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1 Abstract

We study the problem of maximizing privacy of data sets by adding random vectors generated via synchronized
chaotic oscillators. In particular, we consider the setup where information about data sets, queries, is sent
through public (unsecured) communication channels to a remote station. To hide private features (specific
entries) within the data set, we corrupt the response to queries by adding random vectors. We send the
distorted query (the sum of the requested query and the random vector) through the public channel. The
distribution of the additive random vector is designed to minimize the mutual information (our privacy metric)
between private entries of the data set and the distorted query. We cast the synthesis of this distribution as
a convex program in the probabilities of the additive random vector. Once we have the optimal distribution,
we propose an algorithm to generate pseudorandom realizations from this distribution using trajectories of
a chaotic oscillator. At the other end of the channel, we have a second chaotic oscillator, which we use to
generate realizations from the same distribution. Note that if we obtain the same realizations on both sides of
the channel, we can simply subtract the realization from the distorted query to recover the requested query.
To generate equal realizations, we need the two chaotic oscillators to be synchronized, i.e., we need them
to generate exactly the same trajectories on both sides of the channel synchronously in time. We force the
two chaotic oscillators into exponential synchronization using a driving signal. Exponential synchronization
implies that trajectories of the oscillators converge to each other exponentially fast for all admissible initial
conditions and are perfectly synchronized in the limit only. Thus, in finite time, there is always a “small”
difference between their trajectories. To implement our algorithm, we assume (as it is often done in related
work) that systems have been operating for sufficiently long time so that this small difference is negligible and
oscillators are practically synchronized. We quantify the worst-case distortion induced by assuming perfect
synchronization, and show that this distortion vanishes exponentially fast. Simulations are presented to
illustrate our results.

Keywords: Privacy; Data Sets, Queries, Mutual Information, Chaos.

2 Introduction

In a hyperconnected world, scientific and technological advances have led to an overwhelming amount of user
data being collected and processed by hundreds of companies over public networks. Companies mine this
data to provide targeted advertising and personalized services. However, these new technologies have also
led to an alarming widespread loss of privacy in society. Depending on adversary’s resources, opponents may
infer private user information from public data available on the internet and unsecured/public servers. A
motivating example of privacy loss is the potential use of data from smart electrical meters by criminals,
advertising agencies, and governments, for monitoring the presence and activities of occupants [1, 2]. Other
examples are privacy loss caused by information sharing in distributed control systems and cloud computing
[3]; the use of travel data for traffic estimation in intelligent transportation systems [4]; and data collection
and sharing by the Internet-of-Things (IoT) [5], which is, most of the time, done without the user’s informed
consent. These privacy concerns show that there is an acute need for privacy preserving mechanisms capable
of handling the new privacy challenges induced by an interconnected world.

In this manuscript, we consider the problem of hiding private information X of users (modeled as discrete
random vectors) within datasets when publicly sharing requested queries Y (X) from the same source. In
particular, the aim of our privacy scheme is to respond to queries with distorted queries of the form Z =
Y (X)+V such that, when releasing Z, the private X is “hidden”. Realizations of the vector Z are transmitted
over a public (unsecured) communication channel to a remote station. Then, if we do not distort Y (X) before
transmission, information about X is directly accessible through the public channel. The first problem that
we address is the design of the probability distribution of V to maximize privacy, i.e., the distribution of
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V must be constructed so that Z = Y (X) + V carries as little information about X as possible. Here,
we follow an information-theoretic approach to privacy. We use the mutual information between private
information X and distorted queries Y (X)+V , I[X ;Y (X)+V ], as privacy metric. The design of the discrete
additive vector is casted as an optimization problem where we minimize I[X ;Y (X)+V ] using the probability
mass function of V , pV (v), as optimization variables. That is, the optimal distribution, p∗V (v), is given
by p∗V (v) := argminpV (v) I[X ;Y (X) + V ], where pV (v) is taken over a class of probability mass functions.
Contrary to related work [6]-[11], we do not consider any sort of privacy-distortion trade-off in our formulation.
We actually aim at making I[X ;Y (X)+V ] as small as possible regardless of the distortion between Y (X) and
Y (X) + V induced by V . Distortion is not an issue because we seek to generate exactly the same realization
of V at the remote station; then, we could recover the query by simply subtracting this realization from the
one of Z = Y (X) + V . In order to accomplish this, we propose an algorithm to generate pseudorandom
realizations from p∗V (v) at both sides of the channel using trajectories of two synchronized chaotic oscillators.

There are a number of requirements that the oscillators must satisfy for our algorithm to work: 1) tra-
jectories of the oscillators must be bounded and chaotic; 2) they must be synchronized, i.e., we need them to
generate exactly the same trajectories on both sides of the channel synchronously in time; and 3) the syn-
chronous solution, regarded as a random process, must be stationary. Before giving the algorithm, we provide
general guidelines for selecting the dynamics of the oscillators so that all the aforementioned requirements are
satisfied. In particular, we use a range of well-known results in the literature to provide a synthesis procedure
that allows to choose suitable oscillators. For boundedness, we use the notion of Input-to-State-Stability (ISS);
for chaos, we employ standard largest Lyapunov exponent methods [12] and the (0-1) test [13]; for synchro-
nization, we introduce the notion of convergent systems [14]; and for stationarity, we use hyperbolicity of the
chaotic trajectories [15].

To generate equal realizations, our algorithm needs trajectories of the two chaotic oscillators (one at each
side of the channel) to be synchronized. We force the oscillators into exponential synchronization using a
driving signal. Exponential synchronization implies that trajectories of the oscillators converge to each other
exponentially for all admissible initial conditions and are perfectly synchronized in the limit only. Therefore,
in finite time, there is always a “small” difference between their trajectories. However, because oscillators
synchronize exponentially fast, and it is often possible in practice to select initial conditions from a known
compact set (known to both sides of the channel), it is safe to assume that the interconnected systems have been
operating for sufficiently large time such that oscillators are practically synchronized, i.e., the synchronization
error is so small that trajectories can be assumed to be equal. This is a standard assumption that is made
in most, if not all, of the existing work on chaotic encryption based on synchronization [16]-[20]. Here, we
give sufficient conditions for exponential synchronization to occur, provide tools for selecting the oscillators
such that these conditions are satisfied, and assume that, after transients have settled down, trajectories are
perfectly synchronized to some chaotic trajectory, say φ(t) ∈ R

nζ , ζ ∈ N. If nζ > 1, our algorithm uses
any entry φs(t) ∈ S ⊂ R of φ(t) to generate realizations from p∗V (v), where S denotes some compact set
that characterizes the support of φs(t). Because oscillators are selected such that φ(t), regarded as a random
process, is stationary, samples from φs(t) follow a stationary probability density function. We obtain this
density through Monte Carlo simulations [21] and divide its support S into a finite set of cells C = {c1, . . . , cM}
such that the probability that φs(t) lies in these cells equals the optimal probability distribution p∗V (v). That
is, we generate pseudorandom realizations from p∗V (v) by properly selecting C and evaluating if φs(t) lies in
C at the sampling instants.

