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ABSTRACT 

 As machine learning augmented decision-making becomes more prevalent, 

defense applications for these techniques are needed to prevent being outpaced by peer 

adversaries. One area that has significant potential is deep learning applications to 

classify passive sonar acoustic signatures, which would accelerate tactical, operational, 

and strategic decision-making processes in one of the most contested and difficult 

warfare domains. Convolutional Neural Networks have achieved some of the greatest 

success in accomplishing this task; however, a full production pipeline to continually 

train, deploy, and evaluate acoustic deep learning models throughout their life cycle in a 

realistic architecture is a barrier to further and more rapid success in this field of research. 

Two main contributions of this thesis are a proposed  production architecture for model 

life cycle management using Machine Learning Operations (MLOps) and evaluation of 

the same on live passive sonar stream. Using the proposed production architecture, this 

work evaluates model performance differences in a production setting and explores 

methods to improve model performance in production. Through documenting 

considerations for creating a platform and architecture to continuously train, deploy, and 

evaluate various deep learning acoustic classification models, this study aims to create a 

framework and recommendations to accelerate progress in acoustic deep learning 

classification research. 
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CHAPTER 1:
Introduction

The rapid acceleration of Artificial Intelligence (AI), Machine Learning (ML), and Deep
Learning (DL) technologies in modern society has created opportunities for growth and
efficiency inmany areas such as business operations, Internet of Things (IoT), and numerous
software applications. These opportunities also extend to the Department of Defense (DoD)
where AI/ML offers to improve and accelerate warfighting capabilities and decision-making
processes. In order to take advantage of these opportunities, the DoD has invested resources
into various AI/ML initiatives. For example, the increased emphasis on AI/ML development
has led to the publication of the first AI strategy in 2018, as well as the establishment of
the Joint Artificial Intelligence Center (JAIC) to guide the DoD and United States (U.S.)
government tomore effectively harness AI/ML capabilities [1], [2]. These initiatives, among
others, seek to leverage emerging technology to ultimately provide warfighting advantages
and shorten decision-making timelines within the DoD and broader U.S. government.

New applications forML to augment or replace existing processes in theDoD are continually
being discovered. One such opportunity that is being developed is the application of ML to
acoustic classification, which is the identification of particular objects from their acoustic
signature. Currently, human-operated ashore and afloat workstations are monitored by sonar
analysts to identify significant activity based on acoustic signatures [3]. ML offers potential
to augment these efforts to increase their scale and efficiency.

While the Navy is pursuing various efforts to augment acoustic analysis with AI/ML capa-
bilities within organizations such as the Office of Naval Intelligence (ONI) and Undersea
Warfighting Development Center (UWDC), they are still nascent and have not yet achieved
their full potential [4], [5]. These organizations also still need to fully address complex
data labeling and pipeline considerations that span multiple organizations and stakeholders
across the globe [5]. As the number of acoustic sensors and their capabilities increase, the
amount of corresponding data also increases, and the number of human analysts is already
insufficient to process currently available data [5]. Automating elements of this currently
manual process offers promise to increase the scale and accuracy at which analysts can
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process data and discover insights by filtering out insignificant data and focusing efforts
towards significant activity. Using ML to classify acoustic data for this purpose can assist
greatly in automating and accelerating these tasks.

However, rapid and unforeseen changes are prevalent in acoustic environments, which af-
fects the data feeding intoMLmodels andmay degrade model accuracy [6]. Due to dynamic
environments, ML models must be researched and improved. However, to reliably deliver
accurate ML models, a reliable process and platform to continually monitor model perfor-
mance, cue new development, and update old models is necessary. Due to the frequently
changing conditions, processes must support continuous evaluation, improvement, and de-
ployment of ML models. Machine Learning Operations (MLOps) is a set of processes that
address this need for managing the lifecycle of ML models to ensure their continued effec-
tiveness. Applying MLOps principles to acoustic ML efforts stands to enhance the quality
and quantity of research efforts by more effectively managing the ML lifecycle between
researchers and end-users.

1.1 Research Objectives and Contribution
This work builds off of previous research conducted by LT Andrew Pfau in his thesis
“Multi-Label Classification of Underwater Soundscapes Using Deep Convolutional Neural
Networks,” LT Sabrina Atchley in her thesis "Active Bayesian Deep Learning with an
Acoustic Vector Sensor," and LCDR Brandon Beckler in his thesis "Enhanced Multi-
Label Classification of Heterogeneous Underwater Soundscapes by Convolutional Neural
Networks Using Bayesian Deep Learning" [3], [7], [6].

Thiswork seeks to outline a realisticMLOps process that can be emulated for operational use
to continually train, evaluate, and deploy ML models for live acoustic inference. This work
also emphasizes the importance of implementing MLOps processes by continuously eval-
uating model performance over time and showing how it can improve model research and
development. This work achieves this by outlining a live inference architecture for deploying
acoustic classification models into production to augment sonar operator decision-making
alongside other data streams for fusion analysis. Additionally, this work seeks to propose a
holistic methodology for continuously developing, deploying, updating, and replacing pro-
duction ML models to account for performance degradation and rapidly replacing deployed
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models with improved versions. In order to emphasize the importance of having a process
for Continuous Integration (CI) and Continuous Delivery/Deployment (CD) of MLmodels,
this work compares the performance of various models trained over varying time periods
in a live-inference environment to display degradation that occurs over time in a real-world
environment. Additionally, this work seeks to establish a baseline human-machine teaming
interface through a platform that connects MLOps processes to a production environment
and integrates information to increase model interpretability and trustworthiness for end-
users AI.

Specific research questions include:

1. What is the performance difference between acoustic ML models in production and in
development?

2. What is the performance difference between acoustic deep learning models trained on
smaller datasets and larger datasets?

3. How does concept drift affect production ML models?

4. What is an adequate live-inference production architecture for acoustic ML models?

5.What is an adequateMLOps architecture and process to accelerate acoustic ML research?

1.2 Organization
Chapter II introduces MLOps, ML software applications, Bayesian Neural Networks, Con-
volutional Neural Networks, multilabel and multiclass classification, MLOps, and previous
related work for deep learning with acoustics.

Chapter III discusses the data processing pipelines, Bayesian and Convolutional Neural
Network model architectures, and the experiment methodology.

Chapter IV outlines the proposed live-inference MLOps platform and the resulting applica-
tion and model performance.

Chapter V explores the conclusions that can be drawn from the results discussed in Chapter
IV and how any assumptions may affect these conclusions. It ends with a discussion of
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opportunities for future work and improvements that can be made to the platform.
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CHAPTER 2:
Background and Related Work

2.1 Artificial Intelligence, Machine Learning, and Deep
Learning

The termsAI,ML, andDL are often used interchangeably to refer to a broad set of automated
capabilities enabled by computing technology that canmimic or exceed human performance.
However, it is important to differentiate between these terms in order to better understand
their applications and relevancy. For the purposes of this work, the following definitions
have been taken from the Oxford English Dictionary, which states that AI refers to “the
capacity of computers or other machines to exhibit or simulate intelligent behaviour” [8].
ML is a subset of AI, defined as “the capacity of computers to learn and adapt without
following explicit instructions, by using algorithms and statistical models to analyse and
infer from patterns in data” [9]. DL is the most specific subset of the three terms, and is
defined as “a type of machine learning considered to be in some way more dynamic or
complete than others, especially machine learning based on artificial neural networks in
which multiple layers of processing are used to extract progressively higher level features
from data” [10]. Goodfellow et al. propose an additional categorization of Representation
Learning between ML and DL, which uses ML to learn a representation of the input data,
which this work does not discuss [11]. This concept of the progression of AI to ML to DL
is depicted in Figure 2.1, outlining the increasingly more specific and complex nature of
each term, with DL generally referring to the most complex AI model architectures.

