
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2021

Secure and Efficient Multiparty Private Set
Intersection Cardinality

Debnath, Sumit Kumar; Stnic, Pantelimon; Kundu,
Nibedita; Choudhury, Tanmay

Debnath, Sumit Kumar, et al. "Secure and efficient multiparty private set
intersection cardinality." Advances in Mathematics of Communications 15.2 (2021): 365.
http://hdl.handle.net/10945/68819

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Advances in Mathematics of Communications doi:10.3934/amc.2020071
Volume 15, No. 2, 2021, 365–386

SECURE AND EFFICIENT MULTIPARTY PRIVATE SET

INTERSECTION CARDINALITY

Sumit Kumar Debnath∗

Department of Mathematics

National Institute of Technology Jamshedpur

Jamshedpur-831014, India

Pantelimon Stănică

Department of Applied Mathematics

Naval Postgraduate School, Monterey, CA 93943, USA

Nibedita Kundu

Department of Mathematics

The LNM Institute of Information Technology, Jaipur-302031, India

Tanmay Choudhury

Department of Mathematics

National Institute of Technology Jamshedpur, Jamshedpur-831014, India

(Communicated by Sihem Mesnager)

Abstract. In the field of privacy preserving protocols, Private Set Intersec-

tion (PSI) plays an important role. In most of the cases, PSI allows two parties
to securely determine the intersection of their private input sets, and no other

information. In this paper, employing a Bloom filter, we propose a Multiparty
Private Set Intersection Cardinality (MPSI-CA), where the number of partic-

ipants in PSI is not limited to two. The security of our scheme is achieved

in the standard model under the Decisional Diffie-Hellman (DDH) assumption
against semi-honest adversaries. Our scheme is flexible in the sense that set

size of one participant is independent from that of the others. We consider

the number of modular exponentiations in order to determine computational
complexity. In our construction, communication and computation overheads

of each participant is O(vmaxk) except that the complexity of the designated

party is O(v1), where vmax is the maximum set size, v1 denotes the set size of
the designated party and k is a security parameter. Particularly, our MSPI-CA

is the first that incurs linear complexity in terms of set size, namely O(nvmaxk),

where n is the number of participants. Further, we extend our MPSI-CA to
MPSI retaining all the security attributes and other properties. As far as we

are aware of, there is no other MPSI so far where individual computational

cost of each participant is independent of the number of participants. Unlike
MPSI-CA, our MPSI does not require any kind of broadcast channel as it uses

star network topology in the sense that a designated party communicates with
everyone else.

2020 Mathematics Subject Classification: Primary: 94A60, 68M12; Secondary: 68P30.

Key words and phrases: MPSI-CA, MPSI, semi-honest adversary, flexibility, Bloom filter.
∗ Corresponding author: sdebnath.math@nitjsr.ac.in.

365

http://dx.doi.org/10.3934/amc.2020071

366 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

1. Introduction

The widespread use of Internet greatly facilitates the distribution and exchange
of information. Immediate access to content with low cost delivery is one of the
main benefits Internet based distribution brings and has the potential to open up
new markets. However, these raises privacy issues regarding intellectual property
and copyright due to the vulnerability nature of digital contents for unauthorized
distribution and use.

With the advent of Internet and distributed computing, the necessity of privacy
preserving data sharing increases rapidly. In this field, one interesting problem arises
when the participants wish to learn the intersection of their data sets secretly, but
not more than that. PSI is ideal to solve this problem. It is mostly executed
between two parties, but it can be extended to a multiparty environment in the
context of PSI. This multiparty private set intersection is referred as MPSI, and
has several application. For instance, a central investigative agency (e.g., CBI)
wants to compare its list of suspects with the lists of local investigative agencies
(e.g., local police, military, BSF, etc.). In this case, neither of the agencies will
reveal their whole list of suspects to the other.

Privacy and correctness are two most important properties for an MPSI, where
privacy ensures that none of the parties learn beyond the intersection and correct-
ness means that each of the participants learn the correct output. Apart from
privacy and correctness, flexibility is another desirable feature in the context of
MPSI. If an MPSI is flexible that implies that the choice of input set of a party is
independent from the others.

In several practical scenarios, the participants want to jointly determine the
cardinality of the intersection rather than the contents. For example, suppose n(≥
2) different health organizations are doing a survey on a particular disease in a
village and they wish to determine the number of common villagers who are suffering
from that disease. However, none of them will disclose their list of suspects to other.
Note that revealing the name of the suspects may create an impact on patient’s
mind. In such scenarios, we need the cardinality version of the MPSI, known as
MPSI-CA. Designing efficient and flexible MPSI-CA is a challenging task.

1.1. Related works.

• Two-party Private Set Intersection. We now give an overview of prior
works on two-party PSI protocols by classifying them in four groups based on
the constructions as follows:
(i) Oblivious Polynomial Evaluation (OPE) Based PSI: The concept of PSI

relying on OPE was introduced by Freedman et al. [32], where the basic
idea is to represent a set as a polynomial. Utilizing OPE and and addi-
tively homomorphic encryption (AHE), Kissner and Song [46] designed a
PSI protocol. Following this work, Camenisch and Zaverucha [7] proposed
a PSI based on OPE, where the inputs need to be certified by a trusted
party. The work of [32] was further improved by Hazay and Nissim [38].
While the constructions of [32, 38] are one-way in the sense that at the
end of the protocol only one of the participants learns the intersection, the
constructions of [46, 7] are two-way, meaning that at the end both parties
receive the intersection. None of the constructions from [32, 38, 46, 7]
achieve linear computation complexity. Recently, Dong et al. [25] em-
ployed an OPE technique to construct the first fair two-way PSI protocol

Secure and efficient MPSI-CA 367

in the standard model against malicious entities with the help of a semi-
trusted third party. Fairness ensures that either both the involved parties
receive or none of them receive the intersection of their private input sets
at the completion of the protocol.

(ii) Pseudorandom Function (PRF) Based PSI: Hazay and Lindell [37] demon-
strated how to obtain a PSI relying on Oblivious Pseudorandom Function
(OPRF) which is a two party protocol that enables a sender with private
key k and a receiver with private input x to securely compute a pseudo-
random function (PRF) fk(x). Later, Jarecki and Liu [42] adopted AHE
to extend the work of [37] in the standard model against malicious adver-
saries. In the following year, Jarecki and Liu [43] introduced the idea of
the unpredictable function (UPF) based PSI protocol, where UPF works
similar to OPRF. Recently, Hazay [36] gave a construction of an efficient
PSI based on algebraic PRF. All these constructions [37, 42, 43, 36] are
one-way achieving linear complexity. More recently, the authors of [23]
proposed a two-way fair PSI protocol relying on two-way OPRF with
linear complexity over composite order group.

(iii) Decisional Diffie-Hellman (DDH) Based PSI: A sequence of one-way PSI

protocols [16, 15, 17] was proposed by De Cristofaro et al. using random
hash functions and zero-knowledge proofs. All these constructions attain
linear complexity. The work of Huang et al. [41] showed how to employ
garbled circuit (GC) in designing a PSI protocol. The scheme is secure un-
der the Decisional Diffie-Hellman (DDH) assumption in the ROM against
semi-honest adversaries and achieves linear communication and Θ(v log v)
as computational complexity. Recently, Debnath and Dutta [21] designed
a fair optimistic two-way PSI over prime order group. The scheme is
optimistic in the sense that it uses an off-line semi-trusted third party.
The security of this scheme is achieved in malicious environment without
random oracles.

(iv) Bloom Filter (BF) Based PSI: A Bloom filter [2] is a data structure that
represents a set by an array with entries 0 or 1. It exhibits itself as an
useful tool to scale large data sets. The first Bloom filter based protocol
was proposed by Many et al. [48], where the participants jointly execute
AND of their Bloom filter to get the intersection. However, this protocol
does not remain secure as it reveals information about the other party’s
set. Following [48], Kerschbaum [44] gave a construction of Bloom filter
based PSI by incorporating Goldwasser-Micali encryption [35]. The se-
curity of this protocol is achieved in the semi-honest environment with
linear complexity. Later, Dong et al. [26] combined an oblivious transfer
together with a Bloom filter to construct two PSI protocols. One of the
constructions of [26] is secure in the semi-honest adversarial model, while
the other one is secure in malicious adversarial model under the Com-
putational Diffie-Hellman (CDH) assumption. In the subsequent year,
Debnath and Dutta proposed a sequence of PSI protocols in [18, 19, 20]
employing a Bloom filter retaining linear complexity. In [45], Kiss et al.
transformed four existing PSI protocols into the precomputation form
such that in the setup phase the communication is linear only in the size

368 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

of the larger input set, while in the online phase the communication is
linear in the size of the smaller input set.

(v) Other Paradigm Based PSI: Utilizing fully homomorphic encryption,
Chen et al. [9] build a PSI in the honest-but-curious setting. Later,
Rindal and Rosulek [50] proposed a PSI employing dual execution. In
the following, the concept of Reactive PSI was introduced by Cerulli et
al. [8]. In [11], Ciampi and Orlandi presented PSI protocol based on spe-
cial purpose oblivious transfer (OT). Later, Falk et al. [29] came up with
the an improved hashing-based generic PSI in semi-honest environment.