The use of additive noise to preserve privacy is common practice. There are mainly two classes of privacy
metrics considered in the literature; namely, differential privacy [22]-[23] and information-theoretic metrics,
e.g., mutual information, conditional entropy, Kullback-Leibler divergence, and Fisher information [24]-[28].
In differential privacy, because it provides certain privacy guarantees, Laplace noise is usually used [29].
However, when maximal privacy is desired, Laplace noise is generally not the optimal solution. This raises
the fundamental question: what is the noise distribution achieving maximal privacy? This question has many
possible answers depending on the particular privacy metric being considered and the system configuration,
see, e.g., [6]-[8],[11], for differential privacy based results, and [24]-[28], for information theoretic results. In
general, if the data to be kept private follows continuous distributions, the problem of finding the optimal
additive noise to maximize privacy is hard to solve. If a close-form solution for the distribution is desired,
the problem amounts to solving a set of nonlinear partial differential equations which, in general, might
not have a solution, and even if they do have a solution, it is hard to find [24]. This problem has been
addressed by imposing some particular structure on the considered distributions or assuming the data to
be kept private is deterministic [24],[7],[8]. The authors in [7],[8] consider deterministic input data sets and
treat optimal distributions as distributions that concentrate probability around zero as much as possible while
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ensuring differential privacy. Under this framework, they obtain a family of piecewise constant probability
density functions that achieve minimal distortion for a given level of privacy. In [24], the authors consider the
problem of preserving the privacy of deterministic databases using additive continuous noise with constrained
support. They use the Fisher information and the Cramer-Rao bound to construct a privacy metric between
deterministic data and the one with the additive noise, and find the probability density function that minimizes
it. Moreover, they prove that, in the unconstrained support case, the optimal noise distribution minimizing the
Fisher information is Gaussian. This observation has been also made in [30] when using mutual information
as a measure of privacy. We remark that most of the aforementioned papers consider privacy-distortion trade-
offs when designing their distorting mechanisms. We do not consider this trade-off here because, at the end
of the channel, we remove the distortion that we induce using our synchronization based formulation.

Existing work on chaotic encryption based on synchronization [16]-[20] directly uses the states of the
chaotic oscillators to mask private information. That is, standard algorithms do not use chaotic trajectories
to generate pseudorandom realization from probability distributions (as we do here); instead, they simply
add the value of the sampled chaotic trajectory (or functions of it) to private messages. Although the latter
succeeds in masking messages, it does not give any privacy guarantees (neither information-theoretic nor
in a differential privacy sense) on the private information, and it is not optimal in any sense. Hence, the
contributions of our scheme with respect to existing work on chaotic encryption [16]-[20] are the treatment
of fully stochastic datasets, the information-theoretic privacy guarantees that our framework provides, and
the optimal performance of the designed distorting additive vector (optimal in the sense of minimizing the
mutual information I[X ;Y (X) + V ]). The work here is inspired by the experimental results presented in
[31], where the authors propose a framework similar to ours for deterministic data using a electronic circuit
implementation of the Mackey-Glass chaotic oscillator [32]. The contribution of our work with respect to
[31] is threefold: 1) we consider fully stochastic data, which makes the privacy scheme fundamentally very
different; 2) we provide a general formulation that encompasses a large class of chaotic systems, not only the
electronic circuit implementation of the Mackey-Glass oscillator; and 3) we generate realizations from optimal
distorting distributions, in [31], they consider uniform distributions only which is not optimal for stochastic
data.

Next, we summarize the main contributions of the chapter.

Contributions:

1) We provide a general information-theoretic privacy framework based on optimal additive distorting random
vectors and synchronization of chaotic oscillators; 2) We prove that the synthesis of the probability mass
function pV (v) of the distorting random vector V can be posed as a convex program in pV (v) over a class
of probability mass functions; 3) We provide an algorithm to generate pseudorandom realizations from this
distribution using trajectories of chaotic oscillators; 4) Using off-the-shelf results in the literature, we provide
a synthesis procedure for selecting the dynamics of the oscillators so that our algorithm is guaranteed to work.

The remainder of the paper is organized as follows. In Section 3, we present some preliminaries results
needed for the subsequent sections. We introduce the notion of convergent systems and the concept of mutual
information. The general formulation and the specific problems to be addressed are given in Section 4. In
Section 5, we pose the synthesis of the probability distribution of the optimal distorting vector. General guide-
lines for selecting the chaotic oscillators are given in Section 6. The algorithm for generating pseudorandom
realizations from the optimal distribution is presented in Section 7. Simulation results are given in Section 8
and concluding remarks in Section 9.

3 Notation and Preliminaries

The symbol R stands for the real numbers, R>0(R≥0) denotes the set of positive (non-negative) real numbers.
The symbol N stands for the set of natural numbers. The Euclidian norm in R

n is denoted simply as | · |,
|x|2 = x⊤x, where ⊤ defines transposition. For a given measurable function u(t), t ∈ R≥0, we denote its
L∞ norm as ||u||∞ := ess supt≥0 |u(t)|, where ess sup denotes essential supremum. Matrices composed of only
ones and only zeros of dimension n × m are denoted by 1n×m and 0n×m, respectively, or simply 1 and 0

when their dimensions are clear. For square matrices A ∈ R
n×n, ρ[A] denotes the spectral radius of A. A

continuous function γ : [0, a) → [0,∞) is said to belong to class K if it strictly increasing and γ(0) = 0.
Similarly, a continuous function β : [0, a)× [0,∞) → [0,∞) belongs to class KL if, for fixed s, β(r, s) belongs
to class K with respect to r and, for fixed r, β(r, s) is decreasing with respect to s and lims→∞ β(r, s) = 0.
Consider a discrete random vector X with alphabet X = {x1, . . . , xN}, xi ∈ R

m, m ∈ N, i ∈ {1, . . . , N}, and
probability mass function pX(x) = Pr[X = x], x ∈ X , where Pr[B] denotes probability of event B. Similarly,
for two random vectors X and Y , taking values in the alphabets X and Y, respectively, their joint probability
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mass function is denoted by pX,Y (x, y), the marginal distribution of X is given by pX(x) =
∑

y∈Y pX,Y (x, y),
and the conditional distribution of X given Y as pY |X(y|x) = pX,Y (x, y)/pX(x). Analogously, for a contin-
uous random vector Y , we denote their (multivariate) probability density function as fY (y). The notation
X ∼ fX(x) (X ∼ pX(x)) stands for continuous (discrete) random vectors X following the probability density
(mass) function fX(x) (pX(x)). We denote by "Simplex" the probability simplex defined by

∑

x∈X pX(x) = 1,
pX(x) ≥ 0 for all x ∈ X . The notation E[a] denotes the expected value of the random vector a. We denote
independence between two random vectors, X and Y , as X |= Y .

