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Abstract
Nowadays, due to the exponential and continuous expansion of new paradigms
such as Internet of Things (IoT), Internet of Vehicles (IoV) and 6G, the world
is witnessing a tremendous and sharp increase of network traffic. In such
large-scale, heterogeneous, and complex networks, the volume of transferred
data, as big data, is considered a challenge causing different networking inef-
ficiencies. To overcome these challenges, various techniques are introduced to
monitor the performance of networks, called Network Traffic Monitoring and
Analysis (NTMA). Network Traffic Prediction (NTP) is a significant subfield
of NTMA which is mainly focused on predicting the future of network load
and its behavior. NTP techniques can generally be realized in two ways, that
is, statistical- and Machine Learning (ML)-based. In this paper, we provide a
study on existing NTP techniques through reviewing, investigating, and classi-
fying the recent relevant works conducted in this field. Additionally, we discuss
the challenges and future directions of NTP showing that how ML and statistical
techniques can be used to solve challenges of NTP.

1 INTRODUCTION

During the last decades, new networking paradigms, for example, Wireless Sensor Networks (WSNs), Internet of Things
(IoT), Internet of Vehicles (IoV) and 6th generation of cellular networks (6G)1 have been emerging to establish the
network infrastructures for real-world applications, for example, smart cities, crisis management, smart roads, etc..2
Thanks to miniaturization of digital equipment, today’s networks include thousands of connected User Equipments (UEs)
(known as end node devices) that can generate and/or consume data. IoT as a new emerging networking paradigm,
provides an overlay network on top of other network infrastructures, from Near-Field Communication (NFC) to cellu-
lar networks to connect a virtually unlimited number of UEs.3 It is expected that in 2025, the number of connected IoT
devices will increase to 75 billion as predicted by Cisco.4,5 While managing such numerous devices is a challenging issue,
other characteristics of networks, for example, heterogeneity and mobility, can cause inefficiency in networking. Network
heterogeneity is not solely due to the diversity of device types, as it can also be related to some other factors such as the
volume of data generated by each connected UEs, the required services, and the diversity of network connections. Given
these characteristics of new networking paradigms, the volume of data generated may be very huge which has given rise
to the Big Data era.6

To provide an efficient network infrastructure to transfer and manage such a huge volume of data, different tech-
niques are introduced, mainly to prevent various network faults and inefficiencies, support Quality of Service (QoS) and
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provide security. Apart from the type of the network infrastructure, the QoS depends on the performance of route of data,
and even the ability of routing devices to analyze real-time network situation to make dynamic networking adjustments
and allocation decisions. Network Traffic Monitoring and Analyzing (NTMA) techniques are mainly introduced to mon-
itor the performance of networking by providing information to analyze the network and offer solutions to address the
challenges without human intervention.7 There are four main subfields in the NTMA including8 (i) Network Traffic Pre-
diction (NTP),9 (ii) Network Traffic Classification (NTC),10 (iii) Fault Management, and (iv) Network Security. Among all
these subfields, NTP focuses on analyzing the network load and prediction of the network traffic to avoid faults and ineffi-
ciencies in networking. In this study, we focus on NTP, as one of the most critical solutions to address various networking
challenges, for example, resource provisioning, congestion control, resource discovery, network behavior analysis, and
anomaly detection.6

Different techniques are introduced to perform NTP, but generally, existing solutions can be divided into two types,
that is, Machine Learning (ML)-based techniques and statistical-based techniques. As NTP can be designed based on
both types, we first review the most relevant techniques and then investigate the proposed solutions for each type. The
contributions of this study include:

• Investigating the existing NTP techniques and available solutions to predict the network behavior.
• Classifying the NTP techniques based on statistical-, ML-based, and hybrid techniques.
• Providing a concrete future direction based on real-world applications compared to the state of the art techniques,

models, and frameworks.
• Proposing a schema to integrate statistical-based techniques and ML-based techniques to improve the performance of

NTP techniques.

The rest of the paper is summarized as follows. In Section 2, we first introduce the basic concepts and discuss the
available types of techniques for the NTP. In Section 3, we survey and analyze existing solutions and provide a classification
of them. In Section 4, we discuss the challenges and future directions, and finally, in Section 5, we conclude this study.

2 BASIC CONCEPTS

This section briefly explains some key concepts of NTP and existing types of solutions. We first introduce the NTP concept
and then continue this section by discussing and comparing the statistical- and ML-based techniques which are further
reviewed in Section 3.

2.1 Network traffic prediction

The continuous and exponential growth in scale, speed, and heterogeneity of network traffic streams, as seen in network-
ing platforms such as IoT and 5G, as well as emerging networking technologies like Software-Defined Network (SDN),
Network Function Virtualization (NFV), and Fog computing has proven the desperate need to NTMA solutions.8,11 On
the foundation laid down by Big Data Analytics, and using techniques such as Traffic Prediction, Traffic Classification,
Anomaly Detection, and Fault Detection, NTMA is engaged in tackling a range of substantial problems. To name a few,
many aspects of network management including fault management, configuration management, accounting manage-
ment, security management, and performance management achieve effectiveness by utilizing the NTMA capabilities.12

At the core of the mentioned techniques, sensing the network status in a real-time manner and analyzing the trend
of changes based on the data extracted from the network traffic plays a key role. Maintaining user satisfaction at the
desired level (known as Quality of Experience [QoE]) is one of the main goals of performance management which can
be achieved by continuously monitoring the status of the networking functions. Considering the inherent relationships
between user-oriented QoE and network-oriented QoS parameters, the performance management objectives could be
achieved through monitoring and measuring QoS parameters such as throughput, delay, jitter, or loss rate.13

The network traffic data can be extracted from the packet inspection process by one of the Deep Packet Inspec-
tion (DPI) or Shallow Packet Inspection (SPI) methods.12 While the first is based on reading and analyzing the
full packet contents that include application headers and payload, the second method examines only headers of the
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network and/or transport layers in those packets selected based on the adopted sampling strategies.7 Nevertheless, apart
from some specific applications of DPI, in cases such as filtering or troubleshooting—given the lack of feasibility of
applying this method due to privacy challenges and imposing significant computational and memory overheads on
the network—the real-time Traffic-Monitoring-Centric tasks would rely on SPI for extracting the required data from
packet streams.12,14

NTP as a subtechnique of NTMA is used to determine the status of the network, identify changes and predict the
network traffic behavior in a foreseeable future. Generally, the results of NTP techniques can be used in a wide range
of applications, for example, QoS provisioning, fault detection, and security attack detection. The problem of predicting
future network traffic volume is traditionally formulated in the form of a Time Series Forecasting (TSF) or rarely a spa-
tiotemporal problem aimed at constructing a regression model capable of estimating future traffic volume by extracting
the existing dependencies between historical and future data.15,16 Typically, low computational overhead, simplicity, and
the limited number of features can be referred to as advantages of TSF approaches.17 On the other hand, due to new
demands and exigencies stemmed from the ever-increasing rise in scale, speed, and heterogeneity of networks, non-TSF
approaches are becoming more and more propounded.18 These methods typically leverage flow and packet header data
to estimate future incoming flows instead of traffic volume.19

Basically, popular NTP solutions are divided into statistical analysis methods and ML-based models.20,21 In the
following, we shed light on some differentiation aspects of common network prediction’s methods and techniques.

