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ABSTRACT

This work proposes a new extension for the nonlinear formulation of the data-driven
control method known as the Nonlinear Virtual Reference Feedback Tuning. When the
process to be controlled contains a significant quantity of noise, the standard Nonlinear
VRFT approach – that uses the Least Squares method – yield estimates with poor statis-
tical properties. These properties may lead the control system to undesirable closed loop
performances and even instability. With the intention to improve these statistical proper-
ties and controller sparsity and hence, the system’s closed loop performance, this work
proposes the use of ℓ1 regularization on the nonlinear formulation of the VRFT method.
Regularization is a component that has been extensively employed and researched in the
Machine Learning and System Identification communities lately. Furthermore, this tech-
nique is appropriate to reduce the variance in the estimates. A detailed analysis of the
noise effect on the estimate is made for the Nonlinear VRFT method. Finally, three dif-
ferent regularization methods, the third one proposed in this work, are compared to the
standard Nonlinear VRFT.

Keywords: Data-Driven Control, VRFT, Regularization.



RESUMO

Este trabalho propõe uma nova extensão para a formulação não linear do método
de controle orientado por dados conhecido como Método da Referência Virtual Não Li-
near, ou Nonlinear Virtual Reference Feedback Tuning – denominado aqui somente como
VRFT. Quando o processo a ser controlado contém uma quantidade significativa de ruído,
a abordagem padrão do VRFT – que usa o método dos Mínimos Quadrados – fornece es-
timativas com propriedades estatísticas pobres. Essas propriedades podem levar o sistema
de controle a desempenhos indesejáveis em malha fechada. Com a intenção de melhorar
essas propriedades estatística, identificar um controlador simples em quantidade de pa-
râmetros e melhorar o desempenho em malha fechada do sistema, este trabalho propõe
o uso da regularização ℓ1 na formulação não linear do método VRFT. A regularização
é uma técnica que tem sido amplamente empregada e pesquisada nas comunidades de
Aprendizagem de Máquina e Identificação de Sistemas ultimamente. Além disso, esta
técnica é apropriada para reduzir a variância das estimativas. Uma análise detalhada do
efeito do ruído na estimativa é feita para o método VRFT não linear. Finalmente, três
diferentes métodos de regularização, o terceiro proposto neste trabalho, são comparados
com o VRFT.

Palavras-chave: Controle baseado em dados, VRFT, Regularização.
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1 INTRODUCTION

The classical control methods for linear systems known as modern control techniques
were developed based on the state space theory. To cite a few of these techniques we
have the Linear Quadratic Regulator (LQR), the Linear Quadratic Gaussian (LQG), the
pole placement and the Robust Control techniques. All of these methodologies share
the same feature: they are in the class of Model Based Control (MBC) techniques. The
mentioned techniques present a drawback: the user needs to spend some time determining
or identifying a model for the process to be controlled.

With the development of microelectronics, the microcontrollers, which used to be
overly expensive, became cheaper. In this way, the use of more precise control systems
became more frequent in the industries, allowing the process’s data to be stored for further
analysis and used on control techniques based on data (HOU; WANG, 2013).

Data-Driven (DD) control design requires no formulation of the mathematical model
of the process to tune the controller’s parameters. On the contrary, a fixed controller
structure is directly designed to optimize some performance criterion given by the Refer-
ence Model. That is, only the input and output data of the process is used to achieve the
specified dynamics.

The DD matter has been addressed since the early 1940s in (ZIEGLER; NICHOLS,
1942), in which the controller identification is made through process’ time response. Ad-
justing the parameters of a controller without any knowledge of the transfer function has
been tackled within the adaptive control community (ÅSTRÖM; WITTENMARK, 2013;
GOODWIN; SIN, 1984; IOANNOU; SUN, 2012). The adaptive control domain has been
and still is very explored, yet the ordinary industries have not incorporated its methodolo-
gies.

In the midst of the DD methods, the most popular is known as the Virtual Reference

Feedback Tuning (VRFT) (CAMPI; LECCHINI; SAVARESI, 2002). This methodology
is part of the one-shot methods group, i.e. a single batch of input-output data is needed to
tune the controller. Several extensions for the VRFT have been researched and presented
in the literature: (LECCHINI; CAMPI; SAVARESI, 2002) with a 2-degree of freedom
approach, (CAMPESTRINI et al., 2011) to deal with Non-minimum Phase (NMP) zeros



14

of the plant, (CAMPESTRINI et al., 2016) which shows the MIMO case, and (CAMPI;
SAVARESI, 2006) for the nonlinear scenario. In addition, there are the iterative methods
group, where the most known and the pioneer is the Iterative Feedback Tuning (IFT)
(HJALMARSSON et al., 1998). The requirement of iterative methods is the sequence of
experiments to improve the controller’s parameters.

As a result of VRFT being a one-shot design and the controller possessing linear
parameterization, the optimization problem can be solved via the Least Squares (LS)
method. However, the fact that these methods display poor statistical properties is a
well-known fact, so that alternative approaches for the optimization are still being sought
(GARCIA; BAZANELLA, 2020).

As the estimates present poor statistical properties, the system’s closed-loop perfor-
mance is directly affected. Hence, the method becomes less attractive to be employed in
real industrial applications where high noise levels are present. Also, it is a well-known
fact that the majority of the systems show a nonlinearity, though this aspect is often ig-
nored in the control design.

Inside the DD community, there are fundamental studies about the design of nonlinear
controllers aiming on a closed-loop system with a linear behavior. However, these works
involve a considerable knowledge about the process and the applied signal for achiev-
ing satisfactory estimates (CAMPI; SAVARESI, 2006). Furthermore, in (BAZANELLA;
NEUHAUS, 2014), a new class of controllers is estimated through the VRFT method: the
rational and polynomial structures. This rational structure is able to represent several real
systems, as it uses the previous input and output signals, although the algorithm used to
estimate a rational nonlinear system is a sequence of Least Squares.

Since 90% of industrial control loops around the world are Proportional-Integral-
Derivative (PID) (ÅSTRÖM; HÄGGLUND, 2006), we extend this famous controller
structure to a nonlinear scenario. The proportional, integral and derivative signals are
assembled with a library of nonlinear functions composing a nonlinear controller.

In the DD framework, often there is very little - or no - prior information on the
process available. Under these circumstances, an overparameterized controller structure
is required. Therefore, a new design tool is essential to guarantee the best statistical
properties possible. In the linear monovariable - Single-Input Single-Output (SISO) -
context, the addition of the ℓ2-regularization has been discussed in (RALLO et al., 2016;
FORMENTIN; KARIMI, 2014), where authors include the regularization to reduce the
estimates covariance using instrumental variables and enhance the system’s performance.
Likewise, the work (BOEIRA, 2018) presents a Bayesian perspective for the multivariable
VRFT method.

With these ideas in mind, this work’s main idea is to exploit the ℓ1-regularization
to get better estimates on overparameterized controllers and yielding sparse ones. The
contributions of this master thesis are: comparing the already proposed ℓ1-regularization
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methods in the literature with the one developed herein, analyze the noise effect and the
input signal on the estimates’ quality.

The thesis is partitioned as follows: Chapter 2 explains some basic definitions and
characteristics about the systems analyzed herein, along with a literature review about the
most known Data-Driven control techniques. Chapter 3 brings out the concepts about
the VRFT in the LTI and SISO context. Chapter 4 deals with the VRFT method applied
to nonlinear systems employing the ℓ1-regularization. Finally, Chapter 6 presents the
concluding remarks.
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2 PRELIMINARIES

This chapter presents some basic and fundamental definitions giving the reader a bet-
ter work’s understanding. In the first place, the process to be controlled is defined, as well
as some characteristics and fundamental properties of the signals are addressed. Sub-
sequently, the control system is described and analyzed, likewise the different type of
structures and the diverse performance criteria.

2.1 The process

In this work’s ambit nonlinear SISO discrete systems are considered, which can be
described by the following equation

y(t) = P(y(t− 1),...,y(t− ny), u(t− 1),..., u(t− nu)) + ν(t), (1)

where t ∈ Z represents the discrete time variable, and q is the forward-shift time operator,
i.e.

qx(t) = x(t+ 1) (2)

q−1x(t) = x(t− 1), (3)

y(t) ∈ R is the output signal, u(t) ∈ R is the input signal, P(.) is the nonlinear map and
ϵ(t) ∈ R is a white noise signal with zero mean and variance E[ϵ2(t)] = σ2

ϵ .
The E[.] stands for the Expectation operator. An important observation to disclose

is that the does not describe all possible disturbances that may appear in the process,
however it is sufficient for a wide variety of practical problems (LJUNG, 1999).

Definition 2.1. (LJUNG, 1999) A quasi-stationary process s(t) can be defined as:

(i) Ē [s(t)] = ms(t), |ms| ≤ C, ∀t;

(ii) Ē [s(t)s(r)] =| Rs(t,r) |≤ C, ∀t,r;

(iii) lim
N→∞

1
N

N∑
t=1

Rs(t, t− τ) = Rs(τ), ∀τ ,
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where ms(t) is the mean value of s(t) and Rs(t,r) is the autocorrelation of s(t).

Acknowledge that, if the signal s(t) is a stationary stochastic process, it is easy to
verify that the above conditions are met. On the other hand, if s(t) is purely deterministic,
then the expectation operator does not have any effect. Thereby, saying that a signal is
quasi-stationary is similar to say that it is bounded and that its limit in condition (iii) ex-
ists. Periodical deterministic signals satisfy above conditions and thus are quasi-stationary
(LJUNG, 1999).

To make easier the notation along the work, the operator Ē[.] is applied and it is
defined as

Ē[f(t)] ≜ lim
N→∞

1

N

N∑
t=1

E [f(t)] , (4)

that allows writing the autocorrelation in the following manner:

Rs(τ) = Ē[s(t)s(t− τ)] (5)

Two signals s(t) and x(t) are said to be jointly quasi-stationary if both meet definition
2.1 and if their cross-correlation

Rsx(τ) = Ē[s(t)x(t− τ)] (6)

exists. If Rsx(τ) = 0, then the signals are decorrelated (LJUNG, 1999).
Another concept exploited on this thesis is the power spectrum of a quasi-stationary

signal s(t), denoted by Φs(ω) and written as:

Φs(ω) =
∞∑

τ=−∞

Rs(τ)e
−jωτ . (7)

This mathematical tool is useful in the analysis of signals on the frequency domain. Also,
it has the interesting property of Parseval’s Theorem, that can be verified through the
inverse Fourier transform:

Ē[s2(t)] = Rs(0) =
1

2π

∫ π

−π

Φs(ω)dω. (8)

2.2 The control system

For the purpose of attaining a determined performance criterion by the process, like
reference tracking, disturbance rejection or some other criterion, the process’ input signal
is transformed by a controller, then the system is put in closed-loop for operation. In the
literature and on various control applications, the signal u(t) is determined by countless
ways. For instance, it can be a nonlinear complex function, calculated by a predictive
algorithm (which is used on Model Predictive Control techniques), or some optimization
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algorithm that minimizes some criterion at each time instant, as in the optimal control
systems case.

In this work, particularly, nonlinear controllers are studied. The process’ input signal
is represented as it follows:

u(t) = C(v(t),ρ) = C(C̄(q)e(t),ρ) (9)

where C(v(t),ρ) is the nonlinear controller, parameterized by the vector ρ ∈ Rp. To better
illustrate the control system, Figure 1 shows the block diagram of the closed-loop system.
It is possible to observe that the controller is divided in two parts: C̄(q) which is the
controller’s linear block and ϕ(.) which is a library of nonlinear functions described as:

ϕ(v(t)) =

 | | | | |
ϕ1(v(t)) ϕ2(v(t)) ϕ3(v(t)) ... ϕk(v(t−M))

| | | | |

 . (10)

The structure for the library of nonlinear functions (10) is used to obtain a controller
that is linearly parameterized.

Figure 1 – Block diagram of the closed-loop system.

y(t)e(t) u(t)+

−

r(t) +

+

H(q)

ϵ(t)

P
v(t)

ϕ(.)C(q)

C(v(t),ρ)

ν(t)

ρ
Φ(t)

Source: author.

The reference signal r(t) ∈ R is assumed to be decorrelated from the noise process,
i.e.

Rrν(τ) = Ē[r(t)ν(t− τ)] = 0,∀τ, (11)

the error signal e(t) = r(t)−y(t) is filtered by the transfer function generating the signals
v(t), that are expanded by the library ϕ(v(t)). Then, the regressor vector Φ(t) is generated
by each column of the library of nonlinear functions.