• Multiparty Private Set Intersection. In the last few years, although
there has been a lot of research works in the direction of two-party PSI, there
are only a few constructions of MPSI in the existing literature. Kissner and
Song [46] designed the first secure MPSI protocol employing OPE and AHE.
Their construction achieve quadratic complexity. Later, Sang and Shen [51]
implemented a new MPSI protocol incurring quadratic overhead in the size
of the input sets. Following that, some work on MSPI was presented in [52]
in the honest majority setting, and they used bilinear groups in their con-
struction. These constructions were further improved by Cheon et al. [10],
where the dependency on the input sets is reduced from quadratic to quasi-
linear. However, the communication and computation overhead per player
grow quadratically with the number of participants. In [12], Dachman-Soled
et al. build a multivariate polynomials based MPSI protocol. Their construc-
tion attains O

(
n · vmax + vmax · log2 vmax

)
and O

(
n · v2

max

)
as communication

and computation complexity respectively, where n is the number of partici-
pants and vmax is the maximum over all input set sizes. Later, a Bloom filter
based approach in MPSI was proposed by Miyaji and Nishida [49], where
the security is achieved in a semi-honest environment. Their construction at-
tains O(n·vmax) and O (n · vmax) as communication and computation overhead
complexities for the designated party. Hazay and Venkitasubramaniam [39]
proposed an MPSI protocol utilizing the two-party PSI protocol of Freedman
et al. [32], and very recently, Kolesnikov et al. [47] presented a new paradigm
for MPSI in a semi-honest setting from symmetric key techniques.

• Private Set Intersection Cardinality. Agrawal et al. [1] introduced the
concept of two-party PSI-CA in a semi-honest setting under the DDH as-
sumption. Utilizing OPE, Hohenberger and Weis [40] constructed an efficient
two-party PSI-CA that offers better performance over the PSI-CA obtained
by extending the two-party PSI scheme of Freedman et al. [32]. Later, Kissner
and Song [46] came up with the construction of MPSI-CA relying on OPE.
Following this work, Camenisch and Zaverucha [7] constructed a fair two-party
PSI-CA protocol for certified sets based on OPE. De Cristofaro et al. [14] de-
signed a two-party PSI-CA with linear complexity. A sequence of two-party
PSI-CA [18, 19, 21, 22] are presented by Debnath and Dutta all having lin-
ear complexity. Recently, Freedman et al. [31] modified their work of [32] to
construct a two-party PSI-CA achieving security in semi-honest environment
without random oracles. This scheme also have linear complexity. Employing
quantum computation [53], Shi et al. [53] designed a two-party PSI-CA pro-
tocol attaining linear complexity. More recently, Dong and Loukides [27] de-
veloped an approximate PSI-CA protocol based on the Flajolet-Martin (FM)
sketch [30] with logarithmic complexity.

Secure and efficient MPSI-CA 369

1.2. Our contribution. In this paper, our main focus is to design efficient MPSI-
CA and extend it to MPSI.

• We first give a construction of MPSI-CA employing a space-efficient prob-
abilistic data structure (Bloom filter) along with ElGamal encryption and
threshold ElGamal encryption. The security of our MPSI-CA is achieved in
semi-honest environment without random oracles under the Decisional Diffie-
Hellman (DDH) assumption. The communication complexity of our protocol
is linear in the input sizes i.e. O (

∑n
i=1 vik), k being a security parameter.

While the computation cost of each participant is O(vmaxk) except for the des-
ignated party, for which the cost is O(v1). Here vmax is the maximum set size
of the participants and v1 denotes the set size of the designated party. Our
scheme is flexible as each party’s input size is independent from the others. To
the best of our knowledge, the only other existing MPSI-CA is due to Kissner
and Song [46]. In [46], the authors proposed an MPSI-CA with O(n2vmax) and
O(n2v2

max) as communication and computation overheads. Compared to [46],
our MPSI-CA is more efficient in terms of both the communication and com-
putation complexity. In particular, our MPSI-CA is the first to achieve linear
complexity in the input set sizes.

• We next extend our MPSI-CA to an MPSI protocol without changing the
security attributes. Similar to [39], we use a star network topology instead
of point-to-point fully connected network. In this setting, a single designated
party, communicates individually with every other party via a variant of the
two-party PSI of [13]. The crucial point of this topology is that all parties
need not be online at the same time. Our MPSI does not require any broad-
cast channel during its execution as all the communication is performed only
between the designated party and each other party at a point-to-point level.
In contrast to [51, 52, 10, 12, 46], communication complexity of our protocol
is linear in the input sizes i.e. O (

∑n
i=1 vik). Computation cost of each par-

ticipant is O(vmaxk) except the designated party, for which the cost is O(v1).
Unlike the existing protocols [47, 39, 49, 51, 52, 10, 12, 46], individual com-
putation complexity of each participant does not depend on the number of
participants n in our scheme. Similar to [49], our scheme is flexible as each
party’s input set size is independent from the others.

1.3. Organization. The rest of our paper is organized as follows. In Section 2,
we give preliminaries. The constructions of our MPSI-CA and MPSI are described
in Section 3. Security proofs and efficiency analysis of our designs are given in
Section 4 and Section 5, respectively. Finally, we conclude the paper in Section 6.

2. Preliminaries

Throughout the paper, the notations κ, ⊥, x � X, a ← A and {Xt}t∈N ≡c
{Yt}t∈N are, respectively, used to represent “security parameter”, “null string”,
“variable x is chosen uniformly at random from set X”, “a is output of the procedure
A” and “the distribution ensemble {Xt}t∈N is computationally indistinguishable
from the distribution ensemble {Yt}t∈N”. Informally, {Xt}t∈N ≡c {Yt}t∈N means
for all probabilistic polynomial time (PPT) distinguisher Z, there exists a negligible
function ε(t) such that |Probx←Xt [Z(x) = 1]− Probx←Yt [Z(x) = 1]| ≤ ε(t). Recall
that a function ε : N→ R is said to be a negligible function of κ if for each constant
c > 0, we have ε(κ) = o(κ−c), for all sufficiently large κ.

370 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

• Decisional Diffie-Hellman (DDH) Assumption [3]: An algorithm A for
solving the DDH problem takes as input 〈ga, gb, gab, gc〉 and decides whether gc =
gab, where G = 〈g〉 is a cyclic group of order n and a, b, c� Zn. The advantage of

A in solving the DDH problem is denoted by AdvDDHA and is defined as

AdvDDHA = |Prob[A(g, ga, gb, gab) = 1]− Prob[A(g, ga, gb, gc) = 1]|.

Definition 2.1. The DDH problem is (κ, t)-hard in G if for every PPT algorithm

A running in time t, AdvDDHA is a negligible function of κ.

2.1. Additively homomorphic encryption [5]. We describe below additively
homomorphic encryption schemes: the ElGamal encryption [28] and the threshold
ElGamal encryption [24] which are semantically secure provided DDH problem is
hard in the underlying group.

ElGamal encryption: The ElGamal encryption is an additively homomorphic
encryption EL = (EL.Setup, EL.KGen, EL.Enc, EL.Dec), defined as follows:

• EL.Setup(1κ) → (par). On input 1κ, a trusted authority outputs a public
parameter par=(p, q, g), where p, q are primes such that q divides p− 1 and g
is a generator of the unique cyclic subgroup G of Z∗p of order q.

• EL.KGen(par, Pi)→ (epkPi , eskPi). User Pi chooses ai � Zq, computes yPi =
gai , reveals epkPi = yPi as his public key and keeps eskPi = ai secret to
himself.

• EL.Enc(m, epkPi , par, r) → (eEepkPi (m)). The encryptor encrypts a message
m ∈ Zq using the public key epkPi = yPi by computing the ciphertext tuple
eEepkPi (m) = (α, β) = (gr, gmyrPi), where r � Zq.

• EL.Dec(eEepkPi (m), eskPi) → (m). On receiving the ciphertext tuple eEepkPi
(m) = (α, β) = (gr, gmyrPi), the decryptor Pi decrypts it using the secret key

eskPi = ai by computing β
(α)ai = gm(gai)r

(gr)ai = gm and then finding m by running

an exhaustive search.

The threshold ElGamal encryption T EL = (T EL.Setup, T EL.KGen,DEL.Enc,
T EL.Dec) is executed among P1, . . . , Pn as follows:

• T EL.Setup(1κ)→ (par). It is the same as EL.Setup.
• T EL.KGen(par) → (pk, sk). Each participant Pi, i = 1, . . . , n selects ai � Zq

and publishes yPi = gai . The public key of T EL is set to be pk = h =
n∏
i=1

yPi = g

n∑
i=1

ai
. This implicitly sets the secret key of T EL as sk =

n∑
i=1

ai.

Note that sk is not known to anyone under the hardness of DLP in G.
• T EL.Enc(m, pk, par, r)→ (T EL.Encpk(m)). The encryptor encrypts a message

m ∈ Zq using the public key pk = h = g

n∑
i=1

ai
and computes the ciphertext

tuple T EL.Encpk(m) = (α, β) = (gr, gmhr), where r � Zq.
• T EL.Dec(T EL.Encpk(m), {ai}ni=1) → (m ∨ ⊥). Given a ciphertext T EL.
Encpk(m) = (α, β) = (gr, gmhr), each participant Pi shares αi = αai . Then

they recover gm as β∏n
i=1 αi

= β

(α)
∑n
i=1

(ai)
= gmhr

gr(
∑n
i=1

(ai))
= gmhr

hr = gm; otherwise

outputs ⊥. By running an exhaustive search, the message m can be extracted
from gm.

Remark 1. Note that if the message m is 0 then gm = 1. Thus, in order to
check that whether a chipertext T EL.Encpk(m) or EL.Encpk(m) decrypts to 0, the
decryptor computes gm and checks it is 1.

Secure and efficient MPSI-CA 371

2.2. Bloom filter [2]. A Bloom filter (BF) is a data structure that represents a
set X = {x1, . . . , xv} of v elements by an array of m bits and uses k independent
uniform hash functions HBloom = {h1, . . . , hk} with hi : {0, 1}∗ → {1, . . . ,m} for
i = 1, . . . , k to insert elements or check the presence of elements in that array. Let
BFX ∈ {0, 1}m represent a Bloom filter for the set X and BFX [i] denotes its i-th
bit, i = 1, . . . ,m. We describe below a variant of a Bloom filter [2] that performs
three operations- Initialization, Add and Check.

• Initialization: Set 1 to all the bits of an m-bit array, which is an empty Bloom
filter.