3.1 Mutual Information

Definition 1 Consider two random vectors, X and Y , with joint probability mass function pX,Y (x, y) and
marginal probability mass functions, pX(x) and pY (y), respectively. Their mutual information I[X ;Y ] is
defined as the relative entropy between the joint distribution and the product distribution pX(x)pY (y), i.e.,

I[X ;Y ] :=
∑

x∈X

∑

y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
.

Mutual information I[X ;Y ] between two jointly distributed vectors, X and Y , is a measure of the depen-
dence between X and Y .

3.2 Convergent Systems

Consider the dynamical system:
ẋ(t) = r(x(t), u(t)), (1)

with t ∈ R≥0, state x ∈ R
n, input u ∈ U ⊆ R

m, and vector field r : Rn × U → R
n. The vector field r(x, u)

is continuously differentiable in x, and u(t) is piecewise continuous in t and takes values in some compact set
U ⊆ R

m.

Definition 2 [33]. System (1) is said to be globally asymptotically convergent if and only if for any bounded
input u(t), t ∈ R, there is a unique bounded globally asymptotically stable solution x̄u(t), t ∈ R, such that
limt→∞ |x(t)− x̄u(t)| = 0 for all initial conditions.

For a convergent system, the limit solution is solely determined by the external excitation u(t) and not by the
initial conditions. A sufficient condition for convergence obtained by Demidovich [33] and later extended in
[14] is presented in the following proposition.

Proposition 1 [33, 14]. If there exists a positive definite matrix P ∈ R
n×n such that all the eigenvalues

λi(Q) of the symmetric matrix

Q(x, u) =
1

2

(

P

(

∂r

∂x
(x, u)

)

+

(

∂r

∂x
(x, u)

)T

P

)

, (2)

are negative and separated from zero, i.e., there exists a constant c ∈ R>0 such that λi(Q) ≤ −c < 0, for all
i ∈ {1, ..., n}, u ∈ U , and x ∈ R

n, then system (1) is globally exponentially convergent; and, for any pair of
solutions x1(t), x2(t) ∈ R

n of (1), the following is satisfied:
d

dt

(

(

x1(t)− x2(t)
)⊤
P
(

x1(t)− x2(t)
)

)

≤ −α |x1(t)− x2(t)|
2
, t ∈ R≥0,

with constant α := (c/λmax(P )) and λmax(P ) being the largest eigenvalue of the symmetric matrix P .

Remark 1 There are other methods to verify that trajectories of system (1) converge to a limit solution that
is independent of the initial conditions and solely determined by the external excitation u(t). For instance,
contraction theory [34], Lyapunov function approach to incremental stability [35], the quadratic (QUAD)
inequality approach (a Lipschitz-like condition) [36], and differential dissipativity [37], which are all concepts
that are closely related to notion of convergent systems [14] that we use here.

4 Problem Setup

Let X be a discrete random vector that must be kept private. The alphabet and probability mass function
of X are denoted as X = {x1, . . . , xN}, xi ∈ R

nx , nx ∈ N, i ∈ {1, . . . , N} and pX(x) = Pr[X = x], x ∈ X ,
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Figure 1: Configuration for Problem 1.

respectively. The nx entries of X represent, for instance, private entries of nx users within a dataset that is
stored by a trusted server. The server admits queries of the form Y = q(X), Y ∈ R

ny , for some (stochastic or
deterministic) mapping q : Rnx → R

ny characterized by the transition probabilities pY |X(y|x), x ∈ X , y ∈ Y,
where Y = {y1, . . . , yM}, yi ∈ R

ny , ny ∈ N. The aim of our privacy scheme is to respond to queries of the
form q(X) with distorted queries Z = q(X) + V , for some discrete random vector V (with V |= Y ), such that,
when releasing Z, the individual entries of X are “hidden”. Realizations of the vector Z are transmitted over a
public (unsecured) communication channel to a remote station, see Figure 1. Then, if we do not add V to q(X)
before transmission, information about X is directly accessible through the public channel. As a preliminary
problem that we need to solve for the subsequent results, we address the design of the probability distribution
of V to maximize privacy, i.e., the distribution of V must be constructed so that the sum, Z = q(X) + V ,
carries as little information about X as possible. In this manuscript, we use the mutual information between
X and Z = Y + V , I[X ;Z], as privacy metric. We aim at finding the probability mass function of V ,
pV (v), that minimizes I[X ;Z] over a class of probability mass functions. That is, we cast the design of pV (v)
as an optimization problem with cost function I[X ;Z], optimization variables pV (v), and subject to V |= Y
and the usual probability simplex constraints. Note that, contrary to related work [9]-[11],[27],[28], we do not
consider any sort of privacy-distortion trade-off in our formulation. We minimize I[X ;Y +V ] regardless of the
distortion between Y and Y +V induced by V . Distortion is not an issue because, we seek to generate exactly
the same realization of V at the remote station and then recover the query by subtracting this realization
from the one of Z = Y + V . This is addressed in Problem 2 and Problem 3 below.

We let V be a discrete random vector with alphabet Y and probability mass function pV (v) = Pr[V = v],
v ∈ Y, i.e., the alphabet of V and the one of the query Y = q(X) are equal. Having equal alphabets imposes
a tractable convex structure on the cost I[X ;Z] and reduces the optimization variables to the probabilities
of each element of the alphabet. The case with arbitrary alphabet leads to a combinatorial optimization
problem where the objective changes its structure for different combinations. We do not address this case in
this manuscript; it is left as a future work. In what follows, we formally present the optimization problem we
seek to address.

Problem 1 [Optimal Distribution of the Additive Distorting Signal] For given pX(x) = Pr[X = x]
and pY |X(y|x) = Pr[Y = y|X = x], x ∈ X , y ∈ Y, find the probability mass function pV (v) = Pr[V = v],
v ∈ Y solution of the optimization problem:







p∗V (v) := argmin
pV (v)

I[X ;V + Y ],

s.t. V |= Y and pV (v) ∈ Simplex.
(3)

Here, p∗V (v) denotes the optimal distribution solution to (3). To hide X , once we have obtained p∗V (v),
we aim at generating realizations v ∈ Y from this distribution, add them to the required query (Y = q(X)),
and send realizations of the sum Z = Y + V to the remote station through the public channel. At the other
end of the channel, we seek to generate the exact same realizations from p∗V (v) so that we can recover the
query by simply subtracting V from Z, see Figure 2. Note that, in Figure 2, we have a recovered Ŷ at the
remote station rather that the actual Y . This is because we want to remark that, due to practical errors in
our algorithm–e.g., due to communication delays and transients–realizations of V that we generate at both
ends of the channel might be slightly different in practice. To generate these realizations, we use trajectories,
φζu,1(t, ζ1(0), u(t)), t ∈ R≥0, ζ1(0) ∈ R

nζ , u(t) ∈ R
nu , of a chaotic dynamical system of the form:

{

ζ̇1(t) = r(ζ1(t), u(t)),

s1(t) = h(ζ1(t)),
(4)

with state ζ1(t) ∈ R
nζ , output s1(t) ∈ R, continuous in t input u(t) ∈ U ⊂ R

nu taking values in some compact
set U , continuous function h : Rnζ → R, and vector field r : Rnζ × U → R

nζ continuously differentiable in
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Figure 2: Complete System Configuration.