2.2.1 Controller structure

Before presenting the controller tuning techniques, it is convenient to define some as-
pects about the structures used herein. For such, the controller C(v(t),ρ) has the following
scheme:

C(v(t),ρ) = ρTΦ(v(t)), (12)
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where ρ =
[
ρ1 ρ2 ... ρn

]T
, i.e. ρ ∈ Rn. The control techniques explored in this work

consider a fixed structure controller, chosen a priori by the user, and its parameters are
the variables to be found.

With the objective to ease the synthesis problem, we split the nonlinear controller
into two portions. The linear portion C̄(q) is a vector structured by rational functions in q.
Besides, these rational functions of C̄(q) must be linearly independent under the real num-
bers set, i.e., one assumes that the parameterization is minimal. One example of rational
functions are the Laguerre functions as presented in (BAZANELLA; CAMPESTRINI;
ECKHARD, 2012). It is important to highlight that this portion accountable for the
steady-state error requirements.

The set of implementable controllers is known as the controller classe (C), given by

C = {C(v(t),ρ) : ρ ∈ Ω ⊆ Rp}, (13)

where Ω is the admissible parameters set (BAZANELLA; CAMPESTRINI; ECKHARD,
2012).

The portion responsible for turning the controller into a nonlinear one is the library
ϕ(.). This portion’s contribution is to approximate the nonlinear function inverse, thus
mitigating its effect on the process. For instance, if the chosen linear controller structure
is proportional-integral (PI), the expansion of the linear signals vp = e(t) and vi(t) =

e(t)
(

q
q−1

)
through the Taylor Series until some order n defined by the user:

ϕ(.) =
[
vp vi vpvi v2p v2i ... (vpvi)

n
]
. (14)

Another point of view to be highlighted is that the choice of C class implies an assign-
ment of the controller’s order. Normally the user chooses the controller denominator as
of the reference to be followed and/or disturbances to be rejected, employing the Internal

Model Principle. For instance, if the application is to reject or follow a step, then the
denominator of C̄(q) must have the (q− 1) element, as it was presented above on the PID
controller. Under other conditions, if the application of the control system is to follow or
reject a sinusoidal signal, then the controller’s denominator has to have complex conju-
gate poles with the same natural frequency of the signal at issue. Controllers that have
this feature are known as resonant controllers and are largely applied to Uninterruptible
Power Supplies (CORLETA et al., 2016), for example.

2.2.2 Performance Criteria

With the purpose of evaluating the closed-loop system performance there are vari-
ous criteria that may be used. The most direct and sophisticated are the ones composed
by some norm of a signal on the control system, since they offer a qualitative measure
(BAZANELLA; CAMPESTRINI; ECKHARD, 2012). The most commonly used norm
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for this purpose is the 2-norm, which can be written as

∥x(t)∥ =
1

N

N∑
t=1

[x(t)]2. (15)

When this norm is used, the performance criterion is called the H2 criterion. Later on,
we explain different H2 performance criteria and their objectives.

Primarily, consider the reference tracking problem, where the noise and perturbation
effects are taken into account. The output signal is desired to have the same behav-
ior from the reference as possible. However, demanding that the output behave identi-
cally to the reference is an utopia, because the perfect tracking is practically impossible
(BAZANELLA; CAMPESTRINI; ECKHARD, 2012). Therefore, the reference objective
can be expressed though a transfer function that displays the desired closed-loop behav-
ior. This transfer function is denominated Reference Model and it is symbolized by Td(q).
The reference model tracking criterion is symbolized by Jy(ρ), it can be written as the
following way:

Jy(ρ) = Ē[(y(t,ρ)− yd(t))]
2, (16)

yd(t) = Td(q)r(t). (17)

Underlining what has been said about the reference tracking criterion, equation (16)
quantifies the difference between the desired and obtained (y(t,ρ)) output signals with
the C(v(t),ρ) controller. The lower this value, the best the system represents the desired
output.

There are various methods for controller design that seek to minimize the criterion
in (16), that includes the one present here in this work. On the next section it will be
discussed the general idea of said methods.

2.3 Model Reference Control Problem

The Model Reference Control Problem pursues to minimize the criterion on (16), i.e,
to minimize the difference between the desired and the obtained output behavior with
the controller C(v(t),ρ). Thus, the parameters can be obtained by solving the following
optimization problem:

ρ̂ = argmin
ρ

Jy(ρ). (18)

Beware that this is a non-convex optimization problem, so it might have several local
minimums, complicating the solution.

The controller that makes the system achieve the desired closed-loop performance is
called the ideal controller, or Cd(v(t),ρ). When this controller is inserted on the control
loop, the objective function Jy(ρ) shows its minimum value. In other words, the ideal
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controller is such that the input-output map r(t) → y(t) of the closed-loop system is
exactly the one specified by the reference model Td(q).

An important fact is that the C class of controllers defined by the user comprises
the ideal controller, so it is said that the ideal controller belongs to the C class. In this
scenario, it is said that it exists an ideal parameters vector that is written as Cd(v(t), ρ) =
C(v(t), ρ0). The assumption below summarizes these statements.

Assumption 2.1. Cd(q) ∈ C then ∃ρ0 : C(v(t), ρ0) ≡ Cd(v(t)).

At first, it seems to be impossible to satisfy the mentioned assumption because in
the nonlinear context, we only approximate the inverse of the nonlinear function. So,
only if nonlinear function inverse Taylor series expansion has a high order we can attain
Assumption 2.1.

2.4 Data-Driven Control

The data-driven control techniques differ from the classical model-based control tech-
niques because they do not need a mathematical model of the process. Notice that, for
instance, if the process was known, it would be easy to find the ideal controller. For
example, consider the following plant taken from (CAMPI; SAVARESI, 2006):

y(t) = y(t− 1) + u(t− 1)3 + ν(t), (19)

the controller class
u(t) = ρ[r(t)− y(t)]

1
3 , (20)

and also the reference model:
yd(t) = r(t− 1). (21)

If the control law is u(t) = [r(t)− y(t)]
1
3 and ν(t) ≡ 0, then the closed-loop becomes

y(t) = y(t− 1) + {[r(t− 1)− y(t− 1)]
1
3}3

= y(t− 1) + [r(t− 1)− y(t− 1)]

= r(t− 1)

(22)

as desired.
The DD methods do not seek to determine any controller structure. Contrarily, they

search to tune the controller’s parameters that are in a fixed structure predefined by the
user, from an input-output data set ZN collected from the process:

ZN = [y(1),u(1),y(1),u(2),...,y(N),u(N)], (23)

with N being the quantity of data. Once the data is collected the optimization problem
can be solved. There is a wide literature about this subject and the different data-driven
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control techniques. The most known are briefly presented in the following, in order to
better contextualize this work.

Among the data-driven control techniques, there are two distinct groups: the itera-
tive method group, which employ a sequence of experiments to update the controller’s
parameters in an iterative way; and the direct method group, which need only one or
two batch of data for the tuning. Usually, on the iterative algorithms, one may apply the
steepest-descent algorithm to minimize the chosen criterion. Thus, after each iteration,
the controller’s parameters are calculated by

ρi+1 = ρi − γi∇J(ρi), (24)

with ∇J(ρ) = ∂J(ρ)
(∂ρ)

and γi > 0. This algorithm is the most known favorite in the literature
because it needs less information compared to the others: only the objective’s function
gradient is needed and the step size of the iteration (normally assigned by the user). On
the other hand, if the Newton’s algorithm is applied on the optimization, it is necessary to
estimate the Hessian matrix, which implies on realizing some more complex experiments,
which have more information (BAZANELLA; CAMPESTRINI; ECKHARD, 2012).

The biggest advantage of the iterative methods is the operation security, since at each
iteration a small change occurs on the parameters, keeping the process well behaved, as
in the previous iteration. On the other hand, the main disadvantage of these procedures is
the large amount of experiments that must be realized on the process until the algorithm’s
convergence. Another downside is the fact that these algorithms depend on the initializa-
tion of the parameters and they can converge to the local minimums of the cost function.
Among the iterative methods, the most known are the Iterative Feedback Tuning (IFT),
the Frequency Domain Feedback Tuning (FDT) and the Correlation-based Tuning (CbT).

The IFT is one of the most known techniques developed in the data-driven control
community. It was initially proposed for the SISO case in (HJALMARSSON; GUN-
NARSSON; GEVERS, 1994) and it was more explored in (HJALMARSSON et al.,
1998). An IFT variation for cascade control systems can be found in (TESCH, 2016).
Extensions for the MIMO case are presented in (BRUYNE, 1997; HJALMARSSON;
BIRKELAND, 1998), with a more detailed and adequate version in (HJALMARSSON,
1999). The IFT and its variations were already applied on different situations, as an exam-
ple we have a heat treatment system (EL-AWADY; HANSSON; WAHLBERG, 1999), a
metal cutting machine (GRAHAM; YOUNG; XIE, 2007) and even in the control of quad-
copters (TESCH; ECKHARD; GUARIENTI, 2016). The main idea of the IFT method is
to minimize both the model reference tracking and the noise rejection. The optimization
is made through the steepest descent algorithm (the gradient is estimated though the data
collected from the closed-loop experiments).

FDT was introduced by (KAMMER; BITMEAD; BARTLETT, 2000). It seeks to
minimize the noise variance, without considering the reference tracking problem. In this
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method the gradient and the Hessian matrix estimators of the objective function are pro-
posed, based on a frequency domain analysis. By calculating the Hessian matrix, one may
apply the Newton’s method to optimize the problem.

The iterative CbT technique was originally proposed for SISO systems in (KARIMI;
MISKOVIC; BONVIN, 2004) and extended for MIMO systems in (MISKOVIC et al.,
2007). An application of the method for a magnetic suspension system can be found in
(KARIMI; MIŠKOVIĆ; BONVIN, 2003). The CbT has an objective that differs slightly
from the presented methods, this method tries to minimize the cross correlation between
the reference signal and the error between the desired output and real system’s output. By
that, the technique is able to make the closed-loop system as similar as possible to the
reference model dynamics and to do so, it makes use of the steepest descent algorithm.

On the opposite side, the direct data-driven control methods do not use the features
like the gradient vector and the Hessian matrix of the criteria regarding the parameters.
Therefore, their biggest advantage is that few experiments are needed to tune the con-
troller. However, the disadvantage that can be observed from this kind of method is
the abrupt change on the system’s parameters, which in some cases, can yield an un-
desired behavior. Amidst the direct methods the most known are the non-iterative CbT
(KARIMI; VAN HEUSDEN; BONVIN, 2007), the Virtual Reference Feedback Tuning

(VRFT) (CAMPI; LECCHINI; SAVARESI, 2002) and the Optimal Controller Identifica-

tion (OCI) (CAMPESTRINI et al., 2016).

The main target of this master thesis, the VRFT is the most spread and researched
among the direct methods, having various extensions and variants about its properties.
The VRFT method was firstly developed for SISO linear systems in (CAMPI; LEC-
CHINI; SAVARESI, 2002), with the main core of rewriting Jy(ρ), rendering the task
of optimizing an objective function simpler and from another point of view. For instance,
one can cite the active suspension control in (CAMPI; LECCHINI; SAVARESI, 2003),
the neuroprosthesis control in (PREVIDI et al., 2004), as many others in the literature.
In respect to the extensions, the work (VAN HEUSDEN; KARIMI; BONVIN, 2011) de-
velops the VRFT formulation with restrictions that guarantee a closed-loop stability. In
(CAMPESTRINI et al., 2011) the SISO VRFT was expanded to deal with non-minimum
phase processes. In most recent works (PILLONETTO et al., 2014; BOEIRA, 2018) there
is a concern to improve the statistical properties for the VRFT framework with the aid of
the Bayesian regularization.

Regarding the nonlinear systems control, the first extension was presented in (CAMPI;
SAVARESI, 2006), where they developed all formulation needed for applying the VRFT,
but it is not explained how the controller can be constructed. In recent works, another
interesting approach have been studied: the Data-Driven Inversion-Based Control (D2-
IBC) (NOVARA; FORMENTIN, 2017). This approach is built on a two-degree of free-
dom arrangement with a linear and nonlinear controller operating in parallel. The linear
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controller can be a PI or a PID, for example, depending on the reference model chosen,
while the nonlinear controller is composed by a large number of basis functions. The
nonlinear controller parameters are penalized by the ℓ1 norm. The complexity of the D2-
IBC method is that it requires two algorithms for the controller tuning, in exchange it has
a closed-loop stability guarantee. The D2-IBC method has already been applied on the
MIMO context for the control of an autonomous vehicle (NOVARA; MILANESE, 2019).

