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Bohr’s stopping-power formula derived for a classical free-electron gas
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Bohr’s centenary stopping-power formula is rederived for a free electron gas (FEG) system within the
framework of nonrelativistic classical mechanics. A simple and more concise expression for the stopping
power of charged particles in FEG is demonstrated on classical grounds. Using semiclassical arguments and
the Euler-Maclaurin well-known mathematical formula, Bloch’s correction that links Bethe’s quantum theory to
Bohr’s classical model is also recovered. The proposed semiclassical stopping-power formula contains the main
physical ingredients for a general stopping formula applicable for different systems and energies and facilitates
computational calculations.
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I. INTRODUCTION

The energy loss of energetic charged particles in matter
is a key quantity in many areas of knowledge and has been
investigated for more than a century by many prominent
scientists such as Bohr [1,2], Bethe [3], and Bloch [4]. Its
foundations are described in a wide literature including differ-
ent textbooks [5–7]. The seminal work by Niels Bohr [1] “On
the Theory of the Decrease of Velocity of Moving Electrified
Particles on Passing Through Matter” provided the first reli-
able formula for the stopping power of charged ions in matter
more than 100 years ago. It gives the energy loss of a point
charge (Z1e) interacting with a harmonically bound electron
(resonance frequency ω) as(

dE

dx

)
Bohr

= 4πnZ2
1 e4

mv2
ln

1.1229mv3

|Z1|e2ω
, (1)

where v is the ion speed, e is the elementary charge, m is
the electron mass, and n is the density of oscillators with
frequency ω. This formula is demonstrated in textbooks (see,
e.g., Ref. [6]) and is valid for high velocities as otherwise
it can give negative stopping values. It has been extended
to low projectile energies many years ago [8] and more re-
cently [9,10]. Here this formula is derived in an alternative
way for a classical free electron gas (FEG) with density n and
corresponding plasmon frequency ωp. The present derivation
of Bohr’s formula only follows from the dressed ion-electron
interaction for a FEG. It is much simpler and does not use
any ad hoc adiabatic cutoff distance or classical oscillators.
In the original derivation of Bohr’s formula, the frequency
associated with adiabatic cutoff distance is not determined a
priori and instead is chosen to emulate quantum-mechanical
dipole transitions. Bloch [4] could show that the Bohr formula
is consistent with a (partial or restricted) nonlinear solution
of the Schrödinger equation for strong perturbations. This
explains the success of Bohr’s formula.
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Many calculations of the stopping power of ions in a
FEG system have been proposed in the literature as, e.g.,
the linear-response theory [11], first and second-order per-
turbation schemes [12–14], DFT [15], TDDFT [16–18] and
transport cross-section and semiclassical approaches [19,20].
Here the focus is on classical and semiclassical calcula-
tions. Besides the rederivation of Bohr’s stopping formula, a
straightforward formula for the classical stopping power of
charged ions in a FEG is demonstrated and connected with
the standard stopping models by Bethe [3] and Bloch [4].
Nonrelativistic expressions will be used throughout this work.

II. DERIVATION OF THE CLASSICAL FREE-ELECTRON
GAS STOPPING-POWER FORMULA

Let us first consider the slowing down of a point charge
(Z1) in a classical FEG with density n where the electrons are
at rest (static FEG). In the reference frame where the projectile
is at rest, there is a beam of electrons of density n and velocity
�v that is scattered by the fixed point charge or ion (see Fig. 1).
This scattering is described by a screened potential V (�r ),
where �r is the electron position and the ion is at the origin.
The classical trajectories are denoted by �rcl(t, �b ) for electrons
coming from the left to the right with initial velocity �v and
impact parameter �b. The stationary density of electrons with
initial density n is then given by

ρ(�r) = nv

∫
dt

∫
d2bδ(3)(�r − �rcl(t, �b )). (2)

The induced density nind(�r ) = ρ(�r ) − n will be then re-
sponsible for a force acting on the projectile �Find. This
retarding force is the stopping force or simply stopping power
defined as [11]

dE

dx
= 1

v
�Find · �v = Z1e2

[∫
∂

∂x

nind(�r′)

|�r − �r′|d3r′
]

�r=0

. (3)

The determination of the stopping power by the induced
force [21] or by the wakefield generated in the medium is
equivalent to the traditional method of calculating the energy
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FIG. 1. Illustration of the electron trajectories (top) and induced
density (below) for an ion at (x = 0, y = 0, z = 0). Electrons come
from the left to right with velocity �v and impact parameter b. x is
the direction of the motion, and � the scattering angle. Simulations
were performed for a proton in the laboratory system with v = 5 and
electron Wigner-Seitz radius rs = 2.07 in atomic units.

transfers from the ion to the medium as used originally by
Bohr.