2.2 Statistical techniques for NTP

Statistical techniques are mainly based on analyzing the data patterns without having any prior knowledge (without
training). Most of such techniques compare the current situation of the data, that is, the pattern of the data with the last
identified pattern to recognize important changes. Linear statistical-based models extract patterns from the historical data
as well as predict future points in time-series according to the lagged data. The well-known members of this category are
Autoregression Moving Average (ARMA) and AutoRegressive Integrated Moving Average (ARIMA), as well as variants of
the latter.22 ARIMA, also known as Box-Jenkins model, is a prevalent paradigm among statistical models for time-series
prediction. Both of ARMA and ARIMA models are emerged from the convergence of autoregressive (AR) model which
involves with lagged values of observations, and moving average (MA) model which takes lagged errors. Nevertheless,
The distinction between them is in their approach to the notion of stationarity in time-series. While ARMA assumes
the time-series is stationary, ARIMA would provide the stationarity of data through differencing process which might
be applied multiple times, until establishment of stationarity. In “ARIMA” the I (stands for “Integrated”) refers to this
procedure. ARIMA model is denoted as ARIMA(p, d, q), where p indicates the order of the AR part, d shows the involved
differencing degree, and q is the order of the moving average part.23,24 As concisely described below, ARMA and ARIMA
can be formulated, respectively, in Equations (2) and (3). Assuming a time series data Xt consisting of real numbers (xt)
and an integer index (t), an ARMA (p,q) model is given by Equation (1) where 𝛼i are the parameters of the (AR) model,
𝜃i represents the (MA) model’s parameters, and 𝜀t are error terms assumed to be independent and identically distributed
(i,i,d) variables sampled from a normal distribution with zero mean.

Xt − 𝛼1Xt−1 − · · · − 𝛼pXt−p = 𝜀t + 𝜃1𝜀t−1 + · · · + 𝜃q𝜀t−q. (1)

Interchangeably, it can be shown as below where L is the lag operator:

(
1 −

p∑
i=1

𝛼iLi

)
Xt =

(
1 +

q∑
i=1

𝜃iLi

)
𝜀t. (2)

Interested readers are referred to Reference 23. Assuming the ARIMA model as the generalization of ARMA, the
following formula defines an ARIMA(p,d,q) process given drift

(
𝛿

1−
∑

𝜑i

)
:

(
1 −

p∑
i=1

𝜑iLi

)
(1 − L)dXt = 𝛿 +

(
1 +

q∑
i=1

𝜃iLi

)
𝜀t. (3)
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Diverse variations of ARIMA are proposed according to various applications and time-series; Among them, it is worth
mentioning “Seasonal-ARIMA (SARIMA)”25 and “Fractional AutoRegressive Integrated Moving Average (FARIMA)”.26

The former is often used in NTP considering its compatibility with the nature of changes in networks which usually obeys
certain time patterns. A FARIMA forecasting model is an extension of the ARIMA (p, d, q) model in which the fractional
parameter d can take real values rather than just integers, and is given by the equation:

𝛷p(L)(1 − L)d (Yt) = 𝛩q(L)𝜀t, (4)

where L is the lag operator, 𝛷p(L) = 1 − 𝜑1L − · · · − 𝜑pLp and 𝛩q(L) = 1 + 𝜃1L + · · · + 𝜃qLq, (1 − L)d =∑∞
j=0

(
d
j

)
(−1)jLj with

(
d
j

)
(−1) = 𝛤 (−d+j)

𝛤 (−d)𝛤 (j+1)
and 𝜀t ∼ N

(
0, 𝜎2) as the error terms.27

In addition to the extant components of the conventional ARIMA, the SARIMA28 model also includes the frequency
component (known as seasonality and shown by (S).29

An SARIMA model would conduct prediction based on a linear combination of past observations and their
related errors. As its name implies, the seasonality factor plays a key role in the structure and performance of
this model. The SARIMA process often would be shown as models in the form of SARIMA(p, d, q) × (P,D,Q)S. For
given time series {Xt} with seasonality length (S), the SARIMA process is indicated by the Equation (5), while
the differenced series wt = (1 − B)d(1 − BS)DXt is a stationary ARMA process and, d and D are nonnegative integer
values.

𝜙p(B)ΦP(BS)wt = 𝜃q(B)Θ(BS)𝜖t, t = 1, 2, … ,n, (5)

where:

• n is the number of observations up to time t and the backshift operator B is defined as: BaWt = Wt−a.
• 𝜖t is defined as i.i.d samples with a zero mean and variance 𝜎2, which for all K ≠ 0 we have: Cov(𝜖t, 𝜖t−k) = 0

• The nonseasonal components are:
{
• AR ∶ 𝜙(B) = 1 − 𝜙1B − … − 𝜙pBp

• MA ∶ 𝜃(B) = 1 − 𝜃1B − … − 𝜃qBq

• The seasonal components are:
{
• SeasonalAR ∶ Φ(BS) = 1 − Φ1BS − … −ΦPBPS

• SeasonalMA ∶ Θ(BS) = 1 − Θ1BS − … −ΘQBQS

As an another ARIMA’s extensions, FARIMA is a generalization of the ARMA model customized to support those
applications like NTP in which, besides short-term dependencies, there are considerable linear long-term dependen-
cies between the observations. Unlike the ordinary ARIMA process, the difference parameter (d) in FARIMA model
could take noninteger values.30 The general FARIMA process is expressed in Equation (6) where B is the backshift
operator.

(
1 −

p∑
i=1

𝜙iBi

)
(1 − B)dXt =

(
1 +

q∑
i=1

𝜃iBi

)
𝜀t. (6)

Generally, the family of ARIMA models is drawn on the assumption of time-series data stationarity; while, in
dynamic environments such as IoT, network traffic with severe and intermittent fluctuations could lead to degrading
model performance. Nonetheless, by using some transformations other than differentiation (eg, logarithms) to decrease
nonstationarity in input data, this deficiency can be overcome to some extent.23,31

One of the other standard statistical models widely employed in time-series problems is that of Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH).32 This model is an extension of the Autoregressive Conditional
Heteroskedasticity (ARCH) model innovated by Engle in 1982 to estimate the target variables’ volatility.33 The main goal
is to model the changes in variance of target variables whose part of the total variance is conditioned on lagged values of
target variance and model’s residuals. To this end, the concept of Conditional Variance (also referred to as Conditional
Volatility) plays a key role. Considering {𝜖t} as a real-valued discrete-time stochastic process, as:

𝜖t = 𝜎twt,
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where wt is discrete white noise given i.i.d (𝜇 = 0, 𝜎2 = 1), the GARCH(p,q) process is then denoted by Equation (7).