5



Figure 2.1. Venn diagram displaying the relationship between AI, ML, and
DL. Source: [11].

2.1.1 History of Artificial Intelligence
AI technologies have experienced several periods of popularity throughout history, with the
periods of disinterest categorized as “AI Winters,” as depicted in Figure 2.2 [12].

Figure 2.2. Timeline of AI winters. Source: [12].
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AI was first introduced as a concept in the 1940s where prominent figures such as the
mathematician Alan Turing explored creating intelligent machines [13]. Warren McCulloch
and Walter Pitts presented the first Artificial Neural Network (ANN) in 1943 as a method
of using propositional logic to represent how biological neurons in animal brains interact
with each other [14]. The term AI itself was first used in 1956 by Marvin Minsky and
John McCarthy when they hosted the Dartmouth Summer Research Project on Artificial
Intelligence [13]. Another key achievement that progressed the field of AI and DL was
the use of back-propagation to successfully train Neural Networks (NNs) in 1986 [11].
Rather than just sending inputs through a NN for a prediction and manually tuning the
model parameters, the difference between the actual output and the desired output could
be measured via a loss function and the parameters of the model updated automatically
through the back-propagation algorithm. Achievements in the past decade have led to
renewed interest in the potential for AI applications, particularly using DL methods due to
their displayed ability to outperform humans and superior accuracy [11]. One achievement
that significantly increased interest in AI was when Google’s AlphaGo program defeated
the world champion in the Go board game in 2015 [13]. More recent examples include
OpenAI’s development of one of the most advanced Natural Language Processing (NLP)
models, GPT-3, in 2020 and the DALLE text-to-image discrete variational autoencoder in
2021 [15], [16]. The field of AI has progressed significantly in recent history, and as a result,
a plethora of techniques and methods have been discovered to develop AI capabilities.

2.1.2 Supervised Versus Unsupervised Learning
Typically, MLmodels are trained in either a supervised or unsupervised manner. Supervised
ML refers to structured data inputs that contains a label as the target variable for the model
to predict. Supervised models learn from labeled datasets in order to make predictions on
structured, unlabeled datasets. An example of a supervised ML task is classification, in
which the model takes features as input variables to infer a predicted target variable as the
class categorization [14].

UnsupervisedML takes unstructured data as inputs which do not contain labels. An example
of an unsupervised ML task is clustering, in which a model takes unstructured data as input
and creates clusters of the features based on how alike they are to identify patterns [14].

7



2.1.3 Multiclass Versus Multilabel Models
Multiclass classification refers to models that have the ability to discriminate between more
than two classes of target variables. This means that if a set of features corresponds to
three different possible categories, the model has the ability to predict any of the three
categories, as opposed to binary classifiers which are only able to predict two classes.
However, multiclass classifiers are only capable of predicting a single output. The final
classification layer in multiclass NNs contains a softmax activation function to achieve this,
as shown in Equation 2.1.

f(G)8 =
4G8∑ 
�=1 4

G 9
(2.1)

The input vector of the layer is referred to by G, with  as the number of classes and G 9 as the
output vector [14]. The softmax function results in each neuron in the final layer outputting
a probability of its corresponding class with all probabilities summing to one [14]. The
neuron with the highest probability can then be used as the predicted class [14].

Multilabel classifiers are able to simultaneously predict multiple classes, and are usually
comprised of multiple binary classification problems using a cross-entropy loss function
[14]. For instance, if more than one class is present in a particular set of input features,
a trained multilabel classifier could predict all present classes simultaneously. Similar to
multiclass models, each output neuron corresponds to a class and will output a probability
value on the likelihood that a class is present. This architecture uses a sigmoid activation
function on the output layer, which transforms each neuron’s output to a probability between
zero and one [14].

f(C) = 1
1 + 4−C

(2.2)

The weighted sum of inputs from the previous layer is referred to by C, and the output f(C)
serves as the input to the next layer [14]. A probability threshold, typically set to 0.5, can be
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applied to the outputs of each neuron to determine which classes are predicted as present
in the input features [14].

2.1.4 Overfitting and Underfitting Models
While training models, there remains a danger for both overfitting and underfitting the
training data [14]. Overfitting the training data results in models that perform well on the
training data but they do not perform well on any other data [14]. This can occur as a
result of model architectures that are too complex for the training data [14]. Underfitting
is another concern that occurs when a model architecture is too simple compared to the
training data [14]. The result of underfitting is that the model cannot adequately learn the
patterns in the training data [14]. Both underfitting and overfitting result in lower model
performance [14].

2.2 Neural Networks
NNs are composed of elements called neurons and connections between those neurons [14].
The neurons are organized into layers, with each layer’s neurons interconnected with the
next layer’s [14]. NNs contain at least an input layer, where features are passed into a
hidden layer, and an output layer, which outputs the model’s predictions [14]. Multi-layer
perceptrons are the simplest form of neural networks, which contain at least one hidden
layer between the input and output layers, as depicted in Figure 2.3.
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Figure 2.3. A multi-layer perceptron. Source: [14].

A neuron refers to a node in the model architecture, which takes all input signals from
the previous layer and computes their weighted sum, as depicted by Equation 2.3, where
| refers to the weight and G refers to the input feature. The output is then sent through an
activation function to exit the neuron and traverse the output synapses to the next layer in
the model [14].

�(G) =
=∑
8=1

|8G8 (2.3)

Features are initially passed through the input layer, and as they traverse the connections
to the first hidden layer, they are multiplied by a weight and bias value associated with
the connection to the next neuron [14]. The neurons in the first hidden layer then compute
the weighted sum of the input connections and sends the result through the activation
function [14]. The activation function’s output is then sent to the next layer of neurons,
where this process is repeated until the features reach the output layer [14]. A commonly
used activation function in modern NNs is the Rectified Linear Activation Function (ReLU)
activation function shown in Figure 2.4, where I is the output from Equation 2.3 [11]. ReLU
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allows models to perform nonlinear transformations, but because it is still similar to linear
functions, it retains the benefits of how well linear functions are able to generalize and be
optimized [11].

Figure 2.4. ReLU activation function. Source: [11].

The output layer contains the same number of neurons as the number of properties the
model is built to predict. The output of the final layer in the network is used for the model’s
prediction. For a trained model, the output can be used in a production environment or
for further research and testing. However, if the model is training on a dataset, a cost or
loss function is then used to update the weights and biases. This is accomplished through
back-propagation, where the chosen loss function computes an error value, which is used
to update the model’s trainable parameters and decrease error on the next epoch [14].

2.3 Convolutional Neural Networks
Researchers discovered that adding more layers resulted in significant improvements to
accuracy and increased a model’s ability to handle complicated datasets [6]. However, there
is a trade-off in that the more complicated a model’s architecture is, the more computing
and time resources are required to train it. Models with a deep number of hidden layers are
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referred to as Deep Neural Networks (DNNs), which comprise the field of DL research.
Convolutional Neural Networks (CNNs) in particular, as a subset of DNNs, proved to
perform well on tasks such as pattern recognition and image classification [17]. CNNs
contain convolutional layers, which consist of filters that are applied to the input and
activate on certain features [14]. The filters contain trainable weights that are multiplied and
summed on the input features [14]. Filters are moved across input features by a defined step
size [14]. A step size of one results in an output that is the same size as the input [3]. Larger
step sizes result in a smaller output than the input, which is a technique known as pooling
that lessens the number of trainable parameters to decrease computation requirements and
prevent overfitting [3]. The filtering process in a convolutional layer results in highlighted
regions of the input features, creating a feature map [14]. These feature maps are well-suited
to detecting objects in images or other patterns in an input [3], [6]. Figure 2.5 illustrates
multiple convolutional layers and filters being applied to an image to create feature maps.