its first argument, uniformly in its second argument. Hereafter, system (4) is referred to as responder 1.
Responder 1 is placed at the side of the trusted server, see Figure 2. The input signal u(t) is generated by a
chaotic autonomous exosystem:

{

ξ̇(t) = d(ξ(t)),

u(t) = l(ξ(t)),
(5)

with state ξ(t) ∈ R
nξ , output u(t) ∈ U ⊂ R

nu , and vector fields d : Rnξ → R
nξ and l : Rnξ → R

nu . The
vector field d(ξ) is locally Lipschitz in ξ and l(ξ) is continuous. We refer to (5) as the driver system. We let
u(t) be connected to the remote station via the public channel, see Figure 2. At the other end of the channel,
driven by the same input signal u(t), we have a third chaotic oscillator with the same dynamics as (4) but
with potentially different initial conditions, i.e., the second oscillator is given by

{

ζ̇2(t) = r(ζ2(t), u(t)),

s2(t) = h(ζ2(t)),
(6)

with state ζ2(t) ∈ R
nζ and output s2(t) ∈ R. We denote trajectories of (6) as φζu,2(t, ζ2(0), u(t)) with t ∈ R≥0,

ζ2(0) ∈ R
nζ , and u(t) ∈ U ⊂ R

nζ . System (6) is referred to as responder 2. Note that if ζ1(t) = ζ2(t), t ∈ R≥0,
i.e., if systems (4) and (6) are synchronized, and we use the synchronous chaotic solution, say φζu(t, u(t)), to
generate realizations from p∗V (v), we could have the same realization of V at both sides of the channel.

Problem 2 [Boundedness, Chaos, and Synchronization] State sufficient conditions on the vector fields
r(·), h(·), d(·), and l(·) of the coupled system (4)-(6) such that: 1) trajectories of (4)-(6) exist and are
bounded and chaotic; and 2) systems (4) and (6) exponentially synchronize, i.e., limt→∞ |ζ1(t) − ζ2(t)| = 0,
exponentially fast.

Remark 2 Problem 2 seeks to enforce exponential synchronization by selecting the dynamics of the oscillators.
Exponential synchronization implies that trajectories of the responders converge to each other exponentially
for all initial conditions and are perfectly synchronized in the limit only. It follows that, in finite time,
there is always a “small” difference between their trajectories. Nevertheless, because oscillators synchronize
exponentially fast, and it is often possible in practice to select initial conditions from a known compact set
(known to both the trusted server and the remote station), it is safe to assume that the interconnected systems
have been operating for sufficiently large time such that oscillators are practically synchronized, i.e., the
synchronization error is so small that trajectories can be assumed to be equal. This is a standard assumption
that is made in most, if not all, of the existing work on chaotic encryption based on synchronization [16]-[20].

Finally, once we have found functions solution to Problem 2, which guarantees exponential synchroniza-
tion of the responders, and assuming that responders are synchronized (see Remark 2), we aim at design-
ing a procedure to generate pseudorandom realizations from p∗V (v) using the synchronous chaotic solution
φζu(t, u(t)). Note that ζ1(t) = ζ2(t) ⇒ s1(t) = h(ζ1(t)) = s2(t) = h(ζ2(t)), for all t ≥ 0. Moreover, because
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ζ1(t) = ζ2(t) = φζu(t, u(t)); then, s1(t) = s2(t) = h(φζu(t, u(t))) =: φsu(t, u(t)) ∈ S ⊂ R for some compact set S.
To reduce the complexity of the algorithm, we use the lower dimensional synchronous solution φsu(t, u(t)) to
generate the realizations from p∗V (v).

Problem 3 [Generation of Optimal Pseudorandom Numbers] Using the lower dimensional synchronous
solution, φsu(t, u(t)), design an algorithm to generate pseudorandom realizations from the optimal distribution
p∗V (v), v ∈ Y.

5 Optimal Distribution of the Additive Distorting Signal

In this section, we prove that Problem 1 can be posed as a convex program in the probabilities pV (v), v ∈ Y.
We derive an explicit expression for the cost function I[X ;Z], Z = Y + V , in terms of the given pX(x) and
pY |X(y|x) and the variables pV (v), restricted to satisfy the independence constraint V |= Y .

Lemma 1 I[X ;Z] with Z = Y + V , V |= Y , is a convex function of pV (v), v ∈ Y, for given pX(x) and
pY |X(y|x), x ∈ X , y ∈ Y; and can be written compactly in terms of pX(x), pY |X(y|x), and pV (v), as follows:















































I[X ;Z] =
∑

x∈X

∑

z∈Z

pX(x)pZ|X(z|x) log
pZ|X(z|x)

pZ(z)
,

pZ|X(z|x) =
∑

y∈Y

pY |X(y|x)pV (z − y),

pZ(z) =
∑

y∈Y

pY (y)pV (z − y).

(7a)

(7b)

(7c)

Proof : The expression on the right-hand side of (7a) follows by inspection of Definition 1 and the fact
that pZ,X(z, x) = pX(x)pZ|X(z|x). By [38, Theorem 2.7.4], cost (7a) is convex in pZ|X(z|x) for given pX(x).
However, our optimization variables are pV (v) and not pZ|X(z|x). Note that X , Y , and Z form a Markov chain
in that order [39]; therefore, pX,Y,Z(x, y, z) = pX(x)pY |X(y|x)pZ|Y (z|y). Marginalizing pX,Y,Z(x, y, z) with
respect to Y ∈ Y and then conditioning with respect to X yields pX,Z(x, z) =

∑

y∈Y pX(x)pY |X(y|x)pZ|Y (z|y)
and pZ|X(z|x) =

∑

y∈Y pY |X(y|x)pZ|Y (z|y), respectively. Note that pZ|X(z|x) is just a linear transformation
of pZ|Y (z|y). Hence, convexity with respect to pZ|X(z|x) implies convexity with respect to pZ|Y (z|y) because
convexity is preserved under affine transformations [40]. Next, consider pZ|Y (z|y) = pZ,Y (z, y)/pY (y). By
definition, pZ,Y (z, y) = Pr[Z = z, Y = y], z ∈ Z, y ∈ Y. Note that

Pr[Z = z, Y = y] = Pr[Y + V = z, Y = y] = Pr[V = z − y, Y = y]

(a)
= Pr[V = z − y]Pr[Y = y] = pV (z − y)pY (y),

where (a) follows from independence between V and Y . Thus,

pZ|Y (z|y) =
pZ,Y (z, y)

pY (y)

=
pV (z − y)pY (y)

pY (y)
= pV (z − y).