𝜎2
t = 𝛼0 +

q∑
i=1

𝛼i𝜖
2
t−i +

p∑
j=1

𝛽j𝜎
2
t−j, (7)

where 𝛼i and 𝛽j are model’s parameters meanwhile, to avoid negative variance the following constraints are imposed:34,35

{
p ≥ 0, q > 0, 𝛼0 > 0, 𝛼i ≥ 0, i = 1, … , q, 𝛽j ≥ 0, j = 1, … , p

}
.

Moreover, parallel to applying jointly with some nonlinear approaches (eg, ARIMA), some hybrid models based
on the ARIMA’s foundation have been proposed. For instance, Fuzzy-AutoRegressive Integrated Moving Average
(Fuzzy-ARIMA) is an invented method which fuzzifies ARIMA’s parameters using the fuzzy regression method.36 In
terms of acronyms, as seen sporadically in some references, Fuzzy-ARIMA is also referred to as FARIMA; which should
not be confused with the Fractional-ARIMA model. Meanwhile, The latter is recorded as ARFIMA in some sources
as well.37

2.3 ML techniques for NTP

In general, the logical framework of problems solvable by ML techniques can be formulated in four broad categories,
namely, classification and regression, clustering, and rule extraction.19 There are four ML paradigms in the same vein
corresponding to the nature of the problem at hand, namely Supervised Learning (SL), Unsupervised, Semi-supervised,
and Reinforcement Learning,38 respectively. Each of these paradigms has its own different effects on proceeding data
collection, ground truth creation, and feature engineering. Most of ML methods used in NTP are subtechniques of SL as
the models need to be trained by historical data. SL uses labeled data (historical data) to build up the models employed
in classification and regression problems, where predicting the outcomes in the form of discrete or continuous quantities
is intended. In many real-world problems, access to labeled data is subject to constraints. In networking, most of data
gathered from a network is unlabeled or semi-labeled.39 In the lack of sufficient knowledge or the abundance of missing
labels, the Semi-Supervised Learning (SSL) paradigm as a particular variant of SL exploiting different techniques such as
Active Learning40 can be leveraged.6

One of the critical aspects in ML is choosing the proper model from the mass of available algorithms and techniques.
Different factors can be applied, for example, goals of applications, pros and cons of the operating environment regarding
the deployments and applications of ML models, the learning method (ie, supervised or unsupervised), how to access
data, etc.41 Some of the most widely used models are presented in the following:

• Neural Networks: Artificial Neural networks (ANNs) are among the most potent and widely used ML techniques.42

Thanks to the Activate Function, ANNs can learn complex nonlinear dependencies among numerous variables, thus
they are generally known as Universal Function Approximators.42 The general architecture of ANNs is a directed
graph43 consisting of input and output layers, which are connected via the so-called hidden layer, which itself could
be consist of one or more layers. Input values reach the output layer by applying transformations through the hid-
den layers. The number of these layers is also referred to as the depth of the model. Based on the ANNs’ depth, the
idiom “Deep Neural Network” denotes ANNs constructed of two or more hidden layers, opposed to “Shallow Neural
Network” referring to the traditional baseline ANNs.42 Due to their flexible structure, Deep Neural Networks (DNN)
have gained striking popularity in time-series prediction. In this context, Recurrent Neural Network (RNN), by allow-
ing inputs to be recycled in hidden layers around the recurrent connections has been a leaping advance. Different
RNN-based architectures can be defined as per adopted activation function and how the neurons connect to each other,
namely that of Fully Recurrent Neural Network (FRNN), Bidirectional Neural Networks (BNN), stochastic neural net-
works, and the well-known paradigm Long short-term memory (LSTM).44 LSTM as an extension of RNN is proposed
to resolve the vulnerability of normal RNNs against the gradient exploding/vanishing problem caused by long-term
dependencies.45-47 LSTM with some innovations in its architecture including a triple gate mechanism to control inputs
to cells, and a feedback loop for data retention, can learn long-term dependencies and remove invalid inputs that cause
perturbation in cell’s outputs.6,48 In practice, an implemented LSTM model usually consists of a set of blocks where
each block contains several LSTM cells.
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F I G U R E 1 A schema that how deep reinforcement learning interacts with the network

Despite the unavoidable capabilities of deep learning-based methods, the slow training process of these models is a
significant problem in their application in dynamic environments. Moreover, the lack of transparency in the learning
process of these models is another limitation49.50

• Reinforcement Learning: The Q-Learning algorithm, along with Deep Reinforcement Learning (DRL) (which is actu-
ally a combination of Q-Learning and DNN), is one of two algorithms representing the Reinforcement Learning (RL)
method.8,12 As elaborated by Watkins,51 the Q-Learning algorithm provides learner agents that can act optimally in
Markovian environments relying on their knowledge stemmed from experiencing actions’ consequences, without the
need to mapping the environment.51 It relies on a function called Q-function to learn the table containing all available
state-action pairs and their long-term rewards.52 In NTP, RL and its variants have a good potential to interact with the
network to learn the network behavior and predict the behavior of the network in the future. As mentioned, RL can
be integrated with DNN which can help to improve the performance of RL techniques. Figure 1 shows a schema of
interacting DRL and the network regarding NTP.

Although the number of ML techniques used in NTP is not limited to the list above, DNN and RL are the most
important ML techniques based on our literature review explained in Section 3.

2.3.1 Data collection

Creating an efficient model for a problem is highly dependent on the availability of appropriate and unbiased represen-
tative data.19 Due to the variety of data in different applications of networking as well as alternation of data over time, it
is essential to adopt a suitable method for data collection for ML methods to train their models.

In networking, traffic data can be extracted through the packet inspection process by the DPI and SPI methods.12

While the former is based on reading and, if necessary, analyzing the full packet contents that include application
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headers and payload, the latter method examines only headers of the network and/or transport layers in those pack-
ets selected based on the target sampling strategies.7 Nevertheless, apart from some specific applications of DPI (eg,
filtering or troubleshooting), since this method imposes significant computational and memory overheads on the net-
work, the real-time traffic-monitoring-oriented tasks would rely on SPI for extracting the required data from packet
streams.12,14

Data collection is performed typically in offline or online manners. In the offline method, data are entirely used
for training the model at once, and then, the model is deployed and used for operational data analysis. In the online
method, throughout a continuous process, model training would launch in conjunction with deployment in the oper-
ating environment, and model knowledge is updated with new input data, which is received in a sequential order.13,53

As SL, Unsupervised Learning (UL) and SSL are generally used in the offline learning setting, some of RL techniques,
for example, State-action-reward-state-action (SARSA)54 and incremental learning techniques55 are mainly designed to
update the model gradually based on new data (2). Training the model using collected data can be achieved in one of the
batch or incremental (also known as streaming) ways depending on the situation and learning settings. In a batch set-
ting, the collected data are divided into three subsets, including training, test, and validation (which in some cases is also
called development set). The validation set is used when selecting the appropriate model, and its architecture is part of
the process. Otherwise, it would not be needed. Determining the optimal values for the model parameters (eg, the weight
of connections between neurons in a neural network [NN]) and evaluating the model’s performance would be accom-
plished, respectively, using the training and test sets. On the other hand, in the incremental method, the data is streamed
to the training model for various reasons (eg, large volume and infeasibility of loading at once, or gradual generation
of data).13,53 Moreover, in dynamic environments, especially online applications, the ML model must be continuously
retrained. In such cases, to solve the concept drift problem, given the high computational cost of doing it from scratch,
using only the new data for training is an efficient solution by incremental approaches.12 Figure 2 shows different types
of collecting data to train ML models in networking.