• Add(x): To add an element x ∈ X ⊆ {0, 1}∗ into a Bloom filter, x is
hashed with the k hash functions in HBloom = {h1, . . . , hk} to get k indices
h1(x), . . . , hk(x). Set 0 to the bit positions of the Bloom filter having indices
h1(x), . . . , hk(x). Repeat the process for each x ∈ X to get BFX ∈ {0, 1}m –
the Bloom filter for the set X.

• Check(x̂): Given BFX , to check whether an element x̂ belongs to X without
knowing X, x̂ is hashed with the k hash functions in HBloom = {h1, . . . , hk}
to get k indices h1(x̂), . . . , hk(x̂). Now if at least one of BFX [h1(x̂)], . . . ,BFX
[hk(x̂)] is 1, then x̂ is not in X, otherwise x̂ is probably in X.

Bloom filter parameters (optimal): A Bloom yields false positive i.e., an ele-
ment y /∈ X may pass the membership test. This is due to the fact that each of
BFX [hj(y)] could be 1 for j = 1, . . . , k even if y /∈ X. The probability that a certain
bit is not set to 0 by a certain hash function during insertion of an element is 1− 1

m .
Since there are k independent uniform hash functions, the probability that a certain
bit is not set to 0 by any of the hash functions is (1 − 1

m)k. If we insert all the
v elements to the Bloom filter then the probability that a certain bit is still 1 is
(1− 1

m)vk. Thus the probability that a certain bit in the Bloom filter BFX is set to

0 is z = 1 − (1 − 1
m)vk. If ε is the false positive rate of the Bloom filter BFX then

according to [4], ε ≤ zk× (1 +O(kz

√
lnm−ln z

m)) which is negligible function in k. In

practice, during the construction of Bloom filter for a set of v elements, we choose
the values of k and m such that ε is capped at a specific low value (e.g. 2−80).
According to [26], performance optimality of Bloom filter is attained if k = m

v ln 2

and m ≥ n ln2 e · ln2
1
ε , where e is the as usual base of natural logarithm. Thus, by

minimizing m i.e., by choosing optimal m = v ln2 e · ln2
1
ε , the optimal value of k

is obtained as k = ln2
1
ε . In the rest of the paper, we will assume that the optimal

parameters are chosen.

3. Protocol

In this section, we describe the construction of MPSI-CA followed by MPSI.

3.1. Multiparty private set intersection cardinality (MPSI-CA). The
MPSI-CA protocol is executed among n parties P1, . . . , Pn with the private in-
put sets X1, . . . , Xn, respectively, with |Xi| = vi for i = 1, . . . , n, where one
party, say, P1 is designated to determine the intersection of its private set with
the others’ private sets. The protocol completes in two phases : (I) Setup and (II)
Set Intersection Cardinality. In the Setup phase, the parties jointly generate a
public key pk for a threshold additively homomorphic encryption such as ElGamal
encryption scheme and Bloom filter parameters (m,HBloom = {h1, . . . , hk}) with

372 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

vmax = maximum of {v1, . . . , vn}. The Set Intersection Cardinality phase de-

termines |
n⋂
i=1

Xi| and by invoking three algorithms: MPSI-CA.request,MPSI-CA.

response, and MPSI-CA.computation. On MPSI-CA.request, each party Pi(i =
2, . . . , n) generates a Bloom filter BFXi ∈ {0, 1}m of its private set Xi, encrypts
BFXi using pk and sends the encrypted Bloom filter Epk(BFXi) to P1. The party
P1 then invokes MPSI-CA.response, where for each xl ∈ X1, l = 1, . . . , v1, the
party P1 extracts k ciphertexts corresponding to h1(xl), . . . , hk(xl) from Epk(BFXi)
that contains m ciphertexts, for each i = 2, . . . , n and multiplies all these k(n− 1)
ciphertexts. This yields a resulting ciphertext Cl corresponding to xl ∈ X1, for

l = 1, . . . , v1 which decrypts to zero if the corresponding xl is in
n⋂
i=1

Xi. The

party P1 then publishes all these v1 resulting ciphertexts C1, . . . , Cv1 . We initial-

ize, and for l = 1, . . . , v1, we let CT
(1)
l := Cl. Now for i = 1, . . . , n − 1, the

party Pi+1 randomizes the set {CT(i)
1 , . . . ,CT(i)

v1 } using a random permutation φi,
keeps the permutation secret to itself and broadcasts the resulting set of cipher-

texts {CT(i+1)
1 , . . . ,CT(i+1)

v1 }. Thus, CT
(i+1)
l = CT

(i)

φ−1
i (l)

· T EL.Enc(0, pk, par, σ(i)
l)

with σ
(i)
l � Zq and l = 1, . . . , v1. Finally, MPSI-CA.computation is called, whereby

all the n participants involved in the threshold decryption to decrypt v1, resulting

in the ciphertexts {CT(n)
1 , . . . ,CT(n)

v1 } for P1. The party P1 then concludes that∣∣∣∣ n⋂
i=1

Xi

∣∣∣∣ equals the number of resulting ciphertexts {CT(n)
l }

v1
l=1 decrypting to 0. We

define MPSI-CA functionality as FMPSI−CA : (X1, . . . , Xn)→ (|X1

⋂
· · ·
⋂
Xn|,⊥

, . . . ,⊥). The Setup phase of our MPSI-CA is depicted in FIGURE 1.

Setup(1κ) – We use ElGamal encryption EL and threshold ElGamal
encryption T EL as described in the Section 2.1.

• A trusted authority generates par = (p, q, g) ←
EL.Setup(1κ), where par = (p, q, g), selects optimal Bloom filter
parameters (m,HBloom = {h1, . . . , hk}) with m = dkvmax

ln 2 e.
• For i = 1, . . . , n, the party Pi generates (pki, ski)← EL.KGen(par), makes
pki public and keeps ski secret, where pki = gai and ski = ai.

• Let pk = h =
n∏
i=1

(pki) = g

n∑
i=1

ai
and sk =

n∑
i=1

(ai). Then (pk, sk) pair

serves as the public-secret key pair for T EL. Note that the secret key sk
for T EL is not known to anyone. However, the public key pk for T EL is
publicly computable from pk1, . . . , pkn.

Figure 1. Setup algorithm of our MPSI-CA

Set Intersection Cardinality – This phase is executed between the parties Pi
with the private input set Xi for i = 1, . . . , n, where |Xi| = vi and X1 = {x1, . . . ,
xv1}. It consists of three algorithms MPSI-CA.request,MPSI-CA.response, and
MPSI-CA. computation which we discuss below:

• MPSI-CA.request: For i = 2, . . . , n, the party Pi

Secure and efficient MPSI-CA 373

(i) generates a Bloom filter BFXi ;
(ii) encrypts each entries of BFXi using the public key pk to get Epk(BFXi) =

(C
(i)
1 , . . . , C

(i)
m), where C

(i)
j = T EL.Encpk(BFXi [j]) =

(
grij , gBFXi [j]hrij

)
and rij � Zq for j = 1, . . . ,m;

(iii) sends Epk(BFXi) to P1.
We refer to FIGURE 2 for the interaction among the parties in MPSI-CA.
request.

𝑃𝑃1

𝑃𝑃2 𝑃𝑃𝑛𝑛 ⋯⋯⋯⋯⋯⋯

Figure 2. Interaction among parties in MPSI-CA.request

• MPSI-CA.response: The party P1, on receiving Epk(BFXi) = (C
(i)
1 , . . . , C

(i)
m)

from each Pi (i = 2, . . . , n), executes the following steps for each xl ∈ X1

(l = 1, . . . , v1):
(i) evaluates the hash values J = {h1(xl), . . . , hk(xl)} ⊂ {1, . . . ,m};

(ii) extracts C
(i)
h1(xl)

, . . . , C
(i)
hk(xl)

from Epk(BFXi) for i = 2, . . . , n;

(iii) multiplies all these k(n − 1) ciphertexts to get a resulting ciphertext

Cl =
n∏
i=2

k∏
t=1

(C
(i)
ht(xl)

) = T EL.Encpk
(

n∑
i=2

k∑
t=1

(BFXi [ht(xl)])

)
=

g n∑
i=2

∑
j∈J

rij
, g

n∑
i=2

∑
j∈J

BFXi [j]

h

n∑
i=2

∑
j∈J

rij

 = (αl, βl)

as C
(i)
j = T EL.Encpk(BFXi [j]) =

(
grij , gBFXi [j]hrij

)
and T EL is addi-

tively homomorphic.
P1 then broadcasts the resulting ciphertexts {C1, . . . , Cv1}. Now for i =

1, . . . , n − 1, the party Pi+1 randomizes the set CP(i) = {CT(i)
1 , . . . ,CT(i)

v1 }
using a random permutation φi, keeps the permutation secret to itself and

broadcasts the resulting set of ciphertexts CP(i+1) = {CT(i+1)
1 , . . . ,CT(i+1)

v1 }.
Note that for l = 1, . . . , v1, CT

(1)
l = Cl and for i = 1, . . . , n − 1, CT

(i+1)
l =

CT
(i)

φ−1
i (l)

· T EL.Enc(0, pk, par, σ(i)
l) with σ

(i)
l � Zq and l = 1, . . . , v1. The

interaction among the participants in MPSI-CA.response is displayed in FIG-
URE 3.

• MPSI-CA.computation: At this stage, all of the parties P1, . . . , Pn have the

combined ciphertexts {CT(n)
1 , . . . ,CT(n)

v1 }, where CT
(n)
l = (αl, βl), l = 1, . . . , v1.

For i = 2, . . . , n, each Pi computes T i = {(α1)ai , . . . , (αv1)ai} using its secret

374 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

Broadcast
Channel

𝑃𝑃1 𝑃𝑃𝑛𝑛 ⋯⋯⋯⋯⋯⋯ 𝑃𝑃𝑛𝑛−1 𝑃𝑃2

Figure 3. Interaction among parties in MPSI-CA.response

key ai and sends T i to P1. The party P1 then chooses a count variable card
and for l = 1, . . . , v1, proceeds as follows:
(i) evaluates (αl)

a1 utilizing its secret key a1;

(ii) computes ρl =
n∏
i=1

(αl)
ai using {T 2, . . . , Tn} and (αl)

a1 ;

(iii) evaluates µl = βl
ρl

and determines that CT
(n)
l decrypts to 0 if µl = 1;

(iv) increases card by 1 if µl = 1.