More recently, the work presented in (FERIZBEGOVIC et al., 2021) portrays a method-
ology for the data-driven control of Hammerstein Systems using the Bayesian perspec-
tive. This research employs a Wiener controller with a linear and nonlinear part. Also,
they propose three different structures for the nonlinear part: polynomial, piecewise and
only the linear portion. In (SINGH; SZNAIER, 2021) it is analyzed the identification of
Nonlinear Autoregressive with eXogenous (NARX) Models exploring two aspects: the
sparsity in regressors and basis functions.

The main focus of this master thesis consists on analyzing the statistical properties of
the standard nonlinear VRFT and then add the ℓ1-regularization and the sparse regression

and reanalyze their effects on the statistical properties and in the closed-loop performance.

2.5 Chapter Conclusions

This chapter introduced the basic definitions that will be used during this work. The
nonlinear process that will be controlled has been presented, as well as the signals that are
studied and their characteristics. In this sense, the concept of quasi-stationary signal was
introduced, which allows the analysis of stationary and deterministic stochastic signals
in the same context. Also, the spectrum of quasi-stationary signals was defined, as their
properties.

Section 2.2 described the type of control system that will be analyzed and synthesized
here, where the controller is divided in two parts: the linear and the nonlinear, has a
fixed structure predefined by the user and is linearly parameterized. It was commented
on the choice for the controller structure. The performance criteria based on the 2-norm
standards of the signals present in the system have also been explained in this section.

In Section 2.3 the control problem was presented by reference model, which proposes
the minimization of the Jy(ρ) criterion, as well as the ideal controller concept and when
Assumption 2.1 can be considered valid. Given the importance of choosing Td(q), some
guidelines for its choice were commented, aiming to ensure fundamental characteristics
for the ideal controller and, consequently, a good formulation for the problem.

Finally, Section 2.4 contextualized the state of the art in the field of data-driven con-
trol, where the main idea of these methodologies was first discussed. It consists in tuning
controllers without a mathematical model of the process, using a set of collected ZN data
and optimization of some performance criterion. Subsequently, the methods were sepa-
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rated into two distinct groups: the iterative and the direct ones and their main advantages
and disadvantages were pointed out. Also the most relevant methods have been described,
as well as some of their extensions and practical applications. The focus was given on the
features and extensions of VRFT, since this is the main subject of this thesis.
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3 NONLINEAR VIRTUAL REFERENCE FEEDBACK TUN-
ING

According to the previous chapter, the VRFT is a direct data-driven control method
that seeks to tune the controller parameters without the modeling or identification need,
as it uses only the data set ZN collected from the process. The data are obtained with
only one experiment, with no need of an iterative procedure for the tuning. The tuned
controllers are nonlinear and their structure is defined by the user. Via the VRFT method
we seek to minimize the model reference tracking H2 criterion, previously defined as
Jy(ρ). Nevertheless, minimizing the Jy(ρ) objective function is an exhausting task, since
it is a nonconvex function, i.e., it has local minimums. Accordingly, the methodology
proposed by the VRFT method lies on doing the optimization of a different criterion:
JV R(ρ). Under ideal conditions, this criterion possesses the same minimum of Jy(ρ).
On the non ideal case, in order to make a proper tuning there is a need to add a filter to
approximate both criterion minimum.

This chapter characterizes the nonlinear formulation of the Virtual Reference Feed-
back Tuning method developed in the literature. It is presented all the points and assump-
tion that concern this method. Additionally, the case with noise in the process is addressed
in sequence, since it is concentration of this thesis. In this scenario, the designer will ob-
tain an estimate of the ideal parameters Cd(q) in tuning the controller’s parameters.

3.1 The method

The proposed method idea consists of generating a virtual reference from the mea-
sured process’ data.

First, consider a nonlinear process with ϵ(t) = 0 and that it was collected some open-
loop input and output data, u(t) and y(t), respectively. Now, assume that the loop was
virtually put in closed-loop with the ideal controller, as Figure 2 shows. In the figure, the
continuous lines depict the actual collected data and the dashed lines depict the virtual
portion of the experiment. Suppose that the output y(t) was collected by the virtual ex-
periment. If this is the case, then it means tha the virtual reference r̄(t) was applied so
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that

Figure 2 – VRFT virtual loop diagram.
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Source: author.

Td(q)r̄(t) = y(t) (25)

r̄(t) = T−1
d (q)y(t), (26)

with Td(q) being the reference model chosen by the user. In the virtual system, we can
also determine the virtual error ē(t):

ē(t) = r̄(t)− y(t) (27)

ē(t) = [T−1
d (q)− 1]y(t). (28)

In possession of this information, the user has the ideal controller input (the ē(t) sig-
nal) and its output (u(t) signal). With that said, one can synthesize an identification
problem of Cd(v(t)). Therefore, the objective is to find the parameters set that minimizes
the following criterion:

ρ̂ = argmin
ρ

JV R(ρ), (29)

JV R(ρ) ≜ Ē[u(t)− û(t,ρ)]2

JV R(ρ) ≜ Ē[u(t)− C(v(t),ρ)]2
(30)

with û(t,ρ) = C(v(t),ρ).
One can use this method to estimate any sort of nonlinear controller C(v(t),ρ), but in

this work the attention is given to controllers linear in the parameters. Since this option
decreases the problem’s complexity. In this manner, the criterion in (30) is rewritten as

JV R(ρ) ≜ Ē[u(t)− ρTΦ(C̄(q)ē(t))]2

≜ Ē[u(t)− ρTΦ(v(t))]2,
(31)

where Φ(v(t)) ∈ Rp is the regressor vector, which has the expanded signal v(t) that was
generate by the filtration of ē(t).

The optimization problem proposed in (31) can be interpreted as an identification
problem of a FIR model. With these ideas in mind, proposed by the VRFT method, the
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function to be minimized is convex and its minimum can be obtained by the Least Squares
(LS) method (CAMPI; LECCHINI; SAVARESI, 2002):

ρ̂ =

[
N∑
t=1

Φ(v(t))Φ(v(t))T

]−1 N∑
t=1

Φ(v(t))u(t) (32)

Φ(v(t)) = [ϕ1(v(t)) ϕ2(v(t)) ... ϕn(v(t−N))] . (33)

Notice that, to find the unique solution of (32), the matrix
[

N∑
t=1

Φ(v(t))Φ(v(t))T
]−1

must

have full rank. The subsequent topic shows that minimizing the proposed criterion by
the VRFT is equivalent to minimizing the model reference tracking performance criterion
under ideal conditions.

3.1.1 Cost functions equivalence

To better illustrate the cost functions equivalency, we present an example based on
(CAMPI; SAVARESI, 2006). A complete and deeper explanation can also be found in
(CAMPI; SAVARESI, 2006).

Consider the nonlinear process:

y(t) = y(t− 1) + u(t− 1)3 + ϵ(t), (34)

the controller class

u(t) = ρ[v(t)]
1
3 , (35)

v(t) = e(t), (36)

which is a Proportional controller, and the reference model:

Td(q) =
1

q
(37)

which can be restated as

yd(t) = r(t− 1). (38)

The data was collected with N = 2 samples and u(0) = 1 and u(1) = 1, yielding the
output signal y(1) = 1 and y(2) = 2, through (26) we compute r̄(0) = 1 and r̄(1) = 2.
Suppose that we know the nonlinear process. In this case, the cost function Jy(ρ) could
be precisely calculated as follows:

y(1,ρ) = y(0,ρ) + ρ3[r̄(0)− y(0,ρ)]

= 0 + ρ3[1− 0] = ρ3;
(39)

y(2,ρ) = y(1,ρ) + ρ3[r̄(1)− y(1,ρ)]

= ρ3 + ρ3[2− ρ3] = 3ρ3 − ρ6;
(40)
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then the cost function Jy(ρ) can be determined as:

Jy(ρ) = [y(1,ρ)− r̄(0)]2 + [y(2,ρ)− r̄(1)]2

= (ρ3 − 1)2 + [(3ρ3 − ρ6)− 2]2

= 5− 14ρ3 + 15ρ6 − 6ρ9 + ρ12.

(41)

Note that ρ0 = 1 is the global minimum of this function which is portrayed in Figure 3.
Later, we describe the JV R(ρ) cost function,

v̄(0) = r̄(0)− y(0) = 1− 0 = 1 (42)

v̄(1) = r̄(1)− y(1) = 2− 1 = 1 (43)

which gives:
JV R(ρ) = [C(v(0),ρ)− u(0)]2 + [C(v(0),ρ)− u(1)]2

= (ρ · 1
1
3 − 1)2 + (ρ · 1

1
3 − 1)2

= 2ρ2 − 4ρ+ 2.

(44)

Figure 3 – Comparison between Jy(ρ) and JV R(ρ).

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

2

3

4

5

6

7

8

9

10

Source: (Adapted from (CAMPI; SAVARESI, 2006).

3.2 Noisy Data

Up to the present moment, we have described the procedure to apply the VRFT
method when the data is not corrupted by noise. From now on, we analyze the statis-
tical properties when there is non-negligible level of noise in the data. On this occasion,
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in applying the VRFT method to tune the controller’s parameters, the variable ρ̂ is not a
deterministic quantity, but rather a random variable that represents an estimate of its true
value ρ0 (BAZANELLA; CAMPESTRINI; ECKHARD, 2012). In addition, we expose
some features of the VRFT, where it is stated the limitations of its estimate and this work’s
motivation.

It is worth mentioning that this section supposes that the Assumption 2.1 is satisfied,
i.e., the ideal controller is in the C class. Otherwise, the VRFT statistical properties will
be subject to the data set characteristics’ and how far the fixed controller class is to the
ideal controller class (BAZANELLA; CAMPESTRINI; ECKHARD, 2012). This fact
forestalls a generalized analysis, demanding a specific study for each situation.

Consider now the system defined on Chapter 2. Recalling that for obtaining the pa-
rameters estimate by the VRFT method it is necessary to determine the virtual error ē(t)
through the data set ZN measured from the process. However, when we have noisy data,
the virtual error will also be contaminated:

ē(t) = (T−1
d (q)− 1)y(t), (45)

with y(t) = Pu(t) + ϵ(t),

ē(t) = (T−1
d (q)− 1)(Pu(t) + ϵ(t)) (46)

ē(t) = (T−1
d (q)− 1)Pu(t) + (T−1

d (q)− 1)ϵ(t) (47)

ē(t) = ē0(t) + ẽ(t). (48)

Thereby, in addition to the virtual error that goes in the ideal controller on the original
virtual loop interpretation, here denominated as ē0, there is also another portion of the
signal derived from the noise presence on the process’s output signal. Note that in the
original virtual loop interpretation there is no ẽ(t), therefore it does not go in the ideal
controller.

Usually, the typical system identification problems are formulated only contemplating
the noise presence in the system’s output. Notwithstanding, this is not the case studied
herein, because the virtual error actually is the input signal on the system to be identi-
fied. On the system identification community this kind of problem is known as Errors-

in-Variables (SÖDERSTRÖM, 2018). In the sequence, we present the properties of this
type of problem on the VRFT context.

It must be emphasized that the properties explored here are asymptotic properties, in
other words, they are true when N → ∞. Albeit, in a real application, it is impossible to
use an infinite quantity of data, one may suppose that such properties can be approximated
when operating with a large number of data N . For that reason, it should be noted that
the fewer collected data on the identification process, the less credible are the properties.

The VRFT properties scrutinized in this thesis context are the estimate consistency
and the bias error. These concepts are stated below.



31

Definition 3.1. (SÖDERSTRÖM; STOICA, 1989) An estimate is said to be biased if its

expected value is different from the true value: E[ρ̂] ̸= ρ0

Definition 3.2. (SÖDERSTRÖM; STOICA, 1989) An estimate is said to be consistent if

ρ̂ → ρ0 when N → ∞

The reader should not confuse these two concepts. The consistency is defined for
N → ∞, while the bias can be evaluated for a finite N . If an estimate is consistent, then
it is not biased for N → ∞. Although, this does not mean that it is no biased for a finite
N .

Furthermore, it is important to write the input-output relation of the ideal controller as
follows (reminding that the same is linearly parameterized):

u(t) = C(C̄(q)ē0(t),ρ0) (49)

u(t) = ρT0Φ0(v(t)) (50)

where Φ0(v(t)) is the regressor matrix concerning the signal ē0(t), using only the por-
tion that goes into the ideal controller ē0(t), rather than ē(t). By observing the above
equations, one can notice that the user does not possess the signal ē0(t) information in-
dependently, due to the noise additional portion that appears on the virtual error. The
available signal to make the identification is indeed ē(t), described by (45). For this rea-
son, a way to rewrite u(t) in terms of the available signals and a term corresponding to
the stochastic contributions is

u(t) = C(C̄(q)ē(t),ρ0) + C((C̄(q)ẽ(t),ρ0) (51)

u(t) = ρT0Φ0(v(t)) + ρT0 Φ̃(v(t)) (52)

with Φ(v(t)) = Φ0(v(t))+ Φ̃(v(t)), where Φ̃(v(t)) is the regressor matrix concerning the
signal ẽ(t).

