
Materials Today: Proceedings 45 (2021) 5829–5834
Contents lists available at ScienceDirect

Materials Today: Proceedings

journal homepage: www.elsevier .com/locate /matpr
Prediction models for bond strength of steel reinforcement with
consideration of corrosion
https://doi.org/10.1016/j.matpr.2021.03.263
2214-7853/� 2021 Elsevier Ltd. All rights reserved.
Second International Conference on Aspects of Materials Science and Engineering (ICAMSE 2021).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: mahdik@oslomet.no (M. Kioumarsi).
Masoud Ahmadi a, Ali Kheyroddin b, Mahdi Kioumarsi c,d,⇑
aDepartment of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
bDepartment of Civil Engineering, Semnan University, Semnan, Iran
cDepartment of Civil Engineering and Energy Technology, OsloMet –Oslo Metropolitan University, Pilestredet 35, 0166, Oslo, Norway
d Faculty of Engineering, Østfold University College, Halden, Norway

a r t i c l e i n f o
Article history:
Available online 2 April 2021

Keywords:
Corrosion
Prediction model
Steel reinforcement
Bond strength
Artificial neural networks
a b s t r a c t

Corrosion phenomena is one of the main deterioration causes, which remarkably affects the behavior of
structural reinforced concrete (RC) members in seismic regions. Researches on reducing rehabilitation
cost, performance assessment, and accurate modelling of corrosion-affected RC structures are progres-
sively becoming popular in recent years. Corrosion diminishes bond capacity between reinforcement
and surrounding concrete, which induces reduction in strength and ductility of members. The aim of this
investigation is to provide a prediction approach based on a large number of results from published
researches related to corroded reinforcement in concrete members using artificial neural networks
(ANN). The minimizing mean square error criterion and increasing regression value of predicted results
are considered for evaluation of training performance of ANN models. The validity of proposed model is
checked using collected experimental database. Results show that estimated model has acceptable
agreement with experimented data.
� 2021 Elsevier Ltd. All rights reserved.
Second International Conference on Aspects of Materials Science and Engineering (ICAMSE 2021). This is
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Based on the design codes and guidelines, strain in steel rein-
forcement of reinforced concrete (RC) elements should be the same
as that in the adjacent concrete. In other words, bond between con-
crete and reinforcement helps reinforcement to have same strain
with surrounding concrete [1]. The bond strength depends on the
friction condition between steel and concrete, which could have
significant effects on the performance of RC structures [2]. Aggres-
sive environment, as one of the main reasons of corrosion, may
result in a large deterioration of RC structural elements and conse-
quently decreases their bond strength. Corrosion could affect the
serviceability and durability of the RC structures and generate
remarkable maintenance costs [3–5]. Uniform and pitting are
two types of corrosion in RC members [5]. Carbonation is the main
source of uniform corrosion, which can cause concrete cover crack-
ing, loss in bond strength and anchorage between concrete and
reinforcements [6–8]. When a reinforcement is corroded, the iron
oxides form the expanded products in the steel–concrete interfa-
cial zone. This expansion results in internal pressure around the
reinforcement, which leads to cracking, spalling of concrete and
thereby reduces rebar confinement [9,10]. Corrosion degrades rib
height and diminishes cross-sectional area of rebar which affects
the interaction between concrete and ribs of rebars, ultimate
capacity, and failure mode [11–13]. For the above-mentioned rea-
sons, it is crucial to better understand and characterize the effects
of reinforcement corrosion on the deterioration of interfacial bond
capacity between reinforcement and adjacent concrete.

Although finite element is one of the appropriate methods to
investigate the global behavior of the corroded RC structures and
other composite structure [14–17] but recently there has been par-
ticular attention to the application of soft commuting methods
such as artificial neural networks (ANN) for the assessment of
residual capacity of RC structures [18,19]. The present study pro-
posed a new approach to estimate the average value of bond capac-
ity between corroded reinforcement and surrounding concrete by
gathering wide range of experimental results using ANN method.
The results of this study could utilize directly to improve modelling
and assessing of existing RC structures with considering corrosion
effects.
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2. Background

Up to now, many investigations have been done to explain the
effects of corrosion on the bond-slip behavior between the rein-
forcement and concrete in RC structures. Furthermore, some ana-
lytical, empirical, and numerical bond models are proposed for
determining the residual bond strength between concrete and cor-
roded reinforcement [20–28]. Cabrera [24] proposed an equation
to predict the bond loss based on cracks pattern, rate of corrosion,
and corrosion intensity using experimental data. Coronelli [22]
studied the effect of different confinement situations and roles of
the interface pressure of corroded steel reinforcement on residual
bond strength. Wang and Liu [25] studied the degradation of bond
strength and suggested a simple theoretical bond approach to
determine the effect of corrosion on decreasing of bond capacity
before and after corrosion cracking.