Finally, the party P1 outputs card as the cardinality of
n⋂
i=1

Xi. In MPSI-CA.

computation, the interaction among the parties is provided in FIGURE 4.

𝑃𝑃1

𝑃𝑃2 𝑃𝑃𝑛𝑛 ⋯⋯⋯⋯⋯⋯

Figure 4. Interaction among parties in MPSI-CA.computation

Correctness of MPSI-CA: Note that the set {CT(n)
1 , . . . ,CT(n)

v1 } is the same as

{C1, . . . , Cv1}, in some order. We assume that xλ ∈ X1 is associated with CT
(n)
l .

Let xλ ∈
n⋂
i=1

Xi. Then xλ ∈ Xi for all i = 1, . . . , n. In other words, xλ passes the

check step for each of the Bloom filter BFXi (i = 2, . . . , n), i.e., BFXi [j] = 0 for all
i = 2, . . . , n and j ∈ J = {h1(xλ), . . . , hk(xλ)}. Thus, we have

CT
(n)
l = (αl, βl) =

g n∑
i=2

∑
j∈J

rij+σ

, g

n∑
i=2

∑
j∈J

BFXi [j]

h

n∑
i=2

∑
j∈J

rij+σ



Secure and efficient MPSI-CA 375

=

g n∑
i=2

∑
j∈J

rij+σ

, g0h

n∑
i=2

∑
j∈J

rij+σ

 ,

where σ = σ
(2)
φ2(λ) + · · ·+ σ

(n)
φn(...φ3(φ2(λ))).

Further, note that

ρl =

n∏
t=1

(αl)
at =

n∏
t=1

g n∑
i=2

∑
j∈J

rij+σ

at

= g

(
n∑
i=2

∑
j∈J

rij+σ

)
n∑
t=1

at

=

(
g

n∑
t=1

at

)(n∑
i=2

∑
j∈J

rij+σ

)

= h

n∑
i=2

∑
j∈J

rij+σ

and µl = βl
ρl

= g0 = 1. Therefore, CT
(n)
l decrypts to 0 if µl = 1, i.e., if xλ ∈

n⋂
i=1

Xi.

In other words, card is increased by 1 if xλ ∈
n⋂
i=1

Xi.

Let us consider xλ ∈ X1 is associated with CT
(n)
l and CT

(n)
l decrypts to 0.

Then BFXi [j] = 0 for all i = 2, . . . , n and j ∈ J = {h1(xλ), . . . , hk(xλ)} by the

construction of CT
(n)
l . In other words, xλ ∈ X1 passes the check step for each of

the Bloom filter BFXi (i = 2, . . . , n). Therefore, xλ ∈ Xi for all i = 2, . . . , n, except

with negligible probability ε. This implies that xλ ∈
n⋂
i=1

Xi, except with negligible

probability ε. Hence, we can ensure that xλ ∈
n⋂
i=1

Xi if and only if CT
(n)
l decrypts

to 0, i.e., card is the cardinality of
⋂n
i=1Xi, except with negligible probability ε.

3.2. Multiparty private set intersection (MPSI). Similar to MPSI-CA,
MPSI involve n parties P1, . . . , Pn with their respective private input sets X1, . . . ,
Xn, where |Xi| = vi. We assume that P1 is the designated party that communicates
with the rest of the parties P2, . . . , Pn. Let us define the functionality for MPSI
as FMPSI : (X1, . . . , Xn) → (X1

⋂
· · ·
⋂
Xn,⊥, . . . ,⊥). The protocol completes in

two phases: (I) Setup and (II) Set Intersection. The Setup is same as that of
MPSI-CA while Set Intersection phase completes in 3 rounds and invokes three
algorithms: MPSI.request, MPSI.response, and MPSI.computation. We describe be-
low these algorithms.

• MPSI.request: This algorithm is exactly the same as that of MPSI-CA.request.

• MPSI.response: On receiving Epk(BFXi) = (C
(i)
1 , . . . , C

(i)
m) from each Pi (i =

2, . . . , n), the party P1 does the following, for each xl ∈ X1 (l = 1, . . . , v1):
(i) computes the hash values J = {h1(xl), . . . , hk(xl)} ⊂ {1, . . . ,m};

(ii) extracts C
(i)
h1(xl)

, . . . , C
(i)
hk(xl)

from Epk(BFXi) for i = 2, . . . , n;

(iii) multiplies all these k(n− 1) ciphertexts to get a combined ciphertext

Cl =

n∏
i=2

k∏
t=1

(C
(i)
ht(xl)

) = T EL.Encpk

(
n∑
i=2

k∑
t=1

(BFXi [ht(xl)])

)

376 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

=

g n∑
i=2

∑
j∈J

rij
, g

n∑
i=2

∑
j∈J

BFXi [j]

h

n∑
i=2

∑
j∈J

rij

 = (αl, βl),

as C
(i)
j = T EL.Encpk(BFXi [j]) =

(
grij , gBFXi [j]hrij

)
and T EL is addi-

tively homomorphic.
Finally, P1 sends {C1, . . . , Cv1} to all the other participants P2,, Pn. In
MPSI.response, the interaction among the participants is displayed in FIG-
URE 5.

 𝑃𝑃1

𝑃𝑃2 𝑃𝑃𝑛𝑛 ⋯⋯⋯⋯⋯⋯

Figure 5. Interaction among parties in MPSI.response

• MPSI.computation: At this stage, all the participants P1, . . . , Pn have the
combined ciphertexts {C1, . . . , Cv1}, where Cl = (αl, βl), l = 1, . . . , v1. Now,
they involve in T EL.Dec as follows in order to decrypt each of {C1, . . . , Cv1}
for P1 who concludes with the intersection

n⋂
i=1

Xi:

(i) For i = 2, . . . , n, each Pi computes Ti = {(α1)ai , . . . , (αv1)ai} using its
secret key ai and sends Ti to P1.

(ii) The party P1 then chooses an empty set W and executes the following
steps for l = 1, . . . , v1:
(a) evaluates (αl)

a1 utilizing its secret key a1;

(b) computes ρl =
n∏
i=1

(αl)
ai using {T2, . . . , Tn} and (αl)

a1 ;

(c) evaluates µl = βl
ρl

and determines that Cl decrypts to 0 if µl = 1;

(d) inserts xl in W if µl = 1.

Finally, the party P1 outputs W as
n⋂
i=1

Xi. We refer to FIGURE 6 for the

interaction among the parties in MPSI.computation.

Correctness of MPSI: Let us assume that xl ∈
n⋂
i=1

Xi. Then xl ∈ Xi for all i =

1, . . . , n. In other words, xl passes the check step for each of the Bloom filter BFXi
(i = 2, . . . , n) i.e., BFXi [j] = 0 for all i = 2, . . . , n and j ∈ J = {h1(xl), . . . , hk(xl)}.

Secure and efficient MPSI-CA 377

𝑃𝑃1

𝑃𝑃2 𝑃𝑃𝑛𝑛 ⋯⋯⋯⋯⋯⋯

Figure 6. Interaction among parties in MPSI.computation

Thus, we have

Cl = (αl, βl)

=

g n∑
i=2

∑
j∈J

rij
, g

n∑
i=2

∑
j∈J

BFXi [j]

h

n∑
i=2

∑
j∈J

rij

 =

g n∑
i=2

∑
j∈J

rij
, g0h

n∑
i=2

∑
j∈J

rij

 .

Further, note that

ρl =

n∏
t=1

(αl)
at =

n∏
t=1

g n∑
i=2

∑
j∈J

rij

at

= g

(
n∑
i=2

∑
j∈J

rij

)
n∑
t=1

at

=

(
g

n∑
t=1

at

) n∑
i=2

∑
j∈J

rij

= h

n∑
i=2

∑
j∈J

rij
and µl = βl

ρl
= g0 = 1. Therefore, Cl decrypts to 0 if µl = 1 i.e., if

xl ∈
n⋂
i=1

Xi.

On the other hand, if Cl decrypts to 0 then BFXi [j] = 0 for all i = 2, . . . , n and
j ∈ J = {h1(xl), . . . , hk(xl)} by the construction of Cl. In other words, xl ∈ X1

passes the check step for each of the Bloom filter BFXi (i = 2, . . . , n). Therefore,
xl ∈ Xi for all i = 2, . . . , n except with negligible probability ε. This implies

that xl ∈
n⋂
i=1

Xi except with negligible probability ε. Hence, we can ensure that

xl ∈
n⋂
i=1

Xi if and only if Cl decrypts to 0 i.e., the set W is
⋂n
i=1Xi except with

negligible probability ε.

4. Security analysis

Theorem 4.1. If the encryption schemes EL and T EL are semantically secure and
the associated permutations are random, then our proposed MPSI-CA presented in
Section 3.1 is a secure computation protocol in standard model against semi-honest
adversaries except with negligible probability ε, where ε is the false positive rate of
the Bloom filter.

Proof. We prove the security of the MPSI-CA by considering two cases:

• Case I: a strict subset I1 of {P1, . . . , Pn} is corrupted, and P1 ∈ I1.
• Case II: a strict subset I2 of {P1, . . . , Pn} is corrupted, and P1 6∈ I2.

378 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

In each of the cases, we will show that a simulator SIM can be constructed who sim-
ulates the MPSI-CA protocol, the simulator having access to the corrupted party’s
input and output such that the simulated view is computationally indistinguishable
from the real world view. Here, the view of an entity consists of input message of
the entity, the outcome of the entity’s internal coin tosses and the messages received
by the entity during the protocol execution.