Consider now the default VRFT estimate, the one that is determined by the least-
squares algorithm (32), as discussed in the previous sections. From now on, we use the
ρ̂V R for the parameter’s estimate. Suppose also that N → ∞. In this manner, we may
replace the sums in (32) by the Ē[·] operator, resulting in

ρ̂V R =
(
Ē[Φ(v(t))Φ(v(t))T ]

)−1 (
Ē[Φ(v(t))u(t)]

)
. (53)

A simplification can be made on the Ē[Φ(v(t))Φ(v(t))T ] term:

Ē[Φ(v(t))Φ(v(t))T ] = Ē[(Φ0(v(t)) + Φ̃(v(t))(ΦT
0 (t) + Φ̃T (t))]

= Ē[Φ0(v(t))Φ0(v(t))
T ] + Ē[Φ0(v(t))Φ̃(v(t))

T ]

+ Ē[Φ̃(v(t))Φ0(v(t))
T ] + Ē[Φ̃(v(t))Φ̃(v(t))T ].

(54)
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Considering that the data was collected when the process was in open-loop, then
Φ0(v(t)) holds the composed terms derived from the ẽ0(t) signal, Φ̃(v(t)) is derived from
the ẽ(t) term and both signals are decorrelated, one can conclude that the cross correlation
between Φ0(v(t)) and Φ̃(v(t)) is zero. Finally, one writes the following equation:

Ē[Φ(v(t))Φ(v(t))T ] = Ē[Φ0(v(t))Φ0(v(t))
T ] + Ē[Φ̃(v(t))Φ̃(v(t))T ]

= RΦ0 +RΦ̃

(55)

with RΦ = Ē[Φ0(v(t))Φ0(v(t))
T ] and RΦ̃ = Ē[Φ̃(v(t))Φ̃(v(t))T ], where R is utilized

as in Section 2.1 to denote the autocorrelation, herein we suppress the parenthesis term
(τ = 0) to simplify the notation. Moreover, the term Ē[Φ(v(t))u(t)] can be rewritten
making use of the following relation u(t) = Φ0(v(t))

Tρ0 as in (50). By using a similar
logic as before, we have

Ē[Φ0(v(t))u(t)] = Ē[Φ0(v(t))Φ0(v(t))
Tρ0]

= RΦ0ρ0
(56)

Finally, replacing this terms on the parameters asymptotic estimate equation, we con-
clude that

ρ̂V R = (RΦ0 +RΦ̃)
−1RΦ0ρ0. (57)

Thus, calculating the difference between the estimate and the true value of the param-
eters, we find the following expression

ρ̂V R − ρ0 = [(RΦ0 +RΦ̃)
−1RΦ0 − I]ρ0. (58)

Deriving out of equation (58), we may conclude some interesting properties from the
methodology.

Firstly, suppose that the noise on the process is negligible. As a consequence. the
Signal-to-Noise Ratio (SNR) of the virtual error will be elevated. That implies, jumping
some steps over, RΦ0 >> RΦ̃ and that we can approximate the following equation

RΦ0 +RΦ̃ ≈ RΦ0 . (59)

Hence, analyzing (58), one can conclude that on the case that the noise is negligible,
the estimate ρ̂V R → ρ0, in other words, the same will be consistent, as long as the inverse
matrix R−1

Φ0
exists. Without going into much detail, we highlight that this condition of

existence of the R−1
Φ0

matrix, is actually a persistence of excitation condition of the input
signal u(t) collected on the experiment (BAZANELLA; CAMPESTRINI; ECKHARD,
2012). If the reader wants to look into more details about the persistence of excitation of
quasi-stationary signals, it is recommended the reading of (LJUNG, 1999).
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At the same time, if the noise presence on the process is not negligible, the virtual error
signal will present a low SNR. Thus, in this scenario, one cannot make the approximation
previously made (RΦ0 + RΦ̃ ≈ RΦ0). Then, one can conclude that the estimate ρ̂V R will
not be consistent, i.e, it will be biased for N → ∞. In addition, it is worth noting that the
lower the SNR (or the higher the noise effect on the process), the higher the trace of the
RΦ̃ will be. On this case, it can be considered the following approximations:

RΦ0 +RΦ̃ ≈ RΦ̃ (60)

R−1

Φ̃
RΦ0 ≪ I. (61)

At this time, by analyzing the equation (58), it is noticed that the estimate’s value tends
to zero, i.e., ρ̂V R → 0. In this way, to the measure that the SNR is lower, the parameter’s
estimates tends to the value ρ̂V R = 0.

From the developed analysis, it was possible to realize that, dealing with process that
have a considerable amount of noise, the default VRFT methodology will produce non
consistent estimates (biased for N → ∞). This characteristic of the VRFT method is
remarkably undesirable, since that by augmenting the number of collected data, it is not
possible to approximate to the ideal parameters value (BAZANELLA; CAMPESTRINI;
ECKHARD, 2012). On top of that, the bias on the ρ0 estimates yields a degradation
of the closed-loop control systems that use this methodology of tuning the controller’s
parameters (CAMPI; LECCHINI; SAVARESI, 2002).

Another aspect that was not yet addressed is the complexity of the nonlinear controller
generated by the library of nonlinear functions. As one expands the amount of nonlinear
functions, one has many more parameters to estimate. A parsimonious controller will
provide a more accurate estimate with as few terms as possible (BRUNTON; KUTZ,
2019).

Following this thesis, it is exhibited an illustrative example, which we present the stan-
dard nonlinear VRFT with the Least Squares solution to tune the controller’s parameters
of a nonlinear process, a Hammerstein one. The main focus of this example is to show the
statistical properties of the VRFT method in a more concrete manner, showing the quality
of the estimates and its effect on the closed-loop system.

3.3 Illustrative Example

With the purpose of demonstrating the statistical properties described in the previous
section, this section presents an illustrative example of the nonlinear VRFT. Here, we
present only the standard nonlinear VRFT approach so that the reader can get a better
understanding of the method in the nonlinear context.
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Consider the following nonlinear Hammerstein process, with the linear portion being:

G(q) =
0.2

q − 0.8
, (62)

the static nonlinearity is a √
.. So the nonlinear system can be rewritten as:

y(t)√
u(t)

=
0.2q−1

1− 0.8q−1
, (63)

y(t) = 0.8y(t− 1) + 0.2
√

u(t− 1) + ϵ(t). (64)

The desired closed-loop performance chosen for the system is given by the following
transfer function

Td(q) =
0.3

q − 0.7
, (65)

which guarantees a zero steady-state error for reference tracking of step.

In the linear case, the ideal controller Cd(q) can be calculated through

Cd(q) =
Td(q)

G(q)(1− Td(q))
, (66)

and it would be the following

Cd(q) =
[
1.5 0.3

] [
1 1

q−1

]T
, (67)

which it is noticed to be a PI controller. Since we want to analyze the case where Cd(ρ) ∈
C, the linear portion of the controller class is also chosen to have the same structure:

C̄(q) =
[
1 1

q−1

]T
. (68)

Another element to consider is the inverse of the nonlinearity should be the function

f(.) = (.)2. (69)

The construction of this nonlinear map can be made by an expansion of the Taylor Series
of the output signals of the linear part C̄(q), which are denominated as:

vp(t) = e(t), (70)

vi(t) =
1

q − 1
e(t), (71)

vi(t) = vi(t− 1) + e(t− 1). (72)

For this example, we expanded this signals up to the third order, thus generating 15
regressors vectors:

Φ(v(t)) =
[
vp(t) v2p(t) v3p(t) vi(t) v2i (t) v3i (t) vp(t)vi(t) ... v3p(t)v

3
i (t)

]
. (73)
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In the real data-driven control case, one does not know either the process or the ideal
controller, thus the choice of the controller class C cannot be made by equation (66) but
the nonlinearity can always be approximated by its Taylor Series Expansion. Therefore,
by Assumption 2.1, one may define the Cd(ρ) = C(v(t),ρ0), with being the ideal parame-
ters vector:

ρT0 =
[
0 K2

p 0 0 K2
i 0 2KpKi ... 0

]T
=

[
0 2.25 0 0 0.09 0 0.9 ... 0

]T
,

, (74)

then the ideal controller would be

Cd(v(t)) = C(v(t),ρ) = ρT0Φ(v(t)). (75)

For the data collection we excited the system with an input signal called APRBS (Am-

plitude Modulated Pseudo-Random Binary Sequence) of size N = 1500. This signal can
be described by as a Pseudo Random Binary Signal (PRBS) multiplied by the absolute
value of a Gaussian noise with zero mean and variance σ2 = 1. Since we have a non-
linear process, the input signal can not have a constant amplitude.The output white noise
standard deviation is σϵ = 2× 10−2.

In the interest of assessing the statistical properties proposed in the literature, we per-
formed 100 Monte Carlo simulations with different noise realizations. At each simulation
the input and output signals were collected and the controller’s parameters were tuned
with the standard VRFT approach. Four different criteria were evaluated on this analysis:

(i) The distributions of the cost function Jy(ρ);

(ii) The distributions of the parameters K2
p and K2

i ;

(iii) The time responses of the closed-loop system with a square wave input signal;

(iv) The controller’s parameters on the K2
p ×K2

i plan.

The four criteria exhibit the estimate effect on the closed-loop system, which is the main
aspect to be evaluated on the control context. The latter is related to the estimate’s quality
in itself.

Firstly, we analyze the most important criterion for the method studied herein, the
Jy(ρ). From the obtained parameters at each simulation, the cost was calculated as follows

Jy(ρ̂) =
1

N

N∑
t=1

(y(t,ρ̂)− yd(t))
2. (76)

with the reference signal r(t) being a square wave signal with period equal to 10 seconds
and N = 100 samples.
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Figure 4 demonstrates the distributions of Jy(ρ̂) observed in the Monte Carlo simula-
tions by means of boxplots. In this kind of diagrams, the center line in red represents the
median of the observations, the blue box represents the interval between 25% and 75% of
the samples, whereas the black dashed lines extend themselves until the extreme values
that are not considered outliers. The "+" symbols on the top of the diagram display how
many samples were above the maximum value that the boxplot comprehends.

It is important to highlight that the discrepancy cases are not taken into account for
the median, the box and extreme values determination.

Figure 4 shows that the median for the standard nonlinear VRFT was 7.444 × 10−4.
Clearly, the median value can be explained due to the bias error that is present in this
method, which is propagated to the closed-loop performance and causes distinct behaviors
compared to the one specified by the Td(q) transfer function.

Figure 4 – Jy(ρ̂) boxplot for the standard VRFT.
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Figures 5 and 6 exhibit the boxplots for the K2
p and K2

i parameters. By observing
these figures, one can see the bias effect on the controller’s parameters, their median
values were 1.1594 and 0.0655 respectively, which is far away from the ideal value (2.25
and 0.09).

In Figure 7, it is possible to observe both the variance and the bias error on the K2
p×K2

i

plan. The red square represents the average for the controller’s parameters, the blue dot
are the controller’s parameters and the black dot is the ideal parameter ρ0.

Finally, we present the obtained closed-loop time responses on Figure 8. The blue
lines are the process’s output signal and the black line is the desired time response. As
we can see, the transient behavior was slightly slower and with a considerable overshoot
compared to the one specified by Td(q). Another important point was that the system did
not become unstable with the estimated controller’s parameters.
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Figure 5 – K2
p boxplot for the standard VRFT.
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Figure 6 – K2
i boxplot for the standard VRFT.
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By this illustrative example the main motivation of this work is apparent: the statistical
properties yielded by the standard nonlinear VRFT method are not quite adequate when
in the noise presence. As a result, the estimated controller depreciates the closed-loop
performance of the system in a considerable way. Therefore, this thesis main focus is
to improve these properties, by including the ℓ1-regularization on the standard nonlinear
VRFT, as well as getting a parsimonious controller (i.e. with as few terms as possible).

3.4 Chapter Conclusions

This chapter introduced the reader to the already consolidated in the literature, the
data-driven method known as the Nonlinear VRFT. Firstly, Section 3.1 described the
Nonlinear VRFT for understanding its characteristics. The main idea of the method was
explained. It consists of rewriting the optimization problem of the Jy(ρ) criterion, in an
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Figure 7 – Estimated controller’s parameters on the K2
p ×K2

i plan.
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Figure 8 – Comparison of the time response for 100 Monte Carlo simulations.