Figure 2.5. Convolutional layers with multiple feature maps applied to an
image with three color channels. Source: [14].

Combining convolutional and pooling layers with fully connected neural network layers
results in a typical CNN architecture such as the one displayed in Figure 2.6 [6], [14]. For
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example, if one of the output nodes corresponded to pagodas in Figure 2.6, then a trained
model would activate that node the most with the depicted input image.

Figure 2.6. Typical CNN architecture and example image input. Source: [14].

2.4 Bayesian Convolutional Neural Networks
Bayesian Deep Learning (BDL) is a method of DL that uses Bayesian probabilistic models
to make predictions using Deep Neural Networks [18]. BDL enables better model inter-
pretability because it allows for the estimation of uncertainty measures in the predictions.
Uncertainty measures identify which predictions have relatively higher or lower levels of
confidence and how likely a particular prediction is to be correct. BDL is able to estimate
uncertainty, because themodel uses variousmethods of sampling probabilistic distributions,
one which is depicted in Figure 2.7.

13



Figure 2.7. A simple neural network with one hidden layer. The left image is
a deterministic neural network and the right is a Bayesian Neural Network.
Source: [19].

In this method, the model learns probabilistic distributions as the weights, which results
in a different NN for each prediction that is made and, therefore, potentially different
predictions [7]. When making more than one prediction on the same data, uncertainty can
be quantified by measuring the amount of variation in the results [7]. When the model
is more certain about a set of predictions, it will contain less variation, and when it is
less certain, it will contain greater variation [7]. Presenting uncertainty measures to end-
users increases a model’s interpretability and ultimately helps improve end-user trust in the
model’s outputs [20], [7].

The loss function used to minimize the probability distribution of the weights during
training is the Negative Evidence Lower Bound (ELBO) loss function depicted in Equation
2.4 [21], [6]. The first term in the equation represents the expected likelihood or value,
and the second term is the Kullback-Leibler (KL) divergence, which is used to measure
the proximity between two probability densities [21], [6]. Minimizing the KL divergence
results in minimizing the ELBO function during backpropagation [21], [6].

L(\) = −E@\
[

log ?
(
� | l

) ]
+ KL

(
@\ (l) | | ?(l)

)
(2.4)

This work primarily deals with a method of BDL by modeling distributions over weights
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using a Monte Carlo (MC) dropout approach, where dropout layers are introduced to
the model that randomly exclude neurons from the network while training [22]. Dropout
layers are usually employed to combat overfitting during training, but in this context, the
randomness serves to form a probability distribution for the models [7]. This method of
approximating uncertainty has been shown to require fewer computational resources than
KL divergence without sacrificing performance [22]. When passing a sample through a
dropout Bayesian Neural Network (BNN) multiple times, neurons are excluded at random,
resulting in different predictions from which uncertainty can be calculated [7]. Equation
2.5 represents a Bayesian Neural Network using an MC Dropout approach as implemented
in [7].

?(~ = 2 |G) =
∫

?(~ = 2 |G, l)?(|)3l (2.5)

The input to the network is G, and 2 represents the output of the model. The integral of all
possible weights must be taken to estimate an output class c, as depicted in Equation 2.6 [7].

≈
∫

?(~ = 2 |G, l)@∗(|)3l (2.6)

The unknown value ?(|) is assumed to be derived from a Bernoulli distribution that is
created from the active dropout layers [7].

≈ 1
)

∑
C

?(~ |G, lC) =
1
)

∑
C

?C2 (2.7)

After running the network on the same sample multiple times, the sum of the results is then
used to calculate the MC integration [7].
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2.4.1 Uncertainty
Uncertainty can be quantified as a result of measurements from the data or in the model
parameters [7]. A plethora of methods are available to calculate uncertainty; however, there
is no consensus on the most effective measurement [6]. This work primarily discusses
entropy, aleatoric, and epistemic uncertainty measures.

Entropy is computed by taking the average amount of information in the predictive distri-
bution, as shown in Equation 2.8 [7], [21].

�? (~̂ | x∗) = −
∑
2

?̄2 log ?̄2 (2.8)

Dividing �? by log 22 results in a value between zero and one to normalize the output,
resulting in the number of classes 2, as depicted in Equation 2.9 [21].

�∗? (~̂ | x∗) = −
∑
2

?̄2
log ?̄2
log 22

(2.9)

Aleatoric and epistemic uncertainties are two alternative calculations to entropy, where
aleatoric uncertainty reveals information about noise in the data and epistemic uncertainty
is in reference to uncertainty of model parameters [7]. Both the aleatoric and epistemic
uncertainty calculations are depicted in Equation 2.10 [7].

1
)

)∑
C=1

diag( ?̂2C ) − ?̂2
2C︸                      ︷︷                      ︸

0;40C>A82

+ 1
)

)∑
C=1
(diag( ?̂2C ) − ?̄2)2︸                        ︷︷                        ︸
4?8BC4<82

(2.10)

2.5 Machine Learning Operations

2.5.1 Machine Learning Operations Process
According to Google’s “Practitioner’s Guide to MLOps,” MLOps is “a set of standardized
processes and technology capabilities for building, deploying, and operationalizing ML
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systems rapidly and reliably” [23]. Essentially, MLOps is a set of processes that attempts
to minimize the costs incurred by the technical debt described by Sculley et al. and to
account for the effects of concept drift in ML systems [24]. MLOps is a term derivative
from Development and Operations (DevOps), which “integrates the tasks, knowledge and
skills pertaining to planning, building, and running software product activities in a joint
cross-functional team within the IT function” [25]. Similarly, MLOps is a framework that
attempts to manage the continuous flow of ML model lifecycles as efficiently as possible
so that model performance and utility is maximized to account for concept drift, system
improvements, and ongoingmaintenance [23]. As annotated in Figure 2.8, MLOps accounts
for the entire lifecycle ofmanagingMLmodels, to include creating, deploying, and replacing
models and their accompanying data.

Figure 2.8. The MLOps lifecycle. Source: [23].

Figure 2.9 depicts how the different elements of the MLOps process interact with each
other throughout the MLOps lifecycle. The MLOps process begins with researching and
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developing new models and data processing pipelines where improvements and baselines
are established for a particular capability [23]. After new models are developed, testing
and preparation of the models for deployment is conducted to ensure they are ready for
a real-world environment [23]. Once models are prepared and deployed into production,
Continuous Evaluation (CE) of model performance must be monitored so their accuracy
remains above acceptable thresholds for their intended purposes [23]. Finally, as model
performance drops or research and development efforts produce enhancements, CI/CD of
ML models must be integrated to ensure timely replacement of outdated models in produc-
tion [23]. Interwoven between each step in the MLOps process is continuous management
and curating of the data used to train new models and used by deployed models [23]. Ulti-
mately, a holistic MLOps process seeks to automate each step in the lifecycle to the greatest
extent possible [23]. A successful, continuousMLOps process ensures that less time is spent
on ephemeral tasks to transition between different stages in a model’s lifecycle so that rapid
improvements and corrections can be made, ensuring the best performance and experience
possible for end-users [23]. Using MLOps as holistic approach to manage model lifecycles
is important to decrease technical debt in ML systems and to account for decreasing model
performance as a result of causalities such as concept drift.

Figure 2.9. The MLOps process. Source: [23].

18



2.5.2 Technical Debt
The advent of MLOps developed from Google’s 2015 paper, “Hidden Technical Debt in
Machine Learning Systems,” where Sculley et al. explore the hidden costs of ongoing
maintenance for ML systems [24]. Sculley et al. assert that over time, organizations tend
to incur significant technical debt, especially when increasingly adopting ML systems [24].
Technical debt refers to the general observation that developing and deployingMLmodels is
easy, while maintaining them is difficult and the requirements compound significantly over
time [24]. Sculley et al. attempt to categorize various types of debt into eroding boundaries,
data dependencies, feedback loops, design anti-patterns, configuration debt, and changes in
the external world [24].