2.3.2 Feature engineering

As one of the ML’s pillars, feature engineering includes feature selection and feature extraction in addition to data
cleansing and data preprocessing. Feature selection refers to selecting the effective discriminator features and remov-
ing the irrelevant and redundant features; whereas feature extraction involves extracting new extended features from
existing ones. These procedures both would lead to diminishing data dimensionality and computational overhead and,
consequently, increasing the model’s efficiency and accuracy.56

In networking, features can be classified based on the granularity in three levels: packet-level, flow-level, and
connection-level.57 The finest level of granularity is packet-level features where the packet-related statistical data such
as mean, root mean square (RMS), variance, as well as time-series information are extracted or derived from collected
packets.19 The independence of these features from the sampling method adopted to collect data is their key advantage.

Features such as mean flow duration, mean of packets per flow, and average flow size in bytes are observable at the
flow-level. At the highest level of granularity, there are connection-level features that would be extracted from the trans-
port layer. Throughput and advertised window size in TCP connection headers are examples of these features. Despite
the high-quality information provided by connection-level features, the imposition of excessive computational overhead
and high distortion in facing with sampling and routing asymmetries are among their drawbacks. Feature extraction is
often performed using techniques such as Principal component analysis (PCA), entropy, and Fourier transform.19 Table 1
shows a summary of some popular network features.

3 REVIEW OF EXISTING WORK

Using ML techniques and statistical-based techniques in NTP is a well-established research area. Historically, one of the
earliest works in applying ML in NTP belongs to Yu and Chen, carried out in 1993. They used multilayer perceptron (MLP)
NN (MLP-NN) motivated by enhancing the accuracy over traditional AR methods.19 Since then, many researchers have
lent themselves to improve the ML-based solutions for predicting network behavior as accurately and timely as possible.
However, in this survey we focus on the most important recent works in the field. To review the literature, we have used
the method shown in Figure 3 to refine the related literature. The NTP-related literature is classified as below.
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F I G U R E 2 Data collection settings. (A) Batch Offline; (B) Batch incremental; (C) Online incremental (streaming)

T A B L E 1 More popular features used in machine learning for networking

Feature granularity Description and examples

Packet-level: Source IP address

Destination IP address

Source host number

Destination host number

Frame length

Frame number

Packet inter-arrival time

Content-based: HTTP protocol used to submit data from client to server

Time-based: Number of frames received by a unique destination in the last T seconds from the same source

Number of frames received by a unique source in the last T seconds from the same destination

Connection-based: The number of packets flowing from source to destination

The number of packets flowing from destination to source
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F I G U R E 3 The method adopted to refine the literature58

3.1 Pure ML-based NTP solutions

Evaluation of performance and efficiency of ML-based methods is a significant part of the literature. LSTM is one of the
most widely used techniques in this field.

The survey by Alawe et al59 aims at Access and Mobility Management Function (AMF) in the 5G network. To this
end, two approaches, Feedforward neural network (FFNN) and LSTM are examined. The authors propose to use ML to
forecast the arrival time of requests from User Equipment (UE), and consequently, the scale-out/in process. This avoids
the rejection of requests and keeping the attach duration (how long do UE are connected to network resources) low. The
results indicate that LSTM outperforms FFNN in terms of prediction accuracy. The dataset is classified into 10 different
classes, based on the load and the number of AMFs needed. The first technique used for predicting the class of load of
the next period is FFNN. The second technique tested for predicting the average load of the upcoming period of time is
LSTM. Both networks are trained with the 60% dataset and then asked to predict the remaining 40%.The results indicate
that LSTM outperforms FFNN in terms of prediction accuracy.

Trinh et al46 have dedicated their work to present a network traffic prediction model in the LTE environment, using
the LSTM algorithm. The LSTM network consisting of multiple unified LSTM units is applied to the raw mobile traffic
data collected directly from the Physical Downlink Control CHannel (PDCCH) of LTE. By assuming NTP as a super-
vised multivariate problem, the proposed model aims at minimizing the prediction error with respect to the information
extracted from the PDCCH. This data gathering methodology and the multistep structure adopted for the predictive net-
work are emphasized as dedicated research aspects. According to comparison results, the composed model outperforms
ARIMA and FFNN models.

Pruning internal connections between NN neurons to diminish computational cost constitutes the idea underlying
the research by Hua et al.47 Based on this, a heuristic architecture with sparse neural connections, called the Random
Connectivity Long Short-Term Memory (RCLSTM) is introduced, in which the complete (one-to-one) connection between
neural network neurons, as is in conventional LSTM, has given way to a random pattern of links between them. The
simulated model consists of a three-layer stack RCLSTM.

Wang et al60 puts forward a model that aims to improve cellular traffic prediction accuracy with limited real data and
support data privacy. The model is called (ctGAN- S2S) and consists of a cellular traffic generative adversarial network
and a sequence-to-sequence neural network, in which learning is fed by an arbitrary length of time-window from the
historical time-series data of cellular traffic. The augmentation model generates close-to-real cellular traffic data; thus,
eliminating the need for original data supports data protection and data privacy.

The main contribution of Vinayakumar et al20 is to compare some nonlinear prediction methods, namely that of
FFNN, RNN, identity recurrent neural network (IRNN), gated recurrent unit (GRU), and LSTM (generally referred to
as RNN) in terms of performance in Traffic Matrix (TM) prediction in large networks under different experiments. The
arranged experiments in test scenarios help to identify the optimal network parameters and network structure of RNN.
The TM is passed by using the sliding window approach. The obtained results indicate the superiority of LSTM over other
models; meanwhile, GRU has relatively imposed less computational cost.

In considerable number of researches, Gaussian Process Regression (GPR) is the undergrounding leveraged technique.
The conducted research in Bayati et al61 is one among those who exploit GPR in this context. The proposed solution is
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based on the Direct (or Parallel) strategy for multiple-step-ahead traffic prediction in which the entire process is divided
into H distinct models that are trained concurrently to conduct H-step-ahead time-series predicting. Each time-step fore-
casting is fed by the gained prediction in the previous time-step, as one of the input features. Subsequently, the prediction
error at a time-step (or the uncertainty in the feature vector) is propagated through the forecasts at the next time-step.
In order to tackle the error propagation, the paradigm has been investigated, indicating that the desired performance of
a multiple-step-ahead prediction is strictly depended on, and could be influenced by the classification of data at higher
levels.