Case I (a subset I1 of {P1, . . . , Pn} is corrupted, and P1 ∈ I1). Let the simulator
SIM be given access to the corrupted parties’ input sets {Xi}i∈I1 and output
|
⋂n
i=1Xi|. Then SIM does the following:

• generates (pk, sk) ← T EL.KGen(1κ) and uniformly chooses its random coins
R;

• plays the role of the honest parties’ by choosing random sets {X̃i}i/∈I1 with

|X̃i| = vi, constructing Bloom filters {BFX̃i}i/∈I1 and encrypting {BFX̃i}i/∈I1
using pk to get {Epk(BFX̃i)}i/∈I1 ;

• generates card = |
⋂n
i=1Xi| many ciphertexts {Ĉ1, . . . , Ĉcard} of the form

T EL.Encpk(0) and v1 − card many ciphertexts {Ĉcard+1, . . . , Ĉv1} of the form
T EL.Encpk(rl), where rl is uniformly chosen from Zq. Shuffles the set ζ =

{Ĉ1, . . . , Ĉv1} using a random permutation φ over {1, . . . , v1} in order to

get χ = {C̃1, . . . , C̃v1}, where C̃l = Ĉφ−1(l) · T EL.Enc(0, pk, par, σ̂
(i)
l) with

σ̂
(i)
l � Zq for l = 1, .., v1. Let us consider ξ as the collection of {r̃1, . . . , r̃v1},

where r̃l is 0 for l = φ(1), . . . , φ(card) and rl ∈ Zq for l = φ(card+1), . . . , φ(v1);

• invokes the simulator SIMDec
1 that simulates the view of corrupted parties

including P1 in T EL.Dec as (χ; ξ);

• outputs the simulated view as ({Xi}i∈I1 ;R; {Epk(BFX̃i)}i/∈I1 ,Γ,SIM
Dec
1

(χ; ξ)), where Γ is the collection of |n − I1| many permuted form of ζ and
χ ∈ Γ if Pn is not corrupted, otherwise χ /∈ Γ.

The view in the real protocol execution consists of the input sets {Xi}i∈I1 , the

random coins R, the ciphertexts {Epk(BFXi}i/∈I1), {CP(i)}i/∈I1 and the messages in
T EL.Dec. In the simulated view, the input sets {Xi}i∈I1 are the same as the view
in the real execution, and the outcome of the internal random coins R is uniformly
random, thus the distribution is the same as in the real execution. Since the thresh-

old encryption scheme T EL is semantically secure, ({Epk(BFXi)}i/∈I1 , {CP
(i)}i/∈I1)

and ({Epk(BFX̃i)}i/∈I1 ,Γ) are indistinguishable. Moreover, the distribution of the

view (χ; ξ) produced by SIMDec
1 should be indistinguishable from the view in the

real execution of T EL.Dec by the semantic security of T EL. As a consequence, the
simulated view is indistinguishable from the real view.

Case II (a subset I2 of {P1, . . . , Pn} is corrupted, and P1 ∈ I2). Let the simulator
SIM be given access to the corrupted parties’ input sets {Xi}i∈I2 and output ⊥.
The simulator SIM then proceeds as follows:

• generates key pair (pk, sk) ← T EL.KGen(1κ) and uniformly chooses its ran-
dom coins R′;

• chooses random sets {X̃i}i/∈I2 with |X̃i| = vi, constructs Bloom filters
{BFX̃i}i/∈I2 and encrypts {BFX̃i}i/∈I2 using pk as {Epk(BFX̃i)}i/∈I2 in order
to play the role of the honest parties;

• generates n−|I2| many set of v1 random ciphertexts as χ(i) = {C̃(i)
1 , . . . , C̃

(i)
v1 }

for i /∈ I2;

Secure and efficient MPSI-CA 379

• invokes the simulator SIMDec
2 that simulates the view of corrupted parties

excluding P1 in the threshold decryption T EL.Dec as (χ(1);⊥), where χ(1) =
χ(n) if Pn is not corrupted;

• outputs the simulated view as
(
{Xi}i∈I2 ;R′; {Epk(BFX̃i), χ

(i)}i/∈I2 , SIM
Dec
2

(χ(1);⊥)
)
.

The view in the real protocol execution contains the input sets {Xi}i∈I2 , the ran-

dom coins R̂, the sets of ciphertexts {CP(i)}i/∈I2 and the messages in T EL.Dec. In

the simulated view, the input sets {Xi}i∈I2 and internal random coins R̂ are in-
distinguishable form the counter parts in the view of the real execution. Since the

threshold encryption scheme T EL is semantically secure, {CP(i)}i/∈I2 and {χ(i)}i/∈I2
are indistinguishable. Consequently, the distribution of the view (χ(1);⊥) produced

by SIMDec
2 is indistinguishable from the view in a real execution of T EL.Dec.

Hence, the simulated view is indistinguishable from the real world view.

Theorem 4.2. If the encryption schemes EL and T EL are semantically secure,
then our proposed MPSI presented in Section 3.2 is a secure computation protocol in
the standard model against semi-honest adversaries except with negligible probability
ε, where ε is the false positive rate of Bloom filter.

Proof. In order to prove the security of the MPSI, we consider the following two
cases:

• Case I: a strict subset I1 of {P1, . . . , Pn} is corrupted, and P1 ∈ I1.
• Case II: a strict subset I2 of {P1, . . . , Pn} is corrupted, and P1 6∈ I2.

In each of the cases, we will construct a simulator SIM who simulates the MPSI
protocol, and the simulator is given access to the corrupted party’s input and output
such that the simulated view is computationally indistinguishable from the real
world view. Here, the view of an entity consists of input message of the entity, the
outcome of the entity’s internal coin tosses and the messages received by the entity
during the protocol execution.

Case I (a subset I1 of {P1, . . . , Pn} is corrupted, and P1 ∈ I1). Let the simulator
SIM be given access to the corrupted parties’ input sets {Xi}i∈I1 and output⋂n
i=1Xi. Then SIM does the following:

• generates (pk, sk) ← T EL.KGen(1κ) and uniformly chooses its random coins
R;

• plays the role of the honest parties by choosing random sets {X̃i}i/∈I1 with

|X̃i| = vi, constructing Bloom filters {BFX̃i}i/∈I1 and encrypting {BFX̃i}i/∈I1
using pk to get {Epk(BFX̃i)}i/∈I1 ;

• generates the ciphertext Ĉl of the form T EL.Encpk(0) for each xl ∈
⋂n
i=1Xi

and the ciphertext {Ĉl} of the form T EL.Encpk(rl) for each xl /∈
⋂n
i=1Xi,

where rl is uniformly chosen from Zq and X1 = {x1, . . . , xv1}. Let us consider

χ = {Ĉ1, . . . , Ĉv1} and ξ as the collection of {r1, . . . , rv1}, where rl is set as 0
if xl ∈

⋂n
i=1Xi, otherwise rl ∈ Zq;

• invokes the simulator SIMDec
1 that simulates the view of corrupted parties

including P1 in T EL.Dec as (χ; ξ);

• outputs the simulated view as
(
{Xi}i∈I1 ;R; {Epk(BFX̃i)}i/∈I1 ,SIM

Dec
1 (χ; ξ)

)
.

The view in the real protocol execution consists of the input sets {Xi}i∈I1 , the
random coins R, the ciphertexts {Epk(BFXi}i/∈I1), and the messages in T EL.Dec.

380 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

In the simulated view, the input sets {Xi}i∈I1 are the same as the view in the real
execution, the outcome of the internal random coins R is uniformly random, thus
the distribution is the same as in the real execution. Since the threshold encryption
scheme T EL is semantically secure, {Epk(BFXi)}i/∈I1 and {Epk(BFX̃i)}i/∈I1 are in-

distinguishable. Moreover, the distribution of the view (χ; ξ) produced by SIMDec
1

should be indistinguishable from the view in the real execution of T EL.Dec by the
semantic security of T EL. As a consequence, the simulated view is indistinguishable
from the real view.

Case II (a subset I2 of {P1, . . . , Pn} is corrupted, and P1 6∈ I2). Let the simulator
SIM be given access to the corrupted parties’ input sets {Xi}i∈I2 and output ⊥.
The simulator SIM then proceeds as follows:

• generates key pair (pk, sk) ← T EL.KGen(1κ) and uniformly chooses its ran-
dom coins R′;

• chooses random sets {X̃i}i/∈I2 with |X̃i| = vi, constructs Bloom filters
{BFX̃i}i/∈I2 and encrypts {BFX̃i}i/∈I2 using pk as {Epk(BFX̃i)}i/∈I2 in order
to play the role of the honest parties;

• generates v1 random ciphertexts as χ = {C̃1, . . . , C̃v1};
• invokes the simulator SIMDec

2 that simulates the view of corrupted parties
excluding P1 in threshold decryption T EL.Dec as (χ;⊥);

• outputs the simulated view as
(
{Xi}i∈I2 ;R′;χ,SIMDec

2 (χ;⊥)
)

.

The view in the real protocol execution contains the input sets {Xi}i∈I2 , the ran-

dom coins R̂, the ciphertexts {C1, . . . , Cv1}, and the messages in T EL.Dec. In

the simulated view, the input sets {Xi}i∈I2 and internal random coins R̂ are in-
distinguishable form the counter parts in the view of the real execution. Since
the threshold encryption scheme T EL is semantically secure, {C1, . . . , Cv1} and

χ = {C̃1, . . . , C̃v1} are indistinguishable. Consequently, the distribution of the view

(χ;⊥) produced by SIMDec
2 is indistinguishable from the view in a real execution

of T EL.Dec. Hence, the simulated view is indistinguishable from the real world
view.

Remark 2. Both the schemes MPSI and MPSI-CA are secure in the semi-honest
environment. However, both the schemes can be proven to be secure when the
designated party P1 is semi-honest and the remaining participants P2, . . . , Pn are
malicious by employing zero-knowledge proofs for discrete logarithm [6] and zero-
knowledge argument for shuffle [33].