Software engineering practices have shown that building software in a modular, separate
fashion results in easier debugging and improvements [24]. However, this modular approach
is difficult to enforce in ML systems because they are built to combine signals together for
their inputs, making isolated improvements impossible [24]. Additionally, transfer learning
to adapt or fine-tune models that receive inputs from other models creates chained depen-
dencies known as “correction cascades” [24]. Undeclared consumers of a model’s output
can also create additional debt that link a model’s output to other parts of a tech stack [24].

Data dependencies in ML systems can result in unstable inputs to a model, where the data
qualitatively or quantitatively changes over time [24]. If changes or improvements are made
to data streams without accounting for these changes in the model, the improvement can
actually have a detrimental impact on the model performance [24].

ML systems can also affect their own performance if they update over time, such as those
configured for active learning [24]. These effectsmanifest in both direct and hidden feedback
loops that can influence a model’s behavior or guide the underlying predictors [24].

As depicted in Figure 2.10, only a small proportion of code in an ML system is actually
related to the act of ML [24]. The other code is typically related to orchestrating the system
and its data pipelines [24]. Poor approaches to managing this supporting code can result in
over complicated features or generalized code that limits possibilities in theML system [24].
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Figure 2.10. Only a small fraction of real-world ML systems is composed of
the ML code, as shown by the small black box in the middle. The required
surrounding infrastructure is vast and complex. Source: [24].

Configuration debt is another area inwhichMLsystems can accumulate costs [24]. Typically,
ML systems contain a set of configurable options related to data processing and model
parameters [24]. Failing to properly manage or keep track of configuration options so they
are clear to developers and end-users can be costly [24].

Finally, since ML systems often interact directly with the real-world, changes or instabilities
to these external factors result in ongoing maintenance costs to keep models updated and
functional [24].

2.5.3 Concept Drift
One way external changes manifest in ML systems is through concept drift, where the input
data changes over time due to hidden contexts that are not present in predictor variables [26].
Change that results in a shifting distribution of the target variable is commonly referred to as
real concept drift [27]. Model performance can also be affected by shifting data distributions
of the input variables, which is a case known as virtual concept drift [27]. Each variant
of concept drift can happen individually or simultaneously, but all cases eventually require
that a model be updated [26].

For example, take a CNN classifier that is built to predict themodel of a car in an image. Over
time, car manufacturers release newer versions of the model that may look slightly different.
The underlying data changing over time may result in degraded model performance due to
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the concept drift in the system. Concept drift can be accounted for by retraining the original
model or training a new model with training data that accounts for the new distributions.

Various attempts have been made to account for concept drift with ML in acoustic environ-
ments. Ntalampiras architects a system that incorporates online learning and an automated
mechanism for updating class labels under a holistic concept drift framework [28]. Daqiqil
id et al. developed a Kernel Density Estimationmethod that evaluates the probability density
function to measure the degree of difference between values in corresponding variables and
quantify concept drift in an acoustic environment [29]. This work attempts to explore the
effects that concept drift has on a live acoustic ML system’s performance using a passive
acoustic vector sensor.

2.5.4 Previous Work in Machine Learning Operations Architectures
Baylor et al. architect an example Tensorflow-based, productionML platform for the Google
Play Store in which they apply a framework that supports building one machine learning
platform for multiple machine learning tasks, continuous training and serving, an exposed
interface for engineers and end-users to interact with the platform, and production-level
reliability and scalability [30]. Baylor et al. display how their platform enables teams to
easily deploy ML models and limit technical debt while doing so for a holistic system [30].
In their work, they outline the typical components of a ML platform, as depicted in Figure
2.11.

Figure 2.11. High-level component overview of a machine learning platform.
Source: [30].
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Min et al. develop a platform formulti-tenantmodel serving for acoustic and visionmodels in
an MLOps architecture for distributed edge devices [31]. In this work, Min et al. outline the
importance of minimizing redundancies by maintaining singular pipelines for multi-tenant
model serving and employing a modular approach to increase the platform’s flexibility [31].
Min et al. also explore the trade-offs between performance latency and system attributes
such as the number of models serving and batch serving in that latency is increased as the
computation requirements increase in a system. Latency can be reduced and throughput
maximized by using methods such as adaptive scheduling, feature caching, shared data
operations, and system-aware model containers [31].

2.6 Machine Learning in Acoustics
Underwater soundscapes in the context of this work refers to an ocean environment, where
a plethora of biological and man-made sound sources are present. ML has been increasingly
used for acoustic applications, and can achieve higher performance compared to traditional
signal processing methods [32]. ML in the underwater, acoustic domain has applications
such as source localization to identify the origin of the noise or acoustic scene classification
to identify the source entity [32].

Most ML research in underwater acoustic environments is concerned with identifying
biological sounds rather than man-made sounds such as those originating from ships or
submarines [33], [34], [6]. This is likely due to the lack of available labeled data for
research [6]. ExistingML research on classifying acoustic signals of man-made objects such
as ships consist of relatively small datasets, whereas large datasets are typically required
for acoustic classification tasks [32], [6]. Zak used a dataset containing only five ships [35],
Santos-Domínquez et al. used two hours of recorded acoustic signals [36], Niu et al. used
30 minute recordings of three ships [37], and Berg et al [38] and Neilsen et al. [39] needed
to synthetically generate their own examples to make up for the lack of data [6].

2.6.1 Underwater Sounds and Environmental Impacts
Ship sounds are created and affected by a wide variety of factors in the ocean. The sources
of ship noise can vary, as a confluence of sound from machinery, propeller cavitation,
propeller shafts, and reduction gears all result in underwater noise [3], [6]. The resulting

22



noise from a ship’s machinery creates an acoustic signature that can be detected by sonar
sensors [3], [6]. In addition to the diverse range of noise sources, environmental effects
such as temperature, salinity, and pressure, and physical interference such as biological
objects or topography can change the environment through which sound propagates [3], [6].
Temperature, salinity, and pressure in particular change throughout the seasons of the year,
and can affect the distance and manner in which sound propagates [6]. These environmental
changes can result in virtual concept drift, which degrades model performance over time.

2.7 Significance of Applying Machine Learning Opera-
tions to Acoustic Deep Learning

Due to the dynamic nature of underwater environments, input values to a NN can change due
to shifting class distributions, varying classification schemes, and environmental impacts
resulting in real and virtual concept drift. Due to increasing DoD investment in AI/ML,
as these capabilities and the amount of available data improve and increase, analysts will
become more reliant upon deployed ML models to assist in classifying acoustic scenes [5].
The concept drift inherent in acoustic environments creates a concern for significant tech-
nical debt in acoustic ML systems in the DoD as models will require ongoing maintenance
and updating throughout their lifecycle. When considering the fact that these models will be
distributed across various platforms, environments, sensors, and organizations, the risk of
compounding technical debt increases significantly. In order to account for these risks, this
work attempts to explore the impact of concept drift in a production, live-inference acoustic
ML system, and apply the principles outlined by Sculley et al. through employing a basic
MLOps architecture and framework [24].
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CHAPTER 3:
Methodology

3.1 Dataset and Processing Pipeline

3.1.1 Vector Sensor
The acoustic sensor used to collect and stream the data in this work is the GeoSpectrum
M20-105 vector sensor from GeoSpectrum Technologies Inc [40]. The vector sensor is
comprised of 4 channels and records frequencies up to 3kHz [40]. The first channelmeasures
acoustic pressure, and the other 3 are directional particle velocity fields that can assist in
determining the bearing of acoustic data [40]. The M20-105 vector sensor is located at the
Monterey Accelerated Research System (MARS) observatory at a latitude and longitude of
36.712465, -122.187548, 891 meters below the surface of the ocean in the Monterey Bay
National Marine Sanctuary in California [41], [42].