We have concluded convexity of I[X ;Z] with respect to pZ|Y (z|y) above. Hence, because pZ|Y (z|y) = pV (z−y)
and pV (z−y) is a linear transformation of pV (v) (pV (z−y) = pV (v) for z−y = v and zero otherwise), the cost
I[X ;Z] is convex in pV (v). Moreover, since pZ|X(z|x) =

∑

y∈Y pY |X(y|x)pZ|Y (z|y) and pZ|Y (z|y) = pV (z−y),
equality (7b) holds true. It remains to prove that pZ(z) can be written as (7c). Because Z = Y + V ,
pZ(z) = Pr[Z = z], for a given z ∈ Z, can be written as the sum of the probabilities of all Y = y and V = v
that result in z, i.e.,

pZ(z) = Pr[Z = z] = Pr[Y + V = z]

=
∑

y∈Y

Pr[V = z − y, Y = y]

(b)
=
∑

y∈Y

Pr[Y = y]Pr[V = z − y] =
∑

y∈Y

pY (y)pV (z − y),

where (b) follows from independence between V and Y . �

By Lemma 1, the cost I[X ;Z], for V |= Y , is convex in p(v) and parametrized by pX(x) and pY |X(y|x). In
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what follows, we cast the nonlinear program for solving Problem 1.

Theorem 1 Given pX(x) and pY |X(y|x), x ∈ X , y ∈ Y, the mapping pV (v), v ∈ Y, that minimizes I[X ;Z],
Z = V + Y , subject to V |= Y can be found by solving the following convex program:















p∗V (v) = argmin
pV (v)

∑

x∈X

∑

y∈Y

∑

z∈Z

pX(x)pY |X(y|x)pV (z − y) log

∑

y∈Y pY |X(y|x)pV (z − y)
∑

y∈Y pY (y)pV (z − y)
,

s.t. pV (v) ∈ Simplex.

(8)

Proof : Theorem 1 follows from Lemma 1.

6 Boundedness, Chaos, and Synchronization

6.1 Existence, Uniqueness, and Boundedness of Solutions

We start addressing existence, uniqueness, and boundedness of the solutions of the coupled systems (4)-(6). To
be able to use synchronous solutions to generate realizations from p∗V (v), we first need these solutions to exist
and be bounded. In the system description given above, we have assumed that r(ζ, u(t)) is continuously differ-
entiable in ζ uniformly in u(t), u(t) is continuous in t, and d(ξ) is locally Lipschitz. These alone imply unique-
ness and existence of solutions of (4)-(6) over some finite time interval t ∈ [0, τ ], τ ∈ R>0, [41, Theorem 2.2].
To conclude the latter for arbitrarily large τ , besides the locally Lipschitz assumption on the functions, we
need boundedness of the solutions of (4)-(6) [41, Theorem 2.4]. Note that the coupled systems (4)-(6) have a
cascade structure. The driver dynamics is independent of the responders states, and its output, u(t), is the
input of the responders. Then, an approach to conclude boundedness of the overall system is to conclude
boundedness of the driver first, and then boundedness of the responders when driven by bounded inputs. In
what follows, we formally introduce the notion of boundedness that we use here.

Definition 3 [41] The solutions of (5) are bounded for a bounded set of initial conditions if there exists a
positive constant c, independent of the initial time instant, and for every a ∈ (0, c), there is b = b(a) > 0,
independent of the initial time instant, such that |ξ(0)| ≤ a ⇒ |ξ(t)| ≤ b, ∀ t ≥ 0. If the latter holds for
arbitrarily large a; then, the solutions of (5) are globally bounded.

Remark 3 Because l(ξ) is continuous, by the extreme value theorem, boundedness of ξ(t) implies boundedness
of u(t) = l(ξ(t)).

Remark 4 We do not give conditions for boundedness of the solutions of (5). It is assumed that the vector
field d(ξ) is such that the solutions of the driver are globally bounded. We refer the reader to, for instance,
[41, Theorem 4.18], where sufficient conditions for boundedness are given in terms of Lyapunov-like results.

Next, for bounded solutions of the driver, we need the solutions of the responders to be bounded when
driven by u(t). To address this, we use the notion if Input-to-State-Stability (ISS) [42].

Definition 4 [42] System (4) (and thus system (5) as well) is said to be Input-to-State-Stable if there exist a
class KL function β(·) and a class K function γ(·) such that for any initial condition ζ1(0) and any bounded
input u(t), the solution ζ1(t) exists for all t ∈ R≥0 and satisfies: |ζ1(t)| ≤ β(ζ1(0), t) + γ (||u||∞).

Remark 5 ISS of the responders with respect to u(t) guarantees that, for any bounded u(t), the states ζ1(t)
and ζ2(t) are bounded. Moreover, as t increases, |ζ1(t)| and |ζ2(t)| are ultimately bounded [41] by γ (||u||∞),
see [42] for further details.

Remark 6 Sufficient conditions for the responders to be ISS with input u(t) are not provided here. We assume
that the vector field r(ζ, u(t)) is such that systems (4) and (5) are ISS with respect to u(t). We refer the reader
to, for instance, [41, Theorem 4.19], where sufficient conditions for ISS are given in terms of ISS-Lyapunov
functions.

Remark 7 The weaker property of integral Input-to-State-Stable (iISS) [43] could be used to conclude bound-
edness of the responder’s trajectories when driven by “sufficiently small” inputs. We refer the reader to [44],
where sufficient conditions for iISS and related boundedness results are given.
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6.2 Synchronization

Next, we give sufficient conditions on r(ζ, u(t)) such that limt→∞ |ζ1(t) − ζ2(t)| = 0, i.e., the responders
exponentially synchronize. We assume that solutions of the coupled systems (4)-(6) exist and are bounded,
i.e., vector fields r(·), d(·), and l(·) satisfy the conditions stated in the previous subsection. Then, for bounded
u(t), a sufficient condition for the responders to exponentially synchronize is that systems (4) and (6) are
convergent systems in the sense of Definition 2. The latter implies that, because both responders are driven
by the input u(t) and their dynamics are described by the same set of differential equations, trajectories of
(4) and (6) converge to the same the limit solution, φζu(t, u(t)), and this solution is solely determined by u(t)
and not by the initial conditions. In the following corollary of Proposition 1, we give a sufficient condition for
the responders to be exponentially convergent (and thus to exponentially synchronize).

Corollary 1 Consider the responders (4) and (6). If there exists a positive definite matrix P ∈ R
nζ×nζ such

that, for all u ∈ R
nu and ζ ∈ R

nζ , all the eigenvalues of the symmetric matrix:

1

2

(

P

(

∂r

∂ζ
(ζ, u)

)

+

(

∂r

∂ζ
(ζ, u)

)T

P

)

, (9)

are negative and separated from zero; then, responders (4) and (6) are globally exponentially convergent, and
thus limt→∞ |ζ1(t)− ζ2(t)| = 0, exponentially fast.

Remark 8 If the driver’s output u(t) is to be sent over a network and quantization (or some sort of coding)
is required, we would need to drive responders by the same quantized u(t), say uQ(t), to achieve exponential
synchronization. That is, if we quantize u(t) to obtain uQ(t), and we drive both responders by uQ(t) (with,
e.g., a Zero-Order-Hold (ZOH)), they would also exponentially synchronize. They would synchronize to a
different trajectory than when driven by u(t), but they would synchronize exponentially fast.