5. Efficiency

The computation cost of our constructions is measured by counting the number
of modular exponentiations (Exp), hash function evaluations (Hash) and modular
inversions (Inv). On the other hand, the number of group elements transmitted
publicly by an user incurs communication overhead. We refer to TABLE 1 for
the complexity of our protocols. Note that, our MPSI does not use any kind of
broadcast channel in contrast to our MPSI-CA. In TABLE 2 and TABLE 3, we
give a comparative summary of our constructions with the most efficient existing
protocols.

Secure and efficient MPSI-CA 381

Table 1. Complexity of MPSI and MPSI-CA

MPSI-CA Exp GE Hash Inv
P1 v1 2v1 kv1 v1
Pi, i 6= 1 2m+ 3v1 2m+ 3v1 kvi

MPSI Exp GE Hash Inv
P1 v1 2(n− 1)v1 kv1 v1
Pi, i 6= 1 2m+ v1 2m+ v1 kvi

vi = set size of Pi, m = d kvmax
ln 2 e = optimal size of Bloom filter, vmax = maximum of {v1, . . . , vn}

Table 2. Comparative summary of MPSI protocols
Protocol Adv. Security Comm. Comp. Based

model assumption on

[46] Mal AHE O(n2v2max) O(n2 lognv2max) OPE

[12] Mal DCR O((nvmax + 10vmax log2 vmax)) O(nv2max) MP

[10] Mal AHE O(nv2max) O(nv2max) OPE

[51] Mal DCR O(n2 lognv2max) O(lognv2max) OPE

[52] Mal SD O(nv2max) O(nv2max) BG

[49] SH DDH O(nvmax) D : O(nvmax);Pi : O(vmax) BF

Sch. 1[39] SH DDH O(nvmaxκ) D : O(nv2maxκ);Pi : O(vmaxκ) OPE

Sch. 2[39] Mal DDH O((n2 + nvmax + nw log vmax)κ) D : O(nv2maxκ);Pi : O(vmaxκ) OPE

[47] SH O(nvmaxκ) D : O(nλ);Pi : O(tλ) OPRF

Our SH DDH O(nvmaxk) D : O(v1);Pi : O(vmaxk) BF

OPE= Oblivious Polynomial Evaluation, MP= Multivariate Polynomials, BF= Bloom Filter, SD=
Subgroup Decision, BG= Bilinear Group, Mal= Malicious, AHE= Additively Homomorphic

Encryption, DDH=Decisional Diffie-Hellman, DCR=Decisional Quadratic Residuosity,
SH=Semi-honest, OPRF= Oblivious Pseudorandom Function, D= designated party, Pi= participants
other than designated party, n= number of participants, v1= set size of the designated party D, t=
number of dishonestly colluding participants, vmax= maximum set size, κ, k, λ= security parameters.

Table 3. Comparative summary of MPSI-CA protocols
Protocol Adv. Security Comm. Comp. Based

model assumption on

[46] SH AHE O(n2vmax) O(n2v2max) OPE
Our SH DDH O(nvmaxk) D : O(v1);Pi : O(vmaxk) BF

OPE= Oblivious Polynomial Evaluation, BF= Bloom Filter, SH=Semi-honest, AHE= Additively
Homomorphic Encryption, DDH=Decisional Diffie-Hellman, D= designated party, Pi= participants

other than designated party, n= number of participants,
v1= set size of the designated party D, vmax= maximum set size.

6. Conclusion

In this paper, we have constructed an MPSI-CA protocol employing a Bloom
filter in semi-honest environment without random oracles. Its communication and
computation overheads are linear in the input set sizes. Our MPSI-CA is more
efficient than the only other existing MPSI-CA of [46]. We then extended our
MPSI-CA to MPSI retaining all its security attributes. In contrast to the existing
MPSI protocols, the computation complexity of each party in our construction does
not depend upon the total number of participants. However, our MPSI is less
efficient than that of [47] in terms of set sizes.

Acknowledgments

The authors express their deep appreciation to the editor for promptly handling
our paper, as well as to the anonymous referee, whose thorough reading and con-
structive comments have improved the paper, significantly.

382 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

Appendix A

A1. Security Model. The basic security requirements of any multiparty protocol
are the following:

(a) Correctness. At the end of the protocol, an honest party should receive the
correct output.

(b) Privacy. After completion of the protocol, no party should learn more than its
prescribed output.

(c) Fairness. A dishonest party receives its output if and only if the honest party
also receives its output.

Security Model for Semi-honest Adversary [34]: A two-party protocol, Π is
a random process that computes a function f from a pair of inputs (one per party)
to a pair of outputs, i.e.,

f = (f1, f2) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗.

Let x, y ∈ {0, 1}∗ be the inputs of parties P1, P2, respectively. Then the outputs of
the parties P1, P2 are f1(x, y), f2(x, y) respectively. A protocol Π is said to be secure
in a semi-honest model if whatever can be computed by a party after participating
in the protocol, it could obtain from its input and output only. This is formalized
using the simulation paradigm. At the input pair (x, y), the view of the party Pi
during an execution of Π is denoted by ViewΠ

i (x, y) = (w; r(i);m
(i)
1 , . . . ,m

(i)
t), where

w ∈ {x, y} represents the input of the party Pi, r
(i) is the outcome of Pi’s internal

coin tosses, and m
(i)
j (j = 1, 2, . . . , t) represents the j-th message which has received

by Pi during the execution of Π.
Definition A.1. Let f = (f1, f2) be a deterministic function. Then we say that
the protocol Π securely computes f if there exists probabilistic polynomial-time
adversaries, denoted by S1 and S2, controlling P1 and P2, respectively, such that

{S1(x, f1(x, y))}x,y∈{0,1}∗ ≡c ViewΠ
1 (x, y)x,y∈{0,1}∗ ,

{S2(y, f2(x, y))}x,y∈{0,1}∗ ≡c ViewΠ
2 (x, y)x,y∈{0,1}∗

In the case of a multiparty setting, the associated functionality is

f = (f1, . . . , fn) : {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗ × · · · × {0, 1}∗.

Let Xi ∈ {0, 1}∗ be the input of party Pi, for i = 1, . . . , n. Then the output
of the party Pi is fi(X1, . . . , Xn) for i = 1, . . . , n. Let the adversary A corrupt
{Pi : i ∈ I ⊂ {1, . . . , n}}, a proper subset of {P1, . . . , Pn}. Then, similar to the
two-party protocol, we say that the multiparty protocol is secure if A’s view in
the real world is indistinguishable from the simulated view. Here, the view of A is
defined as (W ; r;M), W = {Xi : i ∈ I}, r is the collection of the outcome of Pi’s
internal coin tosses for i ∈ I and M is the collection of messages which has been
received by {Pi : i ∈ I} during the protocol execution.

A2. Toy Example. Toy example for MPSI: Let there be three participants
P1, P2, P3 with respective private sets X1 = {alice, bob, thomas}, X2 = {bob, harry,
alice}, X3 = {jack, alice, thomas, bob} and G =< 2 >= {1, 2, 3, 4, 6, 8, 9, 12, 13, 16,
18} be the subgroup of Z∗23 of order 11, i.e., p = 23 and q = 11. Also let the
secret keys of P1, P2, P3 be 2, 3, 2, respectively, and HBloom = {h1, h2}, i.e., k = 2.

Secure and efficient MPSI-CA 383

Then the public key for threshold ElGamal is (22+3+2 mod 23) = 13 and optimal
m = kvmaxln 2 = 16 since vmax = 4. Let us assume that

h1(alice) = 4, h1(bob) = 2, h1(thomas) = 14, h1(harry) = 14, h1(jack) = 1,

h2(alice) = 11, h2(bob) = 4, h2(thomas) = 7, h2(harry) = 2, h2(jack) = 6.

Then the steps of MPSI are described below:

: MPSI.request:
1. P2 computes BFX2 = 1010111111011011 and sends E(BFX2) = {E(1),
E(0), E(1), E(0), E(1), E(1), E(1), E(1), E(1), E(1), E(0), E(1), E(1),

E(0), E(1), E(1)} = {C(2)
1 , . . . , C

(2)
16 } to P1, where E is the encryption

function.
2. P3 computes BFX3 = 0010100111011011 and sends E(BFX3) = {E(0),
E(0), E(1), E(0), E(1), E(0), E(0)E(1), E(1), E(1), E(0), E(1), E(1),

E(0), E(1), E(1)} = {C(3)
1 , . . . , C

(3)
16 } to P1.

: MPSI.response: P1 does the following:
1. for x1 = alice, computes h1(alice) = 4, h2(alice) = 11 and derives

C1 = C
(2)
4 C

(2)
11 C

(3)
4 C

(3)
11 = E(0)E(0)E(0)E(0) = (2r2,4 , 2013r2,4) ·(2r2,11 , 20

13r2,11) · (2r3,4 , 2013r3,4) · (2r3,11 , 2013r3,11) = (2r1 , 2013r1), where r1 =
r2,4 + r2,11 + r3,4 + r3,11;

2. for x2 = bob, computes h1(bob) = 2, h2(bob) = 4 and derives C2 =

C
(2)
2 C

(2)
4 C

(3)
2 C

(3)
4 = E(0)E(0)E(0)E(0) = (2r2,2 , 2013r2,2)·(2r2,4 , 2013r2,4)·

(2r3,2 , 2013r3,2) · (2r3,4 , 2013r3,4) = (2r2 , 2013r2), where r2 = r2,2 + r2,4 +
r3,2 + r3,4;

3. for x3 = thomas, computes h1(thomas) = 14, h2(thomas) = 7 and de-

rives C2 = C
(2)
14 C

(2)
7 C

(3)
14 C

(3)
7 = E(0)E(1)E(0)E(0) = (2r2,14 , 2013r2,14) ·

(2r2,7 , 2113r2,7) · (2r3,14 , 2013r3,14) · (2r3,7 , 2013r3,7) = (2r3 , 2113r3), where
r3 = r2,14 + r2,7 + r3,14 + r3,7.