Ensuring the QoS in the network in a way that simultaneously provides resource efficiency (bandwidth) requires an
accurate real-time estimation of the network’s future behavior. To this end, an online bandwidth allocation method based
on GPR has been proposed by Kim and Hwang.62 The theorem that a stationary increase in the size of a given process
would lead to large-buffer asymptotics of the queue length process forms the basis of the proposed model for deriving the
proper bandwidth.

A combined solution to deal with complex network data flows is presented by Wang et al.63 The proposed solution
consists of a preprocessing step and a 2-fold prediction process using LSTM and GPR models. In the initial phase, the
data flow’s dominant periodic features are extracted through Fourier analysis, and then the LSTM model is applied to the
remaining small components. A complementary step adopting GPR is launched, estimating the residual components to
improve the prediction’s accuracy.

Poupart et al64 elaborate utilizing ML techniques to approximate each network flow’s size at its start, focused on
detecting elephant flows independent of source application or end host. The proposed estimation method benefits the
metadata exploited from the first few packets of a flow. In this regard, the authors explain three ML techniques, including
Gaussian processes, Gaussian Mixture Model with Bayesian Moment Matching, and neural networks to predict the flow
size based on existing historical data and online streaming data.

Mikaeil65 proposes a method for near-time prediction of primary user (PU) channel state availability (ie, spectrum
occupancy) in Cognitive Radio Networks (CRN) using Bayesian online learning (BOL). Given that the nature of the
PUs channel state availability can also be considered a dual-states switching time series, the captured time-series repre-
senting the Pus channel state (ie, PU idle or PU occupied) are fed as an observations sequence into the BOL prediction
algorithm.

The primary use of cardinality estimation algorithms in computer networks is counting the number of distinct flows.
Cohen and Nezri66 have investigated the application of flow cardinality estimation algorithms in SDN environments. their
focus was on common deficiencies faced by sampling methods, especially in adapting to changes in flow size distribu-
tion. Further, they have introduced and elucidated a framework which benefits from online ML, and to achieve the best
performance and accuracy, three popular linear regression ML algorithms, namely that of Stochastic Gradient Descent
(SGD), Recursive Least Squares (RLS), and Passive-Aggressive (PA), have been examined.

Cui et al67 discuss the Stochastic Online Learning (SOL) technique as a tailored model for that of environments
like Mobile Edge Computing (MEC), which can experience time-varying, stochastic traffic arrivals without the Markov
property. Among the multitude of articles, this paper is one of the few that addresses online learning from network behav-
ior. Unlike the majority of ML methods that rely on learning from the training data, SOL learns from network changes by
using SGD. This approach is aimed at establishing a trade-off between learning accuracy and learning time and increasing
network throughput.

Zhang et al68 present an incremental deep computation model for wireless big data feature learning in IoT. The model
is constructed by stacking several incremental tensor auto-encoders (ITAE). To handle new arrival wireless samples,
two types of ITAEs, based on the learning strategy, are developed, namely the parameter-based incremental learning
algorithm (PI-TAE) and the structure-based incremental learning algorithm (SI-TAE). In facing new arrival samples, the
proposed model only needs to load the new samples to the memory to update the parameters and structure, respectively,
by PI-TAE and SI-TAE. This mechanism underlies this model’s capability to deal with wireless big data for feature learning
in real-time.

The cellular link bandwidth prediction in Long-Term Evolution (LTE) networks has been investigated by Yue et al.69

The authors have approached the problem by analyzing the correlations between various lower-layer information and the
link bandwidth. Thereupon, they propose a framework using a Random Forest-based prediction model, which through
an offline data feeding process, and exploiting the intrinsic capabilities of Random Forest, identifies the most important
features, and uses them to predict link bandwidth in real time.

Zhang et al70 have introduced an approach using Convolutional Neural Network (CNN) to collectively model spatial
and temporal dependence for cell traffic prediction. The key features of the proposed approach are considering the traffic
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data as images, as well as utilizing a parametric matrix-based fusion method to estimate influence degrees of the spatial
and temporal dependence.

In a study by Pfulb et al,71 the problem of estimating the expected bit-rate of network flows based on their metadata
has become a three-tier classification problem using a fully connected DNN with the ReLU activation function. Their
approach embraces three stages including data collection, data preparation, and data processing. In this approach, DNN
training is treated as a streaming problem by dividing the dataset into identical data blocks. The model is trained and
tested in a semi-streaming fashion applied on all blocks one by one such that all intended preparations being performed
block-wise.

To improve the self-management and active adjustment capabilities of base stations in wireless networks, by Li
et al72 the temporal and spatial correlation of traffic data is addressed. To this end, they have composed a deep
network-based framework of network traffic prediction using CNN and LSTM, constituted of three main units by which
the spatio-temporal correlation of wireless network traffic data can be captured effectively.

The first part of Table 2 shows the list of the reviewed literature in this category.

3.2 Pure statistical-based NTP solutions

The following articles mainly deal with the problem using statistical techniques such as ARIMA family and their
innovative combinations.

The conducted research by Tran et al73 is a study on different varieties of exponential smoothing method namely
single, double, Holt-Winters No Seasonal, and Holt-Winters Additive Seasonal (that are categorized as simple exponential
smoothing methods [S-ESM]), and Error, Trend, Seasonal exponential smoothing method (ETS-ESM) in terms of the
effect of their smoothing factors on accuracy of short-term NTP, as well as their suitability for dealing with voice and data
over the cellular network. The results show that HWMS outperform other methods.

Rafsanjani et al22 proposed a method called QARIMA as an extension of ARIMA to predict the queues in packet for-
warders in networks. Their proposed method determine the last trend of the behavior of the queue and make a linear
regression model to predict. They showed that their proposed method can predict the delay of packets with a high accu-
racy. Shahraki et al74 integrated and extended the ideas proposed in References 75 and 76 to propose an online network
behavior analysis technique for IoT networks. The proposed technique analyses the data gathered from IoT networks to
determine and predict important changes that can cause inefficiencies.

Mehdi et al36 have incorporated fuzzy regression and ARIMA models (Fuzzy-ARIMA) in promising to take both meth-
ods’ advantages. Besides, to perform real-time predictions based on historical data, they have adopted a sliding window
technique called SOFA ,which reduces the effect of input data fluctuations over time.

In promising to allocate bandwidth efficiently in SDNs, Bouzidi et al,77 introduce a heuristic rules placement algorithm
in which an Online-Learning module, designated upon the linear regression, is utilized for the network delay pre-
diction. The overall framework of the proposed solution encompasses the formulation of the flow rules placement as
an Integer Linear Program (ILP) targeting to minimize the total network delay, And finally, to solve the defined ILP
problem through an excogitated algorithm, that leads to reducing the time complexity and enhancing the estimation
accuracy.

The second part of Table 2 shows the list of the reviewed literature in this category.

3.3 Hybrid NTP solutions

In addition to the pure statistical- and ML- based NTP techniques, there are some proposed models that use both of these
approaches simultaneously called Hybrid solutions.