Source: author.

ideal controller identification problem, where the JV R(ρ) criterion is minimized. It was
shown that within of the ideal situation the optimization of the two criteria results in the
same minimum.

In Section 3.2, the problem of using noisy data in VRFT was addressed in a generic
way. The properties of estimates of ρ0 with the original formulation (LS) were discussed,
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emphasizing that it has a deficiency: the polarization error.
Finally, in Section 3.3 an example demonstrating the properties cited has been devel-

oped. In the example, it was found that the low quality of the estimates of LS propagates
to the performance of systems in closed-loop, degrading it significantly in relation to the
desired performance. Thus, it became evident the motivation of the work, which seeks to
improve the properties of Nonlinear VRFT. It is expected that the results in closed-loop
will be improved and the controller’s complexity as well.
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4 NONLINEAR VRFT WITH REGULARIZATION

This chapter presents the regularization concepts applied to the system identification
context. We present the difference between the ℓ1 and ℓ2 regularization methods with
the purpose of explaining which one suits better for this work. Firstly we consider a
generalized model (that is linear in the parameters) and then we move into the controller
identification using the VRFT method.

In spite of being a tool already known inside the system identification community, the
regularization has come to prominence in the last few years due to innovative works as the
ones in (PILLONETTO; NICOLAO, 2010; PILLONETTO; CHIUSO; DE NICOLAO,
2011), which show the Bayesian perspective to identify the impulse response of linear
dynamical systems. Besides, this perspective is widely utilized and developed in the
Machine Learning community, thus producing various studies about this tool in different
Machine Learning Models (CHEN; LJUNG, 2013).

The most known regularization techniques are the ℓ2 (known as Ridge Regression)
and the ℓ1 (called LASSO Regression). These two techniques combined yield another
method: the Elastic Net Regression which in turn weighs the two methods through a
scalar.

With the intent to illustrate these techniques, consider now the following model:

y(t) = θTx(t) + w(t), (77)

where x(t) ∈ Rp is a deterministic regressor vector, θ ∈ Rp is the parameter vector
and w(t) ∈ R is a white Gaussian noise with zero mean. The problem of finding the
parameter’s vector is denominated linear regression. The linear regression problem can
be solved by many techniques, with the most common being the Least Squares solution.
The LS method has the advantage of being a non-iterative technique, i.e. it does not need
initialization for the parameters and it does not involve the gradient or the Hessian of the
cost function. When the regressor vector has as many regressors as possible i.e. we have
an overdetermined system, the LS estimator will not be able to choose and weigh the
essentials ones. Hence, it yields a complex and incomprehensible model (TIBSHIRANI,
1996).
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Ridge Regression is very similar to the LS method, except the coefficients are esti-
mated by adding a shrinkage penalty as the equation (78) shows:

θ̂Ridge(λ) = argmin
θ

1

N

N∑
t=1

(y(t)− θTx(t))2 + λ

p∑
j=1

θ2j , (78)

where λ ≥ 0 is a tuning parameter to be determined separately. As with LS, ridge regres-
sion seeks the parameters that fit the data well, by minimizing the residual sum of squares

(RSS). Nonetheless, the second term λ
p∑

j=1

θ2j (the shrinkage penalty) is small when the

θ1,...,θp are close to zero, yielding the effect of shrinking the estimates of θj towards zero.
The λ parameter acts as a handler of the relative impact of these two terms on the re-
gression coefficient estimates. When λ = 0, the penalty term has no effect, thus ridge
regression will produce the LS estimates. However, as λ → ∞ the impact of the shrink-
age penalty grows, producing parameters closer to zero. Unlike LS, which bears only
one set of parameter estimates, ridge regression will produce different set of parameter
estimates for each value of λ. Therefore, selecting a good value of λ is extremely impor-
tant. Later on, we present this discussion using the validation and cross-validation (CV)
techniques.

The advantage in applying Ridge Regression over Least Squares is based on the bias-

variance trade-off. As λ raises, the flexibility of the ridge regression fit decreases, leading
to a decreased variance but increased bias (JAMES et al., 2013).

4.1 LASSO

The undeniable disadvantage on the ridge regression is the inclusion of all p regressors

in the final model. Evidently the penalty λ
p∑

j=1

θ2j will shrink all the parameters towards

zero, but it will not set any of them exactly to zero, unless λ = ∞. So, in overdetermined
models, in which the number of parameters p is quite large the ridge regression is not
suitable. Because ridge regression will always generate a model involving all regressors,
as one increases the value of λ it will reduce the magnitude of the parameters, but it will
not result in exclusion of any of them. Thus, it yields a complex and unabbreviated model.

The LASSO (Least Absolute Shrinkage and Selection Operator) is a quite recent alter-
native to ridge regression that overcomes the ridge regression disadvantage. The LASSO
is a technique developed in (TIBSHIRANI, 1996) to perform model selection and param-
eter estimation simultaneously. Frequently in this kind of setup the number of regressors
(the columns of x(t)) are not related to the measured system’s output y(t), i.e. one has
more regressors than the "real" system. It means that the parameter vector (θ0) is sparse

(it has many zero components). The model selection problem is such that one determines
which components of θ are zero. Thus, the regularization will be necessary.

The parameters in the model (77) can be estimated by the LASSO (TIBSHIRANI,
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1996):

θ̂(λ) = argmin
θ

∥∥y(t)− θTx(t)
∥∥2

2
+ λ ∥θ∥1 , (79)

where
∥∥y − θTx(t)

∥∥2

2
= 1

N

N∑
t=1

(y(t) − θTx)2, ∥θ∥1 =
p∑

j=1

|θj|, and λ ≥ 0 is a penalty

coefficient. The LASSO estimator has a property that it does variable selection in the
sense that θ̂(λ) = 0 for some j’s (depending on the choice of λ) and θ̂(λ) can be thought
as a shrunken least squares estimator; hence the name Least Absolute Shrinkage and
Selection Operator (LASSO). An explanation for the variable selection property is given
below.

The optimization for (79) is convex, so it enables efficient computation of the estima-
tor. Besides this optimization problem may be equivalently written as

θ̂ = argmin
θ

∥∥y(t)− θTx(t)
∥∥2

2

s.t. ∥θ∥1 ≤ κ
, (80)

with one-to-one correspondence between λ and κ depending on the data. Such equiv-
alence holds considering that

∥∥y − θTx(t)
∥∥2

2
is convex in θ with a convex constraint

∥θ∥1 ≤ κ (BÜHLMANN; VAN DE GEER, 2011).

Also for Rigde regression one may rewrite (78) as:

θ̂ = argmin
θ

∥∥y(t)− θTx(t)
∥∥2

2

s.t. ∥θ∥2 ≤ κ
. (81)

The variable selection in the sense that a component of the parameter vector θ can be
exactly zero in the LASSO is explained by the ℓ1 geometry. The formulations (80) and
(81) can be used to shed light on the issue. Figure 9 illustrates the situation. The Least
Squares solution is marked as θ̂, while the black diamond and circle represent the LASSO
and ridge regression constraints in (80) and (81), respectively. If κ is sufficiently large,
then the constraint regions will contain θ̂, and so the ridge regression and LASSO esti-
mates will be the same as the least squares estimates. Such a large value of κ corresponds
to λ = 0 in (78) and (79). However, in Figure 9 the least squares estimates lie outside
of the diamond and the circle, in other words it is not the same as the LASSO and ridge
regression estimates.

Each of the ellipses centered around θ̂ represents a contour: this means that all of the
points on a particular ellipse have the same residual sum of squares value. As the ellipses
expand away from the least squares parameters estimates, the RSS increases. Equations
(80) and (81) indicate that the LASSO and ridge regression parameters estimates are given
by the first point at which an ellipse contacts the constraint region. Since the ridge regres-
sion has a circular constraint with no sharp points, this intersection will be exclusively
non-zero. However, the LASSO constraint has corners at each of the axes, and so the
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ellipse will often intersect the constraint region at an axis. When this occurs, one of the
coefficients will equal zero. In higher dimensions, many of the coefficient estimates may
equal zero simultaneously. In Figure 9, the intersection occurs at θ1 = 0, and so the
resulting model will only include θ2.

Figure 9 – Contours of the error and constraint functions for the LASSO (left) and Ridge
regression (right). The solid black areas are the constraint regions, |θ1| + |θ2| ≤ κ and
θ21 + θ22 ≤ κ while the ellipses are the contours of the residual sum of squares.

θ2

θ̂ θ̂

θ2

θ1 θ1

Source: Adapted from (BÜHLMANN; VAN DE GEER, 2011).

In Figure 9 we considered the simple case of p = 2. When p = 3, then the constraint
region for ridge regression becomes a sphere, and the constraint region for the LASSO
becomes a polyhedron. When p > 3, the constraint for ridge regression becomes a hy-
persphere, and the constraint for the LASSO becomes a polytope. However, the key ideas
depicted in Figure 9 still hold. In particular, the LASSO leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope (JAMES et al., 2013).

Implementing ridge regression and the LASSO requires a method for selecting a value
for the tuning parameter λ in (78) and (79), or equivalently, the value of the constraint κ
in (80) and (81). Cross-validation provides a simple way to tackle this problem. First,
we choose a grid of λ values, and compute the cross-validation error for each value of λ.
We then select the tuning parameter value for which the cross-validation error is smallest.
Finally, the model is re-identified using all of the available data and the selected value of
the tuning parameter.

In the next subsections we present three different ways of finding the best λ within a
predefined range.

4.1.1 Validation set

The Validation Set approach is a really simple procedure to estimate the error asso-
ciated with estimation of a particular model on a set of data. In brief, the validation set
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involves randomly dividing the available set of data into two parts, a learning set and a
validation set or hold-out set. Basically, the model is identified on the learning set and
then it is used to predict the responses for the observations in the validation set. The
resulting set error, the MSE, provides an estimate of the test error rate.

The validation set approach is conceptually simple and direct, besides it is easy to
implement. However, it has two potential drawbacks:

• The validation estimate of the test error rate can be highly variable, depending on
precisely which observations are included in the learning set and which observa-
tions are included in the validation set.

• In the validation approach, only a subset of the observations - those that are included
in the learning set rather than in the validation set - are used to fit the model. Since
statistical methods tend to perform worse when learned on fewer observations, this
suggests that the validation set error rate may tend to overestimate the test error rate
for the model fit on the entire data set.

4.1.2 Leave-one Out Cross-Validation

The cross-validation approach intends to address the issues with the classical valida-
tion set. The Leave-one Out Cross-Validation (LOOCV) is one of them (BÜHLMANN;
VAN DE GEER, 2011).

As with the validation set approach, LOOCV concerns splitting the set of data into
two parts. However, instead of creating two subsets of comparable size, a single sam-
ple of data [x(1),y(1)] is used for the validation set, and the other samples make up the
learning set [x(2),y(2)],...,[x(N),y(N)]. The employed method is estimated on the N −1

samples, and a prediction ŷ(1) is made for the excluded sample, using its value x(1).
Since the first sample was not used to estimate the model, the error [y(t)− ŷ(t)]2 provides
an approximately unbiased estimate. But one can not think that with one single sample
the model is well estimated. Thus, one can repeat the procedure for each sample, i.e. N
times. Then, one can calculate the test MSE for the LOOCV approach as:

CV (N) =
1

N

N∑
t=1

(y(t)− ŷ(t))2. (82)

LOOCV has a couple of major advantages over the validation set approach. First, it
has far less bias. In LOOCV, we repeatedly fit the employed method using learning sets
that contain N − 1 observations, almost as many as are in the entire data set. This is in
contrast to the validation set approach, in which the learning set is typically around half
the size of the original data set. Consequently, the LOOCV approach tends not to overes-
timate the test error rate as much as the validation set approach does. Second, in contrast
to the validation approach which will yield different results when applied repeatedly due
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to randomness in the learning/validation set splits, performing LOOCV multiple times
will always yield the same results: there is no randomness in the learning/validation set
splits.

4.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly k-fold CV
dividing the set of observations into k groups, or folds, of approximately equal size. The
first fold is treated as a validation set, and the method is fit on the remaining k − 1 folds.
The mean squared error, MSE1, is then computed on the observations in the held-out fold.
This procedure is repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error, MSE1; MSE2;...;
MSEk. The k-fold CV estimate is computed by averaging these values,

CV (k) =
1

k

k∑
t=1

MSEt. (83)

It is quite straightforward that LOOCV is a special case of k-fold CV in which k is
set to equal N . In practice, one typically performs k-fold CV using k = 5 or k = 10. The
noticeable advantage of using k-fold CV rather than LOOCV is the computational effort.
Another fact that is that there is a bias-variance trade-off associated with its choice. Typ-
ically, one performs k-fold cross-validation using k = 5 or k = 10, as these values have
been shown empirically to yield error estimates that suffer neither from excessively high
bias nor from very high variance (JAMES et al., 2013). We advice the reader the book
(JAMES et al., 2013) if he/she wants to study more about the cross-validation procedure.