Figure 3.1. The MARS sensor is located 891 meters below the surface of
Monterey Bay and connected to the shore via a 52km cable. Source: [43].
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3.1.2 Physical Architecture and Storage
Recordings from the MARS sensor are saved in a .wav format every 30 minutes to a server
located at the Naval Postgraduate School (NPS) via an Rsync process. These .wav files
are then indexed every 5 minutes into a MySQL database to support data query packages
developed by Dr. Paul Leary in [44] that streamline work with the raw acoustic data. The
data query packages directly return raw acoustic data in response to queries defining start
and end times, obscuring the intermediate layer of working with .wav files [44]. As depicted
in Figure 3.2, once the acoustic data is stored on the server and indexed by the database, it
is available for access via the data query tools. The MLOps platform then uses the available
data for visualization, live inference, and generation of new datasets.

Figure 3.2. Physical architecture of the acoustic deep learning platform.
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3.1.3 Data Preparation and Processing

Acoustic Processing
The acoustic data is used for two purposes. First, it is used to perform live inference inside
the web application. Second, it is used to create preprocessed datasets for improving or
retraining models and developing new models. As recommended by [31], the platform
employs shared data operations in which all developed models, the live inference platform,
and the pipeline for storing preprocessed data for research use the same pipeline code.
Figure 3.3 displays the pipeline to prep the data, which is adapted from the original pipeline
developed by Pfau in [3].

Figure 3.3. Acoustic data preprocessing options used to develop new models
and apply to live-stream acoustic data for deployed models.

First, the acoustic signal is downsampled from 8KHz by a configurable amount to decrease
the number of parameters in the machine learning models; in this work the signal is
downsampled to 4KHz [3]. Downsampling decreases the complexity of the model and
necessary computing power by decreasing the number of trainable parameters [3]. After
downsampling, users can opt to retain all four channels or only the first acoustic pressure
channel. A low pass calibration filter can then be optionally applied to filter noise from the
acoustic data. This work only uses uncalibrated data and retains all four channels during
preprocessing.
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After the optional calibration filter has been applied, the acoustic signal can be stored in a
raw data format, as a spectrogram created using a Short Time Fourier Transform (STFT),
or a mel-log spectrogram [3]. Mel-log spectrograms are commonly used in deep learning
acoustics research and are computed by applying a mel-filterbank over the magnitude of the
complex output of the STFT [7], [3], [6]. Mel-log spectrograms are designed to emulate the
non-linear scale of human hearing by better discriminating lower frequencies [3]. The mel-
log scale is logarithmic over 1000Hz and linear under 1000Hz [3]. This work solely uses data
in a mel-log spectrogram format. To perform this processing, an STFT is calculated for 30-
second time periods with a 500ms frame size and 125ms frame hop using a Hann window
function [3]. A 128 band mel-filterbank is run on the STFT magnitude and then a log-
compression is computed to produce the mel-log spectrogram as depicted in Figure 3.4 [3].
Once the acoustic data is formatted as 30-second mel-log spectrograms, it is ready to be
merged with Automatic Identification System (AIS) true labels.

Figure 3.4. Mel-log spectrograms containing frequency on the y axis and
time on the x axis. Pixel color indicates sound intensity, with red being the
highest levels and blue as the lowest. Source: [7].

Automatic Identification System Processing
After the acoustic data is processed, true labels are applied to each 30-second period. This
research uses AIS to determine true labels for the recorded time periods and processes
AIS broadcasts in a manner adapted from Pfau’s work in [3]. Individual AIS positions
are recorded, each position’s distance and bearing from the acoustic sensor are calculated,
and then metadata, if available, for each ship is queried from VesselFinder to ensure the
proper ship designation and sizes are used [45], [3]. The AIS data is then processed into an
optimized format to apply true labels to the acoustic data, as shown through the example in
Table 3.1. The formatting records the time each individual ship, identified by their unique
Maritime Mobile Service Identity (MMSI), entered and exited a defined radius from the
acoustic sensor. This work uses 20km as the radius to define the entry and exit times to
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ensure detection by the acoustic sensor in a majority of conditions.

Table 3.1. AIS formatting process.

MMSI Designator Latitude Longitude Time Sensor Distance (km)
123456789 Tanker 36.88037 -122.159342 08/11/2021 05:30:14 18.802
123456789 Tanker 36.88037 -122.159392 08/11/2021 05:31:32 18.801
123456789 Tanker 36.880378 -122.159377 08/11/2021 05:33:08 18.802

... ... ... ... ... ...

MMSI Designator Start Time End Time Radius (km)
123456789 Tanker 08/11/2021 05:25:51 08/11/2021 06:44:32 20

Class labels are applied to the formatted AIS data to group each ship into one of four
categories based on their designations in accordance with Table 3.2. Each designation is
based on the ship’s approximate size. In this work, all time periods where no ships were
present within 40km are labeled with Class E which means there is no ship present.

Table 3.2. Ship classes. Source: [21].

Class Ship Designators
A Fishing Vessel, Tug, Towing Vessel
B Pleasure Craft, Sailboat, Pilot
C Passenger ship, Cruise Ship
D Tanker, Container Ship, Military Ship,

Bulk Carrier
E No ship present, background noise
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Data Labeling
Once individual ships have been assigned to a class, time periods of recorded acoustic data
are labeled with the ship classes that were present within a 20km radius during that time
period, as depicted in Table 3.3.

Table 3.3. True label assignment process.

MMSI Designator Start Time End Time Radius (km) Ship Class
123456789 Tanker 08/11/2021 05:25:51 08/11/2021 06:44:32 20 D
194729432 Sailboat 08/11/2021 06:31:16 08/11/2021 06:57:09 20 B
493872943 Fishing Vessel 08/11/2021 06:22:57 08/11/2021 08:19:46 20 A

Time Period 08/11/2021 06:33:00 - 08/11/2021 06:33:30
Channel 1 -8.27551354e-04 -5.69582451e-04 ...
Channel 2 6.91413879e-05 1.30891800e-04 ...
Channel 3 -1.17540825e-04 -2.09689606e-04 ...
Channel 4 -2.27928627e-04 -1.00255478e-04 ...
True Label Class A, Class B, Class D

Once the dataset has been processed and formatted, it is available for use in the ML
components of the architecture. The dataset processing pipeline is used for two purposes,
preprocessing data for live inferencing in the production architecture and creating large
preprocessed datasets to train or retrainmodels for research and development. These datasets
are stored in a .tfrecords format in order to optimize performance during model training
since the ML architecture is based on the Tensorflow library [46].

3.2 Model Architecture
The model used in this work is a custom CNN architecture developed in [3], adapted
as a BNN in [7] and for multilabel classification by [6], as shown in Figure 3.2. The
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custom architecture employs a rectangular 10x5 kernel size for each convolutional layer, as
opposed to the square kernels typically used for image classification in order to vary the
time and frequency dimensions of the input spectrograms [3]. The 10x5 kernel size was
developed through a hyperparameter search of kernel ratios of 1:1, 2:1, 3:1, and 4:1 that
found a 2:1 ratio performed the best [3]. The mel spectrograms are normalized through a
batch normalization layer at the input, then passed through four convolutional blocks, each
containing two convolutional layers [3]. The first convolutional block contains 16 filters,
and each subsequent block contains 16 more filters than the previous, as suggested by the
findings in [17], [3]. A batch normalization layer is employed after each convolutional layer,
and a max pooling layer at the end of each block halves the number of inputs to the next
block [3]. The architecture employs the ReLU activation function, a dropout layer, and a
final classification layer that employs a softmax or sigmoid activation function depending
on whether the model is multiclass or multilabel [3].