Xu et al50 have presented an extension of Reference 78, proposing an architecture for traffic prediction in the Cloud
radio access network (C-RAN) with the distributed remote radio heads (RRHs) and the centralized Baseband Units BBUs
pool bearing lots of parallel Baseband Unit (BBU)s. In such an architecture, an alternating direction method of multipliers
(ADMM) and the cross-validation empowered Gaussian Process (GP) framework is performed in which, the parallel
BBUs’ contribute in training process and the local predictions would be incorporated altogether via cross-validation to
create the final prediction. retaining the trade-off between accuracy and time consumption, and scalability are the two
focal claims in this method. Bouzidi et al,79 have composed an extension to Reference 77 with a different experimental
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T A B L E 2 Comparing existing works on Network Traffic Prediction (NTP)

References Network Purpose Tr. Approach Description

Pure ML-based NTP solutions

59 5G Access and mobility
management

f / b LSTM and FFNN Comparison of LSTM and FFNN in predicting
network traffic state.

46 LTE Optimal resource
allocation

f / b LSTM To Predict network traffic by a multi-step
LSTM model, using the raw data collected
from physical channel

47 Wireless
Network

Reducing the computing
cost of LSTM for NTP

f / b LSTM Computational-cost-reduction by means of
reconstructing LSTM network in form of a
random sparse graph

60 5G Data privacy
protection-aware and
accurate prediction
with few real data

f / s LSTM A NTP model called ctGAN-S2S, based on data
augmentation.

20 Cellular
Network

Traffic matrix estimation f / s LSTM, FFNN, RNN,
IRNN, GRU

Analyzing the performance of various RNNs
in forecasting TM

61 High-speed
networks

Addressing the error
propagation

f / b GPR Multiple-step-ahead traffic prediction by using
a GPR framework which models the traffic
at different timescales

62 Internet QoS, and resource
efficiency

n / s GPR Online bandwidth allocation method based on
GPR

63 Cellular
Network

Improving the prediction
performance

f / b LSTM, GP Two LSTM and GPR modules jointly are
adopted to improve the prediction
performance

64 Cellular
Network

Flow size estimation f / b GPR, NN Estimating the flow size and separating
elephant and mice flows using online ML
techniques based on historical data as well
as online streaming data under hybrid
learning settings.

65 CRN Predicting the near future
of spectrum occupancy

n / s BOL Modeling the PU channel state indicator
sequence as a time series, of which changes
are predicted in advance by the proposed
BOL model

66 SDN- and
NFV-based
networks

Cardinality estimation in
the field of network
measurement

n / b SGD , RLS, and PA A sampling-based framework for adaptive
cardinality estimation utilizing sampling
and online learning

67 Mobile edge
network

Minimizing the
time-averaged
operational cost of MEC

n / s SGD A SGD -based faramework for online learning
from the changes of the network without
needing training data

68 IoT Real-time feature learning n / s ITAE An incremental deep computation model
consisting of two incremental tensor
auto-encoders, that is, parameter-based and
structure-based incremental learning
algorithms

69 LTE Real-time bandwidth
prediction

f / b Random Forest A ML framework (called LinkForecast) is
developed that utilizes both past throughput
and lower-layer information to predict link
bandwidth in real time.

70 Cellular
network

Modeling the nonlinear
dynamics of wireless
traffic

f / b CNN Treating traffic data as images, and applying
the influence degrees of lagged spatial and
temporal data to the prediction

(Continues)
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T A B L E 2 (Continued)

References Network Purpose Tr. Approach Description

72 Cellular
network

Spatiotemporal modeling
and prediction of
network traffic

f / s CNN, LSTM A compound architecture to extract and
applying the spatiotemporal correlation of
network data using CNN multi-layer stack,
LSTM -based temporal information
processing unit, and an attention module

71 Cellular
network

Flow size estimation f / b DNN Altering the regression problem of estimating
flows bit-rate values to a three-level
classifying task, under a semi-streaming
fashion setting.

Pure statistical-based NTP solutions

73 Cellular
network

investigating the
smoothing factor impact

f / b S-ESM and
ETS-ESM
methods

Different varieties of exponential smoothing
methods are investigated based on their
smoothing factor impact on NTP accuracy.

22 TCP/IP QoS-aware routing f / s ARIMA The delay of packets is predicted based on the
last trend extracted from the queue’s
behavior on the router

74 Ad hoc IoT
networks

Trend change detection n / s Online data
analysis by
dynamic-sliding
window

A statistical light-weight Trend Change
Detection (TCD) method in an online
manner

75 Ad hoc IoT
networks

Trend change detection f / s Data analysis Recognizing majore trend’s change points in a
Poisson distribution dataset through a
recursive matrix-based model

76 IoT Contextual outliers
detection

f / s Data analysis Fragmenting time-series dataset into segments
based on trend change points to discover the
contextual outliers

36 Cloud
network

Reducing dpendence on
historical data

f / s Fuzzy-ARIMA The statistical Fuzzy-ARIMA model conducts
short-term traffic prediction in real time,
based on the historical data blocks provided
by a sliding window

77 SDN-based
network

QoS-aware routing n / s Linear regression Applying linear regression-based online
learning for dynamically predict the latency,
in order to updating the flow rules in
network devices

Hybrid NTP Solutions

50 C-RAN Large-scale NTP in a
cost-efficient manner

f / s GP and ADMM A C-RAN-based architecture on which, an
ADMM and cross-validation empowered
scalable GP framework could be performed.

79 SDN-based
networks

QoS-aware routing n / s LSTM and DRL Forecasting the future network traffic and
detecting the optimal route, dynamically by
using a DRL agent.

80 IIoT Short-term traffic
prediction in Real-time

f / s RL,
MCL,Q-learning,
and KL

Real-time prediction of short-term
time-varying features of network traffic via a
RL approach, as well as adopting a
dictionary learning algorithm to reduce the
complexity of the proposed model

81 Cellular
network

forecasting network-wide
traffic behavior

f / b CNN, LSTM, and
DWT

Temporal decomposition of the original TM
via a wavelet transform, as well as extracting
spatial patterns and long-term temporal
features correspondingly by CNN, and an
input sequence aware LSTM.

(Continues)
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T A B L E 2 (Continued)

References Network Purpose Tr. Approach Description

82 Cellular
network

To predict cell-station
traffic volumes

f / b K-means clustering,
Wavelet
Tramsform, and
RNN (Elman
NN)

Decomposing the clustered network traffic
flows into high and low frequencies to
facilitate the prediction process.

83 Cellular
network

To improve network traffic
prediction by using
sequence mining

f / b LSTM , ANFIS, and
FCM

Accelerating the performance of prediction
models by using preprocessing and
clustering the training data

Comparative works

78 Cellular
networks

Comparison in terms of
complexity and
accuracy

f / s GP, SARIMA, and
sinusoid
superposition

In a 2-fold process, the kernel is designed
based on captured traffic patterns. As well
as leveraging the Toeplitz structure of the
covariance matrix, the computational
complexity of hyperparameter learning is
decreased.