In the next sections we present the Regularized VRFT with the LASSO and two dif-
ferent regularization methods presented in the VRFT context.

4.2 Regularized VRFT

The Regularized VRFT is made by simply adding the ℓ1 penalty on equation (31).
Therefore, the Regularized VRFT goal is to solve the following optimization problem

ρ∗Reg = argmin
ρReg

JV R
Reg(ρ), (84)

JV R
Reg(ρ) ≜ JV R(ρ) + λ

P∑
j=1

|ρj| . (85)

In this work’s framework we apply the MATLAB function lasso in order to find ρ∗Reg.
In addition, we use the k-fold cross-validation method to find the λ coefficient.
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4.3 Sequential Thresholded Least Squares

Concerning the computational endeavor and with the same intention to find a sparse
solution on overdetermined systems, the Sequential Thresholded Least Squares (STLS) is
proposed in (BRUNTON; PROCTOR; KUTZ, 2016) to identify model parameters of non-
linear dynamical systems. In this work, we exploit the STLS to identify the controller’s
parameters.

The SLTS method consists on zeroing the parameters found by the Least Squares
method that are smaller than some threshold value λSTLS , and it can be described as the
primal solution to the LASSO objective function. Afterward, we recalculate the remaining
parameters using the Least Squares only onto the remaining indices.

The STLS algorithm applied herein is presented below:

Algorithm 1 Sequential Thresholded Least-Squares
Data: Reference Model Td(q), controller structure C̄(q), library ϕ, threshold λSTLS , mea-
sured data (u(t) and y(t)), t = 1,...,N

Result: Estimated parameters ρSTLS

Generate the virtual reference and the regressor matrix
r(t) = T−1

d (q)y(t)

e(t) = r(t)− y(t)

v(t) = C(q)e(t)

Generate the regressor matrix using the library ϕ

Φ = [ϕ1(v(t)) ϕ2(v(t)) ... ϕn(v(t−N))]

Search for the small parameters
Initial guess: least-squares ρ = (ΦTΦ)−1ΦTu(t)

Determine the ρ indexes less than λSTLS

α = |ρ| ≤ λSTLS

Threshold the parameters
ρα = 0

Determine the ρ indexes greater than λSTLS

β = |ρ| > λSTLS

Regress the dynamics onto remaining terms
ρSTLS = (ΦT

βΦβ)
−1Φβu(t)

where α ∈ Rp, with p being the number of zero parameters and β ∈ Rq, with q being the
number of nonzero parameters.

4.4 Sequential Thresholded Least Squares 2

Finding an appropriate threshold in the STLS just described is a critical task for which
there seems to be no firm guidelines in the literature. It is doubtful whether such firm
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guidelines can ever be derived, since a single threshold must be applied to parameters
with hugely different units. Thus, it seems wiser to evaluate the parameters whose net
contribution to the objective function (30) is smaller than a threshold instead; specifically,
n∑

j=1

|ρjΦj(t)| < λ. This is what we propose here in this work, under the name Sequential

Thresholded Least Squares 2 (STLS2).
The STLS2 algorithm is defined as follows:

Algorithm 2 Sequential Thresholded Least-Squares 2
Data: Reference Model Td(q), controller structure C̄(q), library ϕ, threshold λSTLS2 ,
measured data (u(t) and y(t)), t = 1,...,N

Result: Estimated parameters ρSTLS2

Generate the virtual reference and the regressor matrix
r(t) = T−1

d (q)y(t)

e(t) = r(t)− y(t)

v(t) = C(q)e(t)

Generate the regressor matrix using the library ϕ

Φ = [ϕ1(v(t)) ϕ2(v(t)) ... ϕn(v(t−N))]

Search for the small parameters
Initial guess: least-squares ρ = (ΦTΦ)−1ΦTu(t)

Determine the ρ indexes contribution less than λSTLS2

α = |ρjϕj| ≤ λSTLS2

Threshold the parameters
ρα = 0

Determine the ρ indexes greater than λSTLS2

β = |ρ| > λSTLS2

Regress the dynamics onto remaining terms
ρSTLS = (ΦT

βΦβ)
−1Φβu(t)

In the next chapter we present four study cases in order to illustrate the regularization
methods and their implications into the closed-loop performance.

4.5 Chapter conclusions

This chapter was responsible for presenting to the reader the fundamental concepts of
use of regularization in models that are linear in the parameters, aiming at the application
of this tool in the VRFT method.

Firstly, Section 4.1 compared the ℓ2 and ℓ1 regularization methods. We showed that
the ℓ1 regularization method is the best suited for this work’s purpose. Moreover, we
discussed about three particular methods for finding the best penalty parameter λ, which
is the k-fold Cross-Validation.
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In Section 4.3, we disclosed an alternative to the LASSO method to find an sparse
solution to the parameters vector θ along with its algorithm. The STLS can be interpreted
as the primal formulation for the LASSO objective function.

Finally, in Section 4.4 we propose a more adequate methodology that takes into con-
sideration the contribution of the parameter to the objective function value.
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5 CASE STUDIES

The objective of this chapter consists on showing some simulated study cases to eluci-
date the regularization concepts and their effects on the Classical Nonlinear VRFT. Four
different study cases on nonlinear systems are displayed in this Section. The experiments
on each example were conducted by simulations on MATLAB.

The experiments were simulated in order to explore different controller structures
(the linear portion C̄(q) and also the library of nonlinear functions ϕ(.)). The first three
examples are Hammerstein processes, in the first one we consider a second order reference
model and the ideal controller is matched. The second example a first order reference
model is considered and the ideal controller can be matched, the third one is the same
as the second with the difference that the ideal controller cannot be matched due to the
controller structure. In the last and fourth example we present a nonlinear system with
bilinearities and quadratic nonlinearities.

One of the metrics employed to compare the obtained results is the objective function
estimate for the reference tracking performance criterion Ĵy(Ê(ρ)), given by

Ĵy(ρ̂) =
1

N

N∑
t=1

(y(t,ρ̂)− yd(t))
2, (86)

where ρ̂ is the estimated parameters vector for each noise realization, N is the number
of collected samples, y(t,ρ̂) and yd(t) are the closed-loop response for the process and
reference model, respectively. It is worth mentioning that this function is calculated for
each estimated controller and for each method.

The other metric employed in this chapter for all the N Monte Carlo simulations is
the average controller parameters denoted by Ê(ρ), which is calculated through

Ê(ρ) =
1

N

N∑
k=1

ρ̂k. (87)

The average controller parameters are used to estimate the bias of each method in the
matched case examples.
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5.1 Hammerstein Process 1 - Matched Case

In this first example, we operated some experiments on a first order process, which is
described by the following transfer function

G(q) =
0.2

q − 0.8
. (88)

This process’ settling time is approximately 18 samples, considering that the 5% criterion
was applied. Since this example considers a Hammerstein process, we must define the
static input nonlinearity. In this case the nonlinearity is a

√
(.).

The reference model selected for this case is a second order linear transfer function.
Thus, we choose the following transfer function for the closed-loop system.

Td(q) =
0.01

(q − 0.9)2
, (89)

and ts = 0.1s.
In the linear case, the ideal controller Cd(q) would be the following

Cd(q) =
0.05

q − 1
, (90)

so we adopted a pure integrator for C̄(q) = 1
q−1

. Then the signal vi(t) is described as

vi(t) = e(t)
1

q − 1
, (91)

vi(t) = vi(t) + e(t− 1). (92)

As we discussed in Section 2.2.1 we must expand the signals that come from the
output of C̄(q). In this case we expand the signal vi(t) up to the fifth order, thus generating
5 regressors vectors:

Φ =
[
vi(t) v2i (t) v3i (t) v4i (t) v5i (t)

]
. (93)

The open-loop experiment was handled by an APRBS of size N = 1500. Recapitulat-
ing Chapter 3, this signal can be described by as a Pseudo Random Binary Signal (PRBS)
– with an amplitude of 2 – multiplied by the absolute value of a Gaussian noise with zero
mean and variance σ2 = 1. The selected white noise standard deviation is σν = 1× 10−2.

Concerning the LASSO algorithm, the MATLAB function lasso was used. The reg-
ularization parameter λLASSO was calculated through the 5-fold Cross Validation pro-
cedure so that it would yield minimum variance, the threshold parameter for STLS is
λSTLS = 1 × 10−3. Regarding the STLS2 method, λSTLS2 is determined such that only
the parameters that contribute 50% or less to the objective function are thresholded.

To evaluate the proposed technique, 100 Monte Carlo simulations were run with dis-
tinct noise realizations. The major objective of inserting the regularization on the VRFT
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was to draw a better closed-loop performance. This evaluation was done through the ob-
jective function Jy(ρ), in addition to the sum of all the estimated zeros in each Monte
Carlo simulation.

Table 1 exhibits the average controller gains that should be the nonzero parameters.

Table 1 – Average Estimated Controller Gains.
Regressor Ê(ρLS) Ê(ρLASSO) Ê(ρSTLS) Ê(ρSTLS2) ρ0

vi 0.0014 0.0024 0.0015 0 0

v2i 0.0023 0.0023 0.0024 0.0025 0.0025

v3i 0.0000 0.0000 0 0.0000 0

v4i -0.0000 0.0000 0 -0.0000 0

v5i 0.0000 -0.0000 0 0 0

Seeing that we calculated the parameters on Table 1 using the 100 Monte Carlo sim-
ulations, the zero gains found were observed all over the 100 simulations.

To evaluate the sparsity of the estimation along all the Monte Carlo Simulations, we
present Table 2, which contains the number of estimated zeros by the four methods and
the ideal quantity as well.

Table 2 – Total number of zeros
Method N0

LS 0

LASSO 209

STLS 307

STLS2 351

Ideal 400

If now we turn to the interpretation of the objective function, through Table 3 it is
evident that the only regularization method outperforming the classical VRFT with the
Least-Squares is the STLS2. The cost Ĵy(Ê(ρLS)) is 12% worst than the minimum,
Ĵy(Ê(ρLASSO)) is 38%, Ĵy(Ê(ρSTLS)) is 16%, while the STLS2 achieves the minimum
value amongst all methods with Ĵy(Ê(ρSTLS2)) is 3%.

Table 3 – Objective Function Estimate (Ĵy(Ê(ρ))× 104) regarding the simulation of Sec-
tion 5.1.

Jy(Ê(ρLS)) 1.2319

Jy(Ê(ρLASSO)) 1.5205

Jy(Ê(ρSTLS)) 1.2819

Jy(Ê(ρSTLS2)) 1.1338

Ĵy(ρ0) 1.0977
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Analyzing the boxplots in Figure 10, it is possible to confirm that the ℓ1-regularization
methods – except STLS – decreased both the variance and the bias of the estimate, with
the LASSO presenting the best results. If we draw the attention to the STLS method, it
attained a worse variance compared to the LASSO.

Figure 10 – Comparison of Jy(ρ̂) for the classical and Regularized nonlinear VRFT re-
garding the simulation of Section 5.1.
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In the Figure 11 it is possible to observe both the variance and the bias error on the
Ki ×K2

i plan. It is interesting to notice that STLS bias is almost zero, cause its average
value is practically on top of the ideal value ρ0.

Figure 11 – Estimated controller’s parameters on the Ki ×K2
i plan.
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It is possible to visualize that in Figure 12 the STLS algorithm presents the minimum
variance for the K2

i parameter, which corroborates with Figure 11 for the K2
i axis.

Figure 12 – K2
i boxplot comparison for the nonlinear VRFT and the Regularized nonlin-

ear VRFT regarding the simulation of Section 5.1.
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To illustrate the closed-loop performance, we show Figure 13. The chosen reference
signal r(t) is a square wave of 2 periods, with each period being of 20 seconds. These
results were obtained with the system in closed-loop and simulating it for all 100 ρ vectors
estimated which were gathered from each Monte Carlo simulation. The black line is the
desired output time response yd(t). It is possible to observe that the STLS2 closed-loop
standouts between all the regularization methods and also comparing its performance to
the LS closed-loop performance. It shall point out that simulations were handled without
noise.

5.2 Hammerstein Process 2 - Matched Case

The second case study is also implemented with a Hammerstein System, where the
linear part of the open-loop process is given by

G(q) =
0.2

q − 0.8
, (94)

and the static nonlinearity is a
√

(.) and H(q) = 1

The desired closed-loop performance chosen for the system is given by the following
transfer function

Td(q) =
0.3

q − 0.7
. (95)

In the linear case, the ideal controller Cd(q) would be the following
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Figure 13 – Closed-loop performance regarding the simulation of the Section 5.1.
(a) Least Squares. (b) LASSO.