Finally, P1 sends (2r1 , 2013r1), (2r2 , 2013r2) and (2r3 , 2113r3) to both P2 and
P3.

: MPSI.computation: The party P2 computes {(2r1)3, (2r2)3, (2r3)3} using its
secret 3 and sends this to P1. The party P3 computes {(2r1)2, (2r2)2, (2r3)2}
using its secret 2 and sends this to P1. The party P1 also computes {(2r1)2,
(2r2)2, (2r3)2} using secret 2 and does the following:

1. evaluates ρ1 = (2r1)2+3+2 = (27)r1 = 13r1 , ρ2 = (2r2)2+3+2 = (27)r2 =
13r2 , and ρ3 = (2r3)2+3+2 = (27)r3 = 13r3 ;

2. computes µ1 = 2013r1

13r1 = 1, µ2 = 2013r2

13r2 = 1 and µ3 = 2113r3

13r3 = 2;

3. outputs {x1, x2} = {alice, bob} as the intersection ∩3
i=1Xi.

Toy example for MPSI-CA: Choose the same parameters as for MPSI.

: MPSI.request: It is similar to MPSI.
: MPSI.response: It is similar to MPSI up to the computation of S1 = {(2r1 ,

2013r1), (2r2 , 2013r2), (2r3 , 2113r3)}. Then P2 does the following:
1. randomly chooses 3 ciphertexts of the form E(0), say A1 = {(2σ1 , 2013σ1),

(2σ2 , 2013σ2), (2σ3 , 2013σ3)};
2. multiplies the i-th ciphertext of S1 with the i-th ciphertext of A1 for
i = 1, 2, 3 to get A2 = {(2r1+σ1 , 2013r1+σ1), (2r2+σ2 , 2013r2+σ2),
(2r3+σ3 , 2113r3+σ3)};

3. permutes the elements of A2. Let the permuted version of A2 be A3 =
{(2r2+σ2 , 2013r2+σ2), (2r1+σ1 , 2013r1+σ1), (2r3+σ3 , 2113r3+σ3)};

384 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

4. broadcasts A3.
Then P3 does the following:

1. randomly chooses 3 ciphertexts of the form E(0), say B1 = {(2δ1 , 2013δ1),
(2δ2 , 2013δ2), (2δ3 , 2013δ3)};

2. multiplies the i-th ciphertext of A3 with the i-th ciphertext of B1 for i =
1, 2, 3 to get B2 = {(2r2+σ2+δ1 , 2013r2+σ2+δ1),(2r1+σ1+δ2 , 2013r1+σ1+δ2),
(2r3+σ3+δ3 , 2113r3+σ3+δ3)};

3. permutes the elements of B2. Let the permuted version of B2 be B3 =
{(2r3+σ3+δ3 , 2113r3+σ3+δ3), (2r2+σ2+δ1 , 2013r2+σ2+δ1), (2r1+σ1+δ2 ,
2013r1+σ1+δ2)};

4. broadcasts B3.
: MPSI-CA.computation: Let r3 +σ3 + δ3 = γ1, r2 +σ2 + δ1 = γ1 and r1 +σ1 +
δ2 = γ3. Then B3 = {(2γ1 , 2113γ1), (2γ2 , 2013γ2), (2γ3 , 2013γ3)}. The party P2

computes {(2γ1)3, (2γ2)3, (2γ3)3} using its secret 3 and sends this to P1. The
party P3 computes {(2γ1)2, (2γ2)2, (2γ3)2} using its secret 2 and sends this to
P1. The party P1 also computes {(2γ1)2, (2γ2)2, (2γ3)2} using secret 2 and
does the following:

1. evaluates ρ1 = (2γ1)2+3+2 = (27)γ1 = 13γ1 , ρ2 = (2γ2)2+3+2 = (27)γ2 =
13γ2 , and ρ3 = (2γ3)2+3+2 = (27)γ3 = 13γ3 ;

2. computes µ1 = 2113γ1

13γ1 = 2, µ2 = 2013γ2

13γ2 = 1 and µ3 = 2013γ3

13γ3 = 1;

3. outputs 2 as the cardinality of the the intersection ∩3
i=1Xi since there are

only two µ’s with 1 value.

References

[1] R. Agrawal, A. Evfimievski and R. Srikant, Information sharing across private databases,

Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data,

ACM , (2003), 86–97.
[2] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of

the ACM , 13 (1970), 422–426.

[3] D. Boneh, The decision Diffie-Hellman problem, Algorithmic Number Theory, Springer, Lec-
ture Notes in Comput. Sci., Springer, Berlin, 1423 (1998), 48–63.

[4] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid and Y. H.

Tang, On the false-positive rate of Bloom filters, Inform. Proc. Lett., 108 (2008), 210–213.
[5] J. Camenisch and V. Shoup, Practical verifiable encryption and decryption of discrete loga-

rithms, Advances in Cryptology—CRYPTO 2003, Lecture Notes in Comput. Sci., Springer,

Berlin, 2729 (2003), 126–144.
[6] J. Camenisch and M. Stadler, Proof Systems for General Statements about Discrete Loga-

rithms, 1997. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1208.
[7] J. Camenisch and G. M. Zaverucha. Private intersection of certified sets, Financial Cryptog-

raphy and Data Security, Springer , (2009), 108–127.
[8] A. Cerulli, E. De Cristofaro and C. Soriente, Nothing refreshes like a RePSI: Reactive private

set intersection, Applied Cryptography and Network Security, Lecture Notes in Comput. Sci.,
Springer, Cham, 10892 (2018), 280–300.

[9] H. Chen, K. Laine and P. Rindal, Fast private set intersection from homomorphic encryp-
tion, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, ACM , (2017), 1243–1255.
[10] J. H. Cheon, S. Jarecki and J. H. Seo, Multi-party privacy-preserving set intersection with

quasi-linear complexity, IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, 95 (2012), 1366–1378.

[11] M. Ciampi and C. Orlandi, Combining private set-intersection with secure two-party compu-
tation, Security and Cryptography for Networks, Lecture Notes in Comput. Sci., Springer,
Cham, 11035 (2018), 464–482.

http://dx.doi.org/10.1145/872757.872771
http://dx.doi.org/10.1145/362686.362692
http://www.ams.org/mathscinet-getitem?mr=MR1726060&return=pdf
http://dx.doi.org/10.1007/BFb0054851
http://www.ams.org/mathscinet-getitem?mr=MR2457926&return=pdf
http://dx.doi.org/10.1016/j.ipl.2008.05.018
http://www.ams.org/mathscinet-getitem?mr=MR2093190&return=pdf
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1208
http://dx.doi.org/10.1007/978-3-642-03549-4_7
http://www.ams.org/mathscinet-getitem?mr=MR3815743&return=pdf
http://dx.doi.org/10.1007/978-3-319-93387-0_15
http://dx.doi.org/10.1007/978-3-319-93387-0_15
http://dx.doi.org/10.1145/3133956.3134061
http://dx.doi.org/10.1145/3133956.3134061
http://dx.doi.org/10.1587/transfun.E95.A.1366
http://dx.doi.org/10.1587/transfun.E95.A.1366
http://www.ams.org/mathscinet-getitem?mr=MR3855051&return=pdf
http://dx.doi.org/10.1007/978-3-319-98113-0
http://dx.doi.org/10.1007/978-3-319-98113-0

Secure and efficient MPSI-CA 385

[12] D. Dachman-Soled, T. Malkin, M. Raykova and M. Yung, Secure efficient multiparty comput-
ing of multivariate polynomials and applications, Applied Cryptography and Network Security,

(2011), 130–146.

[13] A. Davidson and C. Cid, An efficient toolkit for computing private set operations, Information
Security and Privacy - ACISP , (2017), 261–278.

[14] E. De Cristofaro, P. Gasti and G. Tsudik, Fast and private computation of cardinality of
set intersection and union, Cryptology and Network Security, Lecture Notes in Comput. Sci.,

Springer, Heidelberg, 7712 (2012), 218–231.

[15] E. De Cristofaro, J. Kim and G. Tsudik, Linear-complexity private set intersection protocols
secure in malicious model, Adv. in Cryptology - ASIACRYPT, Springer, (2010), 213–231.

[16] E. De Cristofaro and G. Tsudik, Practical private set intersection protocols with linear com-

plexity, Financial Cryptography and Data Security, (2010), 143–159.
[17] E. De Cristofaro and G. Tsudik, Experimenting with fast private set intersection, Trust and

Trustworthy Computing, (2012), 55–73.

[18] S. K. Debnath and R. Dutta, Efficient private set intersection cardinality in the presence of
malicious adversaries, Provable Security, Lecture Notes in Comput. Sci., Springer, Cham,

9451 (2015), 326–339.

[19] S. K. Debnath and R. Dutta, Secure and efficient private set intersection cardinality using
Bloom filter, International Information Security Conference, Springer, (2015), 209–226.

[20] S. K. Debnath and R. Dutta, How to meet big data when private set intersection realizes
constant communication complexity, Information and Communications Security, Springer ,

(2016), 445–454.

[21] S. K. Debnath and R. Dutta, New realizations of efficient and secure private set intersection
protocols preserving fairness, Information Security and Cryptology—ICISC 2016, Lecture

Notes in Comput. Sci., Springer, Cham, 10157 (2017), 254–284.

[22] S. K. Debnath and R. Dutta, Provably secure fair mutual private set intersection cardinality
utilizing Bloom filter, Information Security and Cryptology, Lecture Notes in Comput. Sci.,

Springer, Cham, 10143 (2017), 505–525.

[23] S. K. Debnath and R. Dutta, Towards fair mutual private set intersection with linear com-
plexity, Security Comm. Networks, 9 (2016), 1589–1612.