Using the electron density ρ(�r ) from Eq. (2) we get

dE

dx
= nv

∫
dt

∫
d2b

Z1e2 cos(θcl )

rcl(t, �b)2
, (4)

where θcl(t, �b ) is the angle of the electron related to its
initial velocity. After changing the order of time and impact-
parameter integrals, the time integration can replaced by an
integral over θ = θcl(t, �b ) as

dE

dx
= nv

∫
d2b

∫ �(�b)

π

dθ
1

θ̇

Z1e2 cos(θ )

rcl(t (θ, �b), �b)2
, (5)

with �(�b ) being the electron-scattering angle. For a central
potential the angular momentum, namely,

L = mr2
clθ̇cl, (6)

is conserved and given in terms of the impact parameter as
L = −mvb. Therefore Eq. (5) will read

dE

dx
= −2πnZ1e2

∫ ∞

0
db

∫ �(b)

π

dθ cos(θ )

= −2πnZ1e2
∫ ∞

0
db sin �(b), (7)

and finally using the relation between the plasmon frequency
and electron density ω2

p = 4πne2/m [7] we obtain the stop-

ping formula,

dE

dx
= −Z1mω2

p

2

∫ ∞

0
db sin �(b), (8)

which differs from the traditional one(
dE

dx

)
binary

= mnv2
∫ ∞

0
d2b[1 − cos �(b)] = mnv2σtr,

(9)

based on the transport or momentum transfer cross section
σtr in binary collisions [7]. Equation (8) was recently ob-
tained in Ref. [22] by means of a semiclassical approximation
for the phase shifts in electron-ion scattering. As shown in
Refs. [22,23], the use of the momentum transfer approach
is more suitable at low projectile energies. In contrast, the
stopping based on induced force solves a critical convergence
problem at high projectile energies.

At high projectile velocities, the collisions can be divided
into close and distant collisions [8,9,24], where the scattering
angle � can be determined as a function of the impact pa-
rameter b for the Coulomb potential at close collisions and
the Yukawa potential with screening length v/ωp (obtained
here self-consistently, see Appendix A) at distant collisions
according to [24]

tan

(
�close

2

)
= − Z1e2

bmv2
, (10)

�distant = −2Z1e2ωp

mv3
K1

(
ωpb

v

)
, (11)

where Kn is the modified Bessel function of the second
kind [25]. As in Ref. [9] let b0 be an impact parameter that
divides the integration in Eq. (8) in two parts: close [using
Eq. (10)] and distant [using Eq. (11)] collisions. Moreover, at
high projectile velocities these two regions are well separated
and merge to each to other at b0 as long as |Z1|e2/mv2 �
b0 � v/ωp. For these conditions and sin �distant ≈ �distant the
stopping force reads

dE

dx
=

(
dE

dx

)
close

+
(

dE

dx

)
distant

= −Z1mω2
p

2

(∫ b0

0
db sin �close +

∫ ∞

b0

db�distant

)
.

(12)

These two integrals are analytical and read

(
dE

dx

)
close

= Z2
1 e2ω2

p

2v2
ln(1 + (b0mv2/Z1e2)2), (13)

(
dE

dx

)
distant

= Z2
1 e2ω2

p

v2
K0

(
ωpb0

v

)
. (14)

The close-collision part is identical to the standard expres-
sion based on binary collisions for a Coulomb interaction.
The distant-collision part is equal to the one from Ref. [9]
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at high projectile velocities, where ωpb0

v
K1( ωpb0

v
) ≈ 1. Both

expressions in the limit |Z1|e2/mv2 � b0 � v/ωp are [25]
(

dE

dx

)
close

= Z2
1 e2ω2

p

v2
ln(b0mv2/|Z1|e2), (15)