(c) STLS. (d) STLS2.

Source: author.

Cd(q) =
[
1.5 0.3

] [
1 1

q−1

]T
, (96)

which is a Proportional-Integral (PI) controller. The controller class C chosen is PI con-
troller as well. In such manner, the matching condition is met.

In the nonlinear case, it is quite straightforward that the ideal controller would be
PI in addition to the inverse of the nonlinearity that is in the process, i.e. f(.) = (.)2.
The expansion of the linear signals vp(t) and vi(t) was made up to the third order, thus
generating 15 regressors vectors:

Φ =
[
vp(t) v2p(t) v3p(t) vi(t) v2i (t) v3i (t) vp(t)vi(t) ... v3p(t)v

3
i (t)

]
. (97)

Thus the ideal controller would have the following parameters

ρT0 =
[
0 K2

p 0 0 K2
i 0 2KpKi ... 0

]T
=

[
0 2.25 0 0 0.09 0 0.9 ... 0

]T
,

(98)

so, the ideal controller would be

Cd(v(t)) = C(v(t),ρ) = ρT0Φ(v(t)), (99)



55

with vp(t) = e(t) and vi(t) =
1

q − 1
e(t).

The input signal u(t) employed to excite the plant was a Pseudo Random Binary
Signal (PRBS) multiplied by the absolute value of a Gaussian noise with zero mean and
variance σ2 = 1, with N = 1500 samples. Besides, the plant’s output is affected by
a gaussian noise with variance σ2

e = 1 × 10−4. Concerning the LASSO algorithm, the
MATLAB function lasso was used. The regularization parameter λLASSO was calculated
through the 10-fold Cross Validation algorithm so that it would yield minimum variance,
and λSTLS = 0.05 and λSTLS2 = 20 (which corresponds to approximately to 1% of the
contribution to the objective function).

To evaluate the proposed technique, 100 Monte Carlo simulations were run with dis-
tinct noise realizations. The major objective of inserting the regularization on the VRFT
was to draw a better closed-loop performance. This evaluation was done through the ob-
jective function Jy(ρ̂), in addition to the sum of all the estimated zeros in each Monte
Carlo simulation.

Table 4 exhibits the average controller gains for each regressor.

Table 4 – Average Estimated Parameters regarding the simulation of Section 5.2.
Regressor Ê(ρLS) Ê(ρLASSO) Ê(ρSTLS) Ê(ρSTLS2) ρ0

vp 0.0260 0.0589 0.0327 0 0

v2p 1.9895 2.1496 2.0576 2.2177 2.2500

v3p 0.2412 0.0178 0.1455 0 0

vi 0.0126 0.0094 0.0175 -0.0000 0

v2p 0.0818 0.0869 0.0858 0.0893 0.0900

v3p 0.0014 0.0003 0 0.0003 0

vp.vi 0.9595 0.8604 0.8769 0.9000 0.9000

(vp.vi)
2 -0.0489 0.0001 -0.0031 -0.0232 0

(vp.vi)
3 -0.0153 -0.0004 0.0019 -0.0002 0

v2p.vi 0.2029 0.0117 0.0422 0.0472 0

v3p.vi -0.3356 0.0002 -0.0388 0 0

vp.v
2
i -0.0450 0.0012 0.0006 -0.0084 0

v3p.v
2
i 0.1272 -0.0003 -0.0084 -0.0014 0

vp.v
3
i 0.0064 0.0003 0 0.0014 0

v2p.v
3
i 0.0023 -0.0005 0 0.0021 0

To evaluate the sparsity of the estimation along all the Monte Carlo Simulations, we
present Table 5, which contains the number of estimated zeros by the four methods and
the ideal quantity as well.



56

Table 5 – Total number of zeros regarding the simulation of Section 5.2.
Method N0

LS 0

LASSO 661

STLS 640

STLS2 625

Ideal 1200

The ideal number of zeros is calculated as if in all simulations the undesirable param-
eters (12 in this example) would be zero.

If now we turn to the interpretation of the objective function, through Table 6 it is
evident that all the regularization methods surpass the classical nonlinear VRFT with the
Least-Squares. The cost Ĵy(Ê(ρLS)) is 25% worst than the minimum, while the LASSO
achieves the minimum up to three correct significant digits.

Table 6 – Objective Function Estimate (Ĵy(Ê(ρ))× 104) regarding the simulation of Sec-
tion 5.2.

Ĵy(Ê(ρLS)) 1.586

Ĵy(Ê(ρLASSO)) 1.268

Ĵy(Ê(ρSTLS)) 1.325

Ĵy(Ê(ρSTLS2)) 1.286

Ĵy(ρ0) 1.265

Analyzing the boxplots in Figure 14, one notes that the STLS method presents several
outliers. Then, to get a better of Figure 14, the following Figure 15 presents the zooming
of the previous.

It is possible to confirm that the ℓ1-regularization methods decreased both the variance
and the bias of the estimate, with the LASSO presenting the best results. If we draw the
attention to the STLS and STLS2 methods, they attained a worse variance compared to
the LASSO. Moreover, the STLS2 returns a variance that is worse than the LS method.

In the Figure 16 it is possible to observe both the variance and the bias error on the
K2

p×K2
i plan. The black dot is the ideal parameter ρ0, the STLS2 and the LASSO methods

provide the best result with respect to bias.
Another perspective for the Figure 16 is given by Figures 17 and 18. These Figures

portray a good variance minimization by the LASSO algorithm and the STLS, and as
requested the bias was also minimized. From Figure 18 one notices that the STLS method
thresholded the K2

i parameters, which is not desirable.
To illustrate the closed-loop performance, we show Figure 19, as with the last exam-

ple, simulations were handled without noise. The chosen reference signal r(t) is a square
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Figure 14 – Comparison of Jy(ρ̂) for the classical and Regularized VRFT regarding the
simulation of the Section 5.2.
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Figure 15 – Comparison of Jy(ρ̂) for the classical and Regularized Nonlinear VRFT re-
garding the simulation of the Section 5.2.

LS LASSO STLS STLS2

1

2

3

4

5

6

7

8

9

10
10

-4

Source: author.

wave of 2 periods, with each period being of 20 seconds. These results were obtained
with the system in closed-loop and simulating it for all 100 ρ vectors estimated which
were gathered from each Monte Carlo simulation. The black line is the desired output
time response yd(t). It is possible to observe that the LASSO closed-loop outperforms
between all the regularization methods, which confirms the results of Figure 15. The out-
liers presented for the STLS method and observed in Figure 14 deteriorate the closed-loop
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Figure 16 – Estimated controller’s parameters on the K2
p ×K2

i plan regarding the simula-
tion of the Section 5.2.
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Figure 17 – K2
p boxplot comparison for the nonlinear VRFT and the Regularized nonlin-

ear VRFT regarding the simulation of the Section 5.2.
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performance as we see on Figure 19c.
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Figure 18 – K2
i boxplot comparison for the nonlinear VRFT and the Regularized nonlin-

ear VRFT regarding the simulation of the Section 5.2.
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Figure 19 – Closed-loop performance regarding the simulation of the Section 5.2.
(a) Least Squares. (b) LASSO.

(c) STLS.
(d) STLS2.

Source: author.
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5.3 Hammerstein Process 3

This next example is a variation from the study case of Section 5.2, where we have a
pair pole/zero that have approximately the same module. We have simulated 100 Monte
Carlo runs modifying the noise realization. The linear part of the process G(q) is given
by the following transfer function

G(q) =
0.2(q − 0.4)

(q − 0.3)(q − 0.8)
. (100)

and the static nonlinearity is a
√
(.) and H(q) = 1. The reference model is the same as in

(95).
We have adopted the same linear portion for the C̄(q) – a PI controller – and the library

of nonlinear functions is also the same.
If there is no nonlinearity, the ideal linear controller Cd(q) would be described as

follows
Cd(q) =

1.5(q − 0.3)(q − 0.8)

(q − 0.4)(q − 1)
, (101)

which is a PID controller with a fixed derivative pole.
To evaluate the sparsity of the estimation along all the Monte Carlo Simulations, we

present Table 7, which contains the number of estimated zeros by the four methods.

Table 7 – Total number of zeros regarding the simulation of the Section 5.3.
Method N0

LS 0

LASSO 545

STLS 880

STLS2 421

If now we turn to the interpretation of the objective function, through Table 8 it is
evident that all the regularization methods outrun the classical VRFT with the Least-
Squares.

Table 8 – Objective Function Estimate (Ĵy(Ê(ρ)) × 104) regarding the simulation of the
Section 5.3.

Jy(Ê(ρLS)) 5.5922

Jy(Ê(ρLASSO)) 4.2216

Jy(Ê(ρSTLS)) 5.2552

Jy(Ê(ρSTLS2)) 4.3142

To illustrate the closed-loop performance, we show Figure 21, as with the last exam-
ple, simulations were handled without noise. The chosen reference signal r(t) is a square
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Figure 20 – Comparison of Jy(ρ̂) for the classical and Regularized Nonlinear VRFT re-
garding the simulation of the Section 5.3.
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wave of 2 periods, with each period being of 5 seconds. These results were obtained with
the system in closed-loop and simulating it for all 100 ρ vectors estimated which were
gathered from each Monte Carlo simulation. The black line is the desired output time re-
sponse yd(t). It is possible to observe that the LASSO closed-loop outperforms between
all the regularization methods, which confirms the results of Figure 20.

5.4 Continuous Stirred-Tank Reactor

This subsection presents another case study: the Continuous Stirred-Tank Reactor

(CSTR) whose model is given by (ROFFEL; BETLEM, 2007)

P :

{ ẋ1 = −2x2
1 + (1− x1)u

ẋ2 = x2
1 − x2u,

y = x2

(102)

The desired closed-loop performance chosen for the system is given by the transfer
function

Td(q) =
0.0216(q + 0.8)

(q − 0.85)2
. (103)

The selected controller’s linear portion structure is a Proportional-Integral-Derivative
(PID)

C̄(q) =
[
1 1

q−1
q−1
q

]
, (104)
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Figure 21 – Closed-loop performance regarding the simulation of the Section 5.3.
(a) Least Squares. (b) LASSO.

(c) STLS. (d) STLS2.

Source: author.

The expansion of the linear signals vp(t), vi(t) and vd(t) = e(t)
q − 1

q
was made up to

the second order, generating 23 parameters to be estimated, thus Cd(q) /∈ C.

The input signal u(t) applied to the plant is a sequence of steps to yield an output y(t)
in the range from 0.1 to 0.4. Furthermore, the plant’s output is affected by a Gaussian
noise with variance σ2 = 2.5× 10−7. As with the first example, we ran 100 Monte Carlo
Simulations. The regularization parameter λLASSO is calculated as previously, the λSTLS

is the average of ρLS for each noise realization and λSTLS2 is the average of contribution
to the objective function for each noise realization as well.

Table 9 exhibits the average controller gains for each regressor.

Examining the Table 10, we can observe that the LASSO method presented the best
sparse identification, i.e. the majority number of total zeros. After, the proposed method
STLS2 presents 1499 identified zeros which is near to the LASSO.



63

Table 9 – Average Estimated Parameters regarding the simulation of the Section 5.4.
Regressor Ê(ρLS) Ê(ρLASSO) Ê(ρSTLS) Ê(ρSTLS2)

vp 0.0686 -0.0433 -0.0151 0

v2p 0.0097 -0.0002 -0.0013 0

vi -1.1167 -0.0000 0.1496 0

v2i -0.2659 -0.0317 0.3725 0

vd -0.6605 -0.0488 -0.1807 0

v2d -3.5788 -0.0001 -1.1643 -0.0650

vivp -3.8453 0.0000 -0.2961 -0.0093

vdvp 3.0701 0 0.8561 -0.0918

vivd -1.3057 0 -0.1502 0

(vivp)
2 -1.4049 0.0192 0.0086 -0.1204

(vdvp)
2 -0.0016 -0.0026 0.0157 0

(vivd)
2 -1.2686 0.0086 -0.0223 0.1214

viv
2
p -3.8657 -0.0000 -0.8684 -0.3348

vdv
2
p 1.6587 0.0000 0.6920 0.1914

viv
2
d -4.9033 0 -0.4240 0.3188

v2i vp -0.7669 0 0.4378 -0.0193

v2dvp -1.6023 0.0011 -0.6335 -0.2575

v2i vp -0.7669 0 -0.0129 -0.0551

vpvivd 3.8098 0 0.1833 -0.4403

(vpvivd)
2 -0.0473 0.0003 0.0010 -0.0047

v2pvivd 0.0523 -0.0000 -0.1240 -0.0446

vpv
2
i vd 1.1100 0.0005 -0.0021 -0.1881

vpviv
2
d -1.4462 -0.0000 -0.1240 -0.1177

v2pv
2
i vd -0.1787 -0.0006 -0.0219 -0.0613

v2pviv
2
d -0.1291 0.0000 -0.0013 -0.0029

vpv
2
i v

2
d -0.3134 -0.0001 -0.0108 -0.0164

Table 10 – Total number of zeros
Method N0

LS 0

LASSO 1531

STLS 944

STLS2 1499

If now we turn to the interpretation of the objective function, through Table 11 it is
evident that all the regularization methods surmount the classical VRFT with the Least-
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Squares.