84 Cellular
network

Long- and short-term
traffic forecasting

f / b Auto regression,
NN, and GP

Traffic pattern forecasting, based on big data,
ML, and network KPIs

85 Wireless
network

Decreasing the training
overhead without
dilution of accuracy

f / b LSTM , SARIMA Studying the impact of the training-related
factors on accuracy and overhead through
camparison of two approaches

43 LTE-A Comparison of approaches
in terms of accuracy
and learning time

f / b LSTM, ARIMA,
FFNN

The survey highlights outperforming of
proposed LSTM model to FFNN and
ARIMA in terms of prediction performance
and training time efficiency

86 Wireless
network

Real-time NTP f / b LV, MA, DES, AR,
ARMA, ANN,
and Wavelet

A comprehensive comparison, and analyzing
three main classes of predictors from
various aspects

87 Cellular
network

Forecasting TM in large
networks

f / s LSTM and ARIMA Model parameters optimization to forecast
large scale TMs

27 Internet Comparing various usage
schemes of models

f / b FARIMA,
FARIMA/GARCH,
and NN

Comparison between distict schemes of
applying composed approaches to dynamic
bandwidth allocation task

88 Internet Comparing various usage
schemes of models

f / b FARIMA, NN FARIMA and MLP models are used in a
framework to compare different application
methods of traffic prediction, including
individual, hybrid, and selective schemes

Abbreviations: ADMM, alternating direction method of multipliers; AR, autoregressive; ARMA, autoregression moving average; ARIMA, Autoregressive
integrated moving average; BOL, Bayesian online learning; CNN, convolutional neural network; CRN, cognitive radio networks; DES, double exponential
smoothing; DRL, deep reinforcement learning; DNN, Deep Neural Networks; DWT, discrete wavelet transform; ETS-ESM, error, trend, seasonal
exponential smoothing method; FARIMA, fractional autoregressive integrated moving average; FCM, fuzzy-C-means; FFNN, feedforward neural network;
GARCH, generalized autoregressive conditional heteroskedasticity; GPR, Gaussian process regression; GRU, gated recurrent unit; IoT, Internet of Things;
IRNN, identity recurrent neural network; ITAE, incremental tensor auto-encoders; KL, Kullback-Leibler; LSTM, long short-term memory; LV, last value;
MV, moving average; NFV, network function virtualization; PA, passive-aggressive; QoS, quality of service; RL, reinforcement learning; RLS, recursive least
squares; RNN, recurrent neural network; S-ESM, simple exponential smoothing methods; SARIMA, Seasonal-ARIMA; SDN, software-defined network;
SGD, stochastic gradient descent; Tr., Training: Online (n) or Offline (f) / Batch (b) or Stream (s)

setting in terms of the adopted learning algorithm, where the Linear Regression model has given way to an LSTM-based
model.

Nie et al80 have modeled the NTP problem in the Intelligent Internet of Things (IIoT) ecosystem as a Markov
decision process. In promising to extract short-term time-varying features of network traffic in real-time, and aim-
ing at minimizing the training data size, it proposes a RL-based approach consisting of Monte-Carlo learning (MCL),
Q-learning, and Kullback-Leibler (KL) divergence. Moreover, to deal with degrading impact of the vast state space of
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Monte-Carlo-Q-learning in IIoT ecosystems, a greedy adaptive dictionary learning algorithm is proposed that reduces
the computational complexity. To discover future network-wide traffic behavior, Zhao et al81 introduce a TM prediction
method, coined WSTNet, a complementary combination of CNN and LSTM, and utilizing Discrete Wavelet Transform
(DWT) as a feature engineering tool. The method is comprised of three phases. First, at the preprocessing step using
DWT, the original TM series is decomposed into multilevel time-frequency subseries at various timescales; second, to
draw out the spatial patterns of traffic flows between endpoints, CNN without pooling is leveraged. Finally, the LSTM
with self-attention technique is adopted to extract the TM series’ long-term temporal dependencies.

Zang et al82 have composed K-means clustering, Wavelet decomposition, and Elman neural network (ENN) in a
framework to predict cell-station traffic volumes by using the spatial-temporal information of cellular traffic flow. After
clustering the multiple BS traffic flows, the integrated time series are decomposed into high and low frequencies through
Wavelet transform. This creates new subdivisions of data with higher stability and more tractable features facilitating the
prediction process.

The main idea of Aldhyani et al83 is to make the adopted ML models robust by using specific techniques. It proposes
a 2-fold process to improve the performance of LSTM and Adaptive neuro fuzzy inference system (ANFIS) models in
predicting network traffic. In the first step, the data is preprocessed by using the weighted exponential smoothing model
then, the historical data is clustered by non-crisp Fuzzy-C-Means (FCM). The presented results show that identifying and
classifying existing patterns of data can improve the performance of LSTM and ANFIS models in forecasting the network
traffic behavior.

The third part of Table 2 shows the list of the reviewed literature in this category.

3.4 Comparative works

Finding a good prediction solution by comparing the characteristics, shortcomings, and strengths of statistical- and
ML-based methods has formed one of the areas of interest in researches related to this discipline.

Xu et al78 have established a wireless traffic prediction model by applying the GP method based on real 4G traffic
data. Observation of network traffic to capture periodic trend and dynamic deviations of data, as well as leveraging the
Toeplitz structure in the covariance matrix to reduce the computational complexity of hyperparameter learning are the
two pillars of the proposed method. The proposed model claims a significant reduction in computational complexity, and
high accuracy.

In order to highlight the magnitude of the impact of network Key Performance Indicators (KPIs) on prediction accu-
racy, a comparative research by Le et al84 has been conducted comprising two different settings. The first one addresses
the time-series traffic forecasting mainly drawn on exploiting the traffic’s historical traces, and the second involves with
traffic’s KPIs prediction through analyzing the relationship between KPIs and future patterns of network traffic. In this
analysis, the two main criteria considered are Mutual Information (MI) and Relative Mutual Information (RMI). The
performance of three algorithms, including GP, ANN, and AR, has been examined in both settings, reflecting a better
performance and accuracy from the GP.

The research by Soheil et al,85 beyond a solely theoretical basis, addresses some practical aspects of training and
deployment of ML models for predicting real-world network data streams in telemetry systems, issues that challenge
applying an ML model and achieving the expected accuracy. To this end, various training-related aspects, including the
volume, freshness, and selection of training data, have been examined to show their impact on the accuracy and overhead
(and thus feasibility) of both adopted models, namely LSTM and SARIMA. Further, utilizing separate models for different
segments of a data stream is explored as well. Drawn on the achieved results, the article concludes that any network
modeling often needs to be customized based on its target application for a specific data stream from a particular network.