(
dE

dx

)
distant

= Z2
1 e2ω2

p

v2
ln

(
2e−γ v

ωpb0

)
, (16)

where γ = 0.57721 is Euler’s constant and 2e−γ = 1.1229.
The sum of the above terms gives Bohr’s stopping formula
Eq. (1) for ω = ωp. Note that b0 cancels out and therefore its
exact value is immaterial under the present conditions. Bohr’s
stopping formula is valid only for high projectile velocities
and different schemes have been proposed to extend its va-
lidity down to lower projectile energies [8–10,26,27]. It is
pointed out that the dynamic screening is the critical point to
understand this rederivation of Bohr’s stopping formula for a
FEG. The present model goes beyond binary collisions since
the electron-ion interaction is obtained self-consistently, as
demonstrated in Appendix A.

III. SEMICLASSICAL APPROXIMATION

The classical stopping power from Eq. (8) can be written
in terms of the angular momentum h̄� = mvb and the integral
over the impact parameters can be replaced by a sum over �

according to the following semiclassical approximation (see
Appendix B):

(
dE

dx

)
sc

= −Z1ω
2
p

2v
h̄

∞∑
�=0

sin �(h̄�/mv). (17)

This expression is more general and recovers the Bloch and
Bethe stopping formulas, as demonstrated in what follows. It
is also quite suitable for numerical calculations since there
are different and efficient methods to calculate the scattering
angle �(b) in two-body problems.

Using the well-known Euler-Maclaurin formula [25] to
convert the sum in Eq. (17) to an integral, the stopping ex-
pressions (8) and (17) can be easily connected to each other
as (

dE

dx

)
sc

= −Z1ω
2
p

2v
h̄

∞∑
�=0

sin �(h̄�/mv) (18)

= −Z1mω2
p

2

∫ ∞

0
db sin �(b)

+ Z1ω
2
p

2v
h̄

∞∑
k=1

�2k−1 B2k

(2k)!
F (2k−1)(0), (19)

where F (b) = sin �(b), for which F (0) = F (∞) = 0, Bn are
the Bernoulli coefficients, and � = h̄/mv. The nth derivative
of F (b) at b = 0 is denoted by F (n)(0). For such a vanish-
ing impact parameter, Coulomb scattering prevails [F (b) =
− 2Z1e2

v
bmv

(Z1e2/v)2+(bmv)2 ], and therefore

F (n)(0) = −2Z1e2

v
(−1)

n−1
2

(mv)nn!( Z1e2

v

)n+1 , (20)

for n odd. Putting the above coefficients into expression (19)
we have

(
dE

dx

)
sc

= −Z1mω2
p

2

∫ ∞

0
db sin �(b)

− Z2
1 e2ω2

p

v2

∞∑
k=1

(−1)k−1 1

2k
B2k

1

χ2k
(21)

= −Z1mω2
p

2

∫ ∞

0
db sin �(b)

+ Z2
1 e2ω2

p

v2
[ln(χ ) − Re�(1 + iχ )], (22)

where χ = Z1e2/h̄v and �(x) is the digamma function, whose
expansion in terms of the Bernoulli coefficients is found in
Ref. [25]. The first term corresponds to the Bohr formula in
the high-velocity limit as demonstrated above. The second
term corresponds to the inverse Bloch correction LinvBloch =
ln(χ ) − Re�(1 + iχ ) [24,28]. The so-called Bloch correc-
tion is an expression originally derived by Bloch [4] that
bridges the Bethe and Bohr formulas. It was also derived
by Lindhard and Sørensen for a FEG [29]. It is an additive
correction on the Bethe formula, which includes higher-order
terms from close collisions approaching the Bohr formula in
the limit of very strong perturbations χ � 1. The second term
of Eq. (22) does the opposite. It corrects classical results to
account for quantum effects in close collisions. In the limit of
small perturbations at high speeds (χ → 0), the semiclassical

stopping approaches the Bethe formula
Z2

1 e4ω2
p

mv2 ln( 2mv2

h̄ωp
). The

correction’s origin is only due to the conversion of the sum
by the integral over the orbital angular momentum. There-
fore, the physical origin of the Bloch correction is evident
in the current approach. It comes from close collisions for
which quantum effects of the quasi-Coulomb scattering are
important. Another feature of the derivation is that the inverse
Bloch correction is tightly connected with the logarithm term
as recently demonstrated in Ref. [28]. The inverse-Bloch cor-
rection is used in the binary theory of the stopping power
(realized by the PASS code) [26]. It was shown recently that
proper account of the Bloch correction and the ion charge
form the key to a quantitative description of the electronic
stopping of heavy ions [28].