Figure 3.5. Custom CNN Model Architecture: Each block is described by
(number of filters, filter shape). Source: [3].

3.3 Performance Metrics
Standard metrics used to calculate performance of ML models include accuracy (Acc), pre-
cision (Prec), recall (Rec), F1, and area under the Receiver Operating Characteristics (ROC)

31



curve [11]. The methods employed to calculate these metrics differ between multiclass and
multilabel models. This work employs the same calculations and code to compute perfor-
mance metrics as in [7] and [6] outlined in Equations 3.1, 3.2, 3.3, and 3.4.

Equation 3.1 displays the methods used to calculate performance metrics for the multiclass
models used in this work. TP and TN represent the true-positives and true-negatives from
the model’s predictions, and FP and FN similarly represent the false-positives and false-
negatives [11].
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)% + �%
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%A42 + '42

(3.1)

Similar metrics are used in multilabel performance evaluation; however, the calculations
require some adaptations to account for the comparison of multiple labels. Performance can
be calculated for each possible output class, and an average taken of these results through a
method known as macro-averaging [47]. Micro-averaging is another method by which all
the classes are aggregated first and then the average is calculated [47].

Metrics can be calculated by each class or by each example, but to do so, the number of true
and false positives and negatives are required [47]. Equation 3.2 depicts how to calculate
these for a dataset �∗ with size " , �∗ = (G∗

8
, .8)"8=1 where G8 is the 8-th feature vector and

.8 are the true labels for each feature vector [6].
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(3.2)

)%, �%, )# , and �# are calculated where 5 (G∗
8
) is the set of predictions from model 5 on

G∗
8
[6]. Accuracy, precision, recall, and F1 can be calculated with the outputs from Equation

3.2 through eithermicro ormacro-averaging in Equation 3.3, where � ∈ �22, %A42, '42, �1

and 2 is the number of classes [47].
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To compute instance-based performance metrics, an average of the total can be taken after
each example is evaluated individually [6]. Equation 3.4 depicts these calculations for each
performance metric [6].

�22BD1B4C =
1
"

"∑
8=1

[ [
5 (G∗8 ) = .8

] ]
%A428=BC =

1
"

"∑
8=1

��.8 ∩ 5 (G∗8 )���� 5 (G∗
8
)
��

'428=BC (<) =
1
"

"∑
8=1

��.8 ∩ 5 (G∗8 )��
|.8 |

�1
8=BC =

2 · %A428=BC · '428=BC
%A428=BC + '428=BC

(3.4)

33



3.4 Experiment Methodology

3.4.1 Tools
The tools used to build the MLOps architecture and conduct experiments include code
written in Python, JavaScript, HTML, and CSS. The Python Flask web framework is used
to build the application in accordance with the methodology described in [48] and [49],
and Bokeh is the Python library used to build the embedded visualizations in the Flask
application [50]. The ML and data pipeline code is written using Tensorflow [46]. The
runtime environment consists of multiple Docker containers with Linux-based images that
are managed and networked using Docker-Compose [51]. Databases used in the architecture
include PostgreSQL and MySQL [52], [53].

3.4.2 Dataset Characteristics
The static dataset generated for this work’s experiments contains 967 days of recorded
acoustic data, totalling 2.7 TB. The acoustic data was collected from January 2019 until
August 2021 and labeled with 1,438 unique ships from AIS broadcasts. The data in the
live stream architecture and the static dataset are configured for use with both one and four
channel models, uncalibrated, and formatted as mel-log spectrograms.

3.4.3 Approach
A production, MLOps architecture is proposed and implemented in this work to manage
ML model lifecycles and data pipelines. The architecture is then used to deploy production
ML models from work in [3] and [7]. for live inference. Concept drift can manifest in
this system through changing relations between ship class designations and their emanated
acoustic signatures or through environmental factors such as temperature, salinity, and
pressure. To identify how this drift may affect model performance, this work explores the
performance over time of a multiclass, four channel custom CNN and MC Dropout BNN
using approaches from [3] and [7]. This work further uses the MLOps architecture to train
multilabel MC Dropout BNNs on varying time periods to test them on data increasingly
distant in time from the training dataset to assess performance degradation rates. This work
uses the findings from these experiments to exploremethods to optimizemodel performance
in a production architecture and identify possible factors that contribute to concept drift.

34



All models were trained to between 600 and 1000 epochs until convergence using NVIDIA
Quadro RTX 8000, Python 3.6, Tensorflow 2.2, and Tensorflow probability 0.11.
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CHAPTER 4:
Results

4.1 Machine Learning Operations Architecture
This work proposes a system-level production architecture and MLOps process for acoustic
deep learning systems. Figure 4.1 outlines the interaction between the various components
of this purpose-built MLOps architecture for ML with live acoustic signals. The holistic
process consists of elements for researching and developing new ML models, retraining
active learning models, deploying the models for live inference on streaming acoustic data,
automated true labeling of the acoustic data using an AIS stream, and a user interface for
managing the MLOps process. Each component runs in a containerized environment to
maintain a modular architecture as recommended in [24] and to be hardware agnostic.

Figure 4.1. An architecture for an acoustic deep learning MLOps process
for production of live-inference models into an application, research and
development of new models, CI/CD and CE of deployed machine-learning
models, and developing new datasets for continuous research.
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4.1.1 Model Lifecycle
In accordance with theMLOps lifecycle outlined in Figure 2.8, the proposed system outlines
methods for accomplishing all phases of model management. Static, labeled datasets created
from the pipeline described in Section 3.1 are available for researching novel models,
hyper-parameter tuning for increased performance, and retraining and updating previously
deployed models. The operations using these datasets are done separately from the live
prediction architecture, which primarily interacts with the live data streams. However, the
static datasets can be continually updated from the live data streams. Trained models can be
deployed into production after training on a static dataset via the user interface for managing
production ML models as shown in Section 4.1.2. Continuous training, if desired, can also
be done using the static datasets to perform transfer learning to update and redeploy models.
While running in the application, functionality is available for both prediction serving and
continuous monitoring of performance, as outlined in Section 4.1.2.

4.1.2 User Interface and Machine Learning Operations Functionality
The web application maintains a user interface for various MLOps functions within the
architecture through four modules as depicted in Figure 4.2. The first module is the live
inference display where analysts can view the live-stream of model predictions, AIS ship
tracks, and acoustic spectrograms. The second module is for monitoring the performance
of the production ML models. The third module’s function is to manage the deployed ML
models. The fourth module serves as an interface to edit and curate the data used for the
platform.
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Figure 4.2. Web application home page.

Live Prediction Module
The live prediction display shows a live scrolling spectrogram to depict the acoustic data.
Below the spectrogram are the corresponding predicted classes for each deployed model
combined with metadata about the model’s attributes, as depicted in Figure 4.3. A multi-
tenant model display provides insight to end-users for higher confidence when multiple
models output the same predicted class. Conversely, if multiple models display a vari-
ety of predicted classes, this indicates uncertainty in the predictions. Displaying multiple
model predictions serves to loosely emulate an ensemble process to increase trust and in-
terpretability of the system. Additionally, multi-tenant model serving is beneficial because
this architecture enables model deployments that serve different functions and can make
different types of predictions, as noted by [31]. Additionally, multi-tenancy better supports
research and development to evaluate different models in production alongside one another.
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Figure 4.3. Live spectrogram and model predictions.

Similarly, for the probabilistic BNNmodels, users can select an uncertaintymetric to display,
as depicted by Figure 4.4. The uncertainty metric provides insight into which models are
relatively more certain in their prediction. The primary uncertainty measures available
include aleatoric uncertainty, epistemic uncertainty, entropy, and variance as implemented
by [7].
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Figure 4.4. Live uncertainty graph for BNN models.

