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A DECENTRALIZED ALGORITHM FOR FINDING THE SHORTEST PATHS

IN DEFENSE COMMUNICATIONS NETWORKS

by

Jin Y. Yen
Naval Postgraduate School
Monterey , CA 93940

ABSTRACT

This paper presents a decentralized shortest path algo—

rithm which finds the shortest distances between all pairs of

nodes without requiring that any particular node have informa-

tion about the complete topology of the network. The algorithm

requires at most ½N3 additions , comparisons , and ½N3 trans-

missions of simple messages between individual nodes. The compu-

tational upper bound of the present algorithm is lower than that

of Dijkstra ’s centralized shortest path algorithm and is 1/N of

the upper bound of Abram and Rhodes ’ decentralized shortest path

algorithm.
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A DECENTRALIZED ALGORITHM FOR FINDING THE SHORTEST PATHS
IN DEFENSE COMMUNICATIONS NETWORK S

by

Jin Y. Yen

The problem of finding shortest paths has a wide variety

of applications in communication networks ( 9 3 ,  (123, (131. Many

authors, including Dantzig (3], (4], Ford and Fulkerson (8],

Bellman ( 2] , Dijkstra [53, and Floyd ( 7 1,  have introduced eff i-

cient algorithms for finding the shortest paths in networks. How—

ever, in order to apply these algorithms in a communication network

it is necessary to establish a central node to gather information

concerning the complete network topology so that the algorithms

can be execu ted.

The shortest path algorithms that must be executed at a

central node are called centralized shortest path algorithms. The

centralized shortest path algorithms have very good computational

eff iciency . However , they have many disadvantages when applied to

military and intelligence communication networks. The major dis-

advantages of the centralized shortest path algorithms are as

follows :

1) They make the network more vulnerable. The centralized

shortest path algorithms require a central node to

execute the algorithm. When the central node or the

links directly connected to it are destroyed , the net-

work completely loses its ability to function.

2) They make it more difficult to maintain the security

of the network. The central node has complete inforuta-

tion concerning the whole network. One has to penetrate
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or monitor only the central node to obtain inforn~a—

tion concerning the whole network.

3) They require substantial effort to transmit informa-

tion between the central node and other nodes in the

network. The centralized shortest path algorithms

require that individual nodes inform the central node

of how they are linked to other nodes in the network

and what the associated link lengths are. These

algorithms also require that the central node dissemi-

nate the resulting solution to individual nodes. Sub-

stantial effort is necessary to transmit this inforxna—

tion between the central node and all other nodes in

the network.

Due to the disadvantages of central~ :ed shortest path algo-

rithms, it is desirable to develop another type of algorithm that

does not depend on the existence of a central node. To find the

shortest paths from all, nodes to a destination node, the new type

of algorithm requires that each individual node communicate only

with its adjacent nodes with such simple information as what is its

current shortest distance to the destination node. Since this type

of algorithm does not depend on the existence of a central node and

solves the problem locally using only local information , it is

called a decentralized shortest path algorithm.

While there are numerous centralized shortest path algo—

rithms in the literature (61, (11), (14], there is only one published2



decentralized shortest path algorithm known to the author. In

reference 1, Abram and Rhodes present a decentralized shortest

path algorithm based on the principle of a centralized shortest

path algorithm of Ford and Fulkerson [8]. To apply the algorithm

of Abram and Rhodes, the individual nodes communicate only with

their adjacent nodes with simple information. However, due to

the fact that this algorithm does not assume knowledge of the com-

plete network topology , it requires more repetitive computations

than the original Ford and Fulkerson algorithm; these repetitive

computations produce a substantial increase in the computation

bound of the algorithm. To find the shortest distances between

all pairs of nodes in an N-node network , the Abram and Rhodes algo-

rithm can require up to ½N4 additions and ½N4 comparisons which are

approximately N times higher than that of Dijkstra ’s [5], Floyd ’s

(7], and Dantzig ’s (4] algorithms. Also, in order to carry out

the ½N4 computational steps, the algorithm requires individual nodes

to communicate with their adjacent nodes up to ½N4 times, which

appears to be more overburdening than the required ½N4 computational

steps.

The purpose of this paper is to present a new decentral ized

shortest path algorithm for finding the shortest distances between

all pairs of nodes in an N—node directed network using at most ½N3

additions, ½N3 comparisons, and ½N3 transmissions of simple messages

between all nodes in the network. The necessary assumptions for

applying the new algorithm are as follows:

3



I
1) Each node in the network is equipped with transmission

and computation facilities and a timing device called

a clock.

2) Each node 3 knows a set of nodes, called FROM nodes,

each of which is connected to node 3 by a directed

link leading from the FROM node to node J.

3) Each node 3 knows a set of nodes, called TO nodes , each

of which is connected to node 3 by a directed link lead-

ing from node 3 to the TO node. Each node 3 also knows

the lengths of the links connecting node 3 to the TO

• nodes.

In an N—node directed network , let

I,J,K ,L = 1, 2 , . . .  ,N, be the nodes of the network ,

(1 ,3) be the link connecting node I to node 3,

0(1,3) > 0 be the length of link (1 ,3)

F(I,J) be the distance of the tentative shortest path

from node I to node 3. Initially, all F(I,J)’s are

set to ~~,

T ( F (I ,J)] be the finite length of time defined to

represent the corresponding value of F(I,J). Initially ,

all T (F (I ,J)] ’ s are set to ~~,

C be a constant such that C = F(I,J)/T(F(I,J)].