Besides the notion of convergent systems, there are other methods available in the literature that can be
used to verify that trajectories of responders asymptotically synchronize to a limit solution that is independent
of the initial conditions. See Remark 1 for details.

6.3 Chaotic Dynamics

There are mainly two branches of methods to identify chaotic dynamics; namely, standard largest Lyapunov
exponent methods [12], and the more recent (0-1) test [13]. Both methods use trajectories (numerical or
experimental) of the systems under study to decide whether they are chaotic or not. In general, there are
no sufficient conditions directly on the differential equations (the vector fields r(·) and d(·)) such that chaotic
trajectories are guaranteed to occur. There are, however, many well known systems in the literature known to
exhibit chaotic trajectories. For instance, the Lorenz system [45], Duffing [46] and van der Pol [47] oscillators,
the Rössler [48] and Chua [49] systems, and neural oscillators [50] (e.g., the Hodgkin-Huxley, Morris-Lecar,
Hindmarsh-Rose, and FitzHugh-Nagumo oscillators). We can use any of these chaotic systems (if they satisfy
all the required extra conditions, see Section 6.4) as driver and then select a pair of responders with conver-
gent dynamics. Indeed, we need to verify that the responders that we choose produce chaotic trajectories
when driven by the chaotic driver. Moreover, to generate the pseudorandom realizations from p∗V (v) (this is
addressed in the next section), we need the chaotic trajectories of the responders, regarded as a random pro-
cess, to be stationary, i.e., after transients have settled down, trajectories must follow a stationary probability
distribution [39] which is independent of the initial conditions. The latter is a strong condition that is not
satisfied for all chaotic systems. The existence of stationary distributions for chaotic trajectories has been
proven for hyperbolic and quasi-hyperbolic (also called singular-hyperbolic) chaotic systems [15]. The defini-
tion of (quasi) hyperbolic dynamical systems [15, 51] is technical and not needed for the subsequent results.
It requires concepts from differential topology that we prefer to omit here for readability of the manuscript.
It suffices to know that the chaotic system that we use for the driver must lead to stationary distributions
of the responders. This can be tested numerically by Monte Carlo simulations [21]. Moreover, there are
many well-known chaotic systems with (quasi) hyperbolic dynamics in the literature, e.g., the Lorenz and
Chua systems [52], neural oscillators [53], the many predator-pray like systems given in [54, 55], and some
mechanical nonlinear oscillators [56]. In the next subsection, we provide a synthesis procedure to choose the
functions of the coupled systems (4)-(6) such that all the required conditions mentioned above are satisfied.
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6.4 General Guidelines

Synthesis Procedure:

1) Select a driver dynamics (5) (i.e., the vector field d(ξ)) known to be chaotic and (quasi) hyperbolic (e.g.,
systems in [52]-[56]).
2) Verify that the corresponding d(ξ) is locally Lipschitz and the trajectories of the driver are globally bounded,
in the sense of Definition 3, using, e.g., [41, Theorem 4.18].
3) In (5), let ξ = (ξ1, . . . , ξnξ)⊤ ∈ R

nξ , ξi ∈ R, and u(t) = l(ξ(t)) = ξj(t), i, j ∈ {1, . . . , nξ}, i.e., fix the
output of the driver to be any state of (5). In doing this, we ensure that u(t) is continuous, bounded, chaotic,
and (quasi) hyperbolic.
4) For the responders (4) and (6), select any continuously differentiable vector field r(ζ, u) (with respect to
ζ) leading to ISS dynamics, see Remark 6, and satisfying the conditions for convergence in Corollary 1, e.g.,
r(ζ, u) = Aζ + ψ(u), for any matrix A ∈ R

nζ×nζ with spectral radius ρ[A] < 1 and differentiable vector
field ψ : Rnu → R

nζ . Then, we ensure that the responders have bounded trajectories and exponentially
synchronize.
5) Verify that the trajectories of the responders, when driven by the chaotic driver, are chaotic (using Lyapunov
exponents or the (0-1) test) and, after transients have settled down, lead to a stationary probability distribution
independent of the initial conditions. See Section 6.3 for details.
6) In (4) (and respectively in (6)), let ζ1 = (ζ11 , . . . , ζ

nζ

1 )⊤ ∈ R
nζ , ζi1 ∈ R, and s1(t) = l(ζ1(t)) = ζj1(t),

i, j ∈ {1, . . . , nξ}, i.e., fix the output of the responders to be any state of (4) and (6), respectively. Indeed, we
need the same j for both responders, i.e., s1(t) = ζj1(t) and s2(t) = ζj2(t). In doing this, we ensure that s1(t)
and s2(t) are continuous, bounded, chaotic, and lead to stationary probability distributions.

7 Generation of Optimal Pseudorandom Numbers

In this section, we assume that the driver and the responders dynamics have been designed following the
general guidelines in Section 6.4. Then, for sufficiently large t, the chaotic trajectories of the responders are
practically synchronized, i.e., for any finite t∗ ∈ R>0, there is ǫt∗ ∈ R>0, such that |s1(t) − φsu(t, u(t))| ≤ ǫt∗

and |s2(t) − φsu(t, u(t))| ≤ ǫt∗ , for all t ≥ t∗, where φsu(t, u(t)) ∈ S ⊂ R denotes the asymptotic synchronous
solution for some compact set S; and samples from φsu(t, u(t)) follow a stationary probability distribution.
Here, we assume that the responders have been operating for sufficiently large time such that the synchro-
nization error, |s1(t) − s2(t)|, is so small that trajectories of the responders can be assumed to be equal
to φsu(t, u(t)) (see Remark 2), i.e., t∗ is sufficiently large so that ǫt∗ is practically zero. In Section 7.1, we
quantify the worst-case distortion induced by assuming s1(t) = s2(t) = φsu(t, u(t)) in finite time. In par-
ticular, we give an upper bound on the mean squared error E[|Y − Ŷ |2], where Ŷ denotes the estimate of
realizations of Y using s1(t), s2(t), and the algorithm provided below. In the remainder of this section, we
assume s1(t) = s2(t) = φsu(t, u(t)). Note that the sample space of φsu(t, u(t)), regarded as a random pro-
cess, is some compact set S ⊂ R, i.e., the sample space is a subset of the real line and thus samples from
φsu(t, u(t)) follow some stationary probability density function (pdf), say fS(s), for some virtual continuous
random variable S. That is, for s(t) := φsu(t, u(t)), define the sampled sequence sk := s(tk) for sampling
time-instants tk ∈ R>0, tk := ∆k, k ∈ N, and sampling period ∆ ∈ R>0; then, sk ∼ f(s) for all k. Because
we know the dynamics (4)-(6), we can obtain fS(s) by Monte Carlo simulations [21]. If we know fS(s), we
can always find a set of cells C := {c1, . . . , cM}, M ∈ N, j ∈ {1, . . . ,M}, such that