The results of the classical and semiclassical stopping for-
mulas for H, He, and C in a FEG system corresponding to
the Al valence electrons are shown in Fig. 2. The classical
results converge to Bohr’s classical theory from ion veloci-
ties somewhat after the maximum of the classical stopping.
For increasing Z1, classical and semiclassical formulas give
nearly the same results for v > 1. In addition, for a FEG sys-
tem, the high-velocity limit is given exactly by the Lindhard
dielectric formalism [11]. The present semiclassical results
converge to the dielectric formalism for protons at high pro-
jectile velocities (v > 2). Note that dynamical exchange and
correlation effects are of minor importance at high projectile
energies [23].

The semiclassical expression for the stopping power (17) is
quite general. It must be corrected at low projectile velocities
by the effect that electrons are not, in fact, at rest. The usual
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FIG. 2. Classical and semiclassical stopping results from Eqs. (8)
and (17), respectively, for H, He, and C in FEG with electron radius
rs = 2.07 as a function of the ion velocity v. The Yukawa potential
was used with α = ωp/v. For comparison, the Bohr [1], Bethe [3],
and Lindhard [11] models are also present. All results are in atomic
units (a.u.).

way [24,30] to account for this effect is the application of
the following kinematic transformation on the semiclassical
stopping (17):
(

dE

dx

)
sc,corr

=
∫

d3v′ f (v′)
v · (v− v′)
v|v− v′|

(
dE

dx

)
sc

(v, |v− v′|),

(23)

where f (v) is the velocity distribution of the electrons in an
undisturbed target. Therefore, nondegenerate FEG and thus
effects of temperature can be taken into account in Eq. (23)
by using, for instance, a Maxwell -Boltzmann distribution for
f (v).

Note that the correction above to the semiclassical ap-
proach fails at very low projectile velocities since full
quantum-mechanical effects dominate the electron-ion scat-
tering as the de Broglie wavelength increases. Therefore, it
will not reproduce the so-called Z1 oscillations of the stopping
power [31] at very low projectile velocities. Moreover, for
these low energy projectiles, dynamic exchange and correla-
tion effects must be included in the calculations [17,18].

IV. CONCLUSIONS

In summary, we derive a formula for the stopping power
[Eq. (8)] of charged particles in a classical system of elec-
trons at rest with initial-state density n (classical static FEG),

assuming a central potential for the ion-electron interaction.
It gives the same results as Bohr’s classical theory in its
range of validity. The suggested semiclassical generalization
encompasses Bloch’s stopping theory, which links Bethe’s
perturbative quantum theory of stopping power of charged
particles in matter and Bohr’s classic theory. The current
treatment indicates that the Bloch correction can also be un-
derstood as a consequence of the semiclassical approximation
and conversion of the sum over angular momenta, as realized
by the Euler-Maclaurin formula. It affects mostly small im-
pact parameters and thus close collisions.

The stopping formula Eq. (17) captures the basic stopping
processes regarding target ionization and excitation and can
be applied to real systems after considering different target
densities, shell corrections, screening, and charge states of the
projectile.
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APPENDIX A: CHARGE NEUTRALIZATION CONDITION

The classical expression for the density ρ(�r ) [Eq. (2)] can
be used to derive a rule for the neutralization condition∫

d3r[ρ(�r ) − n] = Z1. (A1)

Using Eq. (2) in Eq. (A1), we have, after some algebra,

2n
∫

d2b
∫ R

r0

dr√
1 − 2V (r)

mv2 − (b/r)2
− 4π

3
R3n = Z1 (A2)

for R → ∞. r0 is the distance of closest approach. Using the
expression for the semiclassical phase shifts δ� [32] we get the
following expression:

