–1999 29 900 Koirala et al. (2012)
FAO Statistics Country 1982–2014 10 613 FAO (2016)

Figure 12. Spatial distribution of groundwater recharge residual
(FAO estimates less model estimates) along with recharge sites se-
lected for model building.

els. Long-term average annual recharge was found to be
134 mm yr−1. The total recharge estimated in this study
(13 600 km3 yr−1) was very close to existing estimates of
complex hydrological models except those using MATSIRO,
which overestimates recharge in humid regions (Koirala et
al., 2012). The results shown in Table 4 indicate that, com-
pared to existing techniques, the model developed in this
study can make recharge assessments with the same relia-
bility but with fewer computational requirements. Moreover,
the error in recharge prediction in this study was low, ranging
from only −8 to 10 mm yr−1 for 97.2 % of cases.

The global recharge map developed showed a similar pat-
tern to recharge maps produced using complex global hy-
drological models. The results of this study indicate that

recharge across the globe varied considerably as a function
of spatial region, and was analogous to global distribution of
climate zones (Scanlon et al., 2002). Humid regions had very
high recharge compared to arid (semi-arid) regions, which is
obviously due to the higher availability of water for recharge.
Recharge was also affected by climate variability and climate
extremes at a regional level (Scanlon et al., 2006; Wada et
al., 2012). However, an effect of climate variability on inter-
annual recharge at a global scale was not pronounced in our
results. The potential reason for this is that the El Niño South-
ern Oscillation (ENSO), the primary factor determining cli-
mate variability globally, has converse effects in different
parts of the world. The effects of increased precipitation in
some parts of the world would have been counteracted by re-
ductions in precipitation in other areas resulting in relatively
small effects on inter-annual variation in global recharge.

5 Conclusion

This study presents a new method for identifying the major
factors influencing groundwater recharge and using them to
model large-scale groundwater recharge. The model was de-
veloped using a dataset compiled from the literature and con-
taining groundwater recharge data from 715 sites. In contrast
to conventional water balance recharge estimation, a multi-
model analysis technique was used to build the model. The
model developed in this study is purely empirical and has
fewer computational requirements than existing large-scale
recharge modelling methods. The 0.5◦ global recharge esti-
mates presented here are unique and more reliable because of
the extensive validation done at different scales. Moreover,
inclusion of a range of meteorological, topographical, litho-
logical and vegetation factors adds to the predictive power
of the model. The results of this investigation show that me-
teorological and vegetation factors had the most predictive
power for recharge. The high dependency of recharge on me-
teorological predictors make it more vulnerable to climate
change. Although it is a computationally efficient modelling
method, the approach used in this study has some limita-
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tions. Firstly it does not include direct anthropogenic effects
on the groundwater system or recharge by natural or artifi-
cial means, suggesting scope for further future development.
Secondly, the recharge dataset used in this study did not in-
clude data points from frozen regions. Therefore, Greenland
and Antarctica were excluded from the final recharge map.
However, the model developed in this study and the recharge
maps produced will aid policy makers in predicting future
scenarios with respect to global groundwater availability.
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