The fib model codes [29] proposed four-stage bond equations
for monotonic loading, see Fig. 1. The suggested bond model can
be calculated as a function of the slip between reinforcement and
adjacent concrete:

s ¼

smaxð s
s1
Þa 0 � s � s1

smax s1 � s � s2
smax � smax � srð Þ � s�s2

s3�s2
s2 � s � s3

sr s3 � s

8>>><
>>>:

ð1Þ

where, smax is maximum bond stress (without corrosion), sr define
as residual bond stress, and other parameters of local bond stress-
slip bond expression are determined using fib model code [29] for
pull-out failure mode based on good or all other conditions.

Wu and Zhao [21], to resolve difficulties in computational sim-
ulations of concrete structures such as incompletely and disconti-
nuity of existing models and non-convergence of numerical
simulations, proposed a single and mathematically continuous
bond-slip relationship (Eqs. 2–8) for splitting and pull-out failures.
This model can used for plain and confined concrete.

s ¼ smax

e�B ln
B
D

B�D � e�D ln
B
D

B�D

� � ðeBs � eDsÞ ð2Þ

smax ¼ 2:5
1þ 3:1e�0:47K �
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f
0
c

q
ð3Þ

Kco ¼ C
db

ð4Þ
Fig. 1. Local bond stress-slip model [8].
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Kst ¼ Ast

nSstdb
ð5Þ

K ¼ Kco þ 33Kst ð6Þ

B ¼ 0:0254þ Kst

�0:0232� 8:34Kst
ð7Þ

D ¼ 3 lnð 0:7315þ K
5:176þ 0:3333K

� 0:13Þ � 3:375 ð8Þ

where, Kco, Kst and K are coefficients to consider the influence of
concrete confinement, stirrups confinement, and effect of combined
confinement, respectively. B and D are coefficients, controlling the
post-peak softening slope and the slope of the ascending branch
of stress–strain diagram, Ast is the cross-sectional area of all legs
of transverse reinforcement, s and Sst are slip and stirrup spacing,
respectively.

3. Experimental database

In order to predict the average interfacial bond stress among
corroded reinforcement and concrete, large number of experimen-
tal results were gathered from the previous studies [23,30–38]. All
of the bars in the database were deformed bars where corrosion
occurred after casting of concrete. The loading condition was
monotonic tension and all the results obtained from pull-out test.

In general, the various parameters effect on the bond strength
between concrete and reinforcement. Among them, the major fac-
tors are bar size and its location in cross section of concrete mem-
ber, concrete cover, confinement (effect of stirrups) witch delay the
spalling of concrete, compressive strength of concrete, length of
reinforcement, and corrosion level (minor, moderate and
extensive).

Using some parts of the gathered data, the change of relative
bond capacity (Rt) versus corrosion level (w) is plotted in equations
(9) and (10) and Fig. 2. In these equations, w is utilized to evaluate
the corrosion level as percentage loss of weight.

w ¼ W0 �W
W0

� 100 ð9Þ

Rt ¼ sðwÞ
smaxðw ¼ 0Þ ð10Þ

Statistical details of the mechanical-geometric characteristics of
the collected database are presented in Table 1. The considered
parameters include bar diameter (db), ratio of bar diameter to

embedment length (dbl ), ratio of clear cover to bar diameter ( c
db
),

yielding strength of reinforcement (f y), compressive strength of

concrete (f
0
c), and corrosion level (w).

4. Bond strength model

4.1. Artificial neural networks

Artificial Neural Networks (ANNs) is an efficient approach in
intricate engineering problems. Up to now, ANN has utilized in
many practical civil engineering problems such as axial capacity
estimation of composite column [39–41], shear strength estima-
tion of RC beams [42–44], and compressive strength of concrete
[45–47]. The feed forward-back propagation state of multilayer
network is one of the efficient type of neural networks, which is
utilized in many research works. The network contains consecutive
layers of neurons, and appropriate transfer functions as efficient
tools to determine the intricate relationships between targets



Fig. 2. Change of bond capacity at different corrosion levels.
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and input variables [48]. The Levenberg–Marquardt (LM) algo-
rithm, which is an efficient technique among training algorithm,
is used in this study. LM method is an iterative procedure which
is widely used as a learning algorithm in non-linear least squares
problems [48]. However, a LM training back propagation network
5831
is used to predict bond capacity of steel reinforcement with consid-
eration of corrosion.