2nπ h̄3 1

m3v2

∑
�

(2� + 1)
dδ�(v)

dv
= Z1, (A3)

which agrees with the expression from Arista and Lifs-
chitz [33] derived from quantum mechanics. Indeed, the
classical expression for the density ρ(�r ) from Eq. (2) de-
scribes the density of electrons coming from one direction
with a single asymptotic speed. Equation (2) can be gener-
alized to allow for electrons coming from any direction and
different asymptotic speeds. By averaging the electron veloc-
ity in Eq. (A3) over the static Fermi sphere, with v f as the
maximum speed, we retrieve the Friedel sum rule in the usual
form [33,34] for a static impurity,

Z1 = 2

π

∑
�

(2� + 1)δ�(v f ). (A4)
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FIG. 3. Numerical calculations for the spherical averaged in-
duced potential Vind = e2

∫
d3r′nind (�r ′)/|�r − �r ′| in reduced units for

different ξ = 2Z1e2α/mv2 values. The closed circles correspond
to the induced potential determined from the Yukawa potential as
− Z1e2

r e−αr + Z1e2

r .

The classical expression (A2) for charge neutralization in
the limit of high velocities is

2n
∫

d2b
1

b2v2

∫ ∞

b

dr

m
√

1 − b2/r2

d

dr
[r3V (r)] = Z1 (A5)

according to the procedure of Lehmann and Leibfried [see
Eq. (A117) in Ref. [7] ]. For the Yukawa potential [V (r) =
− Z1e2

r e−αr] we have

Z1 = −2nZ1e2

mv2

∫
d2b

1

b2

∫ ∞

b

dr√
1 − b2/r2

(2r − r2α)e−αr,

Z1 = ω2
pZ1

v2

∫ ∞

0
bdb

1

b2

1

4
b2[−4K0(αb) + 3αbK1(αb)

− 4K2(αb) + αbK3(αb)],

Z1 = ω2
pZ1

v2

1

α2
, (A6)

which means α = ωp

v
. Therefore, for ξ = 2Z1e2α/mv2 �

1, where the above expansion holds true, the screening
parameter α = ωp

v
used in Eq. (11) is obtained from the neu-

tralization condition. Moreover, numerical calculations for the
spherical averaged induced potential (see Fig. 3) show the
self-consistence of the Yukawa potential at high projectile
velocities (ξ � 1). Dipolar effects of the induced potential are
expected to be of minor importance at high-projectile veloci-
ties [35] since the Coulomb potential dominates the scattering

at close collisions. At distant collisions, the dipole contribu-
tion vanishes according to the impulse approximation.

APPENDIX B: SEMICLASSICAL APPROXIMATION

The semiclassical approximation used to derive Eq. (17)
matches full quantum mechanics calculations of stopping
power for a FEG in the high-energy limit v � v f , where v f is
the Fermi velocity. It reads [22]

dE

dx
= Zω2

p

2v
h̄

∞∑
�=0

sin[2(δ� − δ�+1)], (B1)

where δ� are the phase shifts at the velocity v for a scat-
tering described by a central potential. The semiclassical
formula (17) is obtained by relating the phase shifts to the
scattering angle as 2(δ�+1 − δ�) → � [5].

A different semiclassical approach has been proposed [6]
and used in several works. It relies on an ad hoc introduc-
tion of a minimal impact parameter determined from the
de Broglie wavelength in the perturbative limit. Although it
provides stopping results similar to the sum over the angular
momentum in Eq. (17), this procedure is misleading. A mini-
mum impact parameter for a two-body problem gives the false
impression that the cross section for large energy transfers is
strongly affected. For large energy transfers, there is not such
a large difference between quantum and classical calculations.

APPENDIX C: NEUTRAL PROJECTILE

Let us now consider a neutral projectile interacting with
a classical static FEG system. The difference now is the
electron-point-charge force in Eq. (4), Z1e2/r2

cl, which is re-
placed by V ′(rcl ), where V (rcl ) is the potential that describes
the interaction between the electron from the FEG and the
neutral projectile. Thus, the stopping force will now read

dE

dx
= −nv

∫
dt

∫
d2b cos(θcl )V

′(rcl(t, �b)), (C1)

or, in terms of the force along the x direction Fx =
− cos(θcl )V ′(rcl(t, �b)),

dE

dx
= −nv

∫
d2b

∫
dtFx = −nv

∫
d2b�Px

= nv

∫
d2bmv[1 − cos(�)] = mnv2σtr, (C2)

which is the standard stopping formula in terms of the trans-
port cross section σtr [7].
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