In order to verify the actual presence of predicted ship classes, the user interface also
includes a visualization of an AIS stream from the U.S. Department of Transportation
(DOT) SeaVision Application Programming Interface (API) [54]. As depicted in Figure
4.5, the display visualizes the sea bottom contours, ship positions relative to the acoustic
sensor, as well as other information contained in the AIS broadcast on mouse-over of
the ship’s positions. The addition of an AIS visualization enables correlation, fusion, and
characterization of model predictions in a single user interface.
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Figure 4.5. Live AIS stream display of ship positions.

Model Performance Module
The model performance module provides insight to researchers and end users about the
relative performance of each ML model. Figure 4.6 calculates the Accuracy, Precision,
Recall, and F1 scores for the entire lifetime of while each model was active.

Figure 4.6. Calculation of total performance for production ML models.

The table in Figure 4.7 offers a more in-depth view of each model’s performance by
displaying the metrics for each possible ship class prediction and their micro and macro-
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averages. The classification report metrics allows users to identify which models perform
better in regard to particular ship classes.

Figure 4.7. Calculation of classification reports for production ML models.

Concept drift is an additional concern in production ML architectures that will degrade
model performance over time. Figures 4.6 and 4.7 will not show this performance degra-
dation since they are total summary statistics, so a visualization of performance metrics
over time is necessary to observe concept drift. Time domain visualization enables users to
determine a performance threshold beyond which a model becomes unusable or necessary
to replace or retrain. This component is significant to enable active-learning configurations,
where a degradation beyond a certain point could initiate automatic retraining of the asso-
ciated model. Time domain considerations also allow users to observe if models perform
worse at certain times of year due to environmental changes. In these cases of concept drift,
models could be adapted accordingly to account for specific periods of time. To enable this
type of analysis, Figure 4.8 depicts model performance by each day.
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Figure 4.8. Calculation of daily model performance metrics.

Model Management Module
To abstract the use of code in the deployment andmanagement ofMLmodels, the application
offers a user interface to perform these functions. Figure 4.9 depicts the form that is used
for the custom deployment of Tensorflow model checkpoints into production. The form
includes the ability to upload the model checkpoint file in a .h5 format and a params.txt file
containing metadata about how the model was trained, attributes of the model, and the input
data types. Users must then specify a model name by which to refer to this deployment,
whether the model is multiclass or multilabel, the number of input channels of acoustic data
it is configured for, the formatting process for the data stream, the model architecture, and
the accuracy score that the checkpoint achieved during training on the test set.
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Figure 4.9. Web form to deploy new ML models into production.

In addition to deploying new ML models, the Model Management Module allows users to
stop models in production or to reactivate models that have been previously stopped through
the web form displayed in Figure 4.10.
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Figure 4.10. Form to stop active model predictions or to reactivate stopped
models.

When the Model Management Module is used in concert with the Model Metrics Module,
users can quickly determine which models need to be replaced, deactivate them, and deploy
new models as a replacement. The user interface for managing multi-tenant model deploy-
ments results in less required code for researchers to move their models from development
to production.

Data Management Module
As AIS data is continually saved and each ship is assigned to a particular class, it is
possible that the characteristics of each ship class change due to the shifting attributes of the
ships that comprise that class. Changes in size for instance would result in changes in the
general acoustic signatures associated with a particular class and degrade the performance
of deployed ML models. In order to combat this form of real concept drift, the Data
Management Module offers insight into the statistics of each ship size as they correlate
to their assigned class. As an overall reference, the page first contains a table to show the
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average dead weight, length, and beam for each ship class category as depicted by Figure
4.11.

Figure 4.11. Table to display the average ship class sizes.

As additional ship designations are recorded that have not yet been assigned to a ship class,
they are marked as having an “Unknown” class. Using the sizing information from Figure
4.11, users can determine which category a new designation belongs to and assign it via
the form depicted in Figure 4.13. Due to limitations in the data from AIS broadcasts, some
broad designations such as “Unknown” or “Other type” can not be assigned to a ship class
and are discarded during the data labeling process.

Figure 4.12. Table to display the average size of each ship designation with
an unassigned ship class.
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Figure 4.13. Form to assign a class to uncategorized ship designations.

The attributes of ship designations already assigned to a ship class may also drift over time,
so the information provided in the table of Figure 4.14 allows users to monitor the summary
statistics of ship designations and correlate them with the summary statistics in Figure 4.11.
In order to account for concept drift in the relation between the categorization of classes
and the ship classes statistical attributes, the form depicted in Figure 4.15 provides a means
to reassign class categories as necessary.
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Figure 4.14. User interface to display the average size of each ship designa-
tion.

Figure 4.15. Form to change assigned ship classes.
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The Live Prediction,ModelManagement, DataManagement, andModel Performancemod-
ules in the application are key to enabling an MLOps architecture in which the continuous
management of model life cycles is possible to optimize performance.

4.1.3 Databases
Each module is dependent upon a database back-end to manage the overall architecture.
This work also defines a schema outlined in Figure 4.16 that is used as the application’s
back-end database. The primary application uses a PostgreSQL object-relational database,
which has a few differences compared to other types of databases in that it has a wide variety
of available data types such as JavaScript Object Notation (JSON), which this work uses
extensively, and can store more complex data than relational databases [52]. The MySQL
database used in this work for the acoustic data querying tools is another database used for
storing simpler data in a relational format [53].

The AIS table stores the raw data stream of ship tracks from the API. The Ship Classes
table is used as a reference to assign each ship to a ship class. Metadata associated with
each ship is saved in the MMSI table to decrease the number of web-scraping operations
with VesselFinder [45]. During the true label assignment process, the data in the AIS table
is iterated through and stored in a processed format in the AIS Times table, which is used
to assign true labels to periods of acoustic data.

Eachmodel and its metadata is stored in theModels table to track versions, data formats, and
architectures of each model to use during the loading process and whether or not the model
is currently active to conduct live-inferencing operations. As predictions are continuously
made on 30-second time periods, they are stored in the Predictions table, which contains a
JSON-formatted set of predictions from each model.

The MySQL database developed by Dr. Paul Leary in [44] allows for development of tools
to seamlessly query raw audio data without requiring the manipulation of .wav files. Each
.wav file is indexed and the metadata is stored in the Audio and Orientation tables to support
the query tools discussed in Section 3.1.2.
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Figure 4.16. Application database schema.
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4.2 Model Performance Comparisons
In addition to the proposed live-inference architecture, this work explores model perfor-
mance in a simulated production setting by using the MLOps architecture to generate new
datasets and evaluate model performance on them. This work tests models on time periods
of data outside of those that were used to train the models. By performing inference on
these new datasets, the evaluation simulates model performance in a production environ-
ment. The test data was selected from increasingly distant time periods from the original
training dataset, which spanned from March to August of 2019. The models were tested
on subsequent data from the following week, month, and 3 months of data from after the
period used for training, testing, and validation. The models referenced in Table 4.1 were
developed from work in [7] and [3].

Table 4.1. Pre-trained model accuracy over time in a simulated production
environment.

Model Validation Test 1 Week 1 Month 3 Months
4 Channel Custom CNN 0.69 0.70 0.45 0.20 0.201
4 Channel Dropout BNN 0.81 0.80 0.29 0.10 0.231

The high performance of the models on the validation and test datasets in comparison
to their relatively low performance on subsequent time periods indicates the models are
possibly overfitting on the training dataset. In order to further validate this, probabilistic
MC dropout BNN models were trained on 6-month periods from varying times and tested
in the same manner on time ranges increasingly distant from the training dataset. Table 4.2
depicts the models’ resulting performance.
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Table 4.2. Newly trained model accuracy over time in a simulated production
environment.