LM procedure randomly divides input and output vectors of
data into three categories: training, verification and testing. By
applying a trial and error method to obtain optimum performance,



Table 1
The statistical details of collected experimental data.

db(mm) db
l

c
db

f y(MPa) f
0
c(MPa) w(%)

Min 10 0.04 1.0 315 24.40 0.0
Max 25 0.25 7.50 606 56 28.9
Mean 16.14 0.16 4.26 419.3 37.3 4.43
Standard deviation 4.95 0.07 1.90 56.04 10.5 4.93
Coefficient of variation 0.31 0.41 0.45 0.13 0.28 1.11

Fig. 4. Regression values versus number of neurons in hidden layer.

Fig. 5. Schematic diagram of proposed ANNs model.
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the percent of training, verification, and test sets are considered as
60%, 20%, and 20%. The training part was utilized to regulate the
weights and biases. The validation data controlled network to pre-
vent overtraining phenomena. Related error to validation set starts
to heighten when overtraining occurs. An over-trained system has
poor estimative efficiency. For more certainty, the testing set was
utilized to check the accuracy of trained networks using new data.

4.2. Proposed model

Key parameters in creation of ANN are selection number of hid-
den layers and number of neurons in them. In the present paper,
onehidden layerwasutilizedandnumberof neurons inhidden layer
were varied between 5 and 14 and finally the best numberwas used
in proposed ANN-model. Two criteria were utilized for stopping the
training procedure, which are Regression values (R-values), and
Mean Square Error (MSE). Lower MSE value (Eq. (11)) and upper
value of R (Eq. (12)) mean better performance of the ANN-model.

MSE ¼ 1
n

Xn
i¼1

scalc: � stestð Þ2 ð11Þ

R2 ¼ 1�
Pn

i¼1 scalc: � stestð Þ2Pn
i¼1 scalc:ð Þ2

ð12Þ

The MSE and R-values of the created ANN-models versus vari-
ous number of neurons in hidden layer are illustrated in Figs. 3
and 4, respectively.

Based on the obtained results in Figs. 3 and 4, the ANN-
approach with five number of nodes in hidden layer was chosen
as efficient network. The configuration of optimum ANN-model is
shown in Fig. 5.

The matrix for weights and biases related to ANN-model in the
hidden and output layers are as follows:

Weighthidden ¼

�1:0633 �0:42121 0:03481 �1:3701 �0:26848 �0:26298
�1:7001 �4:0727 �0:74026 3:0177 �0:79445 �2:3508
0:68063 �1:82 2:5792 5:3129 �0:30332 0:45725
�3:6926 �0:09014 0:18516 0:96 1:5596 �1:8268
�0:51557 0:51128 0:97846 �1:087 2:7065 0:60245

2
6666664

3
7777775

Weightoutput ¼ 4:543 �1:0024 2:7471 1:2239 �2:762½ �
Fig. 3. MSE value versus various number of neurons in hidden layer.
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Biashidden
T ¼ 0:60654 0:34286 0:19363 0:49809 2:5619½ �

Biasoutput ¼ 0:0107½ �
4.3. Comparison of proposed model with experimental data

To check the precision of the proposed model, a comparison
between simulated data and results of experimental results is car-
ried out. The comparison is made based on the test data set using
mean squared error (MSE) and correlation coefficient (R). The
mean absolute error between targets and outputs of the proposed
approach was equal to 15%. The comparison results and perfor-
mance curve of the best ANN model based on the test dataset are
illustrated in Fig. 6.

The performance curve revealed that the proposed model has
appropriate performance in various corrosion levels, and the trend
of bond stress was achieved with the least complications. In addi-



Fig. 6. Performance of the best network.
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tion, the error bar used to demonstrate the distribution of error.
The results revealed that the major part of the test data had less
than five percent error compared to the test data.

5. Conclusion

This study proposed a prediction method for calculating the
bond stress of corroded steel reinforcing bar based on the collected
data of experimental investigations from published papers by
means of artificial neural networks. The considered steel bars in
database were deformed bars and it is assumed that the corrosion
occurred after casting of concrete. The loading condition was
monotonic tension where the results obtained from pull-out test.
The Levenberg–Marquardt algorithm was utilized for training pro-
cedure. The ANN approach with five number of nodes in hidden
layer was chosen as the best one based on considered criteria.
The MAE of optimum network was equal to 15%, which shows
appropriate ability to simulate experimented data on the safe side
for most specimens. The present model could be used in the relia-
bility assessment of corroded concrete structures in a corrosive
environment.
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