Table 11 – Objective Function Estimate (Ĵy(Ê(ρ))× 106) regarding the simulation of the
Section 5.4.

Ĵy(Ê(ρLS)) 1.625

Ĵy(Ê(ρLASSO)) 0.905

Ĵy(Ê(ρSTLS)) 0.305

Ĵy(Ê(ρSTLS2)) 0.422

Analyzing the boxplots in Figure 22, it is possible to confirm that the ℓ1-regularization
methods decreased the variance, with the LASSO presenting the best results. If we draw
the attention to the STLS and STLS2 methods, they attained an excellent minimum, with
the STLS2 overcoming the STLS in terms of variance.

Figure 22 – Comparison of Jy(ρ̂) for the classical and Regularized Nonlinear VRFT re-
garding the simulation of the Section 5.4.
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To illustrate the closed-loop performance in the designated range, we show Figure 23.
It can be seen that the regularization methods performed better than the Least-Squares.
When one compares the regularization methods closed-loop performance, one may see
that in average the STLS and STLS2 performed approximately equal to each other for this
case study.
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Figure 23 – CSTR closed-loop performance regarding the simulation of the Section 5.4.
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5.5 Analysis concerning the Input Signal and the Noise Level

The following subsection depicts an analysis regarding the effects on the choice of the
input signal u(t) – sometimes entitled the learning data – the noise level in the closed-loop
system and the sparsity for the controller identification.

This analysis was done by decreasing the white noise level by the following:

• σ = 10−2

• σ = 5× 10−3

• σ = 10−3.

Besides, the learning data was varied as follows

• APRBS

• White Noise

• Steps.

An important aspect to highlight is that the White Noise is decorrelated to the White
Noise in the process’ output. Also, the Steps used as the training data are steps that are
only modulated in amplitude.

Tables 12, 14, 16 and 18 show the values for the cost function estimate with the
average controller parameters of each example.

Tables 13, 15, 17 and 19 show the total number of zeros controller parameters of each
example.
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Table 12 – Cost function values regarding the simulation of the Section 5.1.
J × 104

APRBS Ruído Branco Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

Jy(Ê(ρLS)) 1.2319 1.1327 1.1001 1.5914 1.1227 1.0961 24.9116 16.4143 1.1808

Jy(Ê(ρLASSO)) 1.5205 1.1640 1.2472 1.4098 1.1432 1.2389 1.5990 1.0936 1.2417

Jy(Ê(ρSTLS)) 1.2820 1.0968 1.0974 4.4795 1.1476 1.0971 1.5421 1.0917 1.0937

Jy(Ê(ρSTLS2)) 1.1338 1.1050 1.0974 1.4028 1.1164 1.0975 1.3510 1.1301 1.0975

Jy(ρ0) 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977

Table 13 – Total number of zeros for each noise level and input signal regarding the
simulation of the Section 5.1.

N0

APRBS White Noise Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

LS 0 0 0 0 0 0 0 0 0

LASSO 209 196 389 212 209 398 129 190 400

STLS 307 315 368 315 323 388 305 306 359

STLS2 351 371 400 329 375 400 201 219 400

Ideal 400 400 400 400 400 400 400 400 400

Table 14 – Cost function values regarding the simulation of the Section 5.2.
J × 104

APRBS White Noise Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

Jy(Ê(ρLS)) 1.665 1.317 1.268 1.485 1.291 1.267 173.8 - 70.06

Jy(Ê(ρLASSO)) 1.272 1.264 1.375 1.281 1.265 1.333 114.5 212.0 52.31

Jy(Ê(ρSTLS)) 1.323 1.267 1.265 1.312 1.269 1.265 165.7 - 60.95

Jy(Ê(ρSTLS2)) 1.305 1.274 1.265 1.297 1.266 1.265 - 242.9 357.8

Jy(ρ0) 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.26 1.265

Table 15 – Total number of zeros for each noise level and input signal regarding the
simulation of the Section 5.2.

N0

APRBS White Noise Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

LS 0 0 0 0 0 0 0 0 0

LASSO 649 613 900 671 634 900 759 466 1176

STLS 639 778 1120 597 662 967 439 393 561

STLS2 615 846 1179 434 566 938 955 1086 1400

Ideal 1200 1200 1200 1200 1200 1200 1200 1200 1200

Table 16 – Cost function values regarding the simulation of the Section 5.3.
J × 104

APRBS White Noise Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

Jy(Ê(ρLS)) 5.592 4.766 4.516 3.734 3.469 3.393 - - -

Jy(Ê(ρLASSO)) 4.221 3.768 3.643 3.061 2.979 2.962 123.0 - 45.94

Jy(Ê(ρSTLS)) 5.255 4.585 4.226 3.486 3.239 3.100 - - -

Jy(Ê(ρSTLS2)) 4.314 4.118 4.214 2.912 3.533 3.618 474.3 139.3 -

Due to the CSTR characteristics, the analysis was done by decreasing the white noise
level by the following standard deviation:

• σ = 10−3

• σ = 5× 10−4
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Table 17 – Total number of zeros for each noise level and input signal regarding the
simulation of the Section 5.3.

N0

APRBS White Noise Steps
σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3 σ = 10−2 σ = 5× 10−3 σ = 10−3

LS 0 0 0 0 0 0 0 0 0

LASSO 545 614 652 589 519 455 891 427 1179

STLS 88 108 151 160 179 126 246 268 369

STLS2 421 470 500 283 347 371 914 994 1275

• σ = 10−4.

Table 18 – Cost function values regarding the simulation of the Section 5.4.
J × 106

APRBS White Noise Steps
σ = 10−3 σ = 5× 10−4 σ = 10−4 σ = 10−3 σ = 5× 10−4 σ = 10−4 σ = 10−3 σ = 5× 10−4 σ = 10−4

Jy(Ê(ρLS)) 16.87 16.9735 16.32 19.27 20.69 19.71 12.76 5.025 141.5

Jy(Ê(ρLASSO)) 17.93 17.3880 17.70 18.03 17.53 16.85 14.59 8.495 8.083

Jy(Ê(ρSTLS)) 16.49 17.2211 18.50 22.11 26.50 28.61 15.03 5.516 2.587

Jy(Ê(ρSTLS2)) 19.27 42.5250 154.88 90.26 16.07 16.48 13.54 7.029 4.622

Table 19 – Total number of zeros for each noise level and input signal regarding the
simulation of the Section 5.4.

N0

APRBS White Noise Steps
σ = 10−3 σ = 5× 10−4 σ = 10−4 σ = 10−3 σ = 5× 10−4 σ = 10−4 σ = 10−3 σ = 5× 10−4 σ = 10−4

LS 0 0 0 0 0 0 0 0 0

LASSO 24 17 2 118 80 83 298 870 1553

STLS 1051 1174 1191 1058 1024 977 725 715 957

STLS2 1785 1870 1900 1874 1726 1700 1570 1724 1479

From Tables 14 and 15 we observe interesting results with the APRBS and White
Noise as training data. In some cases the minimum of the reference tracking performance
criterion is achieved, as well as the ideal quantity of parameters are thresholded. The Steps
applied into the plant to estimate the controller generated unstable closed-loop systems
for the study cases of Section 5.2 and this outcome is accentuated in example of Section
5.3 (see Tables 16 and 17).

As for the example of Section 5.4, we see on Tables 18 and 19 that the LASSO method
was the worst in the sparsity aspect. When we pay attention to both the sparsity and the
cost function value, we perceive that the best results were attained with the sequence of
steps being the input signal.

Finally, the analysis of the input signal and the noise level shows that, for the studied
examples, the input signal is a very important aspect to consider in the design of nonlinear
controller using the Nonlinear VRFT method.



68

5.6 Chapter conclusions

In this Chapter we showed the simulation results for four different case studies with
the objective of analyzing the regularization methods compared to the Nonlinear VRFT
method. Four case studies are analyzed: two of them consider the matched case, and the
other two the unmatched case.

In the first case study of Section 5.1 the method that is proposed in this work (STLS2)
outperforms the other two regularization methods as well as the classical Nonlinear VRFT
with the LS solution, with respect to the closed-loop performance and the sparse solution.
When we look only at the variance for the ideal parameter K2

i , LASSO and STLS yield a
minimum variance for this parameter.

The second case study (Section 5.2) the LASSO is the best regarding both the sparsity
and also the closed-loop performance. Besides, the STLS method yields a considerable
amount of outliers compared to the other methods, as a consequence it affects the closed-
loop performance.

In Section 5.3, a variation of the second case study is presented, where the ideal con-
troller cannot be match. As one analyzes the sparsity, the best method is the STLS.
However, for the closed-loop performance the LASSO provides better results.

Section 5.4 portrays a representation of the CSTR. In this case, all regularization meth-
ods outperformed the classical Nonlinear VRFT. The LASSO performed better consid-
ering the variance for the performance criterion Jy(ρ), while the STLS and the STLS2

achieved the smaller values for the same criterion.
Finally, Section 5.5 presented a more complete analysis for each regularization method

concerning the input signal and the noise leve l consequence on the closed-loop perfor-
mance and the sparsity of the tuned controller.
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6 CONCLUSIONS

In this work we addressed the Design of Nonlinear Controllers problem with the fo-
cus on solving this problem using the ℓ1 regularization techniques, where two existing
methods of the literature are presented and a third is derived. The idea of including this
regularization technique comes from the controller structure and the Nonlinear VRFT
statistical properties.

In this sense, before presenting the regularization techniques to tune the controller pa-
rameters, some preliminary definitions, which are fundamental to the development of the
work, are introduced to the reader on Chapter 2. Next, Chapter 3 the standard Nonlinear
VRFT formulation with Least Squares algorithm is discussed in order to contextualize the
reader in this data-driven control method. Also, in this Chapter, the statistical properties
of this formulation are demonstrated. Through this analysis it was possible to conclude
that in the presence of a high amount of noise, the Nonlinear VRFT with the Least Squares
displays a considerable bias error, and it deteriorates the closed-loop performance. An-
other aspect that was noticed is the inefficiency of the Least Squares method regarding the
sparsity for the tuned controller. On Chapter 4 we introduced the regularization concepts
comparing it to the Least Squares algorithm. The two kinds of regularization techniques
were compared in this Chapter: the ℓ2 (known as Ridge Regression) and the ℓ1 (known as
LASSO Regression). In addition, this Chapter discussed two other regularization meth-
ods, which can be interpreted as the primal solution for the LASSO Regression: the SLTS
proposed by (BRUNTON; PROCTOR; KUTZ, 2016) and the denominated SLTS2 pro-
posed in this work. On Chapter 5 it was presented four case studies, where in the first two
we have the matched case, and in the last two the unmatched case. This Chapter illustrates
the main results of this master thesis.

We exposed on Chapter 5 the feature behind each regularization method compared to
the Least Squares. From these case studies it was noticed that the LASSO usually displays
the best results regarding the variance aspect, as it employs the k-fold Cross-Validation
procedure to find the best penalty parameter. On the other hand, the STLS and STLS2 got
better results then the LASSO only in the last example, with respect to the average closed-
loop performance. Furthermore, this Chapter compared three different noise levels with
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three different input signals for all case studies, with the objective of examining better
their consequences on the performance criterion and the controllers order.

Based on the four case studies we could not designate the best regularization technique
between all three, since each of them presents advantages and disadvantages depending
on the case study. Besides, as the STLS and STLS2 are only the primal formulation for
the LASSO, a way of finding the parameters λSTLS and λSLTS2 must be derived.

Finally, as for future works, it remains the development of a detailed formulation for
the best solution λSTLS and λSLTS2 and comparing it with all cross-validation techniques.
Another work could be done on how to optimize the best order for the expansion of
the library of nonlinear functions ϕ(.). The sparsity of the nonlinear controller could
also be studied deeper, as well as different parameterizations for the controller could be
compared, for instance.
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