⋃

j c
j = R,

⋂

j c
j = ∅,

and Pr[sk ∈ c] = Pr[V = v] = p∗V (v) for v ∈ Y and c ∈ C. In other words, using the pdf fS(s), we can select
the cells C so that the probability that sk lies in the cells equals the optimal probability distribution p∗V (v).
It follows that we can generate pseudorandom realizations from p∗V (v) by properly selecting C. Note that,
because realizations are being generated by a deterministic process, there would be high correlation between
consecutive realizations for small sampling period ∆. However, because the sk is a stationary process (see
Section 6.3), the larger the ∆, the smaller the correlation between sk and sk+1 for all k ∈ N. Indeed, large
∆ would introduce large time-delays for generating realizations. There is a trade-off between correlation and
time-delay that should be taken into account in practice. One way to deal with this trade-off is to compute the
normalized autocorrelation function [15, 20] of sk. Then, we select the smallest time-delay τ ∈ N that leads to
a desired correlation between sk and sk+τ , k ∈ N, and use the delayed sequence sτ (·) := {sk, sk+τ , sk+2τ , . . .}
to generate realizations from p∗V (v). In the following algorithm, we summarize the ideas introduced above.
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Figure 3: Transition probabilities p
Ŷ |Y (ŷ|y).

Algorithm 1: Pseudorandom Number Generation:

1) Consider the probability mass function p∗V (v) = Pr[V = v], v ∈ Y = {y1, . . . , yM}, solution to Problem 1;
and the synchronous solution s(t) = φsu(t, u(t)) of the responders.

2) Fix the sampling period ∆ ∈ R>0 and obtain, by Monte Carlo simulations [21], the probability density
function fS(sk) of the sampled sequence sk = s(tk), tk = ∆k, k ∈ N.

3) Select a finite set of cells C = {c1, . . . , cM}, M ∈ N, j ∈ {1, . . . ,M}, such that
⋃

j c
j = R,

⋂

j c
j = ∅, and

Pr[sk ∈ cj ] = Pr[V = yj] for all yj ∈ Y.

4) Generate realization from p∗V (v) using the piecewise function:

vk = ψ(sk) :=











y1 if sk ∈ c1,

...
yM if sk ∈ cM .

(10)

7.1 Distortion Induced by Synchronization Errors

Algorithm 1 in Section 7 is constructed under the assumption that responders are perfectly synchronized.
However, because we only have exponential synchronization, in finite time, there is always a “small” difference
between s1(t) and s2(t) due to potentially different initial conditions. It follows that there is also a difference
between realizations generated using s1(tk), denoted as v1k ∈ Y, and realizations v2k ∈ Y generated through
s2(tk), where Y = {y1, . . . , yM}. Exponential synchronization implies that for any finite t∗ ∈ R>0, there is
δ(t∗, |s1(0)− s2(0)|) ∈ R>0 (denoted as δt∗ for simplicity), parametrized by t∗ and the initial synchronization
error |s1(0) − s2(0)|, such that |s1(tk) − s2(tk)| ≤ δt∗ for all tk ≥ t∗k, and limk→∞ |s1(tk) − s2(tk)| = 0.
Consider the cell cj, cj ∈ C, with end points cj1 and cj2, c

j
1 < cj2, the length of cj is defined as l(cj) := cj2 − cj1.

If cj1 = ±∞ (or cj2 = ±∞), l(cj) = ∞. Without loss of generality, let l(c2) ≤ l(c3) ≤ . . . ≤ l(cM−1), l(c1) = ∞,
and l(cM ) = ∞. Note that, if δt∗ ≤ l(c2), v1k and v2k are at most one level apart from each other, e.g., if
v1k = y1, then either v2k = y1 or v2k = y2; and if v1k = y3, then v2k = y2, v2k = y3, or v2k = y4. It follows that
p
Ŷ |Y (ŷ|y), y, ŷ ∈ Y, is of the form depicted in Figure 3, where Ŷ denotes the estimate of realizations of Y

using s1(tk), s2(tk), and Algorithm 1. Similarly, if l(c2) < δt∗ ≤ l(c3), v1k and v2k are at most two levels apart
from each other and thus lead to a different structure of the transition probabilities. Here, we only consider
the case where δt∗ ≤ l(c2). Distortion induced by larger synchronization errors can be estimated following the
same methods. Note that, because responders synchronize exponentially, as δt∗ → 0 (t∗ → ∞), p

Ŷ |Y (ŷ|y) → 1

for ŷ = y, and p
Ŷ |Y (ŷ|y) → 0, for ŷ 6= y, for all y, ŷ ∈ Y. That is, distortion due to synchronization errors

disappears exponentially fast. The actual value of the transition probabilities depend on the responders and
driver dynamics, the initial conditions, and the cells C. However, we do not need these probabilities, only
the structure of p

Ŷ |Y (ŷ|y) depicted in Figure 3 is used to derive an upper bound on the expected distortion.
Let Vδ ⊆ Y ×Y denote the set of pairs (yj , yi) for which there is a nonzero transition probability p

Ŷ |Y (yj |yi)

between Y = yj and Ŷ = yi, yj , yi ∈ Y, as depicted in Figure 3. The set Vδ is parametrized by the upper bound
on the synchronization error |s1(tk)−s2(tk)| ≤ δt∗ ≤ l(c2). Define the distortion function d(Y, Ŷ ) := |Y − Ŷ |2.
The function d(Y, Ŷ ) is a deterministic function of two jointly distributed random vectors, Y and Ŷ , with joint
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distribution p
Y,Ŷ

(y, ŷ) = pY (y)pŶ |Y (ŷ|y). Hence, see [39] for details, we can write the expected distortion as
follows

E[d(Y, Ŷ )] =
∑

y,ŷ∈Y

pY,Ŷ (y, ŷ)d(y, ŷ) =
∑

y,ŷ∈Y

pY (y)pŶ |Y (ŷ|y)|y − ŷ|2

=
∑

(y,ŷ)∈Vδ

pY (y)pŶ |Y (ŷ|y)|y − ŷ|2 ≤
∑

(y,ŷ)∈Vδ

pY (y)|y − ŷ|2 =: d̄δ, (11)

where the left-hand side of (11) follows from the definition of Vδ above, and the last inequality from the fact
that p

Ŷ |Y (ŷ|y) ≤ 1 for all y, ŷ ∈ Y. The constant d̄δ ∈ R>0 provides an upper bound on the worst-case dis-
tortion induced by a δt∗ synchronization error. Moreover, as δt∗ → 0, Vδ → {(y1, y1), (y2, y2), . . . , (yM , yM )};
therefore, limδt∗→0 d̄δ = 0. That is, distortion due to synchronization errors is bounded by d̄δ and vanishes
exponentially fast.