Jaffry43 introduces a LSTM-based model for traffic prediction in the Long Term Evolution-Advanced (LTE-A) network.
It has been compared with similar paradigms based on ARIMA and FFNN in terms of performance and accuracy. The
results of this study indicate the superiority of LSTM over FFNN and ARIMA. In addition, the efficiency of LSTM in
working with small amounts of training data is another advantage mentioned for this model.

A comprehensive comparison between three predictor classes, focusing on considering some initiative criteria, is pro-
ceeded by Faisal et al.86 The compared techniques are Last Value (LV), Windowed MA, Double Exponential Smoothing
(DES), AR, ARMA, ANN-based predictors, and wavelet-based predictors. Besides considering the accuracy, as seen in
other similar studies, this study also investigates overhead in terms of both computation cost and power consumption. Fur-
ther, employing an initiative synthesized metric called Error Energy Score (EE-Score), accuracy and energy consumption
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have been combined into a single global performance score for comparing predictors. Among the article’s conclusions,
this point is noteworthy that contextual conditions (ie, network characteristics) determine the proper predictor.

Azzouni and Pujolle87 have suggested an LSTM framework for predicting TM in large networks. The potency of
RNNs for sequence modeling tasks stems from their architectural characteristics. Having a cyclic connection over time
enables them to store the activation from each time step in an internal state indicator, which forms a temporal mem-
ory. To establish continuous data feeding and learning required for real-time prediction of the current traffic vector Xt,
a sliding window technique has been adopted which provides a fixed number of previous time-slots to learn of from. In
Reference 27 by Chriskatris and Daskalaki, under different application strategies, including single, hybrid, selective, and
combined, three models namely FARIMA, FARIMA/GARCH, and NN and their compositions have been applied to some
schemes of dynamic bandwidth allocation for video transmission through network. The comparison outcomes highlight
the predictive capability and cost effectiveness of a hybrid model consisted of FARIMA/GARCH, and NN.

In Reference 88 by Chriskatris and Daskalaki, individual, hybrid, and selective usage schemes of models for composing
prediction approaches are examined. To this end, FARIMA and MLP models and their hybridization are used, while in
the selective scheme, swapping between FARIMA and NN models is proceeded based on the White NN test considering
the nonlinearity of traffic data. Outcomes indicate the outperforming of the hybris method.

The last part of Table 2 shows the list of reviewed literature in this category by comparing them in different aspects,
for example, network type, purpose and approach.

4 CHALLENGES OF EXISTING SOLUTIONS IN NTP

Given the inherent complexity of working with big data, especially in network environments, there are many challenging
issues that need further investigation. In this section, some open challenges in the field of NTP will be highlighted.

• Lack of specialized theoretical framework: The ML methods used in NTP address prediction needs in the general
context of time-series-based problem solving. However, in practice, the impact of numerous environmental factors,
such as topology, speed, heterogeneity, etc., on the performance of ML models are very significant. In this regard,
establishing a dedicated and promising theoretical framework for the application of ML in computer networks is one
of the basic needs in this area.

• Ground truth: ML techniques are extremely correlated to what is known as Ground-Truth (GT). GT reflects the abun-
dance of labeled data as well as the validity of the labels assigned to the observations. In the main applications of ML,
regression, and classification, the GT extracted from the training data is the basis for comparison and inference to esti-
mate the new data labels and, in data categorization, it is used to evaluate the accuracy of model performance. One
of the main challenges involved, especially in dynamic environments such as network traffic, is the scarcity of labeled
data or delays in accessing labeled data; a situation in which the semi-supervised strategy becomes relevant. PCA tech-
niques, labeling manually or synthetically, or Active-Learning techniques are among the measures that could be taken
to overcome the problem.

• Representative datasets: Shortage of public and representative datasets to train ML models is a fundamental
challenge network-related prediction scenarios.89 Due to the data-driven nature of ML solutions, lack of proper repre-
sentative data or poor quality can lead to reduced accuracy. On the other hand, gaining access to required representative
data is often subject of strict constrains.12

• Accuracy versus speed: Since increasing accuracy of ML techniques may lead to higher computational load in some
cases as well as time, any improvement in accuracy will come at the cost of slowing down the training of the ML models
and vice versa. Finding the equilibrium point between these two parameters and using hybrid methods for NTP while
the model is being (re)-trained is recommended in this regard.12

• Retraining: In dynamic environments, due to constant changes, model retraining is essential to maintain valid-
ity. Unlike static environments with a limited specific dataset, allowing model retraining at any time and retraining
dynamic models involve complex technical problems. Even if available in terms of access to previous data, the task
will not be feasible with conventional static methods due to high computational cost. In online environments such as
computer networks, as the acceleration of change increases, the barriers to model retraining become more complex.
One common solution is to use some incremental methods for retraining in which the model is only updated with new
observations.
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• The Theory of Networks challenge: Introduced by David Meyer in 2017,12 this concept explains that the trained
models by public datasets cannot be used in real-world applications. In this case, each ML model should be trained sep-
arately for each network in a real-world application. Considering this challenge, ML methods with very high training
time are not appropriate to use in NTP models as the network can not be left unattended for a long period of time.

• Deployment issues: In modern prevalent frameworks for software development and support, such as DevOps and
DevSecOps, the software life cycle in its traditional form has been fundamentally transformed and influenced by con-
cepts such as CI/CD, delivery flow, workflow, etc. These frameworks would impose specific rules, automations, and
restrictions to the operating environment regarding testing and deployment of software updates and changes.90 As
such, deploying online-generic NTP models that during test phase need to access to real-world network data is an
important challenge. In such environments, the criteria for evaluation of new updates and deployment licensing is
subject to passing a comprehensive test set to ensure that each component and the whole end-to-end workflow is not
degraded through new deployments. Due to the dynamic nature of live streaming data and the data-driven structure of
online-generic NTP approaches, gaining accurate and reliable results through testing, if not impossible, but is notori-
ously difficult.91 Although the classical AutoML accelerates the development of ML solutions, it does not address those
issues concerned in ML systems’ deployment. Auto-Adaptive Machine Learning (AAML) is a notion composed by91

to respond to this problem. It proposes an architecture for ML systems lying in the bed of continual learning concept,
aiming to address the aforementioned challenge by continuous update of deployed models.

5 CONCLUSION

Network Traffic Prediction is considered as an important solution to address the various challenges in networking, for
example, resource provisioning, congestion detection, and fault tolerance. The field of NTP is still in infancy as different
models and techniques are used to predict the network traffic depending on network’s type and purpose. Although ML
techniques are widely used for NTP, there are some challenges that should be addressed to improve their efficiency in case
of NTP, for example high computational cost, training, and retraining difficulties, Intrinsic large volatility of data, etc. On
the other hand, statistical-based techniques are used traditionally for network traffic prediction; however they suffer from
various challenges, for example, the excessive volume of needed historical data and their inherent constraints to deal with
nonstationary time-series. In this paper, we have surveyed both ML- and statistical-based techniques for NTP. Our study
shows that most existing solutions are not efficient in real-world applications due to the special characteristics of network
data processing in modern networking technologies such as Theory of Networks, retraining challenge and ground truth.
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