Trained Time Period Validation Test 1 Week 1 Month 3 Months
01-06 2019 0.92 0.914 0.357 0.368 0.278
07-12 2019 0.87 0.887 0.336 0.350 0.356
01-06 2020 0.94 0.978 0.096 0.191 0.247
07-12 2020 0.85 0.961 0.773 0.77 0.404

The test results for the following week and month of the model trained on July through
December of 2020 are likely outliers due the fact that 80% of the samples were Class E for
no ship. The Class E predictions accounted for the majority of accurate predictions, with
the other classes maintaining performance within similar ranges to the other test results.

After reviewing the results, it was evident that the datasets were likely overfitting during
training, regardless of the time period the data was trained on. However, this wasn’t im-
mediately evident, because the models displayed a high performance on the test datasets.
This means that the methodology taken to shuffle the dataset possibly resulted in increased
performance on the test dataset so it wasn’t indicative of performance in a production en-
vironment. Since the dataset is comprised of .tfrecords, each containing approximately 64
30-second acoustic samples, shuffling these files or the 30-second samples directly results
in a high likelihood that the same ship target variable is present in the training, validation,
and test datasets. Models would then be able to learn a ship in the training dataset and
perform well on that same ship in the test and validation datasets, inflating the performance
metrics. To explore this possibility, an attempt is made to correct overfitting during training
by splitting the dataset in different ways that results in fewer ships being present in all 3
dataset splits.

The first experiment was to conduct a sequential split to ensure no ship targets crossed over
between the test, validation, and training datasets. The sequential split orders the acoustic
data chronologically, then identifies an 80% training dataset and two 10% datasets for
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validation and testing. However, with this approach, it is possible that concept drift from the
changing environment during different times of year affects performance results. The second
experiment involved grouping the data by each day and shuffling the grouped data before
conducting the splits. This approach attempted to account for the changing environment
while minimizing the number of targets present in all 3 datasets, since fewer ships crossover
between days. The final two approaches apply the same shuffling method after grouping the
data by week and month. The results of model performance using each of these splits is
depicted in Table 4.3.

Table 4.3. Model performance of different shuffle groupings.

Shuffle Grouping Validation Test 1 Week 1 Month 3 Months
Sequential 0.56 0.164 0.356 0.09 0.358

Day 0.54 0.353 0.291 0.089 0.18
Week 0.39 0.49 0.00 0.095 0.364
Month 0.33 0.134 0.188 0.123 0.124

The various approaches to shuffling methodologies did not result in better sustained perfor-
mance on data outside of the training datasets. However, the performance on the test dataset
is more indicative of the performance in production, so this concern has been addressed in
the new shuffling approaches. Of note, the models began to rapidly overfit during training
within the first 10 epochs, indicating the model architectures may be too deep or complex.
Despite the concern for overfitting, it is possible that the resulting low performance from
the models in production is due to the amount of available data for training. To explore this
possibility, models were trained on year-long periods to see if it resulted in higher, sustained
performance. The results of this experiment are depicted in Table 4.4.
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Table 4.4. Models trained on year-long time periods accuracy over time.

Trained Time Period Validation Test 1 Week 1 Month 3 Months
2019 0.76 0.853 0.292 0.298 0.292
2020 0.69 0.808 0.833 0.831 0.404

Similar to the results for the 07-12 2020 model in Table 4.2, the 1 week and 1 month test
results for the model trained on 2020 are outliers due to the high number of Class E “No
Ship” designations that account for the majority of samples. Generally, the models trained
on year-long time periods seem to have similar or worse performance compared to the
models trained on 6-month time periods. As such, the models do not generalize well and
do not seem to perform much better than random choice.
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CHAPTER 5:
Conclusion

5.1 Discussion
The main contribution of this research is the proposed system architecture for a production
MLOps platform for acoustic signals. It enables researchers and end-users to train new
models, deploy them, observe ML models in production, retrain models, and manage
the data. The MLOps architecture also enables development of new, progressively larger
datasets than ever before used in literature for more robust testing and training new models
on passive sonar signals. Integrating the various components of this system ultimately serves
the purpose of providing end-to-end functionality for ML and accelerating the pace at which
research can be conducted by housing this functionality in a single platform.

Having this functionality of the system enabled testing the model performance in a produc-
tion setting to identify that it degraded. This further enabled investigation of the source of
this degradation. Additionally, training models on larger datasets did not improve perfor-
mance in production. The insights gained from using the production architecture emphasize
the importance of maintaining a holistic MLOps process to support the full model lifecycle,
because not doing so leaves significant gaps that could affect the interpretation of results or
leave important factors undiscovered.

There are a variety of possible reasons that could have contributed to the models’ degraded
performance in production. One possibility is concept drift in the form of the dynamic
environmental factors or changing statistics in the relation between ship classes and their
acoustic signatures. These drifts could be happening so rapidly that each models’ ability to
generalize degrades almost immediately after the training period. Another possibility could
involve unaccounted-for noise that distorts ship sounds, including ships not transmitting AIS
that are present in the acoustic signals or biological sources. Unbalanced classes could have
additionally contributed to the model performance issues as well due to underrepresented
and overrepresented classes. This concern is particularly relevant in multilabel classification
approaches, as each combination of classes is also treated as a separate label. Ultimately,
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model performance degradation on time periods outside of the training dataset could have
been a result of any of these factors or a combination of all of them.

5.2 Future Work
Additional work should be performed to identify how to prevent model overfitting during
training and the best way to prepare the data to prevent this. This could include boosting
underrepresented classes in the dataset and then further determining the best approaches to
perform training, testing, and validation splits to minimize the number of targets present
in all three groups. Further model tuning and hyperparameter searches will also likely be
required in order to progress this research. Since the models overfit so quickly when testing
the new shuffling approaches, the model architecture may be too deep, so research should
experiment with less complex architectures.

Concept drift is another area research could focus on exploring further. In order to better
quantify the source of concept drift in the system, more work should be done to look at
the changing statistical relationship over time between the ship classes, ship designations,
and acoustic signatures. Efforts could also include identifying the extent of unaccounted-
for noise that is present in the acoustic data. Once concept drift is better quantified and
identified, automated methods of updating models could be developed to deploy a new
model once drift has exceeded a specified threshold.

TheMLOps platform also contains opportunities to build additional features.Active learning
can be automated in the live-inference system to automatically cue the retraining and
redeployment of an active learning model based on uncertainty thresholds as executed
in [7]. Further exploration of active learning methods can help determine whether this
approach combats concept drift more effectively. User interfaces can also be developed to
create and manage new datasets and training for newMLmodels using no-code approaches.
The platform can also be adapted so each deployed model exists within a container and is
exposed via a Representational State Transfer (REST) framework to increase modularity as
recommended in [24]. Additionally, timelines from acoustic events until model prediction
and user display should be explored and optimized to the extent possible.

Holistic security considerations for the application can also be explored, to include the
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physical architecture, software, and security of the ML models. ML model security can
encompass developing standardized testing to ensure the model is ready for production
and exploring durability to adversarial attacks. Tests can also be developed to run on the
production models to ensure continuous testing and security.

Finally, new approaches and model architectures can be developed and added to the system
for performance comparisons. For example, a ship/no ship binary classifierwas implemented
in [3] that can be adapted for this platform. Models can be developed for multi-instance
classification, which would be able to account for multiple instances of the same ship
class. Object detection models can be explored as another approach to serve as multi-
instance, multilabel classifiers. Approaches can also be explored to build classifiers for
ship designations directly rather than ship classes to see if they perform better than ship
class groupings and prevent concept drift in the target variable. Additionally, approaches
using acoustic data from multiple sensors can be developed to identify how models perform
across different physical environments and sensor characteristics. Finally, models can be
developed to compare the relative effectiveness of different data processing approaches such
as calibrated versus uncalibrated datasets.
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