[24] Y. Desmedt and Y. Frankel, Threshold cryptosystems, Adv. in Cryptology - CRYPTO 89,

Springer, (1990), 307–315.
[25] C. Y. Dong, L. Q. Chen, J. Camenisch and G. Russello, Fair private set intersection with a

semi-trusted arbiter, Data and Applications Security and Privacy XXVII, Springer , (2013),
128–144.

[26] C. Y. Dong, L. Q. Chen and Z. K. Wen, When private set intersection meets big data:

An efficient and scalable protocol, Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ACM , (2013), 789–800.

[27] C. Y. Dong and G. Loukides, Approximating private set union/intersection cardinality with
logarithmic complexity, IEEE Transactions on Information Forensics and Security, 12
(2017), 2792–2806.

[28] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms,

IEEE Trans. Inform. Theory, 31 (1985), 469–472.
[29] B. H. Falk, D. Noble and R. Ostrovsky, Private set intersection with linear communication

from general assumptions, (2018).
[30] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications,

Journal of Computer and System Sciences, 31 (1985), 182–209.

[31] M. J. Freedman, C. Hazay, K. Nissim and B. Pinkas, Efficient set intersection with simulation-

based security, Journal of Cryptology, 29 (2016), 115–155.
[32] M. J. Freedman, K. Nissim and B. Pinkas, Efficient private matching and set intersection,

Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., Springer,
Berlin, 3027 (2004), 1–19.

[33] J. Furukawa, Efficient and verifiable shuffling and shuffle-decryption, IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, 88 (2005), 172–188.
[34] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications, Cambridge Uni-

versity Press, 2009.

[35] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System
Sciences, 28 (1984), 270–299.

http://dx.doi.org/10.1007/978-3-642-21554-4_8
http://dx.doi.org/10.1007/978-3-642-21554-4_8
http://dx.doi.org/10.1007/978-3-319-59870-3_15
http://www.ams.org/mathscinet-getitem?mr=MR3070427&return=pdf
http://dx.doi.org/10.1007/978-3-642-35404-5_17
http://dx.doi.org/10.1007/978-3-642-35404-5_17
http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-30921-2_4
http://www.ams.org/mathscinet-getitem?mr=MR3485820&return=pdf
http://dx.doi.org/10.1007/978-3-319-26059-4_18
http://dx.doi.org/10.1007/978-3-319-26059-4_18
http://dx.doi.org/10.1007/978-3-319-50011-9_34
http://dx.doi.org/10.1007/978-3-319-50011-9_34
http://www.ams.org/mathscinet-getitem?mr=MR3630772&return=pdf
http://dx.doi.org/10.1007/978-3-319-53177-9_14
http://dx.doi.org/10.1007/978-3-319-53177-9_14
http://www.ams.org/mathscinet-getitem?mr=MR3647766&return=pdf
http://dx.doi.org/10.1002/sec.1450
http://dx.doi.org/10.1002/sec.1450
http://dx.doi.org/10.1007/978-3-642-39256-6_9
http://dx.doi.org/10.1007/978-3-642-39256-6_9
http://dx.doi.org/10.1145/2508859.2516701
http://dx.doi.org/10.1145/2508859.2516701
http://dx.doi.org/10.1109/TIFS.2017.2721360
http://dx.doi.org/10.1109/TIFS.2017.2721360
http://www.ams.org/mathscinet-getitem?mr=MR798552&return=pdf
http://dx.doi.org/10.1109/TIT.1985.1057074
http://www.ams.org/mathscinet-getitem?mr=MR828521&return=pdf
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://www.ams.org/mathscinet-getitem?mr=MR3449921&return=pdf
http://dx.doi.org/10.1007/s00145-014-9190-0
http://dx.doi.org/10.1007/s00145-014-9190-0
http://www.ams.org/mathscinet-getitem?mr=MR2153162&return=pdf
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://www.ams.org/mathscinet-getitem?mr=MR760548&return=pdf
http://dx.doi.org/10.1016/0022-0000(84)90070-9

386 S. K. Debnath, P. Stănică, N. Kundu and T. Choudhury

[36] C. Hazay, Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs,
Theory of Cryptography, Part II, Lecture Notes in Comput. Sci., Springer, Heidelberg, 9015

(2015), 90–120.

[37] C. Hazay and Y. Lindell, Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries, Theory of Cryptography, Lecture Notes in

Comput. Sci., Springer, Berlin, 4948 (2008), 155–175.
[38] C. Hazay and K. Nissim, Efficient set operations in the presence of malicious adversaries,

Public Key Cryptography - PKC, Lecture Notes in Comput. Sci., Springer, Berlin, 6056

(2010), 312–331.
[39] C. Hazay and M. Venkitasubramaniam, Scalable multi-party private set-intersection, Public-

Key Cryptography—PKC 2017, Part I, Lecture Notes in Comput. Sci., Springer, Berlin,

10174 (2017), 175–203.
[40] S. Hohenberger and S. A. Weis, Honest-verifier private disjointness testing without random

oracles, Privacy Enhancing Technologies, Springer , (2006), 277–294.

[41] Y. Huang, D. Evans and J. Katz, Private set intersection: Are garbled circuits better than cus-
tom protocols, Network and Distributed System Security Symposium (NDSS), The Internet

Society, (2012).

[42] S. Jarecki and X. M. Liu, Efficient oblivious pseudorandom function with applications to
adaptive OT and secure computation of set intersection, Theory of Cryptography, Lecture

Notes in Comput. Sci., Springer, Berlin, 5444 (2009), 577–594.
[43] S. Jarecki and X. M. Liu, Fast secure computation of set intersection, Security and Cryptog-

raphy for Networks, Springer , (2010), 418–435.

[44] F. Kerschbaum, Outsourced private set intersection using homomorphic encryption, Proceed-
ings of the 7th ACM Symposium on Information, Computer and Communications Security,

ACM , (2012), 85–86.

[45] Á. Kiss, J. Liu, T. Schneider, N. Asokan and B. Pinkas, Private set intersection for unequal

set sizes with mobile applications, Proceedings on Privacy Enhancing Technologies, 2017

(2017), 177–197.
[46] L. Kissner and D. Song, Privacy-preserving set operations, Adv. in Cryptology - CRYPTO

2005, Lecture Notes in Comput. Sci., Springer, Berlin, 3621 (2005), 241–257.
[47] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek and N. Trieu, Practical multi-party pri-

vate set intersection from symmetric-key techniques, Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, ACM , (2017), 1257–1272.
[48] D. Many, M. Burkhart and X. Dimitropoulos, Fast private set operations with sepia, Technical

Report 345, Mar, Tech. Rep., (2012).

[49] A. Miyaji and S. Nishida, A scalable multiparty private set intersection, International Con-
ference on Network and System Security, Springer, (2015), 376–385.

[50] P. Rindal and M. Rosulek, Malicious-secure private set intersection via dual execution, Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
ACM , (2017), 1229–1242.

[51] Y. P. Sang and H. Shen, Privacy preserving set intersection protocol secure against malicious

behaviors, Parallel and Distributed Computing, Applications and Technologies (PDCAT),
IEEE International Conference on, (2007), 461–468.

[52] Y. Sang and H. Shen, Privacy preserving set intersection based on bilinear groups, Proceed-

ings of the Thirty-First Australasian Conference on Computer Science, Australian Computer
Society, Inc., 74 (2008), 47–54.

[53] R.-H. Shi, Y. Mu, H. Zhong, S. Zhang and J. Cui, Quantum private set intersection cardinality
and its application to anonymous authentication, Information Sciences, 370/371 (2016), 147–

158.

Received August 2019; revised February 2020.

E-mail address: sdebnath.math@nitjsr.ac.in

E-mail address: pstanica@nps.edu

E-mail address: nknkundu@gmail.com

E-mail address: tc499180022@gmail.com

http://www.ams.org/mathscinet-getitem?mr=MR3354193&return=pdf
http://dx.doi.org/10.1007/978-3-662-46497-7_4
http://www.ams.org/mathscinet-getitem?mr=MR2494141&return=pdf
http://dx.doi.org/10.1007/978-3-540-78524-8_10
http://dx.doi.org/10.1007/978-3-540-78524-8_10
http://www.ams.org/mathscinet-getitem?mr=MR2660750&return=pdf
http://dx.doi.org/10.1007/978-3-642-13013-7_19
http://www.ams.org/mathscinet-getitem?mr=MR3649111&return=pdf
http://dx.doi.org/10.1007/978-3-662-54365-8_8
http://dx.doi.org/10.1007/11957454_16
http://dx.doi.org/10.1007/11957454_16
http://www.ams.org/mathscinet-getitem?mr=MR2546220&return=pdf
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-15317-4_26
http://dx.doi.org/10.1145/2414456.2414506
http://dx.doi.org/10.1515/popets-2017-0044
http://dx.doi.org/10.1515/popets-2017-0044
http://www.ams.org/mathscinet-getitem?mr=MR2237310&return=pdf
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1145/3133956.3134065
http://dx.doi.org/10.1145/3133956.3134065
http://www.ams.org/mathscinet-getitem?mr=MR3407302&return=pdf
http://dx.doi.org/10.1145/3133956.3134044
http://dx.doi.org/10.1109/PDCAT.2007.59
http://dx.doi.org/10.1109/PDCAT.2007.59
http://dx.doi.org/10.1016/j.ins.2016.07.071
http://dx.doi.org/10.1016/j.ins.2016.07.071
mailto:sdebnath.math@nitjsr.ac.in
mailto:pstanica@nps.edu
mailto:nknkundu@gmail.com
mailto:tc499180022@gmail.com

	1. Introduction
	1.1. Related works
	1.2. Our contribution
	1.3. Organization

	2. Preliminaries
	2.1. Additively homomorphic encryption camenisch2003
	2.2. Bloom filter bloom1970space

	3. Protocol
	3.1. Multiparty private set intersection cardinality (MPSI-CA)
	3.2. Multiparty private set intersection (MPSI)

	4. Security analysis
	5. Efficiency
	6. Conclusion
	Acknowledgments
	Appendix A
	A1. Security Model
	A2. Toy Example

	References