8 Simulation Results

We next present an evaluation of our algorithms on real data. We use the adult-dataset, available from the
UCI Machine Learning Repository [57], which contains census data. Each attribute within the dataset has
3.9× 104 entries. We use three of these attributes: race, sex, and income, which take values on finite discrete
sets. We let race and sex be the private information, X , and use income as the information requested by the
query, Y . The probability mass functions of X and Y , and part of the one of (X,Y ) are given in Table 1.
In Figure 4, we depict pX(x), pY (y), and pX,Y (x, y) with mass points indexed in the order given in Table 1.
We first compute the optimal distribution p∗V (v) of the distorting additive noise V . We solve the convex
program (8) in Theorem 1. The optimal distribution is depicted in Figure 5 and the corresponding numerical
values are given in Table 2. This p∗V (v) leads to I[X ;Y + V ] = 0.0024 while the mutual information without
distortion is I[X ;Y ] = 0.0251, i.e., according to our metric, by optimally distorting the query, we leak about
ten times less information. To generate realization from this distribution at both sides of the channel, we use
trajectories of two chaotic responders as introduced in Section 2. We use the synthesis procedure in Section
6.4 to select suitable driver and responders. As driver (5), we use the Lorenz system:























ξ̇1(t) = 10(ξ2(t)− ξ1(t)),

ξ̇2(t) = 28ξ1(t)− ξ2(t)− ξ1(t)ξ3(t),

ξ̇3(t) = − 8
3 ξ3(t) + ξ1(t)ξ2(t),

u(t) = ξ1(t),

(12)

with states ξ1, ξ2, ξ3 ∈ R and driving signal u ∈ R. The Lorenz system produces bounded trajectories [58], and
is known to be chaotic and quasi-hyperbolic [52]. For the responders (4) and (6), we let r(ζ, u) = Aζ + ψ(u),
with A = diag[−1,−2.5] and ψ(u) = (−5u2, 50 sin(u))⊤. Because A is diagonal and has negative eigenvalues,
responders satisfy the conditions of Corollary 1 with P = I2; hence, they are convergent systems and thus
exponentially synchronize when driven by the same input u(t). Moreover, since responders are linear in ζ
and A is Hurwitz, systems can be proved to be ISS with input ψ(u) [42]. Because u is bounded and ψ(u)
is continuous, by the extreme value theorem, ψ(u) is bounded, which, together with ISS, imply boundedness
of the responders’ trajectories [42]. We let the outputs of the responders be s1(t) = ζ21 and s2(t) = ζ22
(their second state). In Figure 6, we show traces of the chaotic driver and responders trajectories obtained
by computer simulations (using Matlab from Mathworks), and in Figure 7, we plot the synchronization
error between the outputs of the responders. We initialized the responders in antiphase ζ1(0) = −ζ2(0) =
(150, 150)⊤, and far from the limit trajectory. Note, in Figure 7, that responders synchronize exponentially
and are practically synchronized for t ≥ 5. Moreover, after t ≥ 14, the synchronization error is within
Matlab’s precision (10−12). Because the Lorenz system is quasi-hyperbolic, samples from the driving signal
u(t) follow a stationary distribution that is independent of the initial conditions of the driver, see Section 6.3.
Then, according to the synthesis procedure in Section 6.4, we next verify, using Monte Carlo simulations, that
samples sk = s(tk) (see Section 7), from the synchronous trajectory, s1(t) = s1(t) = s(t), are also stationary.
To do so, we compute the probability density function fS(s), sk ∼ fS(s), for different initial conditions and
verify that all of them lead to the same density. In Figure 8, we depict probability densities of sk for twenty
different initial conditions, sampling instants tk = ∆k, ∆ = 0.001, and t ∈ [0, 4000]. Note that they all lead
to the same density fS(s). The support (obtained numerically) of fS(s) is given S = [−10.8585, 10.8683].
Finally, we use the piecewise function (10) to generate realizations from p∗V (v) using samples, sk, from the
synchronous trajectory. Following the algorithm given in Section 7, we have to divide the support S of fS(s)
into a set of partitions C = {c1, . . . , cM}, such that the probability that sk lies in the cells equals the optimal

12



Figure 4: Probability mass functions of X , Y , and (X,Y ).

Figure 5: Optimal distribution p∗V (v) solution to (8) in Theorem 1.

probability distribution p∗V (v). This can be done using the empirical Cumulative Distribution Function (CDF),
FS(s), corresponding to fS(s). We depict this CDF in Figure 9. Then, we simply select the cells C such
that p∗V (yi) = Pr[V = yi] = Pr[ci ≤ S ≤ ci+1] = FS(c

i+1) − FS(c
i) for all i ∈ {1, . . . ,M − 1}, M = 9 (the

cardinality of the alphabet of Y ). For this CDF and p∗V (v) in Table 2, we obtain the following cells:

C =
{

[−∞,−4.1739), [−4.1739,−2.0965), [−2.0965,−0.3658), [−0.3658, 1.1408), [1.1408, 2.3321) (13)

[2.3321, 3.4341), [3.4341, 4.5985), [4.5985, 5.7743), [5.7743,∞]
}

.

In Figure 10, we show realizations generated by the piecewise function (10) at both sides of the channel,
and the corresponding probability mass functions. To generate this realizations, at the trusted server, we
use samples from s1(t) and, at the remote station, we sample s2(t). Note that, as expected, all samples are
perfectly synchronized and their probability mass functions are equal to p∗V (v) in Figure 5.

9 Conclusions

Using an information-theoretic privacy metric (mutual information), we have provided a general privacy
framework based on additive distorting random vectors and exponential synchronization of chaotic systems.
The synthesis of the optimal probability distribution, p∗V (v), of the additive distorting vector V has been posed
as a convex program in pV (v). We have provided an algorithm for generating pseudorandom realizations from
this distribution using trajectories of chaotic oscillators. To generate equal realizations at both sides of
the channel, we have induced exponential synchronization on two chaotic oscillators (one at each side of the
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Figure 6: Traces of the chaotic driver and responders trajectories. Top: trajectories of the responders con-
verging to each other. Bottom: traces of chaotic solutions of the driver and responders.
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pX,Y (x, y) 0.3974 0.0130 0.0044 0.0388 0.0032 · · · 0.0222 0.0014 0.0008 0.0046 0.0004

Table 1: Probability mass functions of X and Y , and part of the one of (X,Y ).

channel), and use their trajectories and the proposed algorithm to generate realizations. However, exponential
synchronization implies that, in finite time, there is always a small error between trajectories (and thus also
between realizations). We have derived an upper bound on the worst-case distortion induced by finite-time
synchronization errors and showed that this distortion disappears exponentially fast. Using off-the-shelf results
in the literature, we have provided general guidelines for selecting the dynamics of the responders and driver
so that our algorithm for generating synchronized realizations from p∗V (v) is guaranteed to work. We have
presented simulation results to illustrate our results.

V 1 2 3 4 5 6 7 8 9

p∗V (v) 0.1664 0.1522 0.1518 0.1355 0.1033 0.0832 0.0690 0.0591 0.0795

Table 2: Optimal distribution p∗V (v) of the distorting additive random variable V .
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Figure 7: Synchronization error |s1(t)− s2(t)|. Responders are initialized in antiphase, i.e., s1(0) = −s2(0).

Figure 8: Empirical probability densities of samples, s(tk), from the synchronous solution s1(t) = s1(t) = s(t),
for twenty different, randomly selected, initial conditions.
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