4 



The new algorithm for finding the shortest paths from

all nodes to a destination node K is as follows. In order to

simplify the description of the algorithm we assume without

loss of generality that no time is necessary to transmit, to

receive , and to process the information. Of course, we assume

all clocks are synchronized .

(Algorithm)

Step 1. At time 0, the destination node K sends each of its

adjacent FROM nodes 3 a simple message: “Ku .

Step 2. After receiving the message , each of node 3 does the

following:

A. Label the node that has just sent the message node L and

delete node L from its own list of FROM nodes.

B. Read the clock and let T[F(L,K)] equal the time it

reads from the clock and let F (L,K) = C~T(F(L,K)].

C. Update F(J,K) by

F(J,K) = mj n [ F ( 3 ,K ) ,  D ( J , L )  .i -F (L ,K ) 1 .

0. Let T(F(J,K)] ~~~
. F(J, K).

E. At time T(P(J,K)3, node 3 sends its own adjacent FROM

nodes a message: “3” .

Step 3. Repeat Step 2 until time t~ , where t~ is a predetermined

constant larger than any T[F(J,K)].

5
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At termination of the algorithm , each node 3 has the

following solution to the shortest path to destination node K:

1) The distance of the optimal shortest path from node

3 to the destination node K, which is represented

by F(J,K), and

2) The identity of the second node on the shortest path

from node 3 to node K, which is indicated by the

node from which the final F(J,K) is obtained.

It is clear that some minor changes can be made in the algorithm

to compensate for the time lags due to transmission and processing

of information. Also , the algorithm can be modified so that node

3 can send F(J,K) to its adjacent FROM nodes at time T[F(J ,K)]

to save these adjacent nodes from reading their clocks to deter-

mine T[F(J ,K)] and F(J,K). The present algorithm can be repeated

or applied simultaneously to obtain the shortest distances from

nodes 3 to other destination nodes. Of course , when the algorithm

is applied to find simultaneously the shortest distances to many

destination nodes , additional information identifying the destina-

tion nodes must be sent along with such messages as “K” and “3”

in Step 1 and Step 2.E. of the algorithm in order to assure proper

functioning of the algorithm .

We will now show that the algorithm determines a set of

optimal shortest distances from nodes 3 to the destination node K.

At time t, the set of F(J ,K)’s for those T(F(J,K)] > t, are

the tentative shortest distances from nodes 3 to destination node K

6
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using the best paths available up to that time. As time passes,

the smallest of these tentative F(J,K) ‘s, say F(J* ,K) becomes

permanently labeled because at time t = T[F(J*,K)] it becomes

apparent that there is no other path from node 3* to node K tha t

has shorter distances than F(J*,K). On one hand , the tentative

F(J ,K ) ’ s becomes permanently labeled as time passes; and , on the

other hand , whenever a F(J,K) becomes permanently labeled it is

used to update other tentative F(J ,K) ‘s. Therefore, at the

termination of the algorithm , the F(3,K) ‘s thus obtained are

the distances of the optimal shortest distances from nodes 3 to

the destination node K.

In a connected network, the distances of all shortest paths,

F(J,K)’s, are finite ; thus, the times in which they are determined

by the algorithm , T[F(J,K)]’s, are also finite. Therefore the

present algorithm determines all permanent shortest distances to

node K in a finite time. As a matter of fact, all permanent

shortest distances , F(J,K)’s, are determined at time t = T(F(J**,K))

where F(J**,K) is the largest of all permanent F(J ,K)’s.

However , the algorithm is not able to detect this fact in

order to terminate the algorithm as soon as the last F(3,K)

becomes permanent. Instead , the algorithm terminates at a preset

time t~ where t~ is Lar ger than any T(F (J ,K)].

The computational efficiency of the present algorithm

appears to be quite good . The computational advantages of the

algorithm include :

7 
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1) The computational effort of the algorithm is propor-

tional to the number of links in the network. There-

fore , unlike algorithms such as Dijkstra ’s [5], the

present algorithm requires fewer computations in

sparse networks where there are fewer links.

2) Unlike Dijkstra ’s algorithm , the present algorithm

does not have to scan for the minimum of all tentative

shortest distances in order to sort out the permanent

shortest distance; consequently, it saves computations.

3) Unlike Ford and Fulkersori ’s [8], Moore ’s [10], ~ellznan ’s

[2], Floyd’s [7], and Abram and Rhodes ’ [1] algorithms ,

the present algorithm does not use a shortest distance

F(L,K) to update other tentative shortest distances

F(J,K) unless F(L,K) itself is permanent.

To determine the shortest distances from all nodes J to a destina-

tion node K in an N-node complete network the present algori thm

requires at most (N—i) + (N—2) + ... + 1 = ½N 2 additions and the

same number of comparisons to execute the N—i iterations of Step 2.C.

of the algorithm. The algorithm also requires at most ½N2 trans-

missions of such simple message as “K” and “J” in Step 1 and

Step 2.E. of the algorithm . As compared with Abram and Rhodes’

algorithm [13, the present algorithm has an upper bound equal to

only 1/N of the upper bound of their algorithm.

8 



While Dijkstra ’s algorithm (51 which requires up to ½N2

additions and N2 comparisons to determine all shortest distances

to a single destination in an N—node complete network and is

believed to be computationally most efficient [6), it is interest-

ing to note that the present algorithm requires only ½N2 addi-

tions and ½N2 comparisons to solve the problem.
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